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Abstract—Urban air quality, impacted by human-made pol-
lution, impacts health and requires continuous monitoring.
MQ sensors are the preferred air quality sensors despite
their high energy consumption due to their cost, requiring
the use machine learning to classify different types of air. The
aim of this article is to evaluate a monitoring solution with
low-cost and low-energy consumption to classify urban and
rural air. A single MQ sensor will be used with a network with
edge and fog computing to balance the energy consumption.
Edge computing was included in the node for feature extrac-
tion, and fog computing was applied in the smartphone to
classify the data using machine learning. Different sensors
and time buffers are compared in order to find the adequate
sensor for data generation and time buffer for feature extrac-
tion. The results indicate that it has been possible to achieve
accuracies of 100% using a single sensor, the MQ2, with time
buffers of 45—60 measures. With this proposal, it is possible
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to reduce the energy consumed by data gathering to 25% of the original consumption due to the use of a single sensor,
due to the reduction in the sensors used in the previous prototype. Moreover, it has been possible to reduce the energy
linked to data forwarding by almost 97% due to using a time buffer.

Index Terms— Air pollution, edge computing, fog computing, MQ sensor, rural area, urban area.

I. INTRODUCTION
IR quality is strongly affected by anthropogenic pollu-
tion, and in the last decades, the air quality in the cities
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due to traffic has become a health issue [1]. Several countries
are boosting policies to regulate the use of vehicles in the
inner parts of the cities to reduce pollution and restore urban
air quality. Besides traffic, the industry is another important
component in air pollution sources [2]. Meteorological con-
ditions might play a positive or negative role in air quality
according to multiple factors [3].

Air quality has a direct impact on human health [4], and
therefore, it should be monitored in particular cases. Some
of these cases include people with diseases or those in high-
population-density areas. In comparison with rural areas, urban
areas usually have worse air quality due to the low anthro-
pogenic impact in rural areas. Nevertheless, we can distinguish
different regions in the urban areas characterized by different
degrees of atmospheric pollution. Areas near highways tend to
have more pollution than regions surrounded by green areas
without traffic. Similarly, regions close to industrial areas have
more pollution than the residential parts of the city.

Several institutional efforts are being conducted beyond the
regulatory frameworks to assess the air quality and know
the real-time distribution of air pollution [6]. Air quality
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monitoring solutions predominantly occur within urban cores
or built-up areas, where monitoring encompasses various
pollutants, such as particulate matter (PM), volatile organic
compounds (VOCs), biological contaminants, and aerosols,
as outlined in [7]. Nevertheless, the existing solutions have
high costs and often do not provide real-time information.
Thus, low spatial resolution of data is achieved, which makes
it difficult to evaluate the exposition of people to pollution.

Gas sensors are frequently deployed for measuring VOCs
across diverse applications, as noted in [8]. Furthermore,
certain compounds have the potential to react with other
components in the air, generating hazardous substances [9].
Therefore, the utilization of gas sensors holds a significant
role in implementing monitoring solutions. Among the widely
recognized low-cost gas sensors are those belonging to the
MQ family. Other examples include the Figaro TGS [10] and
FIS [11] sensors. These sensors operate based on resistance
changes corresponding to the presence of specific gases.
Nevertheless, recent studies suggest that the MQ family yields
higher accuracies when combined with Al for data clas-
sification [8], [12]. According to recent research findings,
MQ sensors are utilized for air monitoring, offering depend-
able and cost-efficient performance despite challenges related
to calibration, as highlighted in [13].

Nonetheless, the individual use of these sensors is rarely
seen. In most cases, the authors combined multiple sen-
sors from the same group or different groups to monitor
air quality. Even though multiple studies have been found,
doubts about the performance of these sensors are due to
the questionable specificity for the targeted molecules, which
prevents their use for monitoring the exact amounts of air
pollutants. Therefore, multiple sensors and ML were used
to characterize the measured gas. The application of these
sensors to discriminate between indoor and outdoor sensed
data using four gas sensors was proposed by Wang et al. [13].
Unfortunately, the authors only collected from urban areas.
In addition, the energy consumption of these sensors is high,
and it must be considered to try to reduce the required sensors
to characterize the studied area. As far as we are concerned,
no cases in which a single sensor is used for this purpose have
been proposed.

The aim of this article is to evaluate the suitability of using
a single sensor to recognize diverse outdoor areas, including
urban and rural areas. For that purpose, four sensors are
considered: MQ2, MQ3, MQ7, and MQ135. An Arduino Mega
has been selected as a microcontroller, which will perform
edge computing to extract features from the MQ sensors. The
extracted features are sent via Bluetooth to a smartphone,
which analyzes locally thought fog computing with ML and
classifies the area. Different time buffers are compared to
calculate five features (average, standard deviation, minimum,
maximum, and range) to extract features. The objectives of the
present article and their novelties compared with the existing
systems are the following.

1) Reduce the number of MQ sensors needed to provide

a low-cost and low-energy consumption solution to
classify types of outdoor areas by extracting features
from gathered MQ data.

2) Assess which sensor provides the best-extracted features
for outdoor classification with different time buffers.

3) Compare the ML models to select the one that balances
performance and computing requirements.

4) Test the system in three real outdoor areas with different
air quality and other environmental parameters, includ-
ing a residential district, a green area, a large city, and
a natural area.

The rest of this article is organized as follows. Section II
summarizes the existing proposals with a limited number of
sensors. Section III details the proposed approach and used
elements. Then, the test bench is described in Section IV.
In Section V, the results that were obtained are discussed.
Finally, Section VI outlines the main conclusion and future
work.

[I. RELATED WORK

In this section, a summary of various studies that have
employed gas sensors is provided. These devices were used for
monitoring air quality but were also found to be applicable in
diverse areas. Initially, we highlight sensors’ primary roles in
monitoring indoor and outdoor air quality within urban settings
using a single sensor. Then, the combined use of multiple
sensors is outlined.

A. Single Sensor for Air Quality in Indoor and Outdoor
Urban Scenarios

In this subsection, the existing proposals using single gas
sensors, mainly MQ-based sensors, are outlined.

Irawan et al. [14] proposed the use of MQI135 for air
quality and the presence of gas pollutants monitoring. In their
proposal, the selected node was the Arduino UNO to collect
the data and send it to a Raspberry Pi. The authors used the
sensor to quantify the amount of CO, CO; gases, and alcohol
in real time. Nevertheless, the authors do not compare the
lecture of the sensor with a verified device or expose the sensor
to known concentrations of measured gases. Thus, it is not
feasible to evaluate the accuracy of the proposed system.

Rani et al. [15] used the MQ135 with an Arduino Uno
to determine air quality and identify hazardous conditions in
indoor areas. To evaluate the response of the sensor, they were
exposed to different substances. In the first scenario, the sensor
was exposed to a candle, placing it at 0.2 cm. In the second
scenario, agarbhatti at 1, 0.5, and 0.2 cm was used. The authors
confirmed that the response of the sensors varies when it
is exposed to different substances and at different distances.
Nevertheless, data were not used to classify the different
scenarios, and the dataset constitutes a very specific case with
no real applications to identify different environments.

Mluyati and Sadi [16] tested a gas sensor system employing
the MQ2. An Arduino Nano was used as a microprocessor.
Their research aimed to identify gas leaks, utilizing wireless
communication via short message service. Their data high-
lighted the ability to detect gas leaks at levels of 52%.

Stanci¢ et al. [17] used the MQ2 sensor to detect smoke
and combustion gas inside homes. For instance, they burned
paper, cigarettes, and gases, such as the ones from lighters and
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stoves. They concluded that the MQ?2 sensor, together with the
use of other sensors, could improve current smoke detectors.

B. Multisensor for Air Quality in Indoor and Outdoor
Urban Scenarios

In this subsection, the current systems in which more than
one MQ-based sensor or other similar sensors are included are
summarized.

Rustemli et al. [18] used the MQ2, MQ4, MQ9, and MQ135
to determine the air quality by monitoring the CO, LPG, and
smoke in indoor and outdoor areas. The nodes were connected
to an Arduino Mega prototype. As a result, the authors provide
lectures on sensors in the measured location (restaurant, office,
and outdoor environments). Moreover, the authors did not
control the concentration of measured gases in the areas or
analyze the different lectures in diverse areas in depth. Thus,
it is impossible to evaluate the proposed system’s accuracy.

The same year, a prototype composed of MQ-7, Sharp
GP2Y1010AUOF, and an own-designed smoke sensor, was
proposed by Rumantri et al. [19]. The authors employed
Arduino microprocessors, but they do not identify which. The
prototype was used to measure the concentration of carbon
monoxide. The authors compare the sensors measured with
a verified instrument in order to provide a new calibration
of the proposed system. Data were gathered by injecting
carbon monoxide into a small container. A correlation has been
provided, but the authors do not indicate the performance of
this correlation in terms of R2 or other metrics.

Sai et al. [20] combined the MQ7 with the MQI135 to
detect carbon dioxide and air quality. The authors used an
Arduino UNO to power the nodes and read the measurements.
Data are forwarded to Thingspeak for its visualization. Their
results encompass a series of measures with the system and
the analyses of a range of obtained values. Nonetheless, the
authors did not compare the sensor readings with those of
a validated device or evaluate the response of the sensors
exposed to known concentrations of measured gas. As a result,
assessing the accuracy of the proposed system is not possible.

Hapsari et al. [21] proposed a combination of MQ135 and
dust sensors. The selected node, in this case, is the ESP32.
Measured parameters include the concentration of carbon
dioxide and the PM in the air. Data were gathered in three
indoor scenarios at the university: the classroom, the canteen,
and the library. The authors present and analyze the variability
of data among the measured scenarios. Nevertheless, no clas-
sification of the scenarios was conducted based on the lecture
on the sensors.

AI-Okby et al. [22] proposed the use of SGP40 and
BMEG680 sensors to generate an alarm system for detecting
hazardous chemical substances in indoor environments. As a
microprocessor, the authors selected the WeMos D1 Mini IoT
microcontroller, which serves to collect and transmit data to
the cloud using Wi-Fi. The system was tested using ethanol,
hexane, and acetone at different distances (25 and 40 cm) from
the sensors. Even though this system can help to detect small
leaks in the laboratory, their usability in real environments
is limited. In addition, no relation or classification between
gathered data and scenarios was conducted.

30847
Fig. 1. Proposed wearable gas sensor device.
TABLE |
SUMMARY OF INCLUDED CART
Name Maximum Split criterion Surrogate
D number of decision
splits splits
1 Fine Tree 100 Gini's diversity index No
2 Medium Tree 20 Gini's diversity index No
3 Coarse Tree 4 Gini's diversity index No

Jabbar et al. [23] combined the MQ9, MQ135, MQ36,
MiCS-4514, and PMS3003 sensors for monitoring air quality
in outdoor scenarios. The selected node is Arduino Uno,
and the data are transmitted using LoRa technology. On this
occasion, sensors were calibrated for the following gases: CO»,
NO3, SO, and CO. The calibrations were conducted using two
known concentrations of gases. Nevertheless, in some cases,
just one concentration is used. Thus, calibration might not
be optimal. During the tests, differences in the concentration
of gases were minimal. Obtained data were forwarded to the
ThingSpeak IoT server.

[1l. PROPOSAL
In this section, all the elements of the proposed system are
described. First of all, the sensors and the microprocessor are
identified. Then, edge computing, including feature extraction,
is presented. Following this, fog computing, including the ML
classifier selection, is explained. Finally, the details of the
conducted ML classification are outlined.

A. Wearable Sensing Device

The proposed wearable sensing devices are based on the
proposal presented in [13] (see Fig. 1). Arduino Mega 2560
[24] is selected as a microprocessor due to its high number
of inputs and processing capability. This computing capability
is required since edge computing will be conducted for initial
data preprocessing in order to minimize the consumed energy
and bandwidth for data forwarding.

The sensing device is composed of four gas sensors: the
MQ-2 [25], MQ-3 [26], MQ-7 [27], and MQ-135 [28]. Those
sensors measure the concentration of different substances in
the atmosphere, as can be seen in Table I. Even though
there are currently four sensors in the tested prototype, the
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final prototype will have only one of them. In addition to
the sensors, a Bluetooth module is incorporated to enable
connectivity with the smartphone, facilitating data transfer.

B. Edge Computing and Feature Extraction

The main difference between this proposal and the existing
ones [29] is the combination of edge and fog computing with
the aim of reducing the number of used sensors and, thus,
the consumed energy. With this proposal, data will be initially
processed in the node, extracting a series of features that will
be part of the input for the classification conducted by the
server. Feature extraction aims to evaluate if it is feasible to
recognize the area with a lower number of sensors. Thus,
it will be able to reduce the energy consumption and the
network requirements for the sensor operation. The extracted
features include the ones described in (1) to (2) as average and
standard deviation and three additional ones: the minimum,
maximum, and range. The periodicity of feature extraction is
one of the studied parameters in this article

(D

o = ——__ 2)

where x; represents the data gathered at a given moment, N is
the time at which metrics are calculated, x is the averaged data,
and o is the standard deviation. These features are extracted
for each one of the four MQ sensors.

The obtained features are then sent to the smartphone, and
fog computing is included to classify the data using an ML-
based classifier.

C. Fog Computing and ML Classifier Selection

We have selected an ML classifier multiclass algorithm to
classify the extracted features into three classes. To select
the ML algorithm, we have considered those that are able to
use nonparametric and nonlinear features since the normality
of data cannot be ensured during the real application of
the system. Even though the use of averaged and standard
deviation cannot be affected by outliers, the minimum and
maximum parameters of the extracted features are sensitive to
outliers. Thus, a method which is not sensitive to outliers must
be used. Finally, we searched methods usually employed with
natural data. The selected method has been the classification
and regression tree (CART). Three configurations for CART,
which are identified in Table I, have been selected. To evaluate
the performance of CART, the metrics of accuracy and cost in
the validation and test datasets classification will be compared.

This classification will be conducted on the smartphone.
Having the ML classification in the smartphone allows two
advantages. The first one is that the user can check that the
conducted classification is correctly done, allowing reinforce-
ment learning in the future based on the inputs of the users.
The second one is linked to the data forwarding and server
storage capacity. If ML classification should be carried in
the database, the metrics should be sent and processed. With
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fog computing, the server will only receive the type of area,
reducing the storage requirements.

To better understand the proposal, it has been summarized
as a flowchart in Fig. 2. Even though four gas sensors are
represented, only one will be used according to the results.
In the same way, only the type of outdoor area selected by
the CART is sent to the server. We can identify the tasks that
have been conducted, the type of computing, and the devices.

D. Conducted ML-Based Classification

The obtained dataset was split into a training dataset (65%),
a validation dataset (25%), and a test dataset (10%). We have
selected the holdout validation method as a validation method,
given the large datasets to avoid overfitting between training
and validation datasets.

Concerning the feature extraction, we have applied four
values of N (15, 30, 45, and 60). In addition, a classification
will be conducted with the raw data to have the expected
maximum metrics. Thus, a total of four datasets are generated
for each location. Besides the data of the individual sensor,
two additional datasets were generated, the first one having
the extracted features for all the nodes and the second with
the averaged value of each node. Table II outlines the used
datasets.

To assess the classification, the obtained datasets for each
feature extraction periodicity and each sensor are compared
in the results. Thus, it is possible to discern which of the
sensors provides more useful features to reduce the energy
requirements and size of the wearable devices. MATLAB
R2022b [30] is used to perform the multiclass classification.

IV. TEST BENCH
In this section, the test bench is fully detailed. First of all,
the measured procedure is explained. Then, the areas in which
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TABLE Il Rosporsal s
SUMMARY OF REGISTERS AND FEATURES IN Urban Avea
COMBINATIONS OF SENSORS Lrban Groon Area
N MQ2 MQ3 MQ4 MQI35 All sensors _
All features Average Raw El
0 1922 .
/4 3
15 224 224 224 224 224 224 3
/5 /5 /5 /5 /20 /4 3
30 112 112 112 112 112 112 g
/5 /5 /5 /5 /20 /4
45 73 73 73 73 73 73
/5 /5 /5 /5 /20 /4
60 56 56 56 56 56 56
/5 /5 /5 /5 /20 /4
data have been collected are described. Finally, the selected MQ2 MQ3 MQ7 MQ135
ML-based classifiers and the metrics used for the assessment Sensor ID
are identified. Fig. 3. Gathered data from different MQ sensors.
200 L 170 ResponseLabels
A. Measurement Procedure 170 k7o Rorsiirve
190 1 Urban Green Area

Following the recommendation of multiple authors and
manufacturers indications, before starting the data gathering,
the system was used in a controlled environment for a period
of 48 h. Thus, we ensure that the sensors are clean and prop-
erly heated before starting the measurements. The measuring
system is then used in the different locations, ensuring that the
initial 2 h of data is discarded and the remaining data provide
at least 400 records.

B. Measured Scenarios

The measured scenarios for this article include three outdoor
areas with different characteristics. Of these three regions, two
are located in urban areas, one being a residential district, and
the other is a green area in a city. The third location is a region
with natural vegetation in a rural area.

Regarding the first two locations, the residential district is
located 30 m from a boulevard and 250 m from a highway.
Meanwhile, the green area is located close to the boulevard
but far from the highway. In both areas, traffic is high, but
vegetation is a different characteristic. Data were gathered
from morning to midday in these locations and collected at
Dongying, Dongying, Shandong, China.

Finally, the last studied area was located at 70 km of
Chongqing and at 20 km of the closest residential district,
Nanchuan. The measurement point was selected on the moun-
tain slope opposite the large residential areas. Data were
gathered in the morning in this location.

V. RESULTS
In this section, the results of testing the proposed system
in different environments are detailed. First, we analyze the
sensed data in different environments. Then, we evaluate
which sensor is most useful to identify whether the data are
sensed indoors or outdoors.

A. Characterization of MQ Data in Outdoor Areas

To begin with, the comparison of obtained data in each area
is shown as a parallel coordinates plot. In this graphic, every
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Fig. 4. Extracted features from MQ2.

gathered data group in each location is plotted (see Fig. 3).
Raw data have been transformed to be plotted by adjusting the
axis dimensions to the range of sensed data to allow the figure
to be readable. It is possible to recognize that with raw data,
using a single sensor, it is not possible to differentiate between
the types of areas. While the rural area is characterized by
lower values in all the sensors, the urban area and the urban
green area have similar values for MQ2 and MQ135. For MQ3,
the urban area is always the one with higher values.

Following, we analyze the distribution of extracted features
for N = 15 of all the MQ sensors. Regarding the MQ2,
see Fig. 4. It is possible to see that some features, such as
averaged, minimum, and maximum values, are suitable for
differentiating between different areas. In contrast, others, such
as range or standard deviation, have similar values for all the
regions. Moreover, it is possible to identify that there is a great
variability of gathered data. This variability might indicate that
the sensors are able to measure the small changes in air quality
and other environmental factors due to the variation of gases
in the atmosphere caused by human actions.

The urban green areas are characterized by having greater
values in averaged, minimum, and maximum measured data.
It should be highlighted that some of the recorded values of
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MQ?2 in urban areas are very similar to those from rural areas,
even lower. This might indicate that even in areas strongly
affected by human impact, such as traffic, there are moments
in which the composition of the atmosphere is similar to that in
rural areas. The data from urban areas seem to be divided into
two groups, one characterized by values similar to the urban
green areas and the other with values similar to the rural area.

A totally different trend is observed concerning the MQ3,
which data can be seen in Fig. 5. In this case, there is
an extremely low dispersion of generated data. This fact
indicates that this sensor might not be suitable for identifying
spatiotemporal changes in the air quality data [31]. In fact,
the standard deviation is O in almost all the data that were
analyzed. The urban area has the highest values for all the
extracted features. For the MQ3 sensor, data from rural areas
have no variability and are similar to some records conducted
in green urban areas.

Concerning MQ7 data, see Fig. 6, which shows a greater
dispersion than in the previous cases. In MQ3, the dispersion
was minimal. Nevertheless, MQ7 has higher dispersion even
for rural area data than MQ2. This might indicate a higher
affinity of the sensor for the differences in the presence of
gases in this area or a very unstable measurement. Considering
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Fig. 7. Extracted features from MQ135.
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that in the rural area, there were no expected changes in the
gases, and this variability is greater than anticipated. Some
metrics provide valuable differences between areas, such as
average, minimum, and maximum. Nonetheless, these metrics
individually have similar values for urban areas and urban
green areas. The urban green area is the region with the highest
value in all the metrics, while the rural area has lower values
for almost all the metrics. In this case, we do not identify
those two groups of registers from urban areas characterized
by different responses in any of the metrics, as can be seen in
MQ2 data.

Finally, the data of MQ135 are characterized by dispersion
greater than that for MQ2 but lower than that for MQ7 (see
Fig. 7). The dispersion of the two groups of urban areas is
visible in these metrics. Nevertheless, the data from urban
green areas and one of the groups of data from urban areas
have similar values in most of the metrics. The records of rural
areas are the ones with lower values in all the metrics.

B. Most Suitable MQ-Based Sensor and Statistical
Approach for Identifying Scenarios

In the previous section, we have seen the extracted features
and their apparent usability in differentiating the outdoor areas.
ML is applied since it has not been feasible to use thresholds
in a single feature. The results of validation and verification
tests are presented in this section.

In Fig. 8, we can see the accuracy achieved in the validation
for the different data used. Since the results for the three tested
CART models are extremely similar, we have represented
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the averaged data for the three models. The initial four data
processing the ones corresponding to the extracted features of
individual sensors. Then, the “all” includes all the extracted
features for all the sensors, while the “averaged values” include
only the feature x for all the sensors. Finally, “raw data”
consist of raw data with no preprocessing, which includes all
records as individual data inputs.

Moreover, in this figure, it is possible to see the different
results when different values of N are applied for the buffer
of time. The results indicate that the accuracy is 100% for the
three last options regardless of the buffer selected. Regarding
the data of individual sensors, the outputs pointed out that the
highest accuracy is achieved with MQ2, having 100% accuracy
with almost all the time buffers. The classification with the
data from MQ3 achieves an average of 95% accuracy. The
average accuracy for the other two sensors for the different
values is close to 90%. The results for the test dataset, as seen
in Fig. 9, are significantly better than those for the validation
dataset. With both results in mind, the most suitable option
for wearable gas sensors is the MQ?2.

Once the MQ?2 has been chosen, we compare the training
time metrics for each time buffer for the three different CART
models. It can be seen in Fig. 10 that coarse CART is the
one with a lower training time. Using coarse CART supposes
a reduction of almost 85% of the required time compared
with fine CART. Considering the minimal differences in the
achieved accuracies and the great efficiency of coarse CART
in terms of training time and computing energy consumed in
the smartphone, it has been selected.

C. Comparison With the Existing Systems

In this subsection, the performance of the proposed system
is compared with the existing solutions.

Even though the MQ-based sensors were combined with
ML to classify samples in multiple cases, their applications
to air quality are limited. None of the papers included in
the related work included ML. A few examples were found,
in which lectures on MQ sensors were used to classify the
scenarios.

Applying ML to generated datasets using MQ7, MQ135,
and PM sensors in indoor areas during daily activities achieved
accuracies of 99.3% with Naive Bayes and 99.1% with J48
algorithms, respectively [32]. Other authors used the MQ-5,
MQ-131, MQ-135, MQ-136, and PMS5003 in outdoor areas
to generate a dataset and multiple ML algorithms to classify
data. Obtained accuracies ranged from 76% to 95% [33]
using decision tree random forest and SVM. Other examples
include the recognition of conducted activities in indoor areas
using MQ2, MQ9, MQ135, MQ137, and MG-811, achieving
accuracies from 83.4% to 86.9% with k-NN [34]. In a similar
proposal, authors classify the location (indoor or outdoor) by
using four MQ sensors. In this case, the authors achieved
accuracies ranging from 98.22% to 99.47%, using DA and
PNN [13].

As far as we are concerned, this is the only proposal that
uses ML to classify different areas using a single MQ sensor.
This supposes energy saving and extending the life of the
wearable devices, as well as reducing their size.

D. Energy-Related Issues

The proposed system presents a considerable advantage over
existing solutions regarding reduced energy consumption.

On the one hand, the energy linked to powering the sensors
is reduced to 25% of the original consumption when four
sensors are connected. A single sensor is powered in the
proposed system due to the use of extracted features.

On the other hand, there are two changes in how data are
forwarded. In the existing solution, the data of four sensors
are sent. In the proposed approach, the extracted features
from one sensor are sent. We can assume that the energy per
packet filled with both data types can be similar since the
bytes used to send the content are similar (five bytes for MQ
data of four sensors and 20 bytes for five float values for the
features). Meanwhile, the energy related to the data forwarding
from the node to the smartphone has been reduced. With the
previous approach, all gathered data were sent. In the current
proposal, only one packet is sent every 45 measures, which
corresponds to a decrease of 97% (1/45) in the sent packets.
Thus, the energy consumption in the node for data exchange
is drastically reduced due to edge computing. Nevertheless,
it must be noted that the energy to power the sensors is much
higher than that required for the data exchange.

VI. CONCLUSION
In this article, we propose the use of a single MQ sensor to
recognize typologies or outdoor areas with edge and fog com-
puting. The motivation is to reduce the energy consumption of
the node compared to using multiple sensors. Moreover, the
use of a buffer to process and forward the data reduced the
energy consumption for the data sending.
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The results indicate that using edge computing to extract
features makes it possible to reach 100% accuracy when MQ2
is used. With MQ3 sensors, 100% accuracy was only reached
when the time buffer was equal to 45 measured, and the rest
of the sensors did not provide data for a good classification
with the proposed approach. The coarse CART was the clas-
sification algorithm, which attained the best performance in
terms of training time for MQ?2.

In future work, we will analyze the best time interval
between measures in order to reduce the energy linked to data
gathering. Moreover, we will evaluate the sampling periodic-
ity by means of adaptive event-triggered algorithms [35] in
different outdoor and indoor areas.
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