
Received: 18 June 2021 Revised: 2 February 2022 Accepted: 9 March 2022

DOI: 10.1002/cpe.6999

S P E C I A L I S S U E P A P E R

Fine-grain task-parallel algorithms for matrix factorizations
and inversion on many-threaded CPUs

Sandra Catalán1 José R. Herrero2 Francisco D. Igual1

Enrique S. Quintana-Ortí3 Rafael Rodríguez-Sánchez1

1Departamento de Arquitectura de

Computadores y Automática, Universidad

Complutense de Madrid, Madrid, Spain

2Departament d’Arquitectura de

Computadors, Universitat Politècnica de

Catalunya, Barcelona, Spain

3Departamento de Informática de Sistemas y

Computadores, Universitat Politècnica de

València, Valencia, Spain

Correspondence

Francisco D. Igual, Universidad Complutense

de Madrid, Madrid, Spain.

figual@ucm.es and rafaelrs@ucm.es

Funding information

Comunidad de Madrid, Grant/Award Numbers:

2017-SGR-1414 o, S2018/TCS-4423;

Ministerio de Ciencia e Innovación,

Grant/Award Numbers:

RTI2018-093684-B-I00, PID2019-107255GB,

TIN2017; v PRICIT, Grant/Award Number:

PR65/19-22445

Abstract

We extend a two-level task partitioning previously applied to the inversion of dense

matrices via Gauss–Jordan elimination to the more challenging QR factorization as

well as the initial orthogonal reduction to band form found in the singular value decom-

position. Our new task-parallel algorithms leverage the tasking mechanism currently

available in OpenMP to exploit “nested” task parallelism, with a first outer level that

operates on matrix panels and a second inner level that processes the matrix either

by 𝜇-panels or by tiles, in order to expose a large number of independent tasks. We

present a detailed performance analysis, including execution traces, which shows that

the two-level refinement into fine grain tasks allows for an improved load balancing and

delivers high performance on current general-purpose many-core processors (CPUs)

from Intel and AMD.

K E Y W O R D S

CPUs, high performance, matrix factorizations, matrix inversion, OpenMP, task parallelism

1 INTRODUCTION

In response to the design of general-purpose processors (or CPUs) with a moderate number of cores, a series of efforts have demonstrated the

benefits of extracting task parallelism for dense linear algebra operations: PLASMA,1,2 libFLAME,3,4 StarPU,5,6 and OmpSs.7,8 Following this trend,

processor architectures for high performance computing (HPC) have evolved over the past few years to integrate a very large number of cores

so that, nowadays, CPUs (e.g., from Intel, AMD and ARM) with 16–64 are not uncommon in HPC servers. The challenge for dense linear algebra

operations thus becomes how to extract sufficient task parallelism to feed this amount of cores while maintaining desirable properties, such as

numerical stability, for the target methods.

In Reference 9, we introduced a family of advanced task-parallel algorithms for the inversion of dense matrices via Gauss–Jordan elimina-

tion (GJE)10,11 that proposed a partitioning of the matrix operand into two levels of tasks, in order to extract sufficient task parallelism to feed

a many-threaded CPU. Concretely, the workload is first partitioned by column blocks (or panels), to accommodate the standard partial pivoting

scheme for numerical stability; and then, within the panels, either by thinner column blocks (𝜇-panels) or by row blocks (tiles). The experimental

results for these schemes demonstrated the performance advantage of such fine-grain task-parallel decompositions of the algorithm for matrix

inversion via GJE, parallelized with OpenMP, over a standard single-level partitioning on a 20-core Intel processor.

In this article, we extend the two-level task partitioning schemes to a pair of more challenging matrix algebra operations: the QR factoriza-

tion and the (initial) orthogonal reduction to band form for the two-stage computation of the singular value decomposition (SVD).12 Compared

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2022 The Authors. Concurrency and Computation: Practice and Experience published by John Wiley & Sons Ltd.

Concurrency Computat Pract Exper. 2023;35:e6999. wileyonlinelibrary.com/journal/cpe 1 of 16
https://doi.org/10.1002/cpe.6999

https://orcid.org/0000-0003-4480-9517
https://orcid.org/0000-0002-5454-165X
http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/journal/CPE
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcpe.6999&domain=pdf&date_stamp=2022-04-07


2 of 16 CATALÁN ET AL.

with matrix inversion via GJE, the standard (right-looking) blocked algorithm for the QR factorization12 presents a variation of the computa-

tional cost across the iteration space that turns more difficult (and crucial) balancing the distribution of the work among the computational

resources. In addition, while the panel update for the GJE-based matrix inversion algorithm boils down to a simple matrix multiplication, which

is easy to decompose into fine-grain tasks, the update for the QR factorization involves some data dependencies that reduce the degree of

parallelism for this type of task. These observations for the QR factorization carry over to the band reduction algorithm, which requires a

two-sided application of the orthogonal transforms that, a priori, imposes additional constraints on the degree of task parallelism for this

particular algorithm.

Concretely, in this article, we make the following contributions:

• We introduce and evaluate advanced task-parallel algorithms for matrix inversion via GJE, the QR factorization, and the orthogonal reduction

to band form in the two-stage computation of the SVD.

• We leverage the advanced tasking features in OpenMP to implement a two-level task partitioning, where a first level of tasks works on panels,

and a second level of nested tasks operates either on 𝜇-panels or on tiles. In all algorithms, the exploitation of look-ahead13 is left in the hands of

the runtime system.

• We conduct a complete performance analysis of the algorithms, using traces to expose the performance bottlenecks and the impact of the

two-level task partitioning applied to different parts of the computation.

• We perform a complete experimental evaluation on two many-core processors with 20 and 64 cores, from Intel and AMD, against state-of-the-art

libraries.

At this point, we note that there is a different, tile-based approach, embraced by libraries such as PLASMA and libFLAME, to extract additional

fine-grain task parallelism for the QR factorization.1,3 Concretely, this approach follows the ideas of the incremental QR factorization14 to initially

divide the matrix into “squarish” tiles which then induce a task-parallel workload. The advantage is that, proceeding in this manner, the “sequential”

panel factorization, which stands in the critical path of the algorithm, is decomposed into finer grain tasks, and task parallelism is exposed earlier.

However, while this scheme is possible for the QR factorization, because of the resilience of orthogonal transformations to rounding error, the same

technique cannot be applied, for example, in the LU factorization or matrix inversion via GJE without abandoning the standard partial pivoting

scheme.15 Furthermore, the utilization of a single-level tile-based task-parallel algorithm requires specialized kernels that operate with small blocks

within the tiles, which may reduce performance, especially in a massively data-parallel processor such as a GPU (graphics processing unit). Once

more, similar comments carry over to the band reduction algorithm.

After introducing our notation in the next subsection, the rest of the article is structured as follows. In Section 2 we review

task-parallel algorithms for matrix inversion via GJE. In Section 3 we introduce task-parallel algorithms on matrix factorizations computed

via orthogonal transformations. Next, in Section 4 we present and analyze the resulting performance. Finally, we draw a few conclusions

in Section 5.

1.1 Notation

During the presentation of the algorithms, we will consider an m × n matrix A where, in our notation, A(i1 ∶ i2, j1 ∶ j2) denotes the submatrix of

A that spans the intersection between rows i1, i1 + 1, … , i2 and columns j1, j1 + 1, … , j2 of the matrix. Also, in our notation matrix indices start

at zero.

When necessary we will partition A into np = n∕bp panels, where bp denotes the algorithmic panel size. Each panel may be then partitioned either

by column blocks into nm = bp∕bm thinner 𝜇-panels, consisting of bm columns each (the algorithmic 𝜇-panel size); or by row blocks into mt = m∕bt

tiles of bt rows each (the algorithmic tile size). For simplicity, we will assume that m, n are respectively integer multiples of bp, bt and that bp is an

integer multiple of bm. Finally, we will consider that m is also an integer multiple of bp and define mp = m∕bp.

2 REVIEW OF TASK-PARALLEL MATRIX INVERSION VIA GJE

Compared with the conventional approach to compute the matrix inverse, based on the LU factorization, the procedure relying on GJE offers

an alluring alternative with the same numerical stability but a more balanced distribution of the computational workload across the inversion

process.11 In this section, we first describe matrix inversion via GJE, to then re-visit the task-parallel algorithms for this operation introduced

in Reference 9.

 15320634, 2023, 27, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6999 by U

niversitaet Politecnica D
e, W

iley O
nline L

ibrary on [30/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CATALÁN ET AL. 3 of 16

F I G U R E 1 BSB algorithm for matrix inversion via GJE. For clarity, the matrix and vector arguments to the kernels specify the region of
memory that is “accessed” by the operation using C preprocessor macros

2.1 Baseline GJE algorithm

The baseline blocked (BSB) algorithm in Figure 1 computes the inverse of a square nonsingular matrix A of order n, using

the GJE procedure. The algorithm there is presented with a high-level notation that accommodates the following discussion in

the article. The matrix is processed by panels of bp columns, carrying out three types of operations at each iteration of the

loop body:

1. “Factorize” panel k of the matrix, using routine PF (for panel factorization). This includes partial pivoting to ensure the practical numerical sta-

bility of the inversion procedure. Upon completion, this operation returns the row permutations stored in the output array p, overwriting the

panel with the corresponding “factorization”.

2. Permute the submatrices to the left and right of panel k, via two calls to routine PP (for panel permutation).

3. Update the same submatrices to the left and right of panel k via two calls to routine PU (for panel update).

In practice, the algorithmic panel size bp is chosen to be moderately large, in order to hide the memory access costs with sufficient floating point

operations (flops).

2.2 Basic task-parallel GJE algorithm

The basic task-parallel (BTP) algorithm for matrix inversion via GJE mimics the task-parallel realizations of the LU and QR factorizations1,3,7,8 to

expose concurrency in terms of tasks with annotations that help the runtime to control the task execution schedule taking into account intertask

data dependencies.

The GJE-based BTP algorithm for matrix inversion using OpenMP is formulated in Figure 2. Note that, at iteration k, the leading permuta-

tions/updates (for panels j = 0,1, … , k − 1) plus all the trailing permutations/updates involving panels j = k + 2, k + 3, … , n∕bp − 1 (i.e., all except

j = k + 1), can proceed in parallel with the factorization of panel k + 1. This technique is often referred to as look-ahead13 and allows to overlap the

execution of the mostly sequential PF with the highly parallel PP and PU, breaking the strict dependency between the tasks in the same iteration.

The specific task schedule is nondeterministic, as it is orchestrated by the OpenMP runtime during the execution of the algorithm and may result in

an overlapped execution of future panel factorizations (not only that for panel k + 1) with the permutations/updates that are present at iteration k

of the routine.

2.3 Advanced task-parallel GJE algorithm

In Reference 9, we proposed two types of advanced task-parallel (ATP) algorithms, which expose further task-parallelism by partitioning either the

kernels for PF, PP, and PU into 𝜇-panels or the kernels for PU into tiles.

 15320634, 2023, 27, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6999 by U

niversitaet Politecnica D
e, W

iley O
nline L

ibrary on [30/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 of 16 CATALÁN ET AL.

F I G U R E 2 BTP routine for matrix inversion via GJE with task parallelism extracted using OpenMP

F I G U R E 3 ATP routine for matrix inversion via GJE with task parallelism extracted using OpenMP and the panel updates divided into
𝜇-panels to expose additional tasks

The two-level task-parallel algorithm that embeds a partitioning of the inversion kernels into 𝜇-panels is illustrated in Figure 3. Concretely, the

algorithm there firstly performs a division of the matrix into panels of bp columns; followed by a second partitioning inside these into 𝜇-panels of

bm columns. The PF kernel is parallelized by invoking the BTP routine with block size bm, while the fine-grain permutations and updates are simply

realized via the corresponding routines (PP and PU, respectively).

The alternative algorithm that performs an inner partitioning of the panels by tiles of bt rows is given in Figure 4. In this case, the panel updates

(PU) are further divided into finer-grain tasks while, due to the usage of partial pivoting, the application of the row permutations within a panel (PP)

 15320634, 2023, 27, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6999 by U

niversitaet Politecnica D
e, W

iley O
nline L

ibrary on [30/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CATALÁN ET AL. 5 of 16

F I G U R E 4 ATP routine for matrix inversion via GJE with task parallelism extracted using OpenMP and the panel updates divided into tiles to
expose additional tasks

remains as a single task. Also, in this particular realization, PF is partitioned into 𝜇-panels of columns via the BTP algorithm with an inner block

size bm.

3 MATRIX FACTORIZATIONS VIA ORTHOGONAL TRANSFORMS

The QR factorization decomposes a (full-rank) m × n matrix A into the product of an m × m orthogonal matrix and an m × n upper triangular factor,

yielding a direct method to solve linear systems as well as (full-rank) linear least-squares problems.12 The SVD can be viewed as a generalization of

the QR factorization that decomposes the input matrix A into the product of two orthogonal matrices, containing the left and right singular vectors

of A, and a diagonal matrix with its singular values.12 In this section, we extend the two-level task-parallel schemes, proposed earlier for matrix

inversion, to these types of orthogonal factorizations.

3.1 Baseline QR algorithm

Figure 5 offers the BSB algorithm for the QR factorization, showing two relevant differences with respect to the GJE matrix inversion counterpart,

from the point of view of exploiting task parallelism:

1. At each iteration of the loop body, the dimensions of the submatrices that are factorized and updated, respectively, using kernels PF and PU,

diminishes by b rows. In contrast, in the BSB algorithm for GJE matrix inversion, the panels comprise the full matrix rows. This implies that

attaining a balanced distribution of the workload among the processor cores is more difficult for the QR factorization. (Note that this is also the

case for the LU factorization.)

2. The PF and PU kernels involve considerably more complex operations for the QR factorization than is the case for the GJE matrix inversion

routine. For example, in the QR factorization, the PF kernel decomposes panel k of the matrix, denoted as Ap(k ∶ mp − 1, k) and with dimension

m′ × bp = (m − kbp) × bp, as follows:

Ap(k ∶ mp − 1, k) = QkRk = (Im′ − VkTkVT
k )Rk,

 15320634, 2023, 27, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6999 by U

niversitaet Politecnica D
e, W

iley O
nline L

ibrary on [30/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 of 16 CATALÁN ET AL.

where Im′ denotes the square identity matrix of order m′ and Rk is an m′ × b upper triangular matrix, while the m′ × m′ orthogonal matrix Qk

is stored implicitly in compact form12 as the product of an m′ × b unit lower triangular factor Vk and a square upper triangular matrix Tk of

order bp.

Therefore, the update of panels j = k + 1, k + 2, … np − 1, each performed with an invocation to the PU kernel, requires the following

computations:

(Im′ − VkTkVT
k ) Ap(k ∶ mp − 1, j) = Ap(k ∶ mp − 1, j) − Vk (Tk (VT

k Ap(k ∶ mp − 1, j))),

which involves multiplications with the “triangular-shaped” factors Vk, Tk . Compared with this, the PU kernel for GJE matrix inversion only

requires a single general (dense) matrix multiplication.

Note that, in contrast with the LAPACK convention, all our routines employing orthogonal transforms return the collection of computed

triangular factors T as part of an bp × n matrix, allowing their reuse, for example, during the application of the same orthogonal transforms to the

independent terms for the solution of a linear system or a linear least-squares problem.

3.2 Task-parallel QR algorithms

The basic and advanced versions of the task-parallel algorithms for the QR factorization are obtained by extending the correspond-

ing ideas presented for GJE matrix inversion in the previous section, to the BSB algorithm in Figure 5. In the case of the ATP algorithm

with an inner division of the panels into 𝜇-panels, the pseudocode for the resulting routine is presented in Figure 6. Its simpler

BTP counterpart can be roughly obtained by setting bm = bp in the previous ATP algorithm, so that each panel consists of a single

𝜇-panel only.

The variant of theATP algorithm that performs an inner division into tiles is more elaborate to derive due to the complex computations that are

involved in the application of the orthogonal transforms. In particular, consider the trailing submatrix Ap(k ∶ mp − 1, k + 1 ∶ np − 1) to be updated

with respect to the factorization of panel k. Taking as reference the BTP algorithm for the derivation of the ATP algorithm with a partitioning of

panels into tiles, the update of the trailing submatrix is decomposed into panels of bp columns each:

(Im′ − VkTkVT
k ) Aj = Aj − Vk (Tk (VT

k Aj)) = Aj − Vk (Tk WT
k ),

where Aj = Ap(k ∶ mp − 1, j), j = k + 1, k + 2, … , np − 1, denotes each one of the bp-column panels to be updated. This computation thus involves the

following sequence of operations:

PU1) WT
k = VT

k Aj,

PU2) W
T

k = TkWT
k ,

PU3) Aj = Aj − VkW
T

k ,

and the identification of additional task parallelism within these three operations can be done by considering a row partitioning of both Aj and Vk

into s = (m − k ∗ bp)∕bt tiles, consisting of bt rows each:

F I G U R E 5 BSB algorithm for the QR factorization

 15320634, 2023, 27, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6999 by U

niversitaet Politecnica D
e, W

iley O
nline L

ibrary on [30/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CATALÁN ET AL. 7 of 16

F I G U R E 6 ATP routine for the QR factorization with task parallelism extracted using OpenMP and the panel updates divided into 𝜇-panels to
expose additional tasks

Aj =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

At(0, j)

At(1, j)

⋮

At(s − 1, j)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Vk =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V(0)

V(1)

⋮

V(s − 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Thus, in the first operation we need to perform the block reduction:

PU1) WT
k = VT

k Aj = V(0)T At(0, j) + V(1)T At(1, j) + · · · + V(s − 1)T At(s − 1, j),

which corresponds to the fine-grain tasks of the ATP algorithm with a partitioning of the panels into tiles. Note that this involves a task-parallel

reduction. In the second operation, we find only one task:

PU2) W
T

k = TkWT
k ;

and in the third operation, we have

PU3) Aj = Aj − VkW
T

k ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

At(0, j)

At(1, j)

⋮

At(s − 1, j)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

At(0, j)

At(1, j)

⋮

At(s − 1, j)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V(0)

V(1)

⋮

V(s − 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

W
T

k

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

At(0, j) − V(0)W
T

k

At(1, j) − V(1)W
T

k

⋮

A(s − 1, j) − V(s − 1)W
T

k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

which exposes the tasks for this particular computation in the ATP algorithm for the QR factorization with a division of the panels into tiles. In

comparison with the first operation, the last one boils down to a collection of independent tasks.

 15320634, 2023, 27, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6999 by U

niversitaet Politecnica D
e, W

iley O
nline L

ibrary on [30/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 of 16 CATALÁN ET AL.

F I G U R E 7 BSB algorithm for the initial reduction to band form in the SVD

3.3 Orthogonal reduction to band form

For performance reasons, the computation of the SVD of a “highly rectangular” input matrix A commences with the reduction of A to triangular

form, via the QR factorization or one of its variants (QL, RQ, and LQ). Alternatively, in the case of a “squarish” matrix A, it is more efficient to perform

an initial (orthogonal) reduction to some sort of band form. In both cases, this first stage comprises a considerable part of the computational cost of

obtaining the SVD and, therefore, it is the key to attaining high performance for the complete process.

In Reference 16, we proposed to specialize the initial reduction in order to obtain a band matrix with upper/lower bandwidth w. The BSB

algorithm is presented in Figure 7, assuming for simplicity that bp = w. Note that an actual implementation does not transpose any of the blocks

involved in the second calls to PF and PU inside the loop body. Instead, such realization computes an LQ factorization of the “current” panel

Ap(k, k + 1 ∶ np − 1), and then applies the corresponding orthogonal transforms to the appropriate trailing submatrix. This formulation of the BSB

algorithm easily accommodates the advanced task parallelizations already described for the QR factorization. To avoid duplication we do not include

the resulting pseudocodes here.

4 EXPERIMENTAL RESULTS

In the following, we provide experimental evidence of the potential performance bottlenecks that emerge when mapping the basic task-parallel

implementations (BTP) on many-core architectures, and how the fine-grained schemes enabled by the two-level ATP algorithms help to exploit the

hardware core concurrency more efficiently, by exposing increasing volumes of tasks.

4.1 Experimental setup

The experiments in this article were performed using double precision (DP) arithmetic on two platforms:

SKYLAKE: A server equipped with a 20-core Intel Xeon Gold 6138 processor (Skylake microarchitecture) with a nominal frequency of 2.0 GHz. Each

core features two AVX-512 FMA (512-bit wide) units, yielding a theoretical peak performance of 51.4 DP GFLOPS (billions of flops per

second) per core and a total of 1028 DP GFLOPS for the complete socket. The practical performance peak observed for the realization of

in Intel MKL is 950 GFLOPS for the complete socket (when the frequency of the socket cores is set to 1.7 GHz). This processor includes

a 32-Kbyte L1 data cache per core, a 1-Mbyte L2 per core, and a 1.375-Mbyte L3 cache per core. The server also includes 96 Gbytes

of DDR4 RAM memory. Intel compilers, OpenMP runtime and MKL version 18 were employed as the underlying compiling/execution

infrastructure and BLAS/LAPACK library, respectively. PLASMA version 19.8.1 was used in our evaluation.

ROME: A server equipped with a 64-core AMD EPYC 7742 processor (Zen2 microarchitecture) running at 2.25 GHz. Each core features two

AVX-2 FMA (256-bit wide) units, yielding a theoretical peak performance of 41.6 DP GFLOPS per core, and a total of 2714 DP GFLOPS

 15320634, 2023, 27, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6999 by U

niversitaet Politecnica D
e, W

iley O
nline L

ibrary on [30/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CATALÁN ET AL. 9 of 16

for the complete socket. The practical performance peak observed for the realization of in AMD AOCL is around 1800 GFLOPS for the

complete socket. The cores are grouped into 16 CCX (Core Complex), each one comprising 4 cores. This processor includes a 32-Kbyte

L1 data cache per core, a 512-Kbyte L2 per core, and a 16-Mbyte L3 cache shared across cores in the same CCX. The server also includes

512 Gbytes of DDR4 RAM memory. GNU compilers and OpenMP version 8.3.0 were employed as the underlying compilation/execution

infrastructure, and AMD AOCL version 3.0 was employed as the underlying BLAS/LAPACK library. PLASMA version 19.8.1 was used in

our evaluation.

In order to avoid the performance distortions caused by the utilization of the power modes (and associated processor core frequencies) auto-

matically applied by the processor under heavy-load circumstances, the operating frequencies were set to 1.7 GHz and 2.25 GHz in SKYLAKE and

ROME, respectively, for all cores. These thresholds were experimentally established as safe frequency, not being affected by this reduction. SMT capa-

bilities were disabled, one single thread was mapped per physical core, and thread migration was prevented via the appropriate Linux configuration

commands.

Unless otherwise stated, the algorithmic panel size bp was selected individually for each algorithm, matrix dimension, and number of cores

in order to optimize performance. All variants realize the PF kernel using a blocked procedure, with the inner block size bin (which corresponds

to the 𝜇-panel width or the tile height, depending on the algorithm) selected via extensive experimentation with values ranging between eight

and bp. All experiments are repeated to span up to a minimum pre-established time, in order to avoid time variations due to noise, while keeping

experimentation time under an affordable limit for large-scale problems. No significant variations were observed in any case.

4.2 Matrix inversion

The trace* in Figure 8 displays the parallel behavior of the BTP algorithm, when executed using all 20 cores of the SKYLAKE platform for a particular

problem instance, showing two clear performance bottlenecks:

1. The execution of each PF is rather costly compared with that of the parallel (i.e., multitask) collection of PU.

2. ForPU, there is a lack of sufficient tasks, which becomes visible as an unbalanced workload distribution in the last stages of each update, showing

a significant number of idle cores.

The obvious solution to the high cost of the execution of thePFkernel as a single task consists in dividing this operation into multiple tasks, expos-

ing additional task parallelism which can be leveraged by the system cores to accelerate the execution of this type of kernel. This can be achieved by

realizing the PF kernel using, for example, the BTP routine with an inner 𝜇-panel size bm, which partitions this kernel into 𝜇-panels. For the second

bottleneck, we can refine the panels into either 𝜇-panels or tiles, as described in Section 2.3. The effect of these alternative task-parallel schemes in

the behavior of the inversion algorithm is illustrated via a couple of traces in Figure 9, demonstrating a considerable reduction of the idle periods.

We complete the analysis of the matrix inversion with a global comparison of the following four implementations:

• A standard matrix inversion algorithm based on the LU factorization using the appropriate calls to the multithreaded (MT) LAPACK routines in

Intel MTMKL for SKYLAKE and AMD AOCL for ROME (dgetrf+ dgetri).

• The BSBGJE routine in Section 1, with parallelism extracted only from the MTBLAS in Intel MKL/AMD AOCL.

• The TP routines from the PLASMA library to compute matrix inversion via the LU factorization (analogous to dgetrf+ dgetri).

• The ATPGJE routine that parallelizes the PF kernel by 𝜇-panels and the PU kernel by tiles.

This evaluation involves two different types of algorithms for matrix inversion: one based on the LU factorization and our alternative based

on GJE. We note that the two types of algorithms perform exactly the same arithmetic operations, though in a different order and, therefore,

F I G U R E 8 Trace of the first two iterations of the execution of the BTPGJE algorithm, with n = 10,000, bp = 384, and 20 cores on SKYLAKE

 15320634, 2023, 27, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6999 by U

niversitaet Politecnica D
e, W

iley O
nline L

ibrary on [30/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



10 of 16 CATALÁN ET AL.

(A)

(B)

F I G U R E 9 Traces of the first 0.5 s of the execution of the ATPGJE algorithms, with n = 16,000, bp = 480, and 20 cores on SKYLAKE

0 5000 10000 15000 20000 25000 30000
0

200

400

600

800

Matrix dimension (n)

G
F

L
O

P
S

Matrix Inversion Comparison - Skylake 1.7 GHz, 20 threads

Best ATP (Optimal b)

Best ATP (b=256)

BSB + Intel MT MKL

PLASMA dgetrf+dgetri (Optimal b)

PLASMA dgetrf+dgetri (Default b)

Intel MT MKL dgetrf+dgetri

0 10000 20000 30000 40000
0

200

400

600

800

1000

1200

Matrix dimension (n)

G
F

L
O

P
S

Matrix Inversion Comparison - AMD EPYC 7742 2.25 GHz, 64 threads

Best ATP (Optimal b)

Best ATP (b=256)

BSB + AMD AOCL

PLASMA dgetrf+dgetri (Optimal b)

PLASMA dgetrf+dgetri (Default b)

AMD MT AOCL dgetrf+dgetri

F I G U R E 10 Performance of the algorithms for matrix inversion on SKYLAKE and ROME using 20 and 64 cores (left and right, respectively)

present the same computational cost. Furthermore, they integrate the same pivoting strategy, exhibiting the same numerical stability and pro-

ducing the same numerical results (within rounding error). This evaluation is performed employing the optimal block size(s) for each algorithm,

matrix dimension, and number of cores. For the last two inversion procedures (that in PLASMA and our ATP routine), we also include a config-

uration that employs a fixed value for the outer block size (concretely, set to bp = 256) in order to assess the sensitivity of performance to this

parameter.

PLASMA employs the conventional, LAPACK-approach to invert a matrix consisting of three steps: (1) compute the LU factorization; (2) invert

one of the triangular factors; and (3) finally solve a linear system. The amount of task parallelism exposed by PLASMA and our GJE-based method is

similar as they both proceed by column blocks. However, PLASMA may suffer from working with the triangular factors, which may lead to workload

imbalance.

The results in Figure 10 show the benefits of the two-level task partitioning of the workload integrated in our ATP routine in SKYLAKE. The

line labeled as “Best ATP” corresponds to the best performing ATP implementation on each machine, which corresponds to a division in 𝜇-panels at

two levels in both cases. In all cases, the ATP routine consistently delivers a much higher GFLOPS rate compared with the Intel MKL counterpart,

and a considerably larger one when compared with the BSB routine for those cases where the ratio between problem size and number of cores is

small. In comparison with the PLASMA alternative, the new TP routine is a clear winner, both when selecting the best block size and fixing a default

value (again, set to b = 256). For ROME, the benefits of the two-level task partitioning are relevant compared with the BSB implementation. In this

machine, for midsize matrices, our implementation also outperforms that of AMD AOCL. In all cases, a comparison with PLASMA (using optimal

block sizes) reveals similar performance results for all matrix sizes.

 15320634, 2023, 27, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6999 by U

niversitaet Politecnica D
e, W

iley O
nline L

ibrary on [30/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CATALÁN ET AL. 11 of 16

4.3 QR factorization

Figure 11 offers a graphical representation, using execution traces, of the potential benefits of theATP schemes applied to the task-based algorithm

for the QR factorization. For brevity, this detailed qualitative study is carried out on ROME only (using 64 cores). The goal is to illustrate the differ-

ences in terms of caveats of theBTP /ATP implementations in computer platforms with a high number of cores, and the differences in behavior when

compared with the qualitative experimental analysis presented earlier for matrix inversion.

Consider first the trace for theBTP realization of the QR factorization in Figure 11A. In this case, the selected algorithmic panel size bp dictates

both the granularity of the PF and PU kernels. Similarly to the BTP realization for GJE matrix inversion, two main problems arise: (1) the panel

factorization (marked in dark blue in the trace) is a major bottleneck in the overall factorization that stands in the critical path of the execution; and

(2) punctual workload imbalance arises also for the last stage of the panel updates, mainly due to the large granularity in this case. Tackling both

problems is the goal of the ATP realization, with the effects analyzed next.

4.3.1 Increasing parallelism in PF

Figure 11B captures the effect of the strategy to increase task parallelism by partitioning PF into 𝜇-panels, showing a significant reduction of the

relative time devoted to PF compared with the previous BTP implementation. Note, however, that the high number of cores in ROME yields an

additional problem: the algorithmic𝜇-panel size needs to be small enough to expose enough𝜇-tasks to maintain a high occupancy of all the available

cores. This block size reduction is negative for many BLAS and LAPACK implementations as, from our experiments, is the case for AMD AOCL,

penalizing the individual performance of the 𝜇-tasks. Our experimental results reveal that the optimal 𝜇-panel size is not small enough to unleash

enough task parallelism and thus eliminate work imbalance, as can be observed in the trace.

4.3.2 Increasing parallelism in PU via 𝜇-panels

A strategy to reduce workload imbalance in the last stages of the PU kernels consists in dividing this type of kernels into narrower 𝜇-panels, effec-

tively decoupling the block size used for PF and each micropanel of PU. Figure 11C shows the impact of this strategy on performance. Compared

with Figure 11B, the time devoted to PU per iteration is reduced, and so its work imbalance; Figure 11D illustrates a strategy with a simultaneous

partitioning of both PF and PU into 𝜇-panels.

4.3.3 Additional task parallelism in PU via tiles

A final ATP implementation dividing PU into tiles is explored in Figure 11E. Even though the tile size in this case is suboptimal (selected to ease

the comparison with previous traces), the amount of task parallelism exposed for the PU stage is dramatically higher than that unveiled with

previous ATP strategies, yielding even better work balance than in previous cases for the PU stage. The results combining tiling for PU with a divi-

sion of PF into 𝜇-tiles have been omitted for brevity, even though their combined benefits in terms of performance should be straight forward

to derive.

4.3.4 General performance overview for the QR factorization

Figure 12 compares the performance attained by the different ATP implementations on both SKYLAKE (20 cores) and ROME (64 cores) for square

matrices of order n. Note that, in the former platform the performance benefits of all ATP implementations are similar, while the much larger num-

ber of cores in ROME makes it necessary to expose an additional task parallelism. In this case, the partitioning of PU into tiles yields a significant

performance improvement compared with that attained for partitioning schemes into 𝜇-panels.

Finally, Figure 13 offers a general comparison of the advantages of ATP implementations compared with state-of-the-art multithreaded

libraries (Intel MKL and AMD AOCL for SKYLAKE and ROME, respectively), task-parallel implementations (PLASMA linked with the sequential

versions of the aforementioned proprietary libraries), and the baseline blocked implementations. The line labeled as “best ATP” corresponds

to the best performing ATP implementation on each machine: division in 𝜇-panels at both levels on SKYLAKE, and division of PU into tiles for

ROME. In all cases, the parallelization opportunities offered by the ATP algorithms yield higher performance rates than those offered by the

BSB counterparts.

 15320634, 2023, 27, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6999 by U

niversitaet Politecnica D
e, W

iley O
nline L

ibrary on [30/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



12 of 16 CATALÁN ET AL.

(A)

(B)

(C)

(D)

(E)

F I G U R E 11 Traces of the first 0.3 s of execution of the task-based QR algorithms with m = n = 10,000, bp = 128, and 64 threads on ROME

 15320634, 2023, 27, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6999 by U

niversitaet Politecnica D
e, W

iley O
nline L

ibrary on [30/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CATALÁN ET AL. 13 of 16

10000 20000 30000 40000
0

200

400

600

800

Matrix dimension (n)

G
F

L
O

P
S

QR ATP Performance - Skylake 1.7 GHz, 20 threads

ATP: PF (dgeqrf), PU (PANELS)

ATP: PF (µPANELS), PU (PANELS)

ATP: PF (µPANELS), PU (µPANELS)

ATP: PF (dgeqrf), PU (µPANELS)

ATP: PF (dgeqrf), PU (TILES)

10000 20000 30000 40000
0

200

400

600

800

1000

1200

Matrix dimension (n)

G
F

L
O

P
S

QR ATP Performance - AMD EPYC 7742 2.25 GHz, 64 threads

ATP: PF (dgeqrf), PU (PANELS)

ATP: PF (µPANELS), PU (PANELS)

ATP: PF (µPANELS), PU (µPANELS)

ATP: PF (dgeqrf), PU (µPANELS)

ATP: PF (dgeqrf), PU (TILES)

F I G U R E 12 Performance of the ATP implementations for the QR factorization on SKYLAKE and ROME using 20 and 64 cores (left and right,
respectively)

10000 20000 30000 40000
0

200

400

600

800

Matrix dimension (n)

G
F

L
O

P
S

QR Comparison - Skylake 1.7 GHz, 20 threads

Best ATP (Optimal b)

BSB + Intel MKL

PLASMA dgeqrf (Optimal b)

Intel MT MKL dgeqrf

20000 40000 60000 80000 100000 120000
0

200

400

600

800

1000

1200

1400

Matrix dimension (n)

G
F

L
O

P
S

QR Comparison - AMD EPYC 7742 2.25 GHz, 64 threads

Best ATP (Optimal b)

BSB + AMD AOCL

PLASMA dgeqrf (Optimal b)

AMD MT AOCL dgeqrf

F I G U R E 13 Comparative performance of different implementations for the QR factorization on SKYLAKE and ROME using 20 and 64 cores
(left and right, respectively)

The comparison with proprietary libraries depends on the specific target machine and proprietary library. On SKYLAKE, our codes are highly

competitive with Intel MKL and mimic its behavior for all matrix sizes; also, the comparison with PLASMA yields higher performance for our real-

ization. On ROME, however, the parallel implementation of the QR factorization in AOCL yields lower performance numbers than ours, but the

PLASMA implementation outperforms the best ATP implementation; our analysis in this case indicates that PF still poses a critical bottleneck

in our realizations, and additional optimizations are mandatory in this stage when combined with AOCL in order to remove this performance

bottleneck.

As an additional explanation of the different behavior of these algorithms, depending on the target platform, we note that PLASMA employs a

specific tile-based solution for the QR factorization that exposes additional task-parallelism at earlier stages of the algorithm. This approach requires

customized linear algebra kernels in order to perform the internal operations with the tiles, corresponding to the calculation of tiny QR factoriza-

tions and application of orthogonal transforms. In contrast, our two-level task-parallel algorithms only employ standard LAPACK routines for these

two kernels. The results point in the direction that the use of these customized kernels on the Intel server has a significant (negative) impact on

performance while this is not the case on the AMD platform.

 15320634, 2023, 27, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6999 by U

niversitaet Politecnica D
e, W

iley O
nline L

ibrary on [30/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



14 of 16 CATALÁN ET AL.

F I G U R E 14 Task analysis of the band reduction routine linked with Intel MKL on SKYLAKE. The trace corresponds to the execution of the first
two iterations with n = 30,000,w = 256, bp = 96, and 20 cores

4.4 Orthogonal reduction to band form

As argued in Section 3.3, the algorithm for the band reduction differs from the QR factorization (as well as matrix inversion via GJE) in that

it performs two PFs per iteration: a QR factorization that updates the trailing matrix from the left and an LQ factorization that updates the

trailing matrix from the right. In principle, this could seem to impose an additional performance challenge as, for the two other operations,

we reiterate that a large number of the optimizations were aimed at mitigating the performance bottleneck that the panel factorization rep-

resents. However, as depicted in the execution trace of the BTP band reduction algorithm in Figure 14, this is actually not the case for this

operation.

In the trace we observe that the left PF (in blue) and the right PF (in dark red) are perfectly overlapped with the execution of the right

and left PUs (in red and pink, respectively). Concretely, in the figure we can observe that the left PF corresponding to the second iteration

runs in parallel with the execution of the right PU of the first iteration, and the right PF corresponding to the second iteration occurs simul-

taneously with the execution of the left PU of the second iteration. This is possible due to the dynamic look-ahead exploited by the OpenMP

runtime. Overall, for the reference band reduction algorithm, there are only small idle periods and, therefore, little opportunities to improve

performance.

The performance results for the band reduction algorithm are reported in Figure 15. First, the plots reveal that, in both servers and for

all problem dimensions, the task-based implementations greatly outperform the results of the LAPACK-like BSB implementation. Second, the

division of the PU kernels into 𝜇-panels yields minor performance benefits. In relation with this, an additional aspect that deserves some dis-

cussion is the constraint on block sizes utilized during the band reduction algorithm. Focusing on the block size for PF, we encounter an

upper bound on its size that depends on the target bandwidth. Specifically, this block cannot exceed half the bandwidth, as otherwise the

OpenMP runtime will not be able to exploit the dynamic look-ahead and, as a consequence, it will be impossible to overlap PF and PU,

which introduces significant idle periods during the execution of the algorithm. In addition, focusing on the optimal block size for PU, our

experiments revealed that, for mid lo large-size problems, this tends to equal the block size for PF, while for small- to midsize problems,

the former block size tends to be slightly smaller. It is at these points where the division of PU into 𝜇-panels produces visible performance

improvements.

4.5 Discussion

In order to close this section, and given the mixed character of the results, we recap the main highlights, insights and caveats identified during the

evaluation, which can be organized into the following three main groups:

• Comparison with proprietary libraries (Intel MKL/AMD AOCL): Our solutions outperform Intel’s MKL counterpart for matrix inversion and the AMD

AOCL routine for the QR factorization. In addition, it is highly competitive in the rest of the architecture/library combinations. (Recall that the

third operation, orthogonal reduction to band form, is not supported by proprietary libraries.)

• Comparison with a state-of-the-art runtime-based infrastructure (PLASMA): our solution is highly competitive with PLASMA for all operations,

with clear benefits in the case of the QR factorization on the Intel-based server, and only inferior performance for the QR factoriza-

tion on the AMD-based platform for small and midrange matrices. (Note that the orthogonal reduction to band form is neither supported

by PLASMA.)

• Comparison with basic block-based codes (built on top of high-performance parallel libraries): Our solution outperforms its counterparts in all cases

and architectures.

 15320634, 2023, 27, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6999 by U

niversitaet Politecnica D
e, W

iley O
nline L

ibrary on [30/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CATALÁN ET AL. 15 of 16

0 10000 20000 30000 40000
0

200

400

600

800

Band Reduction - Skylake 1.7 GHz, 20 threads - w = 256
G

F
L
O

P
S

Matrix Dimension (n)

Best ATP (Optimal b)

BTP (Optimal b)

BSB + MT Intel MKL

0 10000 20000 30000 40000
0

200

400

600

800

1000

Band Reduction - AMD EPYC 2.25 GHz, 20 threads - w = 256

G
F

L
O

P
S

Matrix Dimension (n)

Best ATP (Optimal b)

BTP (Optimal b)

BSB + AMD MT AOCL

0 10000 20000 30000 40000
0

200

400

600

800

Matrix Dimension (n)

G
F

L
O

P
S

Band Reduction - Skylake 1.7 GHz, 20 threads - w = 384

Best ATP (Optimal b)

BTP (Optimal b)

BSB + MT Intel MKL

0 10000 20000 30000 40000
0

200

400

600

800

1000

Matrix Dimension (n)

G
F

L
O

P
S

Band Reduction - AMD EPYC 2.25 GHz, 20 threads - w = 384

Best ATP (Optimal b)

BTP (Optimal b)

BSB + AMD MT AOCL

F I G U R E 15 Performance of the algorithms for the Band Reduction setting w to 256 (top) and to 384 (bottom) on SKYLAKE and ROME using
20 and 64 cores (left and right, respectively)

5 CONCLUSIONS

In this article, we have proposed several two-level task-parallel schemes to accelerate the execution of representative matrix factorization routines,

such as the matrix inversion via Gauss–Jordan elimination (GJE), the QR factorization and the orthogonal reduction to band form. In more detail, we

have leveraged the improved functionality in the newest versions of the OpenMP standard in terms of tasking, together with the maturity of their

implementation in modern compilers and runtimes, in order to extract additional levels of task-level parallelism in critical parts of the algorithms,

necessary to address the increasing number of cores in present and future many-core architectures.

The two-level task-parallel algorithms rely on a two-level task partitioning strategy. At the outer level, the algorithms follow the classical blocked

procedure to decompose the operation by columns, with the purpose of alleviating the performance bottleneck that the costly PFs introduce (i.e.,

increasing the ratio of high-performance BLAS-3 routines while decreasing the ratio of memory-bound BLAS-1 and BLAS-2 routines). At the inner

level, an extra partitioning into finer-grain tasks, either by tiles or by 𝜇-panels, is enforced in order to expose an extra amount of task parallelism and

hence improve core occupation.

Our experiments on two recent many-core general-purpose processors from Intel and AMD, with 20 and 64 cores, show the performance ben-

efits of the two-level task partitioning schemes against the classical blocked algorithms as well as, in most cases, state-of-the-art libraries such as

PLASMA, Intel MKL and AMD ACML.

Note that the main contribution of this work is two-fold: First, we provide a wider variety of tools and implementations to generic runtimes that

exploit multigrained task parallelism so that a common family of solutions can be leveraged in order to obtain competitive performance on a wide

 15320634, 2023, 27, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6999 by U

niversitaet Politecnica D
e, W

iley O
nline L

ibrary on [30/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



16 of 16 CATALÁN ET AL.

range of architecture/operation combinations. Second, we carry out a complete performance comparison between task-based and library-based

implementations for different operations and architectures. From this point of view, we note that manufacturers often invest ample efforts in

performance tuning of linear algebra libraries yet the experience gained with this work is rarely shared with the scientific community.

As part of many other ideas for future work, we would like to explore the effect of enforcing task priorities into the runtime scheduler as current

realizations of OpenMP offer limited support for this. In addition, we would also like to investigate the exploitation of task parallelism in combination

with loop-level parallelism for finer grain tasks that stand on the critical path.

ACKNOWLEDGMENTS

This research was sponsored by projects RTI2018-093684-B-I00, PID2019-107255GB and TIN2017-82972-R of Ministerio de Ciencia, Innovación

y Universidades; project S2018/TCS-4423 of Comunidad de Madrid; project 2017-SGR-1414 of the Generalitat de Catalunya and the Madrid Gov-

ernment under the Multiannual Agreement with UCM in the line Program to Stimulate Research for Young Doctors in the context of the V PRICIT,

project PR65/19-22445.

DATA AVAILABILITY STATEMENT

Author elects to not share data.

ENDNOTE
∗In many of the traces shown in this work, including this one, the block size is set to a suboptimal value, in order to illustrate more clearly a particular problem;

for example, this case shows that the amount of task parallelism is scarce.

ORCID

Francisco D. Igual https://orcid.org/0000-0003-4480-9517

Enrique S. Quintana-Ortí https://orcid.org/0000-0002-5454-165X

REFERENCES

1. Buttari A, Langou J, Kurzak J, Dongarra J. A class of parallel tiled linear algebra algorithms for multicore architectures. Parallel Comput. 2009;35(1):38-53.

2. PLASMA project home page. http://icl.cs.utk.edu/plasma

3. Quintana-Ortí G, Quintana-Ortí ES, Geijn RA, Zee FG, Chan E. Programming matrix algorithms-by-blocks for thread-level parallelism. ACM Trans Math
Softw. 2009;36(3):14:1-14:26.

4. Van Zee FG. libflame: the complete reference; 2012. www.lulu.com

5. Agullo E, Beaumont O, Eyraud-Dubois L, Kumar S. Are static schedules so bad? A case study on Cholesky factorization. Proceedings of the 2016 IEEE

International Parallel and Distributed Processing Symposium (IPDPS); 2016:1021-1030; IEEE, 10.1109/IPDPS.2016.90

6. StarPU project. http://runtime.bordeaux.inria.fr/StarPU/

7. Badia RM, Herrero JR, Labarta J, Pérez JM, Quintana-Ortí ES, Quintana-Ortí G. Parallelizing dense and banded linear algebra libraries using SMPSs.

Concurr Comput Pract Exp. 2009;21:2438-2456.

8. OmpSs project home page. http://pm.bsc.es/ompss

9. Catalán S, Igual FD, Rodríguez R, Herrero JR, Quintanía-Ort ES. A new generation of task-parallel algorithms for matrix inversion in many-threaded CPUs.

Proceedings of the 12th International Workshop on Programming Models and Applications for Multicores and Manycores–PMAM 2021; 2021:1-10,

10.1145/3448290.3448563

10. Householder AS. The Theory of Matrices in Numerical Analysis. Dover; 1964.

11. Quintana ES, Quintana G, Sun X, van de Geijn R. A note on parallel matrix inversion. SIAM J Sci Comput. 2001;22(5):1762-1771.

12. Golub GH, Loan CFV. Matrix Computations. 3rd ed. Johns Hopkins University Press; 1996.

13. Strazdins P. A comparison of lookahead and algorithmic blocking techniques for parallel matrix factorization. Technical report TR-CS-98-07, Department

of Computer Science, Australian National University, Canberra 0200 ACT, Australia 1998.

14. Gunter BC, van de Geijn RA. Parallel out-of-core computation and updating the QR factorization. ACM Trans Math Soft. 2005;31(1):60-78. doi:10.1145/

1055531.1055534

15. Quintana-Ortí ES, van de Geijn RA. Updating an LU factorization with pivoting. ACM Trans Math Softw. 2008;35(2):11:1-11:16. doi:10.1145/1377612.

1377615

16. Rodríguez-Sánchez R, Catalán S, Herrero JR, Quintana-Ortí ES, Tomás AE. Look-ahead in the two-sided reduction to compact band forms for symmetric

eigenvalue problems and the SVD. Numer Algorithms. 2019;80:635-660.

How to cite this article: Catalán S, Herrero JR, Igual FD, Quintana-Ortí ES, Rodríguez-Sánchez R. Fine-grain task-parallel algorithms for

matrix factorizations and inversion on many-threaded CPUs. Concurrency Computat Pract Exper. 2023;35(27):e6999. doi: 10.1002/cpe.6999

 15320634, 2023, 27, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.6999 by U

niversitaet Politecnica D
e, W

iley O
nline L

ibrary on [30/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0003-4480-9517
https://orcid.org/0000-0003-4480-9517
https://orcid.org/0000-0002-5454-165X
https://orcid.org/0000-0002-5454-165X
http://icl.cs.utk.edu/plasma
http://www.lulu.com
info:doi/10.1109/IPDPS.2016.90
http://runtime.bordeaux.inria.fr/StarPU/
http://pm.bsc.es/ompss
info:doi/10.1145/3448290.3448563
info:doi/10.1145/1055531.1055534
info:doi/10.1145/1055531.1055534
info:doi/10.1145/1377612.1377615
info:doi/10.1145/1377612.1377615

	Fine-grain task-parallel algorithms for matrix factorizations and inversion on many-threaded CPUs 
	1 INTRODUCTION
	1.1 Notation

	2 REVIEW OF TASK-PARALLEL MATRIX INVERSION VIA GJE
	2.1 Baseline GJE algorithm
	2.2 Basic task-parallel GJE algorithm
	2.3 Advanced task-parallel GJE algorithm

	3 MATRIX FACTORIZATIONS VIA ORTHOGONAL TRANSFORMS
	3.1 Baseline QR algorithm
	3.2 Task-parallel QR algorithms
	3.3 Orthogonal reduction to band form

	4 EXPERIMENTAL RESULTS
	4.1 Experimental setup
	4.2 Matrix inversion
	4.3 QR factorization
	4.3.1 Increasing parallelism in PF
	4.3.2 Increasing parallelism in PU via [[math]]-panels
	4.3.3 Additional task parallelism in PU via tiles
	4.3.4 General performance overview for the QR factorization

	4.4 Orthogonal reduction to band form
	4.5 Discussion

	5 CONCLUSIONS

	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT
	ORCID
	References

