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Abstract 

Micromobility refers to compact, low-mass, low-speed devices for short-distance urban 

travel, either personal or shared. They are being integrated into busy streets as part of a 

shift from auto-centric to slower, more pedestrian-friendly city designs. However, the 

integration has created safety risks and discomfort for both micromobility users and motor 

traffic due to large differences in speed and mass. To address this, urban designers 

implement measures such as protected lanes, lanes with differential heights, and buffered 

lanes to create space between bike lanes and roads on busier streets. Through this 

dedicated infrastructure, tangent-to-curve transitions or isolated curves are the most 

critical segments of bike lane when considering safety measures. Their design can 

significantly influence user behavior, often leading to conflicts with other bike lane users, 

pedestrians, and frequent fall incidents. Unfortunately, many of these incidents on a bike 

lane go underreported, but the risk persists in serious scenarios. The primary aim of this 

thesis is to identify potential conflict situations by introducing a novel safety indicator, 

the "Effective Fitted Radius", and a dynamic tracking methodology to assess the safety 

of micromobility users (cyclists and e-scooters) on isolated bike lane curves. This 

methodology comprises six key components: (i) site selection, (ii) geometric data 

collection, (iii) video recording, (iv) speed and position extraction, (v) visualization, and 

(vi) analysis. Naturalistic video data from 900 bike lane users at nine curve sites with 

varied geometry were collected to examine their spatio-temporal movement patterns. For 

this purpose, each curve was divided into three sections -Point of Curvature (PC), 

Midpoint (MP), and Point of Tangency (PT)-, and four areas of interest were defined to 

capture lateral position and speed. Subsequently, the outcomes were visualized using 

Python to analyze fitted trajectories, lane violation heat maps, and speed patterns. The 

Effective Fitted Radius was then computed from fitted circular curves, and one-way 

Analysis of Variance (ANOVA) was conducted to compare mean values. The resulting 

raincloud plots revealed significant variations in Effective Fitted Radius between right-

turn and left-turn movements, particularly in smaller curve radii. Users, irrespective of 

their type, tended to cut the curve and generate smaller Effective Fitted Radius values 

during left-turns. Lateral displacement heat maps further confirmed that left-turn users 

often violated dedicated lanes, posing collision risks. In larger curve radii (22 and 78 

meters), right-turn users maintain similar patterns observed in smaller radii, while left-

turn users follow the curve geometry, reducing lane violations. For e-scooters, Effective 

Fitted Radius values cluster more closely around the actual radius in smaller radii. Speed 

analysis underscored potential conflicts and reduced handling capabilities for users 

breaching lane boundaries. In conclusion, the Effective Fitted Radius emerges as a 

valuable indicator for assessing and identifying risky behavioral patterns among 

micromobility users, many of which could escalate the risk of head-on, crossing, and side-

angled conflicts between users. This thesis advances the understanding and methodology 

of micromobility infrastructure design by introducing the Effective Fitted Radius (EFR) 

as a novel movement-based surrogate measure of safety, offering a detailed spatial risk 

analysis and addressing critical limitations in current motion data extraction and 

trajectory analysis methods in high resolution. 
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Resumen 

La micromovilidad se refiere a dispositivos compactos, de baja masa y baja velocidad 

para viajes urbanos de corta distancia, ya sean personales o compartidos. Se están 

integrando en calles concurridas como parte de una transición de diseños urbanos 

centrados en automóviles a diseños más lentos y amigables para peatones. Sin embargo, 

esta integración ha creado riesgos de seguridad e incomodidades tanto para los usuarios 

de micromovilidad como para el tráfico motorizado debido a las grandes diferencias en 

velocidad y masa. Para abordar esto, los diseñadores urbanos implementan medidas como 

carriles protegidos, carriles con alturas diferentes y carriles con separación para crear 

espacio entre los carriles para bicicletas y las calzadas en recta más transitadas. A través 

de esta infraestructura dedicada, las transiciones de recta a curva o curvas aisladas son los 

segmentos más críticos de los carriles para bicicletas al considerar medidas de seguridad. 

Su diseño puede influir significativamente en el comportamiento de los usuarios, a 

menudo provocando conflictos con otros usuarios del carril para bicicletas, peatones e 

incidentes de caídas frecuentes. Desafortunadamente, muchos de estos incidentes en un 

carril para bicicletas no se informan, pero el riesgo persiste en escenarios graves. El 

objetivo principal de esta tesis es identificar situaciones potenciales de conflicto mediante 

la introducción de un nuevo indicador de seguridad, el "Radio Ajustado Efectivo", y una 

metodología de seguimiento dinámico para evaluar la seguridad de los usuarios de 

micromovilidad (ciclistas y patinetes) en curvas aisladas de carriles para bicicletas. Esta 

metodología comprende seis componentes clave: (i) selección de la localización, (ii) 

recopilación de datos geométricos, (iii) grabación de video, (iv) extracción de trayectorias 

y velocidad, (v) visualización y (vi) análisis. Se recopilaron datos de video naturalistas de 

900 usuarios de carriles para bicicletas en nueve localizaciones de curvas con geometría 

variada para examinar sus patrones de movimiento espaciotemporales. Para este 

propósito, cada curva se dividió en tres secciones: Punto de Curvatura (PC), Punto Medio 

(PM) y Punto de Tangencia (PT), y se definieron cuatro áreas de interés para capturar la 

posición lateral y la velocidad. Posteriormente, los resultados se visualizaron usando 

Python para analizar trayectorias ajustadas, mapas de calor de violación de carriles y 

patrones de velocidad. Luego se calculó el Radio Ajustado Efectivo a partir de curvas 

circulares ajustadas y se realizó un Análisis de Varianza (ANOVA) unidireccional para 

comparar los valores medios. Los gráficos resultantes revelaron variaciones significativas 

en el Radio Ajustado Efectivo entre movimientos de giro a la derecha y a la izquierda, 

particularmente en radios de curvas más pequeños. Los usuarios, independientemente de 

su tipo, tendieron a cortar la curva y generar valores de Radio Ajustado Efectivo más 

pequeños durante los giros a la izquierda. Los mapas de calor de desplazamiento lateral 

confirmaron además que los usuarios que giraban a la izquierda a menudo violaban los 

carriles dedicados, aumentando el riesgo de colisiones. En radios de curvas más grandes 

(22 y 78 metros), los usuarios que giraban a la derecha mantuvieron patrones similares 

observados en radios más pequeños, mientras que los usuarios que giraban a la izquierda 

seguían la geometría de la curva, reduciendo las violaciones de carril. Para los patinetes, 

los valores del Radio Ajustado Efectivo se agrupan más cerca del radio real en radios más 

pequeños. El análisis de velocidad subrayó posibles conflictos y capacidades de manejo 

reducidas para los usuarios que infringían los límites de los carriles. En conclusión, el 

Radio Ajustado Efectivo surge como un valioso indicador para evaluar e identificar 

patrones de comportamiento arriesgado entre los usuarios de micromovilidad, muchos de 

los cuales podrían aumentar el riesgo de conflictos frontales, de cruce y de ángulo lateral 
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entre usuarios. Esta tesis avanza en la comprensión y metodología del diseño de 

infraestructuras de micromovilidad mediante la introducción del Radio Ajustado Efectivo 

(EFR) como una nueva medida indirecta de seguridad basada en el movimiento, 

ofreciendo un análisis detallado del riesgo espacial y abordando limitaciones críticas en 

los métodos actuales de extracción de datos de movimiento y análisis de trayectorias en 

alta resolución. 
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Resum 

La micromobilitat es referix a dispositius compactes, de baixa massa i baixa velocitat per 

a viatges urbans de curta distància, ja siguen personals o compartits. S'estan integrant en 

carrers concorreguts com a part d'una transició de dissenys urbans centrats en automòbils 

a dissenys més lents i amigables per a vianants. No obstant això, esta integració ha creat 

riscos de seguretat i incomoditats tant per als usuaris de micromobilitat com per al trànsit 

motoritzat a causa de les grans diferències en velocitat i massa. Per a abordar això, els 

dissenyadors urbans implementen mesures com a carrils protegits, carrils amb altures 

diferents i carrils amb separació per a crear espai entre els carrils bici i les calçades en 

recta més transitades. A través d'esta infraestructura dedicada, les transicions de recta a 

corba o corbes aïllades són els segments més crítics dels carrils bici en considerar mesures 

de seguretat. El seu disseny pot influir significativament en el comportament dels usuaris, 

sovint provocant conflictes amb altres usuaris del carril bici, vianants i incidents de 

caigudes freqüents. Desafortunadament, molts d'estos incidents en un carril bici no 

s'informen, però el risc persistix en escenaris greus. L'objectiu principal d'esta tesi és 

identificar situacions potencials de conflicte mitjançant la introducció d'un nou indicador 

de seguretat, el "Radi Ajustat Efectiu", i una metodologia de seguiment dinàmic per a 

avaluar la seguretat dels usuaris de micromobilitat (ciclistes i patinets) en corbes aïllades 

de carrils bici. Esta metodologia comprén sis components clau: (i) selecció de la 

localització, (ii) recopilació de dades geomètriques, (iii) gravació de vídeo, (iv) extracció 

de trajectòries i velocitat, (v) visualització i (vi) anàlisi. Es van recopilar dades de vídeo 

naturalistes de 900 usuaris de carrils bici en nou localitzacions de corbes amb geometria 

variada per a examinar els seus patrons de moviment espaciotemporals. Per a este 

propòsit, cada corba es va dividir en tres seccions: Punt de Curvatura (PC), Punt Mitjà 

(PM) i Punt de Tangència (PT), i es van definir quatre àrees d'interés per a capturar la 

posició lateral i la velocitat. Posteriorment, els resultats es van visualitzar usant Python 

per a analitzar trajectòries ajustades, mapes de calor de violació de carrils i patrons de 

velocitat. Després es va calcular el Radi Ajustat Efectiu a partir de corbes circulars 

ajustades i es va realitzar una Anàlisi de Variància (ANOVA) unidireccional per a 

comparar els valors mitjans. Els gràfics resultants van revelar variacions significatives en 

el Radi Ajustat Efectiu entre moviments de gir a la dreta i a l'esquerra, particularment en 

radis de corbes més xicotets. Els usuaris, independentment del seu tipus, van tendir a 

tallar la corba i generar valors de Radi Ajustat Efectiu més xicotets durant els girs a 

l'esquerra. Els mapes de calor de desplaçament lateral van confirmar a més que els usuaris 

que giraven a l'esquerra sovint violaven els carrils dedicats, augmentant el risc de 

col·lisions. En radis de corbes més grans (22 i 78 metres), els usuaris que giraven a la 

dreta van mantindre patrons similars observats en ràdios més xicotets, mentres que els 

usuaris que giraven a l'esquerra seguien la geometria de la corba, reduint les violacions 

de carril. Per als patinets, els valors del Radi Ajustat Efectiu s'agrupen més prop del radi 

real en ràdios més xicotets. L'anàlisi de velocitat va subratllar possibles conflictes i 

capacitats de maneig reduïdes per als usuaris que infringien els límits dels carrils. En 

conclusió, el Radi Ajustat Efectiu sorgix com un valuós indicador per a avaluar i 

identificar patrons de comportament arriscat entre els usuaris de micromobilitat, molts 

dels quals podrien augmentar el risc de conflictes frontals, d'encreuament i d'angle lateral 

entre usuaris. Esta tesi avança en la comprensió i metodologia del disseny 

d'infraestructures de micromobilitat mitjançant la introducció del Radi Ajustat Efectiu 

(EFR) com una nova mesura indirecta de seguretat basada en el moviment, oferint una 
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anàlisi detallada del risc espacial i abordant limitacions crítiques en els mètodes actuals 

d'extracció de dades de moviment i anàlisi de trajectòries en alta resolució. 
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Chapter 1 Background 

This research work is presented as the Doctoral Thesis of the student Morteza Hossein 

Sabbaghian and is supervised by Doctor of Civil Engineering and University Professor, 

Prof. Dr. Alfredo García García, and by Doctor with International Distinction and 

Associate Professor, Prof. Dr. David Llopis Castelló, both from the Universitat 

Politècnica de València (UPV). 

The title of the research is "Developing a comprehensive methodology to improve 

geometric design and safety in Micromobility infrastructure." This title reflects the main 

objective of the Doctoral Thesis and makes a significant contribution to the existing 

literature in the field of bike lane design and bike lane safety evaluation. 

This work has been carried out in direct collaboration with the Highway Engineering 

Research Group (HERG), part of the Transport and Territory Institute of the UPV, to 

which the doctoral candidate has belonged since January 2021. 

The current dissertation is associated with the research project "esMicromobility - 

Evaluation of Road Safety of Micromobility" with reference PID2019-111744RB-I00, 

funded by MCIN/AEI/10.13039/501100011033, began in February 2021 and ended in 

September 2024. Among the work packages into which this project was divided, it is 

noteworthy that the thesis is closely related to the packages on bike lane design, bike lane 

safety, scientometric review of the literature, and the establishment of criteria and 

recommendations. 
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Chapter 2 Introduction 

Despite advancements in enhancing Micromobility safety at intersections and during their 

interaction with motor vehicles, there remains a clear lack of attention in upgrading the 

geometric design of bike lanes. This oversight may have contributed to the growing rate 

of serious injuries and crash fatalities in many leading cycling-friendly countries like the 

Netherlands, where cyclists accounted for 40% of road death in 2022. Several factors 

influence bike lane user dynamics and can contribute to conflicts and falls: geometry, 

proximity to pedestrians, sightlines, barriers, grading, markings, side vegetation, and 

pavement condition (Hossein Sabbaghian et al., 2023a). 

Horizontal curves, a main geometric component of bike lane segments, play a pivotal role 

in ensuring safe Micromobility. Poor design in these segments can lead to unexpected 

behavior patterns, and increased conflicts or fall incidents. This risk rises when users are 

unable or unwilling to adhere to the geometry set by designers. Bike lane horizontal 

curves are categorized into four types: first curves (not influenced by a preceding curve), 

isolated curves (preceded and followed by a tangent), reverse curves (followed 

immediately by a curve in the opposite direction), and consecutive curves (succeeding in 

the same direction). Calculating the forces experienced by cyclists on curves is crucial for 

optimizing bike lane designs. This is especially important in challenging situations, such 

as navigating reverse curves around obstacles like bus stops or consecutive curves around 

trees, where cyclists may struggle to ride smoothly. Although these are rare examples, 

sharp isolated curves still exist that cause discomfort and require significant speed 

reduction to navigate. This can confuse cyclists' perceptions, leading them to make risky 

decisions instead of reducing their speed and following the intended path.  

Extracting microscopic traffic parameters like bike lane user trajectories, speed, lane 

change, deceleration, and acceleration allows for a comprehensive safety analysis 

(Jackson et al., 2013). Due to distinct dynamics of micromobility compared to motor 

vehicles, such as higher steering angles, additional degrees of freedom (like rear-frame 

roll, yaw, lateral motion, and front-fork steer), and their lightweight nature, these devices 

can perform a range of maneuvers during curvature (Haasnoot et al., 2023). Recent 

behavioral studies primarily focus on capturing the naturalistic riding behavior dynamics 

of road users to predict their future positions or compute surrogate measures of safety 

(SMoS) (Nabavi Niaki et al., 2019). 

Surrogate Measures of Safety (SMoS) are defined as “an indicator derived from the 

observation and the safety evaluation of non-crash events in traffic with the goal to 

estimate the expected crash/injury frequency as well as to get a better understanding of 

the crash mechanisms and contributing factors” (Saunier & Laureshyn, 2021a). In this 

thesis, a geometric-based SMoS will be developed that can be even used for risk 

assessment without crash data.  

According to the International (2021)  Laureshyn et al., 2016), “the validity of SMoS is 

the degree to which it measures what it is supposed to measure, that is, road safety or, in 

practical terms the expected frequency of crashes. While the ultimate goal is to have a 

clear and stable relation to the expected number of crashes expressed in mathematical 

terms, as of today the documented attempts to establish such relations are few and not 

always conclusive”. (C. Wang et al., 2021) highlight the importance of Surrogate Safety 

Measures (SSM) for traffic safety evaluation, particularly when reliable statistical safety 

models are unavailable. This is often due to complex site characteristics or nontraditional 
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traffic safety treatments, where historical crash data is insufficient or nonexistent for 

developing predictive safety models. 

This study aims to use user trajectory and speed data on isolated horizontal curves to 

identify risky patterns and understand user responses to specific designs. This is a 

preliminary step in safety assessment before linking accident data. The data highlights 

potentially risky movements, some of which may increase individual fall incidents and 

conflicts with opposite lane users. This approach facilitates proactive safety 

improvements and establishes a scalable framework. While crash data can be linked to 

identified risky patterns, the primary goal is to identify safety risks without relying on 

historical crash data. By incorporating movement-based measures from user trajectories, 

this method offers more comprehensive safety and design followability analysis than 

traditional time-based measures like Time to Collision (TTC) and Post-Encroachment 

Time (PET). A movement-based approach can assess risky patterns that might have been 

overlooked because they do not involve interactions with other users, as seen in the 

increasing incidents of falls, which are often underreported. When combined with 

interaction-based Surrogate Measures of Safety (SMoS), the proposed framework 

provides a comprehensive perspective on infrastructure safety. To facilitate this, the study 

introduces a novel trajectory-based measure called Effective Fitted Radius (EFR), which 

is defined as the radius of the best-fitted circular arc to a user's trajectory when passing 

through a curve on a bike lane. EFR can also be utilized for before-after studies on isolated 

curves of bike lanes to assess the impact of geometric treatments or new designs.  

To demonstrate the effectiveness of the proposed measure, a selection of case study 

curves on bike lanes with diverse geometries are chosen. These curves are used to track 

Micromobility users and extract their Effective Fitted Radius (EFR) and speed for safety 

analysis. Furthermore, a comprehensive framework is proposed. 

2.1 Overview of the Thesis Structure 

This doctoral thesis is organized into ten chapters following the Background (Chapter 1) 

and Introduction (Chapter 2), along with four appendices. 

Chapter 3 presents a review and compilation of existing knowledge on bike lane safety, 

safe horizontal curve design for bike lanes, and proactive safety assessment methods 

(naturalistic, semi-naturalistic, simulation-based). 

Chapter 4 includes the main research objective and the scientific-technical objectives 

associated with its achievement. This chapter also outlines the main hypotheses of the 

study, which will be confirmed or rejected through the development of the doctoral thesis. 

Chapter 5 presents the research methodology, while Chapter 6 details its implementation. 

This leads to Chapter 7, where the speed and spatial data of users are analyzed based on 

the segmentation introduced to compute Effective Fitted Radius (EFR) out users’ 

trajectories during curve navigation. The observed tracks are then classified to facilitate 

the development of a predictive model that identify the class and risk involved in each 

class. 

Subsequently, Chapter 8 includes the discussion of the results provided in Chapter 7. It 

compares the proposed EFR measure with other previously developed Surrogate 

Measures of Safety (SMoS), concluding with a new SMoS measure that could improve 

the design of curves on bike lanes according to real data. 

Finally, Chapter 9 establishes the main conclusions of the doctoral thesis based on the 

results achieved and the discussion conducted, and Chapter 10 outlines future research 
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directions related to the further improvement of EFR by associating the accident data and 

automation methods existed for motion extraction. 

Additionally, four appendices below are included: 

 Appendix A: Related publications 

 Appendix B: Extended data and result from chapter 6 and 7 
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Chapter 3 Literature Review 

3.1 Current State of Knowledge of a Safe Bike Lane 

Micromobility (MM) and e-micromobility (eMM) are rapidly becoming popular as a new 

sustainable mobility solution. Their objectives are to increase mobility during urban 

congestion and address certain land use and environmental issues like parking space 

shortage, carbon emission, and sound pollution. In tourist destinations, they are deemed 

as a flexible, cheap transport solution for tourists and a way to bypass traffic. In addition, 

they are being promoted to facilitate modal shift from personal cars to personal 

lightweight Micromobility Devices (MDs) that are more energy efficient, require less 

space, and have no or less detrimental impact on the environment. The average inner-city 

trip range of these vehicles is considered short distance and mostly below 20 km range, 

wherein 70% of most daily trips in urban areas are taking place (Clewlow, 2018; Gomm 

& Wengraf, 2013; Kaufman & Buttenwieser, 2018; Tiwari, 2019) . In addition, by 

completing first and last mile distances, they also contribute to more public transport use 

(Møller et al., 2020; Shaheen et al., 2020). 

The European commission has prioritized bicycle usage promotion in the new Sustainable 

Urban Mobility Plans (SUMPs) (Bührmann et al., 2011; Europeia, 2011; Rupprecht et 

al., 2019). In the United States, different transportation agencies have started to define 

specific visions for their bicycle network promotion plan. Massachusetts Department of 

Transportation, for example, declares “Massachusetts’ integrated and multimodal 

transportation system will provide a safe and well-connected bicycle network that will 

increase access for both transportation and recreational purposes. The Plan will advance 

bicycling statewide as a viable travel option –particularly for short trips of three miles or 

less– to the broadest base of users and free of geographic inequities” (Schultheiss et al., 

2019). 

This novel form of mobility has been proven to promote safety and accessibility in cities. 

In fact, in a dense urban area, the likelihood of a fatal crash occurrence is much higher 

for cars rather than micro-vehicles. Nevertheless, the new mobility also generates safety 

risks for its users and pedestrians, most of which are associated with cycleway 

placemaking and design. The International Traffic Forum (ITF) has published an 

extensive report about “Safe Micromobility” (Santacreu et al., 2020), where out of 10 

safety recommendations, three are related to the infrastructure safety development and 

the rest can be classified to drivers’ behavior, speed, regulation, user’s training, vehicle 

design, and shared operation. 

This chapter conducts a thorough literature review to pinpoint gaps in research regarding 

safe Micromobility infrastructure. It aims to uncover design and safety inconsistencies in 

bike lanes, emphasizing the need for the current thesis. Micromobility devices (MDs) 

present unique dimensions and operating characteristics compared to traditional adult 

bicycles, challenging the notion of the "design vehicle." Understanding the needs of MD 

users is crucial for creating a safe infrastructure. This research supports evidence-based 

decision-making for both practitioners and researchers. What sets this review apart is its 

focus on an unexplored topic and the innovative scientometric methods used for 

visualization and analysis. 

3.1.1 Micromobility Characterization 

Micromobility classification across the world is not consistent. In many countries, 

bicycles are considered as the smallest design vehicle and many other MD types like 
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standing e-scooters, e-skateboards, and self-balancing vehicles are not defined or 

regulated. In Europe, the L-category vehicles were introduced for powered two, three, 

and four-wheel vehicles, using six classification criteria of power, power source, speed, 

length, width, and height. Light two-wheel powered vehicles are categorized as L1e-A 

powered cycle and L1e-B two-wheel mopped. In type A, the net power of the electric 

bicycle is between 250 watts and 1000 watts, with a maximum speed of 25 km/h. For type 

B, the net power is up to 4000 watts and the design speed range is between 25 km/h to 45 

km/h. Human-powered bicycles, kick e-scooters, skates, pedelecs (up to 250 watts), self-

balancing vehicles with no seat, like standing e-scooters, are excluded from L1e category 

(Ajuntament de València, 2019). 

In the United States, e-scooters and e-bikes are distinguished from mopeds by various 

states to enable their operation on cycleways. However, the only thorough classification 

found in the literature was published by the Pedestrian and Bicycle Information Centre 

(PBIC) (NTSB, 2019), where three categories of Electric standing or sitting e-scooters, 

electric bicycles, and other (i.e., skates, seaways, one-wheel hoverboards) are proposed. 

For electric bicycle category, three classes of pedalec, throttle assist, and pedalec at higher 

speed, are defined. In total 8 criteria of device type, brands, weight, occupants, power 

supply, speed, operating space, and regulation entity were considered. 

The International Transport Forum (ITF) (Santacreu et al., 2020) has proposed a 

classification for Micromobility, based on the operational characteristics of MDs (Figure 

1). In this definition, speed, and weight of the MDs, which directly correlate with the 

kinetic energy of a vehicle and thus determine the risk of fatality or serious injuries, are 

considered as the two main factors for determining their type. As can be seen in Figure 1, 

two weight ranges of below 35 kg and between 35 kg to 350 kg, and speed range of up to 

25 km/h and between 25 to 45 km/h are introduced that divide MDs to four distinct types: 

A, B, C, and D. 

A Bike Lane is defined by the National Association of City Transportation Officials 

(NACTO) as a portion of the roadway that has been designated by striping, signage, and 

pavement markings for the preferential or exclusive use of bicyclists (NACTO, 2014) 

[14]. Bike lanes enable bicyclists to ride at their preferred speed without interference from 

prevailing traffic conditions and facilitate predictable behavior and movements between 

bicyclists and motorists. A bike lane is distinguished from a cycle track in that it has no 

physical barrier (bollards, medians, raised curbs, etc.) that restricts the encroachment of 

motorized traffic. Conventional bike lanes run curbside when no parking is present, 

adjacent to parked cars on the right-hand side of the street or on the left-hand side of the 

street in specific situations. Bike lanes typically run in the same direction of traffic, 

though they may be configured in the contra-flow direction on low-traffic corridors 

necessary for the connectivity of a particular bicycle route (NACTO, 2014). 
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Figure 1 Classification for MDs, Reprinted with permission from Ref. (Santacreu et al., 2020). 

 

The configuration of a bike lane requires a thorough consideration of existing traffic 

levels and behaviors, adequate safety buffers to protect bicyclists and other MDs from 

parked and moving vehicles, and enforcement to prohibit motorized vehicle 

encroachment and double-parking. Bike Lanes may be distinguished using color, lane 

markings, signage, and intersection treatments. 

This research covers a variety of bikeways that were defined by guidelines and re- 

searchers. The ministry of interior in Spain (Sánchez, 2016) has distinguished five types 

of cycle lanes according to their placement, boundary features, and traffic mixture (Figure 

2): 

1. Bicycle lane: a bicycle path adjacent to a road, that can be in the same direction 

of motor vehicle circulation or a two-way lane (Figure 2a). 

2. Protected bike track: a bike lane, physically separated from the road and sidewalk 

with lateral elements (Figure 2b). 

3. Sidepath: a bicycle route that is marked on the sidewalk or median island (Figure 

2c), that can be with (Figure 2d) or without (Figure 2e) vegetated/physical curb. 

4. Bike track: a bike path with an independent layout that is completely segregated 

from motorized traffic (Figure 2f). 

5. Cycle path: dedicated path for both pedestrians and cycles, segregated from traffic 

(Figure 2g). 
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(a)                                              (b)                                              (c) 

(d)                                    (e)                                   (f)                                 (g)  

Figure 2 Types of bike lanes: (a) bicycle lane, (b) protected bike lane, (c) sidepath on median, 

(d) sidepath with vegetated curb, (e) sidepath without curb, (f) bike track, and (g) cycle path (Google 

Maps, 2024b, 2024a). 

 

Research in the field of micromobility safety has focused on various aspects, including 

infrastructure, pavement conditions, traffic patterns, and operating conditions. When it 

comes to geometry, studies have shown that narrow lane widths pose higher risks for 

micromobility users, as they increase the likelihood of collisions with curbs, other 

cyclists, and conflicts with cars during overtaking maneuvers (Greibe & Buch, 2016; Park 

& Abdel-Aty, 2016). Additionally, research has examined the proximity of obstacles to 

e-scooter riders, highlighting the importance of considering the surrounding environment 

to ensure user safety (Q. Ma et al., 2021). 

Pavement conditions also play a significant role in micromobility safety. Studies have 

found that the type of pavement surface can affect skid resistance, which is particularly 

crucial for lightweight devices like e-scooters. For example, painted cobble and smooth 

painted tile pavements have been found to have lower skid resistance compared to asphalt 

and concrete surfaces (López-Molina et al., 2022). Monitoring methods using smartphone 

sensors have been proposed to assess pavement conditions and determine key 

performance indicators for user comfort and safety (Cafiso et al., 2022). Vibrations 

experienced by e-scooter riders have also been investigated, with concrete pavements 

found to impose higher vibrations on riders compared to Hot Mix Asphalt (HMA) (Q. Ma 

et al., 2021). Other relative studies on vibration are summarized in Table 1.
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Table 1 Articles that focus on the use criteria affecting safety on MM infrastructure. 

# (Researcher,Year) Criteria Sub-criteria MD Modes Sample Size & Location 

1 (Wyman, 2022) operating condition crash & conflict  bike 300 h of video recording at 5 bike lanes (Portland, USA) 

2 (Pérez-Zuriaga et al., 2022) pavement, geometry vibration, clearance e-scooter 850 m of bike lane (Valencia, Spain) 

3 (Tian et al., 2022a)   operating condition crash & conflict e-scooter worldwide (social media data) 

4 (Prencipe et al., 2022) operating condition intersection, long.control, connectivity e-scooter 336 buffers (Bari, Italy) 

5 (Dozza et al., 2023) operating condition longitudinal control e-scooter, segway, e-bike, bike 34 participants (Chalmers, Sweden) 

6 (Folco et al., 2023) traffic, operating condition route planning, crash & conflict bike, e-scooter 314 crashes in 2019, 40,694 trips (Turin, Italy) 

7 (Clewlow et al., 2022) traffic, operating condition route planning, crash & conflict e-scooter 22,022 crash data from 2014–2021 (4 cities, USA) 

8 (Anke et al., 2023) traffic, operating condition route planning, connectivity e-scooter six sites/738 recording (Dresden & Berlin, Germany) 

9 (Gehrke et al., 2022) traffic, operating condition route planning, crash & conflict e-scooter eight months (Brookline, Massachusetts, USA) 

10 (Cafiso et al., 2022) pavement distress bike, e-scooter 979 tests (Italy) 

11 (F. Chang et al., 2022) operating condition crash & conflict e-bike 2222 crash records from 2014 to 2016 (Hunan, China) 

12 (Pérez-Zuriaga et al., 2022) geometry  clearance bike, e-scooter 80 km bicycle tracks/25 h video (Valencia, Spain) 

13 (Q. Ma et al., 2021) pavement, geometry vibration, clearance e-scooter One road segment—vehicle lane & sidewalk (Norfolk, VA) 

14 (Zuniga-Garcia et al., 2021) traffic route planning e-scooter 80,000 trips/11 million location points (Austin, TX) 

15 (Hosseinzadeh et al., 2021) traffic route planning e-scooter 494,008 trips/159 route planning analysis zone (Louisville, KY) 

16 (Hawa et al., 2021) traffic route planning e-scooter 1671 geographic grid cells of 0.19 km² (Washington, DC) 

17 (Q. Ma et al., 2021) operating condition longitudinal control e-scooter NA 

18 (Kamel & Sayed, 2021) operating condition crash & conflict bike  NA 

19 (Tan & Tamminga, 2021) operating condition crash & conflict  multiple 1 case study (Washington, DC, USA) 

20 (Tomiyama & Moriishi, 2020) pavement vibration, skidding e-scooter 10 different surfaces—grading &roughness (Saitama, Japan) 

21 (Carrignon, 2020) pavement skidding, distress e-scooter Synthesis of literature (France & UK) 

22 (Gössling, 2020) operating condition crash & conflict, longitudinal control e-scooter 173 news items (10 cities *) 

23 (S. He & Shin, 2020) traffic route planning e-scooter 2,430,806 trips (Austin, TX) 

24 (Zou et al., 2020) traffic route planning e-scooter 138,362 trips (Washington, DC) 

25 (Almannaa et al., 2021) operating condition longitudinal control   e-scooter 15,400 E-scooters (Austin, TX) 

26 (Caspi et al., 2020) traffic route planning e-scooter 11,358 trips per day (Austin, TX) 

27 (Jiao & Bai, 2020) traffic route planning e-scooter 158,208 trips per month (Austin, TX) 



 

 

10 

 

# (Researcher,Year) Criteria Sub-criteria MD Modes Sample Size & Location 

28 (Yang et al., 2020) operating condition crash & conflict  e-scooter 169 news on E-scooter-involved crashes 

29 (Bai & Jiao, 2020) traffic route planning e-scooter 661,367 & 225,543 trips/month (Austin TX, Minneapolis MN) 

30 (Lazarus et al., 2020) traffic route planning bike, e-bike (shared) 124,980 trips per month (San Francisco, CA) 

31 (Politis et al., 2021) operating condition crash & conflict  bike 2 one-way & 1 two-way bike lane (Karditsa, Greece) 

32 (K. Wang & Chen, 2020) traffic route planning  bike (shared) 430,560 trips in September 2016 (New York, DC) 

33 (Hu et al., 2020) operating condition crash & conflict, longitudinal control e-bike 219 accidents—2014 to 2016 (6 cities, China) 

34 (Xing et al., 2020) traffic route planning bike (shared) 1,023,603 trips in August 2016 -Mobike (Shanghai, China) 

35 (Austin Public Health, 2019) operating condition crash & conflict  e-scooter 271 E-scooter-related injuries (Austin, TX) 

36 (McKenzie, 2019) traffic route planning, composition bike, e-scooter 1,414,055 bike & 937,590 e-scooter trips (Washington, DC) 

37 (Voinov et al., 2019) operating condition crash & conflict  e-scooter 10,811 e-scooter owners (Enschede Netherlands) 

38 (A. Y. Chang et al., 2019) traffic, operating condition route planning, longitudinal control multiple Synthesis of literature (Washington, DC) 

39 (Du et al., 2019) traffic route planning  bike 830,000 trips in September 2016 (Shanghai, China) 

40 (Y. He et al., 2019) traffic route planning e-bike (shared) 7921 trips in 107 days-20 July to 3 Nov. 2017 (Park City, UT) 

41 (Y. Guo et al., 2019) operating condition crash & conflict  e-bike, e-scooter 310 e-bike collision records (Ningbo, China) 

42 (Y. Zhang et al., 2019)  traffic route planning bike (shared) Approximately 48,000 trips per day (Shanghai, China) 

43 (C. Xu & Yu, 2019) operating condition crash & conflict  e-bike 1091 crashes records from 2015 to 2016 (Hangzhou, China) 

44 (Smith & Schwieterman, 2018)  traffic route planning  e-scooter 10,000 trips per study area (Chicago, IL) 

45 (T. Wang et al., 2018) operating condition crash & conflict  e-bike 4000 crash records from 2008 to 2014 (Guilin, China) 

46 (X. Zhang et al., 2018) operating condition crash & conflict  e-bike 3200 e-bike owner participants (Jiangsu Province, China) 

47 (Y. Zhang et al., 2018) traffic route planning bike (shared) 12,915 trips per day (Zhongshan, China) 

48 (Yuan et al., 2017) operating condition crash & conflict  e-bike 150 serious crash samples from 2009 to 2015 (Beijing, China) 

49 (Greibe & Buch, 2016) geometry alignment features bike 8 one-way cycle tracks (Copenhagen, Denmark) 

50 (Park & Abdel-Aty, 2016) geometry alignment features bike 6420 urban roadway segments with 2514.518 miles (FL) 

51 (J. Xu, Shang, Qi, et al., 2016) operating condition crash & conflict  ESS, bike Synthesis of literature (Beijing, China) 

52 (J. Xu, Shang, Yu, et al., 2016a) operating condition crash & conflict, longitudinal control self-balancing ESS ** Accident simulation in MADYMO software (v.2010) 

53 (Bordagaray et al., 2016) operating condition route planning, composition bike 24,664 trips in July & August 2011 (Santander, Spain)  

54 (Greibe & Buch, 2016) operating condition longitudinal control, lateral control bike Video observation of 8925 cyclists (Copenhagen, Denmark) 

55 (Zuniga-Garcia et al., 2021) operating condition crash and conflict bike 2928 motor vehicles pass (Valencia, Spain) 
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# (Researcher,Year) Criteria Sub-criteria MD Modes Sample Size & Location 

56 (Corcoran et al., 2014) operating condition route planning bike (shared) 448 trips per day (Brisbane, Australia) 

57 (Ohri, 2013) pavement  skidding  e-scooter 4 different surfaces (Toronto, ON) 

58 (Blackman & Haworth, 2013) operating condition crash & conflict  e-scooter, moped 5 years crash data (Queensland, Australia) 

59 (Montella et al., 2012) operating condition crash & conflict mopeds, motorcycles  254,575 PTW involved crashes from 2006 to 2008 (Italy) 

60 (Dondi et al., 2011) geometry, pavement  alignment, clearance, skidding, distress  bike 1500 m bike lane (Rimini, Italy) 

* Brisbane (Australia), Christchurch (New Zealand), Copenhagen (Denmark), Dallas & Los Angeles (USA), Malaga (Spain), Paris (France), Stockholm (Swe-den), Vienna (Austria), Zurich 

(Switzerland) ** Electric Self-balancing E-scooters. 
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Traffic patterns and distribution of micromobility users have been extensively studied. 

These studies that are listed in Table 1 have explored the usage distribution of e-scooters 

on sidewalks, bike lanes, and roadways, providing valuable data for the development of 

effective surrogate safety measures. Factors such as comfort and convenience have been 

found to influence e-scooter riders' behavior, including instances of sidewalk riding 

violations. Correlations between trip generation, crash frequency, and the promotion of 

shared micromobility services through safer infrastructure have also been identified. 

Operating conditions, including network characteristics and interactions between 

different micromobility users, have been investigated. Accordingly, Street network 

characteristics correlate with road safety outcomes, emphasizing the importance of 

considering the design of the network (Marshall & Garrick, 2011). Studies have examined 

conflicts between different modes, such as cyclists and e-scooter riders, and highlighted 

the impact of bike lane positioning on conflict frequency (Fonseca-Cabrera et al., 2021a). 

Risk factors for e-scooter-related crashes (injury and non-injuries) have been developed 

(Tian et al., 2022b). Additionally, Acceleration and deceleration performance between 

cyclist, e-scooter, and Segway riders are different (Dozza et al., 2022). 

While there is a growing body of research in the field of micromobility safety, there are 

some limitations. Reliable crash data for e-e-scooters from traffic management agencies 

are lacking, with most studies relying on data provided by shared micromobility 

companies. However, studies on bikes and mopeds have shown satisfactory accessibility 

to reliable crash data. Simulation studies have also been conducted to explore the risks 

associated with electric self-balancing e-scooters (ESS) and their impact on head injury 

intensity (J. Xu, Shang, Yu, et al., 2016b). All studies that are classified under operating 

conditions are included in Table 1. 

In conclusion, research in micromobility safety has provided valuable insights into the 

impact of infrastructure design, pavement conditions, traffic patterns, and operating 

conditions on user safety. These findings can help inform the development of safer 

micromobility networks and improve the design and maintenance of infrastructure to 

ensure the well-being of micromobility users. However, there is a need for more 

comprehensive and reliable crash data to further enhance our understanding of 

micromobility safety and develop effective safety measures. 

Assuming the homogeneity of fundamental aspects of infrastructures used for motor 

vehicles and those of the micromobility users, the criteria affecting users’ safety on 

bikeways were adapted from ASSHTO Green Book 2011 (AASHTO, 2011). The relative 

diagram is demonstrated in Figure 3. This diagram will be the base for further literature 

synthesis and analysis. These adapted criteria are useful to better filter relative studies to 

the topic of this research, and to avoid missing any research that may lack sufficient 

relative keywords to be selected through the scientometric review. 
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Figure 3 Classification of criteria affecting safe infrastructure for Micromobility. 

 

3.2 Literature Review Studies on Micromobility 

Previous review studies on micromobility have successfully identified gaps and directed 

subsequent research efforts. The main focus was on the integration of micromobility with 

the public transport, sustainability, users’ behavior, and usage pattern. For instance, 

Oeschager et al. (Oeschger et al., 2020) conducted a systematic literature review on 

micromobility and public transportation integration in 2020. The gaps identified in that 

study, such as spatiotemporal analysis of e-scooters and transit systems, sustainable 

parking for micromobility, and mode shift potential, later became focal points for 

researchers (Deveci et al., 2023; Nigro et al., 2022; Yan et al., 2021). 

Two bibliographic analysis studies focused on the impact of micromobility on 

sustainability of transportation in cities. The study conducted by Abduljabbar et al. 

(Abduljabbar et al., 2021) visualized the transforming landscape of micromobility 

research, whereas Sengul & Mostofi (Şengül & Mostofi, 2021) used the PRISMA method 

(Preferred Reporting Items for Systematic Reviews) to compare literature worldwide in 

terms of their findings about the future role of micromobility in urban transportation. In 

neither of the two studies was a gap analysis involved. Lia and Correia (Liao & Correia, 
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2022) performed a similar study that contained all shared e-mobility modes: electric car 

sharing, e-bike sharing, and e-scooter sharing. The results presented a comprehensive 

review of their usage pattern, demand estimation, and potential impacts on the 

transportation system. 

Elmashhara et al. (Elmashhara et al., 2022) conducted a SLR study to find the factors 

driving behavior of micromobility users. The study found 25 driving factors and offered 

directions for future studies. The factors were grouped into three categories: (i) temporal, 

spatial, and weather-related factors; (ii) system-related factors, and (iii) user-related 

factors. Kaths (2022) conducted a comprehensive literature review on conflicts between 

cyclists, pedestrians, motorists, heavy-duty vehicles, and buses in urban areas. The study 

found that researchers were more focused on dangerous interactions that are classified on 

top of the Hyden’s Safety Pyramids rather than normal encounters (Kaths, 2022). The 

USA National Academies of Sciences, Engineering, and Medicine (NASEM) has recently 

published a comprehensive report that reveals the relationship between e-scooter crashes, 

injuries, and fatalities and contributing factors: behavioral and environmental. In this 

study, the emerging behavioral safety issues of e-scooter users are discussed. Moreover, 

a summary of all safety solutions attempted by cities are presented, providing real case 

studies (Sandt et al., 2022). 

A comprehensive scientometric review on powered micromobility was conducted by 

O'Hern and Estgfaeller (O’Hern & Estgfaeller, 2020). The study reviewed 474 

publications from 1991 to 2020 in a wide range of topics including user behavior, vehicle 

technology, planning, policy, health, and safety for powered micromobility. The result 

shows e-bikes user behavior studies were ranked first with 55 related studies, while 

keywords like safety, road safety, accident, and crashes were in the bottom of the ranking 

(9th and 10th). 

However, to the knowledge of the authors, no studies have yet found to have synthesized 

the literature for identification of the research gaps on the micromobility infrastructure. 

A systematic and compressive review on a new trending topic like micromobility can in 

fact provide a comprehensive understanding of the current state of knowledge on the 

topic. The scientometric analysis tools integrated within journals search platforms can 

only provide limited insights about their own publication. Therefore, such review studies 

where relevant studies are carefully selected, evaluated and synthesized are contributing 

extensively to the advancements of the topic in the right direction. Moreover, the 

scientometric tool used in this study (VOSviewer version 1.6.20) allows unique 

visualization and analysis of the existing literature, identifying gaps and potential areas 

for future research. This approach goes beyond traditional literature review methods and 

provides a data-driven perspective to uncover patterns, trends, and relationships within 

the literature. 

The identification, classification, and cluster analysis (Section 3) of criteria that impact 

micromobility safety can lead to a clear insight on areas that micromobility researchers 

can direct their studies to have the most impact on this field. Although there are aspects 

of infrastructure for motor vehicle and micromobility that are similar, however, they are 

never identical. The main motivation and potential future impact of this research could 

be directing studies on micromobility pavement (skid resistance, vibration, distress), and 

micromobility naturalistic traffic behavior (longitudinal control, lateral control, impact of 

geometry or alignment). These important areas, if elaborated, can have significant impact 

on cost-beneficial safety improvements. 
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This research is in fact useful for evidence-based decision-making of both practitioners 

and researchers. The principal aspect that distinguishes this review from similar studies 

are the focus of the literature review on a topic that is unique and not covered at this 

level to this date, and as well the novel scientometric methods used for visualization and 

analysis. 

3.2.1 A systematic literature review on safe infrastructure for Micromobility 

The objective of this study is to develop a literature map that helps identify gaps in the 

literature focused on planning, designing, and safety assessment of micromobility 

infrastructure. The result of this study is intended to allow micromobility designers and 

operators better understand the safety criteria and considerations for each recent modes 

of micro-vehicles and their mixed use on cycle paths, providing best practices for 

improving safety on this infrastructure. 

The scope of this literature review includes the keywords and criteria related to safety 

on bikeways that correlate with their geometry, pavement, traffic, and operational 

condition. The following pillars and sub-pillars are covered in the literature analysis: 

 Geometry: curves (horizontal/vertical), lane width, low design speed, grading 

(lateral/longitudinal), lateral clearance, Stopping Sight Distance (SSD) and 

Overtaking Sight Distance (OSD), obstacle proximity, green space, drainage, and 

marking and signing.  

 Pavement: skid resistance, vibration, distress.  

 Traffic: mode choice, trip generation, distribution, volume, density, flow, and 

composition. 

 Operating condition: crash frequency, crash severity, conflicts with pedestrians, 

conflicts with cars, weaving segments, overtaking lanes, passing proximity, v/c, 

operating speed, speed overrunning, acceleration/deceleration, presence of traffic 

light, steering and lean, lateral position/trajectory, presence of intersection, and 

connectivity. 

To effectively collect and synthesize relative literature, a systematic literature review 

method was used, that had been adapted in similar studies from Thomas and Harden 

(Thomas & Harden, 2008) method. The method has four steps: (i) designing the research 

process; (ii) conducting the research; (iii) analyzing and extracting information; and (iv) 

reviewing the findings. 

In the first step, the research database, terms, and criteria were determined. This was 

performed by reviewing recent publications and relative guidelines. Common academic 

search portals were used that include Science-Direct/Scopus, Taylor & Francis online, 

OneSearch, and other sources such as Google Scholar, TRID, Web of Science, JSTOR, 

and SAGE. After the initial review of terms, the criteria that could impact on user’s safety 

on bikeways were classified (Figure 4) and were used as the base for the next step. The 

criteria were grouped into two main pillars of design and operation and four subcategories 

of geometry, pavement, traffic, and operating condition. 

Secondly, the literature data collection was conducted on selected portals online, and then 

stored in a classified manner based on associated terms and criteria. Next, the classified 

literature was visualized in the form of tables, literature map, and cartogram. This was to 

identify gaps that existed in the literature in terms of defined criteria, location, and 

Micromibility modes.  
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Figure 4 Categorization of adapted criteria. 

 

The associated subcategories and criteria for the selected articles were clustered with 

VOSviewer. Accordingly, from the four main pillars, and their subset 12 criteria, two 

maps were developed that shows their cluster and interconnection. The visualized map 

(Figure 5) clearly shows three main cluster groups. Primarily, “route planning” and “crash 

and conflict” are both equally the largest cluster, that are interconnected and have links 

to two and one other criteria, respectively. The second cluster is “longitudinal control” 

with a major link to crash and conflict, and other links to route planning, lateral control, 

connectivity, and intersection. In the third cluster “skidding” and “clearance” are 

positioned with three other keywords of alignment features, distress, and vibration 

centered around them. 
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Figure 5 Criteria clusters for selected studies. 

 

For having a clearer scientometric view of the safety for micromobility infrastructure, 

another map was developed using only the major four pillars of the adopted map. This 

map (Figure 6) illustrates how geometry and pavement are overlooked in the literature 

for improving safety of micromobility users. 

 

Figure 6 The clusters of the four main pillars. 

 

In terms of modes, the cluster analysis map (Figure 7) shows that e-scooters have been 

the center of attention in the selected studies, with links to four other modes of bike, e-

bike, moped, and segway. Next are bikes surrounded by four modes of e-scooter, e-bike, 

segway, and ESS. E-bike is the third cluster, with three links to bike, e-scooter, and 

segway. The map clearly shows that there are limited studies that include multiple modes, 

ESS, segway, and moped. 
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Figure 7 Mode clusters. 

 

Geographically, the literature can be divided into three major clusters, as are illustrated 

in Figure 8. USA and China contain the largest clusters, with USA being the largest. Nine 

European countries were also involved in the sampled cities for micromobility studies 

linked to safety, that are usually interconnected and have links to some other countries 

like Australia, New Zealand, and UK. In Europe, Spain and Italy have the largest share. 

The map also shows that relative studies that include a wide variety of geographical 

locations are rare. 

 

Figure 8 Geographical clusters. 
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A pie chart (Figure 9) is developed from the cluster analysis on table 1. In this way, most 

studies related to safe infrastructure for micromobility are focused on two criteria of 

“crash and conflict” and “route planning”. For each of these criteria, 24 relative academic 

research were found, that together accounts for 60% of all the existing literature. After 

that, longitudinal control was studied the most, with nine related research (approximately 

11%). 30% of the rest is shared between nine other criteria (see Figure 9). 

 

Figure 9 Pie chart of the criteria distribution. 

 

The observed cluster of academic research on only two factors impacting safety for 

micromobility can suggest that regardless of the growing research interest on safety for 

micromobility, the research trend may be misdirected and clustered on areas that amount 

for only 13% of the real demands. Consequently, major areas of research such as 

geometry and pavement still lack attention, and so potential safety concerns in those areas 

have remained unanswered. For example, concerning geometry, there are no studies yet 

conducted on two aspects of “grading” and “marking and signing”, even though they both 

are key elements of safety development for the MM users. 

Some other important criteria like lateral control, presence of intersection, connectivity, 

and composition have seen limited attention, with one or two dedicated research work to 

each. It is believed that to eliminate all the existing safety concerns and increase public 

acceptance for micromobility, that could increase ridership, the future research should be 

directed towards the understudied identified in this research. 
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Existing studies lack multi modes in their analysis. Consequently, in some areas, the 

results offered may not be extendable to other modes because of the major physical and 

maneuvering differences, and thus remain unverified for the use of city planners. 

A categorized bar chart (Figure 10) was developed to clearly illustrate the studied mode 

of micromobility for each area of the research on safe infrastructure. The horizontal axle 

is divided for each area and shows six different micromobility mode for each criterion, 

and the vertical axle shows the number of studies existed for each mode. Accordingly, in 

most criteria groups, there are only one or two modes included in the studies. 

 

Figure 10 Distribution of modes studies for each area of research. 

 

There are only three areas where the studies have covered more than two modes of 

micromobility. In the area of crash and conflict, five modes of bike, e-bike, e-scooter, 

electric self-balancing e-scooter (ESS), and moped were studied. The two areas of 

longitudinal control and route planning contained four and three modes, respectively. 

Overall, Figures 9 and 10 clearly show traffic and operation are the areas where most 

research on micromobility are centered over the past decades, whereas for the two major 

areas of geometry and pavement, few studies were observed in comparison despite their 

essential role in safety. Therefore, they are suggested to be the focus of future studies 

related to safety for micromobility users. Specifically, three areas of marking and signing, 

grading, mode choice that are missing from the literature. 

Tableau (version 2022.3) was used to create a cartogram of the studies (Figure 11). The 

findings demonstrate that US cities were among the largest sampled locations. China was 

next with 12 studies that was almost half of the samples in USA. After that, Spain, and 

Italy each have 5 studies sampled their cities, more than France and Denmark with only 

3 studies. However, overall, the nine European countries have a large of the literature, 

with 23 studies that is the same as USA share. 
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Figure 11 Cartogram of the geographical distribution of literature studies. 

 

The Cartogram clearly shows that the studies are only centered in developed nations, and 

so many developing countries that have initiated the use of micromobility are still missing 

from the literature. 

The results revealed that three areas of marking and signing, grading, mode choice are 

overlooked in the literature that focus on addressing safety on micromobility 

infrastructure. There are also nine other areas identified as understudied. They include 

vibration, distress, skidding, alignment features, clearance, lateral control, connectivity, 

traffic composition, and presence of intersection. Due to major differences between motor 

vehicles and micro devices in terms of the dimensions, weight and driving characteristics, 

future studies that focus on these identified areas can be effective in improving the 

infrastructure and operation of micromobility. 

Geographically, most relative studies have been conducted for cities in US and China, 

and between the recent years of 2020 to 2022. E-scooter was the most studied mode (over 

40%) for the topic of this research, and then bike, and e-bike had the rest of the attentions. 

Some rare studies were also found to include other modes like mopeds, and ESS. This 

shows that there is still a lack of information about the operational characteristics and 

safety requirements of some recently developed micro devices that need to be addressed 

in the future. Especially, for the recently trending self-balancing devices that have specific 

steering, and physical characteristics. 

Finally, from the four pillars adapted for this study, the most share of the literature was 

allocated to the two pillars of traffic and operating condition, suggesting lack of attention 

to pavement and geometry studies for the safety of micromobility users that needs to be 

addressed in future studies related to this topic. 

3.3 Horizontal Curve Safety on Bike Lanes 

Horizontal curves in road and bike lane design are essential for ensuring smooth 

transitions between straight sections. There are several types of horizontal curves, each 

with specific characteristics and applications. The most common type in bike lane is the 

simple circular curve that has a constant radius that provides a smooth and continuous 
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change in direction. It is specified by parameters such as the degree of curve, radius, and 

length. Another type is the compound curve, which consists of two or more simple curves 

with different radii joined together to accommodate complex alignments, often used in 

mountainous terrains or constrained spaces. Reverse curves are composed of two simple 

curves in opposite directions, separated by a short tangent, useful in switchbacks and areas 

with limited space. Transition or spiral curves are used to gradually change the curvature 

from a straight path to a circular curve, improving driver comfort and safety by reducing 

sudden changes in lateral acceleration. Specifications for these curves include the length 

of the spiral, radius, and the rate of change of the radius. Each type of curve is designed 

to meet specific needs, ensuring safe and efficient vehicle movement along the road 

(AASHTO, 2010; Groot, 2007). 

The review of literature on horizontal curve safety on bike lanes is organized into three 

subsections to examine previous research efforts comprehensively. Firstly, it analyzes 

studies concerning the safety implications of bike lane geometry, aiming to understand 

how bike lane design influences safety outcomes. Following this, the review discusses 

the dynamic tracking approach, which is the primary methodology employed in the 

current research. This section aims to elucidate the methodology used for dynamic 

tracking and its relevance to the study's objectives. Finally, the review explores semi-

naturalistic and simulation-based research, investigating studies that have utilized these 

methodologies to explore topics relevant to the overarching research goals. 

3.3.1 Design Parameters and Guidelines 

The Dutch design manual for bicycle traffic (CROW) outlines five key parameters for 

designing horizontal curves on bike lanes: route type (basic network/connection or main 

cycle route), design speed (12 km/h, 20 km/h, 30 km/h), minimum associated radius (5m, 

10m, 20m), minimum sight distance in motion (distance covering in 4-5 seconds), and 

stopping sight distance (40 meters at 30 km/h; 21 meters at 20 km/h). Additionally, it 

mandates an operational width for cyclists of 750 mm, with a 250 mm safety distance 

(clearance) for passing or overtaking cyclists. The safety distance is set for the conditions 

in which cyclists are forced to ride slower than 15 km/h due to factors like swaying 

motion, crosswinds, and so may have a lateral deviation of 200mm under normal 

conditions (Groot, 2007).  

3.3.2 Optimization of Curve Geometry 

Reviewing the literature reveals a significant emphasis on optimizing the geometry of 

horizontal curves for road safety, yet bike lanes, with distinct optimization needs, receive 

considerably less attention (Hossein Sabbaghian et al., 2023b). Determining an optimal 

radius of curvature and widening value requires consideration of imposed forces and 

human factors specific to all micromobility users. They are making riding decisions based 

on experienced forces and perceptions of the path ahead (Ul-Abdin et al., 2020).  

Calculating experienced forces by cyclists during curvature is an initial step in 

optimization of curves. Ul-Abdin et al. (2018) developed an optimized bike lane design 

system using theoretical trigonometric derivations. They calculated the optimal radius of 

curvature, accounting for centrifugal, centripetal, and gyroscopic forces on users, while 

considering variations in the radius of curvature depending on the location of the center 

of gravity: whether it is on the cyclists themselves, on the bicycle, or on the connection 

point between cyclists and the road surface (Ul-Abdin et al., 2020). Nee et al. (2022) 

constructed a mathematical model of road cycling on various routes, employing the 

Frenet-Serret frame. Their analysis revealed that braking is needed to minimize 



 

 

23 

 

centripetal acceleration occurred prior to the point of maximum curvature. This can 

facilitate acceleration through pedaling out of a bend (Nee & Herterich, 2022). Other 

related studies have concentrated on velodrome and track cycling, providing predictive 

models to assess applied power of cyclists on a velodrome, and centripetal forces 

stemming from tire scrubbing effects and the tipping motion of a cyclist maneuvering 

through a corner of a velodrome (Bos et al., 2024; Lukes et al., 2012). 

3.3.3 Human Factors and Perception 

The second parameter explored in literature to assess safety on horizontal curves is human 

factors, particularly anticipation and infrastructure predictability, and their impact on 

users’ behavior and crash risks. A recent study on curves safety in roadways by Afghari 

et al. (2023) unveiled that users' anticipation of infrastructure (predictability) is a crucial 

latent variable to be integrated into crash risk modeling. They formulated an econometric 

model that incorporates the predictability of drivers as they navigate through different 

curves (Afghari et al., 2023). Other studies have primarily utilized simulators to examine 

the effects of various modifications on curves. For instance, a study by Meuleners (2023) 

investigating the widening of an on-road bike lane using this approach found that 

increasing the bike lane width on curved sections of mid-block roads could significantly 

benefit cyclists, potentially reducing bike lane excursions by up to 68% (Meuleners et al., 

2023). Ma and Luo (2016) conducted a microsimulation study on cyclist acceleration 

behavior on bike lane, utilizing naturalistic GPS data collected from commuter cyclists 

recruited for the study (X. Ma & Luo, 2016). Overall, the review on horizontal curves 

suggests that the perceptual impact of design has not been thoroughly investigated. This 

aspect holds significant importance in determining design values optimized for the safety 

of micromobility users, as they are more likely to adhere to designs that align with their 

perceptions and behaviors. 

3.4 Safety Assessment Methods 

Proactive safety assessment monitors real road user movements to preemptively identify 

potential safety hazards arising from factors like infrastructure, human behavior, vehicles, 

traffic, and the environment, all without dependence on accident records (Llopis Castelló, 

2018). 

To fulfill this purpose, Surrogate Measures of Safety (SMoS) were introduced in 1977 to 

serve as proactive safety indicators derived from non-collision events, which occur more 

frequently than accidents (Amundsen, 1977). The measures are derived from observing 

mobility users' motion and mainly evaluate their interactions in potential conflict 

scenarios. For instance, Time to Collision (TTC) estimates the remaining time before a 

potential collision if trajectories continue unchanged. Meanwhile, Post-Encroachment 

Time (PET) measures how long it takes for a road user to regain a safe distance after a 

near-miss event. This approach is known as a more effective and ethical approach for 

safety assessment without the need to rely on historical accident data.  

SMoS are commonly classified based on their application (direction, operational 

attributes), usefulness scope, and time nature of the data (Mullakkal-Babu et al., 2020). 

Regarding their application scope, SMoS are categorized by interaction dimensions, 

including longitudinal interaction, lateral interaction, and two-dimensional interaction. 

Common longitudinal SMoS indicators include TTC (Time to Collision), GT (Gap Time), 

DRAC (Deceleration Rate to Avoid Collision) or DST (Deceleration to Safety Time), and 

PICUD (Potential Indicator of Collision with Urgent Deceleration). Lateral SMoS like 
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PET (Post-Encroachment Time) are used to predict risks in lane change controllers, 

intersections, and lateral maneuvers. Some SMoS have applications in both longitudinal 

and lateral driving scenarios, such as Time to Accident (TA), Conflicting Speed (CS), 

and Single-step Probabilistic Driving Risk Field. In terms of operational attributes, SMoS 

are divided into four groups: time-based (e.g. TTC and GT), distance-based (e.g. PICUD), 

deceleration-based (e.g. DRAC), and others (Lu et al., 2021). Additionally, SMoS 

indicators can be either continuous (TTC, DST, GT) or discrete (TA, CS, PET) in terms 

of time (Kathuria & Vedagiri, 2020).  

A significant limitation of metrics like TTC and PET is their assumption that users would 

maintain constant speed and direction in conflicting situations, which is not realistic. To 

address this, probabilistic Surrogate Measures of Safety (SMoS) were introduced in 2008 

(Saunier & Sayed, 2008). These models consider the dynamic motion changes in near-

miss events, offering a more realistic safety assessment. Yet, recent improvements 

include analyzing commuters' complete trajectory footprints, leading to higher accuracy 

at micro resolution. (Nabavi Niaki et al., 2019). 

3.4.1 Interaction-based approach 

Studies that used interaction-based safety analysis mostly developed algorithms to 

evaluate micromobility near misses and crashes, occurring on bike lanes and during 

interactions with motor vehicles. For example, a cross-comparative study (Laureshyn et 

al., 2017) used video data from three intersections in Norway, employing the Swedish 

Traffic Conflict Technique (Swedish TCT), Dutch Conflict Technique (DOCTOR), and 

Probabilistic Surrogate Measures of Safety (PSMoS) to assess surrogate safety measures 

by analyzing car-cyclist conflicts and potential collision points. While conflict techniques 

aligned well in identifying conflicts, PSMoS detected more safety-relevant interactions, 

suggesting promise for future road safety analysis with a need for further refinement, 

particularly in cyclist-involved scenarios amidst decreasing accident rates and stagnant 

data quality. 

Another study (Reijne et al., 2022) examines AV-cyclist interaction during cyclist-

initiated emergency braking to avoid other vehicles, and evaluates the risk of cyclist falls. 

The study tests Threat Assessment Algorithms (TAA) accuracy in Automated Vehicles 

(AVs) using Time-to-Collision (TTC) and Headway (H). 

3.4.2 Movement-based approach  

The movement-based safety analysis enables the identification of unsafe maneuvers and 

assesses traffic response to designated designs. With the advancement in Artificial 

Intelligence (AI) and Computer Vision (CV), researchers assessing the safety of 

micromobility are increasingly utilizing these technologies to automate the tracking of 

users' and extract their microscopic operational parameters. These studies primarily focus 

on riders' motion, speed, and trajectories, aiming to proactively assess risky movements 

and mitigate crash risks for micromobility users. 

Nabavi Niaki et al. (2019) utilized the "Traffic Intelligence" open-source tool (Jackson et 

al., 2013) to identify the most hazardous maneuvers, particularly when cyclists follow 

discontinuous facilities. The tool extracted user types and trajectories to analyze these 

movements (Nabavi Niaki et al., 2019). Gildea et al. (2023) proposed an advanced cyclist 

tracking algorithm utilizing CV to assess single bicycle crashes (SBC) or fall incidents 

from bikes. The study involves three main components: object detection to determine the 
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position and orientation of the bicycle, semantic segmentation of the bicycle and rider, 

and human pose estimation to analyze the rider's posture and lean angle (SWOV, 2023).  

3.4.3 Safety Assessments through Simulations 

Since naturalistic data might not include all the scenarios influenced by infrastructure, 

human behavior, vehicles, traffic, and environmental conditions, some studies use 

equipped vehicles with sensors, cameras, or simulation packages and virtual reality to 

evaluate bike lane safety in different situations, avoiding dependence on limited or 

sometime inaccessible real-world data. A recent simulation-based study assessed the 

human factor to test various on-road cycling lane layouts, and found that colored cycle 

lanes enhance safety on left alignment curves, while uncolored lanes are safer for straight 

and right curve alignments (Almallah et al., 2024). Another study examined human 

perception and used a bicycle simulator in a virtual environment to see how safe people 

felt in different setups. They found that protected bike lanes were seen as the safest type 

of bike lane (X. Guo et al., 2023). 

In terms of the traffic factor or user interaction, most studies have examined cyclists-cars 

interactions, rather than cyclists-cyclists or cyclists-e-scooters. This might be because 

such conflicts can result in more serious injuries. For example, Rampf et al (2023) used 

Simulation of Urban Mobility (SUMO) software to model the interaction between 

automated vehicles and cyclists. They concluded that their model could sometimes 

perform better than existing car-following and lane-changing models (Rampf et al., 

2023).  

The infrastructure factor was also studied using a bicycle simulator. For example, 

Meuleners et al. (2023) examined how the presence or absence of sharrows at a 

roundabout and widening an on-road bike lane (1.2 meters or 1.8 meters) affected a 

curved mid-block section of the road (see section 2.2.3). The findings showed that 

widening the bike lane to 1.8 meters led to a notable 68% decrease in bike lane excursions 

on the curved mid-block section of the road. Moreover, the study found that the presence 

of sharrows did not significantly impact the distance from the left curb when entering a 

single lane roundabout (Meuleners et al., 2023). 

3.4.4 Safety Assessments with Instrumented Devices 

Experimental studies using instrumented micromobility devices are increasing. This 

method is useful in better understanding of the motion and interaction between users. 

Fonseca-Cabrera et al. (2021) examined perceived risk during meeting maneuvers 

between e-scooters and cyclists (Fonseca-Cabrera et al., 2021b). Lopez et al. (2020) 

assessed objective and subjective risk of overtaking maneuvers of motorized vehicles to 

cyclists’ groups riding instrumented bicycles. They found high speed, low lateral 

clearance (1.5 meters), and rear position to higher risk (López et al., 2020). Shoman et al. 

(2023) analyzed data from instrumented city bicycles to investigate the behavior of public 

users. They collected information on bicyclist demographics, users' perceptions, and 

cyclists’ dynamics (speed, pedaling power, and cadence rate) to observe user reactions to 

various features of the road surface and geometric design, as well as interactions with 

other road users such as pedestrians. This study also introduced multicriteria behavioral 

risk indicators (BRIs), which encompass risk factors associated with users' perceptions in 

various weather, road, and traffic conditions, interactions with other road users, and 

responses to infrastructure deficiencies. The indicator primarily relies on users' speed and 

surveys regarding their perceptions and experiences on bike lanes rather than analyzing 

trajectories directly. (Shoman et al., 2023). 
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Johansson et al. (2023) examined how infrastructure affects cyclists and developed a 

method to gather data for studying cyclist-infrastructure interaction in microscopic traffic 

simulations. They utilized electric and conventional bicycles equipped with instruments 

to track movement through curves, uphill sections, and intersections. They also surveyed 

cyclists to better understand human behavior (Johansson, 2023).  

3.5 Trajectory Analysis Techniques 

Understanding user behavior in micromobility and enhancing microsimulation models 

requires sophisticated analysis of movement patterns. Trajectory clustering and 

classification techniques are crucial in this regard. Methods such as the k-means algorithm 

and model-based clustering with the expectation-maximization (EM) algorithm and 

Bayesian Information Criterion (BIC) enable detailed categorization of user maneuvers. 

Following clustering, classification techniques like the K-nearest neighbors method 

further refine the data. Advanced models, including Locally Weighted Regression 

(LWR), Multivariate Adaptive Regression Splines (MARS), and Gaussian Processes 

(GP), offer improved accuracy in analyzing user interactions. This section will discuss 

these methods in detail, highlighting their applications and benefits in trajectory analysis. 

3.5.1 Trajectory Clustering and Classification  

To gain deeper insights into user behavior across different interactions and enhance 

microsimulation models, researchers employed clustering methods to categorize user 

maneuvers. The k-means algorithm, introduced in 1967 (MacQueen, 1967) and further 

developed in 1979 by (Hartigan & Wong, 1979), is a popular clustering method. It aims 

to minimize the distance between each data point and the centroid of its assigned cluster 

for a specified number of clusters, denoted as 'k'. This is achieved by iteratively assigning 

each point to the nearest centroid and updating the centroid to the mean of its cluster. The 

algorithm optimizes the following objective function: 

min
(𝜇1,…,𝜇𝑘)

∑ ∑ ‖𝑋 − 𝜇ℎ‖2
𝑥∈𝑋ℎℎ=1           (1) 

The goal is to establish a hypothesis, ℎ1 = {𝜇1, … , 𝜇𝑘}, consisting of means from 𝑘 

different normal distributions. Initially, a random hypothesis is set for initialization. Each 

instance is represented as ℎ𝑥𝑖 , 𝑧𝑖1, 𝑧𝑖2, … , 𝑧𝑖𝑘𝑖, where 𝑥𝑖 is the observed variable, and , 𝑧𝑖𝑗 

is 1 if it stems from the 𝑗th normal distribution, and 0 otherwise. Through iterative 

estimations of 𝑧𝑖𝑗’s expected values, a maximum-likelihood hypothesis is pursued. 

Subsequently, a new hypothesis, ℎ2, is calculated using these expected values. This new 

hypothesis replaces the previous one, and iterations continue until convergence to a final 

hypothesis. 

Following the k-means algorithm, in 2002, model-based clustering and classification 

emerged. This approach integrates hierarchical clustering, the expectation-maximization 

(EM) algorithm for mixture models, and Bayesian Information Criterion (BIC). The EM 

algorithm involves two key steps: 

1. The E-step computes 𝑧𝑖𝑘, which reflects the likelihood of observation 𝑖 belonging 

to cluster 𝑘 based on current parameter estimates. 

2. The M-step calculates maximum-likelihood parameter estimates using the 

computed 𝑧 matrix. 

Each cluster is described by a Gaussian model 𝜙𝑘(𝑥|𝜇𝑘, ∑  𝑘 ), where 𝑥 represents the 

data, 𝜇𝑘 signifies cluster means, and ∑  𝑘  denotes covariances. The maximum-likelihood 
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values for the Gaussian mixture model are determined by Equation (2), (Fraley & Raftery, 

2003) with 𝜏𝑘 representing mixing proportions. 

𝑓(𝑧) = arg min 
𝑦∈

 𝑑(𝑧, 𝑦)            (2) 

After clustering, the clusters will be classified using the K-nearest neighbors method 

(Mitchell et al., 1990). 

Overall, various flexible fitting models have been developed that are superior fit over 

conventional models that are restricted by their theory-based functional forms. However, 

these models are less easy to interpret. In short, these models are:  

1) LWR: Locally Weighted Regression (Cleveland, 1979). 

2) MARS: Multivariate Adaptive Regression Splines (Friedman, 1991). 

3) SVM: Kernel Support Vector Machines (Cortes & Vapnik, 1995). 

4) BRNN: Bayesian Regularized Neural Networks (Foresee & Hagan, 1997). 

5) GP: Gaussian Processes (Quinonero-Candela & Rasmussen, 2005). 

(Shen et al., 2023) 

In a recent study, Mohammed et al. (2019) applied the GP method to analyze cyclist 

behavior. They introduced a clustering approach based on a multivariate finite mixture 

model to categorize cyclist maneuvers during following and overtaking interactions. The 

maneuvers were grouped into initiation, merging, and post-overtaking states. The 

interaction data collected were include longitudinal distance, lateral distance, and speed 

difference using computer vision and video data (Mohammed et al., 2019). 

3.5.2 Trajectory Pattern Mining 

With advancements in global positioning systems (GPS), more trajectory data is now 

available for mobility analysis, which has spurred increased research in data mining 

techniques and computer science. Challenges such as low frequency of positioning data, 

high power consumption, and personal privacy concerns are discussed in the literature. 

According to Shen et al. (2023), current applications of large-scale trajectory data include 

traffic jam detection, automatic driving, navigation route planning, and mobility 

modeling (Shen et al., 2023).  

The sampling rate in GPS trajectory datasets encompasses two crucial aspects: spatial and 

temporal. Spatially, it reflects the distribution of users across observed areas, while 

temporally, it concerns the time interval of the collected GPS data. Enhancing the quality 

of an existing trajectory dataset can be accomplished through various methods. One such 

approach is trajectory completion, employing heuristic search algorithms or intricate 

probability models (Chen et al., 2011) to depict the transition pattern between locations. 

Additionally, addressing issues such as the low sample rate and prolonged time intervals 

between location records is vital, as these factors contribute to an accumulated deviation 

within trajectories, resulting in significant aggregation errors. Researchers are actively 

working to tackle these challenges, aiming to refine trajectory datasets for more precise 

analysis and diverse applications across multiple fields. 

For generation of trajectory data with a high sample rate, researchers have directed their 

efforts towards extracting features from a restricted pool of existing high-quality 

trajectory data. Deep learning methodologies, including Recurrent Neural Networks 

(RNNs) and Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), have 
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been leveraged to construct sequential mobility prediction models like the Markov Chain 

(Li & Zhang, 2009). Additionally, some studies have incorporated random mobility 

models alongside realistic road topologies. Despite these advancements, many generated 

trajectories in these studies are deemed unrealistic (Shen et al., 2023), thereby potentially 

impacting the outcomes of data mining research conducted using such trajectories.  

To overcome this limitation, super-resolution techniques (Farsiu et al., 2004), commonly 

used in computer vision studies, are employed to enhance the clarity and sharpness of 

low-resolution images. In simpler terms, trajectory data, which tracks the movement of 

objects or individuals over time using a series of points, often lacks detail, with points 

recorded at intervals such as every 10 minutes instead of every 3 minutes. However, by 

applying super-resolution methods, researchers can enhance the granularity of this data, 

enabling more frequent point capture. 

When examining trajectory generation models, researchers adopt diverse metrics to 

assess performance at both micro and macro levels. At the microscale, the comparison 

between truth and predicted trajectories is crucial. This evaluation hinges on metrics like 

normalized Dynamic Time Warping (nDTW) (Keogh & Ratanamahatana, 2005) and 

Average Displacement Error (ADE) (Sadeghian et al., 2018). DTW, renowned for its 

robustness in measuring time series distances (Hall & Albers, 2023), accommodates 

matches between similar shapes, even if their temporal alignment differs. Meanwhile, 

ADE measures the Euclidean distance between predicted and actual trajectories, 

providing valuable insights into model accuracy.  

Expanding the scope to the macrolevel involves assessing the spatial distribution of 

trajectories across the entire study area. Here, the goal is to identify similarities between 

the overall distributions of predicted trajectories and ground truth data. Researchers 

employ three operations—addition, shifting, and deletion—to align predicted mobility 

patterns with true ones. They utilize various indicators to evaluate the similarity between 

two sets of mobility data. Manhattan distance (MD) compares overall differences between 

corresponding elements of the matrices, while Normalized Manhattan distance (NMD) 

scales differences for comparison irrespective of matrix size. Shift proportion (SP) 

determines the ratio of shifts required for alignment. Normalized mass angle (NMA) 

gauges directional agreement using eigenvectors, and Normalized structural angle (NSA) 

assesses structural alignment employing singular value vectors (Yao et al., 2021). 

3.6 Conclusions about Current Knowledge 

The main limitations or gaps in current knowledge identified as a result of the state-of-

the-art analysis are presented below, categorized into the following fields: bike lane 

safety, horizontal curve design, safety assessment measures, and trajectory generation. 

Regarding bike lane safety, the scientometric analysis in section 3.1 shows that there is 

very limited research on how alignment features of bike lanes (both tangents and various 

curves) influence user maneuvering. Most studies on bike lane safety focus on 

intersections and interactions between cyclists and motor vehicles, analyzing crash data 

and conflicts. Other research gaps include the effects of bike lane width, lane widening, 

clearance, speed control, and signage for bike lane. Additionally, pavement-related 

factors such as skidding, distress, and vibration, which can affect safety and comfort, are 

understudied. Overall, there is much less focus in the literature on the geometry and 

pavement of bike lanes than on traffic and operation. 
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For horizontal curve design, the most explicit resource found was the Dutch design 

manual for bicycle traffic (Groot, 2007). It outlines five key parameters for designing 

horizontal curves on bike lanes: route type, design speed, minimum associated radius, 

minimum sight distance in motion, and stopping sight distance. Thresholds for these 

metrics are provided in the guideline. However, there is little compatibility and 

homogeneity between existing bike lanes in many European countries and these standard 

metrics. 

Another issue that some relative studies have highlighted is the incompatibility between 

the design speed of curves and the actual speed at which users travel. Literature suggests 

that users often exceed the design speed, and there is no enforcement. These facts indicate 

a need for more post-implementation studies on user maneuvering behavior to determine 

whether they follow the design and to identify major safety risks. 

In terms of safety assessment, as detailed in section 3.4, many of the developed measures 

used to assess conflicts between micromobility users are derived from traditional 

Surrogate Measures of Safety (SMoSs) such as Time to Collision (TTC) and Post-

Encroachment Time (PET). These measures typically estimate time in a conflict scenario 

to gauge the likelihood of a crash given constant speed and direction of users. However, 

research on motor vehicle conflicts has shown that such assumptions can lead to 

inaccurate and biased results. Furthermore, there is still considerable controversy among 

researchers regarding the acceptable time thresholds on these measures to differentiate 

between safe and unsafe scenarios. 

In the realm of micromobility, where users have greater maneuverability due to their light 

weight and increased degrees of freedom, reliance on traditional measures can introduce 

even more errors. Even utilizing more advanced versions like probabilistic SMoSs still 

necessitates access to extensive historical crash data, which is often lacking for bike lanes, 

leading many studies to focus on intersections, where they could use crash data to analyze 

car-cyclist conflicts. Consequently, most of these studies often exclude single-user falls 

that can result in serious injuries, as data on such incidents is frequently unavailable for 

bike lanes. Moreover, there is also a lack of naturalistic studies on bike lanes that analyze 

users' maneuvering under free-flow conditions without solely focusing on their 

interactions. Therefore, what is lacking is a metric that can assess the safety risks 

associated with various behavioral patterns of vulnerable bike users in relation to 

geometry and can serve as a preliminary safety assessment when historical crash data is 

absent. Of course, when crash data exist and are available, the same measure can become 

more powerful in identifying black spots on bike lanes. 

Trajectory data is crucial for the current study, yet generating accurate trajectories has 

posed challenges in previous research due to the complexity of the process. While GPS 

positioning has been the primary method for tracking road users, the number of bikes or 

e-scooters equipped with GPS remains limited. Additionally, challenges persist with the 

accuracy and frequency of GPS positioning. 

In conclusion, current research reveals several gaps in trajectory data retrieval and 

processing. Although video-based methods and computer vision tools are used to address 

challenges in obtaining user trajectory data, there is still a need for improved GPS 

positioning techniques to enhance accuracy. Super-resolution methods aim to reduce the 

time interval between data points, but their effectiveness remains under evaluation. 

Additionally, the segmentation of bike lanes, which could help assess the spatial risk of 

maneuvers at higher resolutions, is not explored in the literature. Furthermore, there is a 
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need for better algorithms or a simplified process to manage the computational 

complexity of generating accurate trajectories from video data and ensuring their practical 

application. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

31 

 

Chapter 4 Objectives and Hypotheses 

The primary objective of this research is to develop a comprehensive methodology for 

evaluating horizontal curve design on bike lanes by introducing a novel trajectory-based 

metric named the Effective Fitted Radius (EFR). The EFR is defined as the radius of a 

fitted trajectory passing through three fixed points with equal distances between them on 

a bike lane. The EFR allows for comparison with the actual radius of the curve through 

descriptive and statistical variance analysis across different turn directions and user types. 

The operating speed of users is the second microscopic metric to be analyzed alongside 

the EFR, offering complementary insight into user behavior during curve navigation.  

For this study, the analysis is limited to users passing through the curve in free-flow 

conditions (lane violation events). The aim is to assess individual risky maneuvering and 

speeding to determine if geometry influences specific patterns. It is important to note that 

interactions between users are not within the scope of this research, as the focus is on 

non-conflict events.  

To achieve this objective, the following scientific and technical objectives are proposed: 

O1. Identify key factors influencing cyclist safety on horizontal curves. 

O2. Evaluate trajectory analysis methods and data collection techniques. 

O3. Synthesize findings to identify if there is a robust methodological framework for 

segmenting bike lanes and computing cyclist trajectories through point 

positioning and micro-spatial analysis. 

O4. Segmentation of bike lane on horizontal curve to facilitate computation of 

trajectories through point positing and further micro-spatial analysis. 

O5. Selection of horizontal curve sites on bike lanes in the city of Valencia based on 

factors such as average daily traffic, geographical distribution, and diversity in 

curvature degrees and radius, including flat and sharp curves with varying degrees 

of sharpness. 

O6. Collection of video recordings on selected sites using a small camera with wide 

lens and a portable tripod of at least 6 meters height. The tripods is preferably 

placed inside the curve or parallel to one of the tangents, at a distance that ensures 

coverage of the entire curve site without attracting the attention (gaze) of the 

majority of users, thereby minimizing any potential impact on their maneuvering.  

O7. Initial verification of users not being influenced by the presence of the camera is 

achieved by monitoring the head and gaze of passing users at the beginning of the 

recording. 

O8. Preprocessing the recorded videos: labeling, trimming, undistortion, storing in a 

cloud-based platform. 

O9. Selecting an accurate computer vision algorithm or software package available for 

motion analysis of recordings that includes detection and tracking of objects. 

O10. Calibrating the 3D coordinates of the videos by defining a calibrated coordinate 

grid to establish consistent observational distance references, such as central 

markings. Some computer vision (CV) tools achieve this using a perspective 

calibration grid that compares it with a pre-estimated ground reference. 

O11. Defining spatiotemporal parameters that needs be extracted from the video 

recordings for calculating the desired microscopic metrics (speed and trajectory). 

This depends on the features and capabilities of the chosen computer vision (CV) 

tool. 
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O12. Extraction and computation of the desired microscopic metrics using combined 

methods: the CV tool and an suitable libraries in Python such as NumPy, Pandas, 

and SciPy. 

O13. Analysis of the computed EFRs and speeds using descriptive and statistical 

analysis of variances (parametric or non-parametric). 

O14. Proposing of a complete framework for using EFR in the safety assessment of 

horizontal curves on existing bike lane for free-flow analysis and highlighting the 

potentials in interaction-based studies with historical accident data in the future. 

Next, the research hypotheses are presented. These have been divided into two groups: 

initial hypotheses, which serve as the basis upon which the research will be grounded but 

are considered sufficiently validated by previous research, and hypotheses that will be 

tested with the development of this doctoral thesis.  

As initial hypotheses, the following should be highlighted: 

H1. The motion on a bike lane include trajectory footprints, speed, acceleration, 

deceleration, lean, lane changing, and overtaking of micromobility devices. 

H2. A bike lane infrastructure comprises three main components: bike lane alignment, 

side bike lane, and pavement condition. 

H3. Observing cyclists in free-flow conditions is essential to assess how bike lane 

geometry impacts user behavior, eliminating the influence of user interactions. 

H4. The motions of bike lane users are not randomly distributed; various factors 

contribute to their variations and risk level. Among these factors, human factors 

(perception and error) and bike lane infrastructure play a significant role in most 

risky motions.  

H5. There is a relationship between human factors and bike lane infrastructure. For 

instance, a change in the geometric design of a horizontal curve can significantly 

influence riders’ motion behavior. 

H6. The motion of bike lane users can be detected, tracked, and measured as various 

metrics through video motion analysis using computer vision. 

On the other hand, the hypotheses to be tested are: 

H1. Bikes and e-scooters may exhibit different motion patterns on bike lane due to 

variations in size, steering angle, and handling characteristics. 

H2. The direction of turn on curves can influence the trajectory and speed patterns of 

users. 

H3. Lateral segmentation on bike lanes facilitates the identification of unsafe regions 

and potential causes, allowing for a micro-resolution safety assessment. 

H4. Horizontal curves with a radius below certain limits and high curvature may not 

only fail to encourage users to adhere to the design, but they can also provoke 

more violations, risky patterns, and speeding. 

H5. The highest frequency of minimum speed occurs at Mid-Point (MP) of curve.  

H6. Similar to motor vehicles, micromobility users navigating isolated horizontal 

curves generate specific trajectory patterns that can be clustered and classified. 

H7. The geometry of the curve may be one of the top three predictors of a user's 

trajectory on a horizontal curve. 
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Chapter 5 Methodology 

This doctoral thesis introduces a novel safety assessment metric, referred to as Effective 

Fitted Radius (EFR), aimed at enhancing the safety of horizontal curves on bike lanes 

during the design and improvement phase. To validate this metric, a comprehensive 

sample of isolated horizontal curves in Valencia (Spain) needs to be selected. These 

curves must encompass a diverse range of radii and degrees of curvature to effectively 

test the performance of EFR across various geometric configurations and evaluate its 

effectiveness in understanding the impact of geometry on user behavior. 

In the review of previous studies (section 2), the trajectory and operating speed of real 

bike lane users, including cyclists and e-scooterists, emerged as the most utilized 

parameters in the movement-based safety assessments for micromobility. To collect these 

motion data naturalistically, several hours of video footage of real bike lane users at 

enough sample of curve sites needs to be recorded.  

As the first step, a small wide-lens camera and a six-meter tripod are used to record video 

footage of real bike lane users at a sufficient number of curve sites. Next, the collected 

videos are analyzed with the software tool "Kinovea version 2023.1" to retrieve the 

required motion data, categorized by user type (cyclists and e-scooterists) and direction 

of movement (left-turn or right-turn). Finally, a new segmentation method specific to bike 

lanes is proposed, followed by the computation of EFR using the Powell optimization 

method in SciPy. The extracted EFR data undergoes preprocessing and is divided for 

comparative qualitative and quantitative statistical analysis to identify risky maneuvers, 

segments and track types. Below, each step of the method is explained details in the 

diagram (Figure 12). 

 

Figure 12 Overview of the methodology. 

 

5.1 Geometric Recreation and Selection of Horizontal Curves 

To accurately recreate the geometry of horizontal curve sites within the city of Valencia, 

several methods can be employed. For this study, the Alignment creation tool in Civil 3D, 

alongside orthophoto maps, will be utilized. Civil 3D is specifically chosen for its 

advanced capabilities in detailed alignment creation, which is crucial for precise 

geometric replication. This tool allows for meticulous control over curve parameters, 

ensuring that the recreated geometries closely match real-world conditions. Other 



 

 

34 

 

methods of geometric recreation include total station surveys, which provide high 

accuracy through precise geospatial data collection but are labor-intensive; GPS surveys, 

which are less labor-intensive but may lack precision in areas with poor satellite 

reception; and laser scanning (LiDAR), which captures high-resolution 3D data 

efficiently but requires specialized equipment. Additionally, photogrammetry uses aerial 

or terrestrial photographs to create detailed spatial data, though it necessitates careful 

processing, and manual measurement, the least precise method, relies on traditional tools 

like tapes and measuring wheels, useful in contexts where advanced technologies are 

unavailable (Mishra et al., 2024).  

High-resolution orthophoto maps of Valencia, can be obtained from the PNOA (Plan 

Nacional de Ortofotografía Aérea) website  (CNIG, 2024), and then be integrated into 

Civil 3D to provide an accurate base for tracing and aligning the geometric features of 

selected curves. Using Civil 3D's alignment creation tool, detailed curve alignments will 

be specified by radii, degree of curvature, deflection angle, arc length, and chord length. 

These geometries are meticulously verified and adjusted against the orthophoto maps to 

ensure accuracy and reliability. All horizontal curves in this study are simple circular 

curves with a constant radius, as they are the most commonly observed in the bike lane 

network (see section 3.2). 

To select the case study curves, the traffic conditions of the bike lanes in the city of 

Valencia were first examined (Geoportal València | Ajuntament de València, n.d.). The 

bike lane segments with the highest Average Daily Traffic (ADT) in the study area were 

then identified for reducing collection time. From these segments, a representative sample 

of horizontal curves were selected based on several key conditions. Curve sites were 

chosen to cover a wide range of radii, from the sharpest curve existed in the city with 

small radii of 2 meters to flat curves, encompassing various degrees of navigational 

difficulty. The degree of curvature was another critical factor, with selected sites ranging 

from 769 degree to 22 degree for the flattest curve with minimal deflection. Moreover, 

ensuring a representative geographic spread across the city of Valencia was crucial, with 

curve sites selected from distinct segments of the city – Northwest (NW), Northeast (NE), 

Southwest (SW), and Southeast (SE) – to allow for the analysis of spatially diverse traffic 

behaviors and environmental influences.  

5.2 Video Data Collection 

Collecting naturalistic data requires specific techniques and considerations to avoid users 

detecting the camera, ensure a proper angle of the camera view, and ensure recordings 

are saved properly and stored in a secure online platform. For this study, a six-meter tripod 

and over four Garmin Virb cameras, three for substitute, will be used for each day of data 

collection. These cameras are equipped with a wide lens and have small sizes (32 mm x 

53 mm x 111 mm), which will be beneficial for being hidden. They will provide 1080p 

HD video recording with a 16-megapixel CMOS image processor. They have Bluetooth 

capability, allowing connection to a mobile device for live remote monitoring of the 

recordings when the camera is installed at the top of the tripod. 

To keep the camera from the users, the tripod will need to be placed at a minimum lateral 

distance of 10 meters or more from the outer edge of the horizontal curve at the 

measurement point (MP). In areas where this distance cannot be met, the tripod can be 

placed close to one of the tangents, with a minimum lateral offset equal to the width of 

the bike lane or 2 meters. In all cases, it is necessary to continuously monitor the users' 

gaze and head movement to ensure they are not aware of being recorded during curve 
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navigation. Users who notice the camera will be excluded from data extraction. If the 

number of users detecting the camera increases, the location of the tripod will need to be 

adjusted.  

The most ideal view of the camera will be a bird's-eye view (see Figure 14), but for 

naturalistic studies, this will not be practical because it would require using drones or 

placing the tripod very close to the edge of the bike lane. Therefore, for this study, the 

camera will preferably be installed on top of an extendable six meters tripod at a 90-

degree angle from the tripod's vertical axis. In cases where the lateral distance is not 

sufficient, the camera can be tilted down slightly (up to 45 degree) to capture a full view 

of the entire horizontal curve. Figure 13 illustrates an example of the tripod with the 

camera installed at a proper distance from the curve site. 

  

                   (a)                                                                     (b) 

           Figure 13 Tripod placed at proper distance (a) tripod with camera (b) side view.  

  

                   (a)                                                                     (b) 

Figure 14 Bird-eye view settings (a) tripod with camera at zero degree (b) Bird-eye view. 

 

5.3 Segmentizing and Regionalizing the Horizontal Curve 

The observation area for user trajectory and speed extended beyond the bike lane borders 

to include adjacent areas, especially where bike lanes were integrated with pedestrian 

walkways. The typical width of the studied bike lanes in this study is 2 meters with the 

markings (1.7m without markings). To enable detailed analysis of trajectory data on 

horizontal curves, regionalization and segmentation were implemented (see Figure 15). 
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This involved dividing the bike lane into three sections: PC (point of curvature), MP 

(midpoint), and PT (point of tangency); and four spatial areas as described below: 

1) Lane (LN): User's wheel is positioned within the lane, spanning from the right 

edge to 42.5 cm towards the central marking. 

2) Central Marking (CL): User's wheel is positioned on or within 42.5 cm to the 

right of the central marking, which accounts for half of the operational width (75 

cm) and the marking width (10 cm) combined. This positioning poses a risk of 

crossing conflicts with opposite users. 

3) Opposite Lane (OPL): Users breach their lane, causing their wheel to enter the 

lane for opposite direction travel (in bidirectional bike lanes), leading to head-on 

and side-angled conflicts. 

4) Out of Lane (OTL): The area to the right of users' movement direction within 

the bike lane, where interactions with pedestrians or collisions with fixed objects 

can occur. 

 

Figure 15 Regions of interest for identifying user’s position on the curve with users making a right-turn; 

background image source (NYC DOT Web page, 2024). 
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5.4 Track Typology 

To effectively classify the maneuvers of bike lane users, six track types previously 

defined in motor vehicle dynamics research on horizontal curves were adopted (Spacek, 

2005). Ideal behavior (ID) represents the optimal track, characterized by a symmetrical 

path along the center of the dedicated lane in each direction, closely adhering to the 

idealized design standards. This type means the user have maximum stability and minimal 

deviation, promoting consistent and predictable movement within a narrow central area. 

Normal behavior (NR) also indicates a symmetrical track along the center but allows for 

a broader area of movement, accommodating slight deviations such as minor cutting 

towards the curve's inside without encroaching on the lane's center line. These two types 

aim to provide cyclists with a reliable and secure riding path, emphasizing minimal 

deviation from the initial path. 

More complex behaviors include Correcting (CR), Cutting (CT), Swinging (SW), and 

Drifting (DR). Correcting (CR) involves an S-shaped path, where cyclists initially drift 

toward the curve's outside before correcting their steering midway through, often due to 

an underestimation of the curve's length or sharpness. Cutting (CT) involves deliberate, 

strong cutting to the inside of the curve, a conscious effort to balance centrifugal forces. 

Swinging (SW) and Drifting (DR) both describe asymmetrical track paths but in opposite 

manners: Swinging (SW) sees cyclists start on the right side of the lane and drift left 

toward the curve's end, while Drifting (DR) involves starting on the left and drifting right. 

These behaviors highlight the diverse ways cyclists navigate curves, influenced by both 

conscious decisions and unconscious adjustments to the bike lane's geometry. 

 

Figure 16 Six track types for motor vehicle maneuvers on horizontal curves (Spacek, 2005). 

 

5.5 Data Extraction  

In this section, the methods and procedures for extracting and analyzing the data collected 

from video recordings of bike lane users will be detailed. Section 5.5.1 will describe the 

process of determining the Effective Fitted Radius (EFR) using Kinovea motion analysis 

software and a custom Python script to fit circular arcs and compute geometric properties. 

Section 5.5.2 will focus on estimating the average speed between sections using 

timestamps and distances, and performing comparative analysis through descriptive 

statistics and box-and-whisker plots to visualize speed distributions across different 

sections, user types, directions, and curve geometries. Finally, Section 5.5.3 will outline 
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the use of the DBSCAN clustering algorithm to identify patterns in the lateral offsets of 

users, addressing noise and outliers to uncover meaningful trends in the data. 

5.5.1 Effective Fitted Radius (EFR)  

The process of capturing data from videos involved extracting users' spatio-temporal data, 

including wheel position and timestamps for average speed estimation, using Kinovea 

motion analysis software (version 2023.1) at PC, MP, and PT. This data was then 

formatted in Excel and utilized by a Python script designed to fit circular arcs. The script 

calculated various geometric properties of the arc, such as start and end points, midpoint, 

tangent vector, and normal vector, based on predefined parameters like degree of 

curvature, radius, and deflection angle. It then iterated through each row of positions 

(offset distances) from the Excel file, defining the arc's offset at the start, midpoint, and 

end points.  

For each set of offset distances, the script minimized a distance function representing 

deviation from the circle using the Powell method from the SciPy library to find the 

optimal center and radius of the fitted circle. The Powell optimization method in SciPy 

facilitates the generation of the best-fitting circular curve between three points with 

minimized squared deviation. This method only requires the coordinates of the three 

points; there is no need for the center of the curve or the radius. Consequently, it enables 

the computation of the Effective Fitted Radius. 

Finally, the original arc, control points, offset points, and the fitted circle were plotted 

with annotations for geometric parameters, and the radius of the fitted circle was printed 

for each row of offset distances. Additionally, a second Python script was written to find 

the best-fitted polynomial curves to plot trajectory heatmaps. Figure 17 (a) depicts a case 

study of a curve analyzed within the Kinovea software environment and the calibrated 

perspective grid used for frame calibration before data extraction, whereas Figure 17 (b) 

presents an aerial view of the curve, displaying control points, the actual trajectory (gray), 

and the fitted polynomial curve (yellow). 

 

  

(a) (b) 

Figure 17 Data extraction: (a) curve site camera view and (b) aerial view with the control points. 

 

5.5.2 Speed  

In this method, the average speed between each consecutive section will be estimated 

based on the timestamps and the distance between them. These timestamps will be 
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extracted from the Kinovea software while the user navigates through the curve, allowing 

for precise calculations of instantaneous speed between sections. Then, the tracking 

feature in Kinovea will be used to also record the spot speed (speed at a specific position) 

at each section of interest. This velocity will be compared with the average speeds for 

verification purposes, and if verified will be recorded as the speed of user at that section. 

To provide a comprehensive comparative analysis, a descriptive analysis method will be 

employed, along with box-and-whisker plots. Descriptive analysis will involve 

summarizing and interpreting the data to highlight patterns and central tendencies, such 

as mean and median speeds, as well as variability through measures like standard 

deviation. Box-and-whisker plots will then be used to visually compare the speed 

distributions between different sections, user types, directions, and curve sites with 

varying geometries. These plots will illustrate the spread and skewness of the data, 

highlighting any outliers and differences across the categories, thereby offering deeper 

insights into the factors influencing cyclist behavior and speed. 

5.5.3 Track clustering and prediction  

Clustering is the process of dividing a large collection of entities into smaller groups 

based on their similarity, without predefined classes. On the other hand, classification is 

the process of grouping entities by similarity into predefined classes (Kononenko & 

Kukar, 2007), as conducted in the previous subsection. There are several types of 

clustering techniques, including K-Means Clustering, Hierarchical Clustering, Prototype-

based clustering, Density clustering, and Model-based clustering. Clustering techniques 

can also be classified based on the algorithmic approach used to find clusters in the 

dataset. The different types of clusters include exclusive or strict partitioning clusters, 

overlapping clusters, hierarchical clusters, and fuzzy or probabilistic clusters (Kononenko 

& Kukar, 2007). 

In this research, the objective is to identify patterns in the lateral offsets of users across 

different sections (d-pc, d-mp, d-pt) on a curve. The analysis began with the loading and 

normalization of the dataset. The DBSCAN (Density-Based Spatial Clustering of 

Applications with Noise) algorithm was chosen for clustering due to its ability to identify 

clusters of arbitrary shape and its robustness to noise and outliers. 

DBSCAN works by grouping together points that are closely packed together while 

marking points that lie alone in low-density regions as outliers. This property is 

particularly useful in the dataset, which might contain outliers due to variations in track 

conditions or measurement errors. After an initial clustering to identify and remove 

outliers, the data was reclustered to better capture the true patterns within the data. 

DBSCAN was suitable for this research for several reasons. First, it does not require the 

number of clusters to be specified a priori, which is advantageous when the appropriate 

number of clusters is unknown. Second, DBSCAN is capable of finding clusters of 

arbitrary shape, making it flexible enough to handle complex trajectories. Third, it 

effectively handles noise and outliers, which is critical in this dataset, as evidenced by the 

identification of outliers in the initial clustering step. This adaptability and robustness 

make DBSCAN an excellent choice for analyzing the lateral offset data. 

After clustering analysis, a decision tree plot will be produced using a Python script 

through several key steps. First, data from a CSV file will be read into a pandas 

DataFrame. Categorical variables will be identified and one-hot encoded using 
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OneHotEncoder within a ColumnTransformer. Next, the dataset will be split into training 

and testing sets using train_test_split. A DecisionTreeRegressor will be initialized and 

trained on the training data. Predictions will be made on the test set, and root mean 

squared error (RMSE) will be calculated for each target variable. Finally, the decision 

tree will be visualized using plot_tree from sklearn.tree, with the filled=True parameter 

for better clarity and feature_names provided to label the nodes appropriately. This 

comprehensive approach will utilize matplotlib.pyplot to display a clear decision tree 

structure, aiding in understanding the model's decision-making process visually. 

To enhance the performance and interpretability of the DecisionTreeRegressor model, 

hyperparameter tuning will be integrated using GridSearchCV from sklearn.model. This 

will involve systematically exploring a predefined parameter grid (max_depth, 

min_samples_split, min_samples_leaf) to identify the optimal configuration via cross-

validation, evaluating based on negative mean squared error scoring. Once the best 

parameters and model are determined, predictions will be generated for the test dataset, 

and root mean squared errors (RMSE) will be computed for each target variable (d-pc, d-

mp, d-pt). The top-performing model selected by GridSearchCV will be visualized using 

plot_tree. This visualization will depict the most influential features and their splits, 

facilitating interpretation of the model's decision-making process. Additionally, the script 

will save the optimal model using joblib.dump and document crucial outcomes—

parameters, scores, and RMSE values—in both text and image formats, enabling 

comprehensive analysis and future reference. These enhancements will collectively 

ensure a more robust and effective decision tree regression model, elevating its predictive 

accuracy and explanatory power for diverse applications. 

5.6 Data Analysis Techniques 

To assess safety using computed EFRs, a combination of quantitative and qualitative 

methods will be employed. Post-hoc Analysis of Variances (ANOVA) and raincloud plots 

will be used to analyze the impact of user type and movement direction on risky 

maneuvers on curves. ANOVA is applied when assumptions of normality and 

homogeneity were met (p>0.05), and when EFRs had minimal outliers. For datasets with 

high dispersion, the non-parametric Kruskal-Wallis test is used to identify differences 

among four independent groups at each site (Left-turn cyclists, Right-turn cyclists, Left-

turn e-scooterists, Right-turn e-scooterists). For the statistical analysis the JASP software 

will be used. JASP (Jeffreys's Amazing Statistics Program) is an open-source statistical 

analysis software developed by a collaboration of researchers and software developers 

from the University of Amsterdam, the University of Groningen, and other institutions. 

It is designed to provide a user-friendly interface for conducting a wide range of statistical 

analyses, including descriptive statistics, t-tests, ANOVAs, regression analysis, Bayesian 

inference, and more (JASP 18.3, 2024). 

To assess differences, median EFRs are calculated and compared instead of mean EFRs, 

which can be influenced by skewness. Subsequently, the Kolmogorov-Smirnov test can 

also be conducted on groups showing differences to compare distributions and assess the 

degree of difference using cumulative distribution functions (CDFs). Additionally, data 

visualization is carried out using Python to generate heatmaps and trajectory maps of 

selected sites.  

 



 

 

41 

 

Chapter 6 Development  

This chapter outlines the comprehensive development process undertaken for the study, 

focusing on the methodologies and technical steps used to gather, process, and analyze 

data on bike lane safety on horizontal curves. It begins with the selection and 

classification of study area curves, explaining the criteria and process for identifying and 

categorizing curves within specified districts. The chapter then covers the recreation of 

selected curve geometry using Civil 3D software, detailing the techniques for accurately 

modeling these curves. Camera placement, recording, and undistortion are discussed next, 

including strategic positioning, recording methods, and video correction processes. The 

extraction of motion outputs from videos is then explained, followed by the computation 

of the Effective Fitted Radius (EFR) using mathematical and computational approaches. 

Finally, the chapter presents the data analysis techniques used to interpret the data and 

draw conclusions about bike lane safety on horizontal curves. 

6.1 Selection and Classification of Study Area Curves 

A systematic approach was employed to identify relevant curves, ensuring a diverse 

representation of urban environments. This section provides a detailed account of the 

methods used for this crucial step.As shown in Figure 18, the identified curves are 

distributed in three main districts: 

 Algiros: Including the avenues of Blasco Ibañez and Tarongers. 

 El Plà del Real: Near Turia Park. 

 Ciutat Vella: Primarily on the streets of Angel Guimerá and Peris y Valero. 

Initially, 50 curves were located in these high-traffic segments. The GPS coordinates 

(Global Positioning System), curve type, location, segment type, and storage folder of 

each 50 curves were then documented and listed in Table 2. 

 

 

Figure 18 Initial map of identified curve sites in busiest bike lanes in the city of Valencia. 
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As can be seen in Table 2, 10 out of 50 curves were successive, meaning that several 

bends occur in a short distance. Therefore, these were excluded from the list for further 

selection. The remaining horizontal curves, which were isolated, were classified based on 

whether they are circular (tangent-circular curve-tangent) or tangents with a small bend 

(tangent-tangent), and on their degree of curvature: flat or sharp (high curvature). 

Table 2 List of identified curve sites in busiest bike lanes in the city of Valencia. 

# Label GPS Curve Type Location Folder Segment 

1 SE1 39.4605159 -0.3540564 circular-flat Plaça d'Europa 12,14,19 roundabout 

2 M1 39.469773 -0.3597295 tangent-flat Av d'Arago 12.13 midblock 

3 NE1 39.4711587 -0.3345507 tangent-flat Mari Blas de Lezo 12.2 roundabout 

4 NE2 39.4709779 -0.3346739 tangent-flat Mari Blas de Lezo 12.2 roundabout 

5 NE3 39.4708101 -0.3357394 circular-sharp Mari Blas de Lezo  12 roundabout 

6 NE4 39.4747042 -0.3495153 tangent-flat Av Blasco Ibanez  12 midblock 

7 SE2 39.453720, -0.352684 circular-flat Plaça Saller 14 roundabout 

8 NE5 39.470606 -0.3347898 tangent-flat Mari Blas de Lezo  14 roundabout 

9 NE6 39.4745263 -0.350406 tangent-flat Av Blasco Ibanez 14 midblock 

10 SE3 39.453861 -0.352518 circular-flat Plaça Saller 16.18 roundabout 

11 SE4   39.460008, -0.354225 circular-flat  Plaça d'Europa 16.4 roundabout 

12 SE5 39.460008, -0.354225 circular-flat  Plaça d'Europa 16,19,13 roundabout 

13 SW1 39.470317 -0.383590 circular-sharp Guillem de Camidblockro-Xàtiva  18 midblock 

14 SW2 39.471784 -0.368658 circular-sharp Plaça Porta de la Mar 18 roundabout 

15 SE6 39.4633132 -0.3579977 circular-sharp Escultura Sol de Ripollés 18.8 roundabout 

16 SE7 39.4633132 -0.3579977 circular-sharp Escultura Sol de Ripollés 18.8 roundabout 

17 SE8 39.4633132 -0.3579977 circular-sharp Escultura Sol de Ripollés 18.8 roundabout 

18 SE9 39.461417 -0.357701 circular-sharp Pont del Regne 18, 8 bridge 

19 NE7 39.473959 -0.348474 circular-flat Plaça d'Emilio Attard 18 roundabout 

20 SE10 39.453166 -0.352845 circular-sharp Plaça Saller 16.18 roundabout 

21 SE11 39.453166 -0.352845 circular-sharp Plaça Saller 18 roundabout 

22 SE12 39.453997 -0.351845 circular-flat Plaça Saller  18 roundabout 

23 SE13 39.453505 -0.352840 circular-flat Plaça Saller  18 roundabout 

24 NE8 39.4703922 -0.3349863 circular-sharp Mari Blas de Lezo 19, 4 roundabout 

25 M2 39.4706023 -0.35883 tangent-flat Av d'Arago 2, 4 midblock 

26 SW3 39.467372 -0.376738 circular-sharp Xàtiva 3 midblock 

27 SW4 39.472207 -0.370118 circular-flat Palau de Jumidblockicia 3, 8 midblock 

28 SE14 39.4610174 -0.3568832 circular-flat Pg. de l'Albereda 3 roundabout 

29 M3 39.4757801, -0.3554835 circular-sharp Av d'Arago-Blasco 3 roundabout 

30 NE9 39.470618 -0.335771 circular-sharp Mari Blas de Lezo 3 roundabout 

31 NE10 39.473321 -0.348102 tangent-flat Av Blasco Ibanez  5 roundabout 

32 NE11 39.477921 -0.346000 tangent-flat Ramon Llull 8 midblock 

33 NE12 39.478138 -0.346351 circular-sharp Ramon Llull 8 midblock 

34 NE13 39.480826 -0.347920 successive Tarongers 8 midblock 

35 SW5 39.468132 -0.379963 circular-sharp Xàtiva 7 midblock 
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36 SW6 39.468132 -0.379963 tangent-flat Xàtiva  7 midblock 

37 SW7 39.467045 -0.374975 circular-flat Xàtiva 7 midblock 

38 M4 39.4767544 -0.3559002 circular-sharp Av Catalunya-Blasco 8 roundabout 

39 M5 39.4811459 -0.3520229 circular-flat Av Catalunya-Tarongers 8,4  roundabout 

40 NE14 39.474315 -0.348030 circular-flat Plaça d'Emilio Attard 18 roundabout 

41 NE15 39.474867 -0.350184 tangent-flat Av Blasco Ibanez 12 midblock 

42 SE15 39.461402 -0.365455 successive Av. de Peris i Valero 76 midblock 

43 SE16 39.461407 -0.365470 successive Av. de Peris i Valero 77 midblock 

44 SE17 39.461176 -0.365927 successive   Av. de Peris i Valero v1 78 midblock 

45 SE18 39.461041 -0.366340 successive   Av. de Peris i Valero v1 79 midblock 

46 SE19 39.460610 -0.367356 successive   Av. de Peris i Valero v1 80 midblock 

47 SE20 39.460177 -0.368338 successive   Av. de Peris i Valero v1 81 midblock 

48 SE21 39.459772 -0.369340 successive   Av. de Peris i Valero v1 82 midblock 

49 SE22 39.458278 -0.372872 successive   Av. de Peris i Valero v1 84 midblock 

50 SE23 39.457765 -0.374075 successive   Av. de Peris i Valero v1 85 midblock 

6.2 Recreation of Selected Curve Geometry in Civil 3D 

After the high-volume segments and their corresponding isolated curves are identified, 

the next crucial step involves using an accurate tool and an updated Lidar-based 

orthophoto map of Valencia to extract the geometric features of these curves. The base 

map and the points where the curve sites are located, as listed in Table 3, are imported 

into the Civil 3D software. The alignment creation tool in Civil 3D is then used to recreate 

the geometrical alignments (tangent-curve-tangent) along the central markings of the bike 

lanes. Figure 19 provides screenshots of the point maps on the base orthophoto and the 

alignment creation tool in use. 

The radius of the curve sites ranged between 2 to 10 meters, with the addition of two flat 

curves (with radii of 22 m and 78 m). The degree of curvature ranged from as high as 796 

degrees to as low as 22 degrees for the flattest curve site. The selection of curve sites was 

also based on their spatial distribution and traffic volume. The aim was to choose sample 

sites with the highest average daily traffic rates (to minimize data collection time) while 

ensuring representation from various segments of the city of Valencia, divided into 

Northwest (NW), Northeast (NE), Southwest (SW), and Southeast (SE). These spatial 

locations were used to label each site accordingly. 

 

Figure 19 Screenshots of point maps and alignment creation tool in the Civil 3D. 
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The geometric data extracted from Civil 3D varied widely, yet many curves were quite 

similar. To filter out a representative group and reduce the data, their geometries were 

compared. Ultimately, out of 40 curves, nine with different radii, deflection angles, and 

sharpness (degree of curvature) were selected to be represent sample of various 

geometrical conditions (Table 3). 

Table 3 Isolated curve sites geometric parameters. 

# Site Type Length 

(m) 

Radius 

(m) 

Deflection 

angle (d) 

Chord 

length (m) 

Degree of Curvature 

by Arc (d) 

1 NE3 Sidewalk 10 6 89 8.8 278 

2 SW2 Protected 12 10 69 11.1 178 

3 SE4 Sidewalk 13 22 33 12.7 78 

4 SE3 Protected 37 78 27 36.9 22 

5 NW1 Sidewalk 4 2 89 3.2 769 

6 SW1 Protected 6 5 71 5.9 341 

7 SW3 Protected 4 5 46 4 341 

8 NE9 Sidewalk 11 7 84 9.8 240 

9 NE8 Sidewalk 13 9 85 11.8 200 
 

6.3 Camera Placement, Recording, and Undistortion  

After site selection recording videos starts at selected points. The key factors in this 

process are the camera's location and the discreetness of the recording process to avoid 

drawing riders' attention. The camera can be positioned parallel to one of the tangents, 

with a lateral distance of up to 4 meters from the edge of the bike lane, covering the entire 

curve to the next tangent. Figure 20-a provides a clear illustration of the parallel view 

before undistortion. It is evident from this image that positioning the camera in this 

manner is sometimes inevitable for sharp curves, especially in densely built-up areas like 

this sidewalk. Alternatively, the camera can be placed outside the curve, at a greater 

distance that can be adjusted on site to cover the entire curve. This placement enhances 

concealability and is suitable for less sharp, flatter curves (see Figure 20-b and c). In order 

to ensure users are not noticing the camera and their behavior is not being impacted by 

the presence of the camera, the recording crew had to monitor the gaze and head 

movements of the users to make sure that are not aware of the presence of the camera. 

Since the camera used is relatively small and placed atop a thin tripod at a height of 6 

meters, it was observed that when it is positioned out of direct sight of users, the recording 

process goes unnoticed by anyone.  

Before recording starts, another important process is to obtain permission from the city 

council. In this study, this process was followed based on the instructions of the 

municipality of Valencia, conducted through their website. Providing information 

regarding the streets and time of recording for each location is essential for approval. In 

cases where privacy protection laws apply, it is recommended to use other types of 

surveillance cameras, such as thermal cameras, that do not reveal the identity of users. 
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                                      (a)                                                            (b) 

 
                                                                  (c) 

Figure 20 Camera views of curve site under study: (a) SW1 (b) NE3 and (c) SE3. 

The selected sites' video data was captured using Garmin Virb Elite cameras, that allow 

recording 1080p HD video, mounted on six-meter tripods. The data collection was 

developed from September to November 2023, primarily during morning and evening 

rush hours (7am-10am and 4pm-7pm). At each site, recordings continued until reaching 

a minimum of 25 users per direction per user type (100 users in total) under free-flow 

conditions. This criterion was met by ensuring that the user is alone in its direction/lane 

or in other words other users (if any) have no influence on the user’s speed (Teodorović 

& Janić, 2017). The minimum threshold of 25 users per user type and direction has been 

validated in previous research as the minimum requirement for conclusive results in 

similar behavioral studies (Fonseca Cabrera, 2021). 

Moreover, if a traffic light was positioned within a curve, only movements during green 

lights were considered. To avoid attracting users' attention and ensure users' behavior was 

not affected by the presence of cameras, tripods were typically placed outside the curve 

near the intersection point, inconspicuously. The users’ gaze was also monitored, and 

those showing signs of noticing the camera (e.g., turning head, eye movement) were 

removed from the analysis. 

The video data is labeled by position (NE, NW, SE, SW) and numbered (e.g., SW1), then 

stored in a cloud-based space for analysis. Empty minutes without traffic were removed, 

and the videos were undistorted so as to then obtain more accurate speed and position 

data. A script based on OpenCV package in Python was programed for this las step.  
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6.4 Data Collection  

Before analyzing the recorded videos, it is necessary to remove the distortion caused by 

the wide-angle lens used in the camera. This preprocessing step is carried out using 

OpenCV (see appendix C), NumPy, and JASON library in Python. The programmed 

Python code is designed to undistort the videos captured with a wide-angle lens camera. 

It begins by loading the video file and camera calibration parameters from a JASON file. 

Using these parameters, it calculates the optimal new camera matrix to correct for 

distortion. Then, it iterates through each frame of the video, undistorts it, and writes the 

undistorted frames to a new video file. This process ensures that the resulting video has 

minimal distortion, making it suitable for further analysis or viewing. Overall, the script 

automates the preprocessing step of undistorting video footage, which is essential for 

obtaining faster and more accurate results in subsequent motion extraction tasks. 

The motion analysis tool Kinovea (version 2023.1) (Kinovea, n.d.) is utilized to retrieve 

the necessary motion data, including trajectory and speed. The extraction process begins 

after calibrating each video to its specific view. This calibration is achieved using a 

measured reference area or line on the ground, along with the calibration grid feature 

within the software. Additionally, the calibration is verified using the line distance 

feature, which serves as control lines. At least three lines are placed at various locations 

within the video frame, typically along the central marking of the bike lane or spanning 

the width of the bike lane. Moreover, if a video contains prolonged periods with no users 

passing through the curve, these empty intervals are trimmed using the software's function 

to reduce the video file size and expedite the extraction process. This ensures efficiency 

in data extraction and minimizes unnecessary footage, focusing solely on relevant user 

movement analysis. To illustrate a sample of the outputs, Table 4 summarizes the position 

data for site NE3, which will be used for EFR computation in the next subsection. Table 

5 lists the operating speeds of users at each defined section (PC, MP, and PT). These 

speeds are calculated based on the timestamp and distance method explained in the 

previous chapter. Refer to Appendix B, Tables 14 and 15, for all position and speed data. 

Table 4 Lateral Offset Distances from Center Line for Site NE3 (R = 6m) by User Type and Direction. 

# 

Bike Left-Turn   Bike Right-Turn   E-scooter Left-Turn   E-scooter Right-Turn 

PC MP PT   PC MP PT   PC MP PT   PC MP PT 

1 61 42 72 
 

34 50 8 
 

49 -34 0 
 

35 83 17 

2 72 -10 26   47 37 -75   22 -48 13   32 44 -24 

3 45 14 51 
 

50 89 -16 
 

38 -59 32 
 

19 35 -13 

4 16 0 202   35 55 19   10 -24 32   36 33 -16 

5 50 24 0 
 

43 30 -21 
 

16 -51 -21 
 

25 31 21 

6 138 37 43   32 51 -16   33 -17 12   39 55 33 

7 33 -17 39 
 

-25 90 -11 
 

0 -55 16 
 

19 -28 -50 

8 62 96 55   0 62 -15   27 -30 11   39 56 0 

9 86 68 42 
 

23 -22 0 
 

-14 -17 37 
 

21 14 0 

10 0 -58 0   22 58 25   50 0 26   29 48 -54 

11 27 17 26 
 

18 78 31 
 

28 -37 20 
 

25 45 -51 

12 33 26 0   26 63 -22   54 20 24   19 30 0 

13 28 -82 16 
 

25 0 -34 
 

44 -23 0 
 

33 49 -8 

14 28 -78 26   36 60 27   33 37 24   22 58 9 
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15 22 -62 0 
 

32 66 -10 
 

31 -78 -18 
 

37 22 -44 

16 112 37 23   25 98 0   50 14 35   27 37 14 

17 54 -7 45 
 

13 34 0 
 

27 0 29 
 

34 65 7 

18 133 45 32   39 34 0   10 -14 37   18 38 -27 

19 44 -24 20 
 

43 63 21 
 

10 0 19 
 

31 29 -5 

20 0 -20 22   39 51 0   125 8 -16   23 41 0 

21 37 0 -36 
 

30 37 14 
 

49 40 45 
 

38 63 10 

22 16 -90 0   32 78 -9   105 0 42   30 46 -18 

23 62 68 39 
 

25 20 -50 
 

29 23 32 
 

36 55 -30 

24 50 -71 0   19 48 -14   37 18 24   24 42 -3 

25 21 -41 0   16 82 0   -50 -30 -5   20 39 -23 

 

Table 5 Operating Speed Data per Section for Site NE3 (R = 6m) by User Type and Direction. 

# 

Bike Left-Turn   Bike Right-Turn   E-scooter Left-Turn   E-scooter Right-Turn 

PC MP PT   PC MP PT   PC MP PT   PC MP PT 

1 29 22 28 
 

17 17 26 
 

29 20 24 
 

13 18 26 

2 26 21 25   21 23 32   30 21 23   13 16 25 

3 33 22 27 
 

20 18 28 
 

33 24 27 
 

25 13 18 

4 23 18 15   11 11 16   31 17 18   22 18 28 

5 25 19 18 
 

21 17 22 
 

40 22 23 
 

17 15 23 

6 22 16 23   18 17 24   40 24 25   12 9 18 

7 22 18 19 
 

23 21 30 
 

40 25 26 
 

26 17 25 

8 16 14 15   26 23 31   30 16 23   24 15 19 

9 24 17 21 
 

20 19 29 
 

27 19 29 
 

19 10 15 

10 30 22 23   19 18 25   23 15 18   31 20 27 

11 20 14 16 
 

12 16 26 
 

42 16 32 
 

32 17 25 

12 22 18 20   22 16 23   21 15 18   21 10 17 

13 22 14 20 
 

20 19 29 
 

34 24 40 
 

14 20 27 

14 22 16 15   18 16 17   31 15 25   13 14 24 

15 22 18 17 
 

19 18 18 
 

37 25 30 
 

24 15 19 

16 16 12 24   21 16 27   30 17 26   23 17 27 

17 22 17 21 
 

18 17 21 
 

26 14 16 
 

17 15 24 

18 22 18 23   16 12 15   15 9 16   12 10 18 

19 24 17 21 
 

21 16 20 
 

41 21 28 
 

26 18 25 

20 21 30 20   18 14 19   27 19 25   23 15 21 

21 26 17 20 
 

16 15 17 
 

31 17 26 
 

19 11 15 

22 32 22 19   17 12 16   20 15 22   31 20 25 

23 21 13 17 
 

28 18 28 
 

28 17 26 
 

32 17 27 

24 33 24 30   26 15 26   33 17 26   21 12 17 

25 18 12 10   27 20 30   21 15 24   32 18 26 
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6.5 Computation of Effective Fitted Radius 

After extracting all motion data, the offset data will be used to generate circular fitting 

curved trajectories, representing the footprints of users navigating the horizontal curve. 

From these circular trajectories, the proposed measure of Effective Fitted Radius will be 

calculated to be later compared with the actual radius of the horizontal curve. This process 

is automated using a Python code, thoroughly explained in the previous chapter. For 

future reference, the code is provided below in Figure 21. The code calculates the 

coordinates of the offset points, which are displaced from the original arc points by the 

given offset distances (Table 4) in the direction of the normal vector to the arc at those 

points. In the code, normal_x and normal_y represent the components of the normal 

vector, which is perpendicular to the tangent vector of the arc. Each offset point is 

computed by adding the product of the offset distance and the normal vector to the 

coordinates of the corresponding arc point (start, mid, end). The minimizing function 

calculates the sum of squared distances from the offset points to a circle defined by the 

parameters (center_x, center_y, radius). For each offset point, it computes the distance to 

the circle as the Euclidean distance from the point to the circle's center minus the circle's 

radius. The objective function to be minimized is the sum of these squared distances, 

which represents the total deviation of the offset points from the circle. Fitting a circle to 

offset points by minimizing the sum of squared distances ensures that the best possible 

circle is found that minimizes the overall deviation of the points from the circle. 
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Figure 21 Python code programmed for automation of EFR computation. 
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6.6 Data Analysis  

After computation of EFRs, all data required for descriptives and statistical analysis are 

made read. The offset data that in the previous section used for calculation of EFRs will 

be used again during the statistical analysis for creating displacement heatmaps for each 

curve site, divided by user type and direction. The heatmaps generation process is also 

automated using seaborn library in python. The code is provided below in Figure 22. 

 

Figure 22 Python code programmed for automation of displacement heatmap generation. 

 

The effective radii of curvature (EFRs) and their associated speeds are meticulously 

arranged and saved in CSV files to facilitate thorough analysis. These files provide the 

groundwork for the comprehensive descriptive and statistical evaluations outlined in the 

forthcoming chapter. As depicted in Table 6, a sample representation showcases the 

structured formatting of the EFRs data. These meticulously prepared data sets will be 

imported into JASP. The rest of the computed EFRs are shown in Appendix B (Table 16).  
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Table 6 Computed EFRs for NE3 (R = 6m) curve site per user and turn direction. 

# 

Bike    E-scooter  

Left-

Turn 

Right-

Turn   Left-Turn Right-Turn 

1 5.5 6.9 
 

5 8.2 

2 5 8.1   4.9 7.4 

3 5.3 9.4 
 

4.6 7 

4 4.7 6.9   5.2 6.7 

5 6 6.6 
 

5.1 6.2 

6 5.1 7.5   5.2 6.6 

7 5.1 14 
 

4.9 5.8 

8 7.2 9.1   5.1 7.2 

9 6.1 5.3 
 

5.4 6.1 

10 5 7.1   5.3 8.6 

11 5.8 8.1 
 

5 8.4 

12 6.3 8.6   5.6 6.7 

13 4.6 6.1 
 

5.2 7.2 

14 4.6 6.9   6.2 7.5 

15 4.8 8.2 
 

4.7 6.8 

16 5.4 10.6   5.4 6.5 

17 5 6.9 
 

5.4 7.6 

18 5.3 6.5   5.3 7.5 

19 5 7 
 

5.7 6.5 

20 5.4 7   5.3 6.9 

21 6 6.4 
 

5.8 7.3 

22 4.6 8.9   4.9 7.4 

23 6.5 7.1 
 

5.8 8 

24 4.7 7.7   5.7 7 

25 5.1 9.5   6 7.4 
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Chapter 7 Results 

In this research, the geometry of nine curve sites (Table 3) and the maneuvering behavior 

of 900 bike lane users navigating them were extracted and evaluated. The results of the 

extracted data are presented in this section. In general, the effectiveness of Effective Fitted 

Radius is proven, and impacts on users’ behavior were found for assumed parameters 

such as curve radius, user type, and direction of travel. Both quantitative and qualitative 

methods are employed for analyzing the extracted microscopic data. 

Figure 23 presents the data types (circles) and associated analysis methods (rectangles) 

used in the research. First, curve geometry and users' EFR data were compared using 

parametric and non-parametric post hoc Analysis of Variance (ANOVA). Next, lateral 

user positions on curves were analyzed in Python and visualized with heatmaps showing 

the percentage of users in each lateral segment by section, user type, and turn direction. 

Operational speed data were then used for descriptive analysis by section, user type, and 

turn direction. Finally, trajectory data were analyzed using Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN) and a decision tree regression model 

to identify key geometric factors influencing user motion during curve navigation. 

 

 

Figure 23 Progress Flowchart. 

 

7.1 Comparison of Effective Fitted Radius and Actual Radius 

To conduct a detailed comparison of the risk associated with horizontal curves, the 

Effective Fitted Radius (ERF) associated with each trajectory of maneuvering users on 

all nine horizontal curves was computed. The extracted data were then divided based on 

user type and direction of travel for each curve site. Subsequently, homogeneity and 

normality tests were performed using JASP to partition the extracted datasets for two 

different types of analysis: parametric and non-parametric. For the four sites that met the 

assumptions, parametric post-hoc ANOVA was performed in JASP. These sites include 

NE3, SW2, SE4, and SE3 as shown in Table 7. Five remaining sites that did not pass the 

homogeneity test due to large outliers will be analyzed with a non-parameter method. 

They include NW1, SW1, SW3, NE9, and NE8. 

The post-hoc ANOVA result (Table 7) indicate that regardless of user type, significant 

statistical differences exist between left-turn and right-turn movements in both sharp 

curves of NE3 and SW2. However, for flat curves, no statistically significant difference 

was found. Further details about this result can be seen in the developed raincloud plots 
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in Figure 20. The plots consist of three components: smoothed density plots (violin), box 

plots with median lines, and scattered points. A red dotted line is added to each plot to 

show the actual radius of each curve, enabling comparison with the median of the 

interquartile range of the EFR values. For the curve site with the smallest radii (6 m), the 

median for left-turn users is consistently around 1 meter smaller than the actual curve, 

whereas for right-turn users, who exhibit a wider distribution and are less scattered, the 

EFR median surpasses the actual radius. This indicates that they are less bound to the 

geometry of the horizontal curve. In other words, left-turn users are cutting the curve at 

some points and are vulnerable to head-on conflicts with opposing users. This can be 

further explained with speed analysis in section 4.3 to confirm users' speeding. 

 

Table 7 ANOVA with post hoc tests for Effective Fitted Radius per user type per movement direction. 

Movement Type Compares With  Mean Difference  

  NE3 (R1 = 6 m) SW2 (R2=10 m) SE4 (R3=22 m) SE3 (R4=78 m) 

    EFR (m) EFR (m) EFR (m) EFR (m) 

Bike LT Bike RT -2.492 0.48 -2.204 -5.272 

 
E-scooter LT 0.056 -0.184 -0.24 -0.780 

 
E-scooter RT -1.776 0.312 -1.184 -4.432 

      
Bike RT E-scooter LT 2.548 -0.664 1.964 4.492 

 
E-scooter RT 0.716 -0.168 1.02 0.840 

      
E-scooter LT E-scooter RT -1.832 0.496 -0.944 -3.652 

Bold represents the significant differences at the 0.05 level.  

 
 

In larger radii (22 and 78 m), the patterns observed in Figure 24 persist with right-turn 

users for smaller radii, while left-turn users tend to adhere to the curve geometry, avoiding 

lane violations. Additionally, the post-hoc ANOVA results confirm that for flat curves (R 

= 22 m and 78 m), there are no statistically significant differences between different users 

and directions of movement. Consequently, they are less prone to conflicts as the EFR of 

the movement is close to the actual radius. Given their larger radii, a mean difference of 

2 to 5 meters can be neglected. However, for sharp curves, this difference can constitute 

a significant portion of the radii and lead to significant safety differences. For the sharpest 

curve in the group (R=6 m), the variance is much higher: 41% (bike LT and RT), 29% 

(bike LT vs E-scooter RT and vice versa), and 30% (e-scooter LT and RT). As the radius 

increases to 10 meters, the variance significantly reduces to as low as 3% to 6%, for 

significant cases. These variances can be easily seen through the raincloud plots in Figure 

24a and 24b. The main difference between them is than in a smaller radius, right turn 

users tend to take a flatter trajectory (EFR> Actual Radius) and left users are cutting the 

curve and take a sharper maneuver. However, as the radius increases for 4 meters, most 

users, regardless of their turn direction tend to take the cutting maneuver. For the flat 

samples (Figure 24c and 24d), there are no significant variances and the dotted red line, 

representing the actual radius matches the center of median value of the box plot.  
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                      (a) NE3                                                                   (b) SW2 

 

                    (c) SE4                                                              (d) SE3 

Figure 24 Raincloud plots of Effective Fitted Radius in four curve sites: NE3 (b) SW2 (c) SE4 (d) SE3. 

 

For the remaining five curve sites showing high dispersion, unsuitable for ANOVA 

analysis, non-parametric tests like Kruskal-Wallis and Kolmogorov-Smirnov can be 

utilized to detect differences and compare distributions. In this study, Kruskal-Wallis test 

with Dunn post hoc analysis was conducted to pinpoint curve sites where users were less 

likely to adhere to the designed curvature, resulting in significant dispersion of EFR based 

on user type and movement direction. Results are summarized in Tables 8 and 9. 

 

Table 8 Non-parametric Kruskal-Wallis test results for five curve sites with dispersed Effective Radius.  

Curve Site 
Kruskal-Wallis 

Results Effect Size 

(Eta Square) 

Median EFR 

  F p Bike-LT Bike-RT E-scooter-LT E-scooter-RT 

NW1 (R5=2m) 15.981 0.001 0.161 1.7 1.7 2 1.7 

SW1 (R6=5m) 72.023 <0.001 0.728 3.4 8 3.5 16 

SW3 (R7=5m) 24.888 <0.001 0.251 2.5 5.2 2.1 5.5 

NE9 (R8=7m) 0.835 0.841 0.008 6.7 6.9 6.8 6.9 

NE8 (R9=9m) 5.438 0.142 0.055 8.8 7.7 8.3 7.8 

        Bold represents the significant differences at the 0.05 level. 
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Table 9 ANOVA with dunn post hoc tests for Effective Fitted Radius per user type per movement 

direction. 

Movement Type Compares With  Mean Difference  

  
NW1 (R5 = 2 m) SW1 (R6=5 m) SW3 (R7=5 m) 

    EFR (m) EFR (m) EFR (m) 

Bike LT Bike RT 1.483 -4.856 -3.088 

 
E-scooter LT -1.805 -0.554 0.269 

 
E-scooter RT 1.743 -7.204 -3.644 

   
  

Bike RT E-scooter LT -3.288 4.302 3.356 

 
E-scooter RT 0.26 -2.349 -0.557 

   
  

E-scooter LT E-scooter RT 3.548 -6.651 -3.913 

Bold represents the significant differences at the 0.05 level.  

In Table 9, it is apparent that users at curve sites with minimum allowed radii (R=5m) 

and lower (R=2m) tended to deviate from the curvature, showing significantly lower EFR 

during left-turn movements and higher EFR during right-turn movements. This pattern 

occurred regardless of whether the curve site was located in a protected (SW1, SW3) or 

sidewalk (NW1) bike lane. In contrast, at sidewalk curves with radii of 7 m and 9 m, no 

significant differences in EFRs were observed. This highlights how users may disregard 

even a protected bike lane design if it does not align with their perception. Median EFR 

results suggest that users at these sites were more likely to follow the curvature, regardless 

of type or direction of movement. 

7.2 Displacement Analysis 

To gain deeper insights into areas within horizontal curves prone to conflict risks, a micro-

level examination of wheel positions during navigation is essential. In this study, such 

insight is achieved by regionalizing areas within and outside the bike lane. As explained 

in Chapter 3, four main regions, Lane (LN), Center Line (CL), Opposite Lane (OPL), and 

Out of Lane (OTL), have been defined. These regions are further segmented into three 

parts, representing Point of Curvature (PC), Midpoint (MP), and Point of Tangency (PT) 

sections. They are utilized to create spatioregional heatmaps corresponding to the path 

footprints of moving users. Figure 23 illustrates two series of these heatmaps, facilitating 

a more detailed comparative study of user behavior on a sharp curve (R=6 m) and a flat 

curve (R=22 m). Each series comprises four heatmaps, delineating different user types, 

bike (B) and e-scooter (S), and directions of movement, left-turn (LT) and right-turn (RT). 

The heatmaps that do not contain the OTL are those in which no user has entered the 

outside bike lane area. 

 

The heatmaps (Figure 25 and Appendix B) provide clear confirmation of the statistical 

results discussed in section 7.1. They illustrate that the flatter the curve, the more likely 

users adhere to the geometry, resulting in fewer violations. However, the heatmaps offer 

additional insights. Notably, they reveal that left-turn users tend to ride in the CL region, 

near the central marking, increasing their vulnerability to crossing-body conflicts with 

opposing users. This is attributed to the operational width of micromobility users, 

consisting of their body and potential motions during their path, causing lateral deviation. 

This trend is observed across both sharp and flat curves. Another significant observation 

is that the PC section is where most users ride within safe margins within LN, whereas 
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PT is not. A substantial portion of users (48% to 56%) are observed in the opposite lane 

(OPL) in the middle of the curve (MP). This further elucidates the results discussed in the 

previous section. 

     

      

 

Figure 25 Heatmaps illustrating the percentage of user presence at each spatioregions and sections of 

curve. Example series for two curve sites of NE3 (R=6m) and SE4 (R=22m) divided by user type and 

movement direction. 
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7.3 Speed Effect 

In this section, the impact of speed on risky behavior is examined, with a specific focus 

on cases identified in previous subsections with higher risks of conflicts. A descriptive 

analysis was conducted using JASP software, and the results are summarized in Table 10 

to 13. Additionally, box whisker plots were created to visualize the distribution of speed 

ranges (see Fig. 26 to 29). Box whisker plots are more helpful to quickly observe the 

speed variation through the three segments. Looking at the median trend in Figure 26, it 

is apparent that on tangenets (PC and PT) speed is often reduced as the curve gets flatter. 

However, on the midpoint (MP) this trend is reversed, and two flat curve samples are 

showing higher speed comparing to the sharper curves. Ultimately, to identify segments 

with higher speed difference, a density bar chart divided by user type and direction of 

movement is developed for both segments of PC to MP and MP to PT, as demonstrated 

in Figure 29. 

Table 10 Descriptive analysis of users speed for each four curve site at three sections (R1-R4). 

  PC  MP  PT 

  R1=6m R2=10m R3=22m R4=78m   R1=6m R2=10m R3=22m R4=78m   R1=6m R2=10m R3=22m R4= 78m 

Median 22 18 18 14  17 8 19 19  23 14 18 17 

Mean 23.9 17.97 18 15.48  17.14 8.67 19.31 19.19  22.79 14.34 18.38 17.52 

Std. Deviation 6.999 4.432 4.038 4.792  3.822 2.617 4.355 4.525  5.074 3.528 4.094 4.16 

Minimum 11 7 10 7  9 4 8 9  10 6 10 8 

Maximum 42 26 29 30  30 18 28 30  40 23 26 28 

85th percentile 31.15 23 22 20   21 11 24 25   28 18 24 22 

 

Table 11 Descriptive analysis of users speed for each four curve site at three sections (R5-R9). 

              PC                MP        PT 

  
R5= 

2m 

R6= 

5m 

R7= 

5m 

R8= 

7m 

R9= 

9m 
  

R5= 

2m 

R6= 

5m 

R7= 

5m 

R8= 

7m 

R9= 

9m 
  

R5= 

2m 

R6= 

5m 

R7= 

5m 

R8= 

7m 

R9= 

9m 

Median 14 13 13 12 12  11 14 7 24 24  13.5 14 12 15 13 

Mean 14.7 14.2 12.9 11.6 11.8  14.9 16.2 7.6 21.8 23  13.4 16.4 11.2 15.8 13.8 

Std. Deviation 3.7 4.6 3.3 3.2 3  7.5 6.5 2.7 4.3 3  4 6.5 3.1 4.9 3.6 

Minimum 7 6 5 5 6  4 5 2 12 14  3 7 4 6 5 

Maximum 26 28 24 19 20  29 40 17 29 29  26 35 24 24 22 

85th percentile 19 20 16 15 15   24 22 10 25 25   17 23.1 14 22 18 

 

Table 12 Descriptive analysis of users speed for each user type and direction at three sections (R1-R4). 

  PC   MP   PT 

  
Bike-

LT 

Bike

-RT 

E-

scooter

-LT 

E-

scooter

-RT 

  
Bike-

LT 

Bike-

RT 

E-

scooter-

LT 

E-

scooter-

RT 

  
Bike-

LT 

Bike-

RT 

E-

scooter-

LT 

E-

scooter-

RT 

Median 16 17 20 20  16 16 18 17  16 16 19.5 20 

Mean 17 17.3 20.7 20.3  15.16 14.85 17.48 16.82  16.66 17.1 19.86 19.41 

Std. Deviation 5.51 4.27 7.91 4.86  4.745 5.764 5.776 6.617  4.127 6.064 5.115 4.608 

Minimum 7 7 8 11  5 4 6 4  9 6 8 8 

Maximum 33 28 42 32  30 30 28 30  30 32 40 28 

85th percentile 22 21.1 30 25   19 20 24 25   20 24 25 25 
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Table 13 Descriptive analysis of users speed for each user type and direction at three sections (R5-R9). 

  PC   MP   PT 

  
Bike-

LT 

Bike

-RT 

E-

scooter

-LT 

E-

scooter

-RT 

  
Bike-

LT 

Bike-

RT 

E-

scooter-

LT 

E-

scooter-

RT 

  
Bike-

LT 

Bike-

RT 

E-

scooter-

LT 

E-

scooter-

RT 

Median 11.0 12.0 12.0 14.0  21.0 14.0 20.0 14.0  14 12 14 13.0 

Mean 12.3 12.5 12.9 14.4  18.4 15.7 17.4 15.4  16 12.4 14.5 13.7 

Std. Deviation 4.8 2.6 3.8 3.4  7.9 6.9 7.6 7.5  6.1 4 4.3 4.4 

Minimum 5.0 7.0 5.0 6.0  2.0 3.0 3.0 5.0  6 3 5 5.0 

Maximum 28.0 26.0 24.0 24.0  36.0 29.0 30.0 40.0  35 26 24 29.0 

85th percentile 17.4 15.0 18.0 18.0   25.0 24.4 25.0 25.0   22 16 19 18.4 

 

 

 
                                      (a)                                                             (b)                                                                (c) 

 

Figure 26 Box whisker plots of speed data for different radii for curve R1-R4: (a) PC, (b) MP, and (c) PT. 

 

    
                                     (a)                                                                (b)                                                                 (c) 

 

Figure 27 Box whisker plots of speed data for each user type and direction for curve R1-R4: (a) PC, (b) 

MP, and (c) PT. 

 

 

 
                                      (a)                                                             (b)                                                                (c) 

 

Figure 28 Box whisker plots of speed data for different radii for curve R5-R9: (a) PC, (b) MP, and (c) PT. 
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                                     (a)                                                                (b)                                                                 (c) 

 

Figure 29 Box whisker plots of speed data for each user type and direction for curve R5-R9: (a) PC, (b) 

MP, and (c) PT. 

 

Insight into the relationship between speed and risky behavior in the identified cases is 

provided by these analyses. Accordingly, the comparison of 85 percentile speed between 

four different curves shows that in fact the sharpest curve in this homogenized group 

(radius of 6 meters), experienced the highest speeding of the maximum of 31 km/h that 

is up to double the design speed of the curve (12 km/h). This record is observed on PC. 

Yet on PT as well the speed was as high as 28 km/h. The standard deviation analysis 

reveals that the sharpest curve in the PC, MP, and PT sections has the highest deviation. 

This, along with the risky trends identified in previous subsections, indicates that these 

curves are highly prone to potential conflicts on high-traffic bike lanes. When a large 

portion of users engage in risky maneuvers, the likelihood of such risks increases. 

Although near-miss scenarios are not included in this study, and the risk assessment is 

based solely on individual users' risky maneuvers, the results are still valuable for 

identifying risks caused by bad user behavior driven by poor geometry and for mitigating 

these risks.  In terms of user type and direction, Table 24-27 suggest that users in general 

had lowered their speed at MP, to follow and navigate the curve. However, when looking 

into the user type for 85-percentile speed, it reveals that e-scooter riders have surpassed 

20 km/h at all sections, with a maximum recorded value of 42 km/h on a left-turn 

movements.  

Comparing the box whisker plots in Figure 16, interesting trends can be seen. Firstly, it 

shows when curve radius is increased by only 4 meters (R2= 10m), the speeding of users 

decrease significantly. Not only that but also the speed has less variance in R2 (SW2) 

comparing to R1 (NE3). However, for flatter curves the variance of speed is higher on 

MP comparing to sharp curves (R1 and R2). In Figure 28, the average speeds for different 

user types and turn directions are compared across three sections. The box whiskers 

combine data from all four sites to provide a comprehensive view of user speeding. The 

results indicate that e-scooters generally exhibit higher dispersion, with a median speed 

near 20 km/h at PC and PT, consistently higher than bike users who hover around 15 

km/h. Specifically, when examining MP, it is evident that right-turn e-scooters' speeds 

are widely dispersed, with quartiles ranging from 10 km/h to 22 km/h, and whiskers 

extending up to 30 km/h. 

To investigate speed differences across segments for user types and turn directions, 

density plots were generated, incorporating speed data from the four previously discussed 

curve sites (Figure 30). E-scooters consistently exhibited higher speed differences relative 

to bikes across both segments and turn directions, reaching differences of up to -25 km/h. 

This discrepancy suggests potential variations in caution levels or maneuverability 

between e-scooter and bike users. Additionally, left-turning users consistently displayed 

greater speed differences compared to their right-turning counterparts, particularly within 
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the same user type and segments, indicating potential challenges or the need for more 

substantial speed adjustments during left turns. 

Furthermore, the MP to PT segment consistently demonstrated higher speed differences 

across all user types and turn directions, with left-turn bike users exhibiting the highest 

density at 0.14. This observation suggests that factors such as bike lane geometry, 

visibility, and lane conditions may contribute to these disparities along this segment. 

Moreover, speed differences for nearly 75% of users within the PC to MP segment ranged 

between 0 to 5 km/h. A comprehensive examination of these findings within the study's 

framework could uncover additional insights that inform strategies for addressing 

conflicts and enhancing road safety. 

 

 

Figure 30 Speed difference bar charts between two segments of curve per user type per turn direction. 
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7.4 Track Analysis 

To understand the diverse maneuvers of bike lane users, a detailed examination of track 

types previously outlined is undertaken. Six distinct track types were introduced in 

Section 5.4—Ideal behavior (ID), Normal behavior (NR), Correcting (CR), Cutting (CT), 

Swinging (SW), and Drifting (DR)—each representing different patterns of bike lane 

users’ behavior and stability. In this section, these track types will be analyzed in the 

context of real-world cycling data, assessing how cyclists' paths align with the theoretical 

models. By examining the prevalence and characteristics of each track type, insights into 

cyclists' navigation strategies and the implications for bike lane design and safety will be 

gained.  

7.4.1 Track Type Classification 

Comparing Curve Sites R1 and R2 reveals notable differences in user behavior and 

conflict risk due to changes in curve geometry and the type of bike lane (sidewalk or 

protected). At R1, where the radius is 6 meters and the degree of curvature is 278 degrees, 

the majority of left-turn users cut the curve while most right-turn users correct their paths. 

Both types of users frequently pass through the opposite lane. This occurs in a condition 

where the bike lane is on the sidewalk, allowing users to take more aggressive maneuvers 

since there is no barrier to stop them, indicating a higher potential for conflict in this 

sharper curve. In contrast, at R2, where the radius increases to 10 meters and the degree 

of curvature decreases to 178 degrees, users are mostly passing through the central 

segments. Most right-turn users cut and swing the curve, which increases the risk of 

potential conflicts. Meanwhile, left-turn users in R2 tend to drift through the central 

segment. 

Figure 31 illustrates an example of these trends for curves R1 and R2 (see Appendix B, 

Section 7.4 for additional examples). It shows how the reduction in curve sharpness at 

R2 affects track patterns and the associated risks of conflicts. For reference, 28 

acronyms used in the pie chart, which were thoroughly explained in Chapter 5, are 

summarized in Table 14. 

The pie charts reveal that left-turns exhibit more diversity in track-segment types, with 

up to 12 different types observed. In comparison, right-turns show a maximum of five 

different types, with the majority involving cutting, correcting, and swinging. This 

suggests that left-turn users have a wider range of track patterns, indicating that regardless 

of user type and geometry, users moving outside the curve are more likely to maneuver 

with large variance. This was also revealed previously in the comparative analysis of 

variances in section 7.1. 

Regarding the impact of user type (e-scooter vs. bike), as mentioned earlier, the frequent 

track-segment does not show significant variance. However, it is apparent that in a sharper 

curve, e-scooters maneuver with less type-variance compared to bikes, whereas when the 

curve gets wider (R2), this trend reverses. This indicates that e-scooters tend to have more 

consistent behavior in tighter curves but become more variable in wider curves, while 

bikes exhibit the opposite pattern. The difference in maneuvering patterns between e-

scooters and bikes, especially in varying curve geometries, underscores the need for 

tailored infrastructure designs to accommodate the distinct behaviors and ensure safety 

for all users. 
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Table 14 Acronyms for classifying maneuvers by track type and lateral segment. 

# Acronym Track Type_Lateral Segment 

1 ID_LN Ideal_Lane 

2 ID_CL Ideal_Centeral Marking 

3 ID_OPL Ideal_Opposite Lane 

4 ID_OTL Ideal_Out of Lane 

5 NR_LN Normal_Lane 

6 NR_CL Normal_Centeral Marking 

7 NR_OPL Normal_Opposite Lane 

8 NR_OTL Normal_Out of Lane 

9 CR_LN Correcting_Lane 

10 CR_CL Correcting_Centeral Marking 

11 CR_OPL Correcting_Opposite Lane 

12 CR_OTL Correcting_Out of Lane 

13 DR_LN Drifting_Lane 

14 DR_CL Drifting_Centeral Marking 

15 DR_OPL Drifting_Opposite Lane 

16 DR_OTL Drifting_Out of Lane 

17 SW_LN Swinging_Lane 

18 SW_CL Swinging_Centeral Marking 

19 SW_OPL Swinging_Opposite Lane 

20 SW_OTL Swinging_Out of Lane 

21 CT_LN Cutting_Lane 

22 CT_CL Cutting_Centeral Marking 

23 CT_OPL Cutting_Opposite Lane 

24 CT_OTL Cutting_Out of Lane 

25 UN_LN Unclassified_Lane 

26 UN_CL Unclassified_Centeral Marking 

27 UN_OPL Unclassified_Opposite Lane 

28 UN_OTL Unclassified_Out of Lane 
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Figure 31 Track-segment occurrence on curve sites R1 and R2 by user type and direction. 

 

The analysis of user behavior and conflict risk across the remaining curve sites R3 to R9 

(see Appendix B) reveals similar patterns to those observed in earlier sections. At R3, 

characterized by a flat radius of 22 meters and low curvature (78 degrees), both left-turn 

and right-turn users frequently exhibit drifting maneuvers (DR), passing through all 

segments of OPL, CL, LN, and OTL. Moving to R4, which is the flattest curve site with 

a radius of 78 meters, users not only exhibit drifting but also frequent swinging 

maneuvers, with CL segments being the most frequently passed through. At R5 and R6, 

with the lowest radii of 2 and 5 meters respectively, patterns similar to those observed at 
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R1 and R2 are apparent. Track patterns become more consistent, particularly with left-

turn users demonstrating a higher occurrence of cutting maneuvers while touching the 

opposite lane (CT_OPL). A major difference between R5 and R6 is observed among 

right-turn users. At the lower radius site (R5), users tend to cut the curve, whereas at R6, 

users frequently correct their maneuvers outside the bike lane, even though the bike lane 

is protected. In fact, these users often leave the bike lane at the curve. Sites R7 and R8 

exhibit significantly similar patterns, with left-turn users frequently engaging in cutting 

maneuvers (CT_OPL). However, for right-turn users, a combination of various 

maneuvers is apparent, with drifting, correcting, and swinging being the most frequent. 

These findings emphasize the necessity for tailored infrastructure designs that 

accommodate varying user behaviors and ensure safety across different curve geometries. 

To gain a comprehensive understanding of user behavior across all sites, an occurrence 

heatmap was developed (see Figure 32). A quick glance at the heatmap reveals that 

cutting maneuvers passing through the opposite lane (CT-OPL) are the most prevalent 

among the sharper curves (R5-R9 and R1). This indicates a higher propensity for users to 

cross into opposing lanes in these areas, suggesting a greater potential for conflicts. 

Additionally, drifting and correcting maneuvers are the most frequent among left-turn 

users at site R2 and right-turn users at site R6. This trend indicates that as the curve 

becomes sharper (with R6 having a radius of 5 meters), the direction of the turn 

significantly influences maneuvering patterns. Specifically, sharper curves appear to 

compel users to adjust their paths more aggressively, with distinct differences in behavior 

observed between left and right turns. These findings underscore the importance of 

considering turn direction and curve sharpness in the design of bike lane infrastructure to 

enhance user safety and reduce conflict risks. 

 

Figure 32 Track-segment occurrence on all nine-curve sites (R1-R9) by user type and direction. 
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7.4.2 Track Clustering 

The clustering analysis resulted in five distinct clusters (0, 1, 2, 3, 4) with an additional 

group of outliers labeled as -1. Each cluster represents a unique pattern of lateral offsets 

(d) at each section of interests (pc, mp, pt) across the track sections (see Table 15). 

 Cluster 0 (Cutting): This cluster is the largest, with 757 data points. It has a mean d-

pc of 26.88, suggesting a slight offset to the right in section pc, and small mean values 

for d-mp (6.84) and d-pt (11.05). The standard deviations indicate a moderate spread 

in these values, especially for d-mp and d-pt, suggesting variability in the offsets in 

these sections. 

 Cluster 1 (Correcting): This small cluster contains 8 data points and shows large 

negative mean values for d-pc (-150.25) and d-mp (-156.13), indicating significant 

offsets to the left in these sections. The mean d-pt is also negative (-114.63), 

reinforcing the leftward trend across all sections. The relatively low standard 

deviations suggest consistency in these offsets. 

 Cluster 2 (Correcting): Comprising 7 data points, this cluster also shows large 

negative offsets for d-pc (-112.43) and d-mp (-167.57), but a positive mean d-pt 

(31.71), indicating a rightward offset in section pt. This cluster exhibits moderate 

spread, with standard deviations reflecting some variability. 

 Cluster 3 (Swinging): With 22 data points, this cluster has negative mean values for 

d-pc  

(-82.82) and d-mp (-112.13), suggesting leftward offsets, and a negative mean d-pt (-

114.32). The standard deviations show moderate variability, especially for d-mp. 

 Cluster 4 (Drifting): The smallest cluster, with only 4 data points, shows significant 

negative mean values for d-pc (-153.5) and d-mp (-98.25), indicating strong leftward 

offsets. However, the mean d-pt is positive (12.5), suggesting a rightward offset in 

section pt. This cluster has low standard deviations, indicating very consistent offsets. 

 Outliers (-1): This group contains 102 data points and is characterized by highly 

variable offsets, as indicated by the large standard deviations across all sections. 

These points do not fit well into any of the identified clusters and represent atypical 

track conditions or measurement anomalies. 

Table 15 Summery of the clustering result. 

Cluster Count d-pc_mean d-pc_std d-mp_mean d-mp_std d-pt_mean d-pt_std 

0 757 27 31 7 62 11 48 

1 8 -150 10 -156 19 -115 30 

2 7 -112 17 -168 16 32 11 

3 22 -83 18 -112 30 -114 28 

4 4 -154 12 -98 22 13 9 

-1 102 -38 137 -110 205 -24 134 

 

7.4.3 Track Type Prediction  

Track Type Prediction analysis was performed using a decision tree due to its intuitive 

structure and ability to handle both numerical and categorical data effectively. Decision 

trees are highly interpretable, allowing for easy visualization of decision paths and 
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understanding of the model's logic. By mapping out the various factors influencing track 

type classifications, decision trees has revealed complex interactions between variables 

that may not be immediately apparent. The results of the analysis demonstrated that the 

degree of curvature is the most significant variable. The resulted decision tree regression 

plot is shown in Figure 33 and the improved version in Figure 34-35.  

 

 

Figure 33 Decision Tree Regression model visualization showing feature splits for predicting variables d-

pc, d-mp, and d-pt. 

 

In the top leaf of the decision tree, each value provides specific insights into how the model makes 

decisions. The condition Deg_769 <= 0.5 (degree of curvature equal to 769 degree) determines 

the initial split at the root node, directing samples to either the left or right subtree based on 

whether Deg_769 is 0 or 1. This binary column is derived from one-hot encoding of the original 

categorical feature Deg, where Deg_769 equals 1 if the original Deg value is 769, and 0 otherwise. 

The squared_error = 6297.616 indicates the mean squared error (MSE) for the node, reflecting 

the variance of d-pc, d-mp, and d-pt within this group of samples. With a total sample of 720, 

80% of training data points are included in this node, emphasizing its foundational role as the 

starting point in the decision-making process. The value = [[11.839] [-13.898] [2.245]] signifies 

the average predicted values for d-pc, d-mp, and d-pt, serving as a baseline prediction for samples 

that fall under this splitting condition. This suggests that for the smallest radius (R=2 m) and 

highest degree of curvature (769 degrees) in the dataset, users tend to cut the curve more 

frequently. This behavior increases the likelihood of head-on conflicts at MP. 

Furthermore, the decision tree's top node splitting on Deg_769 <= 0.5 initiates a division based 

on this feature, followed by subsequent splits on Protected_No <= 0.5 and Vmp <= 13.719. These 

splits facilitate the segmentation of data into more homogeneous groups, thereby reducing 

variance within nodes and minimizing prediction error. One-hot encoding transforms categorical 

features into binary columns, where numbers like 769 denote specific unique values from the 
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original Deg feature. This encoding process explains the presence of Deg_769 in the decision 

tree, highlighting its role in influencing predictions based on the dataset's categorical attributes. 

Interpreting the results of the best decision tree involves comprehending both the model's 

performance metrics and its structural components. Through GridSearchCV, optimal parameters 

such as a maximum depth of 5, a minimum leaf sample size of 1, and a minimum split sample 

size of 2 were identified for the DecisionTreeRegressor. These parameters are crucial in 

mitigating overfitting by constraining tree complexity.  

In total, 11 predictors existed in the initial dataset. These predictors were unmerged are grouped 

into distinct leaves based on their importance and value ranges. In the resulting tree, it is evident 

that the variables "user type" and "length of the curve" are not included, indicating they have no 

impact on the model's predictions. The top leaf identifies degree of curvature as the primary 

predictor. The second level is consisted of two leafs of bike lane type (protected or not) and mid-

point speed (Vmp). In the third level four leafs are identified and predictors include direction, 

Vmp, and Vpc. The forth and fifth level categorizes predictors like chord, Vpt, Vmp, Vpc, and 

direction within specific ranges. These segments illustrate how the decision tree prioritizes and 

categorizes predictors, revealing their impact on predicting variables d-pc, d-mp, and d-pt with 

clarity and structure.  

The best cross-validated score of 62.63 indicates the model's performance in predicting unseen 

data, with RMSE values of 56.31 for d-pc, 64.37 for d-mp, and 57.48 for d-pt, suggesting 

moderate prediction accuracy, with d-mp posing the greatest challenge among the target variables.  

 

 

Figure 34 Improved Decision Tree Regression model visualization showing feature splits for predicting 

variables d-pc, d-mp, and d-pt (see Figure 35 for readability).  
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Figure 35 Magnified leaves of the improved Decision Tree Regression model in Figure 33. 

 

7.5 Conclusion  

The study investigated the maneuvering behavior of bike lane users across various curve 

geometries, focusing on the motion of the users, specifically their speed and trajectory 

during curve navigation. Effective Fitted Radius (EFR) was developed from three offset 

points to represent the variance of the trajectory in comparison to the actual radius of the 

curve, and for identification of the unsafe behavior. In order to have deeper understanding 

of unsafe maneuvers a lateral segmentation was conducted, based on which the users’ 

position are mapped out. Key findings include: 

 Curve Geometry and User Behavior: Sharp curves (with smaller radii) 

significantly influence user behavior, particularly left-turn users, who tend to cut 

curves, increasing the risk of head-on conflicts. In contrast, right-turn users 

generally follow a wider path, aligning more closely with the curve geometry. 

 

Level 3 (leave 4) 
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 Speed and Safety: Speed analysis revealed that higher speeds, particularly in 

sharper curves, contribute to greater risk and variability in user behavior. E-

scooters exhibit higher speeds and variability compared to bikes, highlighting the 

need for tailored safety measures. 

 Track Patterns and Conflict Risk: Different user types and turning directions 

result in distinct track patterns, with sharper curves prompting more aggressive 

maneuvers. The study identified that left-turn users frequently engage in cutting 

maneuvers, while right-turn users often correct their paths. 

 Clustering Analysis: DBSCAN clustering identified five distinct patterns of 

lateral offsets, with significant variability in user behavior. The largest cluster, 

accounting for 84% of the users (757), belongs to a cutting maneuver that passes 

through the CL region and though poses the risk of side conflict with the opposing 

users.  

 Predictive Modeling: Decision tree regression analysis highlighted the degree of 

curvature as the most influential predictor of user behavior. The model's moderate 

prediction accuracy suggests room for further refinement to enhance its utility in 

infrastructure planning. 
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Chapter 8 Discussion 

This chapter examines the challenges, objectives, and benefits of the proposed EFR 

concept and methodology. It does so by analyzing the results presented in the previous 

section, comparing them with previous research, and assessing their impact on 

infrastructure design. Additionally, the chapter addresses the study's limitations and 

offers recommendations for enhancing micromobility infrastructure and guiding future 

research. 

8.1 The challenge of motion data extraction  

In this study, efforts were made to simplify the computation process and reduce data 

requirements. Therefore, the minimum number of points necessary for generating an arc 

was used. The data collection method involved extracting offset values at three points on 

a curve, providing a practical solution to the complexity of generating accurate and 

effective trajectories from videos with angled views. Accessing drone or bird's-eye view 

footage is often impractical as they are not permitted to be used in urban areas. 

Consequently, the proposed data collection and extraction methods are scalable and 

practical for future applications. 

Emerging computer vision algorithms like YOLO (You Only Look Once) could 

significantly enhance this research by improving the efficiency and speed of motion data 

extraction. However, two major issues were identified during data mining with tracking 

and obtaining accurate trajectories. First, generating accurate trajectories from angled 

view cameras is challenging due to the need for complex methods, such as applying 

Kalman filters, to convert and rotate 3D environments to a 2D (bird-eye) view. This 

means that a complex algorithm needed to be initially trained and calibrated for each of 

the recorded videos with varying angles, that was found to be impractical, time 

consuming, and often unreliable in terms of accuracy. Inaccuracy in the estimation of 

road users' sizes is a major limitation for automated detection, leading to overgrouping 

and oversegmentation (Saunier & Sayed, 2008). Second, e-scooters are frequently 

misclassified as pedestrians in most existing computer vision algorithms. Apurv et al. 

(2021) attempted to address this problem by training a model using a large sample of e-

scooter images.  

For overcoming the discussed challenges was that this study decided to use a video 

motion analysis tool called Kinovea. Kinovea is equipped with a simplified integrated 

calibration capability (calibration perspective grid), enhancing data extraction accuracy 

by allowing manual revisions of detections and trackings. Although this extraction 

method is time-consuming compared to automated detection and tracking methods, the 

results are more reliable and accurate due to the monitored process. 

8.2 Effective Fitted Radius as Surrogate Measure of Safety 

The findings from this study reveal several key insights into how micromobility users 

navigate curves and introduces Effective Fitted Radius (EFR) to effectively assess users’ 

trajectories during navigation on horizontal curve. As thoroughly explained in the 

methodology, EFR refers to the radius of curvature of the trajectory at a given point. This 

radius describes how sharply the path curves and is inversely proportional to the curvature 

(𝜅) of the trajectory: 
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Effective Fitted Radius (R) = 
1

κ
          (3) 

Where the curvature 𝜅 is defined as: 

𝜅 = 
𝑑𝜃

𝑑𝑠
                          (4) 

Here, 𝜃 is the angle of the tangent to the path, and s is the arc length along the trajectory. 

In practical applications, the curvature can be computed from the coordinates of the 

trajectory points. 

For motor vehicles, besides trajectory, trajectory dispersion (DT) is used as a surrogate 

measure of safety since inconsistent lane positioning is a primary cause of single-vehicle 

run-off-the-road crashes and head-on collisions (Calvi, 2015). However, for 

micromobility devices, the effect of DT is assumed to be negligible due to their different 

dynamics, lighter weight, and greater steering capability and maneuverability. 

To obtain the Effective Fitted Radius (EFR), the first step was to generate the best-fitted 

trajectory arcs from the X and Y coordinates of three sections/points (PC, MP, PT). For 

this purpose, Powell Optimization Method, a stochastic optimization algorithm was used 

(Hannah, 2015). This method does not require the gradient of the function and is designed 

to find its minimum. In this context, it is used to fit an arc through the three points, which 

are determined based on the wheel's displacement relative to the centerline marking on 

the curve. 

To regenerate an arc from three points using Powell's optimization method, the objective 

is to minimize the error between the points and the arc. The parameters to be optimized 

typically include the center (𝑥𝑐 , 𝑦𝑐) and the radius ℛ of the arc. The objective function 

measures the sum of the squared distances from the three points to the arc. Given three 

points (𝑥1, 𝑦1), (𝑥2, 𝑦2), and (𝑥3, 𝑦3), the objective function 𝑓 can be defined as: 

𝑓(𝑥𝑐 , 𝑦𝑐 , ℛ) = ∑ (√(𝑥𝑖 −  𝑥𝑐)2 + (𝑦𝑖 −  𝑦𝑐)2 − ℛ)23
𝑖=1                  (5) 

 

The computation and optimization of the Effective Fitted Radius (EFR) in the proposed 

methodology are automated in Python (see Figure 18). As the results in Section 7.1 

proves, the primary advantage of EFR is its ability to quickly and accurately determine 

whether users are following the designed geometry of a curve. If users deviate, EFR can 

quantify the variance from the actual radius of the curve. 

The displacement outputs can pinpoint the spatial locations of trajectories with high 

variance, which are considered risky, and to identify the types of conflict risks involved. 

This was enabled by “segmentation and regionalization” of a horizontal curve on bike 

lane, proposed in Section 5.3. This approach represents an initial attempt for spatial risk 

analysis of bike lanes at high-resolution. Additionally, the introduced curve segmentation 

methods offer benefits for microsimulation in micromobility applications in future 

research.  

A major difference between EFR and previous SMoSs like TTC and PET is that EFR is 

movement-based, while TTC and PET are time-based. Because EFR is movement-based, 

it can be used both with and without crash data (risk assessment). The occurrence of risky 
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maneuvers analyzed in this study can serve as a rapid and effective initial step in 

identifying aggressive maneuvers that are linked to a poor design. This is done by 

comparing the trajectories and their effective fitted radius (EFR) with the actual radius of 

the curve to identify the frequency of unsafe scenarios. For assessment of conflict 

scenarios, such as bike-bike or bike-pedestrian interactions, future research can link 

historical crash data (if available) with a combination of fitted trajectories, EFR, and the 

minimum distance or time between near-conflicting trajectories. This approach will 

enable a surrogate safety assessment at highest resolution. Studies have shown that 

movement-based approaches can identify near-misses more accurately than time-based 

measures, which often use a fixed time threshold (e.g., TTC < 1.5 seconds) to distinguish 

between safe and unsafe maneuver (Nabavi Niaki et al., 2019). Time-based measures may 

not always be accurate because they do not account for typical motion patterns and 

collision probability (Saunier & Sayed, 2008).  

As shown in this thesis, EFR can assist in initial risk assessment for micromobility, 

especially when crash data for bike lanes is unavailable. This lack of data is a significant 

issue in micromobility safety. For incidents that do not involve motor vehicles, falls 

(SBC) and conflicts between users are the most common causes of serious injuries on 

bike lanes (SWOV, 2023b). These incidents often go unreported because the police are 

not involved, and if hospitals or emergency services do not record the causes of injuries, 

no data is available for effective surrogate safety assessment. Nevertheless, when crash 

data is available, EFR has the potentials to be combined with such data for a more 

impactful surrogate safety analysis. 

8.3 Track classification, clustering and prediction 

After the analysis of variance and spatial risk, a classification system for track types and 

spatioregions was defined. A six-class track classification, adopted from previous studies 

on motor vehicle tracks, was initially used and then extended to include an additional 

class for unclassified tracks and four lateral spatioregions, as detailed in Section 5.3. This 

resulted in a total of 28 possible combinations. 

Additionally, the decision tree regression model was deemed suitable for this study 

because of its ability to handle complex, non-linear relationships and interactions among 

variables. This model effectively managed the multiple predictors influencing lateral 

offset, such as degree of curvature, bike lane type, and speed on MP, by splitting the data 

into branches based on the most significant predictors at each node. This approach 

provided clear, interpretable results and allowed for the identification of key factors 

affecting user behavior on curves, which was crucial for understanding and optimizing 

bike lane safety. 

8.4 Comparison with Previous Studies 

Although similar studies on safe riding behavior on bike lanes, particularly on horizontal 

curves, are lacking, various studies on road users have examined the geometric 

characteristics of curved road segments and their effects on driving performance with the 

aim of minimizing vehicle crashes. The findings of these studies align with this research 

on the effects of sharp curves on user behavior. For instance, Rondora et al. (2022) 

confirms that sharper curves increase the likelihood of risky maneuvers due to erroneous 
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perceptions that result in unsafe driving. The most common indicators for negotiating 

curves identified in these studies, such as speed profiles and lateral position, are similar 

to those considered in this research. Regarding data collection methods, most studies 

employed driving simulators, rather than naturalistic observation or experimental 

assessments (Rondora et al., 2022; Xia et al., 2024).  

Similar to this research, ANOVA was the common quantitative method used for the 

comparative analysis of trajectories. A simulation-based study on curved roads have 

confirmed that the length of the tangent segment has no significant impact on driving 

behavior, while larger curve radii significantly improve safe driving behavior (Rondora 

et al., 2022). Research has also evaluated the effect of curve direction on a road segment 

under various lighting conditions, concluding that left-turning users tend to follow a less 

sharp path, allowing them to feel more comfortable and travel at higher speeds 

(Lemonakis et al., 2021; J. Xu et al., 2017). This finding aligns with the cutting maneuver 

observed on left-turn users on bike lanes. In bidirectional bike lanes, this tendency for 

left-turning users to cut the curve can increase the risk of potential conflicts with 

oncoming users. 

A major contribution made in this study that completes previous research is the extension 

of track type classifications from six (Spacek, 2005) to twenty-eight by combining them 

with spatioregions. Additionally, this study integrates the effects of turn direction and 

micromobility user type, which have not been addressed together before. A similar study 

on road curves evaluated the impact of lateral friction on reverse curves and concluded 

that the length of the common tangent affects both lateral friction demand and driver 

trajectories (Aminfar et al., 2023). On bike lanes, particularly on curved segments, lateral 

friction is an important factor because micromobility users are lightweight, and even 

slight changes in surface conditions can impact their control. However, this aspect was 

not considered in this study, as all data were collected under dry conditions and with a 

uniform surface type on the bike lanes. 

8.5 Limitations of the Study 

Despite the valuable insights gained, this study has several limitations that must be 

acknowledged. Firstly, the data collection was limited to nine specific curve sites, which 

may not fully capture the variability of user behavior across the entire city of Valencia. 

Expanding the study to include a more diverse range of sites could provide a more 

comprehensive understanding of micromobility behavior and conflict risks. 

Secondly, the study primarily focused on geometric parameters such as curve radius and 

degree of curvature, without considering other potentially influential factors like surface 

conditions, weather, and time of day. These factors were kept consistent across different 

sites. Additionally, due to the unavailability of crash data specific to incidents involving 

micromobility users, the proposed measure of Effective Fitted Radius (EFR) could not be 

further developed into a more robust Surrogate Measure of Safety (SMoS) incorporating 

historical crash data related to bike lanes (excluding incidents involving cars). Future 

research could benefit from including these additional variables to gain a more 

comprehensive understanding of the factors impacting user behavior and safety. 
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Moreover, while the decision tree analysis provided valuable insights into the predictive 

factors influencing user behavior, the model's moderate prediction accuracy suggests that 

there may be other unaccounted-for variables that play a significant role. Enhancing the 

model by integrating more comprehensive data and employing more sophisticated 

machine learning techniques could improve its predictive capability and robustness. 

Finally, the study's reliance on observational data means that certain behavioral nuances 

and motivations underlying user maneuvers may not be fully captured. Complementing 

this approach with qualitative methods, such as user interviews or surveys, could provide 

deeper insights into the reasons behind specific behaviors, further informing the design 

of safer micromobility infrastructure. 

In conclusion, this study enhances our understanding of micromobility behavior at 

various curve geometries and highlights the safety risks associated with sharpness of 

curves. The findings underscore the need for infrastructure designs that address user 

behavior patterns, such as incorporating wider curves and speed reduction measures. By 

addressing the study's limitations and exploring additional research avenues, urban 

planners and designers can develop more effective strategies to improve micromobility 

safety and reduce conflict risks. 
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Chapter 9 Conclusions  

The primary goal of this study was twofold: (i) to introduce a novel surrogate measure 

(named as EFR) for accurately evaluating how well users follow the geometry of a 

horizontal curve and (ii) to examine how different types of users and their movement 

directions affect real riders' dynamic behavior, specifically in terms of trajectory and 

speed. Based on the results, it is evident that the geometry of horizontal curves 

significantly influences the maneuvering behavior of bike lane users. The Effective Fitted 

Radius (EFR) concept effectively identifies differences between the assumed parameters 

such as curve radius, user type, and direction of movement. Analysis using both 

parametric and non-parametric methods reveals significant variations in users' behavior 

across different curve sites. In particular, sharp curves exhibit distinct patterns where left-

turn users tend to cut the curve, increasing the risk of head-on conflicts with opposing 

users. Conversely, right-turn users demonstrate less adherence to the curve geometry, 

posing challenges in maintaining lane integrity. Flatter curves, on the other hand, show 

minimal differences in behavior among different user types and directions of movement, 

suggesting lower conflict risks. 

The initial hypotheses were confirmed through the analysis conducted in previous 

chapters. Hypothesis 1 demonstrated that users’ motion on bike lanes encompasses 

various metrics including trajectory footprints, speed, acceleration, deceleration, lean, 

lane changing, and overtaking of micromobility devices. This was confirmed in the 

litature review and during data collection at site. Hypothesis 2 was validated through the 

Dutch guideline (CROW), revealing that bike lane infrastructure is effectively defined by 

its alignment, side lane, and pavement condition, all of which significantly impact user 

behavior. Hypothesis 3 was supported by the observation that assessing cyclists in free-

flow conditions is crucial for understanding the effects of bike lane geometry on user 

behavior, as it removes the influence of user interactions. Furthermore, Hypothesis 4 was 

confirmed during video data collection and descriptive analysis of motion data. 

Accordingly, bike lane user motions are influenced by both human factors and 

infrastructure, with these elements contributing significantly to variations and risk levels 

in user behavior. Hypothesis 5 was corroborated by the finding that changes in the 

geometric design of a horizontal curve significantly influence riders' motion behavior. 

This is discussed in details in the result and discussion chapter. Lastly, Hypothesis 6 

established that the motion of bike lane users can be detected, tracked, and measured 

through video motion analysis using computer vision tool that was used in this study. 

The hypotheses tested in this research provided further insights into bike lane dynamics. 

Hypothesis 1 was confirmed in section 7.4, showing that bikes and e-scooters exhibit 

distinct motion patterns (track types) due to differences in size, steering angle, and 

handling characteristics. Hypothesis 2 was validated that the direction of turn on curves 

affects user trajectory and speed patterns (see section 7.1), emphasizing the need for bike 

lane designs that consider turn direction and lane widening measures. Additionally, 

Hypothesis 3 was confirmed as lateral segmentation of bike lanes was proved to be useful 

for identifying unsafe regions and potential causes, allowing for a detailed safety 

assessment. This can be seen in the displacement analysis in section 7.2. The analysis also 

supported the remaining tested hypotheses. Hypothesis 4 was supported by the result of 

post hoc ANOVA and track patterns analysis, showing that horizontal curves with radii 

below certain limits (R<10 m) lead to increased violations, risky patterns, and higher 

speeds, highlighting the impact of curve sharpness on user behavior (see sections 7.1 and 

7.3). Hypothesis 5 was verified in section 7.3, indicating that the highest frequency of 
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minimum speed occurs at specific points (MP), reinforcing predictions about speed 

patterns on bike lanes. Hypothesis 6 was tested in section 7.4, indicating that 

micromobility users navigating isolated curves generate specific trajectory patterns that 

can be clustered and classified. Finally, Hypothesis 7 was substantiated that curve 

geometry is a major predictor of user trajectory, underscoring the importance of geometric 

design in shaping bike lane usage and safety (see 7.4.3). These results collectively provide 

a robust understanding of how various factors influence bike lane behavior and safety. 

The spatial analysis of wheel positions during navigation provides additional insights, 

highlighting specific regions within and outside the bike lane prone to conflict risks. Left-

turn users are notably observed near the central marking, increasing vulnerability to 

crossing-body conflicts. Moreover, a significant proportion of users are observed in the 

opposite lane within the middle of the curve, emphasizing the importance of addressing 

potential conflicts in these areas. Speed analysis further elucidates the risks associated 

with high-traffic bike lanes, particularly on sharp curves where speeding behaviors are 

prevalent. The comparison of speeding trends across different curve radii reveals valuable 

insights for enhancing road safety. For instance, increasing curve radius leads to reduced 

speeding behaviors and variance in speed, indicating potential strategies for mitigating 

conflicts. The findings were visualized in box whisker plots for each site, segmented by 

user type and direction of turn (see Figure 28 and Appendix B). Hypotheses six and seven 

were addressed by these results. It was confirmed that users' trajectories on bike lanes 

could be clustered into distinct patterns, with a negligible maximum four percentage of 

unclassified track patterns observed across all samples 

The DBSCAN algorithm (see section 7.4.2) successfully identified distinct patterns of 

lateral offsets in the dataset, with each cluster representing a unique trajectory type. 

Clusters 1, 2, 3, and 4 showed significant leftward or rightward biases in different 

sections, while Cluster 0 had a more moderate and variable offset pattern, that based on 

the mean could associate with the cutting manuver. The outliers, marked as -1, highlight 

the presence of irregular data points that did not conform to the main patterns identified. 

This analysis provides valuable insights into the characteristics of different track sections 

and the potential impact on wheel alignment. 

The classification and predictive analysis of different curve sites reveals that sharp curves, 

pose significant safety challenges. Here, left-turn users frequently cut the curve, while 

right-turn users correct their paths, with both types often crossing into the opposite lane 

and outside the bike lane. The absence of physical barriers in the sidewalk bike lane 

exacerbates these issues, increasing the potential for conflicts with pedestrians as well as 

users who are in the opposite direction. As curves gets flatter, users generally navigated 

through central segments with less aggressive maneuvers. Right-turn users still exhibited 

cutting and swinging behaviors, while left-turn users tended to drift, reflecting the curve's 

reduced sharpness.  

The study further highlights that left-turn maneuvers exhibit greater diversity, with up to 

12 different track-segment types, compared to a maximum of five for right turns.                 

E-scooters, in particular, show more consistent behavior on sharper curves but become 

more variable on flatter (smoother) curves, whereas bikes display the opposite trend. 

Patterns observed at sites R3 to R9 reinforced these findings, with drifting being common 

at flatter curves and cutting maneuvers prevalent at sharper ones. The heatmap analysis 

also underscored that cutting maneuvers through the opposite lane are most frequent in 

sharper curves, indicating a higher risk of conflicts. These results emphasize the need for 
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tailored infrastructure designs that consider both curve geometry and bike lane type to 

better accommodate diverse user behaviors and enhance overall safety. 

In conclusion, the findings underscore the importance of considering geometry and user 

behavior in designing and managing bike lanes, especially on horizontal curves. 

Strategies aimed at improving lane adherence, addressing conflict-prone areas, and 

regulating speeding behaviors can significantly enhance road safety for bike lane users. 

Further research using the framework introduced in this study may unveil additional 

patterns and trends to inform comprehensive safety interventions. As recommendation 

for future studies say that optimized radius of curvature can be computed not only for the 

users following the geometry but also for those who violate. Another idea is to use 

simulation methods to model the divided areas and study users perception through 

different scenarios. Moreover, this methodology has the potential to be applied to 

conflict-based events through more advanced statistical analyses, such as Extreme Value 

Theory (EVT), to better understand behavior in higher-risk situations. 
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Chapter 10 Future Research Direction 

The development of this doctoral thesis has led to the creation of a geometric-based 

surrogate measure of safety utilizing Powell-optimized arc fitting. This advancement has 

enhanced our understanding of how micromobility users maneuver on horizontal curves 

with varying sharpness and radius. Additionally, the study has contributed to the 

classification and prediction of the most common track patterns observed during user 

curve navigation on bike lane. Consequently, this research has identified several 

promising areas for further investigation related to track types and speed patterns, 

highlighting their potential value. 

10.1 Incorporation of crash data 

One of the most significant improvements that can be made to the current study is the 

incorporation of crash data specific to bike lanes, as previously discussed. Currently, such 

data is scarce, and most existing data only includes incidents involving motor vehicles. 

However, if data on crashes specifically involving micromobility users on bike lanes 

becomes available, it could greatly enhance the effectiveness of the Effective Fitted 

Radius (EFR) as a Surrogate Measure of Safety (SMoS). By integrating historical crash 

data with EFR, the SMoS would be able to provide a more comprehensive assessment of 

safety risks and better identify areas where design improvements are needed. This 

combined approach would enable a more accurate evaluation of safety conditions on bike 

lanes and help in developing targeted interventions to improve user safety. 

10.2 Automation of data filtering: image processing with AI 

Future research should also focus on enhancing the automation of data filtering using 

advanced image processing techniques and artificial intelligence (AI). This approach will 

leverage AI-powered computer vision tools to automate the extraction and analysis of 

data from video recordings of cyclists and e-scooters on bike lanes. Machine learning 

algorithms will be employed to identify and track various micromobility users, 

segmenting their movements into essential metrics such as speed, trajectory, and lane 

position. AI models will enable differentiation between user types and detection of 

significant behaviors, including lane changes and overtaking. 

To further improve the accuracy of trajectory path generation, a Kalman filter will be 

integrated into the process. The Kalman filter will be used to convert angled or 

perspective views into a 2D plane, enhancing the precision of path generation by 

minimizing distortions caused by the camera angle. This transformation will allow for 

more accurate tracking of user trajectories. The combined use of AI for automated 

tracking and the Kalman filter for perspective correction will significantly reduce manual 

data processing efforts and improve the overall reliability of the analysis. Future research 

should aim to refine these technologies to optimize data filtering and provide more 

precise, real-time insights into bike lane usage and safety. 

10.3 Track type prediction 

Another important step to complete this study is to build and test additional prediction 

models, such as neural networks, random forests, and other machine learning algorithms. 

These models could provide more accurate and robust predictions of track types by 
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leveraging complex patterns and interactions within the data. Neural networks, for 

instance, are particularly effective in capturing non-linear relationships and intricate data 

structures, while random forests can enhance prediction accuracy through ensemble 

learning and feature importance evaluation. Comparing the performance of these models 

with the existing approaches will help determine the most effective methods for 

predicting track types and understanding user behavior on bike lanes. This approach could 

lead to more precise and reliable safety assessments and better inform design 

improvements for bike lanes. 

10.4 Using Extreme Value Theory to Model Extreme Conflict Events 

In future studies, Extreme Value Theory (EVT) offers a robust framework for analyzing 

and predicting extreme conflict events between micromobility users, such as near-

crashes, near-misses, sudden braking, and swerving to avoid collisions. EVT is 

particularly well-suited for this type of analysis because it focuses on rare, extreme 

occurrences that traditional statistical methods might overlook. By applying EVT to 

surrogate safety measures like time-to-collision (TTC) or post-encroachment time (PET), 

researchers can model the tail behavior of these extreme events and estimate the 

likelihood of even more severe near-crash events. This approach can address one of the 

limitations of this study, where data was collected under free-flow conditions using the 

Effective Fitted Radius (EFR) to evaluate lane violation events. While EFR has proven 

effective in identifying violations under free-flow conditions, it has great potential for 

being adapted to conflict event analysis in more complex traffic environments. By 

incorporating EVT and further exploring EFR’s applicability in conflict scenarios, 

researchers could enhance the detection of high-risk situations and refine safety measures, 

ultimately improving the design and safety of bike lanes. 
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Section 6.4 

Table 16 Lateral Offset Distances from Center Line for Site R2-R9 by User Type and Direction. 

# 

Bike Left-Turn   Bike Right-Turn   E-scooter Left-Turn   E-scooter Right-Turn 

PC MP PT   PC MP PT   PC MP PT   PC MP PT 

R2 (R=10 m) 

1 18 17 44 
 

42 0 17 
 

12 -12 -37 
 

62 18 21 

2 16 25 47   49 10 17   6 15 30   18 15 16 

3 10 6 17 
 

88 22 16 
 

8 8 30 
 

50 26 12 

4 12 13 10   65 14 18   5 22 37   42 13 13 

5 11 14 17 
 

45 18 13 
 

6 17 25 
 

47 7 8 

6 7 11 17   35 12 7   0 12 35   67 37 14 

7 8 10 38 
 

57 0 19 
 

5 7 45 
 

68 37 14 

8 6 8 28   87 23 12   7 19 33   38 3 8 

9 0 7 25 
 

50 17 21 
 

7 16 17 
 

39 0 4 

10 9 10 17   107 27 10   7 17 7   38 7 11 

11 8 8 28 
 

60 32 17 
 

0 19 17 
 

45 7 0 

12 8 23 73   87 18 7   5 8 52   57 7 15 

13 11 8 30 
 

33 12 13 
 

11 8 47 
 

70 7 10 

14 5 7 7   60 0 17   2 12 8   52 0 10 

15 6 11 30 
 

52 7 8 
 

12 9 30 
 

85 0 0 

16 10 12 27   40 13 10   7 17 45   62 12 14 

17 8 3 58 
 

53 5 7 
 

8 13 68 
 

70 9 5 

18 5 12 27   23 12 5   8 12 38   18 8 10 

19 6 5 17 
 

37 6 12 
 

5 9 13 
 

61 8 7 

20 5 4 15   47 15 8   0 11 -20   72 15 11 

21 7 16 47 
 

72 0 0 
 

7 -5 -22 
 

37 14 7 

22 12 11 47   58 3 4   7 9 20   35 10 8 

23 11 12 38 
 

38 14 27 
 

11 21 67 
 

8 6 7 

24 6 15 33   47 5 7   -8 -7 17   7 8 6 

25 11 16 60   73 22 5   6 14 53   58 7 17 

R3 (R=22 m) 

1 0 40 35 
 

182 194 100 
 

0 -57 0 
 

58 67 82 

2 46 50 55   107 116 125   -40 0 0   18 0 28 

3 -140 -91 -37 
 

45 70 90 
 

0 44 67 
 

61 36 -10 

4 31 18 20   61 40 74   0 13 0   48 37 47 

5 102 20 40 
 

-40 55 100 
 

0 27 52 
 

30 25 39 

6 -30 -60 -40   62 36 35   0 19 30   50 59 66 

7 0 0 20 
 

58 72 77 
 

0 10 42 
 

75 100 70 

8 20 0 30   46 70 55   68 58 73   53 66 65 

9 43 104 114 
 

0 41 41 
 

28 73 72 
 

30 73 54 

10 10 30 43   70 48 69   45 0 10   59 44 0 



 

 

99 

 

11 -152 -151 -133 
 

135 144 114 
 

40 52 12 
 

50 67 80 

12 48 0 27   75 53 50   -84 -50 -20   21 29 40 

13 -64 -29 33 
 

42 26 43 
 

30 45 45 
 

62 58 88 

14 15 0 16   -91 -54 26   62 28 24   22 40 46 

15 0 30 0 
 

38 45 0 
 

-104 -84 -50 
 

64 55 65 

16 33 67 33   200 222 285   0 35 75   51 31 45 

17 32 0 0 
 

29 0 -50 
 

-10 0 59 
 

55 65 71 

18 0 -23 -21   100 100 110   0 -30 55   80 71 65 

19 55 64 76 
 

40 30 0 
 

33 40 44 
 

-11 44 53 

20 31 61 100   50 50 61   -42 -21 30   84 88 76 

21 49 64 49 
 

56 50 75 
 

35 30 10 
 

40 25 0 

22 -73 -51 -40   100 145 184   0 0 -34   100 170 67 

23 -270 -217 -100 
 

50 50 40 
 

27 24 34 
 

55 35 50 

24 0 -20 0   -95 -60 30   40 20 27   60 70 75 

25 0 0 40   40 47 10   -70 -35 0   25 35 45 

R4 (R=78 m) 

1 0 29 50 
 

-18 68 -2 
 

8 41 24 
 

46 18 17 

2 42 42 46   52 30 65   12 27 43   56 38 47 

3 29 59 90 
 

66 47 40 
 

28 40 -49 
 

71 41 50 

4 32 22 43   69 88 92   27 34 84   92 46 43 

5 -19 36 -20 
 

49 57 -18 
 

40 0 45 
 

-88 14 0 

6 23 -40 0   -90 68 94   20 44 68   63 80 90 

7 -35 36 41 
 

94 73 58 
 

-30 0 -52 
 

74 85 60 

8 30 45 64   0 53 32   0 40 30   62 56 65 

9 39 40 52 
 

78 84 76 
 

30 50 45 
 

43 57 44 

10 -46 -81 0   49 35 20   34 30 66   90 90 49 

11 50 79 60 
 

49 53 40 
 

0 -36 -40 
 

0 38 0 

12 25 0 37   68 33 -26   52 10 40   25 0 34 

13 53 53 59 
 

72 25 0 
 

10 -10 -10 
 

49 57 37 

14 48 59 64   61 -72 53   42 35 68   0 60 0 

15 0 56 53 
 

-53 -46 -35 
 

0 23 52 
 

10 30 0 

16 54 60 96   81 47 0   29 10 -47   60 34 10 

17 77 91 80 
 

-66 57 60 
 

-39 -39 10 
 

50 52 39 

18 62 68 45   74 75 57   62 32 29   86 52 14 

19 66 55 43 
 

0 33 -10 
 

0 10 14 
 

0 40 42 

20 50 34 70   83 32 14   -33 0 0   45 44 31 

21 12 50 83 
 

0 57 45 
 

-40 10 14 
 

76 70 45 

22 -20 0 36   58 61 58   24 30 40   0 48 10 

23 20 30 70 
 

22 30 30 
 

39 37 40 
 

40 21 14 

24 40 55 58   70 60 85   24 10 10   57 53 43 

25 0 -68 -94   -35 -35 0   57 46 38   59 55 46 

R5 (R=2 m) 



 

 

100 

 

1 0 17 19 
 

72 -9 0 
 

0 24 61 
 

27 21 0 

2 -51 -152 63   36 -18 18   39 -186 36   27 -190 -92 

3 -119 -406 -529 
 

-127 -204 72 
 

0 15 -22 
 

16 23 13 

4 15 -119 54   34 20 6   0 0 -20   11 -22 0 

5 -44 -175 72 
 

43 19 10 
 

-2 -340 -1 
 

11 15 0 

6 -31 -165 38   20 -142 -52   -131 -184 36   25 -11 13 

7 -70 -254 -203 
 

-31 -280 -100 
 

16 -13 -40 
 

28 0 11 

8 -98 -193 -66   58 0 0   -147 -320 87   13 10 37 

9 -110 -252 -59 
 

56 -44 0 
 

42 24 46 
 

49 -9 35 

10 14 -154 65   -16 -163 68   -82 -340 -136   41 9 0 

11 -162 -344 50 
 

38 -8 13 
 

-238 -330 -140 
 

48 -6 15 

12 -72 -330 -23   10 -135 -58   -130 -320 64   59 37 27 

13 23 -244 -122 
 

40 29 13 
 

-300 -350 -101 
 

45 -30 35 

14 -336 -346 -191   26 -216 -39   0 26 63   

34.1

5 

-

20.8 40 

15 -107 -266 39 
 

39 9 54 
 

43 -182 38 
 

-21 -256 60 

16 -318 -440 -188   18 -50 0   0 17 -24   27 -12 15 

17 -280 -411 -159 
 

-21 -240 28 
 

0 0 -21 
 

29 0 11 

18 0 38 -27   -360 -365 71   -3 -345 -2   14 11 38 

19 36 -250 45 
 

36 15 35 
 

-135 -186 38 
 

50 -10 36 

20 33 -230 31   -83 -227 -258   18 -14 -43   42 10 0 

21 -217 -225 27 
 

49 -16 28 
 

-149 -322 88 
 

48 -8 14 

22 56 6 56   53 -15 14   43 25 48   57 34 24 

23 -220 -335 91 
 

0 -12 0 
 

-83 -342 -137 
 

42 -28 34 

24 -120 -278 80   36 0 0   -239 -333 -144   32 -22 43 

25 -194 -348 -120   55 -11 -110   -132 -322 65   -22 -250 63 

R6 (R=5 m) 

1 45 -66 -16 
 

0 158 67 
 

25 -26 25 
 

0 174 44 

2 49 -61 30   0 0 -60   50 -60 80   60 66 58 

3 63 7 90 
 

50 20 63 
 

40 -33 20 
 

-30 104 0 

4 62 -14 24   0 90 50   0 -60 -45   -50 0 -90 

5 17 67 46 
 

0 106 30 
 

0 -30 80 
 

60 260 50 

6 54 70 20   50 115 25   60 20 65   45 108 45 

7 -11 -94 25 
 

57 99 33 
 

25 -110 0 
 

85 157 45 

8 44 -67 29   49 102 34   307 344 321   62 122 62 

9 62 -122 20 
 

61 68 0 
 

-48 -77 90 
 

0 85 42 

10 47 -95 53   50 150 45   60 -74 0   0 80 35 

11 28 -56 -66 
 

50 150 70 
 

0 184 61 
 

60 155 78 

12 10 287 285   45 150 70   45 -118 -20   40 80 0 

13 59 28 83 
 

0 60 65 
 

32 -30 60 
 

35 83 -47 

14 66 -21 0   55 103 50   51 -20 68   20 90 58 

15 107 16 50 
 

40 115 68 
 

90 44 84 
 

275 355 63 



 

 

101 

 

16 32 293 -213   60 87 68   30 -86 -10   63 87 40 

17 56 37 0 
 

48 123 35 
 

30 0 0 
 

337 375 58 

18 16 -105 8   60 140 53   100 -100 -69   61 105 61 

19 -34 -331 -218 
 

50 100 73 
 

66 53 53 
 

25 116 36 

20 54 -17 60   44 127 71   59 0 70   256 360 -20 

21 0 -158 0 
 

60 131 44 
 

55 20 38 
 

60 126 30 

22 35 -43 52   66 121 45   78 -59 -19   55 105 10 

23 75 21 94 
 

-33 65 0 
 

0 -42 107 
 

62 146 31 

24 58 18 89   0 114 69   36 6 -86   51 154 78 

25 33 -104 0   58 112 36   36 6 -86   284 382 89 

R7 (R=5 m) 

1 30 22 36 
 

0 9 -40 
 

-58 -66 -81 
 

23 0 15 

2 0 32 28   0 5 38   -62 20 -153   0 20 0 

3 28 -56 -54 
 

0 20 -55 
 

40 -135 -64 
 

10 14 12 

4 -60 -58 -71   0 20 16   0 -180 -100   15 12 21 

5 30 38 -57 
 

0 18 0 
 

0 -170 -80 
 

0 25 0 

6 14 12 32   20 12 0   0 -150 0   0 20 0 

7 0 0 35 
 

0 0 35 
 

50 -140 -75 
 

20 12 -55 

8 25 -150 45   0 12 38   65 -110 -65   15 25 35 

9 29 -85 -70 
 

12 8 33 
 

-80 -130 -145 
 

10 15 12 

10 0 35 -72   25 13 42   15 -140 43   23 0 -60 

11 0 -75 20 
 

15 16 48 
 

40 0 -55 
 

14 16 30 

12 0 -165 -125   12 14 12   -56 -61 -83   0 25 0 

13 20 12 26 
 

18 0 -54 
 

-64 24 -150 
 

12 17 -60 

14 10 0 15   10 18 -60   44 -125 -65   12 20 44 

15 0 -156 -125 
 

40 15 14 
 

0 -177 -108 
 

0 10 0 

16 35 -78 45   12 20 45   0 -173 -85   0 0 55 

17 20 -105 40 
 

12 12 53 
 

0 -155 0 
 

14 25 0 

18 45 -82 0   24 21 53   57 -144 -77   0 16 42 

19 0 -150 -85 
 

15 24 45 
 

64 -112 -64 
 

0 19 30 

20 15 -128 -93   0 20 0   -83 -127 -141   0 15 25 

21 47 30 12 
 

12 25 -55 
 

17 -142 45 
 

22 12 14 

22 0 -215 -105   38 0 12   42 0 -57   37 22 52 

23 20 -140 -98 
 

35 29 16 
 

-89 -117 -151 
 

11 20 -55 

24 42 28 10   0 18 0   19 -132 48   36 20 56 

25 0 -202 -101   0 47 -55   38 0 -52   10 22 -54 

R8 (R=7 m) 

1 52 59 -120 
 

28 35 32 
 

0 27 0 
 

15 22 25 

2 20 -93 -150   18 15 0   33 -110 -130   -143 -82 0 

3 42 -90 -134 
 

12 0 0 
 

30 24 43 
 

-140 -138 -82 

4 -88 -94 -93   15 17 20   20 15 32   105 -80 0 

5 -73 -112 -107 
 

48 45 23 
 

-115 -135 -147 
 

0 25 47 
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6 -85 -110 -110   45 18 0   -75 30 -87   25 0 0 

7 45 -90 -92 
 

35 17 -14 
 

-95 -116 -137 
 

-80 -110 -95 

8 -100 -155 -145   -70 37 0   52 -110 -152   40 23 12 

9 48 -96 -109 
 

-78 -70 15 
 

40 -70 -70 
 

-70 -97 -98 

10 32 58 -119   0 12 0   10 18 -152   18 15 0 

11 24 17 14 
 

14 0 14 
 

-20 46 -98 
 

40 10 20 

12 -59 -104 133   -152 -140 -73   15 -90 -135   0 10 12 

13 15 -92 -65 
 

-145 -148 -102 
 

17 -66 -127 
 

39 15 10 

14 -70 -96 -116   -146 -94 18   18 20 -80   -70 -65 20 

15 -82 -93 -90 
 

-90 -82 35 
 

38 20 15 
 

-66 18 10 

16 18 38 -75   10 18 0   30 35 45   20 0 0 

17 45 -79 -115 
 

12 0 15 
 

0 15 44 
 

-70 84 44 

18 18 15 47   16 18 0   -71 -92 112   56 35 14 

19 17 19 -114 
 

-64 -66 15 
 

90 -180 -130 
 

12 10 10 

20 -72 -90 55   48 18 0   42 -70 -110   0 0 30 

21 18 16 -110 
 

39 12 0 
 

-69 -110 -135 
 

20 0 15 

22 -72 -102 -100   0 12 0   0 32 -70   38 34 0 

23 10 15 -140 
 

0 0 0 
 

40 -128 -156 
 

28 43 30 

24 14 18 22   20 70 0   14 34 -159   10 28 44 

25 -146 -150 -161   -62 -70 18   15 45 17   13 11 11 

R9 (R=9 m) 

1 18 15 12 
 

35 -82 89 
 

-85 61 22 
 

0 13 -78 

2 36 27 22   61 -127 -98   65 63 16   33 35 42 

3 22 58 18 
 

-120 -158 -155 
 

-155 -130 12 
 

-123 -170 -82 

4 15 0 17   -100 -178 -110   40 71 48   35 -83 -98 

5 0 -120 -90 
 

45 64 37 
 

-125 -180 -120 
 

38 55 -67 

6 0 15 0   -97 -92 24   0 57 50   24 -119 -95 

7 12 14 10 
 

69 58 25 
 

30 47 10 
 

15 22 12 

8 0 22 58   32 -78 -74   100 -95 35   -157 -152 -134 

9 -92 -176 15 
 

-130 -172 96 
 

-110 -150 34 
 

-188 -183 -140 

10 -85 -95 28   15 -192 -120   -130 32 20   35 -180 -184 

11 55 25 24 
 

-100 -200 -215 
 

-170 -87 20 
 

-84 -178 -87 

12 17 42 11   -170 -190 -130   22 -102 -95   -85 -177 -230 

13 0 13 0 
 

47 -178 132 
 

0 17 12 
 

37 -78 41 

14 -83 -90 40   30 -42 22   0 0 18   59 -177 -210 

15 15 -147 -103 
 

15 0 14 
 

20 0 0 
 

32 -138 -97 

16 0 -140 21   16 -185 -138   -235 -180 -152   -83 -185 -207 

17 -68 -115 -104 
 

-120 -185 -139 
 

22 -78 25 
 

36 -155 -103 

18 12 -87 -84   53 -160 -120   -88 -120 -72   28 -71 -69 

19 -123 -90 34 
 

16 58 35 
 

0 0 17 
 

17 21 25 

20 55 43 18   158 -225 -220   -90 -170 48   58 -102 -75 

21 -110 -160 20 
 

44 50 -156 
 

-140 -180 -102 
 

15 -107 -110 
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22 0 35 14   54 145 -195   -150 -245 -148   35 -132 -130 

23 0 18 38 
 

30 -87 49 
 

0 -110 -150 
 

70 -180 -130 

24 0 12 10   58 -102 -90   90 -90 32   20 -185 -153 

25 20 48 13   31 -99 -98   -119 -147 31   18 22 26 

 

 

Table 17 Operating Speed Data per Section for Site R2-R9 by User Type and Direction. 

# 

Bike Left-Turn   Bike Right-Turn   E-scooter Left-Turn   E-scooter Right-Turn 

PC MP PT   PC MP PT   PC MP PT   PC MP PT 

R2 (R=10 m) 

1 12 9 17 
 

14 8 8 
 

8 8 8 
 

20 11 8 

2 7 9 15   13 12 10   8 9 20   16 16 16 

3 10 9 18 
 

15 10 6 
 

8 8 20 
 

24 16 11 

4 10 8 14   25 18 8   21 9 14   26 17 10 

5 17 9 15 
 

19 10 9 
 

17 10 15 
 

24 9 18 

6 15 14 19   13 5 7   18 11 16   23 6 18 

7 13 11 15 
 

23 8 17 
 

19 11 16 
 

20 7 18 

8 16 10 14   18 7 15   12 7 12   25 7 15 

9 15 9 12 
 

19 7 15 
 

15 9 16 
 

18 7 13 

10 15 12 14   18 7 15   14 8 11   18 8 18 

11 15 10 12 
 

20 7 16 
 

23 9 14 
 

26 9 21 

12 15 9 12   24 8 17   19 11 17   24 10 22 

13 14 11 13 
 

21 6 15 
 

22 10 16 
 

20 8 20 

14 18 14 15   17 6 14   20 9 14   20 8 23 

15 12 9 10 
 

13 6 14 
 

26 11 15 
 

19 8 21 

16 22 11 14   16 6 13   23 11 17   19 7 15 

17 17 8 11 
 

17 6 13 
 

24 13 18 
 

17 7 18 

18 22 9 13   16 6 14   22 11 16   15 6 18 

19 13 5 9 
 

20 8 17 
 

24 10 17 
 

23 8 11 

20 24 9 13   20 7 17   15 8 13   12 4 10 

21 22 9 14 
 

20 7 16 
 

23 12 18 
 

24 7 21 

22 16 7 10   19 8 18   15 8 14   18 7 10 

23 17 7 11 
 

20 6 10 
 

15 8 15 
 

19 6 12 

24 18 7 12   15 5 10   15 6 17   16 5 11 

25 22 8 12   13 4 11   18 7 14   22 8 14 

R3 (R=22 m) 

1 16 17 18 
 

12 15 13 
 

16 18 18 
 

16 17 16 

2 11 14 13   14 18 16   24 24 24   16 18 15 

3 14 14 14 
 

15 19 14 
 

22 18 16 
 

22 23 20 

4 16 20 20   20 28 22   22 18 18   16 17 16 

5 12 8 11 
 

12 16 13 
 

18 20 20 
 

18 23 20 
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6 12 8 11   14 16 12   20 21 20   16 20 20 

7 16 18 18 
 

15 16 12 
 

18 19 20 
 

28 28 24 

8 16 18 20   22 28 22   20 22 22   24 25 22 

9 15 16 16 
 

12 14 11 
 

18 20 22 
 

22 25 22 

10 18 19 20   18 19 18   15 17 18   20 22 18 

11 18 19 18 
 

16 18 16 
 

16 19 22 
 

22 25 20 

12 20 23 24   15 18 14   20 21 22   18 16 15 

13 14 17 16 
 

18 18 16 
 

18 20 18 
 

18 20 20 

14 20 23 22   18 20 16   18 20 20   16 18 16 

15 13 13 12 
 

18 19 18 
 

24 28 24 
 

15 19 20 

16 16 16 16   14 15 12   18 20 20   24 24 24 

17 18 19 20 
 

13 14 13 
 

24 26 26 
 

28 27 24 

18 16 19 18   10 10 11   20 24 24   20 19 19 

19 14 15 16 
 

14 13 13 
 

20 24 24 
 

20 20 18 

20 18 19 20   15 14 13   24 25 24   22 23 22 

21 11 11 11 
 

20 19 20 
 

18 18 20 
 

24 24 22 

22 12 11 10   16 16 15   24 24 24   16 16 16 

23 20 23 18 
 

12 16 16 
 

22 23 22 
 

25 25 25 

24 18 19 20   22 20 24   22 24 24   29 27 25 

25 16 17 16   17 18 18   24 27 26   18 17 15 

R4 (R=78 m) 

1 13 18 17 
 

23 24 21 
 

11 19 17 
 

26 27 22 

2 10 16 14   19 13 11   11 18 14   25 24 22 

3 17 21 19 
 

17 22 20 
 

30 25 21 
 

18 15 12 

4 18 22 19   12 14 11   13 18 10   19 26 22 

5 17 19 18 
 

19 24 24 
 

12 24 24 
 

24 25 18 

6 11 18 17   23 21 23   20 22 17   16 25 21 

7 10 19 17 
 

20 26 23 
 

9 15 16 
 

13 19 17 

8 9 16 15   13 16 18   14 17 16   20 21 14 

9 9 15 16 
 

7 9 12 
 

12 22 19 
 

23 30 26 

10 9 15 17   17 23 21   12 19 19   17 21 19 

11 17 13 12 
 

24 30 28 
 

10 16 16 
 

16 23 24 

12 16 18 18   28 21 20   23 25 21   11 17 19 

13 11 15 13 
 

16 21 18 
 

22 26 23 
 

19 19 24 

14 16 17 16   13 16 10   18 24 21   25 14 16 

15 12 17 15 
 

14 16 10 
 

19 22 21 
 

19 25 24 

16 11 15 16   10 12 16   12 19 10   14 16 14 

17 10 16 14 
 

16 15 14 
 

10 21 19 
 

18 23 20 

18 13 15 14   14 17 15   11 16 16   21 26 20 

19 12 15 15 
 

14 17 16 
 

11 16 16 
 

13 16 15 

20 9 21 16   14 18 16   12 23 23   16 20 18 

21 10 15 16 
 

12 15 15 
 

13 25 23 
 

16 21 16 
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22 17 16 20   12 14 9   15 20 19   24 24 21 

23 16 16 20 
 

14 12 14 
 

15 23 18 
 

19 25 21 

24 15 15 17   12 10 8   14 18 15   18 25 24 

25 13 13 16   12 10 9   13 22 15   20 25 25 

R5 (R=2 m) 

1 11 7 9 
 

9 11 13 
 

12 9 8 
 

17 9 15 

2 13 24 16   10 8 15   15 27 16   13 25 13 

3 7 29 10 
 

13 27 17 
 

14 10 11 
 

12 5 8 

4 9 10 15   11 8 10   14 9 11   12 5 11 

5 15 21 14 
 

8 4 6 
 

18 24 16 
 

12 7 12 

6 14 20 17   16 19 12   20 23 19   17 9 15 

7 14 19 18 
 

14 9 17 
 

14 11 8 
 

14 13 16 

8 17 25 23   11 7 8   15 24 17   13 9 8 

9 15 23 21 
 

8 4 12 
 

10 7 8 
 

15 8 12 

10 13 23 22   12 19 11   16 20 11   16 5 8 

11 9 11 7 
 

11 13 14 
 

16 24 13 
 

17 9 16 

12 14 19 13   11 21 14   16 24 15   14 8 15 

13 14 20 13 
 

14 10 15 
 

19 24 17 
 

18 9 13 

14 23 24 23   11 14 8   19 22 15   16 5 9 

15 14 23 17 
 

16 9 15 
 

19 22 18 
 

23 20 18 

16 17 24 14   9 6 9   13 11 8   19 10 15 

17 18 23 12 
 

8 7 8 
 

15 23 16 
 

12 7 14 

18 9 11 10   15 24 12   10 8 8   17 8 12 

19 11 21 12 
 

14 4 3 
 

16 20 11 
 

14 9 16 

20 23 24 17   26 24 26   16 22 13   17 9 16 

21 19 24 14 
 

14 8 13 
 

15 24 16 
 

17 8 11 

22 18 10 14   14 10 13   19 22 17   20 9 13 

23 16 24 15 
 

16 9 14 
 

19 24 16 
 

11 7 13 

24 19 24 16   12 6 10   20 22 19   16 9 12 

25 21 24 19   17 8 9   11 11 8   11 8 14 

R6 (R=5 m) 

1 20 21 30 
 

10 12 13 
 

15 15 15 
 

9 9 13 

2 20 23 21   11 12 12   17 12 10   15 10 14 

3 28 18 19 
 

12 10 12 
 

18 12 12 
 

14 14 13 

4 13 17 22   10 11 10   19 18 19   13 11 13 

5 10 13 12 
 

9 14 13 
 

15 8 8 
 

13 12 13 

6 11 19 16   12 14 10   8 5 7   12 12 14 

7 28 22 35 
 

10 16 13 
 

16 18 16 
 

13 12 14 

8 18 36 25   13 17 13   11 27 18   15 19 16 

9 9 20 15 
 

12 12 13 
 

15 11 16 
 

11 13 11 

10 13 15 22   11 19 10   11 14 14   10 9 13 

11 19 11 12 
 

11 12 10 
 

14 13 14 
 

10 9 13 
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12 16 19 26   12 9 10   24 30 23   16 20 16 

13 14 17 23 
 

11 13 9 
 

18 17 17 
 

22 21 19 

14 8 7 15   10 11 11   12 10 15   13 9 12 

15 6 14 27 
 

11 14 14 
 

12 10 8 
 

12 30 15 

16 10 13 31   12 19 12   19 22 17   12 8 13 

17 22 29 30 
 

14 19 16 
 

10 12 14 
 

15 28 19 

18 25 31 33   12 18 15   10 14 9   9 14 15 

19 22 29 33 
 

9 11 8 
 

18 9 11 
 

16 17 13 

20 12 16 31   10 14 12   9 9 9   20 40 26 

21 11 26 22 
 

10 16 12 
 

18 11 11 
 

11 22 17 

22 15 19 22   10 13 10   14 18 21   20 22 18 

23 17 22 27 
 

11 10 8 
 

20 24 13 
 

24 15 21 

24 13 21 27   12 12 11   19 18 21   21 14 24 

25 20 17 15   10 13 12   19 18 21   21 23 29 

R7 (R=5 m) 

1 8 4 6 
 

14 17 13 
 

13 11 15 
 

14 8 9 

2 13 7 10   14 14 12   9 5 14   15 10 11 

3 12 5 7 
 

14 12 9 
 

8 4 13 
 

17 12 11 

4 11 4 7   13 9 14   10 6 13   21 13 12 

5 11 7 10 
 

14 9 12 
 

11 6 13 
 

12 8 10 

6 11 7 11   13 8 24   11 3 5   13 6 8 

7 5 5 9 
 

14 9 5 
 

7 5 12 
 

18 14 12 

8 13 5 11   14 9 12   7 6 13   15 10 13 

9 10 2 7 
 

17 10 6 
 

5 5 7 
 

12 6 10 

10 10 6 13   17 9 7   10 6 14   18 7 11 

11 9 7 12 
 

15 9 7 
 

15 9 15 
 

16 7 11 

12 14 7 15   17 8 10   14 12 16   15 7 11 

13 20 7 13 
 

12 7 7 
 

10 7 14 
 

13 5 6 

14 12 6 11   14 12 11   10 7 13   16 7 10 

15 15 6 12 
 

13 8 10 
 

11 6 13 
 

13 8 11 

16 9 3 10   15 11 11   12 8 13   13 5 8 

17 14 6 13 
 

13 9 12 
 

11 5 7 
 

13 6 9 

18 13 6 13   13 9 11   8 5 12   14 7 9 

19 11 6 12 
 

12 6 8 
 

7 6 13 
 

10 6 7 

20 10 6 13   11 4 8   7 5 8   17 11 15 

21 18 11 14 
 

15 10 9 
 

10 7 14 
 

12 5 6 

22 11 6 14   10 3 4   14 10 16   24 13 15 

23 14 7 13 
 

16 9 12 
 

16 14 16 
 

18 9 16 

24 12 7 12   15 8 13   11 9 14   19 9 12 

25 11 8 14   14 8 11   10 8 13   15 8 11 

R8 (R=7 m) 

1 11 19 15 
 

12 12 10 
 

12 25 19 
 

6 12 9 
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2 11 28 24   11 19 16   12 25 23   15 24 15 

3 7 19 15 
 

12 18 11 
 

11 25 17 
 

19 24 22 

4 10 28 21   15 25 22   11 24 18   18 20 23 

5 12 24 15 
 

14 25 21 
 

11 21 13 
 

17 24 12 

6 13 25 24   17 25 17   10 25 20   9 14 6 

7 8 25 17 
 

14 19 17 
 

11 25 12 
 

12 25 16 

8 6 17 9   13 19 14   14 25 22   16 25 22 

9 10 25 17 
 

9 17 10 
 

13 25 24 
 

11 20 15 

10 8 25 21   16 25 14   15 25 23   12 16 15 

11 6 24 11 
 

13 22 15 
 

11 25 18 
 

12 18 10 

12 6 24 15   12 16 13   9 25 23   10 22 11 

13 8 25 16 
 

18 29 22 
 

7 24 15 
 

10 15 9 

14 9 22 14   12 28 16   9 23 13   14 24 14 

15 9 25 22 
 

17 27 19 
 

11 16 13 
 

16 25 19 

16 10 25 20   12 19 17   10 25 23   8 19 10 

17 9 26 22 
 

12 24 13 
 

19 25 20 
 

12 20 11 

18 6 12 10   12 19 10   10 25 23   13 20 11 

19 5 17 12 
 

10 25 15 
 

14 25 23 
 

13 19 9 

20 13 29 22   15 26 14   11 25 23   12 15 8 

21 7 19 10 
 

17 23 23 
 

14 25 23 
 

16 16 11 

22 10 29 20   10 15 9   10 21 11   16 19 12 

23 8 14 14 
 

13 19 14 
 

11 25 16 
 

15 15 9 

24 7 21 13   14 18 18   8 17 12   13 12 9 

25 7 25 21   12 21 15   9 17 12   14 17 10 

R9 (R=9 m) 

1 15 17 14 
 

13 25 14 
 

11 18 14 
 

13 19 12 

2 13 29 17   12 23 14   8 19 12   16 22 13 

3 6 22 12 
 

11 24 13 
 

19 23 13 
 

11 23 10 

4 8 19 11   10 22 13   9 27 13   8 17 8 

5 8 25 11 
 

12 23 12 
 

11 23 12 
 

13 24 12 

6 7 19 9   9 24 11   7 21 11   15 23 19 

7 8 21 11 
 

9 18 8 
 

11 24 14 
 

9 15 5 

8 8 23 12   11 20 9   10 24 9   13 25 14 

9 8 23 13 
 

12 23 12 
 

8 25 9 
 

14 25 17 

10 13 24 18   12 25 12   11 24 11   11 25 20 

11 13 21 11 
 

11 24 9 
 

16 25 15 
 

14 25 17 

12 10 24 11   15 23 17   11 25 17   12 25 22 

13 9 26 12 
 

17 25 18 
 

16 23 17 
 

12 25 15 

14 13 29 15   9 22 11   14 25 16   11 23 18 

15 7 21 11 
 

12 25 11 
 

7 14 7 
 

14 25 14 

16 8 27 14   7 14 6   17 25 13   17 25 19 

17 6 20 9 
 

10 16 10 
 

10 25 16 
 

15 25 15 
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18 9 25 12   13 21 15   13 25 14   18 25 20 

19 13 25 13 
 

12 25 21 
 

14 20 15 
 

20 25 17 

20 11 23 13   11 24 10   10 25 17   13 25 14 

21 15 25 20 
 

11 22 10 
 

13 25 16 
 

16 25 19 

22 15 24 18   11 25 12   15 24 12   14 25 16 

23 10 24 12 
 

15 25 18 
 

13 18 14 
 

15 25 22 

24 9 18 13   12 25 12   11 24 17   11 25 22 

25 14 16 13   11 25 16   13 22 15   16 25 21 

 

 

Table 18 Operating Speed Data per Section for Site R1-R9 by User Type and Direction. 

# 

Bike    E-scooter  

LT RT   LT RT 

R2 (R=10 m) 

1 9.4 8.9 
 

10.1 9.1 

2 9.7 9.1   9.9 9.9 

3 9.7 8.9 
 

9.5 9.8 

4 10.1 8.9   10.0 9.4 

5 10.0 9.5 
 

10.1 9.2 

6 9.9 9.6   9.7 9.9 

7 9.4 8.6 
 

9.3 9.8 

8 9.6 9.0   10.0 9.2 

9 9.7 9.2 
 

10.2 9.1 

10 9.9 8.9   10.5 9.3 

11 9.6 9.7 
 

10.5 9.4 

12 9.3 8.9   9.2 8.9 

13 9.5 9.5 
 

9.2 8.8 

14 10.1 8.6   10.3 8.8 

15 9.7 9.1 
 

9.5 8.5 

16 9.7 9.5   9.6 9.0 

17 8.8 9.0 
 

9.0 8.9 

18 9.8 9.9   9.5 9.7 

19 9.7 9.2 
 

10.0 9.0 

20 9.7 9.5   11.1 9.0 

21 9.5 8.7 
 

10.1 9.7 

22 9.3 8.9   9.8 9.5 

23 9.5 9.2 
 

9.3 9.9 

24 9.8 9.1   9.5 10.1 

25 9.2 9.3   9.3 8.8 
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R3 (R=22 m) 

1 29.3 52.0 
 

14.2 21.6 

2 22.2 22.3   28.3 18.0 

3 21.9 22.9 
 

25.1 25.2 

4 20.7 17.4   25.8 20.1 

5 14.8 30.8 
 

22.6 20.3 

6 17.7 19.7   23.3 22.5 

7 20.2 23.4 
 

20.0 31.4 

8 17.7 28.1   19.7 24.0 

9 30.7 28.5 
 

29.5 33.2 

10 23.1 18.3   17.4 26.4 

11 20.5 28.1 
 

30.8 22.8 

12 16.2 20.3   22.8 21.9 

13 19.8 19.0 
 

24.2 19.0 

14 19.2 18.5   19.3 23.8 

15 32.7 30.8 
 

20.8 20.3 

16 34.9 18.5   21.8 19.0 

17 19.1 25.2 
 

17.9 22.8 

18 19.7 21.2   14.2 21.9 

19 21.9 24.9 
 

22.6 29.5 

20 21.4 20.9   19.4 24.3 

21 26.5 19.2 
 

24.2 23.5 

22 23.7 23.1   27.2 154578.4 

23 17.2 23.5 
 

20.9 18.9 

24 18.5 17.6   19.6 22.9 

25 18.5 29.1   22.4 22.3 

R4 (R=78 m) 

1 79.6 121.8 
 

88.1 73.3 

2 77.3 69.2   77.9 73.5 

3 77.9 76.0 
 

101.4 71.7 

4 72.9 80.7   71.2 71.2 

5 104.4 96.2 
 

65.5 106.1 

6 63.4 112.1   78.0 79.3 

7 91.8 76.8 
 

95.9 84.9 

8 77.2 93.8   88.0 75.1 

9 76.1 80.6 
 

82.7 83.1 

10 62.0 78.2   71.7 86.0 

11 87.5 81.1 
 

72.8 94.3 

12 68.5 82.6   67.2 68.9 
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13 76.8 74.4 
 

74.6 83.3 

14 79.1 49.8   71.6 107.4 

15 90.1 77.3 
 

77.0 88.0 

16 72.7 80.4   85.1 77.7 

17 82.7 107.5 
 

70.3 80.7 

18 83.5 81.5   73.5 78.8 

19 78.2 94.3 
 

79.1 85.4 

20 69.9 72.7   84.3 80.2 

21 78.9 92.5 
 

86.8 81.5 

22 75.3 79.1   77.3 97.0 

23 73.1 79.4 
 

77.1 76.0 

24 80.2 72.3   75.6 79.1 

25 71.4 72.3   77.4 78.9 

R5 (R=2 m) 

1 2.2 1.5 
 

2.0 2.2 

2 1.6 1.5   1.8 1.6 

3 3.6 1.8 
 

3.3 2.2 

4 1.5 2.0   2.3 1.6 

5 1.7 1.9 
 

2.2 2.3 

6 1.6 1.5   1.7 1.6 

7 1.6 1.8 
 

2.1 1.7 

8 1.4 1.6   2.5 1.7 

9 1.6 1.4 
 

1.7 1.5 

10 1.7 1.7   1.8 1.8 

11 2.4 1.6 
 

1.6 1.5 

12 2.0 1.5   2.3 1.9 

13 1.8 2.1 
 

1.8 1.4 

14 1.6 1.7   2.0 1.4 

15 2.0 1.5 
 

1.8 2.0 

16 1.7 1.4   3.6 1.5 

17 1.7 1.9 
 

2.3 1.7 

18 17.1 2.6   2.2 1.7 

19 2.0 1.7 
 

1.7 1.4 

20 1.9 1.8   2.1 1.8 

21 1.9 1.4 
 

2.5 1.5 

22 1.5 1.5   1.7 1.9 

23 2.5 1.8 
 

1.8 1.4 

24 2.2 1.7   1.6 1.4 

25 1.7 3.9   2.3 2.0 
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R6 (R=5 m) 

1 3.3 65192.2 
 

3.6 58076.3 

2 3.1 7.1   3.0 5.3 

3 3.4 3.9 
 

3.5 49250.5 

4 3.6 15.4   3.9 18.6 

5 7.7 217.9 
 

3.5 16522.0 

6 7.4 27.4   3.8 14.2 

7 3.2 11.0 
 

3.0 450.6 

8 3.1 13.2   7.0 13.0 

9 2.9 8.0 
 

3.3 14.8 

10 3.0 169050.1   3.2 14.1 

11 4.0 143.5 
 

54502.6 60.8 

12 3330.3 955.8   3.0 13.1 

13 3.8 6.9 
 

3.3 13489.9 

14 3.6 10.1   3.3 10.3 

15 3.5 13.4 
 

3.8 34850.4 

16 3.2 6.4   3.2 7.6 

17 5.5 36.9 
 

4.5 29161.3 

18 3.1 44.7   3.3 8.9 

19 3.0 8.0 
 

4.7 56.7 

20 3.4 18.2   3.5 18133.7 

21 2.9 30.3 
 

4.1 35.5 

22 3.2 15.5   3.3 20.9 

23 3.5 62652.0 
 

3.3 304470.6 

24 3.6 32.1   7.6 114.7 

25 3.1 15.3   7.6 21026.8 

R7 (R=5 m) 

1 4.0 18.1 
 

5.5 3.5 

2 9.0 3.9   13003.6 9.8 

3 2.9 129972.9 
 

2.1 5.4 

4 6.1 7.0   2.0 4.4 

5 81579.3 8.9 
 

2.0 13.0 

6 4.0 5.3   2.0 9.8 

7 3.7 3.7 
 

2.1 19.7 

8 2.0 4.4   2.2 5.0 

9 2.5 3.8 
 

3.7 5.5 

10 41484.8 3.5   2.0 9.7 

11 2.2 3.8 
 

6.6 4.4 

12 2.2 5.2   6.3 13.0 
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13 4.0 9.3 
 

15342.7 936781.8 

14 3.9 210684.3   2.1 4.3 

15 2.3 4.0 
 

2.1 6.6 

16 2.0 4.2   2.0 3.3 

17 2.0 3.5 
 

2.0 8.9 

18 2.1 3.6   2.1 4.6 

19 2.1 4.4 
 

2.2 5.6 

20 2.3 9.8   3.9 5.3 

21 5.1 152138.3 
 

2.0 4.4 

22 2.0 3.3   6.6 3.4 

23 2.2 5.5 
 

5.6 558953.7 

24 5.3 8.9   2.0 3.2 

25 2.0 35104.3   6.4 180185.9 

R8 (R=7 m) 

1 13.7 7.1 
 

7.9 7.1 

2 6.5 7.2   5.9 6.9 

3 6.2 6.8 
 

6.7 6.4 

4 6.9 7.0   6.7 5.1 

5 6.5 7.3 
 

6.9 7.1 

6 6.7 6.9   16.3 6.7 

7 5.8 7.2 
 

7.0 6.4 

8 6.2 10.8   6.0 6.9 

9 5.9 6.2 
 

5.9 6.7 

10 14.9 7.4   13.1 7.2 

11 6.9 6.6 
 

15.2 6.5 

12 5.2 6.4   6.4 7.1 

13 5.7 6.4 
 

6.9 6.7 

14 6.9 6.5   9.3 6.1 

15 6.8 6.0 
 

6.8 8.9 

16 10.4 7.4   6.9 6.7 

17 6.2 6.6 
 

6.8 13.9 

18 6.6 7.3   5.4 7.0 

19 10.6 6.1 
 

5.1 7.0 

20 5.6 6.8   6.3 6.6 

21 10.1 6.8 
 

6.8 6.5 

22 6.6 7.4   10.4 7.5 

23 11.9 7.0 
 

5.9 7.4 

24 7.0 9.8   16.1 7.0 

25 7.1 6.0   8.0 7.0 
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R9 (R=9 m) 

1 9.0 6.8 
 

13.7 11.0 

2 8.9 7.2   9.7 8.9 

3 10.3 8.5 
 

7.9 7.6 

4 8.6 7.5   9.8 8.0 

5 7.5 9.7 
 

7.8 12.0 

6 9.5 7.9   10.1 7.4 

7 9.1 9.3 
 

10.0 9.3 

8 8.8 7.8   6.6 8.8 

9 6.9 6.9 
 

7.1 8.5 

10 7.7 6.9   13.4 7.3 

11 8.6 8.1 
 

8.9 7.3 

12 9.9 8.1   7.7 8.6 

13 9.4 6.2 
 

9.3 7.0 

14 7.7 7.6   8.7 7.5 

15 7.2 8.6 
 

8.7 7.2 

16 6.7 7.0   9.4 8.2 

17 8.3 7.8 
 

7.2 7.0 

18 7.9 7.0   8.1 7.9 

19 8.1 10.1 
 

8.7 9.0 

20 9.2 6.9   6.8 7.3 

21 7.1 15.4 
 

7.7 7.8 

22 9.9 93.9   7.2 7.5 

23 9.0 6.9 
 

8.3 6.9 

24 9.2 7.4   6.7 7.1 

25 10.0 7.7   7.2 9.0 
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Section 7.2 
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Section 7.4 
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