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"If it were not for the great variability among individuals, medicine might as
well be a science, not an art."

William Osler
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Universitat Politècnica de València

Abstract

Doctor of Philosophy on Technologies for Health and Wellbeing

Clinical Decision Support System for the

Multiparametric Stratification of Atrial Fibrillation

Patients in Critical Care

by Alexander Lacki

Atrial �brillation (AF) is the most commonly encountered cardiac arrhythmia,
a�ecting over 33 million patients in the world. It is often encountered in inten-
sive care units, where it is associated with prolonged hospitalisation, increased
healthcare costs, elevated risk of thromboembolism, and higher mortality.

AF has diverse causes and mechanisms, and is considered to be a heteroge-
neous disease. It may be caused by cardiac and non-cardiac comorbidities,
such as endocrine, pulmonary, and metabolic disorders, genetics, and in�am-
mation. The abundance of pathophysiological mechanisms associated with AF
has led to the realization that AF patients are considerably heterogeneous.
This heterogeneity among patient populations have previously been identi�ed
as an unaddressed impediment in epidemiological studies.

Guidelines for the treatment and management of AF exist for the general pop-
ulation but are not directly applicable to ICU populations due to di�erent AF
mechanisms, risks, and e�ectiveness of treatments. Further, strong evidence for
optimal treatment strategies is missing, resulting in a lack of consensus among
clinical decision-makers, and di�erent treatment approaches across clinical in-
stitutions.

This doctoral thesis reports the process of developing a strati�cation method
for AF patients in the critical care setting. Novel semi-supervised clustering
algorithms are developed, benchmarked, and employed to identify AF phe-
notypes. Treatment e�ects of common antiarrhythmic drugs are compared
among phenotypes, and a usability assessment is performed to identify the
clinical applicability of the developed methods.
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Universitat Politècnica de València

Resumen

Doctorado en Tecnologías para la Salud y el Bienestar

Sistema de apoyo a la toma de decisiones clínicas para la

estratificación multiparamétrica de pacientes con

fibrilación auricular en cuidados intensivos

por Alexander Lacki

La �brilación auricular (FA) es la arritmia cardíaca más común y afecta a
más de 33 millones de pacientes en el mundo. A menudo se encuentra en
unidades de cuidados intensivos, donde se asocia con hospitalizaciones prolon-
gadas, mayores costos de atención médica, riesgo elevado de tromboembolismo
y mayor mortalidad.

La FA tiene diversas causas y mecanismos y se considera una enfermedad
heterogénea. Puede ser causada por comorbilidades cardíacas y no cardíacas,
como trastornos endocrinos, pulmonares y metabólicos, genética e in�amación.
La abundancia de mecanismos �siopatológicos asociados con la FA ha llevado
a la comprensión de que los pacientes con FA son considerablemente heterogé-
neos. Esta heterogeneidad entre las poblaciones de pacientes se ha identi�cado
previamente como un impedimento no abordado en los estudios epidemiológi-
cos.

Existen pautas para el tratamiento y manejo de la FA para la población general,
pero no son directamente aplicables a las poblaciones de la UCI debido a
los diferentes mecanismos, riesgos y efectividad de los tratamientos de la FA.
Además, falta evidencia sólida sobre estrategias de tratamiento óptimas, lo que
resulta en una falta de consenso entre los tomadores de decisiones clínicas y
diferentes enfoques de tratamiento en las instituciones clínicas.

Esta tesis doctoral informa el proceso de desarrollo de un método de estrati�-
cación para pacientes con FA en el entorno de cuidados críticos. Se desarrol-
lan, comparan y emplean nuevos algoritmos de agrupamiento semisupervisados
para identi�car fenotipos de FA. Se comparan los efectos del tratamiento de
fármacos antiarrítmicos comunes entre fenotipos y se realiza una evaluación de
usabilidad para identi�car la aplicabilidad clínica de los métodos desarrolla-
dos.
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Resum

Doctorat en Tecnologies per a la Salut i el Benestar

Sistema de suport a la presa de decisions clíniques per a

l'estratificació multiparamètrica de pacients amb

fibril·lació auricular en cures intensives

por Alexander Lacki

La �bril·lació auricular (FA) és l'arítmia cardíaca més comú i afecta més de 33
milions de pacients al món. Sovint es troba en unitats de cures intensives, on
s'associa amb hospitalitzacions prolongades, majors costos d'atenció mèdica,
risc elevat de tromboembolisme i més mortalitat.

La FA té diverses causes i mecanismes i es considera una malaltia heterogènia.
Pot ser causada per comorbiditats cardíaques i no cardíaques, com ara trastorns
endocrins, pulmonars i metabòlics, genètica i in�amació. L'abundància de
mecanismes �siopatològics associats a la FA ha portat a la comprensió que els
pacients amb FA són considerablement heterogenis. Aquesta heterogeneïtat
entre les poblacions de pacients s'ha identi�cat prèviament com un impediment
no abordat als estudis epidemiològics.

Hi ha pautes per al tractament i maneig de la FA per a la població general,
però no són directament aplicables a les poblacions de la UCI a causa dels
diferents mecanismes, riscos i efectivitat dels tractaments de la FA. A més,
manca evidència sòlida sobre estratègies de tractament òptimes, la qual cosa
resulta en una manca de consens entre els prenedors de decisions clíniques i
diferents enfocaments de tractament a les institucions clíniques.

Aquesta tesi doctoral informa el procés de desenvolupament d'un mètode d'estra-
ti�cació per a pacients amb FA a l'entorn de cures crítiques. Es desenvolupen,
comparen i fan servir nous algorismes d'agrupament semisupervisats per iden-
ti�car fenotips de FA. Es comparen els efectes del tractament de fàrmacs an-
tiarítmics comuns entre fenotips i es fa una avaluació d'usabilitat per identi�car
l'aplicabilitat clínica dels mètodes desenvolupats.
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Chapter 1

Introduction

1.1 Motivation and Rationale

Atrial �brillation (AF) is the most prevalent cardiac arrhythmia a�ecting more
than 33 million patients globally [175]. While AF currently consumes in excess
of 13.5 billion euros in European healthcare systems [27], its prevalence is
expected to further increase due to population aging, especially in rapidly
developing countries such as Brazil, China, and India [175]. It is commonly
encountered in critically ill patients, with incidences between 4.5% and 15%
in intensive care units (ICUs) [33]. It is associated with increased healthcare
costs, prolonged hospitalization, and increased risk of stroke and mortality [34,
195].

AF is a heterogeneous disease with a variety of risk factors and mechanisms.
Even though signi�cant progress has been made in the elucidation of these
pathological processes in recent years, the primary realization that has arrived
is that the AF population is highly heterogeneous with varying pathologi-
cal mechanisms being present in di�erent patients [226]. Such heterogeneity
within patient populations has been recognized as a limitation of randomized
controlled trials, since population sub-groups may respond di�erently to ad-
ministered treatments [97].
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Chapter 1. Introduction

While AF may be managed using various treatment strategies, therapies carry
risks, and have undesirable side e�ects such as an increased risk of bleeding
events or increased risk of death [64]. The treatment and management of AF
therefore requires careful balancing of several objectives to maximize treat-
ment utility while minimizing the associated risks. Nonetheless, guidelines for
decision-making in the treatment of AF in critical care environments are lack-
ing, and strong evidence for treatment selection is missing [53]. This results
in a lack of consensus among critical care physicians, reliance on decision-
making tools developed for community cohorts, and vastly di�erent treatment
approaches in di�erent institutions [225].

This doctoral thesis targets these shortcomings and presents the development
of a clinical decision support system for the identi�cation of the best treatment
option in AF patients in critical care environments. Biomarkers involved in the
pathophysiological processes underlying AF are identi�ed and captured from
electronic health records (EHRs). Methods are developed to capture sub-
phenotypes of the heterogeneous patient population and their characteristics
and treatment responses are described. Finally, a decision-making algorithm is
developed to predict optimal treatment selection, and a technology acceptance
study is performed to evaluate the utility of the developed models in clinical
practice.
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1.2 Cardiac Anatomy and Electrophysiology

1.2 Cardiac Anatomy and Electrophysiology

This section provides an overview of cardiac anatomy and electrophysiology. It
is split into three sub-sections: a description of the heart, an overview of cardiac
tissue properties and its constituents, and an introduction to cardiomyocyte
function.

1.2.1 The Heart

Anatomy

The heart is a muscular organ which enables the circulation of blood through
all blood vessels. Oxygenated blood is pumped throughout the body, while
unoxygenated blood is transported to the lungs [76]. The pathway taken by
the pumped blood is visualized in �gure 1.1. Venous, unoxygenated blood
enters the right atrium through the superior and inferior venae cavae. Upon
atrial contraction, the blood passes through the tricuspid valve entering the
right ventricle from where it is pumped through the pulmonary valve into the
pulmonary artery, proceeding to the lungs. Oxygenated blood returns from
the lungs through the pulmonary veins, entering the left atrium, from where
it passes through the mitral valve to enter the left ventricle following atrial
contraction. Ventricular contraction further pumps it through the aortic valve
and into the aorta, from which the blood disperses throughout the body [93].

3



Chapter 1. Introduction

Figure 1.1: Anatomy of the heart [69]

While subtle anatomical di�erences between the left and right halves of the
heart exist, the general operating principles remain fundamentally similar.
Each of the four chambers, the atrial and ventricular lumen, are surrounded by
muscles that contract to enable barometric pressure di�erences. These pres-
sure di�erences cause passive opening and closing of cardiac valves and result
in unidirectional blood �ow. The e�cient operation of the heart is provided by
the synchronized contraction of the heart muscle, a su�cient contractile force,
as well as a normal opening and closing of the heart valves [93].
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1.2 Cardiac Anatomy and Electrophysiology

Electrophysiology

The synchronous contraction of the heart is governed by the cardiac conduction
system, which is portrayed in �gure 1.2. The initial signal commences in the
sinus node, the primary pacemaker of the cardiac conduction system, which
is located in the roof of the right atrium. The signal propagates through the
Bachmann's bundle as well as the left atrial tissue leading to excitation and
synchronous contraction of both atria. Following complete atrial excitation,
the atrioventricular node introduces a delay in propagation, which provides
su�cient time for the contracting atria to displace blood into the ventricles.
Following this delay, the atrioventricular node induces an impulse into the
bundle of His, leading to a propagation of signal into the bundle branches, the
Purkinje �bers, and the entire ventricular myocardium leading to a contraction
of the ventricles [76].

Figure 1.2: Cardiac conduction system [147]
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1.2.2 Cardiac Tissue

Cardiac tissue has a complex composition with a multi-cellular structure. It
consists of its contractile component, the cardiomyocyte, endothelial cells, �-
broblasts, and the extracellular matrix. A schematic of cardiac tissue is pre-
sented in �gure 1.3.

Figure 1.3: Composition of myocardial tissue [236]

The muscular component of the myocardium consists of cardiomyocytes, that
are responsible for the rhythmic contraction and relaxation of the heart. Car-
diomyocytes are connected through gap junctions which facilitate communica-
tion between neighboring cells allowing for the propagation of signals through
the myocardium. The function of cardiomyocytes is covered in section 1.2.3.

Endothelial cells line blood vessels including capillaries. They regulate blood
�ow by controlling vasoconstriction and vasodilation following an activation by
various receptors. Further, they are responsible for facilitating an exchange of
substances between blood and myocardial tissue. These cells are of crucial im-
portance in maintaining homeostasis by controlling the balance of a variety of
cellular agonists and antagonists such as in�ammatory factors, procoagulants
and anticoagulants [57].

The various cells in the myocardium communicate via paracrine signaling
through cytokines, which are small proteins produced and released in response
to a variety of physiological and pathological processes. They are secreted
by �broblasts, endothelial cells, as well as cardiomyocytes. While a plethora
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1.2 Cardiac Anatomy and Electrophysiology

of cytokines exists, and signi�cant cross-talk between di�erent cytokines has
been reported, it is well known that cytokines a�ect the autonomic innervation,
which is a major regulator of heart function [121]. Among others, cytokines
are released in response to in�ammation and are involved in cytokine induced
apoptosis. Cytokines have been proposed not only as prognostic markers but
also as potential therapeutic targets in heart disease [54].

The constituents of the myocardium are connected and supported by the extra-
cellular matrix (ECM). The ECM is composed of di�erent types of connective
tissue such as collagens and glycoproteins which form �brils. These �brils pro-
vide the myocardium with structural strength and elasticity, and are responsi-
ble for the transmission of the contractile force produced by cardiomyocytes.
The ECM is an evolving entity which changes its composition in accordance
with mechanical stress and hormonal factors [138].

Fibroblasts are cells that secrete collagen proteins, and thereby maintain the
extracellular matrix. Due to their ability to secrete ECM proteins, excessive
�broblasts activation can lead to the development of �brosis separating adja-
cent cardiomyocytes and reduce conduction velocities [62, 210]. In-vitro models
have demonstrated the existence of electric coupling between �broblasts and
cardiomyocytes, its implication remains, however, poorly understood [26, 210].
Fibroblasts have been shown to react to mechanical stimuli, adapting their pro-
tein expression, and perform paracrine signaling to neighboring cells, a�ecting
the function of cardiomyocytes [104].
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1.2.3 Cardiomyocytes

On the smallest scale, heart function is controlled by electrical excitation of
a cardiomyocyte, the heart's muscle cell, that triggers its contraction. Car-
diomyocytes are electrically excitable because their cell membranes contain
ion channels that are selective for various cations. The cardiomyocyte exhibits
an inside negative resting membrane potential because the cell membrane is
selectively permeable for K+ ions but almost impermeable to Na+ ions. Since
at rest the inward recti�er K+ channels are permanently open, the outwardly
directed concentration gradient for K+ is balanced by the inwardly directed
electrostatic attraction of their positive charges to the negative inside of the
cell. The Na+ pump [(Na+,K+)-ATPase] helps to maintain the concentration
gradients by utilizing the energy of ATP to transport 3 Na+ for 2 K+ against
their concentration gradients. During an action potential (AP) various ion
channels will open and close in a voltage- and time-dependent manner and
produce the characteristic cardiac shape of the AP depicted in �gure 1.4.

The AP of cardiomyocytes is divided into �ve phases [178]:

Phase 0 - Depolarization of the cardiomyocyte through an activation of
the fast inward Na+ current resulting in a sharp increase of transmembrane
voltage from the resting potential of -90 mV to 30mV.

Phase 1 - Early repolarization due to an inactivation of the inward Na+

current, and transient out�ow of K+ ions resulting in a short drop in
potential across the cardiomyocyte's cell membrane.

Phase 2 - Plateau phase of the action potential. Depolarizing Ca2+ �ows
into the cell via L-type Ca2+ channels, while repolarizing K+ currents (IKr
and IKs) �ow out of the cell through rapidly activating Kv11.1 (hERG)
and slowly activate Kv7.1 (KvLQT1) channels, respectively.

Phase 3 - Final repolarization of the cardiomyocyte occurs as when out-
ward current prevails over inward current as L-type Ca2+ channels close,
while K+ channels remain open.

Phase 4 - Resting potential is reached again and maintained as explained
above. The Na+/Ca2+ exchanger (NCX) is the major actor which removes
Ca2+, that entered the cell during the AP, from the cell. The NCX utilizes
the energy of the Na+ concentration gradient for Ca extrusion from the
cell. Because of the transport ratio of 3 Na+ : 1 Ca2+ the NCX contributes
some depolarizing current to the resting membrane potential.
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1.2 Cardiac Anatomy and Electrophysiology

Figure 1.4: Cardiac action potential [178]

The shape and duration of the AP can vary depending on the expression of
ion channels, which has been shown to be heterogeneous within the heart. Not
only do atrial cardiomyocytes have shorter action potential durations (APDs)
than ventricular cardiomyocytes, but intra-atrial APD variability has also been
observed, with APDs in the left atrium being shorter than in the right atrium
[157, 202].

The electrical stimulation is the prerequisite for the contraction of a cardiomy-
ocyte. The sequence of events is referred to as excitation-contraction coupling,
and the involved steps are portrayed in �gure 1.5. Force development is pri-
marily controlled by the interaction between intracellular Ca2+ concentration
and the myo�laments. The Ca2+ entering the cell during the AP plateau trig-
gers the release of further Ca2+ from the sarcoplasmic reticulum, the primary
Ca2+ storage site of the cardiomyocyte [96].
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Figure 1.5: Excitation-contraction coupling [96]

The release of Ca2+ from the sarcoplasmic reticulum provides a su�ciently
high intracellular Ca2+ concentration, that free Ca2+ binds to troponin C,
resulting in a modi�cation of the troponin-tropomyosin complex. This modi�-
cation enables ATP hydrolysis supplying energy to the actin-myosin complex,
and results in sliding of the myosin 'heads' over actin �laments in the force
generating step. The simultaneous activation of all myo�laments within the
cardiomyocyte causes the contraction of the entire cell [96].
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1.3 Atrial Fibrillation

AF is a supraventricular tachyarrhythmia characterized by uncoordinated atrial
activation resulting in ine�ective atrial contractions. It presents with an irreg-
ular, and often rapid, ventricular response. The �brillatory motion of the atria
translates into hemodynamic incompetence, which results in blood stasis in the
atria, increasing the risk of blood clot formation. AF patients, when untreated,
are therefore at a �ve-fold increased risk of ischemic stroke [89].

AF is the most common sustained cardiac arrhythmia in adults, and poses
a large burden on patients and healthcare systems [89]. It is estimated that
between 2 and 4% of adults su�er from AF, and this number is expected to
more than double in the upcoming years due to population aging [33]. Beyond a
reduction in the quality of life, AF is associated with a variety of complications,
such as myocardial infarction, heart failure, dementia, chronic kidney disease,
and stroke. The associated complications of AF result in a 2-fold increased
risk of death in the population of AF patients [19, 177, 33].

1.3.1 Pathophysiology

AF is not only associated with many co-occurring cardiac diseases, but other
factors such as pulmonary, metabolic, endocrine diseases or genetic aberrations
may also contribute [24, 106]. The mechanisms driving AF are not fully under-
stood, but appear to be complex, of multifactorial nature, and heterogeneous
across the patient populations [96]. It is generally agreed that the manifes-
tation of AF involves two co-occurring factors: a trigger mechanism, which
enables AF to commence, as well as a maintenance mechanism, which allows
AF to perpetuate. Once maintained for prolonged periods, AF causes changes
in atrial substrate structure and function, further promoting AF, which is re-
ferred to as remodeling [158].

Triggers of Atrial Fibrillation

Triggers that initiate AF are diverse, and include stimulation of the autonomic
nervous system, atrial stretch, bradycardia, and premature atrial complexes
[96]. In the majority of patients, AF is initiated by ectopic sources primarily
found in the pulmonary veins [83]. These ectopic sources initiate wavefronts
in addition to the already existing wavefront produced by the sinus node. The
resulting interaction of these wavefronts may induce reentrant wavelets and AF.
Even though the mechanisms of ectopic sources have not been fully de�ned, it
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is assumed that such ectopic sources occur due to automaticity and triggered
activity.

Normal and healthy cardiomyocytes do not show self-excitation or spontaneous
activity [98], and are therefore unable to initiate ectopic triggers. Histological
studies have, however, identi�ed the presence of pacemaker cells, transitional
cells, and Purkinje cells in human pulmonary veins. These cells have been
shown to possess automaticity, and to perform spontaneous depolarizations
[169].

Triggered activity can be categorized into delayed afterdepolarizations (DADs),
or early afterdepolarizations (EADs), both being potential inducers of ectopic
beats. Figure 1.6 depicts the two types of afterdepolarizations as single trig-
gered depolarizations, as well as maintained excitation trains.

Figure 1.6: Delayed and early afterdepolarizations [193]
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1.3 Atrial Fibrillation

Abnormalities in cellular calcium handling, and, in particular, Ca2+ overload
may lead to DADs. Increased cellular Ca2+ concentrations will activate the
NCX, which, due to its electrogenicity, depolarizes the membrane. When reach-
ing the threshold for a propagated AP such depolarization can trigger an ec-
topic excitation that may interfere with the physiological excitatory wavefront
to produce AF. DADs are particularly common in patients with congestive
heart failure, where cellular calcium load is increased [234].

EADs are reversals of repolarization during the second or third phase of the
AP, and occur as a consequence of prolonged action potential duration, during
which CA channels recover from inactivation an reopen to produce a small
depolarization [158]. EADs have been observed in ventricular cardiomyocytes
as a result of mechanical stretch, which prolongs action potential durations
[45, 105].

Maintenance of Atrial Fibrillation

Episodes of AF may be of short duration, however a multitude of factors can
contribute to its perpetuation. Therefore, beyond a trigger, AF requires a
vulnerable atrial substrate to be maintained. Substrate vulnerability is me-
diated through electrical and structural changes, which foster heterogeneous
conduction and re-entrant propagation patterns. While the mechanism of re-
entrant propagation patterns remains controversial [96], three dominant hy-
potheses exist: re-entrant rotors [140], endo-epicardial dissociation [4] and the
multi-wavelet theory [148]. All three potential mechanisms bene�t from simi-
lar substrate modi�cations such as �brosis, oxidative stress, pathologies of the
autonomic nervous system or renin-angiotensin system, and genetic factors.

A commonly encountered indicator of substrate vulnerability is the degree of
atrial �brosis. The increased collagen content in the ECM modi�es the con-
ductive properties of the myocardium and produces heterogeneous conduction
velocities, dispersion of refractoriness, conduction block, and electrical dissoci-
ation of neighboring tissue. Each of these phenomena may facilitate re-entries
and wavelet formation and promote sustained AF. Fibrosis can be quanti�ed
using late gadolinium enhanced magnetic resonance imaging, and its quantity
is a predictor of AF onset, as well as recurrence [2].

The autonomic nervous system is another major modi�er of atrial substrate
that may predispose to AF. The sympathetic nervous system has a major im-
pact on Ca2+ handling of cardiomyocytes, leading to a potential shortening
of APDs, which in turn creates a vulnerable substrate. The term �vagal AF�
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has been used to describe AF in patients without structural heart disease,
who tend to experience AF episodes during night time or post-exercise, when
the parasympathetic tone dominates. Parasympathetic stimulation has been
shown to prolong AF episodes in animal models, with increased heterogeneity
in AP [137]. Further studies have indicated that complex relationships be-
tween sympathetic and parasympathetic activity are responsible for substrate
vulnerability [134].

Oxidative stress and in�ammation are central modi�ers of atrial substrate
that cause substrate vulnerability through a variety of processes. In�ammation
commonly occurs as a result of cardiac surgery after which AF is frequently ob-
served ("postoperative" AF). Further evidence points to in�ammation decreas-
ing the homogeneity of conduction velocities of atrial substrate promoting AF
maintenance [44]. The mechanism of in�ammation in AF is currently poorly
de�ned. In�ammatory biomarkers were shown to be signi�cantly increased in
patients with AF demonstrating a bi-directional relationship between AF and
in�ammation [96].

Further modi�ers of atrial substrate have been identi�ed as promoting AF, such
as changes in the renin-angiotensin system, ischemia, in�ammatory diseases,
hypertension, valvulopathies, as well as genetic factors [3].

Atrial Remodeling

Atrial remodeling is an adaptive response of the atrial tissue to mechanical
or hormonal factors that alter the morphology or physiology of the atrium.
Di�erent pathological processes drive remodeling of atrial tissue constituents.
Beyond AF risk factors such as ischemia, barometric overload, and aging, AF
itself may cause atrial remodeling, due to its progressive nature. While ini-
tially occurring primarily in paroxysmal form due to the presence of triggers,
repeated and prolonged episodes of AF lead to more persistent forms of longer
duration. As such, the conversion to sinus rhythm (SR) becomes increas-
ingly di�cult the longer AF persists. This phenomenon, is often referred to
as "AF begets AF", and describes the process of atrial remodeling, de�ned
as �sustained functional or structural changes in atrial substrate�, which often
promote the occurrence and maintenance of AF [158].

Prolonged maintained AF has been observed to modify the expression of car-
diomyocytes' ion channels, leading to a shortening of the e�ective refractory
period (ERP) [190]. Down-regulation of L-type calcium channels, modi�cation
of the sarcoplasmic reticulum ATPase as well as potassium channel changes
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1.3 Atrial Fibrillation

[73] have been observed in patients with AF. The mechanism responsible for
the shortening of the ERP remains controversial, but it is generally agreed
that a shortened ERP contributes to the substrate vulnerability by facilitating
the formation of wavelets in accordance with the multiple wavelet theory [96].
Along with the ERP, the atrial contractile function decreases as a result of
modi�cations in the intracellular Ca2+ handling. Both processes are, however
reversible, when SR is restored and maintained for a su�ciently long period
[190, 227].

Analyses of protein expression have revealed changes in connexin 40, indicat-
ing increased heterogeneity of gap junctions, which correlate with AF stability
[215]. Spatial alterations in the expression of gap junctions may be responsible
for heterogeneous conduction velocities, and increase the substrate vulnerabil-
ity to re-entrant propagation patterns.

Structural changes like atrial dilation may occur as a result of valvulopathies
[113] and other comorbidities, but also as the result of prolonged AF [150].
Atrial dilation is one of the most common markers to assess the vulnerability
of the atrial substrate and has been shown to correlate with the degree of atrial
�brosis [209]. Both factors are known to increase substrate vulnerability and
to promote AF [85]. Similar to contractile force and ERP, atrial dilation slowly
decreases when SR is restored [78].

In summary, AF is a complex arrhythmia with rapid and disorganized elec-
trical activity, of which the underlying pathophysiological processes are not
completely understood. The general consensus is that AF requires a trig-
ger and a maintenance mechanism, which originate from intra-atrial, but also
extra-atrial pathophysiological processes. AF is associated with age, a vari-
ety of comorbidities and systemic diseases, as well as electrical and structural
remodeling of atrial tissue. AF patients present signi�cant heterogeneity in
the combination of interacting pathophysiological processes, which are con-
tinuously being further elucidated, but are not completely understood [119,
226].
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1.3.2 Treatment and Management of Atrial Fibrillation

The treatment and management of AF follow a holistic approach with a com-
bination of therapies being employed to mitigate undesirable e�ects of AF.
The major concern in AF patients is the risk of stroke, which is reduced by
using anticoagulation therapy. AF may also be reverted to SR using electrical
or pharmacological cardioversion. Alternatively, AF may be allowed to exist
and a therapy managing AF symptoms may be preferred. This section outlines
di�erent options of treating and managing AF.

Anticoagulation and Stroke Prevention

Due to a �ve-fold increased risk of stroke in the AF population, anticoagula-
tion is a crucial component of AF treatment. Stroke risk varies by the speci�c
presentation of di�erent risk factors that need to be assessed to determine the
necessity of anticoagulation treatment. A major complication of anticoagula-
tion therapy is the increased risk of lethal bleeding events. Along with the risk
of stroke, the risk of bleeding must be evaluated to identify modi�able risk
factors [89].

Stroke risk can be decreased with di�erent pharmacological agents or through
the use of an atrial appendage occlusion device. Pharmacological agents are
classi�ed into several categories:

Vitamin K Antagonists such as Warfarin have commonly been used
for anticoagulation, but are gradually being replaced with novel oral an-
ticoagulants (NOACs) due to easier dosing.

Heparins and Heparinoids accelerate the neutralization of several co-
agulation factors.

Direct Thrombin Inhibitors such as Dabigatran (NOAC) prevent throm-
bin from forming �brinogen which prevents blood from clotting.

Direct Factor Xa inhibitors like Edoxaban (NOAC) prevent the trans-
formation of prothrombin into thrombin inhibiting the formation of blood
clots.

While NOACs are generally superior to vitamin K antagonists, valvulopathies
and presence of arti�cial heart valves, warrant the use of vitamin k antagonists
[89]. Among NOACs the choice of anticoagulation agent is largely unclear with
similar outcomes observed across di�erent types, but meta analyses indicate
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1.3 Atrial Fibrillation

increased mortality in diabetic patients treated with NOACs vs. vitamin K
antagonists [166].

Blood clotting in AF patients is a result of blood stasis due to a lack of atrial
contraction. The highest degree of blood stasis has been observed in the left
atrial appendage, which led to the development of non-pharmacological stroke
prevention therapies. One such therapy is the implantation of an occlusion
device into the LAA, which has shown to considerably reduce hemorrhagic
stroke risk. Alternatively, surgical exclusion of the atrial appendage may be
performed. The non-inferiority of occlusion or exclusion of the LAA to phar-
maceutical anticoagulation is primarily driven by the decrease in risk of hem-
orrhagic stroke associated with pharmacological anticoagulation. The decrease
in hemorrhagic stroke risk is, however, traded for an increased risk in ischemic
stroke. This makes LAA occlusion or exclusion potentially superior to pharma-
ceutical anticoagulation in patients with an increased risk of bleeding events.
Randomized controlled trials to support this assumption are however missing
[89].

Rhythm Control

Rhythm control strategies aim to restore and maintain SR. Possible rhythm
control strategies are electrical cardioversion, pharmacological cardioversion,
lifestyle changes, or combinations thereof. Rhythm control is primarily aimed
at reducing symptoms and an improving in patients' quality of life. It is indi-
cated as the �rst line treatment, and should be attempted in case of uncertainty
regarding its outcome [89].

Electrical Cardioversion

Electrical cardioversion can be performed using a synchronized direct current
shock applied to the patient's chest via two electrodes. The exact mechanism
by which electric cardioversion terminates arrhythmia is not fully understood.
The two primary hypotheses are that the applied electric shock depolarizes
the cardiomyocytes' transmembrane potential past the activation threshold
for APs [52], and that depolarization of a critical mass of tissue prevents re-
entrant patterns from continuing [240]. The other hypothesis states that the
electric shock produces a prolongation of APDs that is su�cient to terminate
chaotic conduction patterns [208].

Before electric cardioversion is performed, transesophageal echocardiography is
commonly performed to identify potential thrombi in the atrium. The failure
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to detect a thrombus could, upon restoration of SR, lead to an ischemic stroke
as the thrombus enters the circulatory system [89].

A combination of pharmacological cardioversion with electrical cardioversion
was shown to be superior to only electrical cardioversion.

Pharmacological Cardioversion Pharmacological cardioversion can be per-
formed using antiarrhythmic drugs (AADs), which are categorized into �ve
classes depending on their mechanism of action [228]:

Class 1 AADs are Na+ channel blockers. They act as stabilizers of the
membrane by limiting cardiomyocyte excitability.

Class 2 consist of beta blockers that reduce sympathetic activity of the
autonomous nervous system in the heart.

Class 3 agents prolong the APD by blocking K+ channels leading to a
prolongation of the e�ective refractory period, which prevents reentrant
conduction patterns.

Class 4 are L-type Ca2+ channel blockers, thereby slowing the sinoatrial
and atrioventricular node and increasing the e�ective refractory period
leading to a decrease is re-entrant propagation patterns.

Class 5 contains AADs which do not belong to any of the above categories.
This category contains AADs such as digoxin, adenosine, and atropine.

� Digoxin increases vagal activity thereby reducing conduction in
the AV node.

� Adenosine decreases conduction velocity through the atrioven-
tricular node while decreasing sympathetic activity and increas-
ing parasympathetic tone.

� Atropine decreases parasympathetic tone and increases the con-
duction through the atrioventricular node.
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1.3 Atrial Fibrillation

Rate control

Rate control is a treatment approach in which AF is allowed to persist, but
the ventricular rate is controlled to minimize symptoms. The best type and
intensity of rate control treatment remains to be identi�ed with randomized
controlled trials showing no signi�cant di�erences in composite outcomes be-
tween di�erent treatment arms [89].

Pharmacological therapy with the use of beta blockers, diltiazem, verapamil,
or a combination of drugs is performed to achieve a stable and low heart rate.
The choice of drug is primarily driven by patient symptoms, comorbidities,
and side-e�ects [89].

Con�icting evidence exists on the e�cacy of rate control compared to phar-
macological rhythm control. While some studies suggest that rate control is
superior to pharmacological rhythm control with lower rates of adverse events
being observed in a number of trials [194], other studies report the opposite
observation [224]. Consensus exists, however, that patients treated with rate
control strategies have a higher symptom burden than patients treated with
rhythm control strategies [194].

When pharmacological rate control is not successful, an atrioventricular node
ablation and pacemaker implantation may be performed to control the ven-
tricular rate. This procedure has been shown to have low complication rates
and low mortality risk [89].
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Chapter 2

State of the Art

This chapter describes the state of the art in prediction of AF outcomes. Sec-
tion 2.1 describes risk-scores, some of which are used in clinical practice to
guide AF treatment, and the predictive biomarkers that these scores employ.
Section 2.2 introduces the state of the art in phenotype identi�cation from a
machine learning perspective. Section 2.3 describes advances and limitations
of the data-driven identi�cation of AF sub-phenotypes. Finally, section 2.4
introduces CDSS and their design and evaluation frameworks.

2.1 Clinical Strati�cation for Atrial Fibrillation

In community cohorts, clinical strati�cation methods are based on risk scores
that predict the risk of an unwanted outcome. Di�erent scores may be applied
to predict the risk of (1) stroke, (2) major bleeding, (3) AF onset/incidence, or
(4) AF recurrence following catheter ablation. This section presents the most
common risk scores according to the European Society of Cardiology Guidelines
on Atrial Fibrillation [89].
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2.1.1 Risk Scores for Stroke Prevention

AF increases the risk of stroke �ve-fold. The patient speci�c risk, however,
varies with the present risk factors. Great e�orts are made to personalize an-
ticoagulation treatment aimed at stroke prevention. Table 2.1 shows common
risk scores employed in the estimation of stroke risk in AF patients.

Risk Score
Development
Population

Development
Model

External
Validation
C-Index

CHA2DS2�VASc
[136]

35 countries
Logistic

Regression
0.61
(NA)

Age: 66.0±14.0
FU: 1 year

ABC-stroke
[87]

North America
Latin America

Europe
Asian Paci�c

Cox
Regression

0.66
(0.58, 0.74)

Age: Median 70
FU: Median 1.9 years

ATRIA
[200]

California
Cox

Regression
0.70

(0.67, 0.72)
Age: 71.7±11.6

FU: 6.50-7.25 years

Intermountain
[79]

NS
Cox

Regression
0.71 (w)
0.72 (m)

Age: 71±12 (m)
68±12 (w)

FU: 5.8±4.1 years

GARFIELD-AF
[66]

Caucasian
Hispanic-latino
Afro-Caribbean

Asian
Mixed/other

Stepwise
Regression

0.75
(0.73-0.77)

Age: Mean 71
FU: Up to 1 year

Table 2.1: Risk Scores for Stroke Strati�cation. NS = Not stated. FU = Follow-up.
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2.1 Clinical Strati�cation for Atrial Fibrillation

Out of the presented risk scores, the CHA2DS2�VASc score is the recommended
choice to guide anticoagulation treatment [89]. It makes use of the following
variables:

Variable Score

Congestive heart failure/
Left ventricular dysfunction

1

Hypertension 1
Age > 75 2

Diabetes mellitus 1
Previous stroke 2
Vascular disease 1

Age 65-74 1
Female gender 1

Maximum 9

Table 2.2: Biomarkers used by the CHA2DS2�VASc score

The CHA2DS2�VASc estimates stroke risk on a level from 0 to 9 by adding
scores for each variable present in a speci�c patient. In patients scoring 2
points or more, anticoagulation therapy is recommended.

2.1.2 Risk Scores for Major Bleeding

Risk of major bleeding events are of major concern in AF patients. This is
especially true for patients being treated with anticoagulants, which increase
the risk of bleeding events. A personalized assessment of bleeding risk is there-
fore of importance. Several bleeding risk scores have been proposed to stratify
patients according to bleeding risk. Table 2.3 presents the most common risk
scores.
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Risk Score
Development
Population

Development
Model

External
Validation
C-Index

HAS-BLED
[172]

Euro Heart Cohort
Logistic

Regression
0.72

(0.65-0.79)
Age: 66±13 (nb)

73±10 (b)
FU: 1 year

ABC-bleeding
[88]

ARISTOTLE
Cox

Regression
0.71

(0.68-0.73)
Age: 70 (19�97)

FU: Median 1.7 years

HEMORR2HAGES
[71]

US Medicare bene�ciaries
Logistic

Regression
0.60

(0.51�0.69)
Mean age: 80.2 years
FU: Mean 0.82 years

Table 2.3: Risk Scores for Major Bleeding Events. FU = Follow-up

While a consensus on the utility of the HAS-BLED score has not been reached,
the weight of evidence is in favor of its e�cacy. As such, guidelines recommend
its consideration for the identi�cation of modi�able bleeding risk factors, and
to identify patients at increased risk of bleeding. Such patients should re-
ceive a more frequent follow-up, while a high bleeding risk is not necessarily a
contraindication for anticoagulation [89].

2.1.3 Risk Scores for AF Onset

Risk scores aimed at identifying patients with an elevated risk of developing
AF have been developed. Such high-risk individuals could potentially bene�t
from preventative treatment such as prophylactic stroke prevention [135]. Even
though a variety of scores have shown promising results, their use in clinical
practice remains low, and guidelines do not make any recommendations for
their use [89]. Table 2.4 presents risks scores developed for the assessment of
AF onset risk.
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Risk Score
Development
Population

Development
Model

External
Validation
C-Index

FHS
[189]

Caucasian
Cox

Regression
0.78

(0.76-0.80)
Age: 61 (45-95)
FU: 10 years

CHARGE-AF
[5]

81% white
19% black Cox

Regression
0.78

(0.75-0.78)Age: 65 (46-93)
FU: Up to 7 years

WHS
[58]

Caucasian
Female Cox

Regression
0.72

(0.68�0.75)Age: Median 54 years
(IQR 49-59)

FU: Median 14.5 y

MHS
[7]

Israel
54% Female Cox

Regression
0.72

(0.68�0.75)Age: Mean 63 years
FU: 10 years

JMC
[84]

Japanese
35% Female Cox

Regression
0.77

(SE 0.02)Age: Mean 52 years
FU: 5.5±1.6 years

C2HEST
[131]

Asian
43% Female Cox

Regression
0.75

(0.73-0.77)Age: Mean 47 years
FU: Median 2.6 years

Shandong
[47]

Chinese
33% Female Cox

Regression
0.77
(NA)Age: 57 (45-85)

FU: Median 2.6 years

Table 2.4: Risk Scores for AF Onset. FU = Follow-up
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2.1.4 Risk Scores for AF Recurrence

Risk scores have also been developed for the assessment of AF recurrence risk
following catheter ablation. Table 2.5 shows common risk scores to assess AF
recurrence.

Risk Score
Development
Population

Development
Model

External
Validation
C-Index

Apple
[117]

Germany
Logistic

Regression
0.63

(0.60�0.66)
Age: 60±10
FU: 1 year

DR-FLASH
[118]

Germany
Logistic

Regression
0.80

(0.74�0.87)
Age: 61±10
FU: 2 years

MB-LATER
[152]

Serbia
Cox

Regression
0.62

(0.54-0.69)
Age: 56.9±11.8 years
FU: 29.1±10.1 months

ATLAS
[143]

Portugal
Cox

Regression
0.75
(NA)

Age: 59±11 years
FU: 4.20±2.70 years

CAAP-AF
[229]

California
Cox

Regression
0.65
(NA)

Age: 62.3 ± 10.3 years
FU: 2.5 ± 1.7 years

BASE-AF2
[28]

California
Cox

Regression
0.65

(0.58-0.71)
Age: 4.6 ± 10.5 years

FU: 6 months

ALARMEc
[231]

NA
29% Female Cox

Regression
0.49

(0.42-0.56)Age: 58 (50-65) years
FU: Median 15.6 months

Table 2.5: Risk Scores for AF Recurrence. FU = Follow-up

According to clinical guidelines for community cohorts, factors associated with
an increased risk of AF recurrence are LA size, AF duration, patient age, renal
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dysfunction, and �brosis in the myocardium, which can be visualized by means
of MRI. Guidelines recommend that these risk factors be taken into account
for treatment selection [89].

2.2 Machine Learning

Machine learning is a branch of arti�cial intelligence, which is concerned with
the study of algorithms that provide learning capability to computers with-
out being explicitly programmed [187]. Machine learning algorithms may be
categorized into four categories: Supervised learning, unsupervised learning,
semi-supervised learning, and reinforcement learning [151]. The following sec-
tions will discuss the �rst three categories. For an overview of reinforcement
learning, the reader is referred to [103].

2.2.1 Supervised learning

Supervised learning is a category of machine learning algorithms which use an
input to predict an output. The goal of such algorithms is to to statistically
model the input-output relationship in order to make predictions on unseen
samples. Examples of such tasks are regression tasks, where a continuous value
(i.e. blood pressure, age) is to be predicted, classi�cation tasks, where binary
(i.e. male/female) or multi-class label (i.e. nationality) is required, or survival
analysis tasks in which the time to an event is of interest is predicted [29].
Figure 2.1 visualizes the di�erence between classi�cation and regression.

Figure 2.1: Classi�cation vs. Regression [18].
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An abundance of methods have been developed to perform supervised learning
tasks, ranging from linear and logistic regression models such as used for the
risk scores introduced in section 2.1, to the use of decision tree ensembles and
arti�cial neural networks. For an overview of supervised machine learning
methods, the reader is referred to [198].

2.2.2 Unsupervised learning

Unsupervised learning uses solely input data and makes no use of labels. The
goal of such algorithms may be dimensionality reduction, outlier detection,
or clustering. Clustering algorithms learn a dataset's underlying structure in
order to draw conclusions about the existence of distinct groups within the
data, and are commonly used to identify patient phenotypes in heterogeneous
cohorts. They are primarily driven by high-density regions in the feature space,
and output group assignments for each observation in the training dataset
[127].

Clustering algorithms use a set of features to distinguish and separate ob-
servations into groups. These algorithms can generally be classi�ed into the
following categories [6]:

Partitioning techniques divide a dataset into a �xed number of groups,
each represented by a centroid in the feature space. An illustration of this
is the K-Means clustering algorithm [100]. In K-Means clustering, cen-
troids are initially chosen randomly in the feature space, and data points
are assigned to their closest centroid based on a distance metric such as
Euclidean distance. Subsequently, centroids are adjusted iteratively by
computing the mean of points associated with each centroid until conver-
gence criteria are met. Although K-Means converges rapidly, it is sensitive
to noise and outliers, disregards variations in cluster shapes, sizes, and den-
sities, and requires the user to specify the number of clusters, potentially
facing convergence issues due to local minima [201].

Hierarchical methods conduct a hierarchical clustering of data points,
yielding a dendrogram illustrating the clustering sequence from a single in-
clusive cluster at the apex to individual data points as singleton clusters at
the base. An example of a dendrogram is shown in �gure 2.2. Hierarchical
clustering techniques merge or split clusters in accordance with distance
metrics in iterative steps [201]. Dendrograms aid users in identifying suit-
able distance thresholds to de�ne �nal clusters. Although hierarchical
approaches furnish useful insights due to their ability of representing hi-
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erarchies, they are associated with high time complexity, rendering them
computationally intensive [11].

Figure 2.2: Example of a Dendrogram from [159].

Density-based methods utilize local density assessments to similar ob-
servations into the same clusters. Rather than relying solely on pairwise
proximity, these algorithms identify clusters as regions of high density sep-
arated by areas of lower density. Density-based approaches are resilient to
noise and capable of identifying clusters of various shapes but struggle with
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reliably describing cluster shapes and are unsuitable for high-dimensional
datasets [201, 11].

2.2.3 Semi-supervised learning

Semi-supervised learning algorithms address the problem of partially missing
labels by using unlabeled data together with labeled data. Semi-supervised
algorithms may be used to in di�erent applications such as regression, classi-
�cation, anomaly detection, and clustering tasks [29].

The underlying proposition of semi-supervised learning is that the distribution
of feature p(x) contains information about the posterior distribution of interest
p(y|x). If this proposition is met, then the inclusion of unlabeled observations
may improve the accuracy of predictions [238].

For this premise to hold, several assumptions are made about the analyzed
dataset [56]:

1. The smoothness assumption states that for two observations, which
are similar in the feature space, the labels should be the same.

2. The low-density assumption states that the decision boundary of a
classi�er should pass through low-density regions in the input space, as
de�ned by the feature space p(x).

3. Themanifold assumption states that observations in a high-dimensional
feature space are usually concentrated on lower-dimensional structures
called manifolds. Observations in such structures are said to usually
carry the same labels. If such manifolds can be identi�ed, and the labels
for a subset of observations in each manifold is known, the labels for the
remaining observations can be inferred.

Given the use of clustering algorithms for phenotype identi�cation in patient
cohorts, semi-supervised clustering are of particular interest to this work.
While semi-supervised classi�cation is a relatively well understood problem,
semi-supervised clustering is a relatively small research area [56].

In semi-supervised clustering, observations may be partially labeled, or have
must-link or cannot-link constraints between observations [126]. Other works
have suggested the use of survival data into the clustering process, to form
clusters which are predictive of an event of interest [13]. Such works will be
discussed further in section 4.2.1.
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2.3 Atrial Fibrillation Phenotypes

AF patients are commonly classi�ed according to their clinical sub-phenotype
(paroxysmal, persistent, long-standing persistent), which describes the AF bur-
den and AF duration. This de�nition captures exclusively the temporal pattern
of AF episodes that patients experience, and does not represent the underlying
pathophysiological mechanisms that are causing AF. An alternative, knowledge
driven, classi�cation into sub-phenotypes have been proposed, classifying AF
into being secondary to structural heart disease, focal, polygenic, and other
classes corresponding to the understanding of the AF mechanism [115]. The
validation of this classi�cation's clinical use is, however, lacking [89]. In con-
trast to the knowledge-driven classi�cation, recent works employ data-driven
methods to uncover sub-phenotypes in the AF population.

Unsupervised clustering analyses of large datasets have, in the past, identi�ed
patient sub-phenotypes that correspond to di�erent pathological processes and
show di�erent treatment responses [176]. Within the AF population, several
studies have investigated the composition of the population by means of the
hierarchical agglomerative clustering (HAC) algorithm. Most notably, Inohara
et. al. [95] identi�ed patient sub-phenotypes based on 60 clinical biomarkers
in a �rst application of unsupervised machine learning algorithms to an AF
cohort. The authors used hierarchical agglomerative clustering [221] to identify
four sub-phenotypes, which the authors interpret as:

1. An atherosclerotic-comorbid cluster, with the majority of patients
having a diagnosis of coronary artery disease and the highest proportion
of prior myocardial infarction. Given the highest rates of heart failure,
hypertension, hyperlipidemia, diabetes, chronic kidney disease, and ane-
mia, patients in this cluster also exhibited to highest CHA2DS2�VASc
scores.

2. A tachy-brady/device implantation cluster, with patients character-
ized by their resemblance to patients with tachycardia-bradycardia. Pa-
tients in this cluster had the highest prevalence of device implantation
due to sinus node dysfunction or atrioventricular node ablation. They
are further characterized by the highest European Heart Rhythm Asso-
ciation symptom scores.

3. A low comorbidity cluster, which was the largest cluster identi�ed.
Patients in this cluster were the second-youngest, had the lowest rates of
diabetes, OSA, heart failure, and COPD. In accordance with relatively
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good health, patients in this cluster exhibited the highest LVEF and
lowest CHA2DS2�VASc score.

4. A youger behavioral disorder cluster characterized by the highest rate
of liver disease, alcohol abuse, drug abuse, and prevalence of smoking.
Patients in this cluster were the youngest and most likely to be male.
Further, this cluster had the highest BMIs and the highest prevalence of
COPD and OSA, but, remarkably, the best renal function measured by
eGFR.

In addition to the identi�cation of existing sub-phenotypes, the authors demon-
strated di�erences in the treatment strategies employed in the di�erent sub-
phenotypes. Signi�cant di�erences exist in the prevalence and selection of
anti-arrhythmic drugs, prevalence of rate control, as well as the use of an-
ticoagulation therapy. Further, the authors quanti�ed the rates of clinical
outcomes within di�erent clusters. Signi�cant di�erences were found between
the obtained sub-phenotypes, with di�erences in death, stroke rates, bleeding
events, and hospitalization. The authors conclude that the results of their
study con�rm the heterogeneity of the AF population, while demonstrating
that the traditional clinical classi�cation of paroxysmal, persistent and perma-
nent AF did not drive cluster formation, and are therefore not de�ning features
of the population.

Similar studies [94, 206, 217, 223] have used HAC to identify sub-phenotypes
of AF patients. Generally a low number of clusters (3-5) were identi�ed, and
di�erences in outcomes and treatments were described. Of note, all studies
rely solely on geometrical measures of the covariate space to cluster patients.
Such unsupervised machine learning approaches have previously been shown to
produce sub-phenotypes that are not consistent with patient outcomes making
the clinical value questionable [14, 72]. In fact, the AF sub-phenotypes identi-
�ed in the above studies lack the resolution to allow for a treatment selection
similar to the one currently performed in clinical practice. Contraindications
such as thyroid dysfunctions an heart failure can generally not be identi�ed in
the over-agglomerated sub-phenotypes, making a treatment selection based on
the sub-phenotype impractical and imprecise.

While di�erent AF sub-phenotypes may be identi�ed using an unsupervised
clustering algorithm, the utility of the sub-phenotype is limited, if the treat-
ment response of di�erent sub-phenotypes is the same, or worse, single sub-
phenotypes contain groups with di�erent treatment responses. The latter of
which, may be assumed to occur in the previously mentioned studies due to
the low number of identi�ed clusters. While this shortcoming of unsupervised
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clustering has been recognized by literature, and semi-supervised clustering
(SSC) methods are increasingly being employed to tackle this shortcoming
[14], semi-supervised methods have yet to be employed within the analysis of
AF populations.

The identi�cation of patient sub-phenotypes within the context of outcome
prediction is of critical importance in the development of interpretable models
for precision medicine [36, 50]. SSC algorithms that combine patient covariates
and survival outcomes may therefore be preferred, as they produce clusters that
are not only biologically meaningful, but also clinically relevant.

2.4 Clinical Decision Support Systems

CDSS are computer-based systems that provide its users with patient-speci�c
recommendations or alerts to support clinical decision-making. The devel-
opment and implementation of CDSS is, however, complex and success and
adoption rates vary. Prior works have recognized the complexity of CDSS
developement, and proposed formal frameworks for the development and eval-
uation of CDSS [80].

2.4.1 Five Rights of CDSS

Fundamentally, a CDSS should follow �ve basic principles: provide the right
information, to the right person, in the right format, through the right channel,
at the right time [162]. Olakotan et. al. [161] have previously systematically
evaluated a large number of alert-based CDSS and identi�ed common issues
in terms of the �ve basic principles and the socio-technical aspects suggested
by [222] (table 2.6).

Within the socio-technical dimension the right channel choice, several studies
provided an excess of information with poorly designed alerts such as choice
of font or counter-intuitively arranged medication lists. A desensitization from
�alert fatigue� was observed where an overwhelming number of alerts were gen-
erated, which may lead to increased mental workload, and, ultimately, alerts
being ignored. To alleviate such information overload, an expert panel has
suggested that CDSS should only provide essential information at the time
when decisions are made [167], while others suggest the replacement of alert-
based CDSS with "autopilots" to support decision-making before a decision is
made by the provider [233]. Such �autopilots� could evaluate EHRs and pro-
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Table 2.6: Five rights principles with the according technological dimension and common
issues according to [161]

Socio-technical
dimension

Five rights
principle

Issue

Technology
Right channel

Excess information
Desensitization from alert fatigue

Right information Non-speci�c patient information
Human Right person Inability to �ne-tune alerts

Organization Right policies
Institutional/ government
rules impeding alert use

Process
Right format Interruptive/ non-interruptive alerts
Right time Poor alert timing

vide decision-makers with suggestions that maximize treatment bene�ts and
minimize risks [192].

Several studies reported that alerts provided insu�cient information which was
di�cult to interpret or unclear, slowing down clinicians' work�ow. Similarly,
information provided may not match the end-users needs, especially if end-
users of di�erent specialities are expected to use the CDSS. The information
presented by a CDSS should therefore be tailored to the end-user in question,
and, if necessary, be presented di�erently for di�erent end-users. The presen-
tation of the right information may go beyond the information required for
decision-making, but provide information that further supports clinical work-
�ows. A clinician faced with a treatment choice may therefore be presented
the suggested treatment, with additional information such as patient weight,
height, and dosage information [185, 207].

Information should be provided to the right person, in accordance with the
persons needs. Alerts should be customizable, and not interfere with existing
work�ows. Several studies have reported alerts being raised during data-entry,
which were usually bypassed [35, 165]. Depending on the type of alert, di�er-
ent providers should be alerted, and providers being able to decline alerts if
the information is known to them. Such customizability requires appropriate
training, which poses a challenge to the adoption of CDSS. Inadequate training
of the end-user may increase workload [165].

Organizational rules may limit the usability of CDSS. Such impediments in-
clude institutions not allowing for the customization of certain software com-
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ponents such as alert fonts or colors [237]. Further, the recommendations from
CDSS may not be in accordance with internal rules or policies. Similarly, the
necessity to provide justi�cation for overriding CDSS recommendations may
increase workload and reduce CDSS e�ectiveness [156].

Information should be presented in the right format. Within the scope of
alerts, this may refer to alerts being interruptive or non-interruptive. Which
alarms should be raised in a fashion that interrupts the current activity, and
which should be raised passively, depends on the severity of the alert, but also
depends on user preference [164].

Information should be presented at the appropriate time. Several studies re-
ported that alerts were only generated following the prescription or dispensa-
tion of medication, increasing clinicians' workload. Unnecessary delays were
identi�ed in a variety of studies, which were caused by malfunctions, long
computation times, and internet connectivity problems [31, 213].

2.4.2 CDSS Design Principles

Beyond outlining common pitfalls of previous studies, frameworks for the de-
sign of CDSS have been proposed. An example thereof is the framework pro-
posed by Zikos [239], who de�ned seven design principles for a successful CDSS:

Principle 1: CDSS should mimic the cognitive process of clinical
decision makers

Clinical reasoning is often characterized by a repeating loop of clinical assess-
ment and data acquisition. A clinician may assess a patient, and request a
laboratory test to �ll "reasoning gaps". This fundamental element of clinical
decision-making should be considered during the design of CDSS, and such
processes should be replicated where appropriate [10].

Principle 2: CDSS should provide recommendations with longitudi-
nal insight

Responses to treatments are often evaluated using speci�c physiological values,
as responses to therapies may change physiological measurements. A measure-
ment should therefore be evaluated in the context of prior measurements if a
treatment response is to be evaluated. The temporal trends of physiological
measurements should therefore be considered in the design of CDSS.

Principle 3: CDSS should `know' the time when decisions will be
made
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The timing at which a clinical decision is made must be considered during
CDSS development. In particular, data availability may be an issue when a
patient is admitted to a hospital, because patient information not having been
collected yet. Predictive models trained on data that was collected throughout
a patients entire hospital stay may therefore show optimistic performance,
which is not attainable in practice.

Principle 4: CDSS should provide predictions in a dynamic manner

In clinical practice, information is obtained and updated continuously, as lab-
oratory measurements, vital signs, and diagnostic tests are gathered. Predic-
tions should therefore be made dynamically as data arrives, and the reliability
of the prediction should be evaluated internally by the CDSS. Only when a pre-
diction can be made with reasonable con�dence, should it be presented to the
decision-maker. Such approaches are, however, limited by their computational
demands, which limit system response time.

Principle 5: The `Historical Decision' bias: CDS models should be
outcomes-based

Historical decision bias occurs when models are trained on historical data that
contains decision mistakes, such as misdiagnoses. Such models may show sat-
isfactory performance when validated, but perform poorly in practice, because
they reproduce past mistakes. To alleviate this issue, it is recommended to
develop systems that make outcomes-based predictions instead of predicting
diagnoses or treatment selections.

Principle 6: CDSS should model a-priori known interactions between
clinical attributes

Di�erent clinical variables are often combined to reach a conclusion. Existing
knowledge on the interactions of di�erent clinical variables and their impli-
cations should therefore be modeled explicitly. An example thereof is the
diagnosis of a disease with the use of a laboratory test and a symptom. The
modeling of such interactions, however, requires extensive knowledge of the
clinical domain in question.

Principle 7: Dimensionality reduction helps train models on-the-�y,
but should be done with caution

Medical data is often highly dimensional. The International Classi�cation
of Diseases (ICD-10-CM), for example, contains more than 69,000 individual
disease codes. Such high dimensional coding makes data mining infeasible
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and requires dimensionality reduction, which may be accomplished using di-
mensionality reduction algorithms or the creation of variable groups based on
domain knowledge.

2.4.3 CDSS for the Management of Atrial Fibrillation

Several CDSS have been proposed to guide support the treatment of AF pa-
tients. The scope of these systems has been education, improving communica-
tion between patients and healthcare providers, improving patient involvement
in the decision-making process, and providing treatment recommendations.

A popular choice in designing CDSS for AF management is the use of point
scores to predict the risk of ischemic stroke and major bleeding to support
the decision of initiating anticoagulation therapy. Numerous studies have used
such an approach with varying results. The DARTS II CDSS [211], for exam-
ple, provides a computerized decision aid the prescription of anticoagulation
therapy in outpatient clinics. The system uses the Framingham equation [232]
to predict patients' stroke risk, and estimates the e�ect of warfarin therapy on
stroke risk and bleeding risk based on information from systematic literature
review. The predicted risks are communicated to patients, using the risk com-
munication screen shown in �gure 2.3. In addition to a numerical presentation
of risks in terms of yearly rates, patients are presented with 100 smiley faces
to visualize the computed risk for stroke and stomach bleed.
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Figure 2.3: DARTS II Clinical Decision Support System [212]

In an RCT evaluating the impact of DARTS II [212], patients were randomized
to either usual care according to guidelines, or the supplementation of usual
care with the CDSS. In the CDSS arm, patients interacted with the CDSS,
and a shared decision between patient and physician is was made whether
to initiate anticoagulation therapy. The DARTS II CDSS led to a reduction
in decision con�ict between patients and clinicians, but also a reduction of
warfarin use, which, the authors conclude, may ultimately lead to an increased
risk of stroke in patients treated with the CDSS.

Similarly, Fraenkel et. al. [67] proposed a decision support tool to support
the education of AF patients and support shared decision-making between
patients and care providers. The tool uses the CHA2DS score to determine
the risk of stroke and the HEMORR2HAGES score to predict major bleed-
ing risk, both adjusted for three treatment options: No treatment, aspirin,
warfarin. The expected incidence rates under the treatment options are com-
municated to the patient, to educate patients on the available choices and
reduce physician-patient con�ict. Similarly to Thomson et. al., Fraenkel chose
to present risks under di�erent treatments using 100 smiley faces. In addition
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to communicating the risks under di�erent treatments, the CDSS included an
educational component, which explained the pathogenesis of stroke in AF pa-
tients. In an RCT the tool was shown to improve patient understanding, and
patient-clinician communication, but did not signi�cantly impact treatment
choice [68].

CDS-AF is a CDSS which evaluates the CHA2DS2�VASc score to determine
if a given patient should be anticoagulated or not [108]. Upon the logging
of a patient into the hospital's electronic journal, the CDSS is activated, and
the clinician is presented with an overview of the patient's diagnoses, obtained
from the EHR system, and given the possibility to adjust these diagnoses.
The CHA2DS2�VASc is computed, and the yearly stroke risk is estimated.
The clinician can thereafter decide to initiate anticoagulation therapy if in-
dicated by current guidelines, or postpone the decision. In a RCT [107] the
authors demonstrate a higher adherence to guidelines and lower rates of bleed-
ing events in the CDSS group than the control group. No improvements were,
however, observed in the rates of ischemic stroke. A similar tool was proposed
by van Doorn et. al. [51]. Its evaluation in a RCT has shown no improvements
in stroke incidence, major bleeding risk, or anticoagulation over- or underuse.
Similarly, Silbernagel et. al. [199] have evaluated a similar system in a prospec-
tive study, and observed a modest improvement in guideline adherence.

Similarly, Sheibani et. al. [197] have proposed a mobile CDSS in the form of
a smartphone application that integrates the CHA2DS2�VASc score to predict
stroke risk and the HAS-BLED score to determine the risk of major bleeding
events. The application allows clinicians to manually select risk factors, and
presents the corresponding stroke and bleeding risk. Treatment recommen-
dations were based on guidelines from the American Heart Association [15],
and propose the use of anticoagulants or aspirin. The authors reported an
increased rate of guideline adherence in a prospective study, but the impact
on stroke or bleeding was not evaluated.

LaHaye et. al. [124] have implemented a CDSS using the CHA2DS2�VASc
score for stroke prediction, and the HAS-BLED score to asses the risk of major
bleeding events. The impact of di�erent treatments on stroke and bleeding risks
are computed based on relative risks reported by meta analyses and RCTs. In
contrast to other studies, the authors explicitly implemented an algorithm for
recommending speci�c treatments based on their expected stroke risk, bleed-
ing risk, and treatment cost in the form of a utility function. Depending on
the computed risks for stroke and bleeding, the CDSS may recommend no
treatment, the use of aspirin, apixaban, or dabigatran. An evaluation of the
proposed system remains undone.
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Ru et. al. [182] have proposed and evaluated another CDSS for recommending
anticoagulation treatment in patients treated by general practitioners. The
proposed CDSS is integrated into the hospital information system, and is
opened by the GP, when a patient is diagnosed with AF for the �rst time. Af-
ter completing patient related information, the CDSS computed the CHA2DS
score and the CHA2DS2�VASc score to predict stroke risk, as well as the HAS-
BLED, ORBIT, and ATRIA score to predict the risk of major bleeding events.
A recommendation of initiating anticoagulation is based on Chinese guidelines
[91]. In a prospective study the authors showed an increase in adherence to
guidelines, and a lower incidence rates of adverse e�ects in the CDSS group
compared to the control group.

Michalowski et. al. [144] have further re�ned this approach by introduc-
ing AFGuide, a mobile application to support anticoagulation treatment in
the outpatient setting. The authors implement rules from the Canadian AF
guidelines and drug-drug interactions as an executable �rst order logic. The
former are used to identify all possible anticoagulation therapies for a given pa-
tient, while the latter is used to identify potentially occurring adverse events,
which may occur when treating a patient with multiple comorbidities. Fur-
ther, AFGuide predicts patients' adherence to therapies and preferences using
di�erential factors that characterize patients and therapies. These di�eren-
tial factors are obtained from previously published review papers and patient
websites. These factors are used to develop scoring functions predicting in-
dividual adherence-to-therapy. Stroke and bleeding risk are assessed using
unspeci�ed point scores, which are synthesized with the results of clinical tri-
als to provide a �nal risk assessment. The �rst order logic rules are applied
to identify feasible anticoagulation therapies for a patient in question, and are
annotated with the associated stroke and bleeding risks, and weighted by the
scoring functions arising from the adherence-to-therapy models. Physicians
are then provided with a ranked list. A therapy explanation module further
provides justi�cations and explanations for the generated recommendations,
which is supplemented by with clinical evidence such as systematic reviews.
The module acts passively, and will only provide an explanation if requested.
An evaluation of AFGuide remains to be performed.

A recent meta-analysis [186] has shown that CDSS that recommend antithrom-
botic therapy based on guideline recommendations signi�cantly improve guide-
line adherence (RR: 1.03 [1.01-1.04]) in outpatient settings. Even though the
analysis revealed that the risk of thromoembolic events does not signi�cantly
di�er between CDSS and control groups, the risk of major bleeding tends to be
lower. A further scoping review has found that the use of CDSS decreases deci-
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sion con�ict between patients and physicians, and increases patient knowledge
about the risks of AF and AF treatments [196].

QRhythm [203] is a novel CDSS that supports treatment selection in outpa-
tient populations. It uses 9 predictive variables to predict the probability of
clinicians prescribing an antiarrhythmic rhythm control medication, a rate con-
trol medication, performing a electric cardioversion, or performing an ablation.
Physicians are used to input data for a patient in question, and a linear regres-
sion model predicts the probabilities of the patient in question receiving each
treatment. The system uses a two-step process to train its linear regression
model: In the �rst stage, a retrospective cohort of 100 patients is used for
model optimization, predicting the assignment of each treatment. During clin-
ical use, a reinforcement learning algorithm is used to optimize the model such
that the occurrence of stroke, hospitalization, and symptomatic AF recurrence
are minimized. The CDSS' user interface is shown in �gure 2.4.
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Figure 2.4: QRhythm CDSS [203]
Distributed under the terms of the Creative Commons Attribution License

(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work, �rst published
in JMIR Formative Research, is properly cited. The complete bibliographic information, a
link to the original publication on https://formative.jmir.org, as well as this copyright and

license information must be included.
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Recently, CDSS are becoming increasingly complex with recent works spanning
an abundance of functions and aiming for the facilitation of a holistic treat-
ment approach. In particular, they aim to integrate the ABC pathway pro-
posed by the ESC guidelines [89]: Avoiding stroke, Better symptom control,
Cardiovascular and comorbidity risk optimization. For example, the CATCH-
ME Healthcare Professional App [120] is a mobile application developed for
AF patients and their treating physicians. It supports patient education in the
form of booklets on AF pathology, symptoms, prognosis, associated comorbidi-
ties, treatment strategies, and tips on self-management. It allows patients to
submit their health issues, and provides a personal health record and a symp-
tom diary. Physicians are provided with a di�erent version of the app, which
allows them to view treatment guidelines, consult patient data, and access
interactive treatment algorithms.

The mAFA platform [81] is a smartphone app that was developed to sup-
port patients in the management of AF in an outpatient setting. It contains
classical decision support tools such as the CHA2DS2-VASc and HAS-BLED
scores, guideline-based treatment recommendations, and educational materi-
als. It provides dynamic assessments of bleeding risk, and �ags modi�able
risk factors to patients and physicians. Figure 2.5 shows the CDSS assess-
ing a patient's bleeding risk, and the quality of anticoagulaiton based on the
time in therpeutic range. Symptoms are quanti�ed using the European Heart
Rhythm Association symptom assessment scale, and heart rhythm and heart
rate are captured using a photoplethysmography system. A prospective RCT
has shown that mAFA reduces the use of OACs, and decreases the risk of
bleeding, stroke, AF recurrence, heart failure, and hospitalization [82].
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Figure 2.5: mAFA Clinical Decision Support System [81]. A) Dynamic bleeding monitor-
ing; B) Anticoagulation quality.

A similarly CDSS has been proposed by Cox et. al. [38], which makes use
of electronic health records to support clinical decision-makers and patients in
the management of AF in primary care. It allows patients to enter clinical
data such as symptoms, heart rate and blood pressure, which are relayed to
their physician via the CDSS. Physicians are supplied with a web-based plat-
form, which displays patient-reported data, as well as laboratory results and
prior diagnoses. The platform automatically reports CHA2DS2�VASc score
and HAS-BLED scores, and provides alerts to recommend changes in treat-
ment based on clinical guidelines.

44



i
i

i
i

i
i

i
i

2.4 Clinical Decision Support Systems

A summary of selected CDSS is provided in table 2.7. To date, the development
of CDSS for the management of AF is limited to outpatient settings. Primar-
ily, CDSS are designed to support patients in education and self-management,
and aid in adhering to clinical guidelines, with the integration of point scores
for treatment decisions being a popular method. The application of predictive
algorithms is primarily used for binary decisions such as initiating anticoagu-
lation treatment or not. CDSS for the selection of speci�c drugs remain rare,
and are often limited to guideline recommendations. Recent advances show a
trend towards mobile applications, which provide an abundance of function-
alities, and are aimed at enabling holistic treatment, patient monitoring, and
physician-patient communication. While RCTs show that these systems often
improve guideline adherence, and sometimes clinical outcomes, an application
of clustering-based methods which have been used to address patient hetero-
geneity have not been employed by any CDSS to date. Similarly, CDSS are
limited to the outpatient setting, with critical care not being considered by a
single CDSS.
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Table 2.7: Summary of CDSS for the management of AF

End-User

Patient [67], [212]

Physician
[51], [182], [108],

[124], [144], [197], [199], [203]

Patient and Physician [38], [81], [120]

Setting
Outpatient

[38], [51], [67], [81],
[108], [120], [124], [144], [182],

[197], [199], [203], [212]

Inpatient -

Time
of

Action

Pre-treatment
[51], [67], [108], [124], [144]
[182], [197], [199], [203], [212]

Continuous [38], [81], [120]

Input Data

Demographics
[38], [67], [81],

[108], [120], [124], [144], [182],
[197], [199], [203], [212]

Medical History
[38], [51], [67], [81],

[108], [120], [124], [144], [182],
[197], [199], [203], [212]

Vital Signs
[38], [67], [81], [120],

[144], [182], [203], [212]

Treatments
[38], [67], [81], [120], [124]

[144], [182], [197], [199], [203], [212]

Data
Processing
Method

Linear Regression [124], [203]

Logistic Regression
[38], [51], [67], [81],

[108], [120], [124], [144], [182],
[197], [199], [212]

Cluster Analysis -

Purpose

Patient Education [67], [81], [120]

Self-management [81], [120]

Monitoring [38], [81], [120]

Patient-Physician
Communication

[81], [120]

Binary Treatment
Indication

[38], [51], [67], [81],
[108], [120], [124], [182],
[197], [199], [203], [212]

Drug Selection [38], [67], [81], [124], [144], [203]
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Chapter 3

Hypotheses and Objectives

Current literature has proposed diverse CDSS, as well as analyzed the het-
erogeneity of AF populations and their outcomes. While state of the art
approaches identify data-driven AF phenotypes using unsupervised cluster-
ing algorithms, an application of semi-supervised methods remains undone.
Similarly, to what extent a CDSS based on phenotype classi�cation may �nd
acceptance among clinical decision makers remains unstudied. This work aims
to close these gaps by evaluating the following hypothesis with the help of
several objectives outlined in this chapter.

3.1 Hypotheses

The underlying assumption of this work is that semi-supervised clustering algo-
rithms are capable of identifying AF phenotypes which are biologically mean-
ingful and clinically useful. Further, it is assumed that the use of decision-
making algorithms can provide an useful method of selecting AF treatment.
Based on these assumptions this work evaluates the following hypothesis:

Semi-supervised clustering methods can identify sub-phenotypes of
AF patients with varying treatment e�ects and guide treatment

selection.
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3.2 Objectives

The hypothesis is tested within the scope of the following primary objectives.

1. Development of a semi-supervised clustering algorithm.

2. Identi�cation and description of sub-phenotypes and their treatment re-
sponses using said semi-supervised clustering algorithm.

3. Evaluation of the proposed framework in terms of usability by clinical
decision-makers.

The primary objectives are supported by the following secondary objectives.

1. Benchmark study of the semi-supervised clustering algorithm.

2. Standardization of clinical records into a common data model.

3. Development of a domain ontology allowing for the capture of relevant
concepts from clinical records.

A conceptual view of the hypothesis and supporting objectives is shown in
�gure 3.1.
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3.2 Objectives

Figure 3.1: Conceptual view of the study hypothesis and objectives
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Chapter 4

Materials and Methods

This chapter describes the materials and methods used within the scope of
this thesis. Section 4.1 describes a systematic literature review to identify
biomarkers predictive of outcomes in AF patients. Section 4.2 introduces sur-
vival analysis and describes the implementation and evaluation of a novel semi-
supervised clustering algorithm. Section 4.3 presents the materials and meth-
ods used for the identi�cation of AF phenotypes, including the used database,
its processing, and the algorithms developed for the analysis. Finally, section
4.4 outlines the the methods for the usability study.

4.1 Systematic Literature Review

Beyond the biomarkers currently used for patient strati�cation, literature pro-
vides insight into recently discovered biomarkers. These biomarkers are identi-
�ed through a systematic literature review, which is presented in this section.
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4.1.1 Search Strategy

Relevant records are identi�ed through a search in two electronic databases:
PubMed and Cochrane. Potentially relevant meta-analyses, systematic re-
views, and random controlled trials from January 1st 2016 to 31st December
2021 are identi�ed using the following query:

atrial fibrillation AND
(biomarkers OR markers OR predictors OR predicts)

4.1.2 Inclusion and Exclusion Criteria

Article screening is performed based on three inclusion criteria:

1. The article focuses on atrial �brillation. Literature review will be
restricted to a main focus on AF. Articles mentioning AF i.e. as a possible
consequence of another disease, do not meet inclusion criteria.

2. Relates a biomarkers to relevant patient outcomes. Articles will
be included if an association between a biomedical entity and a relevant
patient outcome is made. Outcomes considered relevant are the onset
of AF, e�cacy of an anti-arrhythmic drug, recurrence of AF after an
intervention, stroke, major bleeding events, or death.

3. Study is performed in a hospital setting. Literature search is re-
stricted to studies that evaluate biomarkers in a hospital setting. Wear-
ables such as holter monitors, or smartphone technologies do not meet
inclusion criteria.

The �nal assessment is performed based on the following three exclusion cri-
teria.

1. The study focuses on post-treatment biomarkers. Studies that
evaluate biomarkers and their changes post-treatment are not included
in the synthesis.

2. Study uses exclusively common risk scores. For the scope of iden-
tifying potential biomarkers, studies that exclusively use common risk
scores are excluded. The biomarkers used in common risk scores will be
analyzed separately in section 2.1.

3. Biomarkers are collected invasively. Biomarkers are often measured
invasively during the performance of a procedure. Such studies are ex-
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4.2 Semi-Supervised Clustering with Survival Data

cluded, since they do not aid in the identi�cation of the best treatment
option.

4.1.3 Selection Process

Following a removal of duplicate records, unique records are screened using
record titles and abstracts according to the inclusion criteria. Records that
meet the inclusion criteria are further assessed for eligibility using the exclu-
sion criteria. The remaining records are included in the quantitative analysis.
The complete record text is screened to identify biomarkers used for outcome
prediction. Biomarkers are grouped according to semantic categories, and the
number of publications using each biomarker is identi�ed.

4.2 Semi-Supervised Clustering with Survival Data

As previously outlined in section 2.3, the use of unsupervised clustering al-
gorithms produce sub-phenotypes with little clinical utility. To provide a bi-
ologically meaningful and clinically relevant sub-phenotypes, previous works
have proposed the use of semi-supervised clustering algorithms, which include
survival data in the clustering process.

Several approaches to develop SSC have been proposed by literature [174]:

� Constraint-based SSC in which either a) the resulting clusters are
forced to satisfy constraints, b) a penalty factor is added to the objective
function penalizing cluster assignments that violate the constraint con-
ditions, or c) constraints are given by independent class labels which are
used to initialize cluster centers and require cluster centers to satisfy the
given constraints. While such constraints are most commonly given by
must-link and cannot-link formulations between instances, intra-cluster
and inter-cluster constraints have also been proposed [42].

� Distance-based SSC where, during data preprocessing, the similarity
measure between samples is modi�ed to accommodate not only the dis-
tance in covariate space, but also a distance measure based on additional
information. Clustering according to the resulting similarity measure
yields clusters that aim to satisfy both requirements. While the addi-
tional distance measure may be a continuous function, literature also
introduced the translation of constraints into distance measures [20].
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� Constraint and Distance-based SSC which combines methods from
both of the above.

Based on these proposed approaches, two semi-supervised clustering algorithms
are developed. The �rst, S-HAC, extends the popular hierarchical agglomera-
tive clustering algorithm by incorporating survival data in the form of distance
computation and agglomeration constraints. Secondly, KMeans is extended to
incorporate survival data, providing LSS-KMeans. Both algorithms are out-
lined in the following sections, which are succeeded by a the description of
a benchmark study which compares the performance of both algorithms to
previously proposed semi-supervised clustering algorithms.

4.2.1 Background

Survival Analysis

Survival analysis refers to a group of data analysis methods which measure
the risk of an event over time. Common uses of survival analysis include the
analysis of the failure of electrical components, prediction of customer churn,
or patient outcomes in clinical studies.

Survival analysis uses several concepts that determine the application of its
tools, and de�ne how analyses are performed:

An observation is de�ned by a birth, which de�nes when the observation
in question becomes relevant to the analysis. Depending on the analysis
performed, the birth may refer to the start of an electrical stress test in
a component, the time a customer signs up for a service, or the time at
which a patient is diagnosed with a disease or a treatment is administered.
Within the scope of this study a patient's birth is considered to be the
time at which a patient is �rst observed to have atrial �brillation, which
is derived from periodic recording performed by the nursing sta�.

The concept of death refers to the time at which the event of interest is
observed. It may refer to the actual death of an individual, but may also
constitute the failure of an electrical component, a customer's cancellation
of a service, or the positive e�ect of a medical treatment. In the analysis
performed in this work, several events are considered of interest, and are
as follows:

� Rhythm Control - de�ned as the reversion of SR following a treat-
ment administration.
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4.2 Semi-Supervised Clustering with Survival Data

� Rate Control - de�ned as the reduction of heart rate below 100
beats per minute following a treatment administration.

� Mortality - as captured from the Social Security Administration
Death Master File.

Censorship occurs when the observation of a death is no longer possible
due to another event prohibiting its observation. An example of censorship
is the loss to follow-up in a medical study, or the intentional termination
of a study. Within the scope of this work, censorship is de�ned depending
on the outcome that is being observed:

Outcome Censoring Events

Rhythm Control
Mortality
Discharge

Rate Control
Rhythm Control

Mortality
Discharge

Mortality Discharge

Table 4.1: Censorship events for evaluated outcomes

Covariates are variables that describe the individuals under investiga-
tion. Covariates of interest to the outcome of atrial �brillation patients
have been covered by risk scores, and identi�ed from recent literature.

Survival functions describe the survival probability in a study popu-
lation throughout time. In particular, they describe the probability that
death occurs later than a speci�ed time t. The survival function is de�ned
as:

S(t) = Pr(T > t) (4.1)

The hazard function describes the rate of death during a time interval
[t, t+dt], with the condition of survival until time t. It is derived from
the survival function, and is de�ned as:

λ(t) = lim
dt→0

Pr(t ≤ T ≤ t+ dt)

dt× S(t)
=

S′(t)

S(t)
(4.2)
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Semi-Supervised Clustering with Survival Data

Clustering with survival data is a relatively under-explored �eld [13, 32, 141].
Two general approaches to semi-supervised clustering can be observed: The ex-
tension of unsupervised clustering methods, such as introduced in the previous
section, to include survival data, and the modi�cation of supervised methods
to produce clusters. The former approach was primarily taken in initial ad-
vances, which used survival-based algorithms such as Cox proportional hazard
models [37] for covariate selection [14], or covariate weighting [72]. The subset
of covariates, or weighted covariates were subsequently used in unsupervised
clustering algorithms. Recent works are primarily based on the use of high-
performance supervised algorithms, such as arti�cial neural networks [32, 128,
141], random survival forests [181], or genetic algorithms [75] to produce cluster
assignments. While such methods improve predictive accuracy, they introduce
signi�cant computational overhead, and reduce algorithmic transparency and
interpretability [170].

To date, the extension of unsupervised clustering algorithms to incorporate
survival data is limited to extensions of the KMeans algorithm. Kmeans is
a partitioning clustering algorithm, and is one of the most popular clustering
methods. It is applied to datasets where observations are de�ned by a set of
m covariates, which constitute the m-dimensional space in which observations
are represented as points. KMeans is initialized by randomly selecting k ob-
servations as initial cluster centroids, which are iteratively re-assigned until
the algorithm converges and a steady state is reached. The algorithm can be
summarized as follows:

1. Initialize k cluster centroids randomly.

2. Assign each observation to the nearest centroid.

3. Calculate the mean of each cluster.

4. Update the centroids to be the means of the corresponding clusters.

5. Repeat steps 2-4 until convergence is reached.

While KMeans operates exclusively on observations' covariates, Bair et. al.
have proposed to leverage associated survival data to obtain more predictive
clusters [14]. In their proposed approach, the authors utilized univariate Cox
proportional hazards models to quantify the correlation between covariates and
the outcome of interest, which allowed them to associate each covariate with
a Cox score. Cross-validation was then employed to determine the optimal
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4.2 Semi-Supervised Clustering with Survival Data

threshold for selecting which covariates to include in the KMeans algorithm.
Only solutions that demonstrated signi�cant di�erences in survival across the
resulting clusters based on a log-rank test were accepted. Once the best thresh-
old was identi�ed, the entire dataset was clustered using KMeans, including
only the covariates with Cox scores above a determined threshold.

This method was subsequently re�ned by Gaynor et al. [72], who introduced
the concept of supervised sparse clustering. Building upon the approach pro-
posed by Bair, Gaynor et. al. computed Cox scores for the available covari-
ates. Instead of identifying a threshold for including said covariates, Gaynor
assigned weights to the covariates based on their Cox scores. The weighted
covariates were then used in the unsupervised clustering algorithm, using the
sparse clustering algorithm proposed by Witten et al. [230]. The sparse clus-
tering algorithm is an unsupervised extension of KMeans, which maximizes
covariate di�erences among clusters using a secondary weighting. In essence,
Gaynor et. al. weigh covariates based on their Cox score, and, subsequently,
perform KMeans clustering performing a second weighting to maximize covari-
ate di�erences between clusters.

Numerous modi�cations of KMeans have been proposed, but the inclusion of
survival data into KMeans remains limited to the use of Cox proportional haz-
ard models for feature selection or feature weighting. While such approaches
are very scalable, and may provide more predictive clusters than the unsuper-
vised version of KMeans, they su�er from several limitations inherited from
their components. For example, the use of a Cox proportional hazards model
assumes, among others, that covariates have a linear relationship with the risk
of an event. This relationship may, however, be more complex, and critical
covariates may be excluded from the clustering process, simply because the
assumptions of a Cox proportional hazards model do not hold true. Similarly,
the KMeans algorithm assumes that clusters are spherical, and of similar sizes,
and will often fail to produce accurate clusters when these assumptions do not
hold.

4.2.2 Survival Hierarchical Agglomerative Clustering (S-HAC)

Note: Parts of this section, as well as subsequent sections have previously
been published, and some passages have signi�cant overlap with the following
sources: [123].

A novel constraint and distance-based SSC algorithm is proposed, which is
described with the aid of a simulation:
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Considering a dataset comprised of 1,250 observations, which are described
by two covariates. The covariates are randomly sampled from a bi-variate
Gaussian distribution with µ = (0.0, 0.0) and σ = (1.0, 1.0). The dataset
is split into three distinct groups along the x-axis, with each group being
characterized by a di�erent risk of death and risk of censoring. The three
groups and their corresponding survival curves are shown in �gure 4.1A and
B.

Figure 4.1: A) Simulated bi-variate Gaussian distribution of observations belonging to
three di�erent groups. B) Corresponding Kaplan-Meier curves for each phenotype. C)
T-distributed stochastic neighbor embedding of the hybrid pairwise distance matrix. D)
Clusters identi�ed from the pre-clustering stage. E) Core clusters identi�ed, with smaller
clusters dissolved into singletons (black). F) Final clustering outcome [123].

The novel algorithm, called S-HAC, performs the following steps to identify
coherent and predictive clusters:

Step 1 - Distance Matrix Computation: The dissimilarity between
observations is described using a distance matrix, which is derived from
both, the observations' covariates, as well as their survival times and event
indicators. The expected survival of each observation is derived from
the survival data form its m nearest neighbors. For each observation
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4.2 Semi-Supervised Clustering with Survival Data

i survival times and event indicators {(ti,1, ei,1), (ti,2, ei,2), ..., (ti,m, ei,m)}
are aggregated. Given two such sets, two observations i and j, the survival
distance between observations is computed using the log-rank test statistic
Zi,j. In order to maintain similarities in the covariate domain, a covariate
distance is computed based on observations' covariates. This may be
performed using Euclidean distance, Manhattan distance, or any other
commonly used distance metric. The �nal distance matrix is computed as
a weighted sum of survival distance Zi,j, and covariate distance Di,j, and
is formally expressed as:

Hi,j = α ∗ Zi,j + (1− α) ∗Di,j (4.3)

The impact of incorporating the survival distance into the distance ma-
trix computation is illustrated using a t-distributed stochastic neighbor
embedding (T-SNE) [139] of the resulting distance matrix (�gure 4.1C).
Instead of a 2-dimensional Gaussian distribution, the subjects now form
three high-density clusters corresponding to the simulated groups.

Step 2 - Pre-Clustering: Hierarchical agglomeration is performed us-
ing the hybrid distance matrix H. During this process, any two clusters
proposed for merging by the dendrogram are compared in terms of their
survival using the log-rank test. An agglomeration of two clusters is re-
jected if the log-rank test indicates signi�cant di�erence in their survival
distributions. The intermediate result of this process is depicted in �gure
4.1D.

Step 3 - Core Cluster Identi�cation: The previous clustering solution
demonstrates an under-agglomeration with many groups stemming from
noise. A minimum cluster size is introduced to alleviate this issue. Small
clusters that do not meet the minimum size requirement, are subsequently
dissolved into singletons (�gure 4.1E).

Step 4 - Post-Clustering: The agglomeration is continued, while pre-
venting the agglomeration of two singleton clusters using a cannot-link
constraint. Again, any two clusters indicated for merging are evaluated
using the log-rank test, and are only merged if no signi�cant di�erence
in the survival distributions exists. The �nal clusters are shown in �gure
4.1F.
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4.2.3 Locally Smoothed Survival KMeans

Current extensions of unsupervised clustering algorithms, which make use of
survival data are limited to the use of the KMeans algorithm. Its extensions
make use of Cox proportional hazards models to determine covariate impor-
tance, and consequently employ the KMeans algorithm on a subset of covari-
ates, or weigh covariates based on their importance. Similarly to S-HAC, this
survival information may be used directly in the KMeans algorithm:

1. Compute q quantiles of the observation times in the dataset, creating q+1
intervals.

2. For each observation in the dataset, identify its n nearest neighbors.

3. Aggregate durations (T1, T2, ..., Tn) and event indicators (E1, E2, ..., En)
from said neighbors.

4. Compute the cumulative hazard Ĥ i present in each interval i, based on
the time and event indicators from step 3, to produce a survival vector
S.

Hi
ˆ =

∫︂ qi+1

qi

H(t)dt (4.4)

S = (Ĥ0, Ĥ1, ...Ĥq+1) (4.5)

5. Given a covariate vector X, and survival vector S for each observation,
scale both sets of vectors such that the average vector is of unit length.

6. Multiply the survival vectors by a factor β to control for the importance
of the survival vector in the clustering.

7. Concatenate vectors X and S.

8. Run the KMeans algorithm on the set of concatenated vectors.

Several comments on this method are in order. Unlike previous approaches,
which use a subset of covariates, or weighted covariates as the input of KMeans,
a vector S is created, which represents the localized hazard pro�le for each
observation, and concatenated it with the corresponding covariate vector, to
use the concatenated vector for KMeans clustering. This procedure has several
motivations. Firstly, by deriving the survival vector from n nearest neighbors,

60



i
i

i
i

i
i

i
i

4.2 Semi-Supervised Clustering with Survival Data

noise in the time and event indicators of single observations is attenuated.
Secondly, it ensures that the hazard pro�le for a speci�c observation remains
representative of similar observations, which could not be guaranteed with a
global approach. Lastly, the approach directly provides the KMeans algorithm
with information regarding observations' survival, which, just like covariates,
may drive cluster formation by representing observations with similar survival
pro�les as more similar in the clustering domain.

4.2.4 Simulation Study

To visualize the behaviors of S-HAC and LSS-K-Means, and compare it to
alternative algorithms in a controlled fashion, a simulation study is performed
using three simulated datasets, which are shown in �gure 4.2:

Sim-a) A collection of 1,250 observations with two covariates distributed in a
2-dimensional Gaussian distribution µ = (0.0, 0.0) and σ = (1.0, 1.0). Three
survival distributions are created using cuto� points across the horizontal axis
(x < −1.0,−1 ≤ x < 1, x ≥ 1), corresponding to three di�erent survival
distributions of constant hazard (H0 = 0.1, H1 = 0.0125, H2 = 0.004) and
a constant censoring rate of 0.01. Note that although the dataset consists of
three distinct groups, identifying them is not a trivial task due to the covariates
being distributed in a Gaussian distribution, which poses a challenge that
unsupervised clustering algorithms would be unable to overcome.

Sim-b) A simulated distribution of two concentric circles from the Scikit-learn
library [168], referred to as noisy circles, with a total of 1,250 observations. For
the two circles, we simulate survival data with hazards of 0.02 and 0.05, and
a censoring rate of 0.01. Note that this dataset poses a signi�cant challenge
to algorithms extending KMeans, because there is no linear decision-boundary
that would e�ectively separate the two clusters.

Sim-c) A collection of 1,250 observations with two covariates distributed in
a 2-dimension uniform distribution (−3 < x < 3,−3 < y < 3). The observa-
tions are split into two groups according to a sine wave (y = 2sin(2x)), with
observations having hazards of 0.1 and 0.004 above and below the sine wave,
respectively. A constant censoring rate is set at 0.01. This dataset poses an-
other challenge to semi-supervised clustering algorithms, because it does not
only lack structure in the covariate domain, but it requires a particularly pre-
cise, non-linear, decision boundary to accurately classify observations into the
correct clusters.

All simulations are censored at T = 100.
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Figure 4.2: Simulated examples. Covariate distributions in the left column with the cor-
responding Kaplan Meier curves in the right column.
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4.2 Semi-Supervised Clustering with Survival Data

Table 4.2: Hyperparameters used in hyperparameter sweep.

Hyperparameter Tested Values

k* 2, 3, 4, 5, 6, 7, 8
No. of neighbors 30, 40, 50, 60, 80
No. of quantiles 5, 10

β 1.0, 1.5, 2, 2.5

* Only used in the benchmark study. In the simulation study, k was set
to the number of simulated clusters.

The ability of LSS-K-Means to identify the simulated clusters is compared to
KMeans, as well as the previously proposed semi-supervised clustering algo-
rithms extending KMeans: SSC-Bair and SSC-Gaynor. For KMeans, SSC-Bair
and SSC-Gaynor we select k such that it matches the number of simulated clus-
ters. For LSS-K-Means we perform a hyperparameter sweep shown in table 4.2,
while setting k to the number of simulated clusters. The resulting cluster so-
lutions are visually evaluated, and numerically assessed using the classi�cation
accuracy and the adjusted Rand index (ARI).

4.2.5 Benchmark Study

S-HAC and LSS-K-Means are quantitatively evaluated by comparing them
with unsupervised clustering algorithms, and previously proposed semi-supervised
clustering algorithms using survival data. Four openly accessible datasets are
used: i) FLCHAIN, comprised of data from an investigation of the e�ect of
non-clonal serum immuniglobilin free light chains on patient survival [49], b)
SUPPORT, a dataset from a study evaluating a prognostic model for ICU
patients [116], c) GBSG2, a dataset previously used to study the e�ects of
hormone treatment on breast cancer recurrence [191], and d) METABRIC, a
dataset created to predict the survival of breast cancer patients from clinical
data, gene expression data, and mutations [39]. The datasets' characteristics
are shown in table 4.3.
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Table 4.3: Dataset Characteristics.

FLCHAIN SUPPORT GBSG2 METABRIC

No. of Subjects 7,894 9,105 686 1,904
Events (%) 27.5 68.1 43.6 42.1

No. of Covariates 26 59 10 560
Missing (%) 2.1 12.6 0.0 <0.01

Tmax 5,215 2,029 2,659 355

The benchmark study evaluates the performance of the newly developed S-
HAC and LSS-K-Means algorithms to vanilla KMeans, vanilla HAC, SSC-Bair
[14], and SSC-Gaynor [72]. The benchmark is performed using 10-fold cross
validation, and the algorithms are evaluated based on the log-rank statistics
and concordance indices. With each algorithm a clustering is performed using
the training set, and survival distributions in each cluster are estimated using
Kaplan-Meier estimators. The Kaplan-Meier estimators are used to estimate
the median survival time, which is used as a risk score in the computation
of concordance indices. The empirical distribution of observations in the val-
idation sets are used to compute the log-rank statistic. For SSC-Bair cluster
predictions in the validation set are performed using a nearest centroid method,
as suggested by the authors [14]. For the remaining algorithms, cluster assign-
ments are derived from the nearest neighbor in the training set. In terms of
the tested hyperparameters, the algorithms HAC, SSC-Bair, and SSC-Gaynor
are evaluated using k={2, 3, 4, 5, 6, 7, 8}, and the metrics for best performing
k are reported. Given S-HAC's multiple hyperparameters, a hyperparameter
sweep is performed, which is shown in table 4.4.

Table 4.4: Hyperparameters tested for the benchmark study

Hyperparameter Tested Values

No. of Neighbors 30, 60, 90, 120
Min. Cluster Size 30, 50, 70, 90
Signi�cance Level 0.05, 0.10, 0.20

α 0.5
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4.3 Procedure to Identify Atrial Fibrillation Phenotypes

Note: Parts of this section, as well as subsequent sections have previously
been published, and some passages have signi�cant overlap with the following
sources: [122].

4.3.1 Study Data Base

AF phenotypes are identi�ed from the The Medical Information Mart for In-
tensive Care (MIMIC-III) database. MIMIC-III is a single-center database
containing information from critical care units in the Beth Israel Deaconess
Medical Center in Boston, Massachusetts, collected in the years 2008-2019.
The dataset is comprised of 49,785 distinct ICU admissions made by 38,597
individual adult patients (median age 65.8 years; 55.9% male) [102]. While
a newer database, MIMIC-IV [101], exists, it has been dismissed due to the
absence of critical biomarkers.

In MIMIC-III, patients are associated with medical diagnoses in the form of
ICD-9 codes, as well as time-stamped laboratory measurements and observa-
tions, and demographics. Medical observations, collected from dedicated crit-
ical care information systems (CareVue [Philips Healthcare, Andover, USA],
MetaVision [iMDsoft, Israel]) provide time-stamped laboratory measurements,
and vital signs. Time-stamped, de-identi�ed clinical notes, such as ECG re-
ports, echo reports, and discharge summaries are further present to enable nat-
ural language processing to capture certain observations not present in tabular
format.

Database Standardization

Observational healthcare data is created with di�erent goals in mind. These
goals may range from enabling research, to facilitating payments, or to enable
healthcare professionals through electronic health records. Biomedical data
therefore appears in di�erent formats and uses di�erent types of vocabularies to
represent semantically similar concepts introducing a high degree of complexity
to biomedical research. Examples thereof are administered drugs, which are
coded in the form of RxNorm codes, with individual codes representing a
speci�c medication including the dosage and producer. Such codes may be
readily mapped to other codes corresponding to the present ingredients using
the appropriate vocabulary. Di�erent drug administrations, all containing the
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same ingredient in di�erent dosages and routes of administration may therefore
be identi�ed.

To enable such semantic operations, the Observational Health Data Sciences
and Informatics Program 1 proposes the Observational Medical Outcomes Part-
nership (OMOP) Common Data Model (CDM), portrayed in �gure 4.3. The
database used in this work [123, 122] is standardized to the OMOP CDM using
the methods provided by [163] and stored in a PostgreSQL database, to ensure
that the methods developed in this work can be applied to a wide range of
databases.

Figure 4.3: Overview of tables in the OMOP CDM [160]

1Observational Health Data Sciences and Informatics, https://www.ohdsi.org/
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4.3.2 Knowledge Representation

Medical knowledge is often represented in the form of hierarchies. Examples
thereof are medical terminologies and classi�cation systems such as SNOMED-
CT or International Classi�cation of Diseases (ICD), which both arrange con-
cepts in semantically meaningful subclass-superclass relationships. Such se-
mantic relationships are intrinsic to medical concepts and allow for meaningful
data processing as well as interpretable software systems. The interest in pro-
viding increasingly sophisticated methods of knowledge representation which
provide capabilities of encoding hierarchical structures, concept descriptions,
and semantic interoperability between di�erent systems has led to the intro-
duction of knowledge graphs originating from the World Wide Web community
[155].

For the scope of this work, a domain ontology is developed to provide conve-
nient and transparent means of capturing relevant concepts from databases,
and to enable the inference of existing concepts which are implicitly referenced
by corresponding subclasses.

Protégé [154], an ontology editor and framework for building intelligent sys-
tems, is used to generate a hierarchical structure of SNOMED-CT, LOINC,
and RxNorm concepts representing diagnoses, measurements, treatment op-
tions, and outcomes which are identi�ed by the systematic literature review in
section 5.1.2 and are present in the database.

The ontology is evaluated using the Ontology Pitfall Scanner [173] to ensure
structural and functional integrity, and universal usability.

4.3.3 Study Design

Study Population

The study population is comprised of a cohort of patients with a diagnosis
of atrial �brillation. Patients may be diagnosed in an outpatient or inpatient
setting and may be newly diagnosed with atrial �brillation or have a prior
atrial �brillation diagnosis.

A single patient cohort is de�ned according to the following inclusion and
exclusion criteria.
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Inclusion Criteria

� Patients with a diagnostic code indicating atrial �brillation.

� Patients above the age of 18 are included.

Exclusion Criteria

� Patients with an ICU stay shorter than 24 hours are excluded. [17]

Patient Covariates

As presented in chapter 2, patient outcomes are dependent on biomarkers such
as comorbidities, concentrations of di�erent compounds in the blood serum,
electrophysiological or imaging measurements, and others. Such markers, while
present in standardized databases, lack structure to enable processing by data
mining algorithms. To enable e�cient processing, patients are represented in
the form of a vector consisting of the descriptive variables captured by means
of the domain ontology. MIMIC-III was screened for the variables identi�ed
in the systematic review in section 4.1. The earliest available record for each
variable is used, if more than one value is available. All continuous variables
are transformed into z-scores for analysis.

Outcomes

Two primary outcomes are de�ned: (i) the conversion of AF to SR, and (ii)
the achievement of rate control, which is de�ned as a heart rate below 100
beats per minute (BPM) [70]. In the employed dataset, heart rates and heart
rhythms were recorded at regular intervals, and a previous study has con�rmed
the recordings' accuracy and precision to within 1 hour [46]. For the scope of
this analysis, a registered rhythm is assumed to be maintained until a di�erent
rhythm is recorded. The secondary outcome of interest is in-hospital mortality.
The primary and secondary outcomes are censored at 24 hours and 30 days,
respectively [17].
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Treatment Group Assignments

Patients are assigned to treatment groups depending on the �rst administra-
tion of a treatment during an AF episode. The treatment groups considered
in this study are beta blockers (BBs), potassium channel blockers (PCBs),
calcium channel blockers (CCBs), and magnesium sulphate (MgS). The corre-
sponding drug ingredients are shown in table 4.5. Outcomes are evaluated in
an intention-to-treat fashion [17].

Table 4.5: Treatment groups with corresponding drug ingredients.

Treatment Group Drug Ingredients

Beta Blockers
Acebutolol, Esmolol, Labetalol,

Metoprolol, Propranolol

Potassium Channel Blockers
Amiodarone, Dofetilide, Dronedarone,

Ibutilide, Sotalol
Calcium Channel Blockers Dilatiazem, Verapamil

Magnesium Sulphate Magnesium Sulphate

Missing Data Imputation

Biomedical data is often sparse and has missing values for variables that are
of interest to the performed analysis. In practice, patients with missing values
may either be removed from analysis, or the missing values may be imputed.
The removal of patients with missing values is applicable when the number
of missing values is su�ciently small that the statistical power of the analysis
is not negatively impacted. For particularly sparse datasets, missing value
imputation is therefore the preferred method to enable analysis.

Data may be missing due to di�erent types of data collection. Generally, there
are three types of mechanisms [55]:

Missing completely at random - Describes the probability of a data
entry being missing to be uniform across the entire dataset.

Missing at random - Data is missing, and its probability of being missing
is dependent on the already observed data. An example of Missing at
random is a missing value for a serum biomarker that is usually used
to assess myocardial infarction. If there is no indication of a myocardial

69



Chapter 4. Materials and Methods

infarction, then there is an increased probability that the serum biomarker
has not been measured.

Missing not at random - Data is missing due to information that is not
available. An example thereof would be a sub-phenotype of patients ex-
hibiting an immediately lethal stroke, and a biomarker not being obtained
due to patient expiry before the arrival at the hospital.

A common method for imputation are using the mean value, under the as-
sumption that the imputed variable is not correlated with the remaining data,
as is the case when data is missing completely at random. More sophisticated
methods, such as k nearest neighbors imputation [63], operate on the assump-
tion that variables are, in fact, correlated and impute missing values based on
the values of patients with similar properties. Such approach is appropriate
where data is missing at random [55].

Within the scope of this work, it is assumed that data collection is driven by
clinicians' assessment of the added value of collecting said data. For example,
a certain test will only be performed, to con�rm or rule out a speci�c diagnosis.
This assumption implies that data is missing at random. Further, any imputed
value carries a degree of uncertainty, which must be accounted for in clinical
environments. Multiple imputation [183] is therefore performed. 60 imputed
datasets are created using linear regression models and chained equations [25].
The original dataset is resampled with replacement 60 times, and linear re-
gression models are derived from each bootstrapped dataset. These models are
used to impute the original dataset for a total of 60 imputed datasets. Given
a fraction of missing information of 7.42%, the number of imputed datasets
satis�es Bodner's rule [21], which would require at least 8 imputations.

Inverse Probability of Treatment Weighting (IPTW)

In contrast to randomized controlled studies, observational studies are limited
by selection bias. Patients may receive di�erent treatments for a variety of
reasons, such as underlying pathophysiological conditions. Patients with a
worse prognosis may be administered a di�erent drug from patients with a
positive prognosis, leading to a biased estimation of the drug's treatment e�ect.
This makes the assessment of treatment e�ects a non-trivial endeavor.

Inverse probability of treatment weighting (IPTW) is a statistical method that
adjusts for this selection bias by weighing each patient with the inverse proba-
bility of said patient receiving a treatment. IPTW therefore balances treatment
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4.3 Procedure to Identify Atrial Fibrillation Phenotypes

groups to provide adjusted treatment e�ects with reduced confounding [180].
To adjust for confounding and minimize selection bias, IPTW is performed for
each imputed dataset using the toolkit provided by Ridgeway [179].

Patient Clusters

S-HAC is employed to identify phenotypes in the AF cohort. Given three dif-
ferent outcomes and four di�erent treatments being analyzed, pairwise distance
matrices are computed for each combination of treatments and outcomes, re-
sulting in a total of 12 pairwise distance matrices. The largest pairwise distance
is used for clustering. During agglomeration, the stopping criterion is evalu-
ated for each treatment and outcome combination. To determine the best set
of hyperparameters, a parameter sweep using 10-fold cross-validation is per-
formed as outlined in table 4.6. The �nal clusters are obtained by performing
a clustering using the set of hyperparameters with the highest mean concor-
dance index. Clusters are visualized using a t-distributed stochastic neighbor
embedding (T-SNE) incorporating the cluster assignments as variables into the
T-SNE algorithm to encourage cluster formation.

Table 4.6: Hyperparameters tested for the case study

Hyperparameter Tested Values

No. of Neighbors 20, 30, 45, 60, 90, 120, 160, 240
Min. Cluster Size 20, 30, 50, 80, 160
Signi�cance Level 0.01, 0.05, 0.10

α 0.5

Treatment E�ects

Average treatment e�ects (ATEs) are approximated using weighted exponential
survival models to provide constant event rates. The weights for these models
are derived from the previous IPTW. Models are repeatedly �tted to each
imputed dataset 100 times using Bayesian bootstrapping [184]. This approach
allows for at total of 6000 event rate estimates per ATE, for which the mode
and 95% highest density intervals are reported. ATEs are computed for the
complete cohort, and for individual clusters. Results are reported as hourly
rates for the primary outcomes, and as daily rates for the secondary outcome.
Finally, di�erences in ATEs are assessed using Bayes factors (BFs) [110].
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4.4 User Centered Evaluation

Numerous authors have suggested that a clustering based phenotype classi�-
cation system for AF patients could support clinical decision-making by either
providing insights into the heterogeneity of the patient populations, or by pro-
viding clinical decision-support directly [95, 206, 217, 223]. Such a CDSS, like
any other technology, must be accepted by its end-users, to be useful and im-
prove productivity. To what extent users will accept such a technology, and
what reasons contribute to the intention of its use can be determined through a
user centered evaluation. Within the scope of this evaluation, the suitability of
the previously developed methods to provide guidance in treatment selection
in the form of a potential CDSS are evaluated with clinical decision-makers.
This evaluation is performed using a visual mock-up of a CDSS, and an ex-
planation of the possible functionality. Feedback from participants is collected
and their responses are evaluated.

Di�erent models have been proposed to determine technology acceptance, such
as the technology acceptance model (UTAUT2), which measures individual
acceptance in terms of end-users' intention to use a technology [43, 216]. Other
works propose the evaluation of implementation success on an organizational
level [130], or the degree to what extent a technology �ts a given task that the
technology aims to support, the task technology �t (TTF) [77].

4.4.1 Study Design

A mixed methods study is performed incorporating a qualitative part of inter-
views and open discussions, and a quantitative part with structural surveys.
Qualitative approaches are valuable due to their open-ended nature, and may
provide a rich description of complex and multifaceted problems [188].

The study assesses the suitability of the developed methods for treatment
selection and their potential adoption in clinical practice. A theoretical im-
plementation of a CDSS incorporating a a user interface with data input, a
visualization of the patient population, the assigned patient phenotype, and
treatment e�ects is evaluated. This approach not only investigates the poten-
tial acceptance of the developed methods in real-world medical settings but
also examines the extent to which the developed methods are perceived as
valuable. By doing so, it o�ers valuable insights for enhancing these methods
and guiding future research and development. The objective of the study is to
gain an understanding of the perspectives of clinical decision-makers through
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4.4 User Centered Evaluation

a combination of qualitative data obtained from interviews and quantitative
data collected through questionnaires.

4.4.2 Setting and Recruitment

The study is performed in collaboration with the University Hospital Freiburg
(Germany). Study participants are recruited from the participating institution,
with particular importance of including cardiology and critical care specialists.
Participants are recruited from the Clinic for Cardiology and Angiology, and
are eligible if they are (a) actively involved in the management of AF in the
ICU, and (b) have a minimum seniority of physician assistants and c) three
years of experience in treating patients with AF.

4.4.3 Data Collection

A total of three session are held with study participants, which are (1) an empa-
thy session, a (2) task-technology-�t session, and (3) a technology-acceptance
session.

Empathy Session

The goal of the empathy session is the identi�cation of existing work�ows and
clinicians' perceptions thereof. The empathy session based on the concept
of an empathy map [59, 60], and allows for the understanding of needs and
characteristics of users [61]. The existence of internal guidelines and practices
is discussed, and potential limitations and obstacles in decision-making are
identi�ed, and their consequences and potential solutions are evaluated. A
total of two participants are asked questions in one hour long sessions. The
sessions were performed with a semi-structured approach with questions ini-
tially being general, and increasingly becoming more speci�c. Interviews were
audio-recorded, transcribed, and translated to English.

The following guiding questions are addressed in chronological order:

1. What are the goals of care when a patient develops AF in the ICU?

2. Do internal guidelines for treatment selection exist?

3. What are the strengths and weaknesses in current care?

4. Are any prediction models, or CDSS used for treatment selection?
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5. Do you analyze your own data to gain insights into treatment e�ects?

6. How do you currently address the heterogeneity of the patient population?

Task-Technology-Fit Session

In the task-technology-�t session, the theoretical requirements for choosing the
optimal treatment on an individual patient basis are identi�ed. Further, the
previously developed methods are discussed in terms of their applicability to
the task of selecting treatment on an individual patient level.

The session is based on the theoretical framework of the TTF model, which is
portrayed in �gure 4.4. The task-technology-�t is de�ned as the ability of a
technology to support a given task. It requires the matching of the technology's
capabilities to the task requirements, and is a predictor of technology utiliza-
tion and the associated performance increase. The fundamental assumption
of TTF is that a technology will only be used if its function actually supports
the activities performed by the end-user, and technology o�ering insu�cient
advantages will remain unused [77].

Figure 4.4: Task-Technology Fit Model

The session is initiated with a discussion about clinicians' perceived task char-
acteristics with regards to selecting the best treatment option. A total of �ve
participants are recruited to 30 minute long sessions, which are audio-recorded,
transcribed, and translated to English. Participants are asked questions in a
semi-structured approach with questions initially being general, and increas-
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ingly becoming more speci�c. The following guiding questions are addressed
in chronological order to identify the task characteristics:

1. What makes a treatment choice the "best"?

2. What information is necessary to identify the best treatment?

3. Do you feel like you can con�dently make the best treatment selection?

4. To what extent is patient heterogeneity a challenge in treatment selection?

The above questions aim at evaluating several concepts of the CDSS design
principles and the �ve rights of CDSS, which were introduced in section 2.4.
Questions 1 and 2 evaluate the adherence to the �rst principle of CDSS de-
sign principles, which states that CDSS should mimic the cognitive process of
clinical decision makers. Given that the "best" treatment must be selected
out of a range of options, the de�nition of the "best" treatment is validated.
Similarly, the de�nition of the best treatment options depends on a speci�c
set of information. To what extent the used descriptive variables satisfy clin-
icians' requirements is evaluated in question 2. Questions 3 and 4 validate
the necessity of employing a CDSS to support the task of selecting the best
antiarrhythmic drug.

Following the discussion, participants are introduced to the developed meth-
ods with the use of a PowerPoint presentation. This Powerpoint presentation
describes the data analysis performed in sections 4.3. A conceptualized CDSS
is presented to the participants, which would incorporate a communication in-
terface that facilitates the input of patient data, which is imputed using the
developed linear regression models. The imputed data is used for a pheno-
type classi�cation using the nearest neighbor in the development dataset, as
described in section 4.2.5. Treatment e�ects are predicted based on the sur-
vival analysis models obtained in section 2.3, and are ranked according the
expected utility, which is a prede�ned linear combination of treatment e�ects.
Both, predicted treatment e�ects and ranked treatment options are presented
to the user in the communication interface.
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Figure 4.5: Conceptualized CDSS Front End

The applicability of the conceptualized CDSS is discussed, and the partici-
pants' feedback is recorded. Finally, participants are asked to complete an
online questionnaire, which quantitatively evaluates the two fundamental com-
ponents of the TTF model:

Task characteristics: It is assumed that clinical decision-makers lack
the ability to robustly estimate treatment e�ects of available treatments,
which was revealed by a lack of consensus in surveys among healthcare
providers [225]. It is further assumed that the selection of the best treat-
ment option is based on a maximization treatment utility with a simulta-
neous minimization of adverse e�ects. To what extent these assumptions
capture clinical reality, and correspond to the actual task at hand is eval-
uated in the questionnaire.

Tool functionality: Based on the assumed task characteristics, tools
were developed to identify AF sub-phenotypes with di�ering treatment
responses. The treatment responses were approximated using exponential
decay models to aid in the interpretability of results, and used to develop a
decision-making algorithm that predicts the best treatment option. These
three design decisions are evaluated using the respective questions.

76



i
i

i
i

i
i

i
i
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The TTF questionnaire is evaluated using a 5-item Likert scale [132] indicative
of clinicians' degree of agreement (strongly disagree, disagree, neutral, agree,
strongly agree). The questionnaire is shown in �gure 4.6.
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Figure 4.6: TTF Questionnaire
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The TTF questionnaire partially overlaps with the preceding open questions,
and quanti�es the degree of agreement with

Further, it evaluates several CDSS design choices: Question 3 evaluates to
what extent participants agree with the division of the patient populations
into clusters. While di�erent methods of predicting treatment e�ects may be
used, a cluster analysis was chosen, which was inspired by previous state of
the art approaches. Question 4 evaluates the use of a utility function to rank
treatments according to revealed preferences. Question 5 evaluates the use of
a k nearest neighbors approach for predicting a patient's cluster belongingness,
and, in particular, to what extent such approach is su�ciently transparent to
the end user. Another important design choice is the use of exponential sur-
vival models for the approximation of treatment e�ects. This approximation
provides easily interpretable results, but reduces the amount of available in-
formation. To what extent this is acceptable to the participants is evaluated
in question 6.

Technology Acceptance Session

The technology acceptance session is held subsequently to the TTF session.
It evaluates users' perceived attitude towards using the conceptualized CDSS.
The usability is evaluated by means of the theoretical framework of the uni-
�ed theory of acceptance and use of technology model (UTAUT2) [216]. The
UTAUT2 model suggests several constructs that impact users' behavioral in-
tention to use a technology, as well as the actual technology use: Performance
expectancy, e�ort expectancy, social in�uence, facilitating conditions, hedonic
motivation, price value, and habit. These constructs may, in part, be in�u-
enced by a user's age, gender, and experience. The UTAUT2 model is shown
in �gure 4.7.
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Figure 4.7: UTAUT2 Model

The technology acceptance session evaluates several key elements of the UTAUT2
model:

1. Performance expectancy: Performance expectancy predicts users' behav-
ioral intention to use a technology based on the expected bene�ts and
drawbacks of its use.

2. E�ort expectancy: Users often form views about an the time and e�ort
required for using a technology. The expected e�ort is an important factor
that determines technology use.

3. Social in�uence: De�nes the extent to which users believe that other
stakeholders may perceive the use of the technology to be important.

4. Facilitating conditions: A user who operates in an environment that fa-
cilitates the use of a technology is more likely to use said technology.
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5. Hedonic motivation: Relates to the expected pleasure or pain experienced
when using a technology. For the evaluation of a conceptualized CDSS,
this construct is not applicable.

The acceptance of the developed methods is discussed with a total of �ve
participants in 30 minute long sessions, which are audio-recorded, transcribed,
and translated. The sessions are guided by the following questions:

1. Do you see any obstacles or facilitators in the practical application of
such CDSS?

2. Would such a CDSS improve treatment e�cacy?

3. Would such CDSS be easy to use and require little e�ort?

4. Do current work�ows allow for its integration into practice?

5. Do you think an external entity in your environment, such as your supe-
rior or health insurances like you to use such system?

Finally, participants are asked to complete an online questionnaire. Similarly
to the TTF questionnaire, the TA questionnaire is evaluated using a 5-item
Linkert scale, and is portrayed in �gure 4.8.
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Figure 4.8: TA Questionnaire
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4.4.4 Data Analysis

A qualitative analysis of the transcripts resulting from the three sessions is
performed. Participants' statements are categorized into recurring themes
and subthemes, which are primarily driven by the constructs of the TTF and
UTAUT2 models. Comments are further categorized as barriers or facilitators.

For the quantitative analysis, the questionnaire responses are transferred to
a spreadsheet for analysis. The responses of the TTF questionnaire are used
to evaluate to what degree the assumptions made regarding the task charac-
teristics are correct. This is assessed by computing the scores average and
con�dence intervals. It is assumed that if the assumed task characteristics
are correct, the mean score per questions will re�ect agreement and the stan-
dard deviation will not contain the middle score. Further, the task-technology
�t will be assessed using an interaction approach [48]. The UTAUT2 ques-
tionnaire is evaluated in a similar fashion. For questions regarding perceived
ease of use and perceived usefulness score averages and standard deviations
are computed. The impact of individual statements on the intention to use is
evaluated in an interaction approach [48].
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Chapter 5

Results

5.1 Systematic Literature Review

The selection process is outlined in �gure 5.1. Following a removal of dupli-
cates, 1150 records remained. The unique records were screened using record
titles and abstracts, resulting in an elimination of 942 records. 208 records
that meet the inclusion criteria were further assessed for eligibility using the
exclusion criteria, leading to an exclusion of 46 records. The remaining 162
records were included in the quantitative analysis.
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Figure 5.1: PRISMA 2020 �ow diagram for of the performed systematic review

For the 162 records considered for analysis, the full text was analyzed to iden-
tify biomarkers used for outcome prediction. Biomarkers are grouped according
to semantic categories, and the number of publications using each biomarker
is identi�ed.

Figure 5.2 presents the number of publications for each considered outcome. Of
the 162 publications considered for analysis the majority predicted the onset or
incidence of AF, followed by the prediction of AF recurrence after treatments.
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Figure 5.2: Number of publications predicting each outcome

Biomarkers used for prediction are grouped into categories shown in �gure 5.3.
It can be observed that the majority of biomarkers are obtained through serum
tests, as well as imaging measurements.
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Figure 5.3: Number of biomarkers per biomarker category

5.1.1 Biomarkers

Table 5.1 shows the most common identi�ed biomarkers, grouped by biomarker
category, as well as the number of publications in which each biomarker is used.
The full table of biomarkers is available in appendix 7.4.2.
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Table 5.1: Most commonly used Biomarkers by Category

Category Biomarker
Count

(Prevalence %)

Demographics
Age 49 (31)

Gender 38 (24)

Comorbidities

Hypertension 33 (21)
Diabetes 31 (20)

Heart Failure 27 (17)
Vascular Disease 24 (15)
Renal Dysfunction 20 (13)

Observations

BMI 21 (13)
Systolic BP 18 (11)

Alcohol Consumption 14 (9)
Smoking 14 (9)

Diastolic BP 11 (7)

History

Prev. Stroke 28 (18)
AF Duration 14 (9)
AF Type 11 (7)
Prev. MI 10 (6)

Prev. Bleed 8 (5)

ECG

Heart Rate 7 (4)
PR Interval 5 (3)

LV Hypertrophy 4 (3)
P-wave Duration 3 (2)

Premature Atrial Contractions 3 (2)

Serum

NT-proBNT 30 (19)
GDF-15 18 (11)

Hemoglobin 14 (9)
Troponin-T 13 (8)

IL-6 10 (6)

Imaging

LVEV 28 (18)
LA Dilation 20 (13)
LA Volume 17 (11)

LA Ejection Fraction 9 (6)
LA Contraction strain 6 (4)

Genetics

CYP 2C9 single-nucleotide
polymorphism

2 (1)

CYP11B2 rs1799998
polymorphism

1 (1)

GJA1 rs13216675
polymorphism

1 (1)

FRMD4B 1 (1)
CAV1 1 (1)
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5.1.2 Synthesis

The evaluation of currently used risk scores for AF treatment revealed that 83
biomarkers are used, whereas the systematic review showed that literature con-
siders 182 biomarkers to be potential predictors of AF outcomes. This section
compares the two sets to elucidate the discrepancy and discusses potential ben-
e�ts of adding biomarkers mentioned in literature to prediction models. While
the most commonly used biomarkers are evaluated in this section, rare markers
are omitted. The complete list of predictive biomarkers in clinical risk scores
and systematic review can be found in appendix 7.4.2.

Comorbidities

The three most commonly encountered comorbidities in risk strati�cation mod-
els currently used in clinical practice are hypertension, heart failure, and dia-
betes.

Hypertension - Hypertension is associated with a dilation of the left
atrium due to barometric overload. Further, it is a causal factor of kidney
dysfunction and other cardiovascular disorders which are risk factors for
AF. Hypertension is used in prediction models for stroke, bleeding events,
AF onset, and AF recurrence.

Heart Failure - Heart failure is a comorbidity that is used as a predic-
tor of stroke and AF onset. Heart failure leads to a Ca2+ overload in
cardiomyocytes, and increases the probability of EADs which are known
AF triggers [157]. Heart failure has been associated with chronic in�am-
matory processes which lead to structural and electrical remodeling that
maintains AF [30, 90].

Diabetes - Diabetes is predictive of stroke risk and AF onset. The mech-
anism by which diabetes causes AF needs further investigation, but it is
assumed that in�ammatory responses to diabetes drive AF [204].

Several comorbidities that are currently not used in risk strati�cation models
have been proposed in literature.

Valvulopathy - Valvulopathies have been shown to be predictors of AF
recurrence following catheter ablation [86] possibly due to a increased
barometric pressure or volumetric overload within the atrium leading to
a remodeling of atrial tissue. In-vitro studies have demonstrated that
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an increase in atrial pressure promotes the maintenance of AF due to a
dispersion of ERP facilitating reentrant propagation [92].

Non-alcoholic Fatty Liver Disease - It was demonstrated that patients
with non-alcoholic fatty liver disease have a 2.47 times higher probability
to experience AF onset [146].

Obstructive Sleep Apnoe - OSA has been shown to improve the predic-
tive performance in models predicting AF recurrence. OSA is associated
with an acute decrease in blood oxygen levels which likely lead to a de-
crease in ERP. Further, OSA leads to a sympathovagal activation creating
a vulnerable atrial substrate [133].

Interatrial Block - An interatrial block is a dysfunction of the Bach-
mann's bundle and leads to a desynchronization of the two atria. It has
been shown to be an independent predictor of AF onset [214].

ECG derived Biomarkers

Biomarkers obtained from ECGs have been included in currently used strati�-
cation scores. The proposed biomarkers primarily evaluate the morphology of
the p-wave, such as its duration, onset and o�set time, as well as its terminal
force and axis [23, 220]. While p-wave morphology can be measured during
SR, it is absent during AF episodes and can therefore not be assessed. During
AF, the amplitude of the �brillatory wave has been shown to be predictor of
AF recurrence [1].

Beyond biomarkers obtained from the activity of the atrium itself, further
electrophysiological measurements have been shown to be of value. Measures
of heart rate variability and AF burden have been shown to be independent
predictors of AF outcomes. Similarly, measures of ventricular function such
as QRS duration, QT interval duration, t-wave deviations, the Sokolow-Lyon
Voltage, and Cornell Product have been proposed.
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Serum derived Biomarkers

An abundance of serum biomarkers have been identi�ed as potential predictors
of AF outcomes. In particular, recent advances are being made using biomark-
ers indicative of in�ammation, tissue damage , and substrate remodeling.

Even though the mechanisms of in�ammation markers are not fully under-
stood, and signi�cant cross-talk between in�ammation markers exists, Interleukin-
6, Galectin-3, and C-reactive protein have been investigated particularly well
and shown to be predictors of stroke, bleeding, AF onset, AF recurrence, and
mortality. Further, Growth di�erentiation factor 15 (GDF-15), a cytokine of
the transforming factor beta family has been investigated intensively. It has
been shown to be of predictive value in all outcome categories, and is the second
most cited serum biomarker referenced in literature, while its use in clinical
practice remains to be seen. The exact function of GDF-15 is controversial,
but it is understood that its expression is regulated by in�ammation, tissue
damage, and stress [142].

Several markers have been identi�ed to be representative of damage to cardiac
tissue, and may play a role in the atrial remodeling process. Examples are
di�erent types of troponin, which are commonly used to assess myocardial
infarction, have been identi�ed as potential predictors in AF patients. While
cardiac troponin-I has already been included in clinical strati�cation models,
cardiac troponin-T and troponin-T have not, and remain exclusively used in
the research environment.

Tumor growth factor-beta 1 (TGF-b1) is a cytokine that has been shown to be
predictive in AF recurrence. TGF-b1 was shown to be elevated in AF patients,
and of particular value in patients with persistent AF- less so in patients with
paroxysmal AF. This indicates that TGF-b1 could be a marker of late-stage
atrial remodeling in the form of being a pro-�brotic marker [99].

Natriuretic peptides such as Brain natriuretic peptide (BNP) concentrations
have been proposed by literature as possible predictors of stroke, bleeding, AF
onset and recurrence, and mortality. BNP is a hormone that is usually secreted
by ventricular cardiomyocytes as a reaction to stress, but its secretion has also
been observed in the atria as a result of AF, with patients having higher BNP
levels during AF episodes than before or after [112]. Several factors increase
the NP level: Renal dysfunction, age, and sex (female). Conversely obesity
and �ash pulmonary edema decrease NP level. Furthermore, NP levels di�er
substantially depending on age, ethnicity, gender, and BMI [40].
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Cholesterol levels have been associated with AF onset and recurrence. Its
role in the facilitation of AF remains, however, controversial. While, in some
studies, high cholesterol levels are associated with poor outcomes, other studies
observe the opposite e�ect. The term "cholesterol paradox" has since emerged
to describe this phenomenon [205].

Imaging Biomarkers

Clinical risk scores make use of the left atrial dimensions, and the left ventricu-
lar ejection fraction. A large number of further imaging biomarkers have been
shown to be valuable predictors, but have not found their way into clinical
strati�cation methods.

The most cited biomarkers are the left atrial ejection fraction, and the left
atrial contraction strain, which are both markers of mechanical function. While
ejection fraction is the result of two volumetric measurements, the systolic and
diastolic volume, strain is measured using speckle tracking and an indicator
of tissue deformation. Further, a common imaging marker is the E/e' ratio,
which is measures the ratio of left ventricular �lling pressure (E) and ventric-
ular tissue velocity (e'). It is an indicator of ventricular diastolic dysfunction
and a surrogate of atrial pressure [8], even though this relationship remains
controversial and only applicable to a subset of patients [65].

Further, late gadolinium enhanced magnetic resonance imaging is commonly
used to assess the degree of �brosis in the atrial tissue which is a marker of local
heterogeneity and decreased conduction velocities and facilitates reentries.

5.2 Semi-Supervised Clustering with Survival Data

5.2.1 Simulation Study

The clustering resulting from applying the tested algorithms to simulation data
is shown in �gure 5.4. The results demonstrate the advantage of incorporating
survival data into the clustering domain, which results in non-linear decision
boundaries in the covariate domain.

It can be observed that, in Sim-a, K-Means has not been able to capture the
ground truth clusters. The lack of structure in the covariate domain does not
provided the required information for an unsupervised clustering method to
capture the simulated groups. The semi-supervised algorithms, however, suc-
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cessfully capture the underlying survival distributions. This is an encouraging
result, because unsupervised clustering algorithms assume clusters exist in the
form of high-density areas in the covariate domain, which are not present in
the simulated Gaussian distribution. Despite di�erences in decision boundaries
among the obtained solutions with semi-supervised methods, each algorithm
accurately identi�es the presence of the three simulated clusters and their
corresponding orientations. Even though SSC-Bair and SSC-Gaynor produce
perfectly linear decision boundaries, as present in the ground truth, the align-
ment is not accurate, leading to dub-optimal accuracies. While LSS-K-Means
produces decision boundaries that are not perfectly linear and some outliers
are misclassi�ed, it demonstrates the highest classi�cation accuracy.

Sim-b, on the other hand, reveals a signi�cant drawback of SSC-Bair and SSC-
Gaynor, as both algorithms are unable to accurately capture the two simulated
clusters. The algorithms use K-Means on either selected or weighted covari-
ates, and, as a consequence, cannot produce non-linear decision boundaries,
which would be required to correctly identify the two clusters. In contrast,
LSS-K-Means and S-HAC are able to successfully capture the clusters with
100% accuracy. This highlights an important advantage of including survival
information in the clustering process, as it drives cluster formation, and pro-
vides a clustering space in which K-Means is able to separate observations
which would have been inseparable relying solely on covariates.

Similar observations can be made in Sim-c, where SSC-Bair and SSC-Gaynor
produce a linear vertical split due to their inability to model the decision
boundary by a straight line in the covariate domain. While LSS-K-Means and
S-HAC are able to model the sine-wave-like boundary.
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Figure 5.4: Clustering results for di�erent algorithms on the simulated datasets

95



Chapter 5. Results

5.2.2 Benchmark Study

The result of the benchmark study are presented in table 5.2. S-HAC uni-
versally outperforms vanilla HAC, highlighting the importance of including
survival data into the clustering algorithm, and underlining the fundamental
shortcoming of unsupervised clustering algorithms in the capture of predictive
patient phenotypes. HAC attempts to identify groups with cohesive covariates,
while the inclusion of survival data forms clusters with cohesive survival times.

When compared to the state-of-the-art semi-supervised clustering methods
SSC-Bair and SSC-Gaynor, S-HAC and LSS-K-Mean demonstrated superior
performance in the majority of datasets. Only in the FLCHAIN dataset, has
SSC-Bair demonstrated a higher concordance index. Ultimately, S-HAC has
shown the most promising metrics, followed by LSS-K-Means, and the remain-
ing algorithms.
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Table 5.2: Benchmark metrics: Concordance index and log-rank test statistic with standard
errors in parentheses.

Dataset Algorithm
Concordance

Index
Log-Rank
Statistic

FLCHAIN

K-Means
HAC

SSC-Bair
SSC-Gaynor

LSS-K-Means (proposed)
S-HAC (proposed)

0.670 (0.014)
0.504 (0.002)
0.778 (0.021)
0.727 (0.019)
0.730 (0.021)
0.771 (0.014)

156 (41.2)
27.9 (26.2)
302 (59.5)
304 (37.4)
321 (47.1)
396 (81.9)

SUPPORT

K-Means
HAC

SSC-Bair
SSC-Gaynor

LSS-K-Means (proposed)
S-HAC (proposed)

0.619 (0.012)
0.587 (0.013)
0.753 (0.081)
0.668 (0.011)
0.758 (0.010)
0.812 (0.004)

131 (34.2)
74.5 (18.9)
963 (343)
377 (52.3)
813 (82.8)
1280 (58.8)

GBSG2

K-Means
HAC

SSC-Bair
SSC-Gaynor

LSS-K-Means (proposed)
S-HAC (proposed)

0.560 (0.05)
0.579 (0.023)
0.574 (0.036)
0.570 (0.047)
0.602 (0.046)
0.629 (0.038)

6.27 (3.92)
5.06 (2.41)
9.92 (5.52)
9.18 (8.99)
22.4 (19.5)
13.4 (10.5)

METABRIC

K-Means
HAC

SSC-Bair
SSC-Gaynor

LSS-K-Means (proposed)
S-HAC (proposed)

0.588 (0.023)
0.511 (0.011)
0.624 (0.053)
0.586 (0.051)
0.606 (0.047)
0.635 (0.035)

16.9 (7.15)
4.94 (6.30)
16.9 (7.15)
15.4 (7.88)
18.1 (6.86)
28.9 (15.5)
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5.3 Atrial Fibrillation Phenotypes

5.3.1 Cohort Characteristics

A total of 46,520 patients were available in the analyzed database. 10,277 were
found to have a diagnostic code for AF, corresponding to an incidence rate of
20.2%. After excluding patients with an age below 18 years and a hospital stay
below 24 hours, a 9401 patients are included in the analysis.

Of the total 168 biomarkers, which were identi�ed in the systematic literature
review, a total of 34 was encountered in the database, and used for analysis.
The cohort characteristics in terms of the 34 biomarkers are shown in table
5.3.

Following inverse probability of treatment weighting, patients appeared well-
balanced across the treatment groups. The mean-absolute-di�erence in patient
descriptors between treatment groups is provided in tables 7.3 and 7.4 in the
appendix.
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5.3 Atrial Fibrillation Phenotypes

Table 5.3: Cohort characteristics.

Category Characteristic Median (IQR)/ n
(%)

Medical History Anemia 1127.0 (11.99)
Arrhythmia History 1959 (20.8)

COPD 1256 (13.4)
Collagen disease 115 (1.22)
Cor pulmonale 754 (8.02)
Coronary artery
atherosclerosis

3461 (36.8)

Diabetes 2147 (22.8)
Thyroid disorder 1051 (11.2)
Heart failure 4128 (43.9)
Hypertension 4562 (48.5)

Myocardial infarction 933 (9.92)
OSA 403 (4.29)

Post-operative
condition

3250 (34.6)

Renal insu�ciency 3261 (34.7)
Respiratory failure 1450 (15.4)

Rheumatism 403 (4.29)

Laboratory
Measurements

Erythrocyte
distribution width

[ratio]

14.4 (13.5�15.7)

Erythrocyte count
[#/µm]

3.88 (3.38�4.37)

Serum calcium
[mg/dL]

8.60 (8.10�9.10)

Serum creatinine
[mg/dL]

1.10 (0.80�1.50)

Serum magnesium
[mg/dL]

2.00 (1.80�2.20)

Serum potassium
[mmol/L]

4.20 (3.90�4.70)

Serum sodium
[mmol/L]

139 (136�141)

Hemoglobin [g/dL] 12.1 (10.6�13.4)
Leukocyte count

[#/nL]
10.0 (7.30�13.7)

Platelet count [#/nL] 215 (163�279)
Prothrombin time [s] 14.5 (13.1�18.1)

Observation Heart Rate [BPM] 85.5 (75.0-98.0)
Left Atrial Dilation 4183 (44.5)
Right Atrial Dilation 2813 (29.9)

Sepsis 1144 (12.2)
Valvulopathy 2865 (30.5)

Demographics Age [years] 76.5 (67.3-83.6)
Male sex 5364 (57.1)
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5.3.2 Patient Phenotypes

Based on the best performing set of hyperparameters, S-HAC captured a total
of 26 patient phenotypes in the analyzed cohort. Figure 5.5 portrays the T-
SNE embedding of the clusters. A description of each cluster's characteristics
is provided in tables 7.5 and 7.6 in the appendix. The obtained clustering
allowed for a prediction of the rhythm control rate, the rate control rate, and
the mortality rate with concordance indices of 0.69, 0.56, and 0.64, respectively.

Figure 5.5: T-distributed stochastic neighbor embedding of the obtained clusters [123].
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5.3.3 Treatment Responses

Average treatment e�ects are covered in the following subsections. Due to the
large amount of information generated, only a selection of clusters is discussed.
A complete enumeration of adjusted treatment e�ects is presented in tables 7.5
and 7.6 in the appendix.

Rhythm Control

Rhythm control rates were the highest in patients receiving PCBs (9.78%/h
[8.74-11.0]), followed by those receiving CCBs (4.73%/h [4.04-5.74]). Lower
rhythm control rates were observed in patients treated with BBs (2.28%/h
[1.81-2.61]) and MgS (1.90%/h [1.44-2.54]).

Among di�erent phenotypes the cardioversion varied considerably with each
treatment showing a complete lack of cardioversion in at least one phenotype.
Maximum conversion rates di�ered across phenotypes with conversion rates of
6.54%/h (3.39-16.8), 15.0%/h (9.61-35.6), 12.2%/h (4.16-45.7), and 3.47%/h
(1.20-23.3) for BBs, PCBs, CCBs and MgS, respectively. While PCBs were
generally superior to CCBs, CCBs appeared to be more e�ective in three clus-
ters. In particular, clusters with a high prevalence of thyroid disorders showed
higher cardioversion rates with CCBs than PCBs (clusters 15 and 19). Simi-
larly, patients with renal insu�ciencies and postoperative conditions appeared
to cardiovert better with CCBs than PCBs. This association was, however,
only observed in combination with a high prevalence of coronary atherosclero-
sis.
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Figure 5.6: Adjusted hourly rhythm control rates for di�erent treatment groups and phe-
notypes.

Rate Control

Heart rate was best controlled using in patients receiving CCBs (18.8%/h [16.4-
22.8]) followed by those receiving MgS (15.6%/h [11.4-19.2). Inferior rate con-
trol was observed in patients receiving PCBs and BBs (15.2%/h [13.2-17.5],
15.6%/h [11.4-19.2]). Rate control rates for di�erent treatment groups and
phenotypes are portrayed in �gure 5.7.

Even though BBs showed the lowest e�cacy in the cohort analysis, they ap-
peared to be superior to other treatment groups in several clusters. This
observation was made for clusters 3 and 10, which are both characterized by a
high share of female patients (97.8%, 78.5%).
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Figure 5.7: Adjusted hourly rate control rates for di�erent treatment groups and pheno-
types.

Mortality

Mortality within the cohort varied between treatment groups. The highest
mortality was observed in patients receiving MgS (1.45%/d [1.07-1.99]), fol-
lowed by CCBs and BBs (1.40%/d [1.04-1.88], 1.28%/d [1.00-1.51]). The lowest
mortality rates were present in patients receiving PCBs (0.95%/d [0.78-1.18]).

Figure 5.8 portrays the daily mortality rates for di�erent treatment groups and
phenotypes. Even though patients in the PCB treatment group showed the
lowest mortality in the cohort analysis, patients in cluster 15 demonstrated
the highest mortality rates when exposed to PCBs, with modest evidence sug-
gesting mortality higher than in the entire cohort (BF=7.80). Cluster 15 is
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primarily characterized by the highest rate of thyroid disorders (90.5%), and
is predominantly female (89.0%).

Particularly high mortality rates with MgS can be observed for clusters 7, 10,
16, 17, 24, and 25, which are all characterized by relatively high shares of pa-
tients with renal insu�ciency. Compared to the population level these clusters
had a considerably higher mortality with evidence levels varying from moderate
to very strong (BF = 24.6, 1.83, 2.68, 20.0, >100, >100, respectively).

Figure 5.8: Adjusted daily mortality rates for di�erent treatment groups and phenotypes
[123].
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5.4 User Centered Evaluation

A total of �ve participants were recruited and completed the user centered
evaluation. The participants' characteristics are shown in table 5.4.

Characteristic P1 P2 P3 P4 P5

Gender Male Male Male Male Female
Specialty Cardio. Intern. Med. Cardio. Cardio. Cardio.
Seniority Resident Resident Resident Fellow Fellow
Years
of

Experience
5 5 3 6 8

Table 5.4: Characteristics of study participants

5.4.1 Qualitative Analysis

Empathy Session

Several themes were identi�ed in the discussions relating to the current use
of decision support tools, advantages and disadvantages of current care, per-
ceived challenges, the number of possible treatment options, as well as patient
heterogeneity.

Current use of decision support tools

Care is guided by internal standard operating procedures (SOPs), which pro-
vide standardized information for di�erent patient conditions. An SOP speci�c
to AF was, however, not present at the participating institution at the time of
the study, as stated by one participant:

P1:We have no standard operating procedure, which primarily deals with
AF.

Decision-making was primarily based on the ESC guidelines. As clinicians
described:

P1: "In many situations we read the guidelines. These have �owchart
systems. But I do not extensively use the ESC decision tools, because they
are too indiscriminate for the speci�c situations. We work with scores like
the CHA2DS2�VASc score, even though it is not validated for the ICU."
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P2: "The CHA2DS2�VASc score is not derived from ICU cohorts. Neither
is the HASBLED score. At least to my knowledge, I have not validated
that."

Advantages and Disadvantages of current care

Current care is primarily based on outpatient guidelines provided by the ESC
[89], which are interpreted with their limitations in mind. A perceived advan-
tage of such an approach is the simplicity, which was appreciated by one of the
participants:

P1: "A clear strength, to me, is simplicity. Especially in intensive care,
we have a lot of beginning doctors, and the �owcharts provided by the
guidelines are simple, easy to look up at 3 in the morning, and generally
simple to follow."

Given a lack of guidelines tailored to critical care, and the adaptation be-
ing dependent on the physician, the possibility of inconsistencies in care was
suggested by one clinician:

P1: "A very great disadvantage is the inconsistent procedure, I think. That
there is no algorithm for how to deal with AF in the ICU in general."

Similarly, the ESC guidelines were considered too simplistic to re�ect the com-
plexity of patients in the ICU, with guidelines considering patients with indi-
vidual comorbidities. In practice, however, patients would often present with
multiple relevant conditions.

P1: "The primary drawback is that the complexity of intensive care is
not su�ciently accounted for. Also, the complexity of the patient is not
considered. The guidelines clearly aim for little input information that is
required to work through the �owchart [to select a treatment]."

P2: "No, its not well understood and its di�cult, because ESC assumes
that a patient has a single problem. What we �nd in the ICU, however,
especially if patients are here longer, is that they have multiple problems.
[...] We adapt the guidelines to the situation, even if they are not developed
for our speci�c situations."

Challenges

Challenges beyond the simplicity of the employed guidelines were the large
number of possible treatment options. This challenge is remedied by the par-
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ticipating institution only using a limited number of possible antiarrhythmic
agents.

Further, challenges were identi�ed with respect to possible adverse e�ects of
diagnostic procedures, such as transesophageal echocardiography, which one
participant described in further detail:

P1: "The main challenge is the danger of a thromboembolic event. [...]
The question is then if we want to do transesophageal echocardiography,
which would expose them to further risk especially when oxygen demand
is high. I �nd this to be a di�cult situation, because the risk-bene�t ratio
between a "blind" cardioversion without excluding a thrombus, or accepting
the risk of transesophageal echocardiography is a di�cult assessment."

AF was described as a frequent and complex condition with a heterogeneous
patient population. At the time of the study, participants were not aware of any
ongoing studies speci�cally aimed at AF in their institution. One participant
described the multifaceted nature of AF as being a possible obstacle in its
study:

P1: "The problem I see is that AF occurs alongside other conditions, and
is seldom speci�cally addressed. A lot of analyses are made for COVID,
cardiogenic shock, STEMI, pneumonia, etc. A lot of things are done, but
AF is somewhat cross-sectional. No patient comes to the ICU because of
AF, so AF runs alongside, which may be the reason why it is not specif-
ically addressed by us, because nobody looks at it speci�cally. Especially
because the population is so heterogeneous."

TTF/UTAUT2 Session

Similarly to the empathy session, the TTF/UTAUT2 sessions allowed for the
identi�cation of several themes and subthemes, which are presented in table
5.5.
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Category Theme Subtheme

TTF

Task

Information Requirements
De�nition of Utility

Con�dence in Treatment Selection
Patient Heterogeneity

Technology

General
Data presentation
Explainability

Scope of Application

UTAUT2

E�ort Expectancy
Situational factors

Technology characteristics

Performance Expectancy Evidence-based decision-making

Experience -

Habit -

Social in�uence -

Table 5.5: Categorized themes and subthemes

TTF - Task - Information Requirements

Di�erent types of information were identi�ed as relevant to treatment selection.
A particular focus appeared to be on the prevention of stroke, which was
mentioned almost universally. This was followed by mentions of rhythm and
rate control, as well as complications, mortality and bleeding events. Study
participants mentioned di�erent viewpoints with regard to the outcomes:

P4: A hard parameter would be the outcome. The prevention of stroke.
[...] Death... Bleeding.

P2: For many medications I have experience. For many there are pub-
lished results, which I remember. The correlation between stroke and
CHA2DS2�VASc is clear. That NOACS, to some degree, prevent that
[stroke]. That beta blockers lead to rate control, and sodium channel block-
ers control the rhythm is about 50 percent, I estimate.

P5: That depends on the patient's clinical presentations, and how bad they
are doing. Based on that I would decide how quickly to treat the AF. That
is point one. The second point is that we know what the complications of a
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rhythm stabilizing therapy are, such as stroke risk or success rates. Based
on these risks we would decide what the best option is. Stroke is the one
that everyone is worried about, and that AF returns.

Further, one clinician mentioned the source of information they would use to
select a treatment, which is a randomized study presenting the treatment e�ect
of the treatment in question:

P5: I would judge that based on a randomized study. With a control group
and treatment groups. This measures the treatment e�ect.

TTF - Task - De�nition of Utility

Several statements regarding treatment utility and the de�nition of what con-
stitutes the "best" treatment choice were identi�ed.

Participants universally di�erentiated between positive and negative e�ects of
treatments. Treatment utility was expressed as the conversion and mainte-
nance of SR, control of symptoms, and the prevention of stroke, harm, and
side e�ects.

P4: Utility, in AF, would ideally be the cardioversion to sinus rhythm.
That would be the utility. The risk would be side-e�ects which arise from
the therapy.

P2: The best treatment, I think, would be one with which you can restore
and maintain the sinus rhythm. The goal would be that the patient is
symptom-free.

P3: For one, in a symptomatic patient, the symptoms need to be controlled.
If rhythm control is desired, then rhythm needs to be controlled. And when
the patient has had AF, and has a high CHA2DS2�VASc, then the patient
needs to be protected against stroke.

P1: I mean, treatment can be broken down into rhythm control, rate con-
trol, and anticoagulation. The goal is naturally safety for the patient. En-
suring the patient does not have a stroke, this is the most basic one, and is
determined using the CHA2DS2�VASc score. The second goal would be the
restoration of sinus rhythm. Patients are very di�erent. In some patients
you can control the rate.

One participant explicitly expressed treatment utility to be the probability
of resolving the problem, while another mentioned the speed with which the
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desired e�ect can be reached. Further, one participant considered the economic
aspect of treatment selection an important factor.

P5: That the patient's heart rhythms and heart rate is controlled rela-
tively quickly and without complications. That the treatment leads to the
stabilization of the patient and heart rhythm and rate are controlled.

P2: The utility is the probability that the underlying problem is resolved.
The harm, in terms of AF, are possible side-e�ects of medications, and
the thought of the probability of side-e�ects. The utility needs to outweigh
the side-e�ects [for a treatment to be considered].

P4: The best treatment is the one that resolves the situation with the best
possible outcome and with the lowest harm. One has to honestly say that
the aspect of economics needs to be considered.

TTF - Task - Con�dence in Treatment Selection

Participants gave mixed responses when asked if they could select treatments
with con�dence. Two participants considered optimal treatment selection to
be possible, with one participant questioning to what extent di�erent decision-
makers would reach the same conclusion.

P1: In terms of AF, I think that it can be done. I do not know if di�erent
people would come to the same decision, but I think it can generally be
done. To what extent everyone makes the same decision- I do not know.
[...] Looking back, some patients may not receive the best treatment. If
these choices are di�erent, then some will be better, and others worse.

P3: Yes, I think so.

Further participants considered the optimal treatment selection to be a di�-
cult endeavor and were not sure of their ability to make the optimal choice.
One particular challenge expressed by two participants is the number of pos-
sible treatments, even within a speci�c drug group. One of the participants,
however, stated that experience is a possible remedy.

P5: We cannot know that beforehand. It depends if we obtain rhythm
control, if a rhythm control strategy is chosen, or if the patient ends up
having complications. We have so many choices, that it is always di�erent
what we choose.
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P4: I cannot be completely sure. It is assumed that they are all equally
e�ective. I cannot tell to what extent one beta blocker is better than another
in a speci�c patient. This is mostly based on clinical experience.

TTF - Task - Patient Heterogeneity

AF patients were considered heterogeneous. To what extent this heterogeneity
was considered an obstacle, di�ered among participants, with some partic-
ipants considering di�erent treatment approaches to be su�cient, and said
heterogeneity not being a particularly grave problem:

P5: Yes, sure, that is the main point. If you have someone who just had a
stroke or is going to undergo surgery, one will rather choose a rate control
strategy, because one cannot anticoagulant these patients, when they are
cardioverted. It all depends on the patients: What comorbidities do they
have? What their clinical presentation is, how their vitals are. Do they
have a heart failure, and how high is the risk of bleeding or thromboembolic
events?

P2: Heterogeneity leads to di�erent approaches. I do not know if its an
obstacle. I think with enough experience, heterogeneity is not a substantial
problem.

Other participants considered the patient population to be su�ciently hetero-
geneous and complex to consider it an obstacle. In particular one participant
described treatment to be somewhat of a "one size �ts all" approach, which
may be insu�cient:

P3: Yes. Naturally there are very complex patients.

P4: We often work with a one-size-�ts-all approach. Naturally, doses are
adjusted, for example, depending on patient age. Patient heterogeneity
may, in fact, constitute a problem, I would say. AF is a very complex
clinical picture.

TTF - Technology - General

Participants generally reacted positively to the presented CDSS concept, stat-
ing they see their own decision-making process in the approach, and the results
re�ecting clinical reality. As some participants stated:

P1: Naturally, I recognize my own decision-making process in your ap-
proach.
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P4: I think it's a good thing. I think it is interesting how many clusters
were identi�ed, because that re�ects the clinical reality.

TTF - Technology - Data Presentation

Participants commented on the information presented in the conceptualized
CDSS. Its central element, a point cloud of patients from the development
dataset was considered of little use. A bar chart showing the utility of dif-
ferent treatment options was, which was not present in the CDSS front-end,
but in the PowerPoint presentation, was considered valuable and its integra-
tion into a CDSS was recommended. Further, one participant considered the
communication of con�dence intervals a necessity.

P1: To what extent the point cloud is useful- to be honest- I do not think
I can make much use of it at 3 in the morning.

P1: The bar chart which you showed [in the presentation], with the beta
blockers, potassium and calcium antagonists, that I can make use of very
well.

P2: The treatment e�ects should include a con�dence interval.

TTF - Technology - Variable Selection

The selection of variables used for patient characterization has been criticized
as being incomplete or inaccurate. Further, one participant suggested that the
evolution of patient parameters should be considered.

P3: A drawback is the number of variables, which is limited. We do not
have a complete picture of the patients. [...] It is limited to how the patient
is �captured� from the data perspective. The patient evolves, for example
with a brand-new ECG from the patient, which would assign the patient
to a di�erent group. Also, personal preferences or intolerances to certain
medications are not considered.

One participant commented on the explainability aspect of the presented CDSS,
suggesting the addition of "red �ags" to predictions. Such information would
�ag the most important features contributing to a predicted treatment being
high or low.

P1: What I think could make it more trustworthy is the addition of �red
�ags�. Such that one could determine which �red �ag� parameters led to
[a speci�c treatment] being ranked very last. This could also be useful in
situations where someone says �with my 30 years of experience, I think
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magnesium would be the best medication�, but someone else says �yes, but
our algorithm says, for a really manifested reason, that we should not
choose it�. I think that would make sense. This does not have to be a
text, but it can be a positive-negative list, such that one can see �increased
mortality with respiratory insu�ciency and magnesium� or �Danger! Thy-
roid disorder. Increased rate of side e�ects with amiodarone.� Short and
concise. What has driven the program to the conclusion? That way one
would not just act on the programs recommendations but understand why
a decision is recommended. Not all parameters need to be explained, but
the ones that have had the highest impact on the result.

TTF - Technology - Application Scope

One participant suggested that the scope of the presented CDSS could be
expanded to not only cover the ICU, but also the emergency department.

P1: Another thing is that the focus on the ICU is good, but I think that
it [the CDSS] is something that the emergency department (ED) could
extremely bene�t from. We have a large ED with 55,000 patients per year.
We have a lot of patients who come to the ED with AF, and the treatment
is often initiated there. If patients then get admitted to the ICU, because
they are unwell, one would have to say that the introduction of such a
CDSS needs to happen in both departments, such that the same cognitive
approach is taken.

UTAUT2 - E�ort Expectancy - Situational Factors With regards to
the ease of use of the presented system, participants mentioned several situ-
ational factors that could impact the usability of the CDSS. One participant
considered an independent application on PC to be a possible obstruction and
recommended that such CDSS should be integrated into existing technological
platforms. Another participant suggested the use of an app on a tablet to
be an appropriate method. While speed of access was considered an impor-
tant factor, situations in which the presented CDSS would be used were not
particularly time-critical, because AF is not immediately life threatening.

P1: When we begin work in the morning, we have 3 to 4 programs open
in parallel. Technically, this is already too much to be honest. Why do
I need 3 programs? I need one. I see the danger that there will be a
dedicated program for radiology, AF, etc. And at some point, we will have
17 thousand programs, which slows down the computer and is confusing.
At some point one no longer feels like using anything. If it was integrated
into existing programs, it would be much easier.
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P3: There needs to be quick accessibility, ideally as an app on a tablet,
or optimally an integration into the data management system, such that
information can be extracted directly.

P5: Yes, there are only a few cases in which action is required immediately.
Generally, one has a few minutes of time.

UTAUT2 - E�ort Expectancy - Technology Characteristics

One aspect that was particularly poorly viewed was the necessity of manually
entering patient information for processing. Participants suggested an integra-
tion into existing hospital information systems to reduce time and e�ort.

P1: Yes, that is what is probably not realistic. There needs to be a data
interface to reduce the number of manually entered parameters.

P2: Such systems need to be better [than the current standard of care],
applicable, and not be time consuming. But this does not seem to be the
case.

P5: It is only a few clicks.

UTAUT2 - Performance Expectancy - Evidence-based Decision-Making

Participants agreed that the presented CDSS could increase their performance.
In particular, it would o�er a standardized evidence-based approach for treat-
ment selection and remove ambiguity.

P5: A big plus [of using such a CDSS] is that [current] decisions are often
not based on clinical facts, but based on gut feeling. Such tool can be a
good aid in such situations.

P2: Pretty surely, yes. The e�ciency in the sense of e�cient patient care-
I think so.

UTAUT2 - Experience

The experience level as a modulating factor for CDSS use was mentioned by one
participant, who considered its use to be particularly valuable for colleagues
with limited experience.

P2: I think especially for people with little experience this would be helpful.
Someone who has already seen a thousand AF patients should be able to
judge based on their experience. Surely, time savings may exist.
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I think physicians are used to work with clinical randomized studies before
they would really use anything. Many may use it for a recommendation,
but not de�nitely follow that recommendation.

With regards to the social in�uence of technology acceptance, di�erent view-
points were taken by participants. While one participant stated that the use of
novel technologies is primarily suggested by "middle level" clinicians, another
stated that possible increases in e�ciency would likely be positively received
by senior management, as well as other sta� due to freed up capacities:

P2: In general, novel technologies have di�culties to be used. It usually
takes some time. I imagine such changes do not necessarily come from the
�top�, but maybe even from the �middle level�. Digitalization was previously
initiated from normal doctors, not from the �top�.

P1: The clinic director and the chief �nancial o�cer would be happy. And,
especially in times when we have limited beds or a sta� shortage, we would
be happy with every patient that can be dismissed earlier, especially because
the freed-up capacities can be used for other patients.

5.4.2 Quantitative Analysis

The results from the TTF questionnaire are shown in �gure 5.9. Participants
generally agreed with the statements in the TTF questionnaire with average
responses exceeding the middle value of 2.5 points on the Likert scale. Partici-
pants uniformly agreed that the patient population exhibits heterogeneity and
sub-groups exhibited di�erent responses to treatments (mean 5.00, SD 0.00).
While this heterogeneity in combination with the large number of available
treatments was perceived as a di�culty when selecting treatments, not all par-
ticipants fully agreed and one participant stating that they neither agree nor
disagree (mean 4.00, SD 0.63).

In terms of the CDSS design choices, participants agreed that a division of
patients into sub-groups was a useful approach (mean 4.60, SD 0.49), and the
use of a utility function to rank treatment options received similarly favorable
opinions (mean 4.60, SD 0.49). The lowest agreements were recorded in the two
�nal statements, which evaluated the use of a k nearest neighbors approach to
assign patients to a phenotype (mean 3.80, SD 0.40), as well as the reduction of
treatment e�ects to hourly and daily rates (mean 3.80, SD 0.75). While both
statements showed high agreement, the results hint at room for improvement.
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Figure 5.9: Responses to the TTF questionnaire. Markers and solid lines indicate the
mean response and standard deviation, respectively.

The results from the TA questionnaire are shown in �gure 5.10. Participants
uniformly agreed that the presented system could improve their performance
(mean 4.00, SD 0.00). With regards to the expected e�ort, however, par-
ticipants showed concern of increased workload (mean 3.40, SD 0.80), which
may be attributed to the necessity of manually registering patients' descriptive
variables. Nonetheless, participants agreed that the presented system would
be easy to use (mean 4.00, SD 0.63). With regards to the social in�uence, par-
ticipants generally agreed that people in their environment may expect them
to use the presented system (mean 4.00, SD 0.63). Further, the requirement
for extensive training to use the presented system was not anticipated by the
study participants (mean 4.00, SD 0.63). The last statement, expressing the
intention to use the presented system, received the highest degree of agreement
with 3 participants agreeing and 2 participants completely agreeing with the
statement (mean 4.40 SD 0.50).
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Figure 5.10: Responses to the TA questionnaire. Markers and solid lines indicate the mean
response and standard deviation, respectively.
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Chapter 6

Discussion

6.1 Systematic Literature Review

A total of 154 predictive biomarkers were found. Of these, less than half
are currently employed in clinical risk scores. Further, studies performing
subgroup analyses indicate that relationships between biomarkers are complex
and require careful modeling. As such, [219] have shown that some genetic risk
factors are only predictive for patients of particular geographical regions, but
not others, and, further, that several genetic risk factors are only predictive in
the presence of certain comorbidities. In a similar fashion, [22] showed that
BNP levels are a stronger predictor of AF recurrence in paroxysmal AF patients
than in the general AF population. On the other hand, [40] demonstrated that
NP levels depend on the ethnicity, sex, and gender. Such insights reveal the
existence of complex relationships between predictive variables and call for the
application of more complex predictive models than currently used point scores
or linear models.

The obtained results need to be interpreted with several limitations in mind.
Firstly, the study is limited by the number of databases, and the requirement
for studies being published in English language. Further studies introducing
additional biomarkers may exist in other databases or in further languages.
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Further, the quality of the incorporated publications was not assessed, leading
to potentially biased results.

6.2 Semi-Supervised Clustering with Survival Data

6.2.1 Simulation Study

The results of the simulation study highlight a limitation of applying K-
Means exclusively to the covariates of the observations. When decision bound-
aries between clusters are non-linear, there is no subset of covariates, and no
set of weights which could transform the covariate space such that decision-
boundaries become linear. In fact, a clustering space with non-linear decision
boundaries will lead to incorrect classi�cations and degrade the accuracy of
K-Means.

Further, the results reveal an intriguing characteristic of LSS-K-Means, wherein
the incorporation of survival data into the clustering process leads to the cre-
ation of non-linear decision boundaries in the covariate domain that can closely
approximate the boundaries of the underlying survival distributions. In par-
ticular, in Sim-b and Sim-c the inclusion of survival data provided encouraging
results, and demonstrated the fundamental problem of the K-Means algorithm.
The assumption that clusters are spherical and of similar variance, and, ide-
ally, separable with a reasonable margin, may not hold. Like its competitors,
LSS-K-Means will create its decision boundaries along a hyperplane equidis-
tant to the two closest cluster centroids. These hyperplanes are, however,
created in the combined space of covariates and survival data, which results
in a non-linear decision boundary in the covariate domain, which can closely
resemble the ground truth distributions between clusters of di�erent survival
distributions.

Even though LSS-K-Means generally demonstrates favorable test metrics, the
performance of di�erent clustering algorithms may depend on di�erent vari-
ables, and no algorithm is guaranteed to provide the best results. However, the
results of the benchmark study suggest that LSS-K-Means may be a promis-
ing method for clustering with survival data, often outperforming competing
methods.
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6.2.2 Benchmark Study

The benchmark study has shown that the developed algorithms, LSS-K-Means
and S-HAC, generally outperformed not only unsupervised KMeans and HAC,
but also both semi-supervised contenders, SSC-Bair and SSC-Gaynor. Neither
SSC-Bair nor SSC-Gaynor universally outperformed the unsupervised cluster-
ing algorithms. Similar observations have been made in a previous study [32],
which, among others, compared K-Means to SSC-Bair.

This phenomenon can be attributed to the assumption of linear independence
between covariates, which is made by both algorithms. SSC-Bair and SSC-
Gaynor both use Cox regression models to quantify the importance of individ-
ual covariates. This approach assumes a strictly increasing/decreasing impact
of the covariate on the measured outcome, and cannot account for covari-
ates that result in an increased risk on the extremes of the covariate range.
Further, complex covariate interactions cannot be accounted for, making the
application of a Cox regression model a questionable choice. In a similar fash-
ion, both SSC-Bair and SSC-Gaynor use the K-Means algorithms to achieve
clustering. This may result in inaccurate decision boundaries. Neither limita-
tion are true for S-HAC, which uses the underlying data structure to de�ne a
decision boundary resulting in superior test metrics.

6.3 Atrial Fibrillation Phenotypes

The application of S-HAC to the patient cohort resulted in clusters with dif-
ferent treatment responses. 10-fold cross validation showed high concordance
for the outcomes rhythm control and mortality. The prediction of rate control
has, however, showed low performance. This may be attributed to the fact
that none of the biomarkers identi�ed in the systematic review, and, hence,
the employed patient descriptors were predictive of the success of a rate control
strategy.

The identi�ed phenotypes partially aligned with existing knowledge of treat-
ment e�ects on patient outcomes. The use of PCBs has previously been as-
sociated with potentially adverse e�ects on thyroid function, resulting in a
contraindication of PCBs for patients with hyper and hypothyroidism [16]. No-
tably, cluster 15, where PCBs showed the highest mortality rate, was primarily
characterized by a high share of female patients, in line with the prevalence of
thyroid disorders being approximately 10 times higher in women than in men
[74]. Similarly, PCB administration have been associated with acute respira-
tory failure, and a consequent increased mortality [9]. Such observations could
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also be made in the results, where cluster 13 demonstrated a particularly high
share of respiratory disorders and a relatively high mortality when exposed to
PCBs.

Similarly, prophylactic MgS administration has previously been shown to re-
duce the incidence of AF following cardiac surgery [41], and improved rhythm
control and rate control rates [145]. MgS is, however, contraindicated if severe
renal failure is present. The obtained results similarly show an increased mor-
tality following MgS exposure in clusters characterized by a high rate of renal
insu�ciency. MgS did not outperform other treatment groups in terms of car-
dioversion in any cluster. Several phenotypes showed high rate control rates
when exposed to MgS. In particular, patients with thyroid disorders appeared
to have increased rate control rates, as well as the lowest mortality rates fol-
lowing MgS administration. While the mechanisms governing thyroid disease
and the magnesium metabolism remain to be elucidated, recent work suggests
a normalization of thyroid hormones following magnesium supplementation in
community cohorts [149], which may explain the observation made in these
phenotypes.

Several studies have reported similar conversion rates for BBs and PCBs [53].
This �nding could only be con�rmed for a single phenotype, characterized by
myocardial infarction, renal insu�ciency, and particularly advanced age. Sim-
ilar observations have been made in several community studies, which demon-
strated a reduction in mortality in patients receiving BBs following MI [114].

Con�icting evidence exists over the superiority of PCBs over CCBs in rhythm
control [17, 109]. While the presented analysis showed a general superiority
of PCBs over CCBs, the opposite was true for phenotypes characterized by
a high prevalence of thyroid disorders and share of female patients. Similar
observations can be made for postoperative patients with renal failure and
coronary atherosclerosis, who further show a high mortality when treated with
BBs.

Several phenotypes and treatment e�ects identi�ed which demonstrated ATEs
in accordance with existing clinical knowledge. These results support the con-
clusion that S-HAC not only forms predictive clusters, as demonstrated in the
benchmark study, but also clusters which are biologically meaningful, and clin-
ically useful. The extent to which the obtained results may provide insight into
treatment e�ects that are currently unknown, drive hypothesis generation, or
provide a basis for clinical decision-making remains to be determined. Ulti-
mately, such endeavors warrant a validation of the obtained results using a
secondary database.
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Further, the obtained results should be interpreted with several limitations
in mind. First, while the systematic review revealed many biomarkers to be
viable predictors, only a small subset were available in the database. Given
the crucial role of these variables in clustering algorithms, the inclusion of fur-
ther biomarkers may provide di�erent results. Further, treatment groups were
assigned based on the �rst exposure to an AAD in the investigated groups.
Further AADs are often employed, but the sparsity did not allow for their
inclusion in the analysis. Also, treatments may be used in combination or in-
crementally escalated until the desired e�ect is achieved. Ultimately, a larger
database may provide the basis for a more in-depth analysis with further treat-
ment groups, and allow for the analysis of treatment combinations, while also
providing more robust ATE estimates. Treatments were, further, considered
as binary events in which a treatment was administered or not. The mode of
administration, such as bolus or drip administration may have di�erent e�ects,
while the dosing also plays a crucial role [171].

6.4 User Centered Evaluation

The user centered evaluation generally showed positive results and supports
the idea of using the developed methods in clinical practice. Several important
topics were identi�ed in the interviews with regards to the current treatment
of AF in the ICU, speci�c requirements for AF treatment selection, as well as
the validity of the developed methods and other CDSS of similar nature.

6.4.1 Current Treatment Approaches

Treatment of AF in the participating institution was primarily driven by ESC
guidelines, which were adapted to the speci�c situation based on clinicians'
discretion. Similarly to the majority of ICUs [225], internal guidelines for AF
were not present in the participating institution. Decisions on anticoagulation
were often guided by risk scores, which were derived from community cohorts,
and not validated for use in the ICU. The use of such risk scores has, however,
been shown to be common practice among critical care physicians [225] even
though their applicability has been questioned [218].

The ESC guidelines were considered to be simple and easy to follow. While
this simplicity was appreciated and viewed positively, especially with regards
to facilitating quick decision-making, it was also considered to be a limiting fac-
tor, because patient complexity was not accounted for, which was of particular
concern given ICU patients' multicomborbid nature. While this patient com-
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plexity was considered problematic by some participants, in particular coupled
with the large number of treatment options, others considered it a manage-
able challenge given su�cient experience. It is this patient complexity that
the methods developed in this thesis aim to unravel, to provide estimates of
treatment e�ects on a patient level basis.

6.4.2 Requirements for Treatment Selection

The selection of AF treatment was considered an act of balancing positive
and negative impacts of possible treatments. The main treatment goal was to
maximize the probability of positive e�ects while minimizing the probability of
negative consequences. Treatments would only be considered if their expected
bene�t would outweigh their risks. Some participants mentioned speci�c ways
to quantify outcomes, referring to "probability" and "speed", which are con-
cepts that are explicitly captured by the survival models in the conceptualized
CDSS.

Participants were particularly concerned with preventing stroke, bleeding events,
restoring and maintaining SR, preventing mortality, controlling heart rate and
patients' symptoms, while minimizing side e�ects and other potential harm.
These suggested outcomes were signi�cantly broader than the outcomes cov-
ered by the presented CDSS, which only covers the restoration of SR, the
restoration of a normal heart rate, and mortality. Table 6.1 provides an
overview of the outcomes suggested by the study participants and the outcomes
covered in the CDSS. Even though many outcomes are not covered, overlap
may exist between patients' mortality and ischemic stroke, bleeding events,
and side e�ects. To what extent such an assumption can be made, is, however,
uncertain. The gaps in outcomes reveal the complexity of decision-making in
clinical practice, which is not fully accounted for, and must be resolved if such
CDSS is to be used in practice.
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Suggested by Participants Covered by CDSS

Ischemic Stroke No
Bleeding No
Mortality Yes

Restoration of SR Yes
Maintenance of SR No

Control of Heart Rate Yes
Symptoms No
Side E�ects No

Table 6.1: Outcomes suggested by study participants vs. covered by CDSS

Participants' con�dence in being able to select the best treatment option was
mixed, with the level of experience being cited as a key factor. The proposed
CDSS was therefore of particular interest to less experienced participants, even
though their more experienced counterparts suggested that it may be useful
to resolve disagreements between more experienced clinicians. Similar asso-
ciations have been reported by other studies, which observed an increased
perceived usefulness of CDSS in users with limited clinical experience [125, 12,
129].

6.4.3 CDSS Evaluation

The presented CDSS was generally well received, with one participant stating
they felt like it reminded them of their own though process. This statement
supported the ful�llment of the �rst design principle of CDSS, stating that
CDSS should mimic the cognitive processes of decision-makers. Participants
agreed that the developed methods could support their decision-making and
increase their e�ciency, with quantitative results agreeing with participant
statements.

The use of the proposed CDSS was considered plausible in practice. Imme-
diate action was seldom required when patients developed AF. Nonetheless,
quick accessibility was considered an important factor, with one participant
suggesting the CDSS be deployed in the form of an application on a tablet.
The use of tablets is a popular choice due to the immediate accessibility of the
CDSS at the bedside [235, 111]. A major obstacle was the necessity for users
to input data manually, which resulted in a high perceived e�ort. Further, the
idea of a standalone system was questioned due to an already high number
of independent technological platforms being used. It was therefore recom-
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mended to implement CDSS as components of already employed information
systems, similarly to other studies evaluating CDSS usability [153].

The speci�c requirements for such integration need to be elucidated in future
works.

Further, gaps were identi�ed in the variables used for patient description, which
were incomplete or incorrectly captured. While variable selection was per-
formed based on a systematic literature review, the user centered evaluation
has revealed that the involvement of domain experts is indispensable to pro-
vide quality decision support. At the same time, required patient variables
are often not present or sparsely available in EHR databases. An example
thereof is the condition of systolic heart failure, which is a contraindication for
CCBs. Within the database, a distinction between systolic and diastolic heart
failure is, however, seldom made, and surrogate variables for the distinction
between the two conditions are sparse. This makes the distinction between the
two conditions di�cult and highlights a limitation of using EHR databases for
research.

As another participant noted, patients' evolution was not considered. In prac-
tice, patients evolve as new information is obtained and patient parameters are
updated over the course of their ICU stay. Within the scope of this work, pa-
tients were described using the �rst available record, likely resulting in patient
descriptions being outdated, su�ering from look-ahead bias, or both. While
this limitation may partially be remedied with more precise data extraction,
limitations of the used database will remain. In particular, diagnostic codes
su�er from inexact time resolution due to their creation at the time of patients'
discharge.

Further limitations were identi�ed in the presentation of information. As one
participant noted, the central element of the CDSS, the point cloud visualiz-
ing the patients in the training database, added no informational value. While
it may be considered a centerpiece of the previous analyses, it does not con-
tribute in the context of providing decision support. On the other hand, a
visualization of each treatment's utility in the form of a bar chart was desired.
Another participant noted that treatment e�ects needed to be presented in-
cluding their respective con�dence intervals, which may easily be provided.
Participants' comments regarding the presentation of information suggest that
data visualization is a relevant task that requires the input of stakeholders and
end-users in the design process.
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The centered design evaluation has resulted in positive responses from partic-
ipants, while highlighting key limitations of the proposed CDSS. Key patient
outcomes were not covered, and patients' descriptive variables showed poten-
tial for re�nement. While some patient variables and outcomes could be easily
introduced, others may not be available in the used database. The developed
methods assumed patients to be static and characterized them based on the
�rst available record for each variable, patient evolution needs to be consid-
ered, requiring a database with improved temporal resolution. Ideally, such
a database would contain the necessary descriptive variables to fully capture
patient characteristics as required in clinical practice. In spite of the many
limitations, the general clinician consensus was positive, supporting the idea
of a data-driven phenotype classi�cation approach for clinical decision support.
These results should, however, be interpreted considering that this study was
performed at a single institution and with a limited number of study partici-
pants. A similar study with multiple institutions and more participants may
provide more conclusive results.
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Chapter 7

Conclusion

7.1 Revision of Study Objectives

The aim of this doctoral thesis was the investigation of a phenotype classi�ca-
tion based CDSS for the multiparametric strati�cation of AF patients in critical
care. The fundamental problem that was addressed was the heterogeneity of
the patient population, and lack of consensus among healthcare providers in
which treatment would be most appropriate on a patient-level basis.

Prior works have suggested the use of data-driven phenotype classi�cations as
a decision support tool for AF treatment. This thesis has contributed to this
idea in several ways:

� Previous works investigating data-driven AF phenotypes have considered
only outcome rates as relevant information. This thesis has demonstrated
that beyond outcome rates, average treatment e�ects vary across pheno-
types.

� AF phenotypes have previously exclusively been identi�ed using unsuper-
vised clustering algorithms, which have been criticized for forming clus-
ters with little clinical signi�cance. This thesis provided a novel semi-
supervised clustering algorithm and the �rst application of such to a
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cohort of AF patients. The resulting clusters have demonstrated treat-
ment e�ects that were in line with existing clinical knowledge, and have
uncovered phenotypes with unexpected average treatment e�ects.

� The use of a data-driven phenotype classi�cation for guiding treatment
selection was evaluated in a user centered evaluation. The results support
the potential of a phenotype classi�cation approach to provide decision
support in clinical practice.

A novel semi-supervised clustering algorithm, S-HAC, was developed that in-
corporated survival data into the clustering process. This algorithm outper-
formed existing solutions on several real-world datasets, and elucidated the
composition of the AF population in a clinically useful fashion. The identi�ed
phenotypes often aligned with existing knowledge of treatment e�ects such as
contraindications and adverse e�ects, demonstrating that the developed algo-
rithm does not only outperform existing methods quantitatively, but generates
clusters which can readily be interpreted and that are of clinical utility.

The evaluation of the proposed CDSS in a user centered evaluation showed
favorable outcomes for the application of the developed methods in clinical
practice. Nonetheless, many limitations were identi�ed. Partially, these limi-
tations may be easily remedied, while others likely require substantial e�ort.
It can be concluded that the development of CDSS for the multi-parametric
strati�cation of AF patients require the involvement from domain experts from
the initial stages. To what extent EHR databases provide data of su�cient
quality to develop su�ciently accurate models remains questionable.

7.2 Limitations

The conclusions of this work should be interpreted in the context of several
limitations, of which some have already been stated. The systematic liter-
ature review performed in section 4.1 may provide limited information, as
critical biomarkers predictive of AF outcomes may not have been investigated
in previous works. Similarly, the quality of the identi�ed studies has not been
assessed, and the strength of the evidence for biomarkers being predictive has
not been determined. While some biomarkers may be predictive in certain
socioeconomic or ethnic groups, they may not be valid in the analyzed popu-
lation.

The developed algorithms S-HAC and LSS-K-Means have shown promising
performance in benchmarks studies, but their performance needs to be val-
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idated in further datasets to allow for more conclusive results, as well as a
better understanding of the advantages and limitations of each method. Fur-
ther, the benchmark tests were performed on datasets with a single outcome,
while the analysis of AF phenotypes used a combination of outcomes for cluster
formation.

S-HAC has identi�ed AF phenotypes that corresponded to current knowledge
on the treatment e�ects of antiarrhythmic drugs. Further databases Nonethe-
less, the resulting solution should not be considered in any way �nal, nor can
it be considered a proposal for a formal classi�cation. The presented study has
only considered a limited number of patient variables, and the inclusion of fur-
ther variables will likely lead to the discovery of di�erent patient phenotypes.
Similarly, only a limited number of treatments were considered, and treatment
groups were considered to be mutually exclusive. In reality treatments may be
combined or changed until the desired e�ect is achieved.

The user centered evaluation has only evaluated a mock-up of a CDSS, while
no functioning tool has been tested. The results of the study must therefore
be treated with caution, as the evaluation of a working CDSS may uncover
additional facilitators and obstacles in the user acceptance of such tool. More
critically, potential impacts on clinicians' performance must be measured to
provide conclusive results on the applicability of such a CDSS in clinical prac-
tice. Such studies, however, would require a prior validation of the phenotype
classi�cation results to ensure patient safety. Finally, it must be considered
that the results of the user centered evaluation may su�er from bias due to the
single-center design, and a relatively small sample size.

7.3 Future Work

This thesis has provided a foundation for further research. In particular, the
phenotypes obtained using S-HAC are su�ciently encouraging to consider a
validation study using a secondary dataset. Such validation could shed fur-
ther light on the quality of the results obtained, and identify which observed
treatment e�ects are worth pursuing in further research endeavors, which may
be rooted in a variety of disciplines, and provide opportunity for multidisci-
plinary cooperation. Unexpected patient phenotypes with signi�cantly poorer
outcomes may be validated with secondary datasets, and provide su�cient
empirical support to further re�ne treatment selection in AF patients.

The user research analysis has shown favorable results, but several obstacles
need to be considered before a usable prototype can be implemented and eval-
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uated. Critical biomarkers used for treatment selection were not present in
the employed dataset, likely resulting in residual confounding and biased re-
sults. The analysis has further shown a signi�cant lack of coverage in relevant
outcomes. Future work should therefore consider the inclusion of critical vari-
ables from the �rst stages of the analysis, and the evaluation of further patient
outcomes. A standalone system has been criticized as a potential obstruc-
tion in clinical work�ows, making an integration of the CDSS into existing IT
infrastructure a fundamental necessity for clinical usability.

Further improvements to the developed methods may ultimately provide a
CDSS, which could be evaluated in a prospective trial. Such a prospective trial
could be executed in the form of a single center randomized controlled fashion,
in which the control arm of the study group receives standard care, while the
intervention arm receives standard care supplemented with the CDSS. Several
outcomes may be measured to assess the impact of the CDSS, such as the
time until cardioversion or rate control, or mortality. These direct indicators
of treatment e�ects would be expected to be more favorable in the intervention
arm than the control arm. Further, adherence to system recommendations, the
total antiarrhythmic costs, or the number of di�erent antiarrhythmics admin-
istered per patient may be evaluated to assess the impact of CDSS use.

7.4 Scienti�c Contributions

7.4.1 Journal Publications

Lacki A, Martinez-Millana A. A Comparison of the Impact of Pharmaco-
logical Treatments on Cardioversion, Rate Control, and Mortality in Data-
Driven Atrial Fibrillation Phenotypes in Critical Care. Bioengineering. 2024;
11(3):199. https://doi.org/10.3390/bioengineering11030199

7.4.2 International Conferences

Lacki, A., Martinez-Millana, A. (2023). Survival Hierarchical Agglomera-
tive Clustering: A Semi-Supervised Clustering Method Incorporating Survival
Data. In: Juarez, J.M., Marcos, M., Stiglic, G., Tucker, A. (eds) Arti�cial
Intelligence in Medicine. AIME 2023. Lecture Notes in Computer Science(),
vol 13897. Springer, Cham. https://doi.org/10.1007/978-3-031-34344-5_1

Lacki, A., Boscá Tomás D., Martínez-Millana A. (2022, September). Prob-
abilistic Inference of Comorbidities from Symptoms in Patients with Atrial
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Fibrillation: An Ontology-Driven Hybrid Clinical Decision Support System.
In 2022 Computing in Cardiology (Vol. 498, pp. 1-4). IEEE.

Lacki, A., Hernández-Romero, I., Guillem, M. S., Climent, A. M. (2021,
September). ECGI Periodicity Unraveled: A Deep Learning Approach for
the Visualization of Periodic Spatiotemporal Patterns in Atrial Fibrillation
Patients. In 2021 Computing in Cardiology (Vol. 48, pp. 1-4). IEEE.
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Appendix

Appendix 1 - Predictive biomarkers identi�ed through

systematic review

Table 7.1: Biomarkers and Counts

Category Biomarker Count (Prevalence %)

Demographics Age 49 (31)
Gender 38 (24)

Comorbidities Hypertension 33 (21)
Diabetes 31 (20)

Heart Failure 27 (17)
Vascular Disease 24 (15)
Renal Dysfunction 20 (13)

COPD 6 (4)
Liver Dysfunction 6 (4)

Thyroid Dysfunction 5 (3)
Cardiomyopathy 4 (3)

OSA 3 (2)
Metabolic Syndrome 3 (2)

Rheumatism 3 (2)
Valvulopathy 1 (1)
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Non-alcoholic Fatty Liver
Disease

1 (1)

Observations BMI 21 (13)
SysBP 18 (11)
Alcohol 14 (9)
Smoking 14 (9)
DiaBP 11 (7)

Drug Abuse 7 (4)
Weight 7 (4)
Height 6 (4)
BSA 2 (1)

BP Variability 1 (1)

History Prev. Stroke 28 (18)
AF duration 14 (9)
AF type 11 (7)
Prev. MI 10 (6)

Prev. Bleed 8 (5)
Prev. infarct location 1 (1)
Prev. Infarct Vol. 1 (1)

ECG Heart Rate 7 (4)
PR interval 5 (3)

LV Hypertrophy 4 (3)
P-wave Duration 3 (2)
Premature Atrial
Contractions

3 (2)

QTc 3 (2)
P-Wave Axis 2 (1)

Cornell product 2 (1)
tP+ 1 (1)
tP- 1 (1)
HRV 1 (1)
Strain 1 (1)

P-wave Terminal force V1 1 (1)
AF Burden 1 (1)

F-wave Voltage 1 (1)
F-wave Amplitude 1 (1)
T-wave Devation 1 (1)
QRS duration 1 (1)

Bundle branch bock 1 (1)
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IA Block 1 (1)
Sokolow-Lyon voltage 1 (1)

Serum NT-proBNT 30 (19)
GDF-15 18 (11)

Hemoglobin 14 (9)
Troponin-T 13 (8)

IL-6 10 (6)
C-Troponin-T 10 (6)

Total Cholesterol 8 (5)
BNP 7 (4)

Creatinine 7 (4)
INR 7 (4)
CRP 7 (4)

Triglycerides 6 (4)
HDL-C 6 (4)

White Blood Cell Count 5 (3)
LDL-C 5 (3)

Galectin-3 5 (3)
D-dimer 5 (3)

Von Willebrand factor (vWF) 4 (3)
TGF-beta1 4 (3)
Uric acid 4 (3)
FGF23 3 (2)

Red Blood Cell Distribution
Width

3 (2)

Dyslipidemia 3 (2)
Fibrinogen 3 (2)

Mid-regional pro atrial
natriuretic peptide
(MR-proANP)

2 (1)

ANP 2 (1)
TNF-R1 2 (1)
ApoA1 2 (1)
ApoB 2 (1)

Albuminuria 2 (1)
Urea Nitrogen 2 (1)

Neutrophil-to-lymphocyte
ratio

2 (1)

Platelet count 2 (1)
Thyrotropin (TSH) 2 (1)
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C-Troponin-I 2 (1)
C-Reactive Protein 2 (1)

Neopterin 1 (1)
Ang2 1 (1)
BMP10 1 (1)
DKK3 1 (1)
ESM1 1 (1)
FABP3 1 (1)
IGFBP7 1 (1)
MYBPC3 1 (1)

Mid-regional pro-atrial
natriuretic peptide

1 (1)

Cancer Antigen-125 (Ca-125) 1 (1)
TNF-alpha 1 (1)
TNF-R2 1 (1)

Trefoil Factor 3 (TFF3) 1 (1)
ST2 1 (1)

Cortisol 1 (1)
Albumin 1 (1)

Red Blood Cell Count 1 (1)
Mean Platelet Volume 1 (1)

Platelet Distribution Width 1 (1)
Cystatin C 1 (1)

CITP 1 (1)
TIMP 1 (1)
TIMP2 1 (1)

Apolipoprotein CIII
(ApoC-III)

1 (1)

ADAMTS13 1 (1)
Urokinase plasminogen
activator surface receptor

(uPAR)

1 (1)

Urokinase plasminogen
activator (uPA)

1 (1)

Ephrin type-B receptor 4
(EPHB4),

1 (1)

IL-8 1 (1)
Plasmin-antiplasmin 1 (1)
Fibrinopeptide-A 1 (1)
Antithrombin III 1 (1)
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Plasminogen activator
inhibitor

1 (1)

Prothrombin F1+2 1 (1)
Free thyroxine (fT4) 1 (1)
In�ammatory markers 1 (1)

OPG 1 (1)
OPN 1 (1)
suPAR 1 (1)
EphB4 1 (1)

TRAIL-R2 1 (1)
ST2 1 (1)

C-C motif chemokine 16
(CCL16)

1 (1)

Troponin-I 1 (1)
Transferrin receptor protein 1

(TfR1)
1 (1)

Osteopontin (OPN) 1 (1)
Tissue plasminogen activator

antigen (tPA ag)
1 (1)

ADMA/SDMA 1 (1)
Aspartate aminotransferase 1 (1)
Alanine aminotransferase 1 (1)

Glutamyltransferase (GGT) 1 (1)
Telomerre length 1 (1)

Thrombomodulin (sTM) 1 (1)

Imaging LVEV 28 (18)
LAD 20 (13)
LA-Vol 17 (11)
LA-EF 9 (6)

LA contraction strain 6 (4)
LA strain 4 (3)

LA-Expansion 3 (2)
Fibrosis Quantity 3 (2)

E/e' 3 (2)
LVDDis 2 (1)

LA reservoir strain 2 (1)
TAPSE 1 (1)
RAD 1 (1)

Peak E-wave velociy 1 (1)
Peak A-wave velocity 1 (1)
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Passive emptying index 1 (1)
LV Diastolic Diameter 1 (1)

LV Volume 1 (1)
LV end-Sys Volume 1 (1)
LV end-Dia Volume 1 (1)

LAA Shape 1 (1)
LAA Flow Velocity 1 (1)

LA Sti�ness 1 (1)
LA Sphericity 1 (1)

LA Conduit Strain 1 (1)
Global Longitudinal Strain 1 (1)
Epicardial Adipose Tissue

Thickness
1 (1)

E/Em 1 (1)
E/A ratio 1 (1)

Atrial Conduction Time 1 (1)
Active Emptying Index 1 (1)

Genetics CYP 2C9 single-nucleotide
polymorphisms

2 (1)

CYP11B2 rs1799998
polymorphism

1 (1)

GJA1 rs13216675
Polymorphism

1 (1)

FRMD4B 1 (1)
CAV1 1 (1)

rs10033464 1 (1)
rs2200733 1 (1)
FRMD4B 1 (1)
CAV1 1 (1)

rs10033464 1 (1)
rs2200733 1 (1)
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Table 7.3: Covariate means before and after inverse probability treatment weighting for
rhythm control and in-hospital mortality.

Unweighted Means Weighted Means

Variable BBs PCBs CCBs MgS BBs PCBs CCBs MgS

Maximum

absolute

pairwise

SMD

unweighted

Maximum

pairwise

SMD

weighted

Anemia 0.13 0.13 0.11 0.12 0.13 0.12 0.12 0.11 0.02 0.04

Serum calcium 8.66 8.56 8.51 8.52 8.6 8.55 8.52 8.56 0.09 0.06

COPD 0.14 0.12 0.16 0.14 0.14 0.13 0.15 0.13 0.07 0.05

Collagen disease 0.01 0.02 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.03

Cor pulmonale 0.11 0.09 0.07 0.1 0.1 0.09 0.09 0.12 0.05 0.11

Coronary

artery

atherosclerosis

0.29 0.52 0.18 0.23 0.32 0.38 0.3 0.3 0.38 0.09

Serum creatinine 1.45 1.39 1.45 1.5 1.43 1.48 1.4 1.42 0.05 0.04

Diabetes 0.25 0.21 0.22 0.23 0.25 0.21 0.23 0.21 0.05 0.05

Thyroid disorder 0.13 0.08 0.13 0.11 0.11 0.10 0.13 0.1 0.06 0.06

Erythrocyte

distribution

width

15.1 14.5 15.0 15.2 14.9 14.8 14.9 14.9 0.15 0.03

Erythrocyte count 3.96 3.88 3.94 3.84 3.93 3.9 3.93 3.94 0.06 0.04

Heart failure 0.54 0.42 0.42 0.54 0.5 0.46 0.45 0.51 0.14 0.07

Hemoglobin 12.01 12.26 11.94 11.6 12.01 12.08 12 12.07 0.11 0.02

Hypertension 0.48 0.51 0.45 0.42 0.49 0.46 0.48 0.42 0.07 0.11

Left Atrial Dilation 0.55 0.52 0.5 0.55 0.53 0.54 0.51 0.56 0.05 0.05

Leukocyte count 11.8 11.2 13.3 12.5 12.1 11.7 12.2 11.9 0.12 0.03

Serum magnesium 2.02 2.09 1.94 1.86 2.00 2.03 1.96 1.94 0.14 0.10

Myocardial infarction 0.08 0.16 0.08 0.08 0.09 0.13 0.11 0.11 0.16 0.07

OSA 0.05 0.03 0.05 0.05 0.05 0.03 0.05 0.05 0.05 0.07

Platelet count 237 222 253 239 232 234 241 235 0.16 0.05

Post-operative

condition
0.21 0.64 0.08 0.11 0.29 0.36 0.25 0.24 0.68 0.18

Serum Potassium 4.35 4.29 4.36 4.39 4.32 4.32 4.33 4.32 0.06 0.01

Prothrombin time 20.4 15.6 17.8 21.8 18.8 17.1 18.0 18.6 0.27 0.10

Renal insu�ciency 0.41 0.37 0.39 0.41 0.39 0.43 0.38 0.38 0.04 0.07

Respiratory Failure 0.21 0.15 0.27 0.23 0.2 0.21 0.24 0.21 0.17 0.09

Rheumatism 0.06 0.05 0.02 0.04 0.05 0.05 0.03 0.05 0.08 0.09

Right Atrial Dilation 0.44 0.31 0.34 0.45 0.41 0.35 0.35 0.45 0.16 0.14

Sepsis 0.14 0.13 0.19 0.23 0.14 0.18 0.16 0.19 0.20 0.09

Serum sodium 138 138 138 138 138 138 138 138 0.04 0.02

Valvulopathy 0.31 0.47 0.17 0.24 0.32 0.38 0.27 0.28 0.30 0.12

Age 77.6 73.1 73.8 77.3 75.7 74.5 74.8 76.2 0.21 0.08

Sex 0.55 0.6 0.48 0.58 0.58 0.56 0.53 0.6 0.09 0.08

Arrhythmia History 0.3 0.14 0.24 0.3 0.25 0.2 0.23 0.28 0.16 0.12

Heart Rate 93.0 89.9 100.9 90.8 93.0 92.8 94.8 93.0 0.35 0.07
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Table 7.4: Covariate means before and after inverse probability treatment weighting for
rate control.

Unweighted Means Weighted Means

Variable BBs PCBs CCBs MgS BBs PCBs CCBs MgS

Maximum

absolute

pairwise

SMD

unweighted

Maximum

pairwise

SMD

weighted

Anemia 0.11 0.12 0.12 0.12 0.13 0.14 0.13 0.11 0.05 0.06

Serum calcium 8.62 8.50 8.56 8.50 8.55 8.45 8.52 8.54 0.11 0.05

COPD 0.14 0.16 0.13 0.16 0.13 0.15 0.14 0.15 0.07 0.05

Collagen disease 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.04 0.08

Cor pulmonale 0.09 0.07 0.07 0.09 0.09 0.09 0.09 0.10 0.05 0.06

Coronary

artery

atherosclerosis

0.27 0.16 0.30 0.29 0.52 0.23 0.37 0.32 0.38 0.10

Serum creatinine 1.49 1.45 1.44 1.39 1.41 1.56 1.47 1.41 0.08 0.04

Diabetes 0.23 0.23 0.23 0.24 0.21 0.24 0.22 0.25 0.03 0.05

Thyriod disorder 0.12 0.12 0.11 0.11 0.08 0.11 0.10 0.11 0.07 0.04

Erythrocyte

distribution

width

15.2 15.0 15.0 14.9 14.6 15.4 14.9 14.8 0.25 0.06

Erythrocytes count 3.94 3.94 3.91 3.94 3.87 3.81 3.89 3.99 0.13 0.11

Heart failure 0.57 0.41 0.48 0.43 0.41 0.55 0.44 0.42 0.22 0.09

Hemoglobin 11.9 12.0 12.0 12.0 12.2 11.5 12.1 12.2 0.24 0.05

Hypertension 0.46 0.46 0.47 0.50 0.50 0.39 0.46 0.48 0.16 0.05

Left Atrial Dilation 0.58 0.53 0.56 0.54 0.51 0.62 0.54 0.56 0.15 0.03

Leukocyte count 11.6 13.8 11.9 12.5 11.2 12.0 11.9 11.9 0.18 0.04

Serum magnesium 2.01 1.95 1.99 1.97 2.08 1.86 2.03 1.92 0.21 0.13

Myocardial infarction 0.08 0.08 0.10 0.11 0.16 0.11 0.14 0.17 0.14 0.17

OSA 0.05 0.05 0.04 0.05 0.03 0.01 0.03 0.01 0.17 0.17

Platelet count 236 251 235 242 225 237 234 231 0.13 0.05

Post-operative

condition
0.17 0.09 0.28 0.25 0.63 0.15 0.38 0.29 0.62 0.17

Serum potassium 4.33 4.38 4.33 4.33 4.30 4.38 4.31 4.32 0.05 0.02

Prothrombin time 20.3 17.8 18.1 17.5 15.7 20.0 16.6 17.6 0.23 0.10

Renal insu�ciency 0.43 0.41 0.39 0.39 0.39 0.52 0.44 0.39 0.22 0.05

Respiratory failure 0.25 0.30 0.22 0.26 0.16 0.32 0.22 0.25 0.21 0.08

Rheumatism 0.06 0.03 0.05 0.02 0.04 0.06 0.04 0.05 0.08 0.09

Right Atrial Dilation 0.45 0.38 0.40 0.37 0.31 0.52 0.35 0.46 0.31 0.17

Sepsis 0.17 0.20 0.16 0.18 0.14 0.29 0.20 0.20 0.32 0.08

Serum sodium 138 138 138 138 139 138 138 138 0.10 0.03

Valvulopathy 0.30 0.16 0.32 0.25 0.44 0.22 0.36 0.25 0.33 0.13

Age 77.1 74.0 75.3 74.1 72.9 76.0 73.9 74.8 0.24 0.08

Sex 0.53 0.49 0.55 0.51 0.60 0.52 0.57 0.57 0.12 0.07

Arrhythmia history 0.28 0.26 0.23 0.24 0.13 0.25 0.17 0.26 0.20 0.13

Heart Rate 98.7 101.5 96.3 97.8 90.0 100.9 94.8 97.4 0.26 0.08
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Table 7.5: Phenotype characteristics

Clusters
Variable 1 2 3 4 5 6 7 8 9 10 11 12 13

Anemia 39
(9
.3
1)

48
(3
4.
8)

12
(2
5.
5)

13
4
(1
1.
2)

7
(9
.3
3)

26
(3
5.
6)

22
(1
1.
6)

79
(1
3.
8)

11
(4
.4
4)

14
(7
.3
3)

34
4
(1
3.
2)

27
(7
.0
5)

22
(1
4.
5)

Serum
Calcium

8.
50

(8
.0
0-
9.
00
)

8.
60

(8
.1
8-
9.
30
)

8.
40

(7
.9
0-
8.
80
)

8.
70

(8
.2
0-
9.
10
)

8.
60

(7
.9
0-
9.
10
)

8.
70

(8
.2
0-
9.
00
)

8.
70

(8
.2
0-
9.
10
)

8.
40

(7
.8
0-
9.
00
)

8.
70

(8
.1
0-
9.
10
)

8.
80

(8
.3
0-
9.
20
)

8.
56

(8
.2
0-
9.
00
)

8.
60

(8
.2
0-
9.
00
)

8.
50

(7
.6
7-
9.
00
)

COPD 68
(1
6.
2)

35
(2
5.
4)

5
(1
0.
6)

22
0
(1
8.
4)

12
(1
6.
0)

24
(3
2.
9)

34
(1
8.
0)

10
1
(1
7.
6)

19
(7
.6
6)

39
(2
0.
4)

22
3
(8
.5
6)

51
(1
3.
3)

7
(4
.6
1)

Collagen
Disease

3
(0
.7
2)

10
(7
.2
5)

5
(1
0.
6)

15
(1
.2
6)

1
(1
.3
3)

0
(0
.0
0)

1
(0
.5
3)

10
(1
.7
4)

6
(2
.4
2)

2
(1
.0
5)

22
(0
.8
4)

5
(1
.3
1)

0
(0
.0
0)

Cor
Pulmonale

5
(1
.1
9)

26
(1
8.
8)

8
(1
7.
0)

11
4
(9
.5
6)

12
(1
6.
0)

26
(3
5.
6)

36
(1
9.
1)

26
(4
.5
3)

35
(1
4.
1)

40
(2
0.
9)

23
4
(8
.9
8)

16
(4
.1
8)

8
(5
.2
6)

Coronary
artery

atherosclerosis

37
(8
.8
3)

11
3
(8
1.
9)

11
(2
3.
4)

36
1
(3
0.
3)

26
(3
4.
7)

27
(3
7.
0)

30
(1
5.
9)

53
(9
.2
3)

14
(5
.6
5)

94
(4
9.
2)

18
73

(7
1.
9)

47
(1
2.
3)

19
(1
2.
5)

Creatinine

1.
10

(0
.9
0-
1.
40
)

1.
50

(1
.1
0-
2.
00
)

0.
90

(0
.7
0-
1.
30
)

1.
30

(1
.0
0-
2.
00
)

1.
10

(0
.9
0-
1.
50
)

0.
90

(0
.7
0-
1.
30
)

1.
50

(1
.0
0-
2.
40
)

1.
70

(1
.1
0-
3.
00
)

1.
10

(0
.8
7-
1.
50
)

1.
00

(0
.8
0-
1.
30
)

0.
90

(0
.8
0-
1.
10
)

1.
00

(0
.8
0-
1.
20
)

1.
80

(1
.2
0-
2.
60
)

Diabetes 34
(8
.1
1)

27
(1
9.
6)

6
(1
2.
8)

41
8
(3
5.
0)

11
(1
4.
7)

26
(3
5.
6)

38
(2
0.
1)

87
(1
5.
2)

91
(3
6.
7)

62
(3
2.
5)

55
2
(2
1.
2)

20
(5
.2
2)

31
(2
0.
4)
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Thyroid
Disorder 16

(3
.8
2)

19
(1
3.
8)

14
(2
9.
8)

16
7
(1
4.
0)

8
(1
0.
7)

15
(2
0.
6)

20
(1
0.
6)

57
(9
.9
3)

30
(1
2.
1)

29
(1
5.
2)

21
4
(8
.2
1)

34
(8
.8
8)

16
(1
0.
5)

Erythrocyte
distribution

width

14
.4

(1
3.
5-
15
.7
)

14
.6

(1
3.
6-
15
.8
)

14
.4

(1
3.
2-
15
.9
)

15
.0

(1
4.
1-
16
.4
)

14
.1

(1
3.
4-
15
.4
)

15
.1

(1
4.
2-
16
.4
)

15
.6

(1
4.
2-
17
.4
)

15
.1

(1
4.
0-
16
.6
)

14
.7

(1
3.
8-
16
.1
)

14
.3

(1
3.
6-
15
.6
)

13
.8

(1
3.
2-
14
.6
)

14
.1

(1
3.
5-
15
.2
)

15
.3

(1
4.
1-
17
.3
)

Erythrocyte
Count

3.
92

(3
.4
5-
4.
47
)

3.
69

(3
.2
9-
4.
21
)

3.
7
(3
.0
3-
4.
28
)

3.
84

(3
.3
7-
4.
33
)

4.
14

(3
.6
1-
4.
48
)

3.
83

(3
.3
9-
4.
25
)

3.
68

(3
.2
5-
4.
19
)

3.
65

(3
.2
3-
4.
15
)

3.
97

(3
.5
5-
4.
41
)

4.
03

(3
.5
5-
4.
5)

3.
85

(3
.3
-4
.3
4)

4.
03

(3
.5
8-
4.
51
)

3.
74

(3
.3
1-
4.
24
)

Heart
Failure 17

(4
.0
6)

60
(4
3.
5)

12
(2
5.
5)

74
9
(6
2.
8)

33
(4
4.
0)

59
(8
0.
8)

17
4
(9
2.
1)

15
5
(2
7.
0)

18
0
(7
2.
6)

15
6
(8
1.
7)

84
0
(3
2.
3)

70
(1
8.
3)

10
9
(7
1.
7)

Hemoglobin

12
.2

(1
0.
6-
13
.9
)

11
.3

(1
0.
1-
12
.6
)

11
.7

(1
0.
3-
12
.9
)

11
.5

(1
0.
0-
13
.0
)

12
.9

(1
0.
9-
14
.5
)

11
.2

(1
0.
4-
12
.1
)

11
.1

(9
.7
-1
2.
6)

11
.1

(9
.8
-1
2.
8)

11
.8

(1
0.
57
-1
3.
2)

12
.0

(1
0.
7-
13
.7
)

12
.6

(1
1.
4-
13
.7
)

12
.4

(1
0.
8-
13
.7
)

11
.1

(9
.9
7-
13
.0
)

Hypertension

31
2
(7
4.
5)

42
(3
0.
4)

16
(3
4.
0)

45
0
(3
7.
7)

72
(9
6.
0)

46
(6
3.
0)

27
(1
4.
3)

12
8
(2
2.
3)

81
(3
2.
7)

15
8
(8
2.
7)

17
10

(6
5.
6)

20
4
(5
3.
3)

29
(1
9.
1)

Left
Atrial
Dilation 11

3
(2
7.
0)

88
(6
3.
8)

43
(9
1.
5)

30
2
(2
5.
3)

56
(7
4.
7)

54
(7
4.
0)

94
(4
9.
7)

10
2
(1
7.
8)

24
2
(9
7.
6)

16
1
(8
4.
3)

11
25

(4
3.
2)

37
4
(9
7.
7)

14
9
(9
8.
0)
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Leukocyte
Count

10
.7

(8
.1
0-
15
.2
)

10
.3

(7
.1
0-
13
.4
)

11
.2

(7
.5
0-
16
.1
)

10
.1

(7
.5
0-
13
.3
)

8.
40

(6
.8
0-
14
.3
)

10
.7

(8
.2
0-
16
.8
)

11
.1

(8
.1
0-
15
.5
)

11
.5

(7
.7
0-
17
.0
)

10
.4

(7
.2
0-
13
.7
)

11
.1

(8
.0
0-
13
.8
)

9.
10

(6
.9
0-
12
.4
)

10
.0

(7
.1
0-
13
.1
)

11
.4

(7
.6
0-
17
.0
)

Serum
Magnesium

1.
90

(1
.7
0-
2.
10
)

2.
10

(1
.8
0-
2.
30
)

1.
90

(1
.7
0-
2.
00
)

2.
00

(1
.8
0-
2.
20
)

1.
90

(1
.7
0-
2.
10
)

2.
00

(1
.8
0-
2.
30
)

2.
10

(1
.8
0-
2.
40
)

2.
00

(1
.7
0-
2.
20
)

1.
95

(1
.7
0-
2.
20
)

1.
90

(1
.8
0-
2.
10
)

2.
08

(1
.9
0-
2.
30
)

1.
90

(1
.7
0-
2.
10
)

2.
00

(1
.7
0-
2.
30
)

Myocardial
infarction

9
(2
.1
5)

45
(3
2.
6)

8
(1
7.
0)

58
(4
.8
6)

14
(1
8.
7)

18
(2
4.
7)

54
(2
8.
6)

41
(7
.1
4)

20
(8
.0
6)

68
(3
5.
6)

32
6
(1
2.
5)

11
(2
.8
7)

18
(1
1.
8)

OSA 17
(4
.0
6)

6
(4
.3
5)

1
(2
.1
3)

83
(6
.9
6)

17
(2
2.
7)

3
(4
.1
1)

13
(6
.8
8)

22
(3
.8
3)

18
(7
.2
6)

6
(3
.1
4)

77
(2
.9
6)

12
(3
.1
3)

8
(5
.2
6)

Platelet
Count

21
4
(1
67
-2
83
)

23
4
(1
78
-2
98
)

22
4
(1
69
-2
90
)

22
2
(1
70
-2
87
)

21
1
(1
56
-2
50
)

26
0
(1
96
-3
48
)

22
5
(1
74
-3
07
)

22
2
(1
57
-3
24
)

23
4
(1
86
-3
00
)

24
5
(1
91
-3
20
)

19
5
(1
50
-2
43
)

22
1
(1
73
-2
91
)

19
6
(1
47
-2
91
)

Postoperative
Condition 13

(3
.1
0)

90
(6
5.
2)

11
(2
3.
4)

58
(4
.8
6)

10
(1
3.
3)

21
(2
8.
8)

15
(7
.9
4)

20
(3
.4
8)

13
(5
.2
4)

70
(3
6.
7)

24
07

(9
2.
4)

26
(6
.7
9)

8
(5
.2
6)

Serum
Potassium

4.
20

(3
.8
0-
4.
60
)

4.
40

(3
.8
0-
4.
90
)

4.
10

(3
.8
0-
4.
50
)

4.
30

(3
.9
0-
4.
80
)

4.
20

(3
.9
0-
4.
60
)

4.
28

(3
.7
0-
4.
80
)

4.
40

(3
.9
0-
5.
10
)

4.
40

(3
.9
0-
5.
00
)

4.
25

(3
.9
0-
4.
80
)

4.
10

(3
.9
0-
4.
60
)

4.
20

(3
.9
0-
4.
50
)

4.
10

(3
.8
0-
4.
50
)

4.
40

(3
.9
0-
4.
92
)
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Prothrombin
time

14
.4

(1
3.
2-
18
.4
)

13
.9

(1
3.
0-
16
.4
)

13
.8

(1
2.
8-
19
.6
)

16
.1

(1
3.
4-
24
.5
)

14
.6

(1
3.
1-
17
.5
)

14
.8

(1
3.
1-
22
.1
)

15
.2

(1
3.
4-
19
.6
)

14
.9

(1
3.
3-
19
.6
)

15
.3

(1
3.
3-
21
.2
)

13
.9

(1
2.
8-
18
.3
)

14
.0

(1
3.
0-
15
.7
)

14
.1

(1
2.
9-
17
.2
)

15
.8

(1
4.
0-
21
.2
)

Renal
insu�ciency 10

7
(2
5.
5)

11
4
(8
2.
6)

4
(8
.5
1)

69
5
(5
8.
3)

25
(3
3.
3)

23
(3
1.
5)

13
9
(7
3.
5)

50
4
(8
7.
8)

89
(3
5.
9)

51
(2
6.
7)

24
3
(9
.3
3)

21
(5
.4
8)

13
5
(8
8.
8)

Respiratory
Failure 10

2
(2
4.
3)

25
(1
8.
1)

2
(4
.2
6)

15
2
(1
2.
7)

10
(1
3.
3)

36
(4
9.
3)

10
8
(5
7.
1)

22
7
(3
9.
6)

72
(2
9.
0)

30
(1
5.
7)

71
(2
.7
3)

40
(1
0.
4)

13
9
(9
1.
5)

Rheumatism 1
(0
.2
4)

12
(8
.7
0)

5
(1
0.
6)

45
(3
.7
7)

6
(8
.0
0)

12
(1
6.
4)

9
(4
.7
6)

11
(1
.9
2)

5
(2
.0
2)

16
(8
.3
8)

15
2
(5
.8
3)

13
(3
.3
9)

6
(3
.9
5)

Right
Atrial
Dilation

40
(9
.5
5)

23
(1
6.
7)

24
(5
1.
1)

18
1
(1
5.
2)

52
(6
9.
3)

43
(5
8.
9)

68
(3
6.
0)

47
(8
.1
9)

20
8
(8
3.
9)

10
2
(5
3.
4)

60
2
(2
3.
1)

32
0
(8
3.
6)

13
6
(8
9.
5)

Sepsis 76
(1
8.
1)

11
(7
.9
7)

14
(2
9.
8)

11
6
(9
.7
2)

24
(3
2.
0)

20
(2
7.
4)

32
(1
6.
9)

30
2
(5
2.
6)

4
(1
.6
1)

10
(5
.2
4)

16
(0
.6
1)

23
(6
.0
1)

12
1
(7
9.
6)

Serum
Sodium

13
9
(1
36
-1
41
)

13
8
(1
35
-1
40
)

13
9
(1
35
-1
42
)

13
9
(1
36
-1
41
)

13
8
(1
36
-1
41
)

13
9
(1
36
-1
41
)

13
9
(1
36
-1
41
)

13
9
(1
35
-1
42
)

13
9
(1
37
-1
42
)

13
9
(1
36
-1
41
)

13
9
(1
37
-1
41
)

13
9
(1
37
-1
41
)

13
7
(1
34
-1
40
)

Valvulopathy 41
(9
.7
9)

32
(2
3.
2)

36
(7
6.
6)

26
2
(2
2.
0)

48
(6
4.
0)

32
(4
3.
8)

51
(2
7.
0)

47
(8
.1
9)

41
(1
6.
5)

10
2
(5
3.
4)

14
78

(5
6.
7)

41
(1
0.
7)

20
(1
3.
2)
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Age

76
.2

(6
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3-
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.1
)
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7
(6
5.
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(7
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)
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.0
3
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1-
84
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)
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.4

(6
5.
4-
80
.4
)
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.4
5
(6
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83
.0
)
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.9

(6
5.
8-
83
.9
)

Male
Sex 40

2
(9
5.
9)

59
(4
2.
8)

1
(2
.1
3)
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0
(5
4.
5)
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(9
3.
3)

14
(1
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7
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6.
6)

31
6
(5
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1)

45
(1
8.
2)

43
(2
2.
5)

16
22

(6
2.
3)

21
5
(5
6.
1)

10
8
(7
1.
1)

Arrhythmia
History 32

(7
.6
4)

14
(1
0.
1)

15
(3
1.
9)

67
8
(5
6.
8)

27
(3
6.
0)

12
(1
6.
4)

32
(1
6.
9)

81
(1
4.
1)

43
(1
7.
3)

40
(2
0.
9)

25
7
(9
.8
7)

11
0
(2
8.
7)

21
(1
3.
8)

Heart
Rate

87
.0

(7
5.
0-
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3)

85
.0

(7
5.
0-
96
.0
)

87
.0

(7
7.
0-
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0)
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.1
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2.
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5)
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.0

(7
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91
.0
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9)
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4.
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3)

85
.0
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.0
)
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.0

(7
7.
0-
90
.0
)

86
.0

(7
4.
0-
10
4)

95
.0

(7
9.
8-
11
4)

Hourly
Rhythm
Control
BBs

1.
49

(0
.9
2-
2.
88
)

6.
54

(3
.3
9-
16
.8
)

3.
28

(0
.0
0-
7.
58
)

2.
49

(1
.8
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)

1.
15

(0
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)
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1.
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)

3.
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)
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25
)

2.
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(1
.8
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95
)
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Control
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8.
62

(6
.2
2-
13
.1
)

10
.2

(7
.0
8-
23
.5
)

12
.9

(7
.3
1-
40
.6
)

6.
64

(4
.7
7-
9.
82
)

11
.6

(7
.4
6-
39
.6
)

7.
71

(3
.1
2-
25
.7
)

3.
00

(1
.3
3-
8.
78
)

8.
77

(5
.8
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14
.7
)

6.
47

(4
.1
0-
14
.2
)

14
.4

(1
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24
.5
)
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(8
.6
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.2
)

11
.2
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.3
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26
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)
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59
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)
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6.
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(4
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)
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)

5.
71

(0
.0
0-
23
.5
)
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9-
9.
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)

4.
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(2
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)
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(2
.0
1-
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)
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Appendix

Hourly
Rhythm
Control
MgS

2.
53

(1
.2
4-
6.
91
)

0.
00

(0
.0
0-
0.
00
)

3.
00

(0
.0
0-
13
.7
)

2.
02

(1
.3
6-
3.
24
)

0.
00

(0
.0
0-
0.
00
)

1.
43

(0
.0
0-
6.
65
)

0.
03
9
(0
.0
0-
2.
3)

2.
70

(1
.4
6-
5.
28
)

0.
85

(0
.1
8-
3.
13
)

0.
96

(0
.0
94
-5
.3
)

3.
13

(2
.2
4-
5.
84
)

2.
03

(1
.0
0-
3.
99
)

2.
17

(0
.4
0-
5.
91
)

Hourly
Rate

Control
BBs

11
.5

(5
.9
8-
31
.6
)

11
.8

(6
.8
6-
10
0)

11
.7

(5
.0
0-
10
0)

12
.6

(7
.3
2-
19
.1
)

5.
79

(2
.4
9-
18
.1
)

30
.6

(2
4.
5-
14
5)

5.
30

(1
.7
5-
19
.8
)

8.
50

(5
.0
2-
21
.7
)
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.1

(6
.7
6-
24
.8
)

15
.3

(6
.6
1-
25
.8
)

8.
85

(6
.0
3-
15
.5
)

11
.3

(5
.2
2-
31
.7
)

3.
24

(0
.3
2-
8.
93
)

Hourly
Rate

Control
PCBs

14
.3

(6
.6
9-
25
.6
)

6.
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(3
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4-
27
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)
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(0
.0
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)
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.2
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)
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.0
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.3
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33
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)
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)
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.9
)
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.6

(7
.5
2-
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)
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)
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)
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.5
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)
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)
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)
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)
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)
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Appendix

Table 7.6: Phenotype characteristics, continued.

Clusters
Variable 14 15 16 17 18 19 20 21 22 23 24 25 26

Anemia 50
(2
2.
0)

10
(7
.3
0)

89
(1
0.
9)

3
(1
0.
3)

52
(1
1.
9)

14
(1
3.
2)

41
(6
.7
8)

13
(3
1.
7)

6
(5
.2
2)

28
(8
.5
6)

12
(1
9.
7)

4
(1
4.
3)

20
(1
0.
8)

Serum
Calcium

8.
50

(7
.8
0-
8.
90
)

8.
70

(8
.3
0-
9.
20
)

8.
60

(8
.2
0-
9.
10
)

8.
20

(7
.9
0-
8.
90
)

8.
72

(8
.3
0-
9.
10
)

8.
60

(8
.2
0-
9.
10
)

8.
70

(8
.2
0-
9.
20
)

9.
10

(8
.7
0-
9.
50
)

8.
40

(7
.8
0-
8.
90
)

8.
66

(8
.2
0-
9.
20
)

8.
50

(8
.0
0-
9.
10
)

8.
50

(8
.1
7-
9.
03
)

8.
60

(8
.1
0-
8.
90
)

COPD 98
(4
3.
2)

16
(1
1.
7)

68
(8
.3
4)

2
(6
.9
0)

56
(1
2.
8)

5
(4
.7
2)

64
(1
0.
6)

25
(6
1.
0)

24
(2
0.
9)

30
(9
.1
7)

10
(1
6.
4)

3
(1
0.
7)

17
(9
.1
9)

Collagen
disease

5
(2
.2
0)

5
(3
.6
5)

4
(0
.4
9)

0
(0
.0
0)

2
(0
.4
6)

2
(1
.8
9)

7
(1
.1
6)

0
(0
.0
0)

1
(0
.8
7)

3
(0
.9
2)

2
(3
.2
8)

0
(0
.0
0)

4
(2
.1
6)

Cor
pulmonale 13

(5
.7
3)

3
(2
.1
9)

11
(1
.3
5)

1
(3
.4
5)

51
(1
1.
6)

9
(8
.4
9)

39
(6
.4
5)

7
(1
7.
1)

5
(4
.3
5)

15
(4
.5
9)

3
(4
.9
2)

0
(0
.0
0)

11
(5
.9
5)

Coronary
artery

atherosclerosis

37
(1
6.
3)

19
(1
3.
9)

50
(6
.1
3)

5
(1
7.
2)

37
8
(8
6.
3)

8
(7
.5
5)

99
(1
6.
4)

3
(7
.3
2)

1
(0
.8
7)

10
7
(3
2.
7)

16
(2
6.
2)

13
(4
6.
4)

20
(1
0.
8)

Creatinine

1.
40

(1
.0
0-
2.
50
)

0.
86

(0
.7
0-
1.
10
)

0.
90

(0
.7
0-
1.
10
)

1.
20

(0
.7
0-
1.
70
)

1.
30

(1
.0
0-
1.
60
)

1.
00

(0
.9
0-
1.
60
)

1.
50

(1
.1
0-
2.
30
)

1.
50

(1
.1
0-
2.
10
)

0.
90

(0
.7
0-
1.
10
)

1.
00

(0
.8
0-
1.
30
)

1.
40

(0
.9
0-
1.
70
)

2.
25

(1
.2
0-
3.
45
)

1.
00

(0
.8
0-
1.
20
)

Diabetes

13
0
(5
7.
3)

13
(9
.4
9)

10
5
(1
2.
9)

3
(1
0.
3)

20
7
(4
7.
3)

4
(3
.7
7)

15
4
(2
5.
5)

31
(7
5.
6)

4
(3
.4
8)

51
(1
5.
6)

9
(1
4.
8)

1
(3
.5
7)

32
(1
7.
3)
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Thyroid
Disorder 43

(1
8.
9)

12
4
(9
0.
5)

41
(5
.0
3)

9
(3
1.
0)

31
(7
.0
8)

45
(4
2.
5)

50
(8
.2
6)

3
(7
.3
2)

5
(4
.3
5)

46
(1
4.
1)

2
(3
.2
8)

3
(1
0.
7)

10
(5
.4
1)

Erythrocyte
distribution

width

15
.7

(1
4.
5-
17
.3
)

14
.2

(1
3.
4-
15
.3
)

14
.1

(1
3.
4-
15
.3
)

14
.2

(1
3.
1-
16
.6
)

14
.2

(1
3.
6-
15
.2
)

14
.5

(1
3.
7-
16
.2
)

15
.2

(1
4.
2-
16
.9
)

15
.7

(1
4.
7-
16
.7
)

14
.3

(1
3.
6-
15
.6
)

14
.6

(1
3.
7-
15
.8
)

14
.4

(1
3.
7-
16
.0
)

14
.7

(1
3.
6-
15
.5
)

14
.3

(1
3.
7-
15
.6
)

Erythrocyte
Count

3.
57

(3
.1
-4
.0
9)

3.
99

(3
.6
1-
4.
34
)

3.
99

(3
.5
9-
4.
48
)

3.
72

(3
.4
-3
.9
5)

4.
04

(3
.5
1-
4.
47
)

3.
90

(3
.4
6-
4.
5)

3.
79

(3
.3
1-
4.
33
)

3.
99

(3
.4
5-
4.
36
)

3.
99

(3
.5
1-
4.
43
)

3.
99

(3
.5
4-
4.
42
)

3.
65

(3
.0
3-
4.
14
)

3.
65

(3
.2
2-
4.
08
)

4.
15

(3
.5
5-
4.
57
)

Heart
Failure 11

3
(4
9.
8)

13
(9
.4
9)

15
8
(1
9.
4)

1
(3
.4
5)

31
5
(7
1.
9)

85
(8
0.
2)

46
2
(7
6.
4)

39
(9
5.
1)

14
(1
2.
2)

23
4
(7
1.
6)

19
(3
1.
2)

21
(7
5.
0)

40
(2
1.
6)

Hemoglobin

10
.5

(9
.3
0-
12
.1
)

12
.3

(1
1.
2-
13
.6
)

12
.2

(1
0.
8-
13
.6
)

11
.3

(1
0.
9-
12
.1
)

12
.4

(1
1.
1-
13
.5
)

12
.0

(1
0.
2-
13
.3
)

11
.6

(1
0.
2-
13
.1
)

11
.6

(1
0.
0-
13
.4
)

12
.2

(1
0.
5-
13
.6
)

12
.1

(1
0.
8-
13
.3
)

11
.7

(1
0.
3-
12
.9
)

11
.0

(9
.9
7-
12
.1
)

12
.7

(1
1.
0-
14
.3
)

Hypertension 47
(2
0.
7)

11
6
(8
4.
7)

31
8
(3
9.
0)

27
(9
3.
1)

17
9
(4
0.
9)

61
(5
7.
6)

11
7
(1
9.
3)

24
(5
8.
5)

8
(6
.9
6)

27
3
(8
3.
5)

2
(3
.2
8)

8
(2
8.
6)

10
7
(5
7.
8)

Left
Atrial
Dilation

65
(2
8.
6)

38
(2
7.
7)

81
(9
.9
4)

28
(9
6.
6)

34
4
(7
8.
5)

99
(9
3.
4)

51
4
(8
5.
0)

40
(9
7.
6)

14
(1
2.
2)

12
(3
.6
7)

12
(1
9.
7)

26
(9
2.
9)

7
(3
.7
8)
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Appendix

Leukocyte
Count

10
.9

(7
.4
0-
15
.8
)

10
.6

(7
.0
0-
14
.1
)

10
.6

(7
.7
0-
13
.9
)

11
.6

(6
.7
0-
14
.6
)

8.
90

(6
.8
0-
12
.6
)

10
.4

(7
.5
0-
14
.3
)

10
.0

(7
.0
0-
14
.5
)

9.
60

(7
.8
0-
13
.4
)

11
.3

(8
.0
0-
15
.4
)

10
.7

(7
.7
0-
13
.8
)

8.
90

(7
.6
0-
12
.8
)

11
.7

(1
0.
25
-1
6.
3)

9.
50

(6
.8
0-
13
.0
)

Serum
Magnesium

2.
00

(1
.7
0-
2.
20
)

1.
90

(1
.8
0-
2.
00
)

1.
89

(1
.7
0-
2.
10
)

2.
00

(1
.8
0-
2.
20
)

2.
10

(1
.9
0-
2.
30
)

2.
00

(1
.8
0-
2.
20
)

2.
00

(1
.8
0-
2.
30
)

2.
10

(1
.9
0-
2.
30
)

1.
90

(1
.6
0-
2.
10
)

1.
90

(1
.7
0-
2.
10
)

2.
20

(1
.9
0-
2.
40
)

2.
00

(1
.7
0-
2.
32
)

1.
90

(1
.7
0-
2.
10
)

Myocardial
infarction

5
(2
.2
0)

1
(0
.7
3)

25
(3
.0
7)

3
(1
0.
3)

12
7
(2
9.
0)

0
(0
.0
0)

27
(4
.4
6)

3
(7
.3
2)

6
(5
.2
2)

10
(3
.0
6)

5
(8
.2
)

24
(8
5.
7)

7
(3
.7
8)

OSA 31
(1
3.
7)

5
(3
.6
5)

11
(1
.3
5)

0
(0
.0
0)

31
(7
.0
8)

4
(3
.7
7)

23
(3
.8
0)

1
(2
.4
4)

1
(0
.8
7)

2
(0
.6
1)

2
(3
.2
8)

0
(0
.0
0)

9
(4
.8
6)

Platelet
Count

23
3
(1
58
-3
08
)

23
9
(1
96
-2
98
)

24
2
(1
83
-3
08
)

20
7
(1
26
-2
68
)

20
6
(1
63
-2
56
)

23
5
(1
74
-3
19
)

20
9
(1
57
-2
67
)

24
0
(1
89
-2
76
)

22
7
(1
51
-3
02
)

23
3
(1
76
-2
98
)

20
7
(1
51
-2
63
)

21
9
(1
81
-2
89
)

22
2
(1
67
-2
79
)

Postoperative
Condition

4
(1
.7
6)

5
(3
.6
5)

33
(4
.0
5)

1
(3
.4
5)

35
1
(8
0.
1)

1
(0
.9
4)

23
(3
.8
0)

0
(0
.0
0)

0
(0
.0
0)

18
(5
.5
0)

44
(7
2.
1)

1
(3
.5
7)

7
(3
.7
8)

Serum
Potassium

4.
30

(3
.8
0-
4.
90
)

4.
10

(3
.8
0-
4.
40
)

4.
10

(3
.8
0-
4.
50
)

4.
30

(4
.0
0-
5.
10
)

4.
20

(3
.9
0-
4.
70
)

4.
20

(3
.6
0-
4.
60
)

4.
30

(3
.9
0-
4.
90
)

4.
60

(4
.1
0-
5.
40
)

4.
00

(3
.7
0-
4.
60
)

4.
10

(3
.8
0-
4.
60
)

4.
30

(3
.8
0-
4.
70
)

4.
60

(3
.9
0-
4.
92
)

4.
10

(3
.8
0-
4.
50
)

184



i
i

i
i

i
i

i
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Prothrombin
time

15
.9

(1
3.
8-
25
.3
)

14
.0

(1
2.
9-
21
.4
)

13
.9

(1
2.
7-
17
.2
)

15
.8

(1
3.
4-
23
.5
)

14
.2

(1
3.
0-
16
.3
)

14
.2

(1
2.
8-
21
.6
)

15
.7

(1
3.
7-
21
.6
)

14
.7

(1
3.
3-
22
.3
)

14
.2

(1
3.
2-
17
.3
)

14
.5

(1
3.
0-
19
.5
)

14
.1

(1
3.
4-
16
.1
)

15
.0

(1
4.
2-
20
.8
)

15
.2

(1
3.
2-
21
.4
)

Renal
insu�ciency 16

8
(7
4.
0)

12
(8
.7
6)

35
(4
.2
9)

19
(6
5.
5)

22
9
(5
2.
3)

40
(3
7.
7)

40
9
(6
7.
6)

31
(7
5.
6)

10
(8
.7
0)

66
(2
0.
2)

50
(8
2.
0)

24
(8
5.
7)

18
(9
.7
3)

Respiratory
Failure 58

(2
5.
6)

23
(1
6.
8)

16
(1
.9
6)

5
(1
7.
2)

48
(1
1.
0)

9
(8
.4
9)

68
(1
1.
2)

7
(1
7.
1)

11
2
(9
7.
4)

60
(1
8.
4)

5
(8
.2
0)

5
(1
7.
9)

20
(1
0.
8)

Rheumatism 2
(0
.8
8)

5
(3
.6
5)

9
(1
.1
0)

0
(0
.0
0)

24
(5
.4
8)

1
(0
.9
4)

37
(6
.1
2)

0
(0
.0
0)

1
(0
.8
7)

25
(7
.6
5)

2
(3
.2
8)

1
(3
.5
7)

3
(1
.6
2)

Right
Atrial
Dilation

17
(7
.4
9)

29
(2
1.
2)

38
(4
.6
6)

10
(3
4.
5)

27
9
(6
3.
7)

64
(6
0.
4)

46
3
(7
6.
53
)

35
(8
5.
4)

2
(1
.7
4)

6
(1
.8
3)

0
(0
.0
0)

18
(6
4.
3)

6
(3
.2
4)

Sepsis 84
(3
7.
0)

6
(4
.3
8)

41
(5
.0
3)

12
(4
1.
4)

23
(5
.2
5)

6
(5
.6
6)

11
8
(1
9.
5)

9
(2
2.
0)

18
(1
5.
7)

25
(7
.6
5)

0
(0
.0
0)

12
(4
2.
9)

21
(1
1.
4)

Serum
Sodium

13
8
(1
35
-1
41
)

13
8
(1
36
-1
41
)

13
9
(1
37
-1
41
)

13
8
(1
34
-1
42
)

13
9
(1
36
-1
41
)

13
9
(1
36
-1
42
)

13
8
(1
35
-1
41
)

13
7
(1
34
-1
40
)

14
0
(1
37
-1
42
)

13
9
(1
37
-1
42
)

13
9
(1
37
-1
41
)

13
9
(1
36
-1
41
)

13
9
(1
37
-1
41
)

Valvulopathy

30
(1
3.
22
)

15
(1
0.
95
)

58
(7
.1
2)

14
(4
8.
3)

17
2
(3
9.
3)

7
(6
.6
0)

20
4
(3
3.
7)

9
(2
2.
0)

3
(2
.6
1)

39
(1
1.
9)

56
(9
1.
8)

1
(3
.5
7)

26
(1
4.
1)
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Appendix

Age
75
.6

(6
9.
1-
83
.3
)

81
.8

(7
3.
4-
87
.3
)

76
.5

(6
5.
2-
84
.7
)

80
.1

(6
5.
8-
84
.5
)

74
.0

(6
6.
7-
79
.8
)

84
.4

(7
7.
4-
88
.6
)

78
.3

(7
0.
0-
84
.7
)

80
.3

(7
3.
6-
85
.5
)

73
.6

(6
3.
1-
81
.8
)

81
.7

(7
4.
4-
87
.4
)

75
.4

(6
7.
2-
79
.8
)

84
.9

(8
1.
2-
87
.7
)

77
.0

(6
5.
3-
84
.2
)

Male
Sex 10

4
(4
5.
8)

15
(1
1.
0)

26
4
(3
2.
4)

1
(3
.4
5)

39
9
(9
1.
1)

14
(1
3.
2)

54
2
(8
9.
6)

10
(2
4.
4)

71
(6
1.
7)

11
0
(3
3.
6)

22
(3
6.
1)

17
(6
0.
7)

14
3
(7
7.
3)

Arrhythmia
History 10

4
(4
5.
8)

45
(3
2.
9)

18
(2
.2
1)

3
(1
0.
3)

84
(1
9.
2)

67
(6
3.
2)

83
(1
3.
7)

0
(0
.0
0)

11
(9
.5
7)

13
(3
.9
8)

7
(1
1.
5)

5
(1
7.
9)

15
7
(8
4.
9)

Heart
Rate

87
(7
5.
0-
10
3)

85
.0

(7
1.
0-
99
.0
)

87
.0

(7
4.
0-
10
3)

91
.0

(7
8.
0-
10
8)

84
.0

(7
5.
0-
93
.0
)

89
.5

(7
6.
0-
11
0)

86
.3

(7
4.
0-
10
4)

86
.0

(7
0.
0-
10
4)

91
.0

(7
9.
0-
10
8)

83
.0

(7
0.
0-
96
.0
)

86
.0

(7
5.
0-
90
.0
)

76
.0

(6
8.
5-
10
3)

86
.0

(7
1.
0-
10
0)

Hourly
Rhythm
Control
BBs

1.
28

(0
.5
6-
3.
31
)

3.
81

(1
.9
2-
10
.8
)

3.
41

(2
.4
4-
5.
05
)

1.
90

(0
.0
0-
5.
60
)

3.
38

(2
.2
0-
4.
52
)

3.
93

(1
.4
6-
6.
16
)

1.
58

(1
.1
3-
2.
24
)

2.
88

(0
.9
2-
6.
58
)

2.
11

(0
.0
92
-6
.7
7)

2.
14

(1
.0
8-
3.
35
)

0.
00

(0
.0
0-
0.
00
)

5.
62

(1
.4
5-
48
.0
)

1.
63

(0
.6
2-
3.
82
)

Hourly
Rhythm
Control
PCBs

8.
76

(4
.6
4-
17
.1
)

6.
56

(2
.0
2-
45
.5
)

8.
74

(6
.4
5-
16
.4
)

13
.7

(9
.5
7-
42
.6
)

8.
08

(6
.1
7-
13
.8
)

3.
64

(0
.0
0-
40
.0
)

5.
22

(3
.2
1-
8.
77
)

6.
08

(6
.0
8-
6.
08
)

9.
22

(5
.8
4-
30
.9
)

7.
00

(3
.2
5-
37
.1
)

15
.0

(9
.6
1-
35
.6
)

0.
00

(0
.0
0-
7.
60
)

10
.2

(4
.1
2-
46
.6
)

Hourly
Rhythm
Control
CCBs

3.
40

(0
.9
8-
5.
33
)

6.
60

(3
.7
3-
18
.6
)

4.
09

(3
.3
2-
6.
84
)

0.
12

(0
.0
0-
7.
15
)

2.
53

(0
.9
6-
5.
87
)

3.
91

(2
.0
7-
6.
50
)

3.
77

(2
.9
8-
5.
93
)

1.
95

(0
.1
1-
5.
65
)

5.
86

(3
.7
4-
25
.2
)

4.
58

(2
.4
1-
7.
7)

N
aN

0.
00

(0
.0
0-
0.
00
)

4.
34

(1
.6
6-
8.
48
)]
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i
i

i
i

i
i

i
i

Hourly
Rhythm
Control
MgS

0.
64

(0
.0
27
-3
.8
9)

0.
19

(0
.0
0-
5.
78
)

1.
59

(0
.6
2-
3.
55
)

0.
00

(0
.0
0-
0.
00
)

3.
29

(1
.0
1-
7.
45
)

0.
00

(0
.0
0-
2.
41
)

2.
08

(1
.2
7-
3.
53
)

0.
51

(0
.0
0-
12
.5
)

3.
47

(1
.2
0-
23
.3
)

0.
00

(0
.0
0-
0.
73
)

2.
93

(0
.0
0-
5.
00
)

1.
68

(0
.0
0-
33
.3
)

1.
41

(0
.0
93
-4
.9
1)

Hourly
Rate

Control
BBs

3.
17

(1
.4
6-
17
.0
)

9.
99

(5
.7
8-
30
.8
)

10
.3

(4
.9
4-
16
.7
)

29
.5

(2
5.
0-
10
0)

19
.2

(9
.9
7-
32
.0
)

5.
77

(0
.0
0-
13
.5
)

5.
28

(3
.8
0-
11
.2
)

12
.9

(4
.2
3-
56
.5
)

7.
74

(1
.1
9-
50
.0
)

17
.3

(6
.3
8-
24
.9
)

25
.0

(2
5.
0-
25
.0
)

9.
67

(2
.5
0-
30
0)

15
.8

(6
.3
3-
15
2)

Hourly
Rate

Control
PCBs

9.
97

(6
.4
9-
25
.2
)

11
.7

(0
.0
0-
16
9)

13
.3

(6
.6
7-
24
.1
)

8.
75

(1
.9
2-
51
.8
)

14
.9

(9
.9
6-
26
.1
)

14
.7

(0
.0
0-
26
5)

15
.1

(7
.3
0-
34
.8
)

11
7
(1
00
-1
30
)

8.
35

(0
.0
0-
24
.8
)

6.
58

(0
.0
0-
77
.0
)

8.
09

(1
.7
3-
27
.3
)

8.
93

(7
.5
5-
8.
96
)

14
.1

(1
.9
8-
29
.0
)

Hourly
Rate

Control
CCBs

12
.0

(7
.3
7-
32
.4
)

21
.7

(1
.0
6-
86
.9
)

19
.2

(1
3.
2-
33
.6
)

6.
31

(0
.0
0-
13
7)

9.
12

(4
.4
6-
25
.8
)

6.
38

(2
.8
6-
21
.3
)

13
.0

(8
.5
6-
28
.8
)

21
.8

(1
4.
8-
15
7)

14
.8

(7
.7
7-
35
.4
)

14
.5

(6
.3
9-
40
.1
)

N
aN

21
5
(1
46
-6
00
)

19
.2

(6
.3
3-
71
.7
)

Hourly
Rate

Control
MgS

7.
07

(0
.0
0-
10
0)

33
.3

(3
3.
3-
33
.3
)

4.
45

(0
.0
0-
41
.2
)

50
.0

(5
0.
0-
50
.0
)

16
.5

(8
.5
8-
10
0.
0)

16
.6

(9
.2
0-
55
.5
)

13
.1

(7
.1
2-
31
.1
)

13
.3

(1
3.
3-
13
.3
)

21
.8

(7
.4
8-
76
.9
)

9.
17

(0
.0
0-
20
.6
)

0.
00

(0
.0
0-
0.
00
)

0.
00

(0
.0
0-
0.
00
)

10
0
(1
00
-1
00
)

Daily
Mortality
Rate
BBs

1.
32

(0
.5
4-
3.
24
)

0.
66

(0
.0
0-
1.
78
)

1.
24

(0
.6
4-
2.
17
)

6.
71

(0
.0
0-
14
.7
)

0.
73

(0
.2
6-
1.
31
)

1.
85

(0
.7
6-
3.
45
)

1.
61

(0
.9
2-
2.
02
)

2.
08

(0
.1
4-
11
.0
)

3.
21

(0
.9
3-
10
.5
)

1.
73

(1
.0
3-
3.
06
)

14
.3

(0
.0
0-
14
.3
)

3.
04

(0
.0
0-
26
.7
)

0.
00

(0
.0
0-
0.
42
)
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Appendix

Daily
Mortality
Rate
PCBs

2.
31

(0
.8
2-
6.
88
)

3.
48

(0
.6
1-
8.
40
)

0.
85

(0
.3
0-
1.
70
)

4.
81

(0
.9
4-
12
.1
)

0.
96

(0
.6
4-
1.
81
)

0.
14

(0
.0
0-
6.
78
)

2.
44

(1
.2
8-
3.
88
)

0.
00

(0
.0
0-
0.
00
)

0.
87

(0
.0
0-
2.
63
)

2.
64

(0
.4
8-
11
.4
)

1.
40

(0
.0
43
-2
.5
8)

8.
46

(6
.3
6-
48
.0
)

0.
00

(0
.0
0-
2.
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