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Engineering impurity Bell states through coupling with a quantum bath
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We theoretically demonstrate the feasibility of creating Bell states in multicomponent ultracold atomic gases
by solely using the ability to control the interparticle interactions via Feshbach resonances. For this we consider
two distinguishable impurities immersed in an atomic background cloud of a few bosons, with the entire system
being confined in a one-dimensional harmonic trap. By analyzing the numerically obtained ground states we
demonstrate that the two impurities can form spatially entangled bipolaron states due to mediated interactions
from the bosonic bath. Our analysis is based on calculating the correlations between the two impurities in a
two-mode basis, which is experimentally accessible by measuring the particle positions in the left or right sides
of the trap. While interspecies interactions are crucial in order to create the strongly entangled impurity states,
they can also inhibit correlations depending on the ordering of the impurities and three-body impurity-bath
correlations. We show how these drawbacks can be mitigated by manipulating the properties of the bath, namely
its size, mass, and intraspecies interactions, allowing one to create impurity Bell states over a wide range of
impurity-impurity interactions.
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I. INTRODUCTION

Great advancements in the development of techniques to
experimentally realize, control, and measure various quantum
systems made from single or few particles are currently fuel-
ing a second quantum revolution [1–3]. The resulting quantum
technologies rely crucially on the possibility to create and
maintain entanglement in these systems [4], and one of the
most useful states is the maximally entangled Bell state [5].
In this state two systems, A and B, are maximally correlated
and each of them holds all possible information about some
observable from the other. Therefore creating and control-
ling correlated quantum states, especially the Bell states, in
experimentally accessible systems is of importance and will
be beneficial for advancing fundamental science and quantum
technologies.

Cold atom systems have proven over the last two decades
that they are very suitable systems to control and study single-
and few-particle states [6,7]. In particular, the long-standing
problem of impurities coupled to an environment has been of
immense interest ever since the availability of experimental
systems in recent years [8–16]. Cold atomic settings allow
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one to access different parameter regimes and therefore simu-
late a wider range of interesting phenomena, which are often
difficult to study with the same amount of control in con-
densed matter setups. Impurity physics can be conveniently
discussed in terms of polarons, which are quasiparticles that
are dressed by the excitations of the surrounding medium
[17]. One of the most fascinating aspects of polarons is the
induced interactions between them mediated by the quantum
many-body environment in which they are immersed. For
example, two uncorrelated impurities which are coupled to
the same Bose-Einstein condensate (BEC) can form a bound
state (known as a bipolaron) due to the bath-mediated attrac-
tive interactions [18–23]. One of the theoretical frameworks
that can successfully describe impurities in ultracold gases
is the mapping of the BEC-impurity problem to the Fröh-
lich polaron Hamiltonian which describes electron-phonon
interactions in condensed matter physics [24–27]. For a more
accurate description of impurity physics that takes the ex-
act effects of all interactions into account, one has to go
beyond the Fröhlich model [28]. While in weakly interact-
ing gases the Gross-Pitaevskii theory (see Refs. [29–31] and
references therein) or the quantum Brownian motion frame-
work [16,19,32–34] can be used to describe the ground state
of the BEC-impurities system, in the strongly interacting
regime where particle-particle correlations are prominent, the
system has to be solved from first principles. It is also im-
portant to note that two recent works have shown that the
impurity-bath correlations play a crucial role and result in
the suppression of impurity self-localization [35,36], which
is not captured by the mean-field approach. This demon-
strates that a full quantum treatment of the BEC-impurity
problem is necessary, although it is not a trivial task to
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FIG. 1. Schematic of the model. The NC bosons of mass mC form
an interacting bath that two distinguishable impurities, A and B, of
the mass m are immersed in. The entire system is confined in a one-
dimensional harmonic trap and all particles interact with all others.

accurately solve many-body systems with different in-
traspecies and interspecies interactions in the continuum
due to the exponential growth of Hilbert space. However,
in one dimension some exact numerical tools are available
and recently the nonclassical correlations in stationary and
out-of-equilibrium situations have been explored using exact
diagonalization methods [37,38], or the multilayer multicon-
figuration time-dependent Hartree method for mixtures of
identical particles [39–42]. Since the impurities can become
entangled with each other due to bath induced interactions,
we suggest that it is possible to control correlations between
impurities by engineering the interaction with the quantum
bath alone.

In the following we propose a method to engineer strongly
correlated atomic states in ultracold, one-dimensional (1D)
interacting atomic systems using the ability to control the
interparticle and intraparticle interactions via Feshbach res-
onances. More specifically, we consider two distinguishable
impurities immersed into a third larger background compo-
nent composed of a well-defined number of bosons confined
in a harmonic trap (see Fig. 1). We systematically investigate
the ground state of such an interacting three-component mix-
ture by employing the improved exact diagonalization scheme
[43] to exactly solve the many-body Schrödinger equation de-
scribing our system (see also the Appendix). As a main result
of the present paper we demonstrate how to fully engineer
nonclassical correlations between two distinguishable impu-
rities by tuning the impurity-impurity and bath intraspecies
interactions while the impurity-bath coupling is always repul-
sive. We find that for strong repulsive interactions between
the impurities and the bath, the impurities phase separate to
the trap edges, while the bath is localized in the trap center.
This allows one to describe the impurities in a discrete spatial
basis of the left and right halves of the trap and facilitates the
measurement of spatial entanglement and correlation between
the impurities [44]. Our results show that the impurities can
form maximally entangled Bell states due to the competition
between the different interaction terms; however, the correla-
tions created between the impurities and the bath can impair
Bell state formation. This depends on whether the impurities
are bunched or antibunched, which we explain through the
analysis of tripartite correlation functions. Finally, we show
how the properties of the bath can be tuned to reduce these
higher order correlations, allowing one to create strongly en-
tangled impurity states via bath mediated interactions.

This paper is structured as follows: Sec. II presents the
model and quantities of interest, while Sec. III discusses how

impurity-impurity correlations can be induced by the bosonic
bath. In Sec. IV we discuss how to significantly enhance the
impurity-impurity correlations by engineering the bath, and
the conclusions and outlook are drawn in Sec. V.

II. MODEL AND QUANTITIES OF INTEREST

The three-component mixture of interacting ultracold
bosons we consider consists of two distinguishable atoms of
species A and B, which are immersed in a background cloud of
NC atoms of species C. The atoms A and B are assumed to have
the same mass mA = mB = m, while the C atoms have the
mass mC . Since at ultracold temperatures the s-wave scattering
process is dominant, the interaction between any two particles
can be described by a contact interaction potential [45], and
we assume that the strengths of all intracomponent and inter-
component scattering lengths can be independently adjusted
using Feshbach [46] or induced-confinement resonances [47].
For numerical simplicity and experimental relevance, we also
assume that all particles are trapped in a one-dimensional
parabolic potential with frequency ω, and hence, the Hamilto-
nian of this system can be written as Ĥ = Ĥσ + ŴC + Ŵσδ

where

Ĥσ =
∑

σ

Nσ∑
i=1

[
− h̄2

2mσ

d2

dx2
σ,i

+ 1

2
mσω2x2

σ,i

]
,

ŴC = 1

2
gC

NC∑
i< j

δ(xC,i − xC, j ),

Ŵσδ = gσδ

Nσ∑
i=1

Nδ∑
j=1

δ(xσ,i − xδ, j ). (1)

Since we consider only one atom each of species A and B
(NA = NB = 1) our setting resembles a two-impurity prob-
lem. We therefore term the component C as a bosonic bath,
within which the intraspecies interactions are characterized
by gC . The interspecies interactions are denoted by gσδ with
σ �= δ ∈ {A, B,C} and describe the impurity-impurity inter-
action gAB and the impurity-bath interactions gAC and gBC . In
(quasi-)one-dimensional systems, the contact interaction po-
tential can be modeled by a bare δ function [48]. For the sake
of simplicity, we rescale all lengths, energies, and coupling
strengths by harmonic oscillator units given by

√
h̄/(mω), h̄ω,

and
√

h̄3ω/m, respectively.
Three-component ultracold quantum gases have been ex-

perimentally created [49,50] and their properties can vary
widely due to the large parameter space the different inter-
action strengths span. To make the problem tractable, we
therefore restrict the interaction strengths between the im-
mersed atoms and the bath to be equal and repulsive, gAC =
gBC > 0, while the interaction between the impurities, gAB,
and the intraspecies interaction gC can be either attractive
or repulsive. We also fix the maximum number of C-species
bosons to be NC = 10 as this is the limit of our numerical sim-
ulations. However, as we will show this bath size is more than
sufficient to explore the role of bath mediated interactions and
correlations, and is in a similar parameter regime as previous
studies [42].
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FIG. 2. The four columns show the OBDM ρ
(1)
A (x, x′), the OBDM ρ

(1)
C (x, x′), the diagonal TBDM ρ

(2)
AB (xA, xB ) = ρ

(2)
AB (xA, xB, xA, xB ), and

the reduced density matrix ρLR of the many-body ground state of the system for NC = 10. The different rows correspond to different impurity-
impurity coupling strengths, gAB = −5 (upper row), gAB = 0 (middle row), and gAB = 20 (lower row). In all panels, the bosonic bath is
noninteracting, gC = 0, while the impurity-bath coupling strengths are kept fixed, gAC = gBC = 5, and the masses are identical, mC/m = 1.
Note that all density matrices are normalized to unity.

To determine the ground state |GS〉 and explore the
quantum properties of the three-component system we will
solve Eqs. (1) numerically exactly using the improved di-
agonalization method [43]. This numerical tool allows us to
explicitly access the quantum correlations via the one-body
reduced density matrix (OBDM) and the two-body reduced
density matrix (TBDM) defined as

ρ (1)
σ (xσ , x′

σ ) = 〈�̂†
σ (x)�̂σ (x′)〉, (2)

ρ
(2)
σδ (xσ , xδ, x′

σ , x′
δ ) = 〈�̂†

σ (xσ )�̂†
δ (xδ )�̂σ (x′

σ )�̂δ (x′
δ )〉, (3)

where �̂ (†)
σ (x) is the bosonic field operator annihilating (cre-

ating) a σ -type boson at the position x and averages are taken
with respect to the many-body ground state, |GS〉, of the
Hamiltonian (1). To structure our results, we first fix some
of the parameters by choosing the impurity-bath coupling as
gAC = gBC = 5 and considering the masses of all the particles
to be identical, mC/m = 1. This allows us to focus on the
following three representative cases for the impurity-impurity
interaction: case I where gAB < 0, case II where gAB = 0, and
case III where gAB > 0. In the two left columns of Fig. 2 we

show the OBDMs of the A (the one for B is identical for
symmetry reasons) and the C components. One can see that
for all different impurity-impurity interactions the impurities
localize towards the trap edges, while the particles of the
bath are located in the center of the trap. The total system
is therefore in a regime of phase separation due to the large
impurity-bath interactions and the size of the bath. While this
describes the spatial separation of the impurities, an analysis
of the diagonal of the TBDM, ρ

(2)
AB (xA, xB) (shown in the third

column of Fig. 2), reveals that the joint probability of finding
impurities A and B on either side of C is strongly dependent on
the impurity-impurity interaction. Specifically, the impurities
antibunch for repulsive interactions (case III gAB = 20) and
bunch for attractive interactions (case I gAB = −5). Bunching
is also apparent for case II, when the impurity-impurity inter-
action is absent, as a bound state is formed due to induced
attractive impurity-impurity interactions mediated by the C
component. This distinctive bound state is known as the bipo-
laron [18,20–23]. The TBDM in Fig. 2(g) therefore suggests
the combination of bath mediated attractive interactions and
suitably large repulsive impurity-bath interactions allows one
to create a superposition state of a bipolaron localized at each
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side of the C component, and that this state has a large degree
of spatial entanglement. We will explore this in more detail in
the next section.

III. BATH INDUCED IMPURITY-IMPURITY
CORRELATIONS

To quantify the entanglement between the impurities we
first note that in all cases species C can be seen to play the role
of a matter-wave barrier located in the center of the trap. This
allows us to characterize the impurity states using a discrete
spatial basis |L〉 and |R〉 that represents the left (x < 0) and
right (x > 0) sides of the trap respectively, while we denote
the centrally localized C particles by |C〉.

The precise state which the two impurities are in can
then be determined by considering the reduced density ma-
trix of the impurities ρLR, which is a positive semidefinite
Hermitian operator whose elements are constructed by inte-
grating the TBDM ρ

(2)
AB (xA, xB, x′

A, x′
B) over the corresponding

spatial regions, i.e., |L〉 ∈ (−∞, 0) and |R〉 ∈ (0,+∞). In
Figs. 2(d), 2(h), and 2(l) we show the reduced density ma-
trices for the three cases we consider. One can immediately
note that Fig. 2(l) precisely exhibits the density matrix of
the Bell state |�+〉 = (|LR〉 + |RL〉)/

√
2, which is a strong

signature that the impurities are maximally entangled in case
III. However, while in cases I and II the occupation of
the diagonal elements |LL〉〈LL| and |RR〉〈RR| indicates that
the impurities form tight bound states, the coherence terms
|LL〉〈RR| and |RR〉〈LL| are significantly diminished. This im-
plies that these states are not the maximally entangled |�+〉 =
(|LL〉 + |RR〉)/

√
2 Bell states, and that some decoherence is

being caused by the coupling to the C component. There-
fore, correlations between the impurities and the matter-wave
barrier have a considerable effect on impurity-impurity en-
tanglement, which is substantially different from double-well
potentials created by classical optical fields as used in most
current ultracold atomic setups [44]. We do stress however,
that the matter-wave barrier and the aforementioned induced
interactions are essential for the creation of the bipolaron Bell
state (case II), as classical fields alone are not sufficient to
create this state.

To quantify the degree of entanglement of the state ρLR we
calculate the concurrence

C = max(0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4) (4)

where the λ j are the ascending-order eigenvalues of ρLR(σy ⊗
σy)ρ∗

LR(σy ⊗ σy) with σy being the Pauli y matrix. Furthermore
we must consider the separability of the impurities from the
C component. This can be quantified by the von Neumann
entropy

SvN
AB = −Tr[ρAB log2(ρAB)], (5)

where ρAB = TrC |GS〉〈GS| is the reduced density matrix of
the impurities after tracing out the bath. The condition for the
impurities to be separable from the bath is therefore SvN

AB = 0.
In Figs. 3(a) and 3(b) we show the concurrence and the

von Neumann entropy as a function of the impurity-impurity
interaction gAB for mC = m (black lines). In the regime of
strong repulsive impurity-impurity interactions to which the
case III belongs the concurrence is maximal, as implied by

FIG. 3. The concurrence (a), the von Neumann entropy (b), the
tripartite mutual information (c), and the bipolaron binding energy
(d) as a function of the impurity-impurity interaction strength gAB

for mC/m = 1; gC = 0 (black line), mC/m = 15; gC = 0 (red line),
mC/m = 1; gC = −5 (dark-green line), mC/m = 15; gC = −5 (yel-
low line). The dashed line in panel (d) indicates EBP = 0.

the populations of ρLR shown in Fig. 2(l), and signifies the
appearance of the Bell state |�+〉 [44,51,52]. It is important
to note that in this regime the von Neumann entropy is finite,
taking values around SvN

AB ≈ 0.4, indicating that the impurities
are not entirely disconnected from the bosonic bath. Since the
species C and the impurities are still entangled to some extent,
this is another indicator that the bosonic matter-wave barrier
which the impurities induce does exhibit quantum effects and
cannot be considered equivalent to barriers formed by classi-
cal optical fields.

For decreasing impurity interaction gAB there is a sud-
den transition in the concurrence as the impurities transition
from being antibunched to being bunched. For mass-balanced
systems (black lines in the following graphs) this transition
is signaled by a narrow dip in the concurrence to zero in
Fig. 3(a) and by a maximum in the von Neumann entropy
SvN

AB in Fig. 3(b), the latter reflecting increased correlations
between the impurities and the bath. Both cases I and II lie to
the left of this transition and take significantly lower values of
the concurrence and also increased correlations with the bath.
This implies that there is a tradeoff between the impurity-bath
correlations and the impurity-impurity correlations, usually
referred to as entanglement monogamy [53]. What is unclear
is the stark difference between case I and III, with the latter
possessing maximal concurrence while still having nonzero
correlations with component C.

To understand this dichotomy we first note the differences
in the structure of the bunched (cases I and II) and antibunched
(case III) states. In the latter the impurities are spatially sepa-
rated and therefore the probability to find both impurities and
a bath particle at the same position is negligible. However,
in the case of bunching such three-particle coincidences are
more likely, therefore leading to the presence of three-body
correlations, and we conjecture that these higher order cor-
relations are responsible for the decoherence of the bipolaron
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Bell state. To quantify the three-body correlations we compute
the tripartite mutual information (TMI) [54]

IvN
ABC = IvN

AC + IvN
BC − IvN

(AB)C, (6)

where IvN
σδ is the mutual information between one σ -species

particle and one δ-species particle defined as

IvN
σδ = SvN

σ + SvN
δ − SvN

σδ , (7)

while IvN
(AB)C denotes the mutual information between the two

impurities and one C-species boson:

IvN
(AB)C = SvN

AB + SvN
C − SvN

ABC . (8)

Here SvN
σ and SvN

σδ are the respective single-particle and
two-particle von Neumann entropies, while SvN

ABC is the three-
particle von Neumann entropy with one particle from each
component A, B, and C. The tripartite mutual information is
shown in Fig. 3(c), and as expected it vanishes when the im-
purities are antibunched, while it takes finite values when the
impurities are bunched. This suggests that tripartite impurity-
bath correlations are indeed responsible for decohering the
|�+〉 state.

Finally, we note that the transition between bunching and
antibunching occurs at finite values of gAB > 0, as repulsive
impurity-impurity interactions are required to counteract the
mediated attractive interaction through the C component. The
strength of these interactions can be quantified through the
bipolaron binding energy [18]

EBP = E2 − 2E1 + E0, (9)

where E2 is the ground-state energy of the total system with
two impurities, E1 denotes the ground-state energy of the
system with one impurity, and E0 is the energy of the system
without any impurities. This is shown in Fig. 3(d), where the
binding energy takes negative values when the impurities are
bound together, notably occurring for zero impurity-impurity
interaction at gAB = 0. The transition between bunched and
antibunched is signaled by the binding energy taking a con-
stant value, occurring at the same value of gAB as the major
changes in the concurrence, the von Neumann entropy, and the
mutual information. We note, however, that in the antibunched
regime the binding energy does not vanish but instead takes a
small but constant positive value, which is due to the finite
size of the bath.

IV. IMPROVING IMPURITY-IMPURITY CORRELATIONS
THROUGH ENVIRONMENT ENGINEERING

As we have shown, the coupling to the C component plays
a crucial role in spatially separating the impurities from the
bath and being able to create the impurity Bell states. On the
other hand, the impurity-bath correlations that are created by
this coupling also negatively affect the purity of the entan-
gled impurity states and consequently cannot be completely
separated from the bath. However, the properties of the bath
are also tunable; for instance, by choosing a different atomic
species the mass ratio mC/m can be varied, while there is also
some degree of control over the intraspecies interactions gC .
Let us first focus on adjusting the mass ratio while keeping
gC = 0 fixed. The von Neumann entropy, concurrence, mutual

FIG. 4. Same as Fig. 3, but as a function of the mass ratio mC/m
for the impurity-impurity coupling strength gAB = −3 (blue line),
gAB = 0 (red line), and gAB = 3 (dark-green line). The insets in panel
(a) and (b) show the concurrence C and the von Neumann entropy SvN

AB

as a function of NC for the mass ratio mC/m = 1, respectively. Mean-
while, the inset in panel (c) depicts the bipartite mutual information
between two impurities as a function of the mass ratio for gAB = 0.
Note that the horizontal dashed line in panel (d) shows EBP = 0 and
the x-axis range of insets in panels (c) and (d) is the same as that
of the corresponding panels. In all panels, the bath is noninteracting,
gC = 0, and has NC = 10 bosons.

information, and binding energy are shown in Fig. 4 as a
function of the mass ratio for fixed impurity-impurity inter-
actions gAB = −3, 0, 3.

It is immediately apparent from looking at the decay of
the von Neumann entropy and tripartite mutual information
that increasing the mass of the bath particles can signifi-
cantly reduce the degree of the impurity-bath correlations.
This can be well described by an algebraic decay of the
form SvN

AB ∼ (mC/m)−α and we show the fitted decay rates
in Table I. It is worth mentioning that the decrease of the
bath-mediated attractive interactions due to the larger mass
of the bath particles compared to the impurities is in good
agreement with the prediction in Ref. [21]. The same effect,
albeit with a smaller decay rate, can be achieved by increasing
the number of particles NC , while keeping mC/m = 1 [see
inset of Fig. 4(b)], with the fits to SvN

AB ∼ N−β
C shown again in

Table I. It is evident that the exponent α is almost unaffected

TABLE I. Fitted exponents α and β. The number of bath particles
used for fitting α is NC = 10, while the mass ratio for fitting β

is fixed at mC/m = 1. To exclude any finite-size effects, we only
consider values of mC/m � 2 when determining α. Similarly, we use
values of 6 � NC � 10 when determining β. In both cases the fitting
equation is of the form y = ax−r .

gAB = −3 gAB = 0 gAB = 3

α 0.74 0.73 0.72
β 0.077 0.079 0.13
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FIG. 5. The concurrence (a) and the von Neumann entropy (b) as
a function of the intracomponent interaction strength gC for gAB =
−3 (blue line), gAB = 0 (red line), and gAB = 3 (dark-green line). In
all panels the mass ratio is mC/m = 1.

by the interaction strength between the two impurities, while
the decay rate β can be increased in the regime of repulsive
impurity-impurity interactions. We also note that there is a
minimum number of C particles that are needed to spatially
separate the impurities, for instance NC > 3 for gAB = 3, as
for smaller bath sizes the impurities are bunched in the center
of the trap and hence the concurrence is roughly zero and
the von Neumann entropy takes significantly larger values as
shown in the insets in Figs. 4(a) and 4(b).

The enhancement of the correlations for the bunched states
in case I can therefore be attributed to the screening of the
bath-mediated interactions by the heavier mass of the bath
which in turn reduces impurity-bath correlations and increases
the coherence terms in ρLR [see Fig. 6(a)]. This screening ef-
fect may be quantified by a reduction in the bipolaron binding
energy as shown in Fig. 4(d), and can be nicely understood by
considering the special case of the bipolaron (gAB = 0). In this
case the impurities can only be correlated through the bath,
therefore any impurity-impurity correlations are a byproduct
of impurity-bath correlations. The decrease of the concurrence
when mC > 10m is then a consequence of the reduction of
the bath mediated interactions which are insufficient to tightly
bind the impurities, leading to finite populations in |LR〉 and
|RL〉. This decay can be further quantified by the bipartite
mutual information IAB = SvN

A + SvN
B − SvN

AB [55,56] [see inset
of Fig. 4(a)], which describes the continuous variable en-
tanglement between the impurities. The mutual information
similarly has to vanish when the impurities and bath become
separable, and is therefore a more intuitive measure of the

strength of the mediated attractive interactions in the system.
We also highlight details of the screening effect of the in-
creased mass ratio mC/m = 15 in Fig. 3 (red dotted lines)
as a function of gAB. One can see that, when compared to
the mass balanced case (black lines), the bunching to anti-
bunching transition is shifted towards gAB = 0 as the bath
mediated interactions are significantly diminished. Finally, in
Fig. 5 we examine the effect of the bath intraspecies coupling
strength, gC , on the concurrence and von Neumann entropy for
fixed mC = m. Increasing the repulsive interactions between
the C component atoms broadens the density distribution of
the bath, and leads to an increase in the impurity-bath corre-
lations due to larger wave-function overlap in the finite trap
environment. This also adversely affects the concurrence for
all the three cases we consider, with the sudden decrease for
the case gAB = 3 again a signal of this state transitioning
from being antibunched to bunched. On the other hand, for
attractive interactions gC < 0 the concurrence is increased
and the von Neumann entropy reduced, which indicates better
conditions for the formation of the |�+〉 Bell state. Since the
attractively interacting environment plays a role similar to the
one of increasing mass, albeit to a lesser extent [see green
dash-dotted lines in Fig. 3 and ρLR in Fig. 6(b)], a combination
of both effects can be used to enhance the impurity-impurity
correlations. To highlight this we show in Fig. 3 how bath in-
teractions gC = −5 in combination with a mass ratio of mC =
15m (yellow dashed lines) can be used to significantly im-
prove the impurity-impurity correlations over the whole range
of gAB. Specifically, for gAB = −5 the concurrence reaches
C ≈ 0.964 while the von Neumann entropy is SvN

AB ≈ 0.125.
This characterizes a state that is close to the |�+〉 Bell state
and we show ρLR for this case in Fig. 6(c). We also note that
the TMI is negative for gAB < 0, indicating that the composite
system AB has more information compared to the individual
systems A and B [54] due to it forming a tightly bound state.

It is also worth noting that the spatially antisymmetric
Bell states, |�−〉 = (|LR〉 − |RL〉)/

√
2 and |�−〉 = (|LL〉 −

|RR〉)/
√

2, naturally appear as the first excited states of the
system. Although the OBDM and the diagonal TBDM of the
first excited state are quite similar to those of the ground state
due to the fact that they are nearly degenerate, we show in
Fig. 7 that a clear difference appears in the reduced density
matrix in the {|L〉, |R〉} basis ρLR as the coherence terms
are necessarily negative. Furthermore, we note that like the

FIG. 6. The reduced density matrix ρLR for (a) mC/m = 15, gC = 0; (b) mC/m = 1, gC = −5; and (c) mC/m = 15, gC = −5. In all panels,
the impurity-impurity coupling strength is gAB = −3, and the bath has NC = 10 bosons.
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FIG. 7. The Bell states |�−〉 and |�−〉 are the first excited state of the corresponding system whose ground state demonstrates the states
|�+〉 and |�+〉. The four columns are the OBDM ρ

(1)
A (x, x′), the OBDM ρ

(1)
C (x, x′), the diagonal TBDM ρ

(2)
AB (xA, xB ) = ρ

(2)
AB (xA, xB, xA, xB ),

and the reduced density matrix ρLR, respectively. The different rows correspond to different cases, gAB = −5, mC/m = 15 (upper row), and
gAB = 20, mC/m = 1 (lower row). In all panels, the bosonic bath has NC = 10 noninteracting (gC = 0) bosons, while the impurity-bath coupling
strengths are kept fixed, gAC = gBC = 5. Note that all density matrices are normalized to unity.

spatially symmetric Bell states |�+〉 and |�+〉, we can also
improve the fidelity of |�−〉 and |�−〉 by modifying the bath
parameters such as its mass, giving us qualitatively similar
results as discussed previously.

V. CONCLUSIONS

To summarize, we have proposed a scheme for robust
preparation of strongly correlated states with current ultra-
cold atomic setups, where particle numbers and interaction
strengths are experimentally controllable, and where the spa-
tial correlations we describe can be easily measured. We
numerically demonstrate that strongly correlated states close
to Bell states can be formed as ground states in systems of
two distinguishable impurities immersed in a bosonic reser-
voir with a well-defined particle number. Our analysis shows
that the Bell state |�+〉 can be readily generated with two
repulsively interacting impurities, while the Bell state |�+〉 is
hard to achieve due to large correlations created between the
bath and impurities which reduce the state coherence. With
the aim of reducing the impact of impurity-bath correlations
such that the entanglement between the two impurities can be
further enhanced, we have investigated the properties of the
bath including its intraspecies coupling strength, and the mass
of its particles. We have demonstrated that in both situations
the formation of the Bell states is substantially enhanced com-
pared to the mass-balanced noninteracting bath. Importantly,
we have shown in this paper that the bosonic bath located
in the center of the harmonic trap forms a matter barrier to
separate the two impurities resulting in the emergence of their

nonclassical properties. We emphasize that this effect is a
purely quantum phenomenon proven by the finite von Neu-
mann entropy between the bosonic bath and impurities and
that it is significantly different from classical potentials. We
anticipate that our results not only pave an efficient and ex-
perimentally feasible way to create and fully control strongly
correlated atomic states, but also will stimulate further re-
search on the nonclassical properties of multicomponent
quantum systems.
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APPENDIX A: NUMERICAL METHOD

In the following, we briefly summary the ab initio method
used in this paper, the improved exact diagonalization method
[43]. For numerical purposes, it is naturally convenient to
diagonalize the many-body Hamiltonian in the formalism
of second quantization. In doing so, the field operators are
introduced as

�̂σ (x) =
∑

k

φσ,k (x)âσ,k, (A1)

�̂†
σ (x) =

∑
k

φ∗
σ,k (x)â†

σ,k . (A2)

The field operator �̂σ (x) (�̂†
σ (x)) annihilates (creates) a σ -

species boson being in the single-particle state φσ,k (x) at
position x. Here âσ,k (â†

σ,k) corresponds to the annihilation
(creation) operator. For bosonic systems, the creation and
annihilation operators must obey the commutation relations

[âσ,k, â†
δ,�] = δσδδk�, (A3)

[â†
σ,k, â†

δ,�] = [âσ,k, âδ,�] = 0. (A4)

The resulting Hamiltonian is then given as

Ĥ =
∑

σ∈{A,B,C}

∑
k,�

hσ
k�â†

σ,kâσ,� + 1

2

∑
k�mn

W C
k�mnâ†

C,kâ†
C,�âC,mâC,n

+
∑

σ �=δ∈{A,B,C}

∑
k�mn

W σδ
k�mnâ†

σ,kâ†
δ,�âσ,mâδ,n. (A5)

Here hσ
k�, W C

k�mn, and W σδ
k�mn are one- and two-body matrix

elements expressed in the basis of the single-particle Hamilto-
nian. As the system we consider is confined in a 1D harmonic
trap, it is straightforward to employ the harmonic oscillator
eigenfunctions as the single-particle functions φσ,k (x). This
choice makes use of analytical results to obtain the matrix
elements hσ

k� = (k + 0.5)δk�, W C
k�mn, and W σδ

k�mn, thus the con-
vergence is accelerated. Further details of this approach can
be found in Refs. [43,57–60].

The ansatz wave function is factorized as a linear combi-
nation of a set of orthonormal Fock states

|�〉 =
DA∑

jA=1

DB∑
jB=1

DC∑
jC=1

c jA, jB, jC

∣∣�A
jA

〉∣∣�B
jB

〉∣∣�C
jC

〉
. (A6)

Here, c jA, jB, jC denote the expansion coefficients and |�σ
jσ 〉 =

|nσ
1 , nσ

2 . . . nσ
k . . . 〉 is a possible σ -species permanent (also

known as configuration) in the total of Dσ permanents used
to expand the ansatz. Note that in each permanent, the oc-
cupation number nσ

k in the single-particle state φσ,k (x) can be
arbitrary integers between zero and Nσ and must obey the con-
straint

∑
k

nσ
k = Nσ . In practice, the permanents for the ansatz

are selected such that their energies in the noninteracting
many-body Hamiltonian are less than a certain optimal value
Emax. This truncation approach is known as the energy-cutoff
scheme proposed in Refs. [61,62] and hence the accuracy of
the numerical results is controlled by increasing Emax. The
key ingredient of the improved exact diagonalization scheme
which significantly reduces the number of required perma-
nents is the selection of dominant configurations in terms of
the spatial symmetry of the desired many-body state [43]. It is
known that if the trapping potential of a quantum particle has
a spatial symmetry, namely,

V (x) = V (−x), (A7)

then the single-particle eigenfunctions φk (x) possess a
well-defined spatial symmetry. Mathematically, the spatially
symmetric φk=2n(x) are even functions, while the spa-
tially asymmetric φk=2n+1(x) are odd functions. Because
the permanents are the symmetrized Hartree product of the
single-particle functions φk (x), they must satisfy this spa-
tial symmetry. This leads to the fact that the desired wave
functions are solely expanded by either even- or odd-parity
permanents. Thus, it is more practical to use only the perma-
nents that have the same parity as the desired many-body wave
function in the expansion of the ansatz. Since the bosonic
ground-state wave function is spatially symmetric, we there-
fore only use even-parity permanents for the ansatz in this
paper. Meanwhile, for obtaining the first excited state, the
ansatz is expanded by odd-parity permanents.

In general, minimizing the expectation value of the Hamil-
tonian (A5) with respect to the ansatz (A6) leads to the
standard Hermitian eigenvalue problem which can be written
in the form of

H|Cm〉 = Em|Cm〉, (A8)

with H being the matrix representation of the many-body
Hamiltonian (A5). The pair {Em, |Cm〉} is the mth many-body
eigenvalue and eigenvector, respectively.
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[7] T. Sowiński and M. Á. García-March, One-dimensional mix-
tures of several ultracold atoms: A review, Rep. Prog. Phys. 82,
104401 (2019).

[8] A. Schirotzek, C.-H. Wu, A. Sommer, and M. W. Zwierlein,
Observation of Fermi polarons in a tunable Fermi liquid of
ultracold atoms, Phys. Rev. Lett. 102, 230402 (2009).

[9] P. Massignan, M. Zaccanti, and G. M. Bruun, Polarons, dressed
molecules and itinerant ferromagnetism in ultracold Fermi
gases, Rep. Prog. Phys. 77, 034401 (2014).

[10] N. B. Jørgensen, L. Wacker, K. T. Skalmstang, M. M. Parish,
J. Levinsen, R. S. Christensen, G. M. Bruun, and J. J. Arlt, Ob-
servation of attractive and repulsive polarons in a Bose-Einstein
condensate, Phys. Rev. Lett. 117, 055302 (2016).

[11] M.-G. Hu, M. J. Van de Graaff, D. Kedar, J. P. Corson, E. A.
Cornell, and D. S. Jin, Bose polarons in the strongly interacting
regime, Phys. Rev. Lett. 117, 055301 (2016).

[12] R. Schmidt, M. Knap, D. A. Ivanov, J.-S. You, M. Cetina, and
E. Demler, Universal many-body response of heavy impurities
coupled to a Fermi sea: A review of recent progress, Rep. Prog.
Phys. 81, 024401 (2018).

[13] C. Baroni, B. Huang, I. Fritsche, E. Dobler, G. Anich, E.
Kirilov, R. Grimm, M. A. Bastarrachea-Magnani, P. Massignan,
and G. M. Bruun, Mediated interactions between Fermi po-
larons and the role of impurity quantum statistics, Nat. Phys.
20, 68 (2024).

[14] M. Cetina, M. Jag, R. S. Lous, I. Fritsche, J. T. Walraven, R.
Grimm, J. Levinsen, M. M. Parish, R. Schmidt, M. Knap et al.,
Ultrafast many-body interferometry of impurities coupled to a
Fermi sea, Science 354, 96 (2016).

[15] M. Cetina, M. Jag, R. S. Lous, J. T. M. Walraven, R. Grimm,
R. S. Christensen, and G. M. Bruun, Decoherence of impurities
in a Fermi sea of ultracold atoms, Phys. Rev. Lett. 115, 135302
(2015).

[16] A. Lampo, S. H. Lim, M. Á. García-March, and M. Lewenstein,
Bose polaron as an instance of quantum brownian motion,
Quantum 1, 30 (2017).

[17] L. D. Landau and S. I. Pekar, 67 - The effective mass of the
polaron, J.Exp.Theor.Phys. 18, 419 (1948).

[18] A. Camacho-Guardian, L. A. P. Ardila, T. Pohl, and G. M.
Bruun, Bipolarons in a Bose-Einstein condensate, Phys. Rev.
Lett. 121, 013401 (2018).

[19] C. Charalambous, M. A. Garcia-March, A. Lampo, M.
Mehboud, and M. Lewenstein, Two distinguishable impurities
in BEC: Squeezing and entanglement of two Bose polarons,
SciPost Phys. 6, 010 (2019).

[20] W. Casteels, J. Tempere, and J. T. Devreese, Bipolarons and
multipolarons consisting of impurity atoms in a Bose-Einstein
condensate, Phys. Rev. A 88, 013613 (2013).

[21] A. Camacho-Guardian and G. M. Bruun, Landau effective in-
teraction between quasiparticles in a Bose-Einstein condensate,
Phys. Rev. X 8, 031042 (2018).

[22] M. Will, G. E. Astrakharchik, and M. Fleischhauer, Polaron in-
teractions and bipolarons in one-dimensional Bose gases in the
strong coupling regime, Phys. Rev. Lett. 127, 103401 (2021).

[23] J. Jager and R. Barnett, The effect of boson-boson interaction
on the bipolaron formation, New J. Phys. 24, 103032 (2022).

[24] J. Tempere, W. Casteels, M. K. Oberthaler, S. Knoop, E.
Timmermans, and J. T. Devreese, Feynman path-integral treat-
ment of the BEC-impurity polaron, Phys. Rev. B 80, 184504
(2009).

[25] B. Kain and H. Y. Ling, Polarons in a dipolar condensate, Phys.
Rev. A 89, 023612 (2014).

[26] B. Kain and H. Y. Ling, Generalized Hartree-Fock-Bogoliubov
description of the Fröhlich polaron, Phys. Rev. A 94, 013621
(2016).

[27] F. Grusdt, All-coupling theory for the Fröhlich polaron, Phys.
Rev. B 93, 144302 (2016).

[28] F. Grusdt, G. E. Astrakharchik, and E. Demler, Bose polarons
in ultracold atoms in one dimension: beyond the Fröhlich
paradigm, New J. Phys. 19, 103035 (2017).

[29] M. Drescher, M. Salmhofer, and T. Enss, Medium-induced
interaction between impurities in a Bose-Einstein condensate,
Phys. Rev. A 107, 063301 (2023).

[30] R. Schmidt and T. Enss, Self-stabilized Bose polarons, SciPost
Phys. 13, 054 (2022).
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