

Novel realistic approaches to

container premarshalling

PhD thesis

Celia Jiménez Piqueras

Cover picture by Jan van der Wolf (2016). Source: pexels.com

Novel realistic approaches to
container premarshalling

September 2024

Author: Celia Jiménez Piqueras

Supervisors: Dr. Consuelo Parreño Torres
Dr. Rubén Ruiz García

Resumen

En las últimas décadas, el rápido crecimiento del transporte de mercancía
contenerizada ha planteado grandes retos a la eficiencia portuaria. La op-
timización de operaciones se ha vuelto crucial para minimizar los costes de
puertos y navieras y reducir el impacto medioambiental.

La organización y gestión del patio del puerto son esenciales para garantizar la
eficiencia del puerto, ya que se utiliza para almacenar contenedores y conecta
todas las zonas y actividades portuarias. Este entorno dinámico exige estrate-
gias efectivas para colocar y retirar contenedores. Al estar apilados, retirar
un contenedor puede requerir mover otros que estén encima a otras pilas, lo
que ralentiza la retirada. Estos movimientos se pueden evitar ordenando los
contenedores de antemano en un proceso conocido como premarshalling.

El problema clásico de optimización asociado al premarshalling, que trata de
encontrar el mínimo número de recolocaciones necesarias para ordenar los con-
tenedores, se basa en varias asunciones poco realistas. Esta tesis pretende
facilitar la aplicación práctica del premarshalling reformulando algunas de es-
tas asunciones.

Los contenedores del patio se organizan en grupos llamados bahías, y el pro-
blema de premarshalling se centra en organizar una bahía de contenedores cada
vez. La formulación clásica solo permite recolocaciones dentro de la bahía que
se está ordenando, pero esta no es una limitación real en la práctica. Pro-
ponemos una nueva versión del problema en la que los contenedores se pueden
mover a una bahía adyacente para facilitar el proceso de ordenación.

iii

Resumen

Otro aspecto poco realista de la formulación clásica es su objetivo. En litera-
tura previa se muestra que minimizar el tiempo empleado por la grúa durante el
premarshalling conduce a soluciones más eficientes que minimizar el número de
recolocaciones. Esta tesis va más allá de la incorporación de tiempos de grúa
y asume la disponibilidad limitada de la grúa. Mientras que la formulación
original no proporciona una solución cuando el tiempo necesario para comple-
tar el premarshalling excede la disponibilidad de la grúa, definimos una nueva
formulación que proporciona un premarshalling completo cuando el tiempo lo
permite y parcial cuando no. Definir buenas ordenaciones parciales es un reto,
así que exploramos tres estrategias alternativas.

El estudio de estas variantes del problema requería un método de resolución
simple que pudiera adaptarse fácilmente a diversas asunciones y proporcionar
soluciones óptimas para la validación del problema. Para cumplir con tales
requerimientos, proponemos un método de resolución que combina el uso de
un solver de programación por restricciones con algoritmos sencillos y fáciles
de implementar. La programación por restricciones ha recibido muy poca
atención en la literatura de premarshalling, a pesar de haber demostrado un
buen rendimiento resolviendo problemas combinatorios en diversos campos.
Esta tesis revela la eficacia de esta técnica para el problema de premarshalling
al proporcionar modelos de programación por restricciones que superan a los
métodos de programación matemática de vanguardia.

En líneas generales, esta tesis pretende acercar la formulación matemática del
problema de premarshalling a su aplicación en el mundo real. Para ello, aborda
tanto aspectos teóricos como técnicos. Desde el punto de vista teórico, intro-
duce nuevas variantes del problema que suponen un notable avance hacia una
formulación más realista. Desde el punto de vista técnico, presenta modelos
de programación por restricciones que demuestran la eficacia de esta técnica
sobre el problema de premarshalling.

iv

Resum

En les últimes dècades, el ràpid creixement del transport de mercaderia con-
teneritzada ha plantejat grans reptes a l’eficiència portuària. L’optimització
d’operacions s’ha tornat crucial per a minimitzar els costos de ports i navilieres
i reduir l’impacte mediambiental.

L’organització i gestió del pati del port són essencials per a garantir l’eficiència
del port, ja que s’utilitza per a emmagatzemar contenidors i connecta totes
les zones i activitats portuàries. Aquest entorn dinàmic exigeix estratègies
efectives per a col·locar i retirar contenidors. En estar apilats, retirar un con-
tenidor pot requerir moure uns altres que estiguen damunt a altres piles, la
qual cosa alenteix la retirada. Aquests moviments es poden evitar ordenant
els contenidors per endavant, un procés conegut com premarshalling.

El problema clàssic d’optimització associat al premarshalling, que tracta de
trobar el mínim nombre de recol·locacions necessàries per a ordenar els con-
tenidors, es basa en diverses assumpcions poc realistes. Aquesta tesi pretén
facilitar l’aplicació pràctica del premarshalling reformulant algunes d’aquestes
assumpcions.

Els contenidors del pati s’organitzen en grups anomenats badies, i el problema
de premarshalling se centra en organitzar una badia de contenidors cada ve-
gada. La formulació clàssica només permet recol·locacions dins de la badia que
s’està ordenant, però aquesta no és una limitació real en la pràctica. Proposem
una nova versió del problema en la qual els contenidors es poden moure a una
badia adjacent per a facilitar el procés d’ordenació.

v

Resum

Un altre aspecte poc realista de la formulació clàssica és el seu objectiu. En
literatura prèvia es mostra que minimitzar el temps emprat per la grua durant
el premarshalling condueix a solucions més eficients que minimitzar el nombre
de recol·locacions. Aquesta tesi va més enllà de la incorporació de temps de
grua i assumeix la disponibilitat limitada de la grua. Mentres que la formulació
original no proporciona una solució quan el temps necessari per a completar
el premarshalling excedeix la disponibilitat de la grua, definim una nova for-
mulació que proporciona un premarshalling complet quan el temps ho permet
i parcial quan no. Definir bones ordenacions parcials és un repte, així que
explorem tres estratègies alternatives.

L’estudi d’aquestes variants del problema requeria un mètode de resolució sim-
ple que poguera adaptar-se fàcilment a diverses assumpcions i proporcionar
solucions òptimes per a la validació del problema. Per a complir amb tals
requeriments, proposem un mètode de resolució que combina l’ús d’un solver
de programació per restriccions amb algorismes senzills i fàcils d’implementar.
La programació per restriccions ha rebut molt poca atenció en la literatura de
premarshalling, malgrat haver demostrat un bon rendiment resolent proble-
mes combinatoris en diversos camps. Aquesta tesi revela l’eficàcia d’aquesta
tècnica per al problema de premarshalling en proporcionar models de progra-
mació per restriccions que superen als mètodes de programació matemàtica
d’avantguarda.

En línies generals, aquesta tesi pretén acostar la formulació matemàtica del
problema de premarshalling a la seua aplicació en el món real. Per a això,
aborda tant aspectes teòrics com tècnics. Des del punt de vista teòric, intro-
dueix noves variants del problema que suposen un notable avanç cap a una
formulació més realista. Des del punt de vista tècnic, presenta models de pro-
gramació per restriccions que demostren l’eficàcia d’aquesta tècnica sobre el
problema de premarshalling.

vi

Abstract

In recent decades, the rapid growth of containerized freight has posed signifi-
cant challenges to port efficiency. Optimizing operations has become crucial for
minimizing costs for ports and shipping companies and reducing environmental
impact.

The organization and management of the port yard are essential to ensure
port efficiency, as it is used for container storage and connects all port areas
and activities. This dynamic environment demands effective strategies for
placing and retrieving containers. Since containers are stacked, retrieving one
may require moving containers above it to other stacks, which slows down
the retrieval. These movements can be avoided by arranging the containers
beforehand through a process known as container premarshalling.

The classical optimization problem associated with premarshalling, which aims
to find the minimum number of relocations necessary to arrange the contain-
ers, relies on several unrealistic assumptions. This thesis aims to facilitate the
practical application of premarshalling by reformulating some of these assump-
tions.

Containers in the yard are organized into groups called bays, and the premar-
shalling problem focuses on arranging one bay of containers at a time. The
classical formulation only allows relocations within the bay being arranged,
but this is not a real limitation in practice. We propose a novel version of the
problem where containers can be moved to an adjacent bay to facilitate the
arrangement process.

vii

Abstract

Another unrealistic aspect of the classical formulation is its objective. Previous
literature shows that minimizing the total crane time during premarshalling
leads to more efficient solutions than minimizing the number of relocations.
This thesis goes beyond incorporating crane times and acknowledges limited
crane availability. While the original formulation fails to provide a solution
when the required time for completing the arrangement exceeds crane avail-
ability, we define a novel formulation that yields a complete premarshalling
when time allows and a partial arrangement when it does not. Defining good-
quality partial arrangements is challenging, and we explore three alternative
strategies.

Studying these problem variants required a simple solution method that could
be easily adapted to varying assumptions and provide optimal solutions for
problem validation. To meet these requirements, we propose a solution method
that combines the use of a constraint programming solver with simple algo-
rithms that are easy to implement. Constraint programming has received very
little attention in the premarshalling literature despite showing strong perfor-
mance in solving combinatorial problems in various fields. This thesis reveals
the effectiveness of this technique for the premarshalling problem by providing
constraint programming models that outperform the state-of-the-art mathe-
matical programming approaches.

Overall, this thesis aims to bridge the gap between the mathematical formula-
tion of the premarshalling problem and real-world application. To achieve this,
it addresses both theoretical and technical aspects. On the theoretical side,
it introduces several novel variants of the problem that represent significant
progress toward a more realistic formulation. On the technical side, it presents
constraint programming solution methods that demonstrate the efficiency of
this technique in addressing the premarshalling problem.

viii

Acknowledgements

This study has been partially supported by the Spanish Ministry of Science and
Innovation under predoctoral grant PRE2019-087706, the project “OPTEP-
Port Terminal Operations Optimization” (RTI2018-094940-B-I00), and PID2021-
124975OB-I00, financed with FEDER funds.

This thesis represents the work over several years in which I have learned a lot,
growing both professionally and personally. I feel extremely fortunate to have
had the opportunity to do this PhD, and I cherish every teaching and beautiful
experience it has gifted me with. I believe in the power of people over that of
chance to improve each other’s lives. Therefore, I would like to thank everyone
who has made this thesis possible and has contributed to making this period
of my life an amazing journey.

Thanks to my thesis supervisors, Rubén and Consuelo, and also to Ramón,
who, despite not being officially my supervisor, has played this role on nu-
merous occasions. I have learned a lot from all three of you. Thank you for
your time, even when you were extremely busy. Thank you for sharing your
expertise with me and for all the advice I have received. Without all that, this
thesis would not have been possible.

Thanks to the supervisors of my research stays, Kevin and Dario. It was a
pleasure for me to visit your universities. Thank you for receiving me and
making me feel one more in your research groups. Special thanks to Dario
for welcoming me anytime I had the opportunity to come back after my stay.
Thank you both for your very helpful advice and guidance; half of this thesis
is the result of collaborations with you.

ix

Acknowledgements

Thanks to the entire SOA/Resolvética group, especially to Eva, for all your
kindness and help as a tutor, and in particular to Gerardo and Pedro, for your
help with the cluster and integrating into ITI at the beginning of my thesis.
Also, I am very grateful to Fede for inviting me to collaborate on one of your
papers and convincing me to teach a course in Sevilla. And finally, many
thanks to Juan Camilo for such valuable support in the final stage of my PhD.

Thanks to my fellow doctoral researchers for all the good times we have spent
together: the conversations at lunchtime (and while working), the support
we gave each other when staying at the university until almost closing time,
and, of course, the dances at the office. I will never forget these and many
other wonderful moments we shared, which have made my everyday work more
enjoyable.

Thanks to all the colleagues I have had the pleasure to meet, and to all the
staff of the Department of Applied Statistics and Operational Research and
Quality. Special thanks to Vicent for your kindness and patience in guiding
my first steps in university teaching. At another department, but still at UPV,
I know I will always have a mentor; thank you, Juan Carlos, for your help in
finding this PhD opportunity and for your guidance throughout all these years.

Thanks also to the colleagues I have met and the friends I have made during
my research stays. Thank you for the beautiful moments we have shared and
for helping me adapt to these new places and to explore and enjoy them.

Thanks to my parents, Brigi and Paco, and to my sister, Isabel. It is impos-
sible to thank you enough for all you have done for me, but I will take this
opportunity to highlight a few things. Thank you for your support in all my
adventures, thank you for celebrating all my achievements with me, and thank
you for always being there for me, especially in the hardest times. Your love
builds my strength.

Thanks to the rest of my family for always believing in me. In particular,
thanks to my aunt Lucre for hosting me and for all the support I have received
from you. Also, special thanks to Pablo for helping me discover the actual
requirements of port terminals, which is extremely valuable for this doctoral
thesis.

Thanks to my friends in Valencia, especially to Carmen, for accompanying me
through the best and the worst of the everyday life of a PhD, and also to Sorina
for all the conversations and hugs that have helped me continue and pursue
my dreams.

x

Acknowledgements

Thanks to my friends from Albacete. Even if most of us are not living there
anymore, anytime we meet, you make me feel like it will always be my home.
Thank you very much for all your support.

Finally, thanks to all my friends who have supported me from a distance: phone
calls, little messages... All that feels like virtual hugs to me and has made my
days more beautiful. Also, thanks to Francisco for encouraging me to do my
PhD and always believing in my work and capabilities.

My heartfelt thanks to all of you.

xi

Agradecimientos

Este estudio ha sido parcialmente financiado por el Ministerio de Ciencia e
Innovación a través de la ayuda predoctoral PRE2019-087706, bajo el proyecto
“OPTEP-Port Terminal Operations Optimization” (RTI2018-094940-B-I00), y
PID2021-124975OB-I00, financiados con fondos FEDER.

Esta tesis representa el trabajo de varios años, en los que he aprendido mucho,
creciendo tanto profesional como personalmente. Me siento extremadamente
afortunada de haber tenido la oportunidad de realizar este doctorado, y valoro
cada enseñanza y cada bonita experiencia que me ha regalado. Creo en el
poder de las personas sobre el del azar para mejorarnos la vida unas a otras.
Por tanto, me gustaría agradecer a cada persona que ha hecho posible esta
tesis y ha contribuido a hacer de este periodo de mi vida un viaje increíble.

Gracias a mis directores de tesis, Rubén y Consuelo, y también a Ramón, que
sin ser oficialmente director has desempeñado ese rol en numerosas ocasiones.
He aprendido mucho de los tres. Gracias por vuestro tiempo, incluso estando
extramadamente ocupados. Gracias por compartir vuestros conocimientos y
experiencia conmigo, y por todos los consejos que he recibido. Sin todo ello,
esta tesis no hubiera sido posible.

Gracias a los supervisores de mis estancias de investigación, Kevin y Dario.
Fue un placer para mí visitar vuestras universidades. Gracias por recibirme
y hacerme sentir una más en vuestros grupos de investigación. Gracias en
particular a Dario por recibirme en cualquier momento que he tenido la opor-
tunidad de volver tras mi estancia. Gracias a ambos por vuestros tan últiles
consejos y guía, la mitad de esta tesis es fruto de colaboraciones con vosotros.

xiii

Agradecimientos

Gracias a todo el grupo SOA/Resolvética, especialmente a Eva, por toda tu
amabilidad y tu ayuda como tutora, y en particular a Gerardo y Pedro, por
vuestra ayuda con el cluster y para integrarme en el ITI al principio de mi
doctorado. También, estoy muy agradecida a Fede, por invitarme a colaborar
en uno de tus artículos y convencerme para dar un curso en Sevilla. Y final-
mente, muchas gracias a Juan Camilo por tan valioso apoyo en la etapa final
de mi doctorado.

Gracias a mis compañeros de doctorado por todos los buenos momentos que
hemos pasado juntos: las conversaciones a la hora de la comida (y mientras
trabajábamos), el apoyo de unos a otros cuando nos quedábamos en la univer-
sidad hasta casi la hora de cierre, y por supuesto, los bailes en el despacho.
Nunca olvidaré estos y muchos otros momentos maravillosos que compartimos,
que han hecho mi trabajo del día a día más ameno.

Gracias a todos los compañeros que he tenido el placer de conocer y a todo el
personal del Departamento de Estadísitca e Investigación Operativa Aplicadas
y Calidad. En especial, gracias a Vicent, por tu amabilidad y paciencia guiando
mis primeros pasos en la enseñanza universitaria. En otro departamento, pero
igualmente en la UPV, sé que siempre tendré un mentor: gracias, Juan Carlos,
por tu ayuda para encontrar esta oportunidad de doctorado y tu guía a lo largo
de todos estos años.

Gracias también a los compañeros que he conocido y los amigos que he hecho
durante mis estancias de investigación. Gracias por los bonitos momentos que
hemos compartido y por ayudarme a adaptarme a estos lugares nuevos para
mí, y a explorarlos y disfrutarlos.

Gracias a mis padres, Brigi y Paco, y a mi hermana, Isabel. Es imposible
agradeceros lo suficiente por todo lo que habéis hecho por mí, pero voy a
aprovechar esta oportunidad para destacar algunas cosas. Gracias por vuestro
apoyo en todas mis aventuras, gracias por celebrar conmigo todos mis logros,
y gracias por estar siempre ahí conmigo, especialmente en los momentos más
duros. Vuestro amor construye mi fuerza.

Gracias al resto de mi familia por siempre creer en mí. En particular, gracias
a mi tía Lucre por acogerme y por todo el apoyo que he recibido de tu parte.
También, especialmente gracias a Pablo, por ayudarme a descubrir los reque-
rimientos reales de la terminales portuarias, algo extremadamente valioso para
esta tesis doctoral.

Gracias a mis amigas y amigos en Valencia, especialmente a Carmen, por
acompañarme en lo mejor y lo peor de la vida diaria de un doctorado, y a

xiv

Agradecimientos

Sorina, por todas las conversaciones y abrazos que me han ayudado a continuar
y perseguir mis sueños.

Gracias a mis amigas y amigos de Albacete. Aunque la mayoría ya no vivamos
allí, cada vez que nos vemos, me hacéis sentir que ese siempre será mi hogar.
Muchas gracias por todo vuestro apoyo.

Finalmente, gracias a todos los amigos que me habéis apoyado en la distancia:
una llamada de teléfono, unos mensajes... Todos esos gestos son como abra-
zos virtuales para mí y han hecho más bonitos mis días. También, gracias a
Francisco por animarme a hacer el doctorado y siempre creer en mi trabajo y
mis capacidades.

A todos vosotros, gracias de corazón.

xv

Contents

Resumen iii

Resum v

Abstract vii

Acknowledgements ix

Agradecimientos xiii

Contents xvii

List of Figures xxi

List of Tables xxiii

1 Motivation and scope of the research 1
1.1 Motivation of the research . 2

1.1.1 Containerized maritime trade . 2

1.1.2 The role of optimization at container port terminals 4

1.2 Scope . 5

1.3 Objectives . 6

1.3.1 More realistic formulations . 6

xvii

Contents

1.3.2 A versatile solution method . 7

1.4 Outline . 8

1.5 Scientific contributions associated with this thesis 11

1.5.1 Published papers in international journals 11

1.5.2 Papers in preparation . 11

1.5.3 Oral presentations at international conferences 12

1.5.4 Oral presentations at Spanish national conferences 13

1.5.5 Oral presentations at workshops and seminars 13

2 Introduction 15
2.1 Optimization of port terminal operations 16

2.1.1 Seaside operations . 17

2.1.2 Yard operations . 17

2.1.3 Landside operations . 18

2.2 Literature review . 19

2.2.1 Solving the Container Premarshalling Problem (CPMP) 19

2.2.2 Related problems . 22

2.3 Constraint Programming . 24

2.3.1 Constraint Satisfaction Problems 24

2.3.2 Types of constraints . 26

2.3.3 Particular cases and extensions of CSPs 27

2.3.4 Search strategies . 29

3 A constraint programming approach for the premarshalling problem 33
3.1 CPMP: The Container Premarshalling Problem 34

3.1.1 Notation . 36

3.2 Constraint programming models . 37

3.2.1 CP2: Constraint programming model with 2 groups of variables . . 38

3.2.2 CP3: Constraint programming model with 3 groups of variables . . 40

3.2.3 CP4: Constraint programming model with 4 groups of variables . . 43

3.2.4 CP5: Constraint programming model with 5 groups of variables . . 45

3.2.5 Solution method . 47

3.3 Computational experiments . 48

3.3.1 Technical details of the experiments 49

3.3.2 Size of the CP models . 50

3.3.3 Performance of models CP2, CP3, CP4 and CP5 51

xviii

Contents

3.3.4 Performance of the algorithm . 55

3.3.5 Comparison with the state-of-the-art integer programming model

and between constraint programming and mathematical program-

ming approaches . 56

3.4 Concluding remarks . 60

4 Solving the premarshalling problem with an auxiliary bay 61
4.1 CPMP-AB: The Container Premarshalling Problem with an Auxiliary Bay . 62

4.1.1 Notation . 66

4.2 Constraint programming models for the CPMP-AB 67

4.2.1 AB: Model for premarshalling with an auxiliary bay 67

4.2.2 ABp: Alternative model with a penalty for inter-bay relocations . . 73

4.2.3 Solution method . 74

4.3 Computational experiments . 76

4.3.1 Performance of the proposed models 77

4.3.2 Differences in the solutions when considering or not an auxiliary bay,

and when including or not a penalty for inter-bay relocations 78

4.4 Concluding remarks . 80

5 Premarshalling problems considering crane times 83
5.1 CPMPCT: The Container Premarshalling Problem with Crane Time Mini-

mization Objective . 84

5.1.1 Crane time specifications and notation 85

5.2 CPMP-LCT: The Container Premarshalling Problem under Limited Crane

Time . 87

5.2.1 Partial premarshalling solutions 90

5.3 Constraint programming models for the CPMPCT and the CPMP-LCT . . 93

5.3.1 MCT: A model for premarshalling minimizing crane time 93

5.3.2 LCT1: A model for premarshalling under limited crane time 99

5.3.3 LCT2: An alternative model for bays where all container priorities

differ . 101

5.3.4 Solution method . 102

5.4 Computational experiments . 103

5.4.1 Minimizing crane time: MCT vs IPCT 104

5.4.2 Performance of the proposed models for the CPMP-LCT: LCT1 and

LCT2 . 105

xix

Contents

5.4.3 Heuristic solutions in short times for the CPMP-LCT 107

5.5 Concluding remarks . 110

6 Alternative approaches for the premarshalling problem under lim-
ited crane time 111
6.1 Alternative objectives for the CPMP-LCT 112

6.2 Constraint programming models and solution methods for the CPMP-LCT 117

6.2.1 LCT-I: A model and a solution method for minimizing the inacces-

sible containers . 117

6.2.2 LCT-IB: A model and a solution method for minimizing the sum of

inaccessible and blocking containers 121

6.2.3 LCT-BRP: A model and a solution method for minimizing the relo-

cations in the retrieval phase . 122

6.3 A constraint programming model for the Block Relocation Problem 130

6.4 Computational experiments . 134

6.4.1 Performance of the proposed models and solution methods for the

CPMP-LCT . 135

6.4.2 Differences in the solutions yielded by the three different objectives 136

6.5 Concluding remarks . 138

7 Conclusions and future work 141
7.1 Reformulating unrealistic assumptions for the premarshalling problem . . . 142

7.1.1 Using an auxiliary bay for premarshalling 142

7.1.2 Considering crane times and limited availability of the crane 143

7.1.3 Future research lines toward a more realistic premarshalling formu-

lation . 145

7.2 Constraint Programming: An effective and versatile solution method for

premarshalling . 146

7.2.1 Designing constraint programming models 146

7.2.2 A versatile and effective solution method 147

7.2.3 Future research lines from a solution method perspective 148

Bibliography 149

xx

List of Figures

1.1 Evolution in world container port throughput. 3

2.1 An example of a port terminal configuration. 16

2.2 An example of a constraint graph. 28

3.1 An example of a port yard configuration. 34

3.2 An example of an optimal solution to the CPMP. 37

4.1 An example of a main bay and an auxiliary bay. 62

4.2 Examples of optimal premarshalling solutions using an auxiliary bay. 65

4.3 Possible states for two consecutive slots and transitions between them. . . . 73

5.1 An example of two CPMP optimal solutions with different total crane times. 84

5.2 An example of a port yard configuration with a rubber tire gantry crane. . . 86

5.3 Examples of badly placed and inaccessible containers. 89

5.4 Examples of complete and partial premarshalling solutions. 91

5.5 Percentage reduction in inaccessible containers. 92

6.1 An example of a solution to the BRP. 113

6.2 Examples of optimal final layouts for the alternative objectives. 116

xxi

List of Tables

3.1 Constraints from model CP2 substituted in model CP3. 41

3.2 Constraints from model CP3 substituted in model CP4. 43

3.3 Size of the CP models. 51

3.4 Performance of models CP2, CP3, CP4, and CP5 on the BZ dataset. 52

3.5 Performance of models CP2, CP3, CP4, and CP5 on the ZJY dataset. . . . 53

3.6 Performance of models CP2, CP3, CP4, and CP5 on the EMM dataset. . . 53

3.7 Performance of models CP2, CP3, CP4, and CP5 on the CV dataset. . . . 54

3.8 Percentage of optimal solutions achieved by models CP2, CP3, CP4, and CP5. 55

3.9 Comparison between constraint programming and mathematical program-

ming models on the BZ dataset. 57

3.10 Comparison between constraint programming and mathematical program-

ming models on the ZJY dataset. 58

3.11 Comparison between constraint programming and mathematical program-

ming models on the EMM dataset. 58

3.12 Comparison between constraint programming and mathematical program-

ming models on the CV dataset. 59

4.1 Constraints from model CP5 substituted in model AB. 69

4.2 Performance of models AB and ABp. 77

xxiii

List of Tables

4.3 Comparison of the solutions yielded by models AB and ABp. 79

5.1 Details of the instances considered in Figure 5.5. 93

5.2 Correspondence between constraints from models MCT and CP5. 97

5.3 Performance of models MCT and IPCT for the CPMPCT. 104

5.4 Performance of model LCT1 for the CPMP-LCT on the ZJY dataset. . . . 105

5.5 Performance of models LCT1 and LCT2 for the CPMP-LCT on the CV

dataset. 106

5.6 Performance of model LCT1 on the CV dataset in short running times. . . 107

5.7 Performance of model LCT2 on the CV dataset in short running times. . . 108

5.8 Performance of model LCT1 on the ZJY dataset in short running times. . . 109

6.1 Features of optimal solutions for the alternative objectives. 116

6.2 Correspondence between constraints from models LCT-BRP and LCT1. . . 125

6.3 Correspondence between constraints from models CP-BRP and LCT-BRP. . 131

6.4 Performance of LCT1, LCT-I, LCT-IB and LCT-BRP for the CPMP-LCT. 136

6.5 Comparison of optimal solutions yielded by LCT-I, LCT-IB and LCT-BRP. 137

6.6 Comparison of feasible solutions yielded by LCT-I, LCT-IB and LCT-BRP. 138

xxiv

Chapter 1

Motivation and scope of the
research

This thesis is motivated by the efficiency challenges faced by container port
terminals. Over the past few decades, containerized maritime trade has seen
impressive growth, creating significant pressure on ports. In this context, op-
timizing container terminal operations is essential for ensuring smooth func-
tioning and reducing costs for ports, shippers, and the environment.

Numerous terminal operations can benefit from optimization strategies. This
thesis focuses on the premarshalling of containers, a process that involves ar-
ranging containers in the port yard to expedite their subsequent retrieval.
While the premarshalling problem has been a subject of study in the literature,
the existing formulations are not sufficiently realistic for practical implemen-
tation. This thesis presents novel formulations to incorporate requirements of
port terminals neglected in previous literature, thus narrowing the gap between
theoretical models and practical applications.

This chapter elaborates on the motivation behind this research and provides
the outline and objectives of the thesis. Additionally, it indicates the scientific
contributions associated with it.

1

Chapter 1. Motivation and scope of the research

1.1 Motivation of the research

This section expresses the motivation behind this thesis. First, it outlines the
evolution and contemporary context of containerized maritime trade. Then, it
explains the role and significance of optimization within this framework.

1.1.1 Containerized maritime trade

Containerization is a major milestone in freight transport. The International
Maritime Organization (IMO), a United Nations agency specialized in safety,
security, and environmental performance in shipping, was established in 1948.
This agency promoted the standardization of shipping containers, officially
stated by the International Organization for Standardization (ISO) in 1968,
followed by additional specifications in 1970.

The standard container lengths are 8ft, 10ft, 20ft, 30ft, and 40ft, with the
20-foot and 40-foot containers being the most prevalent, particularly the lat-
ter. Apart from dry storage containers, specialized containers exist for cargo
with specific requirements. These include refrigerated containers, insulated or
thermal containers, and tanks for liquid or gaseous materials.

Containers streamline freight transfer between various modes of transport, in-
cluding ships, trains, or trucks, without requiring cargo handling until reaching
the final destination. This minimizes the exposure of goods, thereby reduc-
ing the risks of damage and the need for extensive packaging. Additionally,
containers facilitate legality verification and tracking of cargo. Their design
enables secure stacking, optimizing space utilization and simplifying transfers
between transport modes. In essence, container standardization drastically
reduces shipping times and costs.

Maritime transport is an essential pillar of the global economy. More than
four-fifths of international trade is carried by sea. Containerization is a crucial
driver of this ratio, implying an enormous increase in the maritime transporta-
tion of goods. The volume of containerized cargo transported is quantified in
TEUs, with each TEU (Twenty-foot Equivalent Unit) representing the capa-
city of a standard 20-foot container. This unit enables the analysis of container
transportation trends in the last decades. This task is undertaken annually by
UNCTAD (UN Trade and Development), a permanent intergovernmental or-
ganization within the United Nations that supports developing countries in
world trade.

2

1.1 Motivation of the research

The annual Review of Maritime Transport by UNCTAD offers valuable in-
sights into maritime shipping, particularly containerized transport. Accord-
ing to UNCTAD, 1992, world container port throughput stood at just under
86 million TEUs in 1990. However, UNCTAD, 2023 reported that in 2022,
throughput had soared to approximately 852 million TEUs. In 2020, the on-
set of the COVID-19 pandemic led to a 1.2% drop in world container port
throughput, as noted in UNCTAD, 2021, but it rebounded in 2021, registering
a 7% increase over 2020, as indicated in UNCTAD, 2022. These trend changes
are captured by Figure 1.1, where additionally, we can observe the increment
in port throughput since 2010.

Figure 1.1: Evolution in world container port throughput.

500

550

600

650

700

750

800

850

900

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

The world container port throughput is shown in million TEUs for each year from 2010 to
2022. Source: Elaborated by the author (2024) using data from the UNCTAD statistical
portal.

Containerships have experienced rapid growth in size since the early 1970s,
when their capacity ranged from 600 to 900 TEUs. By the 1980s, their capacity
had already reached 4300 TEUs, and in 2018, the maximum capacity was
above 21000 TEUs (UNCTAD, 2018). In 2023, the largest ships surpassed
24000 TEUs, and this growing trend is expected to continue in the coming
years. The increase in size and better utilization of vessel capacity have led to
a substantial rise in port throughput, as highlighted in the previous paragraph.
Moreover, using larger vessels means handling greater amounts of containers
per vessel, which increases the pressure on ports when serving a containership.

3

Chapter 1. Motivation and scope of the research

Consequently, maintaining port efficiency has become increasingly challenging
due to the larger volumes of containers and sharper peaks in demand when a
containership arrives at the port.

1.1.2 The role of optimization at container port terminals

The previous section illustrates the impressive scale of maritime trade. Ports
handle enormous quantities of containers daily, and the rapid and sharp in-
crement in the volume of containers transported since its standardization has
placed notable pressure on the operation of port terminals.

The increase in the number of containers handled at terminals necessitates the
coordination of thousands of operations, hampering port efficiency. Moreover,
the vast increment in vessel size has drastically altered the container arrival
and departure patterns at ports. The docking of a containership creates a
substantial demand peak for cranes, operators, and other port resources. This
surge may exceed the terminal’s capacity, leading to prolonged waiting times.

Delays in serving vessels have serious consequences for ports, shippers, and
the environment. Berthing space at ports is limited, and not operating a
containership in time prevents the berthing of other vessels upon its arrival,
producing notable congestion. These delays also affect the scheduled routes of
vessels, increasing costs for shipping companies. Furthermore, containerships
must use their engines during container loading and unloading to maintain the
ship’s balance. Consequently, prolonged loading/unloading times exacerbate
environmental impacts. Additionally, the role of ports as exchange hubs of
intermodal transport chains implies that maritime or land transport delays
can escalate, affecting subsequent stages in the chain.

Port expansions are highly controversial. Despite the potential for increased
operational space at the terminals, they are extremely costly and, most im-
portantly, have devastating environmental effects on the surrounding coast.
Such expansions entail an increase in emissions and the release of dangerous
residues, polluting the air, water, and coastal areas. Furthermore, structures
like breakwaters block the natural movement of sediments and sand carried by
water flows (Esteban-Chapapría and Serra-Peris, 2021), causing severe damage
to shores and ecosystems.

Optimizing port terminals maximizes the utilization of existing resources, negat-
ing the necessity for costly port expansions. The application of optimization
strategies notably increases the efficiency of numerous activities, such as de-
termining berthing positions and periods for vessels or allocating cranes for

4

1.2 Scope

operations in the quay and the port yard. Furthermore, various processes
aimed at streamlining specific port operations can also be optimized to maxi-
mize their effectiveness. Container premarshalling is one of these processes.

Once containers arrive in the yard, they are allocated a storage position and
remain stacked until they leave the port. Although assignment strategies exist
to streamline the subsequent retrieval of containers from the yard, the large
number of containers entering and leaving the port simultaneously, along with
the dynamism of the yard, hinders the efficient placement of containers.

During inactivity periods between container retrieval or storing operations,
cranes can relocate containers within the yard. This relocation of contain-
ers helps to expedite their retrieval. This thesis studies the premarshalling
problem, which seeks to optimize these container relocations to perform the
arrangement process in the most streamlined way and achieve the most efficient
configuration of containers for retrieval from the yard.

1.2 Scope

The optimization of container terminal operations is crucial for maximizing
the efficient utilization of port resources. Optimization strategies can bene-
fit a wide range of processes and activities, notably reducing costs for ports,
shippers, and the environment.

The port yard is a temporary storage area for containers and a connection
between stages in the container transport chain. The arrangement of con-
tainers within this space directly impacts the loading and unloading of vessels
and other means of transport. Hence, it is essential to devise strategies that
streamline the organization of this area.

Idle periods of yard cranes between container retrieval or storage operations
offer the opportunity to arrange containers in the port yard. However, de-
termining an effective arrangement is highly challenging. Therefore, several
optimization problems have been formulated to address this issue, with the
Container Premarshalling Problem (CPMP) being one of the most extensively
studied.

The premarshalling problem focuses on arranging a set of containers placed in
adjacent stacks called a bay. It seeks a sequence of container relocations within
these stacks to obtain an arrangement that avoids extra relocations during the

5

Chapter 1. Motivation and scope of the research

subsequent retrieval of these containers from the yard. The goal is to achieve
this arrangement with the minimum number of relocations possible.

The scientific literature on the premarshalling problem offers numerous opti-
mization methods. However, these methods often rely on unrealistic assump-
tions and are difficult to adapt to the actual requirements of port terminals.

The goal of this thesis is to narrow the gap between the theoretical formulation
of the premarshalling problem and its practical implementation. To achieve
this, we focus on the objectives described in the following section.

1.3 Objectives

This thesis is motivated by two main objectives:

▷ Studying the classical assumptions of the premarshalling problem and
proposing new approaches that reformulate unrealistic assumptions ac-
cording to the requirements of port terminals.

▷ Developing solution methods that are easy to implement and reproduce,
as well as flexible, so that they can be adapted to different conditions and
needs in practice.

1.3.1 More realistic formulations

On the one hand, the existing literature on container premarshalling assumes
that the relocations for arranging a bay (set of adjacent container stacks) must
be performed exclusively within these stacks. However, in practice, containers
may be relocated to stacks at other bays if it is convenient for the arrangement
process. To address this, we define the Premarshalling Problem with an Aux-
iliary Bay (CPMP-AB), where an additional bay is used as a storage buffer for
containers from the bay being arranged.

On the other hand, while premarshalling is only performed during idle periods
of the crane, the original formulation assumes unlimited crane availability.
Consequently, if a premarshalling solution exceeds the available crane time, it
cannot be implemented or must be partially executed. Unfortunately, partially
applying a solution yielded by the original formulation often results in poor-
quality arrangements or even worsens the initial configuration. In this thesis,
we define the Premarshalling Problem Under Limited Crane Time (CPMP-
LCT) to design efficient partial arrangements within the available time.

6

1.3 Objectives

Defining partial premarshalling solutions that can be performed within the
available crane time is a challenging task, and several objective functions for
the CPMP-LCT are studied in this thesis. One of these objectives involves
solving an additional optimization problem from the literature, the Block Re-
location Problem (BRP). The BRP aims to minimize the relocations necessary
for retrieving a group of containers from the yard. Thus, while premarshalling
arranges the containers before their retrieval, the BRP focuses on optimization
during retrieval.

The original premarshalling formulation (CPMP) does not account for the
time taken by container relocations, treating each relocation as having the
same cost. However, the time required for relocations varies significantly de-
pending on the distance between the origin and destination stacks and other
factors. While the original premarshalling formulation seeks a sequence with
the minimum number of container relocations, a more efficient sequence would
minimize the total time required for these relocations rather than the num-
ber of them. For this reason, the Container Premarshalling Problem with
Crane Time Minimization Objective (CPMPCT) was previously proposed in
the literature. This thesis studies the CPMPCT as a bridge between the origi-
nal premarshalling formulation and the premarshalling problem under limited
crane time (CPMP-LCT), which necessitates considering the time taken for
relocations.

1.3.2 A versatile solution method

The optimization technique used in this thesis is Constraint Programming. We
propose solution methods involving this technique for the novel premarshalling
problems introduced, namely the CPMP-AB and the CPMP-LCT, including
all their variants. Moreover, we present constraint programming models for
the original CPMP and the additional problems studied: the CPMPCT and
the BRP.

The constraint programming formulations proposed in this thesis for the origi-
nal CPMP and its version minimizing crane time, the CPMPCT, demonstrate
the effectiveness of this method for the premarshalling problem. These ap-
proaches are tested through computational experiments that show they en-
hance the performance of traditional mathematical programming models.

The proposed solution methods involve iterative algorithms tailored to each
problem and the use of a constraint programming solver. The solver highly
facilitates the implementation of the solution methods, which is a significant

7

Chapter 1. Motivation and scope of the research

advantage for reproducing them. Furthermore, using a solver has been partic-
ularly helpful for the development of this thesis by enabling us to test a wide
range of premarshaling formulations and validate the novel approaches studied.
The constraint programming model we present for the original CPMP estab-
lishes a base for designing models that solve the alternative premarshalling
variants addressed.

Despite the advantages of using a solver and the flexibility of constraint pro-
gramming in translating the requirements of each problem variant into con-
straints, designing effective solution methods is not straightforward. For this
reason, this thesis includes a detailed explanation of the model-building proce-
dure employed and how the formulations have been adapted to each premar-
shalling version.

1.4 Outline

The present Chapter 1 describes the objectives of this thesis and its structure.
Chapter 2 provides a literature review and introduces the optimization at con-
tainer port terminals and the constraint programming technique. The classi-
cal assumptions of premarshalling in the literature are analyzed in Chapter 3.
Then, Chapters 4 and 5 propose novel versions of the premarshalling problem
by modifying unrealistic assumptions of the original formulation. In Chapter 5,
a premarshalling version from the literature that modifies one of the original
assumptions is also studied as a bridge between the classical formulation and
the new one proposed. Chapter 6 elaborates on the novel problem introduced
in the preceding chapter and presents alternative objectives for it. Addition-
ally, another optimization problem related to premarshalling is studied along
with the definition of one of the objectives. Finally, Chapter 7 highlights the
conclusions of this thesis and proposes related research lines.

The seven chapters constituting this document are outlined below:

Chapter 1: Motivation and scope of the research

This chapter contextualizes the research developed in this thesis and presents
its structure and objectives. Firstly, the origins and evolution of containerized
maritime trade are outlined, along with relevant figures illustrating its growth.
Secondly, the role of optimization in container port terminals is explained,
showing the motivation for the present research. Finally, the objectives of the
thesis are specified. The structure and contents of the document are specified

8

1.4 Outline

in this section, and the following section indicates the scientific contributions
associated with this thesis.

Chapter 2: Introduction

The first part of this chapter offers an introduction to port logistics and opti-
mization problems in this context. Then, it provides a literature review for the
premarshalling problem and other related problems, indicating the optimiza-
tion methods studied prior to this thesis. After that, constraint programming,
the main technique used in this study, is introduced.

Chapter 3: A constraint programming approach for the premarshalling prob-
lem

This chapter is devoted to the original version of the problem, the Container
Premarshalling Problem (CPMP). We describe the problem and detail its as-
sumptions, indicating why several of them are not realistic and in which of the
subsequent chapters this issue is addressed. We present a constraint program-
ming approach for the CPMP that serves as a foundation for developing the
models for the alternative versions of premarshalling proposed in this thesis.
This model is introduced along with the formulations tested in the process
of designing it. This way, we illustrate the constraint programming model-
ing strategy used, which follows a different logic from that of generic model
construction procedures for mathematical programming. The formulations are
tested on well-known datasets from premarshalling literature and compared to
the state-of-the-art integer programming model. The content of this chapter
corresponds to the published paper Jiménez-Piqueras et al., 2023.

Chapter 4: Solving the premarshalling problem with an auxiliary bay

In this chapter, we introduce the Container Premarshalling Problem with an
Auxiliary Bay (CPMP-AB). This formulation relaxes the restriction of only re-
locating containers within the stacks being premarshalled, as moving containers
to additional stacks may facilitate the arrangement process. We describe two
alternative constraint programming formulations with different allowance lev-
els for relocating containers to auxiliary stacks. We present a computational
study and discuss the performance of the proposed models, the differences be-
tween these approaches, and a comparison of the results with original premar-
shalling solutions. This chapter is based on the paper in preparation indicated
in Section 1.5.2.

9

Chapter 1. Motivation and scope of the research

Chapter 5: Premarshalling problems considering crane times

This chapter addresses two versions of premarshalling considering crane times.
First, the Container Premarshalling Problem with Crane Time Minimization
Objective (CPMPCT), previously studied in the literature, is explored. This
problem modifies the assumption of uniform relocation cost from the original
formulation, considering the crane time instead, which is more realistic. We
propose a constraint programming model and compare it through computa-
tional experiments with the state-of-the-art integer programming model for
this problem. We take a further step towards a more realistic formulation,
modifying the original assumption of unlimited crane availability. We define
the Container Premarshalling Problem Under Limited Crane Time (CPMP-
LCT), which seeks efficient partial premarshalling solutions within a given
crane time limit, not yielded by previous premarshalling formulations. We
introduce a constraint programming model for the novel problem and an al-
ternative formulation tailored for a specific case. Additionally, we show the
possibility of using the exact constraint programming model as a heuristic.
This study corresponds to the published paper Jiménez-Piqueras et al., 2024.

Chapter 6: Alternative approaches for the premarshalling problem under lim-
ited crane time

This chapter focuses on the novel CPMP-LCT presented in the preceding chap-
ter, considering alternative objectives. First, we present an enhanced solution
method for the CPMP-LCT with its original objective. Then, we introduce
constraint programming approaches for the two alternative objectives stud-
ied and a formulation for the Block Relocation Problem (BRP), which is in-
volved in one of these objectives. The three alternative objectives are tested
through computational experiments, and their suitability for different scenar-
ios is discussed, proposing one of them as the best general approach for the
CPMP-LCT. The content of this chapter belongs to the paper in preparation
indicated in Section 1.5.2.

Chapter 7: Conclusions and future work

This chapter summarizes the conclusions obtained by the research developed in
this thesis. It outlines the contributions of each chapter and provides a general
perspective of the outcomes of this study. Additionally, potential research lines
are suggested for future work.

10

1.5 Scientific contributions associated with this thesis

1.5 Scientific contributions associated with this thesis

This section provides the list of contributions corresponding to this thesis.

1.5.1 Published papers in international journals

A constraint programming approach for the premarshalling problem

Jiménez-Piqueras, C., Ruiz, R., Parreño-Torres, C., Alvarez-Valdes, R.
European Journal of Operational Research, 306 (2), 668-678. (2023)
https://doi.org/10.1016/j.ejor.2022.07.042
Cited by 5 on Scopus and 8 on Google Scholar.

The contents of this paper are presented in Chapter 3.

The container premarshalling problem under limited crane time: A constraint
programming approach

Jiménez-Piqueras, C., Parreño-Torres, C., Alvarez-Valdes, R., Ruiz, R.
Computers & Operations Research, 166, 106635. (2024)
https://doi.org/10.1016/j.cor.2024.106635

The contents of this paper are presented in Chapter 5.

1.5.2 Papers in preparation

At the moment of publication of this thesis, two chapters of this document
are being prepared for publication as scientific papers. The contents of these
chapters are the result of two research stays: the first in 2021, at Univer-
sität Bielefeld, Germany, under the supervision of Dr. Kevin Tierney, and
the second in 2023, at Danmarks Tekniske Universitet, Denmark, under the
supervision of Dr. Dario Pacino.

Solving the container premarshalling problem with an auxiliary bay

Jiménez-Piqueras, C., Tierney, K.

The contents of this paper in preparation are presented in Chapter 4.

11

https://www.scopus.com/results/citedbyresults.uri?sort=plf-f&cite=2-s2.0-85145644316&src=s&imp=t&sid=242ac3e8763daf690f54a08500ad7b60&sot=cite&sdt=a&sl=0&origin=recordpage&editSaveSearch=&txGid=ffaa349dffecfe7b1c6fb19b8ceffbd2
ttps://scholar.google.com/scholar?cites=5909991731385156324&as_sdt=2005&sciodt=0,5&hl=en

Chapter 1. Motivation and scope of the research

Alternative objectives and constraint programming models for premarshalling
under limited crane time

Jiménez-Piqueras, C., Pacino, D.

The contents of this paper in preparation are presented in Chapter 6.

1.5.3 Oral presentations at international conferences

A constraint programming approach for the premarshalling problem

Jiménez-Piqueras, C., Ruiz, R., Parreño-Torres, C., Alvarez-Valdes, R.
31st European Conference on Operational Research (EURO)
University of West Attica, Athens, Greece. (2021)

A constraint programming approach for the premarshalling problem with an
auxiliary bay

Jiménez-Piqueras, C., Tierney, K., Ruiz, R.
32nd European Conference on Operational Research (EURO)
Aalto University, Espoo, Finland. (2022)

Exact methods for the premarshalling problem under limited crane time

Jiménez-Piqueras, C., Pacino, D., Parreño-Torres, C., Alvarez-Valdes, R.
10th Optimization Conference
University of Aveiro, Aveiro, Portugal. (2023)

Partial container premarshalling approaches using constraint programming

Jiménez-Piqueras, C., Pacino, D.
33nd European Conference on Operational Research (EURO)
Danmarks Tekniske Universitet, Copenhagen, Denmark. (2024)

12

1.5 Scientific contributions associated with this thesis

1.5.4 Oral presentations at Spanish national conferences

Solving the premarshalling problem under limited crane time in the constraint
programming paradigm

Jiménez-Piqueras, C., Ruiz, R., Parreño-Torres, C., Alvarez-Valdes, R.
3rd Spanish Young Statisticians and Operational Researchers Meeting
(SYSORM)
Universidad Miguel Hernández, Elche, Spain. (2022)

Solving the container premarshalling problem considering crane availability
constraints

Jiménez-Piqueras, C., Pacino, D., Parreño-Torres, C., Alvarez-Valdes, R.
XL National Congress of Statistics and Operations Research (SEIO)
Universidad Miguel Hernández, Elche, Spain. (2023)

1.5.5 Oral presentations at workshops and seminars

A constraint programming approach for the premarshalling problem

Jiménez-Piqueras, C., Ruiz, R., Parreño-Torres, C., Alvarez-Valdes, R.
Workshop on Container Stacking
Universität Bielefeld, Bielefeld, Germany. (2021)

Solving the premarshalling problem under limited crane time

Jiménez-Piqueras, C., Parreño-Torres, C., Alvarez-Valdes, R., Ruiz, R.
Seminar on Recent Research Results
DTU Management, Danmarks Tekniske Universitet, Denmark. (2023)

Considering crane availability constraints in the premarshalling problem

Jiménez-Piqueras, C., Pacino, D., Parreño-Torres, C., Alvarez-Valdes, R.
3rd EUROYoung Workshop
ESSEC Business School, Cergy, France. (2023)

13

Chapter 2

Introduction

This chapter provides an overview of the optimization problems that may arise
in port terminals, involving berth allocation, crane assignments to operations,
scheduling of tasks, or container stacking. It indicates the different parts of a
terminal and describes the associated optimization problems.

Then, a literature review of the optimization methods developed for the Con-
tainer Premarshalling Problem (CPMP) and variants of this problem is pre-
sented. Moreover, it describes the connection of the problems studied in this
thesis with the existing literature. Additionally, recent approaches for other
problems related to the CPMP, such as the Block Relocation Problem (BRP),
are also indicated.

Finally, an introduction to Constraint Programming (CP) is provided. The
basic concepts of this technique and the kinds of problems it is applied to are
described. Also, the main modeling and search procedures are outlined.

15

Chapter 2. Introduction

2.1 Optimization of port terminal operations

The efficiency of a port terminal strongly depends on the optimization of ope-
rations. The activities involving container handling are classified into three
main groups depending on the area of the terminal where they take place:
seaside operations, yard operations, and landside operations. The three areas
are depicted in Figure 2.1.

The seaside area corresponds to the quay, where containerships are berthed. In
the yard area, containers are organized into stacks within groups of bays called
blocks, and this storage space exchanges containers with both the seaside and
the landside. The landside area is designated for trucks and trains.

Figure 2.1: An example of a port terminal configuration.

The seaside area is highlighted in blue, the yard area in yellow, and the landside area in
magenta. Light gray rectangles represent containers, and cranes are indicated in dark gray.
Source: Elaborated by the author (2024).

16

2.1 Optimization of port terminal operations

2.1.1 Seaside operations

Seaside operations take place in the quay area and are related to the loading
and unloading of vessels.

When a vessel arrives at the port, it must be assigned a specific berth during a
determined period of time. The Berth Allocation Problem (BAP) aims to plan
this assignment for multiple vessels with the goal of minimizing the handling
time for operating the vessels along with the waiting time until berthing.

The number of quay cranes that can be used to operate a berthed vessel must
be determined. To this end, the Quay Crane Assignment Problem (QCAP) is
defined as finding the number of cranes for each vessel so that they can leave
their berthing positions as early as possible.

Once a vessel is assigned a set of cranes, the loading and unloading operations
must be sequenced and distributed to the cranes. The Quay Crane Scheduling
Problem (QCSP) seeks to schedule these operations to minimize the total
completion time.

Before loading containers onto a vessel, they must be assigned a position
aboard. The Container Stowage Problem (CSP) aims to arrange the containers
in the best way subject to multiple rules involving features of containers such
as weight or destination.

2.1.2 Yard operations

The yard area serves as a temporary storage area for import containers that
must be transferred from vessels to land transports, and export containers
that must be loaded onto a ship. It acts as the connection between seaside and
landside areas.

Containers go through three phases in the port yard: storage, relocation, and
retrieval. Optimizing both the storage and relocation phases aims to maximize
the efficiency in subsequent container retrieval.

Upon arrival, a container must be assigned a position in the yard. The Storage
Space Allocation Problem (SSAP) is formulated to find the best distribution of
the containers among the blocks. Additionally, the Container Stacking Prob-
lem (CSP) determines an exact location for a container within a block, with
the aim of minimizing future relocations required for retrieving the container
from the yard.

17

Chapter 2. Introduction

The position initially assigned to a container may not be permanent. Con-
tainers may be relocated within the yard for various reasons, such as adjusting
to changes in the retrieval schedules, accommodating new containers, or facil-
itating the future retrieval of containers currently blocked by other containers
stacked above them. Containers can be relocated within a block to a set of
stacks assigned to a specific vessel to avoid relocations during retrieval, which
is the goal of the Container Remarshalling Problem (CRMP). Containers can
also be relocated without the target of moving them to specific stacks but only
to avoid blockages between them during retrieval. These relocations are per-
formed within a specific set of stacks (a bay) and correspond to the Container
Premarshalling Problem (CPMP) studied in this thesis.

The large amount of containers in the yard and the bustling environment of
this area impede a perfect positioning of containers for retrieval, necessitating
relocations during this process. While the containers targeted for relocation in
the CRMP and the CPMP cannot be retrieved during the relocation process,
the Block Relocation Problem (BRP), also known as Container Relocation
Problem (CRP), aims to relocate the containers from a set of stacks in the
most efficient way while retrieving them.

The optimization problems mentioned above are defined from the perspective
of containers. However, it is also necessary to assign the operations to specific
cranes. The Yard Crane Deployment Problem (YCDP) involves deciding the
optimal number of cranes for each block and planning their movements between
blocks. Once operations are assigned to cranes, the Yard Crane Scheduling
Problem (YCSP) seeks the most efficient routing of cranes for executing a
given sequence of container retrieval or storage operations.

Apart from crane optimization, it is also advantageous to efficiently plan the
routing of yard trucks that assist in loading and unloading operations. This is
the goal of the Yard Truck Scheduling Problem (YTSP).

2.1.3 Landside operations

Gate operations taking place on the landside can also benefit from optimiza-
tion, and planning these operations is essential for overall port efficiency. Sev-
eral tasks in this regard are determining the crane service to trains and trucks,
scheduling loading and unloading operations, and organizing the arrivals of
land vehicles through appointment systems and queue planning. Efficiency in
these operations is crucial for reducing congestion at port gates, along with
waiting times and polluting emissions.

18

2.2 Literature review

2.2 Literature review

Extensive literature exists on the premarshalling problem. Here, we review the
methods applied to the original formulation, alternative versions, and related
problems.

There are several recent surveys on optimization problems at port terminals,
including the CPMP and other related problems, such as the BRP. Covic,
2018, focuses on problems related to yard management. Kizilay and Eliiyi,
2021, review yard operations and quay crane scheduling, also exploring the
integrations of two or three problems. Lersteau and Shen, 2022, cover literature
specific to the BRP and the CPMP. Weerasinghe et al., 2024, examine container
terminal operations in general, analyzing the operations research techniques
developed.

2.2.1 Solving the Container Premarshalling Problem (CPMP)

This section reviews the literature specific to the Container Premarshalling
Problem (CPMP), which includes numerous exact and heuristic approaches.

Constraint programming models

Rendl and Prandtstetter, 2013, provide some preliminary results using con-
straint programming for the CPMP and an alternative robust variant. They
propose an iterative procedure to solve the problem, employing the lower bound
for the number of premarshalling relocations and the heuristic presented by
Bortfeldt and Forster, 2012. In Chapter 3, we present a constraint program-
ming model for the CPMP, which is loosely based on the formulation described
by Rendl and Prandtstetter, 2013.

Mathematical programming models

To the best of our knowledge, the first mathematical programming model de-
signed for the premarshalling problem was introduced by Lee and Hsu, 2007.
They developed an integer multicommodity flow model where the nodes and
arcs of the embedded network represent the slots for the containers and the
possible relocations between them, respectively, indexed by time points. Ad-
ditionally, they presented a heuristic based on this integer model.

19

Chapter 2. Introduction

A unified integer programming model for both the premarshalling and block
relocation problems was proposed by de Melo da Silva et al., 2018. This
formulation includes three groups of decision variables; one of them describes
the container layout, while the other two describe the relocations. Time is
discretized, allowing only one relocation at each time step. An upper bound
for the number of relocations is necessary and is determined by a heuristic.

Parreño-Torres et al., 2019, explored eight alternative integer programming
formulations for the premarshalling problem, varying the groups of decision
variables and their indexes. Time is divided into segments, with at most one
relocation performed per segment, and an iterative solution procedure is devel-
oped to avoid the difficulty in calculating a tight upper bound for the number
of relocations.

Other exact approaches

Expósito-Izquierdo et al., 2012, implemented an A* algorithm for the premar-
shalling problem. The optimal solutions obtained were used to evaluate the
performance of the Lowest Priority First Heuristic introduced in the article.
Tierney et al., 2016, proposed an iterative deepening A*, employing the lower
bound for the number of relocations presented by Bortfeldt and Forster, 2012,
along with multiple symmetry breaking and branching rules.

A branch and price technique was proposed by van Brink and van der Zwaan,
2014. Several branch and bound algorithms have also been developed for the
premarshalling problem. Zhang et al., 2015, built a heuristic-guided branch
and bound algorithm that uses a lower bound to determine which branches
are explored first. Similarly, Tanaka and Tierney, 2018, proposed an itera-
tive deepening branch and bound approach, incorporating new branching and
dominance rules and a tighter lower bound that improves upon the one pre-
sented by Bortfeldt and Forster, 2012. The strategy of Tanaka and Tierney,
2018, which encountered an over-pruning issue later corrected by Jin and Yu,
2021, was further enhanced by Tanaka et al., 2019, who provided a new refine-
ment of the lower bound.

20

2.2 Literature review

Heuristic methods

Lee and Chao, 2009, observed that the number of mis-overlaid containers (those
blocking the retrieval of others that must leave the yard earlier) serves as a
lower bound for the number of premarshalling relocations required, and they
presented a neighborhood search process. This approach was extended by the
labeling algorithm developed by Huang and Lin, 2012, who also studied an
alternative version of premarshalling where containers must be relocated to
specific positions.

Caserta and Voß, 2009, described an algorithm for the CPMP based on the
corridor method and generated a dataset of premarshalling instances that has
been widely used in subsequent literature. Alternative datasets were built
by Bortfeldt and Forster, 2012, who proposed an algorithm to calculate a
lower bound for the CPMP and a tree search procedure for solving it, and by
Expósito-Izquierdo et al., 2012, who presented the greedy Lowest Priority First
Heuristic (LPFH). The LPFH was extended by the multi-heuristic method
proposed by Jovanovic et al., 2017.

Among heuristic methods, we also find the target-guided approaches presented
by Wang et al., 2015, and Wang et al., 2017. Additionally, Gheith et al., 2016,
proposed a genetic approach using variable chromosome lengths, and Hottung
and Tierney, 2016 developed a biased random-key genetic algorithm.

More recently, Hottung et al., 2020, introduced a deep learning tree search
heuristic that uses deep neural networks for bounding and branching. The last
heuristic methods include the iterated local search presented by Farrelly and
Grimes, 2022, and the fill-and-reduce greedy algorithm developed by Araya
and Toledo, 2023.

21

Chapter 2. Introduction

2.2.2 Related problems

In the literature, we find several variants of the premarshalling problem and
related problems, such as the Block Relocation Problem (BRP), which is also
explored in this thesis.

Variants of the premarshalling problem

The previously mentioned approaches use the classical objective for the pre-
marshalling problem: minimizing the number of container relocations. Parreño-
Torres et al., 2020, introduced the Container Premarshalling Problem with
Crane Time Minimization Objective (CPMPCT). They showed that the crane
time can significantly differ for solutions with the same number of relocations,
thus highlighting the new objective’s ability to provide more efficient solu-
tions. In their paper, the authors presented an integer programming model
and a branch and bound algorithm to solve the CPMPCT. In Chapter 5, we
address this problem using constraint programming techniques. In addition to
exact methods, we find the beam search algorithm developed for the CPMPCT
by Parreño-Torres et al., 2022, who also proposed new dominance rules for tree
search algorithms.

Wang et al., 2015, apart from proposing a heuristic method for the CPMP,
defined the Container Premarshalling Problem with a Dummy Stack (CPM-
PDS). The CPMPDS considers the possibility of relocating containers to a
space reserved for trucks during premarshalling, provided it is emptied by the
end of the process. The Container Premarshalling Problem with an Auxil-
iary Bay (CPMP-AB), introduced in this thesis, shares the idea of using extra
space for relocations. However, there are marked differences. In the CPMP-
AB, containers are relocated to actual stacks instead of the truck area. Hence,
this version offers more flexibility since more space is available, and there is no
need to move all the containers back to the original set of stacks. More details
are provided in Chapter 4.

In the literature, we also find robust premarshalling formulations that address
the uncertainty in retrieval times. Rendl and Prandtstetter, 2013, presented
an approach where each container has a possible range of retrieval priorities.
Tierney and Voß, 2016, used a “blocking matrix” to indicate when there is a
conflict for stacking a container on top of another. Boge et al., 2020, proposed
a method based on the number of swaps between containers that may occur in
the retrieval sequence, providing a non-strictly robust solution when a strictly
robust one does not exist.

22

2.2 Literature review

The Block Relocation Problem (BRP)

The idea of minimizing crane time instead of relocations appears in some BRP
approaches, although the time computations are less realistic than those cal-
culated by Parreño-Torres et al., 2020, for the CPMP, as they disregard crane
acceleration and twistlock times. Lee and Lee, 2010, proposed a heuristic
method with a time reduction phase, where a weighted sum of crane times is
minimized using a mixed-integer program. Another heuristic was presented by
Lin et al., 2015, to minimize both the number of relocations and the working
time, providing insights into the trade-off between these objectives. An ant
colony optimization algorithm for the BRP is developed by Jovanovic, Tuba,
and Voß, 2019, which includes an adaptation for the crane time minimization
objective. Additionally, da Silva Firmino et al., 2019, proposed an integer
linear model, an A* algorithm, and a reactive GRASP with the objective of
minimizing working time.

Recent literature on the BRP offers various approaches, with its original ob-
jective and close variants, aside from those involving crane time indicated in
the previous paragraph. These approaches include branch and bound (Tanaka
and Mizuno, 2018, Jin and Tanaka, 2023), branch and cut (Bacci et al., 2020),
and iterative deepening A* algorithms (Quispe et al., 2018, Jin, 2020). Several
mixed integer programming methods have been proposed, such as the model
presented by Lu et al., 2020, which was improved by Liu et al., 2022, and more
recent approaches are presented by Kimns and Wilschewski, 2023, and Boge
and Knust, 2023). Additionally, Tanaka and Voß, 2022, proposed an algorithm
based on integer programming formulations. We can also find several heuris-
tic methods including GRASP (Jovanovic, Tanaka, et al., 2019), beam search
(Ting and Wu, 2017, Bacci et al., 2019), and simulated annealing (Boge and
Knust, 2023).

Zweers et al., 2020a, and Zweers et al., 2020b, studied a stochastic variant
of the BRP, considering a pre-processing phase for premarshalling relocations.
In this phase, the number of container relocations is limited, resulting in par-
tial premarshalling. The Premarshalling Problem under Limited Crane Time
(CPMP-LCT) introduced in this thesis and addressed in Chapters 5 and 6,
also involves partial premarshalling, but from a completely different perspec-
tive: the main goal of the CPMP-LCT is to obtain efficient partial premar-
shalling solutions, rather than using partial premarshalling as an auxiliary
pre-processing phase.

23

Chapter 2. Introduction

2.3 Constraint Programming

Constraint Programming (CP) is a problem-solving technique at the inter-
section of Artificial Intelligence, Operations Research, and Computer Science.
Its origins trace back to Ivan Sutherland’s PhD Thesis "Sketchpad: A man-
machine graphical communication system" at Massachusetts Institute of Tech-
nology in 1963 (Sutherland, 1963). This thesis marks the starting point of the
constraint satisfaction branch of Artificial Intelligence. Over time, constraint
programming followed two distinct streams: the language stream and the al-
gorithm stream.

The language stream has focused on developing constraint programming lan-
guages, which evolved from logic programming languages like Prolog. On the
other hand, the algorithm stream has been dedicated to investigating constraint
satisfaction and search algorithms. These streams have become closer since the
1990s. The annual International Conference on Principles and Practice of Con-
straint Programming and a dedicated scientific journal called Constraints were
established to deal with the challenge of connecting both streams.

Constraint Programming is primarily designed for combinatorial problems for-
mulated as Constraint Satisfaction Problems (CSPs) and their generalizations.
In this section, we outline the definition of such problems and present the fun-
damental concepts of constraint programming modeling and search algorithms.
This technique has been successfully applied in various fields, such as schedul-
ing, assignment problems, vehicle routing, and planning.

Interested readers in a detailed description of the foundations of constraint
programming, extensions, and applications can refer to Rossi et al., 2006. For
more information about the history of constraint programming, see Barták,
2011.

2.3.1 Constraint Satisfaction Problems

The most basic constraint satisfaction formulation involves determining values
for a group of unknowns called variables, such that they satisfy a set of con-
straints that limit the combinations of values the variables can take together.
Formally, a standard Constraint Satisfaction Problem (CSP) is characterized
by:

24

2.3 Constraint Programming

▷ A finite set of n variables: X = {x1, . . . , xn}.

▷ A set of non-empty finite domains for the variables: D = {D1, . . . , Dn},
where Di represents the set of potential values for xi.

▷ A finite set of m constraints C = {C1, . . . , Cm}.

A constraint Cj is defined as a pair (Sj, Rj), where Sj = {x1j, . . . , xkj} is the
set of variables involved in this constraint, known as the scope of Cj, and
Rj ⊆

(
D1j ×· · ·×Dkj

)
is the set of value combinations for the variables within

the scope of Cj that satisfy this constraint.

Example

A simple CSP example is:

▷ Three variables: x1, x2 and x3.

▷ The corresponding domains:

D1 = {2, 3, 4}

D2 = {1, 2, 3, 4, 5}

D3 = {1, 2, 5, 6}

▷ Two constraints:

C1 : |x1 − x2| = 2

C2 : x1 + x2 ≤ x3

Which can also be expressed as:

C1 = (S1, R1) = ({x1, x2}, {(2, 4), (3, 1), (3, 5), (4, 1), (4, 2)}

C2 = (S2, R2) = ({x1, x2, x3}, {(2, 1, 5), (2, 2, 5), (2, 3, 5),

(3, 1, 5), (3, 2, 5), (4, 1, 5), (2, 1, 6), (2, 2, 6), (2, 3, 6),

(2, 4, 6), (3, 1, 6), (3, 2, 6), (3, 3, 6), (4, 1, 6), (4, 2, 6)}

A solution to the problem is a combination of values for the variables sat-
isfying both constraints. In this case, there are 6 solutions: (x1, x2, x3) ∈
{(2, 4, 6), (3, 1, 5), (3, 1, 6), (4, 1, 5), (4, 1, 6), (4, 2, 6)}.

25

Chapter 2. Introduction

2.3.2 Types of constraints

The size of the scope of a constraint is called its arity. Constraints with arity 1,
involving only one variable, are known as unary constraints and are typically
embedded within the domain of the corresponding variable. A constraint is
binary if its arity is 2, ternary if it is 3, and so forth. However, constraints
with an arity greater than 2 are generally termed non-binary.

In constraint programming, constraints are not confined to specific conditions
such as linearity, as in integer programming models. Consequently, they can
often be expressed more naturally than with other optimization techniques.
The fundamental idea behind constraint programming is to employ declarative
programming language for modeling, focusing on what is desired to obtain
rather than how to achieve it.

The example provided in the previous section involves two constraints, one with
arity 2 and the other with arity 3. The binary constraint contains an absolute
value expression, which is non-linear. Constraints can also incorporate boolean
expressions or logical conditions. For instance, given a variable x1 with an
integer domain and a binary variable x2, the following expressions are valid
constraints:

a) (x1 > 0) = x2

b) If (x1 > 0) then x2 = 1

In both examples, the term (x1 > 0) evaluates to 1 if the inequality is true
and 0 if false. Both constraints indicate that variable x2 must be equal to 1
when x1 is positive, but only (a) imposes that x1 must be positive when x2 is
assigned value 1.

There is a special kind of non-binary constraints called global constraints.
They describe complex relationships between variables that can be typically
expressed by the combination of multiple simpler constraints. Therefore, a
global constraint condenses a group of constraints, capturing special patterns
in combinatorial problems.

One of the most well-known global constraints is the All Different constraint.
Given a set of variables, this global constraint ensures that all of them take
distinct values. The expression of this condition, which could consist of a
group of binary constraints, is streamlined using the All Different constraint.
For example, the two following options imply that three variables x1, x2, and

26

2.3 Constraint Programming

x3 take different values. Using global constraint (b), only that expression must
be evaluated, as opposed to three in case (a):

a) x1 ̸= x2; x1 ̸= x3; x2 ̸= x3

b) AllDifferent(x1, x2, x3)

In the formulations presented in this thesis, we use a global constraint called
Allowed Assignments, which specifies all possible combinations of values that
a set of variables can take. Additionally, we use the Count constraint, which
indicates how many variables from a given collection must take a particular
value.

2.3.3 Particular cases and extensions of CSPs

Identifying particular cases of CSPs is helpful as they can benefit from the
application of particular problem-solving strategies.

The Boolean Satisfiability Problem (SAT) is a well-known particular case of
CSP. It comprises a set of binary variables with domains {True, False} and a
constraint that is a boolean formula. A solution to the problem is a combina-
tion of values for the variables such that the formula evaluates to true.

Another particular case is when all constraints are unary or binary. These prob-
lems can be represented as constraint graphs, where nodes represent variables
and edges denote constraints. An edge connecting two nodes signifies that a
constraint exists with a scope comprised of the pair of variables corresponding
to these nodes.

Figure 2.2 shows an example where the plan of a building must be colored
with at most three different colors ensuring that adjacent rooms have distinct
colors. In the corresponding graph, each room corresponds to a node, and it
is connected through arcs to all adjacent rooms. The problem of coloring a
graph giving distinct colors to adjacent nodes is known as the Graph Coloring
Problem. If a specific number of colors k is aimed, it is called the k-Coloring
Problem.

27

Chapter 2. Introduction

Figure 2.2: An example of a constraint graph.

A solution to a 3-coloring problem. On the left, a building plan shows rooms colored in
three colors, which are different for adjacent rooms. Outdoor areas not requiring coloring
are marked with a cross. On the right, the corresponding constraint graph is depicted,
with each node representing a room and each arc connecting two adjacent rooms. Source:
Elaborated by the author (2024).

Constraint Programming is mainly applied to CSPs, the problems for which it
is typically most successful. However, this technique is not restricted to CSPs
and is also used for some extensions, such as Soft CSPs or Constraint Opti-
mization Problems (COPs), which differentiate between feasible and optimal
solutions.

In a Soft CSP, some constraints are not required to be satisfied to obtain a
feasible solution, and the problem includes the objective of maximizing the
number of satisfied constraints. An example is solving a 2-coloring problem
on the building plan shown in Figure 2.2, minimizing the number of pairs of
adjacent rooms that have the same color.

A COP is a type of CSP that includes an objective function. Thus, a solution is
considered feasible if it satisfies the CSP and optimal if it additionally provides
the best objective function value. The Minimum Graph Coloring Problem is
an example of a COP, where a graph must be colored using the minimum
number of colors and ensuring that adjacent nodes have different colors.

In this thesis, we tackle COPs, but in most cases, we opt for iterative algorithms
that require solving a CSP at each iteration instead of directly solving a global
COP since we observed it is a more efficient method.

28

2.3 Constraint Programming

2.3.4 Search strategies

Constraint programming has two main parts: modeling and search. Once
a model is designed employing a constraint language, a search algorithm is
required for using the model to explore the solutions space.

One of the simplest search strategies is the Generate and Test (GT) approach.
This method starts by assigning to each variable a value within its domain.
Then, it is checked whether these assignments satisfy all the constraints. If they
do, a solution is found. Otherwise, a new combination of values is attempted.
This process continues until a solution is discovered or all possible combinations
have been tested.

Although the GT approach is not an efficient search procedure, it reflects
the core idea of assigning values to variables and verifying the satisfaction
of constraints. To enhance this strategy, potential improvements could be
considered, such as generating candidate solutions in a more informed manner
or merging the generation of candidate solutions with the testing process. The
latter is the main idea behind the backtracking strategy.

The backtracking algorithm systematically constructs a solution by iteratively
assigning values to variables and checking the partial solution for consistency
with the constraints. The process begins by selecting a variable and assigning
it a value. Constraints involving this variable are then checked, and if none
are violated, another variable is chosen, and a value is assigned to it. Then,
constraints involving the two variables already assigned in the partial solution
are checked. This process continues until all variables have been assigned
values that satisfy all the constraints, resulting in a valid solution. However, if
a constraint is violated at any point in the algorithm, the algorithm backtracks.
This means undoing the last value assignment and exploring an alternative one
for the variable in question.

While the backtracking algorithm improves the GT approach, it lacks infor-
mation about the unassigned variables at each step. Constraint propagation
addresses this limitation by providing information about the potential values
remaining for unassigned variables based on the constraints and current varia-
ble assignments. This helps identify infeasible solutions earlier in the search
process.

Given an assignment of values to some variables, constraint propagation in-
volves removing values from the current domains of unassigned variables that
do not satisfy the constraints according to the current partial solution. This

29

Chapter 2. Introduction

way, when the domain of an unassigned variable becomes empty, we know the
partial solution cannot lead to a complete solution.

Propagation can be conducted within the backtracking algorithm after each
new variable assignment. If the domain of an assigned variable becomes empty
after propagation, the algorithm backtracks. This enables the detection of
infeasible assignments before they are made. Integrating propagation into the
backtracking algorithm results in a more effective reduction of the search space,
identifying conflicts earlier and avoiding part of the constraint checks.

As mentioned earlier, the search algorithm can also be enhanced by selecting
assignments of values to variables according to a specific strategy rather than
randomly. The best variable and value selection procedure depend on the
problem being solved.

There exist multiple options for variable selection: lexicographical order, prio-
ritizing variables with the smallest domain size or those with the smallest (or
largest) value in their domains, or selecting the variable with the smallest value
of domain size divided by the number of times that variable has been involved
in constraints causing failure earlier in the search, among others. Most variable
selection procedures adhere to the fail-first principle, attempting variables that
are more likely to lead to failure first, thus reducing the search space.

The most appropriate value selection strategy highly depends on domain sizes
or the kind of values they contain. In some cases, it may be advantageous to
start by fixing a variable to the smallest value in its domain, the median, or
simply a random value. Also, more complex strategies may be beneficial in
specific cases. For example, in a problem that can be expressed as a constraint
graph, as the one shown in Figure 2.2, a value from a variable’s domain could
be selected for discarding the fewest values from the domains of the neighboring
variables in the graph. The rationale behind this strategy is to choose a value
that is most likely to lead to a solution.

There are also different backtracking schemes. The basic one is Chronological
Backtracking, which undoes the immediate previous variable assignment. The
Backjumping strategy uses the violated constraints to identify the conflicting
variable and return to that one. Backchecking and Backmarking save infor-
mation about incompatible value combinations that have already occurred,
ensuring they are not reconsidered.

Propagation can also be performed in various ways. The most basic method is
Forward Checking, where any value in the domain of a variable that conflicts
with the last assignment made is removed from its domain. Alternative meth-

30

2.3 Constraint Programming

ods involve checking the domains of variables that are not directly connected
with the assigned variables.

Although the default search typically consists of a Depth-Firt Search with
Chronological Backtracking and a propagation technique like Forward Check-
ing, other methods, such as local search and dynamic programming, can also
be used in a constraint programming solution algorithm.

31

Chapter 3

A constraint programming
approach for the premarshalling

problem

The Container Premarshalling Problem (CPMP) has received considerable at-
tention in the scientific literature. Section 2.2 in the previous chapter provides
a compilation of solution methods developed for this problem. While many of
these methods fall within the field of Operations Research, there have also been
recent proposals of Artificial Intelligence techniques. In this thesis, we investi-
gate the potential of Constraint Programming in addressing the premarshalling
problem.

This chapter introduces a constraint programming formulation that outper-
forms the current state-of-the-art integer programming model for the premar-
shalling problem. A significant observation from this study is the fundamen-
tally different logic behind model construction in constraint programming com-
pared to mixed integer linear programming. To illustrate this contrast, we
detail the development of the proposed model through a series of constraint
programming formulations. The study presented in this chapter corresponds
to Jiménez-Piqueras et al., 2023.

33

Chapter 3. A constraint programming approach for the premarshalling problem

3.1 CPMP: The Container Premarshalling Problem

The port yard serves as a temporary storage facility for containers awaiting
loading onto vessels or other means of transport, such as trains or trucks.
In this area, containers are arranged in parallel lines of stacks. These stacks
of containers are grouped into bays organized within blocks, as illustrated in
Figure 3.1.

Figure 3.1: An example of a port yard configuration.

The containers are organized in two blocks with four bays each. A block of containers is
highlighted in blue and a bay in yellow. In this example, each bay consists of five stacks
with four tiers. Source: Elaborated by the author (2024).

The essence of the CPMP lies in reorganizing containers within a bay to speed
up their subsequent retrieval from the yard. When the crane must access a
specific container for its retrieval, any containers placed above that one need
to be relocated to other stacks. Hence, if the bay is arranged so that these
relocations are not required, the retrieval process is expedited. Premarshalling
seeks to optimize this arrangement by strategically relocating containers before
the retrieval operation begins.

To formally define the CPMP, we distinguish between well-placed and badly
placed containers. A container is considered badly placed if it is either on top
of a container that needs to be retrieved before it or on top of another badly
placed container. Otherwise, the container is deemed well placed. We define
a bay as completely arranged if every container is well placed. In that case,
all the containers can be retrieved from the bay without requiring additional
relocations.

34

3.1 CPMP: The Container Premarshalling Problem

The classical container premarshalling problem aims to find a sequence of a
minimum number of container relocations to obtain a bay arrangement without
badly placed containers.

The assumptions for the CPMP include:

i) A single bay: The premarshalling process focuses solely on arranging one
bay of containers at a time.

ii) No containers entering/leaving the bay: The CPMP literature assumes
that no container can be retrieved from or introduced to the bay through-
out premarshalling. All the relocations occur within the bay, and the
initial set of containers remains unchanged until the bay arrangement is
complete. However, in practice, moving containers to another bay dur-
ing premarshalling is possible and may be advantageous, as discussed in
Chapter 4.

iii) Uniform container size: All the containers in the bay have identical dimen-
sions. In the CPMP, the sole distinguishing features between containers
are their positions in the bay and their expected retrieval time.

iv) Full information on retrieval times: It is assumed that complete infor-
mation regarding the order in which containers must leave the bay after
premarshalling is available and remains unchanged throughout the ar-
rangement process. However, in reality, the expected schedule may alter
due to delays in other port operations, as briefly discussed in Chapter 5.

v) A single crane: There is only one crane available for rearranging the bay,
capable of moving only one container at a time.

vi) Uniform movement cost: All relocations incur equivalent costs or dura-
tions. The value of a specific relocation is exclusively its potential to
reduce the total number of relocations. However, this assumption over-
looks the reality that crane travel distances vary among relocations, which
significantly impacts time. We tackle this discrepancy in Chapter 5.

vii) Unlimited crane availability: No condition limiting the crane availability
is assumed for the CPMP. However, the premarshalling is performed when
the crane is not needed for other tasks, and considering infinite availability
is unrealistic. We address the premarshalling assuming the existence of
a limit on crane time in Chapters 5 and 6.

35

Chapter 3. A constraint programming approach for the premarshalling problem

3.1.1 Notation

Let us introduce some formal notation. The dimensions of a bay are defined
by two parameters: s̄, representing the maximum number of stacks, and t̄,
indicating the maximum number of tiers or the maximum height of each stack.
The position of a container is denoted by a pair (s, t) ∈ S × T , where S :=
{1, 2, . . . , s̄} is the set of stacks, with s̄ being the right-most stack, and T :=
{1, 2, . . . , t̄} the set of tiers, where t̄ is the top tier. Let c̄ be the total number
of containers in the bay, and let C := {1, . . . , c̄} be the set of containers.

The problem’s input is a bay layout determined by the locations of the con-
tainers and their retrieval priority. Priorities indicate the expected order of
container retrieval from the bay after premarshalling: containers with priority
1 are retrieved first, followed by those with priority 2, and so on until priority
p̄, with p̄ being the total number of priority groups. Let us define the set of
priorities as P := {1, 2, . . . , p̄} and another set including 0 for empty slots,
P0 := {0, 1, 2, . . . , p̄}. A priority group p comprises the containers with re-
trieval priority p, and the total number of containers in this group is denoted
by mp.

A sequence of container movements or relocations defines a solution to the
CPMP. To determine the order of these movements, we use a set of stages K :=
{1, 2, . . . , k̄}. Each relocation occurs at a different stage, and the layout at stage
k results from the kth movement, performed during that stage. Therefore, a so-
lution can be represented as a sequence of pairs {(s, r)1, (s, r)2, . . . , (s, r)k, . . . ,
(s, r)k∗}, where (s, r)k indicates that the top container of stack s is moved to
the top of stack r at stage k, and k∗ ≤ k̄. It is crucial to note that the prob-
lem’s feasibility requires the total number of stages k̄ to be greater than or
equal to the optimal objective value. We introduce an additional stage labeled
0 to incorporate the initial bay layout, where no relocations occur. We define
an extended set that includes the initial stage: K0 := {0, 1, 2, . . . , k̄}.

Figure 3.2 illustrates an optimal solution example for a bay with four stacks
and four tiers. Five bay configurations are shown: the initial one at stage 0, and
the result of each of the four relocations defining the solution, {(3, 1)1, (2, 1)2,
(3, 2)3, (4, 3)4}. Containers are depicted as boxes labeled with their priority
group numbers. Badly placed containers are highlighted in blue. It is note-
worthy that in the final stage, all the containers are well placed.

36

3.2 Constraint programming models

Figure 3.2: An example of an optimal solution to the CPMP.

3

121

3552

4465

(3, 1) (2, 1) (3, 2) (4, 3)

1 2 3 4

3

112

3552

4465

31

12

3552

4465

31

152

352

4465

1

152

3352

4465

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1

2

3

4

1 2 3 40

The numbers at the bottom indicate the stages of the premarshalling solution. Number 0
corresponds to the initial one, 1 to 3 are intermediate stages, and 4 shows the final layout.
Stack numbers are indicated below each bay layout, and tier numbers appear next to the
initial one. Containers are represented as boxes with the numbers of their priority groups
inside, and badly placed containers are highlighted in blue. The available space for relocations
is shadowed in gray. The relocation performed at each stage is indicated in magenta by an
arrow and a pair (s, r) where s and r are the origin and destination stacks, respectively. The
relocated container is highlighted with a thick border, and a dot indicates its origin slot.
The indexes corresponding to the tiers are displayed on the left of the figure, and those for
the stacks are at the bottom of each bay layout. Source: Elaborated by the author (2024).

3.2 Constraint programming models

We have developed a constraint programming model for the CPMP. In this
section, we introduce the proposed formulation and the step-by-step construc-
tion process. We consider it interesting to present the building steps for two
main reasons: i) designing a constraint programming model typically demands
a distinct strategy compared to a mixed integer linear programming model; ii)
it facilitates understanding the final formulation and its complexity.

We describe a series of four constraint programming models, where the fourth
is the proposed one and the other three are previous steps for building it. The
models are named CPX, where X corresponds to the number of groups of
decision variables in the formulation. The first one, CP2, involves two sets of
variables, and CP3, CP4, and CP5 evolve from the preceding one in the series
by incorporating an additional group of decision variables and corresponding
constraints.

37

Chapter 3. A constraint programming approach for the premarshalling problem

3.2.1 CP2: Constraint programming model with 2 groups of
variables

At least two groups of variables are required to formulate the problem because,
for each stage, it is necessary to determine both the configuration of the bay
and the movement performed. The basic model CP2 is built using only these
two types of variables, xk

s,t and yk
s,t:

xk
s,t =

{
p If a container with priority p is in slot (s, t) at stage k
0 If slot (s, t) is empty at stage k

∀s ∈ S, ∀t ∈ T , ∀k ∈ K0

yk
s,t =

{
1 If a container is moved to slot (s, t) during stage k
0 Otherwise

∀s ∈ S, ∀t ∈ T , ∀k ∈ K

These two groups of variables are the same as those described in Rendl and
Prandtstetter, 2013, on which the CP2 model is loosely based. Unlike the
mathematical programming formulations of de Melo da Silva et al., 2018 and
Parreño-Torres et al., 2019, where the variables representing the bay configura-
tion are binary and indexed by the containers’ priorities, in CP2, these variables
are integer, taking values from the set of priorities.

The objective of the premarshalling problem is to minimize the number of
relocations required to arrange the bay. In terms of the decision variables
described above, it can be expressed as (3.1).

min
∑

s∈S, t∈T , k∈K

yk
s,t (3.1)

38

3.2 Constraint programming models

The CP2 model is formulated as follows:

x0
s,t = αx

s,t ∀s ∈ S, t ∈ T (3.2)

Count
(
xk
s,t : s ∈ S, t ∈ T , xk

s,t = p
)
= mp ∀p ∈ P0, k ∈ K (3.3)

xk̄
s,t+1 ≤ xk̄

s,t ∀s ∈ S, t ∈ T \ {t̄} (3.4)

xk
s,t+1 ≤ p̄ · xk

s,t s ∈ S, t ∈ T \ {t̄},
k ∈ K \ {k̄} (3.5)

xk−1
s,t ≤ xk

s,t + p̄ (xk
s,t == 0) s ∈ S, t ∈ T , k ∈ K (3.6)

xk
s,t ≤ xk−1

s,t + p̄ (xk−1
s,t == 0) s ∈ S, t ∈ T , k ∈ K (3.7)∑

s∈S, t∈T

yk
s,t ≤ 1 ∀k ∈ K (3.8)

yk
s,t ≤ xk

s,t ∀s ∈ S, t ∈ T , k ∈ K (3.9)

xk
s,t ≤ p̄ (yk

s,t + xk−1
s,t) s ∈ S, t ∈ T , k ∈ K (3.10)

xk−1
s,t ≤ p̄ (1− yk

s,t) s ∈ S, t ∈ T , k ∈ K (3.11)

yk
s,t ≤ xk+1

s,t s ∈ S, t ∈ T , k ∈ K \ {k̄} (3.12)

The problem’s input is the initial bay layout, determined for every slot (s, t) in
S×T by the container priorities and value 0 for empty slots. This configuration
is denoted by αx

s,t. The superscript x signifies that αx
s,t must be assigned to

variables x in the initial stage, as expressed by constraints (3.2). The bay
layout during the subsequent stages is defined by constraints (3.3) to (3.7).

The number of containers in the bay with a given priority remains constant
across all stages, as it is assumed the priority schedule does not change and no
containers are allowed to enter or leave the bay during premarshalling. This
condition is ensured by (3.3) through global constraints called Count. This
kind of global constraint imposes a particular value on a specific number of
variables from a given set. In this case, the number of variables xk

s,t assigned
a value p must be mp, the multiplicity of the priority group p.

Ensuring every container is well placed in the final configuration, i.e., no con-
tainer is stacked on top of another with an earlier retrieval time, is addressed by
(3.4). Constraints (3.5) avoid empty slots between containers within the same
stack by imposing that a slot (s, t) must be occupied if there is a container in
slot (s, t+ 1).

39

Chapter 3. A constraint programming approach for the premarshalling problem

When a slot is occupied during two consecutive stages, the container occupying
it must be the same across both stages, meaning the assigned priority must
remain unchanged. This is expressed by (3.6) and (3.7) using logical expres-
sions of the form (x == 0), that return value 1 when true (if x = 0), and 0
when false (if x > 0). Since (3.6) and (3.7) fix the priority of containers that
remain stationary and constraints (3.3) ensure a constant number of containers
in each priority group, it is guaranteed that the priority of the container being
moved is not altered during the relocation.

Constraints (3.8) to (3.12) address the conditions regarding the relocations.

The limit of at most one movement per stage corresponds to (3.8). Constraints
(3.9) ensure that when a container is moved to a slot during stage k, the slot
is occupied by a container at that stage. Constraints (3.10) impose that if a
container occupies a slot in stage k, it must either have been there during the
previous stage or moved to that slot in stage k. Constraints (3.11) express
that a container can only be moved to a slot in stage k if the slot was empty
during the previous stage.

Finally, (3.12) are included to discard solutions faster in the search process.
They indicate that when a container is moved to a slot, this slot must remain
occupied in the next stage. While this condition is not necessary for a feasible
solution, it is always satisfied by an optimal one. Ensuring that the same
container is not moved in consecutive stages leads to a more efficient solution,
as moving the same container in two consecutive stages can be accomplished
in just one relocation. This rule expressed in (3.12) is known as “transitive
move avoidance” (Tierney et al., 2016).

3.2.2 CP3: Constraint programming model with 3 groups of
variables

In the CP2 model, the bay configuration at each stage is described by variables
xk
s,t, which take integer values from the set of priorities P0. While integer-

valued variables are suitable for certain constraints, they are cumbersome for
others. Additionally, variables xk

s,t and yk
s,t are weakly related in the CP2

formulation. To address these issues, model CP3 is derived from CP2, including
a new set of binary variables, δks,t. Unlike xk

s,t, variables δks,t do not provide
information about priorities but simply indicate whether a slot is empty or
not:

40

3.2 Constraint programming models

δks,t =

{
1 If there is a container in slot (s, t) at stage k
0 If slot (s, t) is empty at stage k

∀s ∈ S, ∀t ∈ T , ∀k ∈ K0

In recent integer models, such as de Melo da Silva et al., 2018, and Parreño-
Torres et al., 2019, the layout is represented by 4-index binary variables. In
contrast, this approach uses two groups of 3-index variables: one binary, δks,t,
and the other integer, xk

s,t. While this results in far fewer variables, it requires
establishing the relationship between the two groups. Constraints (3.13) and
(3.14) are defined to this end, and the rest of the constraints in CP3 source
from CP2, included with exactly the same definition or rewritten using the
new variables introduced. Those remaining the same are (3.2), (3.3), (3.4)
and (3.8), and constraints defined by modifying CP2 constraints are (3.15) to
(3.21), as indicated in Table 3.1. The objective function described for CP2
(3.1) also applies to the CP3 model.

Table 3.1: Constraints from model CP2 substituted in model CP3.

CP2 (3.6) (3.7) (3.9) (3.10) (3.11) (3.12)

CP3 (3.15) (3.16) (3.17) (3.18) (3.19) (3.20) (3.21)

The first row of the table shows the constraints of model CP2 that have been substituted in
model CP3 with the corresponding constraints in the second row. Source: Jiménez-Piqueras
et al., 2023.

xk
s,t ≤ p̄ · δks,t ∀s ∈ S, t ∈ T , k ∈ K0 (3.13)

δks,t ≤ xk
s,t ∀s ∈ S, t ∈ T , k ∈ K0 (3.14)

xk−1
s,t ≤ xk

s,t + p̄
(
1− δks,t

)
∀s ∈ S, t ∈ T , k ∈ K (3.15)

xk
s,t ≤ xk−1

s,t + p̄
(
1− δk−1

s,t

)
∀s ∈ S, t ∈ T , k ∈ K (3.16)

yk
s,t ≤ δks,t ∀s ∈ S, t ∈ T , k ∈ K (3.17)

δks,t ≤ yk
s,t + δk−1

s,t ∀s ∈ S, t ∈ T , k ∈ K (3.18)

yk
s,t+1 + δk−1

s,t+1 ≤ δk−1
s,t ∀s ∈ S, t ∈ T \ {t̄}, k ∈ K (3.19)

yk
s,1 + δk−1

s,1 ≤ 1 ∀s ∈ S, k ∈ K (3.20)

yk
s,t ≤ δk+1

s,t ∀s ∈ S, t ∈ T , k ∈ K \ {k̄} (3.21)

41

Chapter 3. A constraint programming approach for the premarshalling problem

Constraints (3.13) and (3.14) are added to relate the integer variables x with
the new group of binary variables δ. These constraints ensure that δks,t takes
the value 0 when xk

s,t is 0, and 1 when xk
s,t is positive.

The constraints that use the information about whether a slot is occupied or
not change from CP2 to CP3 because it is easier and more precise to write
them in terms of variables δ instead of x. Following this idea, the constraints
listed in Table 3.1 are substituted accordingly.

Constraints (3.15) and (3.16) are derived from (3.6) and (3.7) of CP2 by replac-
ing the logical expression involving variables x by a linear expression in terms
of δ. They express the same condition in both models: the priority associated
with a slot must be the same in consecutive stages if no container is placed or
removed.

To ensure that the destination slot of the container relocated at a stage becomes
occupied in that stage, CP3 includes constraints (3.17) instead of (3.9), as the
information provided by binary variables δ is sufficient, eliminating the need
for integer variables x. Similarly, constraints (3.10) are substituted with (3.18),
which express that an occupied slot at stage k must either have been occupied
in k − 1 or that a container was moved into it at k.

Constraints (3.11) from CP2 are substituted with (3.19) and (3.20) in CP3.
In constraints (3.19), not only variables xk

s,t are replaced with δks,t, but also
the term δk−1

s,t is incorporated to enhance the constraints: (3.19) impose that a
container can only be moved to slot (s, t) if it was empty during the previous
stage, as in (3.11), while also requiring that slot (s, t − 1) was occupied. The
additional term cannot apply to constraints for the first tier, and thus (3.20)
are introduced for that case.

Constraints (3.12) are replaced by (3.21), which express the transitive move
avoidance using variables δ instead of x.

Constraints (3.5) were included in CP2 to prevent empty slots between contain-
ers within the same stack. However, this condition is covered by constraints
(3.19) in CP3, and (3.5) are not needed.

42

3.2 Constraint programming models

3.2.3 CP4: Constraint programming model with 4 groups of
variables

In the previous models, we introduced variables yk
s,t that identify the slot to

which a container is moved. In CP4, the definition of the movements is more
precise due to a new group of variables that indicate the origin slot of a relo-
cation:

zks,t =

{
1 If a container is removed from slot (s, t) during stage k
0 Otherwise

∀s ∈ S, ∀t ∈ T , ∀k ∈ K

Adding variables zks,t allows a stronger connection between the variables that
describe the bay configuration and those determining the movements. Varia-
bles that identify the origin slot of each relocation are also used in the integer
programming models proposed by de Melo da Silva et al., 2018, and Parreño-
Torres et al., 2019.

The objective function (3.1) remains suitable for CP4, although an equivalent
one using variables zks,t could also be employed. The constraints in model
CP4 include (3.2) to (3.4), (3.8), (3.13) to (3.16), (3.20) and (3.21) from the
previous models. Also, some constraints from CP3 are extended in CP4 to the
new variables, namely (3.22), (3.25) and (3.26), or are reformulated by using
these variables, (3.23) and (3.24). The connection between these constraints
and those from CP3 is specified in Table 3.2. Additionally, the CP4 formulation
incorporates (3.27) and (3.28) to include extra conditions to expedite the search
for solutions.

Table 3.2: Constraints from model CP3 substituted in model CP4.

CP2 (3.8) (3.10) (3.11)
CP3 (3.8) (3.18) (3.19) (3.20)
CP4 (3.8) (3.22) (3.23) (3.24) (3.20) (3.25) (3.26)

The first rows show the constraints of models CP2 and CP3 that have been substituted in
model CP4 with the corresponding constraints in the bottom row, or that remain but are
extended with additional constraints using the new variables introduced in CP4. Source:
Jiménez-Piqueras et al., 2023.

43

Chapter 3. A constraint programming approach for the premarshalling problem

∑
s∈S, t∈T

zks,t ≤ 1 ∀k ∈ K (3.22)

δks,t + zks,t = yk
s,t + δk−1

s,t ∀s ∈ S, t ∈ T , k ∈ K (3.23)

yk
s,t+1 + δk−1

s,t+1 + zks,t ≤ δk−1
s,t ∀s ∈ S, t ∈ T \ {t̄}, k ∈ K (3.24)

zk+1
s,t̄ + yk

s,t̄ ≤ δks,t̄ ∀s ∈ S, k ∈ K \ {k̄} (3.25)

z1s,t̄ ≤ δ0s,t̄ ∀s ∈ S (3.26)∑
t∈T

yk
s,t +

∑
t∈T

zk+1
s,t ≤ 1 ∀s ∈ S, k ∈ K \ {k̄} (3.27)

∑
t∈T

(
zks,t + yk

v,t + zk+1
u,t + yk+1

r,t

)
≤ 3 ∀s ∈ S, v ∈ S \ {s},

u ∈ S : u < s ∧ u ̸= v,

r ∈ S \ {s, v, u}, k ∈ K \ {k̄} (3.28)

A new group of constraints analogous to (3.8) is introduced for variables z,
(3.22). It expresses that, at most, one container can be removed from its slot
at each stage.

Incorporating variables z into the model enables the strengthening of certain
constraints, such as (3.18) and (3.19), which are replaced by (3.23) and (3.24),
respectively. Specifically, (3.23) are obtained by including the term zks,t in
(3.18), which allows to impose the equality between the two sides of the con-
straints. Constraints (3.23) and (3.24) regulate the correspondence between
empty and occupied slots and placing or retrieving containers, while (3.18) and
(3.19) only address the placing of containers.

In particular, constraints (3.24) impose the condition that a container can only
be retrieved from a slot that was occupied at the previous stage. Constraints
(3.20), which complements (3.19) for the first tier in CP3, are maintained, and
analogous constraints for variables z are added to the formulation: (3.25) and
(3.26). In (3.25), the term yk

s,t̄ is not necessary, but it narrows the range of
possible values for zk+1

s,t̄ . While these constraints without yk
s,t̄ only indicate that

a container cannot be removed from an empty slot, including yk
s,t̄ also express

that a container moved to a slot in stage k cannot be removed from that slot
during stage k+1. However, the term yk

s,t̄ cannot be included in the constraints
for the initial stage, and we define (3.26) for this case.

44

3.2 Constraint programming models

Constraints (3.17) are omitted in CP4 because the condition that the destina-
tion slot of a relocation must become occupied is already imposed by (3.23),
(3.24), (3.20), (3.25) and (3.26) combined.

Two new groups of constraints are introduced to discard symmetries and infea-
sible solutions earlier. (3.27) impose that when a container is moved to a stack,
no container can be removed from that stack in the next stage. Constraints
(3.28) serve to break symmetries. Specifically, if r, s, u, v are four different
stacks, the sequences of relocations {(r, s)k, (u, v)k+1} and {(u, v)k, (r, s)k+1}
produce an identical result. Constraints (3.28) allow only the first sequence,
thus addressing this symmetry.

3.2.4 CP5: Constraint programming model with 5 groups of
variables

In the final formulation CP5, the group of variables wk
s,t is incorporated to iden-

tify the badly placed containers at each stage. More precisely, these variables
indicate whether there is a badly placed container in a slot or not.

wk
s,t =

{
1 If there is a badly placed container in (s, t) during stage k
0 Otherwise

∀s ∈ S, ∀t ∈ T , ∀k ∈ K

The target of premarshalling is to relocate the badly placed containers so they
become well placed. Therefore, information about where and how many badly
placed containers are is extremely valuable. The number of badly placed con-
tainers in the initial bay layout is a lower bound for the number of relocations
of any premarshalling solution. Moreover, this principle applies to each pre-
marshalling stage, where the number of badly placed containers is a lower
bound for the minimum number of movements necessary to complete the bay’s
arrangement from that layout. Consequently, using variables wk

s,t allows us to
detect solutions where the lower bound at a particular stage exceeds the num-
ber of movements still to be conducted, which clearly indicates infeasibility.
Hence, these variables facilitate the early elimination of infeasible solutions
during the search process. To the best of our knowledge, variables of this type
have not been used in previous models in the literature. They are a salient
feature of CP5 since they significantly improve the formulation.

45

Chapter 3. A constraint programming approach for the premarshalling problem

The CP5 formulation comprises the objective function (3.1), all constraints
from model CP4 except for (3.4), and constraints (3.29) to (3.34), which use
variables w.

xk
s,t+1 ≤ xk

s,t + p̄ · wk
s,t+1 ∀s ∈ S, t ∈ T \ {t̄}, k ∈ K (3.29)

wk
s,t + δks,t+1 ≤ wk

s,t+1 + 1 ∀s ∈ S, t ∈ T \ {t̄}, k ∈ K (3.30)

wk
s,t ≤ δks,t ∀s ∈ S, t ∈ T , k ∈ K (3.31)

wk
s,1 = 0 ∀s ∈ S, k ∈ K (3.32)

xk
s,t + 1 ≤ xk

s,t+1

+ (p̄+ 1) · (1− wk
s,t+1 + wk

s,t) ∀s ∈ S, t ∈ T \ {t̄}, k ∈ K (3.33)∑
s∈S,t∈T

wk
s,t + k ≤ k̄ ∀k ∈ K (3.34)

Constraints (3.29) to (3.33) specify which slots are occupied or not by badly
placed containers. Constraints (3.29) express that if a container is on top of
another container with an earlier retrieval time, it is badly placed. Constraints
(3.30) impose that if there is a badly placed container in slot (s, t) and slot
(s, t+ 1) is occupied, then the container in slot (s, t+ 1) is also badly placed.
There cannot be badly placed containers in empty slots or the first tier, as
indicated by (3.31) and (3.32), respectively. Constraints (3.33) ensure that
if there are no badly placed containers in slot (s, t) and no container with a
higher priority in (s, t + 1), then there is no badly placed container in slot
(s, t+ 1).

Introducing variables w serves to enforce that the number of badly placed
containers at each stage does not exceed the number of remaining stages, which
is the maximum number of movements that can still be performed. This is a
necessary condition for every feasible solution and enhances the formulation
reducing the range of possibilities to explore to build a solution. It is included
in CP5 through constraints (3.34), which impose that the number of badly
placed containers at each stage must be less than or equal to the number of
subsequent stages.

Constraints (3.4), which specify that there must be no badly placed container
in the last stage, are not included in the CP5 model. This condition is already
implied by the combination of constraints (3.29) and (3.30), which identify
badly placed containers, and (3.34), which limit the number of them at each
stage.

46

3.2 Constraint programming models

3.2.5 Solution method

A straightforward method for solving the proposed constraint programming
models could be the solution procedure proposed by de Melo da Silva et al.,
2018. In this approach, the number of stages is fixed to an upper bound for the
number of relocations needed to arrange the bay. A solver is then employed
to find a solution that minimizes the objective function value. However, the
optimization model may become significantly large in the absence of a tight
upper bound for use as a fixed number of stages. Obtaining tight upper bounds
for the premarshalling problem is tough and requires complex metaheuristic
algorithms. Hence, a method that does not rely on an upper bound would be
desirable.

An alternative approach in the CPMP literature that does not need an upper
bound is the iterative algorithm used by Parreño-Torres et al., 2019, and Rendl
and Prandtstetter, 2013. Each iteration involves solving the problem given a
specific number of stages k̄. In the first iteration, k̄ is set to a lower bound for
the number of relocations needed to arrange the bay entirely. If an infeasibility
is encountered, the algorithm iterates, incrementing k̄ by one and solving the
problem with k̄ stages. Essentially, the algorithm begins with a lower bound
for the minimization objective function and updates it until a feasible solution
is found. Consequently, once a feasible solution is obtained, the algorithm
terminates, as this solution is optimal.

The iterative algorithm offers a notable advantage over the first approach dis-
cussed in this section by relying on a lower bound rather than an upper bound
for the number of container movements since high-quality lower bounds are
available for the CPMP. To our knowledge, the most refined lower bound in
the literature is the one introduced by Tanaka et al., 2019, which has been
demonstrated to be very tight. This lower bound is an enhancement of the one
developed by Tanaka and Tierney, 2018, which builds upon the lower bound
proposed by Bortfeldt and Forster, 2012.

We choose the iterative algorithm approach for solving the constraint pro-
gramming models presented in the previous sections for two main reasons: the
availability of a tight lower bound (together with the absence of a tight up-
per bound) and the generally better performance of constraint programming
in solving satisfaction problems compared to optimization problems. At each
iteration of the algorithm, setting the number of stages to the best lower bound
for the number of relocations restricts the range of possible values for the ob-
jective function to a singleton. In other words, a satisfaction problem must be
solved at each iteration, given a fixed value for the objective.

47

Chapter 3. A constraint programming approach for the premarshalling problem

The proposed solution method for models CP2 to CP5 employs a constraint
programming solver to find a feasible solution given a fixed objective value.
However, instead of the solver’s optimization algorithm, we use the iterative
algorithm described above. For this purpose, we omit the objective function
(3.1) and provide a satisfaction problem for the solver at each iteration. Addi-
tionally, since the number of stages corresponds to the number of relocations
for the problem to solve at any iteration, we replace constraints (3.8) by (3.35)
in CP2 to CP5, and substitute (3.22) with (3.36) in CP4 and CP5. This way,
more information is available for the solver to make the value selection for
decision variables and the propagation.∑

s∈S, t∈T

yk
s,t = 1 ∀k ∈ K (3.35)

∑
s∈S, t∈T

zks,t = 1 ∀k ∈ K (3.36)

Several approaches were tested during the design of the solution method before
choosing the final one described above. Further details on these unsuccessful
alternatives are provided in Section 3.3.4.

3.3 Computational experiments

The models introduced in the previous sections have been analyzed through
an extensive computational study on four datasets described in Section 3.3.1:
BZ, ZJY, EMM, and CV.

These experiments serve multiple purposes: to validate the formulations pre-
sented in this chapter, to assess the performance differences from CP2 to CP5,
and to compare the final model, CP5, with the integer programming model
proposed by Parreño-Torres et al., 2019, referred to as IPS6.

Furthermore, we contrast CP5 with an equivalent mathematical programming
model formulation CP5IP. Analogously, we compare IPS6 with its constraint
programming version IPS6CP. This analysis allows us to investigate how solv-
ing similar formulations with the two different techniques, constraint program-
ming and mathematical programming, affects the results.

In addition to the experiments, we also compare the sizes of the four constraint
programming models to observe the impact of incorporating each new group
of variables.

48

3.3 Computational experiments

3.3.1 Technical details of the experiments

All the solution methods presented in this thesis have been tested through
computational experiments to evaluate their performance.

The experiments are executed with a time limit of 3600 seconds. We use virtual
machines equipped with four processors and 16 GBytes of RAM, operating
within an OpenStack virtualization cluster supported by several servers in 1U
blade configuration. Each server contains two Intel Xeon Gold 5220 processors,
with 18 cores each, running at 2.2 GHz and 384 GBytes of RAM.

The models and algorithms are implemented using IBM ILOG CPLEX Op-
timization Studio. We use the IBM solver CP Optimizer for the constraint
programming models and CPLEX for the mathematical programming models,
both at version 20.1.0, the latest version available during the development of
this thesis.

Four well-known datasets from the literature on the premarshalling problem
are used in the experiments and are described below. Each instance consists
of a bay of containers with information about retrieval priorities.

BZ dataset

The BZ dataset from van Brink and van der Zwaan, 2014, contains 960 in-
stances. There are sixteen categories with varying bay dimensions and fill
percentages (the rate of occupied slots). The number of stacks is 3, 5, 7, or 9,
the number of tiers is 4 or 6, and the fill percentages are 50% or 70%. Each cat-
egory includes sixty instances, where the containers are classified into 2, 3, or
6 priority levels (twenty instances of each type). The distribution of containers
in the bay varies among the instances.

ZJY dataset

The ZJY dataset, generated by Zhang et al., 2015, consists of 100 instances.
There are four categories with 4 tiers and 6, 7, 8, or 9 stacks, and one category
with 5 tiers and 6 stacks. The container fill percentage is 70% for all categories.
Zhang et al., 2015, do not provide the details of how these instances were
generated. We observe that multiple containers in the bay may have the same
priority. Also, we can see that not all stacks are filled with the same number
of containers, and there may be one or two empty slots per stack.

49

Chapter 3. A constraint programming approach for the premarshalling problem

EMM dataset

The EMM dataset was initially generated by Expósito-Izquierdo et al., 2012,
and later by Tierney et al., 2016, after the original set was lost. We considered a
set of 450 instances from this group and selected only those instances for which
the initial bay layout was not already arranged, resulting in 417 instances. All
the bays have 4 tiers, and 4, 7, or 10 stacks. For the same bay dimensions,
there are instances with fill percentages of 50% and others with 75%, making
a total of six instance categories.

CV dataset

The CV dataset was generated by Caserta and Voß, 2009. We consider 320
instances from this dataset. They are divided into categories comprising forty
instances, with bay dimensions of 3 to 8 stacks with 5 tiers, and 4 and 5 stacks
with 6 tiers. Additionally, for the experiments in this chapter, we consider
two categories with 6 and 7 stacks and 6 tiers. Unlike the other datasets in
this study, in the CV dataset, all containers in the bay have distinct retrieval
priorities. The stacks are filled with the same number of containers, and two
additional empty tiers are included in the dimensions described above. The
container fill percentage is 60% for instances with 5 tiers and near 70% for
categories with 6 tiers.

3.3.2 Size of the CP models

The number of variables and constraints for each CP model presented in this
chapter depends on several factors: the number of stacks and tiers of the bay,
the number of stages, and the number of priority groups. Table 3.3 shows these
figures for the instances with the largest dimensions in each dataset.

Regarding the number of stages k̄, we have considered the lower bound for the
number of movements, i.e., the number of stages used in the first iteration of
the algorithm described in Section 3.2.5. Since there are several instances with
the same values of the parameters s̄, t̄, and p̄, but varying in lower bound, we
have chosen the largest lower bound value to obtain the figures in Table 3.3.

We can observe a gradual increase in the number of variables from one model to
the next in the series. However, the number of constraints experiences a sharp
increase from model CP3 to CP4 due to the addition of constraints (3.28). It
should be noted that, despite the augmentation in model size, (3.28) serve to
break symmetries and accelerate the search process.

50

3.3 Computational experiments

Table 3.3: Size of the CP models.

#Variables #Constraints

Dataset s̄ t̄ k̄ p̄ CP2 CP3 CP4 CP5 CP2 CP3 CP4 CP5

BZ 9 6 27 6 2,970 4,482 5,940 7,398 10,179 12,033 50,391 55,719
ZJY 9 4 17 10 1,260 1,908 2,520 3,132 4,335 5,199 29,093 31,225
EMM 10 4 28 8 2,280 3,440 4,560 5,680 7,840 9,350 76,848 80,766
CV 7 6 27 28 2,310 3,486 4,620 5,754 8,559 10,001 20,185 24,335

Number of variables and constraints for the instances with the largest dimensions in each
dataset, namely the number of stacks, s̄, tiers, t̄, priority groups, p̄, and stages, k̄. Source:
Jiménez-Piqueras et al., 2023.

3.3.3 Performance of models CP2, CP3, CP4 and CP5

The results obtained from the four datasets reveal that each of the constraint
programming models developed in this study outperforms its predecessor in
the modeling process. In other words, with the addition of each new group of
decision variables and the corresponding constraints, the formulation improves.
Tables 3.4 to 3.7 present these results for each dataset. The results progression
from CP2 to CP5 is evident: the total number of solved instances significantly
increases, and the average running time on the instances solved by the four
models experiences a dramatic decrease.

The increase in solved instances from the most basic model to the most complex
one is clear in all four tables. Particularly notable is the performance on the
CV dataset, which contains the most difficult instances: CP2 solves fewer
than 25% of the instances, whereas CP5 solves more than 70% of them within
an hour, as shown in Table 3.7. Similarly, there is a significant performance
difference for the ZJY instances, as depicted in Table 3.5, where CP2 solves
26% of the instances compared to CP5, which solves 93%.

Although the total number of instances solved increases from CP2 to CP5,
the dominance of the models is not strict. There are a few instances that are
solved by a given model but not by every following model in the series. For
example, in Table 3.4 for the BZ dataset, the number of instances solved by
all the models is lower than the number of instances solved by CP2 (779 vs.
790). Similarly, for the EMM dataset in Table 3.6, we observe there are 308
instances solved by all the models compared to 313 instances solved by CP2.

51

Chapter 3. A constraint programming approach for the premarshalling problem

The running time for the instances solved by all four models experiences an
enormous decrease from the initial formulation to the final one. For the ZJY
and CV datasets, the time is more than 75 times greater for CP2 than for
CP5, and more than 20 times greater regarding the BZ and EMM instances.
It is important to note that the BZ and EMM datasets contain some groups
of instances that are easily solved by the first model in the series, and hence,
there is little room for improvement in the corresponding running times.

Table 3.4: Performance of models CP2, CP3, CP4, and CP5 on the BZ dataset.

#Optimal Average time (s)

s̄ t̄ % #Inst. CP2 CP3 CP4 CP5 All CP2 CP3 CP4 CP5

3 4 50 60 60 60 60 60 60 0.3 0.3 0.3 0.3
3 4 70 60 60 60 60 60 60 1.5 1.0 0.6 0.7
3 6 50 60 60 60 60 60 60 7.2 2.1 0.8 0.7
3 6 70 60 60 60 60 60 60 248.4 28.0 9.0 9.9
5 4 50 60 60 60 60 60 60 0.5 0.4 0.3 0.3
5 4 70 60 60 60 60 60 60 8.4 3.9 1.3 0.9
5 6 50 60 56 57 60 60 56 77.1 20.9 2.0 1.0
5 6 70 60 32 34 46 51 30 454.2 118.2 8.9 6.0
7 4 50 60 60 60 60 60 60 2.0 1.5 0.6 0.6
7 4 70 60 59 59 60 60 59 64.2 17.2 4.3 2.3
7 6 50 60 50 50 56 60 48 196.2 63.6 4.1 2.1
7 6 70 60 19 25 33 42 18 420.3 109.7 14.5 8.7
9 4 50 60 60 60 60 60 60 17.6 9.4 1.9 1.8
9 4 70 60 50 50 60 60 47 153.6 109.3 28.3 6.0
9 6 50 60 39 43 58 60 36 107.9 87.9 9.3 8.1
9 6 70 60 5 10 25 33 5 164.0 178.9 13.3 9.3

Total 960 790 808 878 906 779 87.0 29.2 4.8 2.8

Results on the instances from the BZ dataset, classified by the number of stacks, s̄, the
number of tiers, t̄, and the fill percentage (%) of the bay. #Inst. refers to the number of
instances in each group. Columns #Optimal show the number of instances optimally solved
by each model. In the columns on the right, the average running time is displayed for the
instances solved by all the models, i.e., those indicated in column All. The best values are
shown in bold. Source: Jiménez-Piqueras et al., 2023.

52

3.3 Computational experiments

Table 3.5: Performance of models CP2, CP3, CP4, and CP5 on the ZJY dataset.

#Optimal Average time (s)

s̄ t̄ #Inst. CP2 CP3 CP4 CP5 All CP2 CP3 CP4 CP5

6 4 20 9 14 19 20 9 452.1 78.1 7.1 4.0
6 5 20 1 2 9 15 1 2201.2 343.2 17.0 22.3
7 4 20 6 10 17 19 6 1622.6 426.5 12.4 5.5
8 4 20 8 10 14 20 8 295.0 324.4 10.1 5.2
9 4 20 2 6 9 19 2 197.8 323.5 8.1 6.1

Total 100 26 42 68 93 26 721.6 263.4 9.7 5.6

Results on the instances from the ZJY dataset, classified by the number of stacks of the
bay, s̄, and the number of tiers, t̄. #Inst. refers to the number of instances in each group.
Columns #Optimal show the number of instances optimally solved by each model. In the
columns on the right, the average running time is displayed for the instances solved by all
the models, i.e., those indicated in column All. The best values are shown in bold. Source:
Jiménez-Piqueras et al., 2023.

Table 3.6: Performance of models CP2, CP3, CP4, and CP5 on the EMM dataset.

#Optimal Average time (s)

s̄ % #Inst. CP2 CP3 CP4 CP5 All CP2 CP3 CP4 CP5

4 50 58 58 58 58 58 58 0.3 0.3 0.3 0.3
4 75 65 65 65 65 65 65 147.2 31.7 12.5 15.0
7 50 69 69 69 69 69 69 7.9 4.0 1.4 1.0
7 75 75 33 39 50 55 32 265.4 68.4 13.7 9.6
10 50 75 73 70 75 75 70 168.4 87.5 6.8 4.0
10 75 75 15 19 27 40 14 391.9 97.9 15.2 10.3

Total 417 313 320 344 362 308 116.6 39.1 6.7 5.8

Results on the instances from the EMM dataset, classified by the number of stacks, s̄, the
number of tiers, t̄, and the fill percentage (%) of the bay. #Inst. refers to the number of
instances in each group. Columns #Optimal show the number of instances optimally solved
by each model. In the columns on the right, the average running time is displayed for the
instances solved by all the models, i.e., those indicated in column All. The best values are
shown in bold. Source: Jiménez-Piqueras et al., 2023.

53

Chapter 3. A constraint programming approach for the premarshalling problem

Table 3.7: Performance of models CP2, CP3, CP4, and CP5 on the CV dataset.

#Optimal Average time (s)

s̄ t̄ #Inst. CP2 CP3 CP4 CP5 All CP2 CP3 CP4 CP5

3 5 39 39 39 39 39 39 76.0 13.6 5.4 3.8
4 5 40 35 40 40 40 35 316.8 54.3 7.3 4.1
5 5 40 17 31 37 39 17 731.4 122.5 10.0 4.7
6 5 40 4 11 28 39 4 519.3 137.0 15.5 4.4
7 5 40 2 5 12 36 2 1852.3 136.4 11.5 5.8
8 5 40 0 2 9 30 0 - - - -
4 6 40 5 16 32 31 5 284.7 45.6 8.6 6.7
5 6 40 0 1 7 17 0 - - - -
6 6 40 0 0 1 10 0 - - - -
7 6 40 0 0 0 0 0 - - - -

Total 399 102 145 205 281 102 330.3 54.5 7.5 4.3

Results on 400 instances from the CV dataset, classified by the number of stacks of the bay,
s̄, and the number of tiers, t̄. #Inst. refers to the number of instances in each group, where
one instance is omitted for being the initial bay layout already arranged. Columns #Optimal
show the number of instances optimally solved by each model. In the columns on the right,
the average running time is displayed for the instances solved by all the models, i.e., those
indicated in column All. The best values are in bold. Source: Jiménez-Piqueras et al., 2023.

The cumulative effect of the enhanced models, progressing from CP2 to CP5,
on attaining optimal solutions is summarized in Table 3.8. This table presents
the percentage of optimal solutions achieved by each model across the four
datasets. The results vary depending on the datasets’ difficulty, with BZ being
the easiest to solve and CV being the most challenging. Let us analyze how
the differences between the models explain the data in Table 3.8.

The values in the CP2 column reflect that, although the formulation is correct,
the relationship between the integer variables describing the bay configuration,
xk
s,t, and the binary variables indicating the destination slot of a relocation, yk

s,t,
is rather loose and the model cannot yield a solution in numerous instances.

By introducing a new group of binary variables for identifying the occupied
slots, δks,t, in the CP3 model, the relationship between variables is strengthened,
resulting in improved outcomes across all datasets, with an average increase of
7.5% in optimal solutions.

In the CP4 model, the introduction of variables zks,t, which denote the origin
of each movement, reinforces the connection between container positions and

54

3.3 Computational experiments

relocations in the formulation. This enhancement yields an average increase of
13.2% in optimal solutions.

The CP5 model includes an additional set of variables, wk
s,t, to identify the

badly placed containers, enabling earlier detection of infeasible solutions. Con-
sequently, the performance of the constraint programming solver improves,
leading to an average increase of 13% more optimal solutions and consolidat-
ing this formulation as the best proposal.

Table 3.8: Percentage of optimal solutions achieved by models CP2, CP3, CP4, and CP5.

Percentage of optimal solutions

Dataset CP2 CP3 CP4 CP5

BZ 82 84 91 94
ZJY 26 42 68 93
EMM 75 77 82 87
CV 26 36 51 70

Percentage of optimal solutions achieved by models CP2, CP3, CP4, and CP5 across the
four datasets. Source: Jiménez-Piqueras et al., 2023.

3.3.4 Performance of the algorithm

The iterative algorithm employed for the CP models is detailed in Section 3.2.5.
At each iteration, a satisfaction problem is solved for a fixed number of pre-
marshalling relocations. The algorithm iterates until a solution is found or the
3600s running time limit is reached.

The average number of iterations the algorithm performs varies depending on
the dataset, ranging from 1.2 to 2.1. It conducts a maximum of 6 iterations
on the CV instances and 9 on the BZ dataset. These figures are derived from
the results obtained using the best model we propose, CP5.

As mentioned in section 3.2.5, we conducted several tests before settling on
the proposed solution method.

One test we performed involved solving the CP5 model by providing the con-
straint programming solver with an optimization problem instead of a satis-
faction problem, as in the iterative algorithm. The formulation used is the
one described in Section 3.2.4, including its objective function. This approach

55

Chapter 3. A constraint programming approach for the premarshalling problem

resulted in a dramatic decrease in optimal solutions, with most feasible solu-
tions being of poor quality. These results underscore the effectiveness of the
iterative algorithm compared to the solver’s optimization procedure for the
proposed CP models.

We also explored an alternative version of the iterative algorithm using a bi-
nary search instead of incrementing the number of stages k̄ by one at each
iteration. However, while this approach could be interesting when having simi-
lar tightness of upper and lower bounds, it proved ineffective for addressing
the premarshalling problem, for which only tight lower bounds are available.
In contrast, the iterative algorithm we selected leverages the tightness of the
lower bound, using it as the starting point for the solution search.

3.3.5 Comparison with the state-of-the-art integer programming
model and between constraint programming and
mathematical programming approaches

We have implemented the state-of-the-art integer programming model IPS6
from Parreño-Torres et al., 2019, and compared the results with those of the
constraint programming model we propose, CP5.

Additionally, to explore the differences between constraint programming and
mathematical programming, we have built an integer programming version of
CP5, denoted as CP5IP, and adapted IPS6 to constraint programming, IPS6CP.

To ensure a fair comparison, all the models have been solved under the same
conditions using the iterative algorithm described in Section 3.2.5.

The formulation of IPS6CP is the same as IPS6, with the only difference being
that when solved using constraint programming, the decision variables describ-
ing the relocations are specified as integer variables instead of being relaxed as
for IPS6.

The formulation of model CP5IP is the same as CP5, except for the set of
non-linear constraints (3.3), which are substituted with (3.37). Also, like for
CP5, the objective function is not included in CP5IP when using the algorithm.
Constraints (3.37) indicate that the sum of the priorities assigned to the slots
in the bay must be the same for any pair of consecutive stages. This condition,
combined with the analogous constraints for containers that remain stationary,
namely (3.15) and (3.16), ensures that the priority of the container that is
relocated does not change. Hence, including constraints (3.37) in CP5IP implies

56

3.3 Computational experiments

that the multiplicities of the priority groups remain unchanged throughout the
premarshalling process, as constraints (3.3) do in CP5.∑

s∈S,t∈T

xk
s,t =

∑
s∈S,t∈T

xk−1
s,t ∀k ∈ K (3.37)

Tables 3.9 to 3.12 compare the number of instances optimally solved by the four
models, CP5, IPS6, and their integer and constraint programming versions,
respectively. Also, the average running time is displayed for the instances
solved by all four models.

Table 3.9: Comparison between constraint programming and mathematical programming
models on the BZ dataset.

#Optimal Average time (s)

s̄ t̄ % #Inst. CP5 IPS6 CP5 IP IPS6CP All CP5 IPS6 CP5 IP IPS6CP

3 4 50 60 60 60 60 60 60 0.3 0.3 0.2 0.6
3 4 70 60 60 60 60 60 60 0.7 1.7 1.0 25.7
3 6 50 60 60 60 60 60 60 0.7 4.0 1.6 68.4
3 6 70 60 60 60 60 47 47 2.2 10.3 6.6 573.5
5 4 50 60 60 60 60 60 60 0.3 0.5 0.4 3.6
5 4 70 60 60 60 60 60 60 0.9 2.0 2.9 112.9
5 6 50 60 60 60 60 60 60 1.7 11.3 35.3 516.8
5 6 70 60 51 45 38 30 30 6.0 13.3 102.8 1915.0
7 4 50 60 60 60 60 60 60 0.6 0.8 1.1 12.7
7 4 70 60 60 60 59 60 59 2.3 4.7 68.2 847.3
7 6 50 60 60 58 54 56 53 3.3 10.2 209.3 1121
7 6 70 60 42 39 23 30 23 14.2 96.4 570.5 2457.8
9 4 50 60 60 60 59 60 59 1.6 1.0 17.2 143.9
9 4 70 60 60 60 48 60 48 5.6 16.4 414.2 1509.3
9 6 50 60 60 60 41 58 41 7.6 29.7 355.1 2264.6
9 6 70 60 33 38 3 21 3 6.6 4.4 52.0 3600.2

Total 960 906 900 805 842 783 2.5 9.2 89.1 612.2

Results on the instances from the BZ dataset, classified by the number of stacks, s̄, the
number of tiers, t̄, and the fill percentage (%) of the bay. #Inst. refers to the number of
instances in each group. Columns #Optimal show the number of instances optimally solved
by each model. In the columns on the right, the average running time is displayed for the
instances solved by all the models, i.e., those indicated in column All. The best values are
shown in bold. Source: Jiménez-Piqueras et al., 2023.

57

Chapter 3. A constraint programming approach for the premarshalling problem

Table 3.10: Comparison between constraint programming and mathematical programming
models on the ZJY dataset.

#Optimal Average time (s)

s̄ t̄ #Inst. CP5 IPS6 CP5 IP IPS6CP All CP5 IPS6 CP5 IP IPS6CP

6 4 20 20 20 15 10 10 4.4 24.6 291.8 1642.0
6 5 20 15 10 1 2 0 - - - -
7 4 20 19 18 13 13 13 10.6 89.8 725.4 3148.3
8 4 20 20 17 9 14 9 6.7 18.1 617.7 1658.0
9 4 20 19 17 3 10 3 7.0 12.2 1352.0 1003.6

Total 100 93 82 41 49 35 7.5 46.1 627.5 2150.9

Results on the instances from the ZJY dataset, classified by the number of stacks of the
bay, s̄, and the number of tiers, t̄. #Inst. refers to the number of instances in each group.
Columns #Optimal show the number of instances optimally solved by each model. In the
columns on the right, the average running time is displayed for the instances solved by all
the models, i.e., those indicated in column All. The best values are shown in bold. Source:
Jiménez-Piqueras et al., 2023.

Table 3.11: Comparison between constraint programming and mathematical programming
models on the EMM dataset.

#Optimal Average time (s)

s̄ % #Inst. CP5 IPS6 CP5 IP IPS6CP All CP5 IPS6 CP5 IP IPS6CP

4 50 58 58 58 58 58 58 0.3 0.3 0.2 0.4
4 75 65 65 65 65 40 40 0.7 1.7 1.6 23.2
7 50 69 69 69 69 69 69 1.0 1.2 7.8 199.4
7 75 75 55 50 38 40 38 7.1 240.8 364.3 1084.4
10 50 75 75 75 72 75 72 4.3 2.2 178.9 1176.8
10 75 75 40 43 13 29 13 9.4 28.0 616.4 1492.4

Total 417 362 360 315 311 290 2.8 33.9 121.9 551.9

Results on the instances from the EMM dataset, classified by the number of stacks, s̄, the
number of tiers, t̄, and the fill percentage (%) of the bay. #Inst. refers to the number of
instances in each group. Columns #Optimal show the number of instances optimally solved
by each model. In the columns on the right, the average running time is displayed for the
instances solved by all the models, i.e., those indicated in column All. The best values are
shown in bold. Source: Jiménez-Piqueras et al., 2023.

58

3.3 Computational experiments

Table 3.12: Comparison between constraint programming and mathematical programming
models on the CV dataset.

#Optimal Average time (s)

s̄ t̄ #Inst. CP5 IPS6 CP5 IP IPS6CP All CP5 IPS6 CP5 IP IPS6CP

3 5 39 39 38 39 35 34 2.4 33.5 8.0 953.2
4 5 40 40 38 39 33 33 3.0 65.1 30.7 1383.4
5 5 40 39 32 32 23 23 6.1 122.0 79.2 2314.2
6 5 40 39 26 17 13 12 9.7 291.9 495.0 2716.5
7 5 40 36 12 6 6 5 12.6 360.1 1693.6 3600.6
8 5 40 30 5 1 3 1 17.3 220.8 1489.5 3600.3
4 6 40 31 7 5 4 4 5.5 95.7 63.4 2731.1
5 6 40 17 3 3 0 0 - - - -
6 6 40 10 1 0 0 0 - - - -
7 6 40 0 0 0 0 0 - - - -

Total 399 281 162 142 117 112 4.8 107.2 171.9 1753.7

Results on 400 instances from the CV dataset, classified by the number of stacks of the bay,
s̄, and the number of tiers, t̄. #Inst. refers to the number of instances in each group, where
one instance is omitted for being the initial bay layout already arranged. Columns #Optimal
show the number of instances optimally solved by each model. In the columns on the right,
the average running time is displayed for the instances solved by all the models, i.e., those
indicated in column All. The best values are in bold. Source: Jiménez-Piqueras et al., 2023.

CP5 solves more instances than IPS6 across all datasets, especially for the most
difficult one, CV, where CP5 solves 30% more instances. Regarding running
times, there is a great contrast between the two models. In Tables 3.9 and
3.10, the average running time for IPS6 is over 4 and 6 times longer than CP5
for BZ and ZJY, respectively. The difference is even more pronounced for the
other datasets: CP5 is over 12 and 22 times faster on average than IPS6 for
EMM and CV datasets, as shown in Tables 3.11 and 3.12. These results reveal
the superior performance of CP5 over the integer programming model IPS6.

In Tables 3.9 to 3.12, we observe that CP5IP solves significantly fewer instances
than CP5: 52% fewer for ZJY and approximately 35% for CV. Also, the average
running times for the instances solved by all the models are considerably higher
for CP5IP compared to CP5. This demonstrates that the procedure followed to
develop the constraint programming model is ineffective for an integer linear
programming model.

While the differences in number of solved instances and running times between
IPS6 and IPS6CP are smaller than between CP5 and CP5IP, they are still

59

Chapter 3. A constraint programming approach for the premarshalling problem

significant. IPS6CP performs noticeably worse than IPS6. The difference in
the number of solved instances ranges from 6% for the BZ dataset to 33% for
the ZJY dataset. Moreover, IPS6CP has the longest average time of the four
models for each dataset, as we can observe in Tables 3.9 to 3.12. Compared
to IPS6, IPS6CP is more than 16 times slower for the EMM and CV datasets,
almost 39 times slower for the BZ dataset, and over 46 times slower for the ZJY
dataset. These figures reveal that the formulation designed for mathematical
programming does not translate effectively to constraint programming.

3.4 Concluding remarks

The premarshalling problem has been extensively studied in the literature, yet
a competitive constraint programming model had not been introduced until
proposed in this chapter. This constraint programming formulation, CP5,
outperforms the state-of-the-art integer programming model for this problem
IPS6, Parreño-Torres et al., 2019.

The CP5 model has been built in four steps. Initially, we developed CP2,
which has two groups of decision variables. Subsequently, the models CP3,
CP4, and CP5 were derived by incorporating an additional set of variables
and the corresponding constraints into the preceding formulation. Each group
of variables added provides valuable information to the solver, and the new
constraints enhance the interrelation between variables. This progressive re-
finement is reflected in the computational results as a marked improvement
from one model to the next in the series.

The methodology employed in developing CP5 has proven to be successful in
the constraint programming domain. However, this strategy seems ineffective
for mathematical programming. We adapted the constraint programming for-
mulation, CP5, into an integer linear programming model, CP5IP, and obtained
significantly worse results in the number of solutions found and running times.
Similarly, we conducted an analogous experiment in the opposite direction:
adapting IPS6 into a constraint programming model, IPS6CP. The constraint
programming version solves fewer instances, and the running times highly in-
crease, thus leading to the same conclusion in both experiments. In summary,
this investigation underscores that constraint programming and mathematical
programming generally do not benefit from the same modeling strategies.

60

Chapter 4

Solving the premarshalling
problem with an auxiliary bay

The Premarshalling Problem with an Auxiliary Bay (CPMP-AB) presents a
novel perspective by incorporating an adjacent bay as a storage buffer for
containers. This extension relaxes the overly restrictive assumption in the
classical CPMP that confines the premarshalling movements solely to the bay
being arranged. In practice, considering an auxiliary bay serves to expedite
the premarshalling process, especially for arranging bays with a high filling
level. Moreover, it enables the arrangement of bays that otherwise could not
be premarshalled due to limited space for relocations within the bay.

To address the CPMP-AB, we adapted the constraint programming formula-
tion proposed in the previous chapter for the CPMP. This chapter presents
two alternative approaches to accommodate different allowance levels for relo-
cations between bays. Our computational study demonstrates the potential of
using an auxiliary bay to reduce the number of premarshalling relocations and
solve instances that otherwise remain unsolved. Furthermore, we analyze the
differences in the solutions provided by the alternative approaches and discuss
the scenarios where each one may be more suitable.

61

Chapter 4. Solving the premarshalling problem with an auxiliary bay

4.1 CPMP-AB: The Container Premarshalling Problem with
an Auxiliary Bay

In the port yard, container bays are organized into blocks, with each bay adja-
cent to one or two other bays. In the original premarshalling problem (CPMP),
detailed in Section 3.1, it is assumed that the crane remains static throughout
the premarshalling process, and only the crane’s trolley moves along the bay to
relocate containers. However, this assumption is unrealistic because the crane
can travel along the block and relocate containers to nearby bays. Relocating
a container within a bay is preferable to moving it to other bays because mov-
ing the entire crane, not just the trolley, is more costly. Nevertheless, some
relocations between bays during premarshalling may expedite the process and
allow for rearranging bays that would otherwise be infeasible.

We will denote the bay to be arranged as the main bay and another bay serving
as additional space for placing containers from the main bay as the auxiliary
bay. An example is shown in Figure 4.1.

Figure 4.1: An example of a main bay and an auxiliary bay.

An example of a port yard configuration where the main bay of a premarshallig process is
highlighted in orange and the auxiliary bay in green. A container from the main bay moved
to the auxiliary bay is highlighted in orange. Source: Elaborated by the author (2024).

The premarshalling problem with an auxiliary bay extends the original pre-
marshalling problem by allowing containers from the main bay to be placed in
the auxiliary bay and brought back to the main bay when it is convenient.

62

4.1 CPMP-AB: The Container Premarshalling Problem with an Auxiliary Bay

A premarshalling version in the literature where additional space is used dur-
ing the arrangement process is the Container Premarshalling Problem with a
Dummy Stack (CPMPDS) defined by Wang et al., 2015. Instead of consid-
ering an auxiliary bay as the CPMP-AB, the CPMPDS allows the placement
of containers in the space reserved for trucks, serving as an additional stack
that must be empty by the end of premarshalling. However, using an auxil-
iary bay offers more advantages than the dummy stack. There is more space
available for placing containers and also the possibility of bringing them back
to the original stacks in a different order than when they were moved to the
auxiliary space. Moreover, there is no obligation for the containers to return
to the original stacks. In the CPMP-AB, only if a container from the main
bay is badly placed in the auxiliary bay must it be moved back to the main
bay, as expressed by assumption (xii) described below.

The idea behind CPMP-AB and CPMP is the same: finding a sequence with
the minimum number of relocations to entirely arrange the main bay. However,
this definition is vague for the CPMP-AB because it treats relocations within
the main bay and between bays equally, despite the latter being more costly.
To address this issue, we propose two alternative approaches to the CPMP-
AB, each offering a different allowance level for inter-bay movements. We will
outline the general assumptions for the CPMP-AB and then delve into the
details of each particular version.

The CPMP-AB inherits assumptions (i), and (iii) to (vii) from the CPMP,
described in Section 3.1. Note that assumption (i) refers to the main bay in the
CPMP-AB: only the main bay is arranged during the premarshalling process.
Assumption (ii), only allowing relocations within the bay being arranged in the
CPMP, is substituted with (xi) for the CPMP-AB, which considers inter-bay
relocations. Additionally, specific assumptions for the CPMP-AB include (viii)
to (x), and (xii).

viii) A single auxiliary bay: Only one bay serves as an auxiliary bay to the
main bay.

ix) Adjacent bays: Only a bay that is adjacent to the main bay within the
block can serve as an auxiliary bay.

x) No relocations within the auxiliary bay: Containers in the auxiliary bay
remain stationary during the premarshalling process, and those moved
to the auxiliary bay from the main bay cannot be relocated within the
auxiliary bay.

63

Chapter 4. Solving the premarshalling problem with an auxiliary bay

xi) No container entering/leaving the ensemble of two bays: Containers from
the main bay can be relocated between bays or within the main bay but
never leave the ensemble of the main and auxiliary bays, and no external
container is aggregated.

xii) Completely arranged auxiliary bay: It is assumed that the bay used as an
auxiliary bay is entirely arranged at the beginning of the premarshalling
process and must also be arranged at the end. Any container moved to
the auxiliary bay that is badly placed there must return to the main bay
by the end of premarshalling to maintain the arrangement of the auxiliary
bay.

We propose two alternatives to accommodate the preference for relocations
within the bay rather than relocations between bays. One approach introduces
a penalty for inter-bay movements, while the other is less restrictive regarding
such movements but still prioritizes those within the bay. The reason behind
introducing a penalty is that some port terminals may be more conservative
than others regarding inter-bay movements. The suitability of each approach
in practical scenarios is discussed in Section 4.3.2, given the solutions obtained
through the computational study.

In the CPMP-AB without a penalty, two objective functions are considered in
lexicographic order. The primary objective is to minimize the total number of
relocations, followed by the secondary objective of minimizing the relocations
between bays. Therefore, the priority goal is to achieve the minimum number
of relocations for arranging the bay, and within this frame, a solution with the
minimum number of inter-bay relocations is chosen. With this approach, while
movements within the bay are preferred over relocations between bays, any
inter-bay movement that reduces the total number of relocations is performed.

In the CPMP-AB with a penalty for inter-bay movements, each inter-bay move-
ment is equated with two relocations within the bay. Essentially, this imposes
a penalty equivalent to one relocation for each movement between bays, as-
sociating a double cost to inter-bay movements. Therefore, in this approach,
the general objective function of minimizing the total number of relocations
includes the penalty, resulting in the sum of the relocations within the bay and
twice the number of inter-bay relocations.

Figure 4.2 illustrates optimal solutions for the CPMP-AB using the approach
with a penalty (Figure 4.2a) and without a penalty (Figure 4.2b).

64

4.1 CPMP-AB: The Container Premarshalling Problem with an Auxiliary Bay

Figure 4.2: Examples of optimal premarshalling solutions using an auxiliary bay.

961

532

874

9

26

53

874

4

26

53

879

24

536

879

4

2

536

879

49

26

53

87

96

532

874

96

532

874

9

6

532

874

2

34

651

978

21

34

651

978

21

34

651

978

21

34

651

978

21

34

651

978

21

34

651

978

21

34

651

978

21

34

651

978

21

34

651

978

1 2 3 4 5 6 7 80

1 2 3

4 5 6

(1, 5) (3, 2) (1, 3) (1, 3) (2, 1) (2, 1) (3, 1)

(a) An example of an optimal solution is considering a penalty for inter-bay movements.

961

532

874

4

6

53

879

4

536

879

46

53

879

96

53

874

96

532

874

4

96

53

87

2

34

651

978

2

341

651

978

22

341

651

978

22

341

651

978

22

341

651

978

22

341

651

978

22

341

651

978

1 2 3

4 5 6

1 2 3 4 5 60

(1, 2) (1, 3) (2, 3) (2, 1)(1, 4) (1, 5)

(b) An example of an optimal solution not considering a penalty for inter-bay movements.

In each example, the main bay is shown in the first row and the auxiliary bay in the second.
Each stage is identified by a number under the bay layout, and stack numbers are indicated
in the initial stage. Containers are labeled with their retrieval priority, and the available
space for containers is shadowed in gray. Containers originally in the auxiliary bay are
highlighted in green, and badly placed containers are highlighted in blue. Relocations are
highlighted in magenta. An arrow represents each relocation; a think border indicates the
relocated container and a dot marks its previous location. Instead of an arrow, a red segment
represents a penalty associated with an inter-bay movement. Also, the origin and destination
stacks of each relocation are indicated above the bay layouts. Source: Elaborated by the
author (2024).

65

Chapter 4. Solving the premarshalling problem with an auxiliary bay

The initial bay layouts in Figure 4.2 are extracted from the CV dataset, for
which details can be found in Section 3.3.1. The initial configuration of the
main bay (top left layout of each example) is the original layout from the
dataset. The initial auxiliary bay configuration (bottom left corner of each
example) results from premarshalling the corresponding original bay.

In Figure 4.2a, note that there is a stage with no relocations after the inter-bay
movement, which reflects that the relocation between bays is counted as twice
a relocation within the bay. Further details about this penalty are provided
in Section 4.2.2. In contrast, in Figure 4.2b, where no penalty is imposed, the
problem can be solved with a sequence of six relocations instead of seven.

Without an auxiliary bay, the instance depicted in the example in Figure 4.2
would be infeasible. If only relocations within the bay are permitted, a com-
plete arrangement could only be achieved if an additional empty tier on top
of the bay were allowed. Placing containers on an extra empty tier is feasible
only if it complies with safety regulations and the crane’s height permits it. In
that scenario, premarshalling could be executed for this example using seven
relocations within the bay and no movements between bays. This solution
would also be optimal for the CPMP-AB approach with a penalty, while if no
penalty were considered, the optimal solution would involve using the auxiliary
bay to arrange the bay in a total of five relocations.

4.1.1 Notation

The notation for the CPMP detailed in Section 3.1.1, applies to the CPMP-AB
unless otherwise specified in this section.

The set of stacks, S := S1∪S2, is extended to include the stacks corresponding
to the main bay, S1 := {1, . . . , s̄}, and those of the auxiliary bay, S2 := {s̄ +
1, . . . , 2s̄}. The set of tiers T = {1, . . . , t̄} remains unchanged, thus S × T are
all the slots considered in the CPMP-AB.

Given that containers initially placed in the auxiliary bay cannot be relocated
during premarshalling, we distinguish between slots where no containers can
be removed or placed, denoted as I ⊂ (S2×T), and those where it is possible,
denoted as J := J1 ∪ J2, with J1 := S1 × T and J2 := (S2 × T) \ I. In the
formulations presented in Section 4.2, we use subsets of I and J containing the
top slots in these sets: J ∗ := S1 × {t̄} and I∗ := {(s, t) ∈ I : (s, t+ 1) ∈ J }.

The priorities of the containers are defined similarly to the CPMP, with an
additional parameter mJ

p introduced to determine the multiplicity of each pri-

66

4.2 Constraint programming models for the CPMP-AB

ority group p ∈ P0 in the slots where relocation is possible, J . The sets of
stages K and K0 retain the same definitions as in the CPMP.

4.2 Constraint programming models for the CPMP-AB

We introduce two constraint programming formulations, ABp and AB, to ad-
dress the CPMP-AB. Model ABp integrates a penalty for relocations between
bays, whereas the AB model does not. These formulations are adapted from
the CP5 model for the CPMP, presented in Section 3.2.4.

The decision variables used in AB and ABp are derived from CP5 but extended
to cover both the main and auxiliary bays. Constraints are also extended to ac-
commodate the two-bay structure and to incorporate additional conditions spe-
cific to the CPMP-AB. Furthermore, constraints are reformulated using more
suitable expressions for constraint programming, such as global constraints and
logical functions, as in the formulations for premarshalling considering crane
times detailed in section Section 5.3. The constraints (3.27) and (3.28) from
CP5 are omitted in the AB and ABp formulations. These are additional con-
straints defined in the step of building the CP4 model for discarding infeasible
solutions and removing symmetries, but they have not proven to enhance the
performance of the models proposed for the CPMP-AB.

4.2.1 AB: Model for premarshalling with an auxiliary bay

In the AB formulation, the variables describing the layout of containers, namely,
xk
s,t, δks,t, and wk

s,t, are defined similarly to CP5 but for the extended set of stacks
S = S1∪S2. Likewise, the variables for identifying the relocations, yk

s,t and zks,t,
are included for the slots in the main bay and those in the auxiliary bay where
relocation is possible, i.e., in every slot (s, t) ∈ J . Additionally, variables wk

s,t

are also defined for the initial stage in the AB formulation since it is required
for two groups of table constraints included in this model but not in CP5.

xk
s,t =

{
p If a container with priority p is in slot (s, t) at stage k
0 If slot (s, t) is empty at stage k

∀s ∈ S, ∀t ∈ T , ∀k ∈ K0

67

Chapter 4. Solving the premarshalling problem with an auxiliary bay

δks,t =

{
1 If there is a container in slot (s, t) at stage k
0 If slot (s, t) is empty at stage k

∀s ∈ S, ∀t ∈ T , ∀k ∈ K0

wk
s,t =

{
1 If a badly placed container is in (s, t) during stage k
0 Otherwise

∀s ∈ S, t ∈ T , k ∈ K0

yk
s,t =

{
1 If a container is moved to slot (s, t) during stage k
0 Otherwise

∀(s, t) ∈ J , ∀k ∈ K

zks,t =

{
1 If a container is removed from slot (s, t) during stage k
0 Otherwise

∀(s, t) ∈ J , ∀k ∈ K

The objective of the CPMP-AB is to minimize the number of relocations re-
quired to arrange the main bay, which can be expressed as (4.1). Additionally,
the AB approach considers a second objective: minimizing the number of relo-
cations between bays, corresponding to (4.2). The AB objectives are minimized
in lexicographical order, with (4.1) being the primary objective and (4.2) the
secondary one.

min
∑

(s,t)∈J , k∈K

yk
s,t (4.1)

min
∑

(s,t)∈J2, k∈K

(
yk
s,t + zks,t

)
(4.2)

The initial layouts of the main and auxiliary bays are determined by varia-
bles x0

s,t, δ0s,t, and w0
s,t, specified by parameters αx

s,t, αδ
s,t, and αw

s,t, through
constraints (4.3), (4.4), and (4.5), respectively. Containers initially placed in
the auxiliary bay cannot be moved during premarshalling. Therefore, the bay
layout variables corresponding to these slots are fixed to their initial values for
all premarshalling stages by (4.6) to (4.8). Furthermore, there are never badly
placed containers in the first tier because they cannot be stacked on top of

68

4.2 Constraint programming models for the CPMP-AB

another badly placed container or a container with an earlier retrieval time.
This fact is indicated by constraints (4.9). These constraints are analogous to
those used in CP5 for determining the initial layout and assigning the value 0
to wk

s,1, but are rewritten here for clarity.

x0
s,t = αx

s,t ∀s ∈ S, t ∈ T (4.3)

δ0s,t = αδ
s,t ∀s ∈ S, t ∈ T (4.4)

w0
s,t = αw

s,t ∀s ∈ S, t ∈ T (4.5)

xk
s,t = αx

s,t ∀(s, t) ∈ I, k ∈ K (4.6)

δks,t = αδ
s,t ∀(s, t) ∈ I, k ∈ K (4.7)

wk
s,t = αw

s,t ∀(s, t) ∈ I, k ∈ K (4.8)

wk
s,1 = 0 ∀s ∈ S, k ∈ K (4.9)

The values of the variables representing the bay layout in the initially occupied
slots of the auxiliary bay, i.e., for the slots in the set I, are fixed by (4.6)
to (4.8). The rest of the constraints and variables specifically apply to the
remaining slots, those in set J , where containers can be placed and removed
and are presented below. Table 4.1 indicates the equivalence between these
constraints in the AB model and those in CP5 from which they are derived.

Table 4.1: Constraints from model CP5 substituted in model AB.

AB CP5

(4.10) (3.3)
(4.11) (3.13), (3.14)
(4.12) (3.15), (3.16)
(4.13) (3.29)
(4.14) (3.33)
(4.15) (3.34)
(4.16) (3.8)
(4.17) (3.22)
(4.19) (3.21)
(4.20), (4.21) (3.23), (3.24), (3.20), (3.25), (3.26), (3.30), (3.31)

The left column shows the constraints of model AB replacing the corresponding constraints
from CP5 indicated in the right column. Source: Elaborated by the author (2024).

69

Chapter 4. Solving the premarshalling problem with an auxiliary bay

Count
(
xk
s,t : (s, t) ∈ J , xk

s,t = p
)
= mJ

p ∀p ∈ P0, k ∈ K (4.10)(
xk
s,t > 0

)
= δks,t ∀(s, t) ∈ J , k ∈ K (4.11)(

xk
s,t == xk−1

s,t

)
=
(
δks,t == δk−1

s,t

)
∀(s, t) ∈ J , k ∈ K (4.12)(

xk
s,t+1 > xk

s,t

)
≤ wk

s,t+1 ∀(s, t) ∈ (J \ J ∗) ∪ I∗,

k ∈ K (4.13)
wk

s,t+1 ≤ wk
s,t +

(
xk
s,t < xk

s,t+1

)
∀(s, t) ∈ (J \ J ∗) ∪ I∗,

k ∈ K (4.14)∑
(s,t)∈J

wk
s,t + k ≤ k̄ ∀k ∈ K (4.15)

∑
(s,t)∈J

yk
s,t ≤ 1 ∀k ∈ K (4.16)

∑
(s,t)∈J

zks,t ≤ 1 ∀k ∈ K (4.17)

∑
(s,t)∈J2

(
zks,t + yk

s,t

)
≤ 1 ∀k ∈ K \ {k̄} (4.18)

yk
s,t ≤ δk+1

s,t ∀(s, t) ∈ J ,

k ∈ K \ {k̄} (4.19)
AllowedAssignments

(
A,

δk−1
s,t , δk−1

s,t+1, δ
k
s,t, δ

k
s,t+1, z

k
s,t, z

k
s,t+1 ,

yk
s,t, y

k
s,t+1 , w

k−1
s,t , wk−1

s,t+1, w
k
s,t, w

k
s,t+1

)
∀(s, t) ∈ J \ J ∗, k ∈ K (4.20)

AllowedAssignments
(
B,

δk−1
s,t , δk−1

s,t+1, δ
k
s,t, δ

k
s,t+1, z

k
s,t+1 ,

yk
s,t+1 , w

k−1
s,t , wk−1

s,t+1, w
k
s,t, w

k
s,t+1

)
∀(s, t) ∈ I∗, k ∈ K (4.21)

The condition that the number of containers in each priority group must remain
constant throughout the premarshalling process is ensured in AB by the Count
constraints (4.10). The difference between these constraints and (3.3) from
CP5 is that in AB, the count of the containers within each priority group is
conducted over the set of slots J .

70

4.2 Constraint programming models for the CPMP-AB

The constraints linking variables x and δ correspond to (4.11) and (4.12) in
AB. Constraints (4.11) express that positive values of variables x correspond to
occupied slots, i.e., to value 1 in the case of variables δ, and both are assigned a
value of 0 if the slot is empty. Constraints (4.12) ensure the priority associated
with a slot occupied by a container that is not relocated remains the same, or
it continues to be 0 if a slot remains empty.

If a container placed in slot (s, t) must be retrieved before the container in
(s, t + 1), the container in (s, t + 1) is marked as badly placed, as expressed
by constraints (4.13). Also, a container on top of a badly placed container is
considered badly placed, a condition ensured by constraints (4.20) and (4.21)
in AB and detailed in subsequent paragraphs. The condition that a badly
placed container must be on top of a container with an earlier retrieval time
or on top of a badly placed container is expressed through (4.14). Constraints
(4.15) impose an upper bound on the number of badly placed containers using
variables w, similarly to (3.34) in CP5.

The limit of at most one relocation per stage is imposed by (4.16) and (4.17)
in AB for the extended set of slots. The group of constraints (4.19) defines the
transitive move avoidance rule, ensuring that the same container is not moved
in consecutive stages. An additional set of constraints, (4.18), is included in
AB to prevent containers from the main bay placed in the auxiliary bay from
being relocated within the auxiliary bay.

The table constraints (4.20) and (4.21) include in the AB formulation the rela-
tionship between the bay configuration variables and movement variables, and
some conditions regarding badly placed containers. These constraints replace
all the groups of constraints from CP5 indicated in Table 4.1. The global con-
straint Allowed Assignments defines the feasible combinations of values for the
decision variables specified as arguments and imposes this ensemble of variables
to take one of these combinations. Matrices A and B define the allowed com-
binations in (4.20) and (4.21). Table constraints (4.20) apply to all slots where
containers can be placed and removed, excluding those on top of containers
that are not subject to relocation during premarshalling. Such slots require
separate table constraints (4.21) because variables y and z are not defined for
slots occupied by containers that cannot be moved.

The general idea behind the table constraints (4.20) and (4.21) is that the
bay layout is only altered when a movement is performed, and it must change
accordingly. Specifically, only a container on the top of a stack can be relocated,
and it must be placed on top of a container or the ground without empty slots
in between. Moreover, a container’s transition between badly placed and well-

71

Chapter 4. Solving the premarshalling problem with an auxiliary bay

placed states occurs exclusively during the relocation of this container and
depends on the container below in the destination stack.

Only specific configurations or states are viable for a given pair of consecutive
slots within the same stack. These states, along with the permissible transitions
between them, are represented in Figure 4.3 and elaborated upon below for a
generic pair of slots (s, t) and (s, t+ 1).

• Both slots are empty. In this scenario, there are three possible transitions
for the next stage: both slots remain empty, slot (s, t) becomes occupied
by a well-placed container, or it becomes occupied by a badly placed
container.

• Slot (s, t) is occupied, and (s, t + 1) is empty. This case has two states
depending on the well or badly placed condition of the container in (s, t).
The possible transitions are: the same state is maintained, slot (s, t)
becomes empty, or slot (s, t+ 1) becomes occupied. If (s, t+ 1) becomes
occupied, the container placed there would be badly placed if the one at
(s, t) is badly placed; otherwise, the container at (s, t+ 1) may be either
well placed or badly placed depending on container priorities.

• Both slots are occupied. There are three possible configurations: both
containers are well placed, both are badly placed, or the one below is well
placed and the other is badly placed. This state may remain the same in
the next stage, or (s, t+ 1) may become empty.

The arrows in Figure 4.3 indicate a total of sixteen allowed transitions between
six possible states for a pair of containers in consecutive slots (s, t) and (s, t+
1). Accordingly, matrix A in (4.20) contains sixteen allowed combinations for
the decision variables involved in these constraints. In contrast, matrix B
associated with (4.21) comprises only eleven combinations. This is because,
in this case, the bottom slot (s, t) belongs to the set I∗, which includes slots
in the auxiliary bay initially occupied by containers that cannot be relocated.
Consequently, the combinations in B always assign the value 1 to variables
δk−1
s,t and δks,t, since (s, t) is always occupied in this case. These combinations

correspond to the eleven transitions between states that do not involve the
state where both slots are empty.

72

4.2 Constraint programming models for the CPMP-AB

Figure 4.3: Possible states for two consecutive slots and transitions between them.

The six possible states for two consecutive slots (s, t) and (s, t + 1). The sixteen feasible
transitions between states from one stage k to the next k + 1 are indicated by arrows, with
curved arrows representing the option of maintaining the same configuration from k−1 to k.
Well-placed containers are highlighted in light yellow, badly placed containers are highlighted
in blue, and empty slots are in gray. Source: Elaborated by the author (2024) based on a
figure from Jiménez-Piqueras et al., 2024.

4.2.2 ABp: Alternative model with a penalty for inter-bay
relocations

We introduce the ABp model, an alternative approach considering a penalty for
relocations between bays. This penalty aims to reduce the frequency of inter-
bay movements compared to the AB model. The formulation ABp contains
the same variables and constraints as AB, except for one modified group of
constraints and two additional sets that are defined to incorporate the penalty.
The solution method described in Section 4.2.3 requires the penalty to be
defined through constraints in ABp, as this method uses the ABp model to
address satisfaction problems and omits its objective function.

The objective function of ABp, (4.22), minimizes the number of relocations
required to arrange the bay, with inter-bay movements incurring a double cost
compared to relocations within the main bay. This objective function uses
variables yk

s,t across the set of slots J to count all relocations and includes
an additional term using variables zks,t and yk

s,t across the set J2 to ensure
relocations originating or terminating in the auxiliary bay are counted twice.

73

Chapter 4. Solving the premarshalling problem with an auxiliary bay

min
∑
k∈K

(∑
(s,t)∈J

yk
s,t +

∑
(s,t)∈J2

(
yk
s,t + zks,t

))
(4.22)

The constraints introduced in ABp to include the penalty for inter-bay move-
ments are (4.23) to (4.25).∑

(s,t)∈J

wk
s,t +

∑
(s,t)∈J2

wk
s,t + k ≤ k̄ ∀k ∈ K (4.23)

∑
(s,t)∈J

(
yk+1
s,t + zk+1

s,t

)
≤ 2 ·

(∑
(s,t)∈J2

δk−1
s,t ==

∑
(s,t)∈J2

δks,t

)
∀k ∈ K \ {k̄}

(4.24)∑
(s,t)∈J2

(
zk̄s,t + yk̄

s,t

)
= 0 (4.25)

The penalty for inter-bay movements is incorporated into the formulation by
enforcing a mandatory stage without relocations immediately after a movement
between bays. This structure ensures that an inter-bay relocation is counted
as two relocations within the bay. Constraints (4.23) replace (4.15) from AB.
(4.23) contain an additional term to count each movement between bays twice
and thus include the penalties in the count of movements performed until a
certain stage. Consequently, the number of stages available for relocations
after a given stage is calculated as the total number of stages minus the sum of
relocations already performed and the corresponding penalties. The penalty is
the sole condition imposing a stage without relocations, and it is enforced by
constraints (4.24). These constraints express that if the number of containers
in the auxiliary bay changes in stage k with respect to k − 1, no relocation is
allowed in stage k + 1. In the final stage, constraint (4.25) prohibits inter-bay
relocations to prevent circumventing the penalty.

4.2.3 Solution method

The discussion provided in Section 3.2.5 concerning the best solving method
for the CPMP using the constraint programming models proposed is equally
applicable to the CPMP-AB. A tight upper bound is unavailable, and the
iterative algorithm has proven to be more effective than providing the solver
with a fixed number of stages and an objective function to minimize. For these

74

4.2 Constraint programming models for the CPMP-AB

reasons, we employ an iterative algorithm to search for optimal solutions to
the CPMP-AB.

The algorithm described for the CPMP could be applied to the constraint
programming models proposed for the CPMP-AB. However, a lower bound for
the optimal objective value of the CPMP-AB would be required, and deriving
such a lower bound for the new problem is complex. Nonetheless, the existing
lower bound for the CPMP can be used with a slight modification in the
algorithm, as detailed below.

The algorithm proposed for AB and ABp begins with an initial iteration where
the number of stages k̄ is set to the lower bound for the CPMP. The purpose of
this iteration is to determine whether the lower bound for the CPMP is also a
lower bound for the CPMP-AB or it is actually an upper bound. A satisfaction
problem is solved, providing the solver with the formulation without including
an objective function. Additionally, when using AB, constraints (4.16) and
(4.17) are substituted with (4.26) and (4.27), imposing exactly one relocation
per stage, as done for models CP2 to CP5. However, the same adjustment is
not applied to ABp because it is necessary to allow stages without relocations
to account for the penalty for inter-bay movements.∑

(s,t)∈J

yk
s,t = 1 ∀k ∈ K (4.26)

∑
(s,t)∈J

zks,t = 1 ∀k ∈ K (4.27)

If the problem proposed in the first iteration is infeasible, a new iteration is
performed using the same formulation but increasing the number of stages by
one. The algorithm continues iterating in this manner as long as the problem
remains infeasible. If a solution is eventually found, it is optimal for the total
number of relocations. Therefore, it would be an optimal solution if using the
ABp model. However, if using AB, the second objective should be minimized
in a subsequent phase of the algorithm.

If, on the contrary, a solution is already found in the first iteration, the value
of k̄ is an upper bound for the CPMP-AB, and the existence of better solutions
must be checked. Hence, a new iteration is performed, decreasing the number
of stages by one. If a solution is found, the search for better solutions must
continue, and the process is repeated. If an infeasible problem is encountered,
the last solution found is proven optimal for the total number of relocations.

75

Chapter 4. Solving the premarshalling problem with an auxiliary bay

Consequently, the solution is optimal if using ABp, or it is optimal for the first
objective of AB, and the second objective must be addressed next.

If solving the CPMP-AB with the AB model, an additional phase is conducted
to minimize the second objective. The optimal value for the first objective,
which is the total number of relocations, is set as the number of stages k̄. A
satisfaction problem is solved, including in the formulation constraint (4.28),
which imposes an upper limit r̄ to the second objective. r̄ is first set to the
number of inter-bay relocations performed in the optimal solution for the first
objective minus one. If a solution is found where some inter-bay relocations
are conducted, r̄ is decremented by one, and a new iteration is performed. If
a solution without inter-bay relocations is obtained, it is optimal. Otherwise,
encountering an infeasible problem confirms that the best solution yielded thus
far is indeed optimal. ∑

(s,t)∈J2, k∈K

(
yk
s,t + zks,t

)
≤ r̄ (4.28)

4.3 Computational experiments

In this section, we examine the results derived from solving the CPMP-AB and
compare them to those of the CPMP. Additionally, we delve into the difference
between the solutions generated by the proposed model incorporating a penalty
for movements between bays, ABp, and the model not considering penalties,
AB.

The instances used in the experiments are sourced from the CV dataset. We
chose this dataset because it is the most complex among those considered
in Section 3.3.1. In these instances, all the stacks in a bay are filled with
the same number of containers, allowing us to test two occupancy levels by
considering either two top empty tiers, as typically done in the literature, and
only one empty tier. Specifically, with two empty tiers, the instances used
in these experiments have fill percentages of 60% and 67%. In contrast, with
one empty tier, they have fill percentages of 75% and 80%, which are more
challenging to solve. We consider 320 instances of varying dimensions: some
instances have 3 tiers occupied and 3 to 8 stacks, while others have 4 tiers
occupied and 4 or 5 stacks.

The instances in the literature consist of a single bay, but an additional bay
is required to solve the CPMP-AB. We designate the bay in the original CV

76

4.3 Computational experiments

instances as the main bay and assign an auxiliary bay to each one. The auxil-
iary bay is assumed to be completely arranged, as indicated in Section 4.1. In
these experiments, the arrangement of the auxiliary bay is obtained by solving
the CPMP on the original instances, and the resulting arranged configurations
are randomly paired with the main bays.

The algorithms employed in these experiments require an initial value for the
number of premarshalling stages k̄, as specified in Section 4.2.3. We adopt the
lower bound for the CPMP provided by Tanaka et al., 2019.

Further details on the CV dataset and technical specifications regarding the
experiments are provided in Section 3.3.1.

4.3.1 Performance of the proposed models

Table 4.2 presents the total number of feasible and optimal solutions obtained
by the approaches with and without a penalty for movements between bays,
considering instances from the CV dataset with one or two top empty tiers, as
specified in the table. Additionally, the average running times for the instances
solved in all cases are displayed.

Table 4.2: Performance of models AB and ABp.

c̄ s̄ t̄ #Optimal #Feasible Average CPU (s)

2e 1e
2e 1e 2e 1e

All
2e 1e

ABp AB ABp AB ABp AB ABp AB ABp AB ABp AB

9 3 5 4 40 40 40 40 40 40 40 40 40 6 5 4 3
12 4 5 4 40 40 40 40 40 40 40 40 40 34 27 42 16
15 5 5 4 37 37 38 37 38 39 38 39 36 224 285 87 237
16 4 6 5 17 21 20 25 17 36 20 35 12 624 596 153 48
18 6 5 4 32 30 35 31 34 38 35 36 31 272 547 313 466
20 5 6 5 6 8 7 11 6 36 7 30 5 529 340 629 267
21 7 5 4 24 23 26 18 26 36 27 32 18 652 572 513 1067
24 8 5 4 18 16 14 8 21 37 14 29 10 251 885 506 1130

Total 214 215 220 210 222 302 221 281 192 221 294 177 292

Results on 320 instances from the CV dataset, grouped into eight categories of 40 instances,
ordered by the number of containers in the bay, c̄. The bays in each category have s̄ stacks and
t̄ tiers, including 2 or 1 extra empty tiers denoted by 2e and 1e. The number of optimal and
feasible solutions obtained are displayed in columns #Optimal and #Feasible, respectively.
Columns Average CPU (s) present the average running time for the instances solved by all
the models, i.e., the instances indicated in column All. The best values are shown in bold.
Source: Elaborated by the author (2024).

77

Chapter 4. Solving the premarshalling problem with an auxiliary bay

Although the number of optimal solutions is similar across all the cases stud-
ied, a notable difference exists in the total number of feasible solutions found.
AB yields significantly more feasible solutions than ABp, which could be at-
tributed to the less restrictive nature of the model without penalties, which
facilitates finding solutions. However, for the same reason, proving optimality
may be more challenging in the AB approach. This challenge, coupled with
the additional phase in the algorithm for minimizing the relocations between
bays, could account for the longer total average running times of AB compared
to ABp. Nonetheless, the difference in average time varies considerably across
the categories of instances, with AB obtaining shorter average times than ABp
in numerous categories.

4.3.2 Differences in the solutions when considering or not an
auxiliary bay, and when including or not a penalty for
inter-bay relocations

The results presented in Table 4.3 enable a comparison between the solutions
for the CPMP-AB and those of the original premarshalling without an auxiliary
bay, as well as between the approaches proposed for the CPMP-AB considering
or not a penalty for inter-bay movements.

As expected, the model without penalties, AB, produces more inter-bay relo-
cations than ABp. Nevertheless, the average percentage of relocations between
bays relative to the total number of relocations in a solution does not exceed
23%, which is still relatively low.

The percentage of solved instances experiencing a reduction in the number of
relocations when considering an auxiliary bay compared to an optimal CPMP
solution is significantly higher using AB than ABp: 92% versus 40% for the
instances considering two extra empty tiers, and 79% versus 56% for those
with one extra empty tier. Furthermore, the reduction in relocations is more
pronounced for AB: an average reduction of 26% for AB versus 19% for ABp on
instances with two additional empty tiers, and 58% versus 56% on instances
with only one empty tier. The latter comparison shows that the reduction
percentage is similar for ABp and AB. This similarity arises because most
instances in the categories with 9 and 16 containers have a 100% reduction
percentage. This percentage is assigned to instances that are infeasible for the
original premarshalling problem when only one extra tier is considered, but
they can be solved using an auxiliary bay.

78

4.3 Computational experiments

The results demonstrate that using an auxiliary bay can significantly reduce
the number of premarshalling relocations, especially for bays with high fill
percentages. Moreover, infeasible instances for the CPMP can be solved using
an auxiliary bay.

The analysis of the differences in the solutions yielded by the proposed ap-
proaches for the CPMP-AB with and without a penalty for movements be-
tween bays allows us to specify which one is more advantageous depending on
the requirements in practice. If achieving solutions with an average percentage
of inter-bay movements of less than 10% is desired, even if it entails reducing
the number of premarshalling movements in only around half of the instances
solved, then the ABp model is appropriate. Conversely, suppose one can ac-
cept an average percentage of inter-bay movements around 20%. In that case,
the AB model is preferred because using an auxiliary bay without penalty re-
duces the number of relocations in most instances, and the reduction is more
significant than with ABp.

Table 4.3: Comparison of the solutions yielded by models AB and ABp.

c̄ s̄ t̄ Inter-bay relocations (%) Inst. with reduction (%) #I Reloc. reduction (%)

2e 1e
2e 1e 2e 1e 2e 1e

ABp AB ABp AB ABp AB ABp AB All ABp AB ABp AB

9 3 5 4 16 35 21 31 80 93 93 95 30 24 31 90 90
12 4 5 4 8 28 12 21 48 95 83 93 17 18 25 21 26
15 5 5 4 4 20 5 16 32 87 42 82 10 12 19 15 18
16 4 6 5 9 24 13 17 76 97 100 100 8 16 24 85 87
18 6 5 4 1 16 1 13 12 87 17 75 2 9 13 12 15
20 5 6 5 12 16 11 19 67 100 100 60 4 14 16 14 21
21 7 5 4 0 15 0 17 4 92 11 69 0 - - - -
24 8 5 4 2 13 1 13 14 89 7 41 0 - - - -

Total 7 23 9 20 40 92 56 79 71 19 26 56 58

Results on 320 instances from the CV dataset, grouped into eight categories of 40 instances,
ordered by the number of containers in the bay, c̄. The bays in each category have s̄ stacks
and t̄ tiers, including 2 or 1 extra empty tiers denoted by 2e and 1e. The average percentage
of inter-bay relocations relative to the total number of relocations in a solution is displayed in
the Inter-bay relocations (%) columns. The percentage of solved instances with a reduction in
relocations compared to an optimal CPMP solution is shown in columns Inst. with reduction
(%). The average percentage reduction is provided in the Reloc. reduction (%) columns, for
the instances solved in all cases, i.e., the instances indicated in column #I. The best values
are shown in bold. Source: Elaborated by the author (2024).

79

Chapter 4. Solving the premarshalling problem with an auxiliary bay

4.4 Concluding remarks

The original formulation of the premarshalling problem assumes all relocations
for arranging the bay must be performed within it. However, this assumption is
not realistic because during premarshalling at port terminals, some containers
are relocated to another bay if it facilitates the arrangement operations. The
consideration of an auxiliary bay may reduce the number of premarshalling
relocations and allow for arranging bays with little space for relocations that
otherwise could not be arranged.

We introduce the Premarshalling Problem with an Auxiliary Bay (CPMP-AB)
to accommodate the use of an auxiliary bay for placing containers from the
bay being arranged. The objective of this novel problem is to minimize the
number of premarshalling relocations, as in the CPMP, but additionally, how
inter-bay relocations are addressed must be specified. We propose two different
approaches for regulating the movements between bays, providing flexibility to
adapt to particular regulations of port terminals. A constraint programming
model and the corresponding solving method are presented for each approach.

Our proposed constraint programming model AB minimizes two objectives in
lexicographic order. Firstly, it seeks to minimize the number of relocations re-
quired to arrange the bay. Secondly, it minimizes inter-bay movements, keeping
the total number of relocations fixed. This approach ensures that relocations
within the main bay are favored over movements between bays yielding the
same total number of relocations and, at the same time, it allows every relo-
cation between bays capable of reducing the number of total relocations. This
model maximizes efficiency by prioritizing movements within the bay, which
are less costly, and leveraging the advantages of an auxiliary bay.

The alternative constraint programming model ABp, imposes a stronger limita-
tion on inter-bay movements by assigning a double cost to relocations between
bays compared to movements within the bay. Hence, the objective is to mini-
mize the total number of relocations, considering the penalty for each inter-bay
movement as if it were an additional relocation. In essence, a relocation is fa-
vored in a solution only if, even when counted as two movements within the
bay, it reduces the total number of relocations. This approach is designed for
specific scenarios where the amount of inter-bay relocations is required to be
lower than provided by the AB model.

The computational study demonstrates the advantages of incorporating an
auxiliary bay. It significantly reduces the number of relocations compared
to CPMP solutions, especially for bays where three-quarters of the slots are

80

4.4 Concluding remarks

occupied. Moreover, instances that are infeasible for the CPMP due to limited
space for relocations become solvable by introducing an auxiliary bay.

The experiments also illustrate the versatility of the CPMP-AB formulation
thanks to the alternative approaches proposed, which vary in the allowance
level for inter-bay relocations. The ABp model is suitable when only around
10% of relocations are permitted between bays. Conversely, the AB model
is preferred if a higher percentage is accepted, specifically around 20%. This
preference arises because the AB model offers a reduction in the number of
relocations in more cases than the ABp model, and this reduction is also more
significant.

81

Chapter 5

Premarshalling problems
considering crane times

At port terminals, cranes are available for premarshalling for a limited dura-
tion. However, existing literature does not offer a solution when this time is
insufficient to complete the bay arrangement. To address this issue, we define
the Container Premarshalling Problem under Limited Crane Time (CPMP-
LCT), seeking the best solution within the available time. This novel problem
involves measuring the time taken by relocations, which is a much more realistic
efficiency indicator for a solution than the number of relocations considered in
the original approach. For this reason, the Container Premarshalling Problem
with Crane Time Minimization Objective (CPMPCT) was proposed in recent
literature and is addressed in this chapter as a foundation for the CPMP-LCT.

We present a constraint programming formulation for the CPMPCT that im-
proves the performance of the state-of-the-art integer programming model for
this problem and serves as a sound basis for developing our model for the
CPMP-LCT. Computational experiments show the efficiency of CPMP-LCT
solutions and the possibility of the proposed exact model functioning as a
heuristic, yielding good-quality solutions within short running times. Further-
more, we propose an alternative formulation tailored for scenarios where all
container priorities in the bay are distinct.

83

Chapter 5. Premarshalling problems considering crane times

5.1 CPMPCT: The Container Premarshalling Problem with
Crane Time Minimization Objective

The objective function of the classical CPMP aims to minimize the number of
container relocations required to arrange the bay. However, this objective may
not yield the most efficient solutions in practice. For instance, while one would
choose to relocate a container to an adjacent stack over a distant one if the
resulting configurations are similar, the CPMP neglects this preference since
the number of relocations does not differentiate between these movements. By
contrast, the time taken by relocations does catch this difference, as illustrated
in Figure 5.1.

Figure 5.1: An example of two CPMP optimal solutions with different total crane times.

5

65

265

27374

65

5265

27374

5

5

6265

27374

5

55

626

27374

65

5265

27374

5

65

526

27374

5

5

5626

27374

5

55

626

27374

b)

a)

0 1 2 3

0 1 2 3

(5, 2) (3, 4) (1, 4)

(1, 2) (3, 4) (5, 4)

The solutions incur a total crane time of a) 315 and b) 297 seconds, using the same number
of relocations and yielding the same final layout. The numbers below the layouts indicate the
stages of the premarshalling solution. The relocation performed at each stage is indicated in
magenta by an arrow and a pair (s, r) where s and r are the origin and destination stacks,
respectively. The relocated container is highlighted with a thick border, and a dot indicates
its origin slot. Badly placed containers are highlighted in blue. Source: Elaborated by the
author (2024) based on a figure from Parreño-Torres et al., 2020.

84

5.1 CPMPCT: The Container Premarshalling Problem with Crane Time Minimization Objective

Relocating between close stacks requires less time than moving a container
across the bay, as illustrated in Figure 5.1. Although the two premarshalling
solutions shown in this figure result in the same final layout, these sequences
of movements take different total crane times. The relocations in Figure 5.1b
involve shorter distances between stacks for the first and third relocations
compared to those in Figure 5.1a, and thus take shorter times. Consequently,
while the two solutions depicted in Figure 5.1 are optimal for the CPMP,
Figure 5.1a would not be an optimal solution if the objective were to minimize
the total crane time instead of the number of relocations.

Figure 5.1 exemplifies that the total time required by a premarshalling se-
quence depends on the distance between the stacks involved in a relocation. In
addition, the tier where a container is placed also influences relocation time.
Furthermore, fewer relocations do not always guarantee shorter total crane
time. All these facts are a significant motivation for considering crane times
instead of the number of relocations as an efficiency measure for premarshalling
solutions and led Parreño-Torres et al., 2020, to define the Container Premar-
shalling Problem with Crane Time Minimization Objective (CPMPCT). This
problem inherits the assumptions from the CPMP described in Section 3.1,
replacing (vi), which assumes uniform movement costs, by (xiii).

xiii) Crane time costs: Each relocation incurs a cost that is equivalent to
the crane’s time to perform it. This time depends on the origin and
destination slots of the relocation.

The distinction between the CPMP and CPMPCT lies in the objective func-
tion. While the CPMP aims to minimize the number of relocations to obtain
a bay layout without badly placed containers, the CPMPCT seeks the same
kind of arrangement but minimizes the crane time instead of the number of
relocations.

5.1.1 Crane time specifications and notation

This study uses the data and calculations for a rubber tire gantry crane de-
scribed by Parreño-Torres et al., 2020. Container relocations require horizontal
movements of the crane’s trolley along the bridge girder and vertical movements
of the crane’s spreader originating and ending at the bridge girder. These crane
elements are illustrated in Figure 5.2.

85

Chapter 5. Premarshalling problems considering crane times

Figure 5.2: An example of a port yard configuration with a rubber tire gantry crane.

The crane’s trolley is highlighted in blue, the spreader in yellow, and the bridge girder in
pink. Source: Elaborated by the author (2024).

A container relocation involves the following crane movements. Suppose the
crane’s trolley is positioned above stack s1, and a container needs to be re-
located from slot (s2, t2) to slot (s3, t3). The sequence of movements for this
relocation is as follows:

1. The trolley travels horizontally from stack s1 to s2.

2. At stack s2, the spreader descends to just above slot (s2, t2).

3. The container in slot (s2, t2) is twistlocked and hoisted to the bridge
girder.

4. The loaded trolley moves horizontally to stack s3.

5. The container is lowered into slot (s3, t3), and the spreader returns un-
loaded to the bridge girder.

The total time taken for the relocation is the sum of the following times using
the notation described below:

h0
s1,s2

+ vt2 + lt2 + h1
s2,s3

+ vt3

86

5.2 CPMP-LCT: The Container Premarshalling Problem under Limited Crane Time

h0
s,r: Horizontal travel time of the trolley from stack s to r with no load.

h1
s,r: Horizontal travel time of the trolley from stack s to r with load.

vt: Vertical travel time of the spreader from the bridge girder to tier t and
coming back to the girder, either to place a container at tier t or to hoist
it.

lt: Twistlock time to attach a container placed in a slot at tier t.

Before the premarshalling process begins, the trolley is at a safety position
outside the bay, next to the leftmost stack. We denote this position as stack 0.
The premarshalling process starts with the trolley traveling without load from
stack 0 to a particular stack s ∈ S. The time taken for this shift is represented
by h0

0,s.

5.2 CPMP-LCT: The Container Premarshalling Problem
under Limited Crane Time

Container premarshalling is aimed at increasing the operational efficiency of
port terminals. Unlike mandatory operations, such as retrieving containers
from the yard for loading onto a vessel, premarshalling is a complementary
activity that enhances the development of other operations. Consequently,
premarshalling is only conducted during idle periods of the crane, in between
other terminal operations.

It is essential to note that premarshalling is subject to the availability of the
crane because this limitation can prevent the completion of the arrangement
process. Unfortunately, the existing literature does not offer any premar-
shalling solutions if this occurs. However, it is often beneficial to perform
partial premarshalling when an entire arrangement is not possible.

A partial premarshalling solution could be derived from a complete arrange-
ment, stopping at an intermediate step of a solution for the CPMP or the
CPMPCT. However, this method often yields poor-quality solutions, as illus-
trated later in Section 5.2.1. To seek good-quality partial premarshalling solu-
tions, we define the Container Premarshalling Problem under Limited Crane
Time (CPMP-LCT).

The CPMP-LCT aims to find a sequence of relocations that produce the most
efficient bay arrangement within a limited crane time. If sufficient time is
available, an optimal solution to the problem is an entire bay arrangement;

87

Chapter 5. Premarshalling problems considering crane times

otherwise, an optimal solution is the most efficient partial arrangement. The
objective of the CPMP-LCT, which quantifies the efficiency of a partial ar-
rangement, is presented in the following paragraphs after describing the general
assumptions of the problem.

The assumptions for the CPMP-LCT include (i) to (v) of the assumptions
provided for the CPMP in Section 3.1. However, assumption (vi), which con-
siders a uniform movement cost for relocations in the CPMP, is replaced by
(xiii) from the CPMPCT, where the cost of each relocation is its associated
crane time. Moreover, in the CPMP-LCT, assumption (vii) from the CPMP
is not applicable: instead of unlimited crane availability, assumption (xiv) is
defined for the CPMP-LCT.

xiv) Limited crane time: The crane’s time available for premarshalling is sub-
ject to a limit τ . The total time taken by the premarshalling relocations
cannot exceed this limit.

Although assumption (iv) of the CPMP, which considers full information about
retrieval times, also applies to CPMP-LCT, the objective function described
in the subsequent paragraphs aims to reduce the risk associated with changes
in retrieval information.

Defining an objective to measure the efficiency of partial solutions is a chal-
lenging task, and it is discussed in greater detail in Chapter 6. Nevertheless,
the ultimate goal of the CPMP-LCT is clear. Like the CPMP, the CPMP-
LCT aims to prepare the bay of containers in the best way to expedite the
retrieval of containers. Specifically, the CPMP-LCT seeks the best arrange-
ment of the bay for a retrieval process subsequent to premarshalling, where all
the containers are retrieved from the bay following the priority schedule.

The objective defined for the CPMP-LCT in this chapter requires distinguish-
ing between accessible and inaccessible containers. An accessible container
is one that can be retrieved from the bay before any relocation is needed in
the retrieval process. Conversely, a container is inaccessible if it or another
container with an earlier retrieval time requires a relocation to be retrieved.
In other words, a container is inaccessible if a container above it with a later
retrieval time blocks its retrieval or if such blocking affects another container
scheduled earlier in the retrieval sequence.

Figure 5.3 shows an example of a bay layout where the inaccessible containers
are indicated on the right and the badly placed containers on the left. The
container with priority 3 in the third stack is badly placed because it is neces-
sary to relocate it to achieve a complete arrangement of the bay, even though it

88

5.2 CPMP-LCT: The Container Premarshalling Problem under Limited Crane Time

is not blocking the retrieval of another container. The badly placed container
with priority 5 is blocking the retrieval of the container with priority 4 in that
stack. Since this is the only blockage in the bay, all the containers preceding
the container with priority 4 in stack 3 can be retrieved without additional
relocations. Hence, as observed on the right, all the containers with priori-
ties earlier than 4 and the container with priority 4 in the fourth stack are
accessible. Conversely, the container with priority 4 in the third stack needs
the relocation of the container with priority 5 to be retrieved, and thus, it is
inaccessible. Consequently, the containers with later priorities than 4 are also
inaccessible, as relocations are needed in the retrieval process before they can
be retrieved.

Figure 5.3: Examples of badly placed and inaccessible containers.

1312

3552

4465

1312

3552

4465

1 2 3 41 2 3 4

1

2

3

1

2

3

An example of a bay layout where the inaccessible containers are highlighted in orange on
the right, and the badly placed containers are highlighted in blue on the left. The indexes
corresponding to the tiers are displayed vertically on the left of each bay layout, and those
for the stacks are indicated horizontally at the bottom. Elaborated by the author (2024).

We define the objective for the CPMP-LCT as minimizing the number of in-
accessible containers. This approach seeks a sequence of relocations that can
be performed within the crane time limit and results in a bay layout with
the fewest inaccessible containers. Consequently, if the premarshalling is com-
plete, all the containers in the bay will be accessible in the final layout. On the
contrary, if the time is insufficient for a complete arrangement, this objective
prioritizes unblocking those containers that must be retrieved first. In essence,
it aims to unblock as many containers as possible in the order of retrieval
priorities.

The objective of minimizing the inaccessible containers offers several advan-
tages. Apart from the potential reduction in relocations during the retrieval
phase resulting from unblocking containers, this approach minimizes the risk
of the solution being affected by changes in the retrieval priorities. As informa-
tion about retrieval priorities can change over time due to variations in route
or berth assignments, containers with later retrieval times are more susceptible

89

Chapter 5. Premarshalling problems considering crane times

to this uncertainty. Therefore, this objective prioritizes containers for which
the information is the most reliable. Additionally, focusing on containers with
the earliest retrieval times is advantageous if information about the priorities
of the last containers to be retrieved is missing or if the retrieval process is
expected to be interrupted, potentially allowing for later premarshalling of the
remaining containers.

5.2.1 Partial premarshalling solutions

In this section, we illustrate a partial premarshalling solution and elaborate
on the characteristics of partial solutions that underscore the importance of
defining the CPMP-LCT.

Given a crane time limit and a sequence of relocations intended to fully ar-
range a bay that exceeds the available time, a partial premarshalling solution
can be derived by following this sequence and stopping before the limit is ex-
ceeded. However, this method often produces inefficient partial premarshalling
solutions.

Figure 5.4a shows an optimal solution for completely arranging the bay. As-
suming a time limit τ that permits only the first two movements, as indicated
in the figure, the configuration in the second stage is the final layout of a so-
lution within the time limit. In this bay configuration, only one container,
highlighted in yellow, can be retrieved without additional relocations.

Figure 5.4b represents a partial premarshalling sequence within the time limit.
A different movement is performed in the second stage compared to Figure 5.4a.
This relocation results in a configuration where seven containers are accessible,
a significant improvement over the single accessible container in Figure 5.4a.
Thus, the example depicted in Figure 5.4b corresponds to a more efficient
partial premarshalling solution.

Figure 5.4 indicates the badly placed containers in light blue. In Figure 5.4a, we
observe no badly placed containers in the final layout of the complete premar-
shalling, adhering to the definition of a solution to the CPMP or the CPMPCT.
Conversely, in the final configuration of Figure 5.4b, there are two badly placed
containers (the container with priority 3 relocated in stage 2 is badly placed
as it is on top of a badly placed container). This is the same number as in the
second and final stage of the partial premarshalling solution depicted in Fig-
ure 5.4a. However, there is a notable difference in the number of inaccessible
containers between the two partial premarshalling solutions.

90

5.2 CPMP-LCT: The Container Premarshalling Problem under Limited Crane Time

Figure 5.4: Examples of complete and partial premarshalling solutions.

3

121

3552

4465

3

112

3552

4465

31

12

3552

4465

31

152

352

4465

31

152

352

4465

3

121

3552

4465

3

112

3552

4465

1312

3552

4465

(3, 1) (2, 1) (3, 2) (4, 2)

(3, 1) (4, 3)

1 2 3 40

1 20

a)

b)

An example of an optimal solution for a) complete premarshalling and b) partial premar-
shalling under crane time limit τ . The numbers below the bay layouts indicate the pre-
marshalling stages. The relocation performed at each stage is indicated in magenta by an
arrow and a pair (s, r), where s and r are the origin and destination stacks. The relocated
container is highlighted with a thick border, and a dot indicates its origin slot. The badly
placed containers are shaded in light blue, and the accessible containers in the second stage
are highlighted in yellow. A green dotted line represents the crane time limit τ . Elaborated
by the author (2024) based on a figure from Jiménez-Piqueras et al., 2024.

Seeking a solution without badly placed containers is an efficient approach for
defining complete premarshalling solutions, but partial premarshalling solu-
tions require different strategies. The solution depicted in Figure 5.4a is pro-
vided by the MCT model proposed for solving the CPMPCT in Section 5.3.1.
In contrast, the solution shown in Figure 5.4b is yielded by LCT1, the formu-
lation for the CPMP-LCT introduced in Section 5.3.2.

Figure 5.5 allows for a comparison of the quality of solutions provided by LCT1
and MCT for premarshalling under a limited crane time of ten minutes over
a large set of instances specified in Table 5.1. The complete premarshalling
solutions yielded by MCT are processed to obtain partial premarshalling ones

91

Chapter 5. Premarshalling problems considering crane times

when the time limit is exceeded, using the same method illustrated in Fig-
ure 5.4: selecting the longest sequence of relocations within the time limit,
starting at the initial relocation of the complete solution.

We observe that the solutions provided by LCT1 produce a significantly greater
reduction in the number of inaccessible containers between the initial and final
bay configurations compared to those given by MCT. Moreover, in most of
the solutions provided by MCT, the reduction in the number of inaccessible
containers is close to 0% or even negative. A negative reduction indicates that
the final configuration contains more inaccessible containers than the initial
one. In contrast, solving the CPMP-LCT through LCT1 guarantees solutions
that do not worsen the initial bay configuration.

Figure 5.5: Percentage reduction in inaccessible containers.

A B C D E F G H

-40%

-20%

0%

20%

40%

60%

80%

100%

Percentage reduction in inaccessible containers between the initial and final bay configura-
tions for premarshalling solutions within a crane time limit of ten minutes over the instances
indicated in Table 5.1. In green are the results obtained by the MCT model, and in orange
are those given by LCT. Source: Elaborated by the author (2024) based on a figure from
Jiménez-Piqueras et al., 2024.

92

5.3 Constraint programming models for the CPMPCT and the CPMP-LCT

Table 5.1: Details of the instances considered in Figure 5.5.

Category A B C D E F G H Total

s̄ 3 4 5 6 7 8 4 5
t̄ 5 5 5 5 5 5 6 6
#Instances 40 40 40 39 35 27 40 25 286

The instances are grouped by number of stacks s̄ and number of tiers t̄, and are sourced from
the CV dataset (information about this dataset can be found in Section 3.3.1). Only the
results of the instances solved by both models, MCT and LCT1, are used in the plot. The
number of these instances per group appears in row #Instances. Source: Jiménez-Piqueras
et al., 2024.

5.3 Constraint programming models for the CPMPCT and
the CPMP-LCT

This section presents a constraint programming formulation to solve the CPM-
PCT, which we call MCT. This model is based on the constraint program-
ming model for the classical premarshalling problem CP5, introduced in Sec-
tion 3.2.4.

The MCT model is a stepping-stone for modeling the CPMP-LCT. Using MCT
as a basis, we have developed two constraint programming models to solve
the CPMP-LCT with the objective of minimizing the number of inaccessible
containers: a generic formulation and an alternative formulation for specific
bays where all containers have distinct retrieval priorities.

5.3.1 MCT: A model for premarshalling minimizing crane time

The MCT formulation involves seven groups of decision variables: the five
groups of variables from the CP5 model and two additional sets. The new
groups of decision variables, gks,r and uk

s,r, allow us to incorporate the time
corresponding to the horizontal movements of the crane’s trolley into the ob-
jective function. All the variables in the MCT model are described below.
Variables wk

s,t, which are not defined for the initial stage in CP5, need to be
extended to this stage in MCT due to a group of table constraints included in
the formulation.

93

Chapter 5. Premarshalling problems considering crane times

xk
s,t =

{
p If a container with priority p is in slot (s, t) at stage k

0 If slot (s, t) is empty at stage k

∀s ∈ S, ∀t ∈ T , ∀k ∈ K0

δks,t =

{
1 If there is a container in slot (s, t) at stage k

0 If slot (s, t) is empty at stage k

∀s ∈ S, ∀t ∈ T , ∀k ∈ K0

wk
s,t =

{
1 If there is a badly placed container in (s, t) during stage k

0 Otherwise

∀s ∈ S, t ∈ T , k ∈ K0

yk
s,t =

{
1 If a container is moved to slot (s, t) during stage k

0 Otherwise

∀s ∈ S, t ∈ T , k ∈ K

zks,t =

{
1 If a container is removed from slot (s, t) during stage k

0 Otherwise

∀s ∈ S, t ∈ T , k ∈ K

gks,r =

1 If the crane’s trolley moves loaded with a container from

stack s to stack r during stage k

0 Otherwise

∀s ∈ S, ∀r ∈ S \ {s},∀k ∈ K

uk
s,r =

1 If the crane’s trolley moves unloaded from stack s to r,

being r the origin stack of a relocation during stage k

0 Otherwise

∀s ∈ S,∀r ∈ S \ {s},∀k ∈ K \ {1}

94

5.3 Constraint programming models for the CPMPCT and the CPMP-LCT

The objective of the CPMPCT is to minimize the crane time spent in arranging
the bay. According to the notation for crane time presented in Section 5.1.1,
we define the objective function (5.1). The first term accounts for the hori-
zontal movements of the trolley, and the second term accounts for the vertical
movements of the spreader. Variables g1s,r indicate the first movement, where
the trolley travels unloaded from the safety position to the origin stack of
the first relocation. In the remaining stages, variables uk

s,r identify the trolley
movements without load toward the origin stack of each relocation. Move-
ments where the trolley is loaded with a container are described by variables
gks,r. The vertical travel times of the spreader are included using variables yk

s,t

and zks,t. Variables zks,t are also used to incorporate the twistlock times in the
objective.

min
∑
s∈S

(∑
r∈S
r ̸=s

(
h0
0,s · g1s,r +

∑
k∈K\{1}

(
h0
r,s · uk

r,s

)
+
∑
k∈K

(
h1
s,r · gks,r

))
+

∑
k∈K

∑
t∈T

((
vt + lt) · zks,t + vt · yk

s,t

))
(5.1)

Similar to CP5, the initial bay configuration in MCT is set through variables
x0
s,t, δ0s,t, and additionally w0

s,t, using the parameters αx
s,t, αδ

s,t, and αw
s,t in

constraints (5.2) to (5.4). Also, the values of variables wk
s,1 are set to 0 by (5.5)

because the containers placed in the first tier never block other containers and
thus are never badly placed.

x0
s,t = αx

s,t ∀s ∈ S, t ∈ T (5.2)

δ0s,t = αδ
s,t ∀s ∈ S, t ∈ T (5.3)

w0
s,t = αw

s,t ∀s ∈ S, t ∈ T (5.4)

wk
s,1 = 0 ∀s ∈ S, k ∈ K (5.5)

The MCT model incorporates most of the constraints from CP5, with some
reformulated using boolean expressions and global constraints, similar to the
formulations for the CPMP-AB presented in Section 4.2.

The entire formulation of MCT is shown below. Some constraints are the same
as in CP5 but are included here for clarity. These constraints are indicated with
the equality symbol (=) in Table 5.2. The remaining constraints in Table 5.2

95

Chapter 5. Premarshalling problems considering crane times

express equivalent conditions in both models but are formulated differently.
Additionally, MCT introduces two groups of constraints, (5.16) and (5.17),
to incorporate the new variables that describe the movements of the crane’s
trolley.

Count
(
xk
s,t : s ∈ S, t ∈ T , xk

s,t = p
)
= mp ∀p ∈ P0, k ∈ K (5.6)(

xk
s,t > 0

)
= δks,t ∀s ∈ S, t ∈ T , k ∈ K (5.7)(

xk
s,t == xk−1

s,t

)
=
(
δks,t == δk−1

s,t

)
∀s ∈ S, t ∈ T , k ∈ K (5.8)(

xk
s,t+1 > xk

s,t

)
≤ wk

s,t+1 ∀s ∈ S, t ∈ T \ {t̄},
k ∈ K (5.9)

wk
s,t+1 ≤ wk

s,t +
(
xk
s,t < xk

s,t+1

)
∀s ∈ S, t ∈ T \ {t̄},
k ∈ K (5.10)∑

s∈S,t∈T

wk
s,t + k ≤ k̄ ∀k ∈ K (5.11)

∑
s∈S, t∈T

yk
s,t ≤ 1 ∀k ∈ K (5.12)

∑
s∈S, t∈T

zks,t ≤ 1 ∀k ∈ K (5.13)

yk
s,t ≤ δk+1

s,t ∀s ∈ S, t ∈ T ,

k ∈ K \ {k̄} (5.14)
AllowedAssignments

(
A,

δk−1
s,t , δk−1

s,t+1, δ
k
s,t, δ

k
s,t+1, z

k
s,t, z

k
s,t+1 ,

yk
s,t, y

k
s,t+1 , w

k−1
s,t , wk−1

s,t+1, w
k
s,t, w

k
s,t+1

)
∀s ∈ S, t ∈ T \ {t̄},
k ∈ K (5.15)

gks,r =

(∑
t∈T

(
zks,t + yk

r,t

)
== 2

)
∀s ∈ S, r ∈ S \ {s},

k ∈ K (5.16)

uk
s,r =

(∑
t∈T

(
yk−1
s,t + zkr,t

)
== 2

)
∀s ∈ S, r ∈ S \ {s},

k ∈ K \ {1} (5.17)

96

5.3 Constraint programming models for the CPMPCT and the CPMP-LCT

Table 5.2: Correspondence between constraints from models MCT and CP5.

MCT CP5

(5.6) = (3.3)
(5.7) (3.13), (3.14)
(5.8) (3.15), (3.16)
(5.9) (3.29)
(5.10) (3.33)
(5.11) = (3.34)
(5.12) = (3.8)
(5.13) = (3.22)
(5.14) = (3.21)
(5.15) (3.20), (3.23), (3.24), (3.25), (3.26), (3.30), (3.31)

The left column of the table shows the constraints of model MCT replacing the corresponding
constraints from CP5 indicated in the right column. Symbol = indicates that the constraints
in both columns are the same. Source: Elaborated by the author (2024).

The conditions required to regulate the bay configuration in MCT are the same
as in CP5 and are described by (5.6) to (5.11), using variables x, δ and w. The
Count constraints (5.6) ensure the number of containers with a given priority
remains the same across stages. Variables δ represent the projection of the
integer variables x onto the binary set, and this connection is established by
(5.7). Constraints (5.8) prevent a container’s priority from changing between
consecutive stages if the slot it occupies in the first stage remains occupied in
the subsequent one.

Variables w, identifying badly placed containers, are defined in terms of varia-
bles x through constraints (5.9) and (5.10). Constraints (5.9) classify a con-
tainer as badly placed if it is on top of a container with an earlier retrieval
time. Also, a container is deemed badly placed if it is above another badly
placed container. This condition is covered by the table constraints (5.15) in
MCT. (5.10) indicate that if a container in slot (s, t+ 1) is badly placed, then
at least one of the following conditions must hold: it must be retrieved later
than the container located in slot (s, t), or the container in (s, t) is also badly
placed. Constraints imposing an upper bound on the number of badly placed
containers at each stage using variables w are the same for CP5 and MCT,
(3.34) and (5.11), respectively.

97

Chapter 5. Premarshalling problems considering crane times

MCT requires the conditions referring to container relocations used in CP5 and
are expressed by (5.12) to (5.15). Additional constraints, (5.16) and (5.17), are
incorporated into MCT to define the variables that identify the crane move-
ments, which are used to measure the crane time.

Constraints (5.12) and (5.13) impose the limit of one relocation per stage. The
variables identifying the origin and destination slots of relocations, z and y,
are linked to the variables describing the bay configuration through constraints
(5.14) and (5.15). Constraints (5.14) relate y and δ, discarding solutions where
the same container is moved during two consecutive stages (transitive move
avoidance).

Table constraints (5.15) impose the conditions that the following combination
of constraints do in CP5: (3.20), (3.23) to (3.26), (3.30) and (3.31). The
global constraint Allowed Assignments restricts the possible combinations of
values for the set of variables indicated as arguments to those included in
matrix A, containing all permitted combinations. Matrix A is identical to that
used in constraints (4.20) in the AB model for the CPMP-AB, presented in
the preceding chapter. It enumerates sixteen possible combinations of values
detailed at the end of Section 4.2.1.

Constraints (5.15) specify how different groups of variables must reflect the
same relocation, ensuring the bay configuration changes according to the re-
location performed. Such conditions include the slot where the container is
relocated being empty and becoming occupied in the stage where the reloca-
tion is performed. Analogously, the slot from which this container is retrieved
must be occupied and become empty with the relocation. Additionally, these
constraints prevent empty slots between containers. Badly placed containers
are also considered in these table constraints, ensuring a container moved on
top of a badly placed container must be deemed as badly placed.

The newly defined variables for MCT, g and u, describing crane movements, are
connected through constraints (5.16) and (5.17) with the variables indicating
container relocations, y and z. If the crane’s trolley travels loaded with a
container from stack s to stack r at stage k, the logical expression on the
right-hand side of (5.16) returns a value of 1, and it is assigned to variable
gks,r. Similarly, in (5.17), if the trolley travels unloaded from s (the destination
stack of the relocation performed at stage k − 1) to stack r (the origin stack
of the relocation conducted at stage k), variable uk

s,r is set to 1.

The only conditions from CP5 not included in MCT are those expressed by
constraints (3.27) and (3.28). The purpose of constraints (3.27) in CP5 is

98

5.3 Constraint programming models for the CPMPCT and the CPMP-LCT

to discard infeasibilities faster, but they have not shown an improvement in
the performance of the MCT model. Constraints (3.28) are meant to remove
symmetries in the CPMP but do not apply to the CPMPCT, as two solutions
equivalent for minimizing the number of relocations may not be equivalent for
minimizing the crane time.

5.3.2 LCT1: A model for premarshalling under limited crane time

We have developed a constraint programming formulation, LCT1, to solve
the CPMP-LCT. This model is adapted from MCT, described in previous
Section 5.3.1.

LCT1 contains all the variables in the MCT formulation except for the set w.
In MCT, variables w are beneficial because they allow for imposing an upper
bound on the number of badly placed containers at each stage. However, this
upper bound is only valid when the premarshalling is to be completed and
cannot be defined when solving the CPMP-LCT.

The objective of the LCT1 formulation is to minimize the number of inacces-
sible containers. A new group of decision variables, qs,t, is defined to identify
such containers and formulate the objective function (5.18).

qs,t =

{
1 If an inaccessible container occupies (s, t) in the final layout
0 Otherwise

∀s ∈ S, ∀t ∈ T

min
∑
s∈S

∑
t∈T

qs,t (5.18)

The LCT1 formulation contains all the constraints of MCT except for those
involving variables w, namely (5.4), (5.5), (5.9) to (5.11) and (5.15). Addition-
ally, LCT1 includes constraints (5.19) to (5.22).

AllowedAssignments
(
C,

δk−1
s,t , δk−1

s,t+1, δ
k
s,t, δ

k
s,t+1,

zks,t, z
k
s,t+1 , y

k
s,t, y

k
s,t+1

)
∀s ∈ S, t ∈ T \ {t̄}, k ∈ K (5.19)

99

Chapter 5. Premarshalling problems considering crane times

∑
s∈S,t∈T

zk+1
s,t ≤

∑
s∈S,t∈T

zks,t ∀k ∈ K \ {k̄} (5.20)

∑
j∈T :j>t

(xk̄
s,j > xk̄

s,t) ≤ t̄ · qs,t ∀s ∈ S, t ∈ T \ {t̄} (5.21)

∑
i∈S

∑
j∈T

(xk̄
s,t > xk̄

ij) · qi,j ≤ c̄ · qs,t ∀s ∈ S, t ∈ T (5.22)

∑
s∈S

(∑
r∈S
r ̸=s

(
h0
0,s · g1s,r +

∑
k∈K\{1}

(
h0
r,s · uk

r,s

)
+
∑
k∈K

(
h1
s,r · gks,r

))
+

∑
k∈K

∑
t∈T

((
vt + lt) · zks,t + vt · yk

s,t

))
≤ τ (5.23)

The table constraints (5.19) replace (5.15) from MCT. These constraints must
be rewritten for LCT1 to remove variables w. Matrix A in the arguments of
(5.15) contains sixteen possible combinations for the variables, while matrix
C associated with (5.19) includes only seven combinations. There are fewer
combinations in C because it is not necessary to distinguish between badly
placed and well-placed containers in this context. In Figure 4.3, we can see that
there are seven allowed transitions between the possible states for a given pair
of slots (s, t) and (s, t+ 1) without badly placed containers. These transitions
correspond to the combinations included in C.

In the CPMP-LCT, no condition is imposed on the final layout, unlike in
the CPMP or the CPMPCT, where the final configuration must contain no
badly placed containers. Therefore, any sequence of relocations within the
time limit τ is a feasible solution for the CPMP-LCT, including the trivial
solution of not performing any relocation. This characteristic of the problem
means a wide range of solutions to evaluate, including numerous solutions with
many stages where no relocations are performed. To significantly narrow this
range of potential solutions, we impose that all relocations occur consecutively
during the first stages. Constraints (5.20) are included in LCT1 to enforce
this, thereby avoiding the consideration of equivalent solutions.

LCT1 must include some constraints to identify inaccessible containers. A
container is inaccessible if: a) there is a container at a higher tier of the same
stack with a later retrieval time, or b) there exists an inaccessible container with
an earlier retrieval time. Condition (a) is expressed by (5.21), and condition
(b) by (5.22).

100

5.3 Constraint programming models for the CPMPCT and the CPMP-LCT

The mathematical expression that computes the crane time and defines the
objective function of MCT is included in LCT1 as a constraint, (5.23), which
ensures that the total crane time used in the relocations does not exceed the
limit τ .

5.3.3 LCT2: An alternative model for bays where all container
priorities differ

When all the containers in a bay have distinct priorities, each priority group
uniquely defines a container. Therefore, minimizing the number of inaccessible
containers in the final layout is equivalent to minimizing the number of priority
groups with an inaccessible container in the final configuration. Based on this
idea, we can model the problem for this specific scenario with a formulation
that requires fewer decision variables referring to the inaccessible containers.
We define the model LCT2 by replacing variables qs,t from LCT1 with qp,
which are defined as follows:

qp =

 1 If there exists a container with priority p that is inaccessible
in the final configuration

0 Otherwise

∀p ∈ P

The objective function is modified accordingly, replacing (5.18) from LCT1 by
(5.24).

min
∑
p∈P

qp (5.24)

Constraints (5.21) and (5.22) from LCT1 are substituted with (5.25) and (5.26)
in LCT2. The rest of the constraints are the same in both formulations.∑

s∈S

∑
t∈T

(xk̄
s,t == p) ·

∑
j∈T :j>t

(xk̄
s,j > xk̄

s,t) ≤ c̄ · qp ∀p ∈ P (5.25)

qp ≤ qp+1 ∀p ∈ P \ {p̄} (5.26)

Variables qp refer to priority groups rather than single containers. When all
the containers have distinct priorities, variables qp identify the inaccessible
containers in the same way as variables qs,t. Therefore, solving the CPMP-LCT

101

Chapter 5. Premarshalling problems considering crane times

via LCT1 and LCT2 yields the same optimal solution. However, if multiple
containers have the same priority, while an optimal solution for the LCT1
formulation is also optimal for LCT2, the reverse may not be true. LCT2
only distinguishes between solutions that have no inaccessible containers from
a particular priority group and solutions that do have one or more inaccessible
containers with that priority, while LCT1 is also sensitive to the specific number
of inaccessible containers within a priority group.

5.3.4 Solution method

The MCT model has a continuous objective, unlike the CP5 model proposed
in Chapter 3 for the CPMP. While the minimization of the number of relo-
cations can be successfully guided by an iterative algorithm, as explained in
Section 3.2.5, the same cannot be applied to minimizing the crane time.

The MCT formulation serves as an intermediate step between the formulation
for the original premarshalling, CP5, and the proposed models for the novel
CPMP-LCT, namely LCT1 and LCT2. Therefore, we have chosen a solution
method that allows for easy comparison with the state-of-the-art integer pro-
gramming model for the CPMPCT, IPCT, proposed by Parreño-Torres et al.,
2020, thus proving the adequacy of MCT as a basis for the LCT1 and LCT2
formulations.

The method used in Section 5.4 for the MCT model involves replacing con-
straints (5.12) and (5.13) with (3.35) and (3.36), used in the solving procedure
explained in Section 3.2.5 for the proposed models for the CPMP, to enhance
the performance of the constraint programming solver. Moreover, it requires
a fixed number of stages k̄. We define this value using the solutions provided
by the branch and bound algorithm for the CPMPCT presented by Parreño-
Torres et al., 2020. For the instances where the branch and bound obtains an
optimal solution, we use the number of relocations as the number of stages. For
the rest of the instances, the number of stages is calculated using Proposition 2
of Parreño-Torres et al., 2020, which provides an upper bound for the number
of relocations of an optimal solution using the crane time of a feasible solution.
Unlike the procedure proposed for CP5, in this case, the objective function is
provided to the constraint programming solver, which solves an optimization
problem instead of several satisfaction problems.

The LCT1 and LCT2 models are provided to the constraint programming
solver including their objective function, similar to MCT. However, in this
case, the number of stages does not necessarily correspond to the number of

102

5.4 Computational experiments

relocations performed. Unlike the CPMPCT, we do not have a previous ref-
erence for the number of stages of the CPMP-LCT. Nevertheless, the limited
crane time allows for setting a simplified upper bound on the number of reloca-
tions: we define the number of stages, k̄, as the ceiling of the quotient between
the crane time limit, τ , and the minimum crane time required to perform a
single relocation, tmin:

k̄ =

⌈
τ

tmin

⌉
(5.27)

While the crane time is measured in both the CPMPCT and the CPMP-
LCT, it is not involved in the objective function of the CPMP-LCT. The
objective of minimizing the inaccessible containers is discrete, as in the original
premarshalling. Hence, as for CP5, an iterative algorithm is suitable as a
solution method for the models proposed for the CPMP-LCT. This is addressed
in Chapter 6.

5.4 Computational experiments

All the formulations proposed in this chapter have been tested through com-
putational experiments to evaluate their performance. First, we contrast the
results obtained by the MCT model, described in Section 5.3.1, with those
yielded by the state-of-the-art integer programming model for the CPMPCT,
namely IPCT, developed by Parreño-Torres et al., 2020. Then, we test the
formulations for the CPMP-LCT, LCT1 and LCT2, described in Section 5.3.2
and Section 5.3.3, respectively.

To ensure a fair comparison, MCT and IPCT have been solved using the same
fixed number of stages k̄ and the corresponding constraint programming and
mathematical programming solvers to search for solutions that minimize the
total crane time. Further details about the solution method used for MCT,
LCT1, and LCT2 can be found in Section 5.3.4.

A total of 420 instances are used in the computational study. These instances
are sourced from the CV and ZJY datasets described in Section 3.3.1. The ra-
tionale for selecting these specific datasets is that the instances are sufficiently
complex, with crane times required for premarshalling that are long enough to
be meaningful for defining the CPMP-LCT.

103

Chapter 5. Premarshalling problems considering crane times

5.4.1 Minimizing crane time: MCT vs IPCT

Table 5.3 shows the results obtained by the proposed constraint programming
model MCT and the state-of-the-art integer programming model IPCT. This
comparison demonstrates the superior performance of MCT over IPCT.

In the ZJY dataset, MCT solves all but two instances, which are 10 instances
more than using IPCT. Moreover, the constraint programming formulation
obtains shorter average crane times than IPCT. Despite the integer linear
model having a slightly shorter average computational time, MCT provides
better solutions overall.

The advantage of MCT over IPCT is even more significant across the CV
dataset. The MCT model solves 89% of the instances, whereas IPCT only
solves 58%. Additionally, MCT yields more optimal solutions, is computa-
tionally faster than IPCT, and generally achieves smaller objective function
values.

Table 5.3: Performance of models MCT and IPCT for the CPMPCT.

Dataset s̄ t̄ #I #Optimal #Feasible Av. CTime (s) Av. CPU (s)
MCT IPCT MCT IPCT Both MCT IPCT MCT IPCT

ZJY

6 4 20 14 14 20 18 18 1038 1040 1253 1326
7 4 20 13 15 20 17 17 1173 1177 1456 1425
8 4 20 11 11 20 18 18 1042 1038 2060 2035
9 4 20 5 5 19 18 17 1351 1354 3075 2865
6 5 20 5 6 19 17 17 1590 1620 3043 3014
Total 100 48 51 98 88 87 1234 1241 2165 2122

CV

3 5 40 40 40 40 40 40 1010 1010 7 94
4 5 40 40 38 40 36 36 1002 1002 36 278
5 5 40 33 28 40 37 37 1199 1206 814 1430
6 5 40 21 16 39 29 29 1243 1264 1867 2271
7 5 40 11 6 35 20 20 1417 1457 2425 2912
8 5 40 5 2 27 11 11 1381 1417 2527 3247
4 6 40 15 7 40 10 10 1640 1638 1217 2004
5 6 40 3 1 25 2 2 1652 1693 1859 1917

Total 320 167 137 286 185 185 1191 1202 967 1360

Results obtained with MCT and IPCT for the instances of the ZJY and CV datasets with
s̄ stacks and t̄ tiers. The number of instances per category is shown in the #I column.
Column #Optimal contains the number of instances proven optimal by each model, and
column #Feasible provides the total of instances for which a solution is found. The column
labeled Both shows the number of instances for which both models find a solution. The
average crane time and running time for the instances in the column Both are displayed in
the right-most columns. The best values are shown in bold. Source: Jiménez-Piqueras et al.,
2024.

104

5.4 Computational experiments

5.4.2 Performance of the proposed models for the CPMP-LCT:
LCT1 and LCT2

In this section, we analyze the performance of the proposed model for the
CPMP-LCT, LCT1, across the ZJY and CV datasets, with crane time limits
set at 20 and 15 minutes. Additionally, we compare LCT1 with LCT2, the
alternative formulation proposed for the CPMP-LCT when there are no re-
peated priorities. This comparison is conducted using the CV dataset, where
all the containers have distinct priorities.

The results obtained from the ZJY dataset are presented in Table 5.4, and
those from the CV dataset are displayed in Table 5.5. Across both datasets,
we observe an average reduction in inaccessible containers between the initial
and final configurations of 30% or more. This reduction increases with the
available crane time, τ . Bays with the smallest dimensions and a crane time
limit of 15 minutes yield an average reduction of 60% or more in both datasets.

Table 5.4: Performance of model LCT1 for the CPMP-LCT on the ZJY dataset.

τ (min) s̄ t̄ #Instances #Optimal #Feasible Reduction (%) Average CPU (s)

10

6 4 20 4 20 37 3314
7 4 20 0 20 31 3600
8 4 20 3 20 44 3072
9 4 20 0 20 38 3600
6 5 20 0 20 18 3600
Total 100 7 100 34 3437

15

6 4 20 4 20 60 2918
7 4 20 0 20 43 3600
8 4 20 4 20 55 2902
9 4 20 2 20 46 3469
6 5 20 0 20 27 3600
Total 100 10 100 46 3298

Results obtained by LCT1 over the ZJY dataset given a crane time limit τ . The column
#Instances contains the number of instances for each category defined by the number of
stacks s̄ and tiers t̄. LCT1 solves the instances indicated in column #Feasible, and the num-
ber of instances proven optimal is displayed in column #Optimal. The average percentage
reduction in the number of inaccessible containers and the average running time are calcu-
lated for the feasible solutions and shown in columns Reduction (%) and Average CPU (s),
respectively. Source: Jiménez-Piqueras et al., 2024.

The results presented in Table 5.5 reveal that when there are no repeated
priorities in the bay, the LCT2 model is a better approach than LCT1. The
number of optimal solutions increases by 79% and 112% for τ values of 10

105

Chapter 5. Premarshalling problems considering crane times

and 15 minutes, respectively, when solving the problem with LCT2 instead of
LCT1. This higher number of optimal solutions implies a decrease in running
time, as shown in the table. Despite this, the reduction in inaccessible contain-
ers between the initial and the final layout is almost the same for both models.
This consistency suggests that LCT1 provides good-quality solutions even if
they are not proven optimal.

In contrast to MCT and IPCT, the LCT1 and LCT2 models provide feasible
solutions for all instances. The requirement of a completely arranged bay
in the final stage imposes a strong condition that hinders the attainment of
feasible solutions. However, when partial arrangement is sought, this condition
is not applicable. Solving the CPMP-LCT using LCT1 or LCT2 makes it
possible to obtain solutions for instances that the models designed for complete
premarshalling do not solve.

Table 5.5: Performance of models LCT1 and LCT2 for the CPMP-LCT on the CV dataset.

τ
s̄ t̄ #Instances #Optimal #Feasible Reduction (%) Average CPU (s)

(min) LCT1 LCT2 Both LCT1 LCT2 LCT1 LCT2

10

3 5 40 40 40 40 38 38 7 5
4 5 40 40 40 40 40 40 116 18
5 5 40 27 40 40 39 39 2259 106
6 5 40 2 39 40 30 30 3503 492
7 5 40 0 35 40 30 30 3600 1345
8 5 40 0 32 40 26 26 3600 1985
4 6 40 40 40 40 20 20 176 13
5 6 40 22 40 40 18 18 2761 59
Total 320 171 306 320 30 30 2009 504

15

3 5 40 40 40 40 63 63 46 18
4 5 40 12 28 40 62 62 2609 1737
5 5 40 4 5 40 54 53 3308 3268
6 5 40 2 2 40 39 43 3496 3426
7 5 40 0 0 40 36 38 3600 3600
8 5 40 0 0 40 29 33 3600 3600
4 6 40 1 35 40 29 29 3518 924
5 6 40 0 15 40 24 25 3600 2678
Total 320 59 125 320 42 43 2981 2414

Results obtained by LCT1 and LCT2 over the CV dataset given a crane time limit τ . The
column #Instances contains the number of instances for each category defined by the number
of stacks s̄ and tiers t̄. Both LCT1 and LCT2 obtain solutions for the instances indicated in
column #Feasible. Those instances proven optimal by each model are displayed in columns
#Optimal. The average percentage reduction in the number of inaccessible containers and
the average running time are calculated for the feasible solutions and shown in columns
Reduction (%) and Average CPU (s), respectively. The best values are shown in bold.
Source: Jiménez-Piqueras et al., 2024.

106

5.4 Computational experiments

5.4.3 Heuristic solutions in short times for the CPMP-LCT

Since models LCT1 and LCT2 always provide feasible solutions, they can be
used as heuristic approaches. We have analyzed the results obtained with both
models, imposing short running time limits of 60, 120, and 300 seconds, and
compared them with the solutions presented in the previous section, with a
limit of 3600 seconds. This evaluation allows us to assess the potential of
these formulations as heuristic approaches. The results for the CV dataset are
displayed in Table 5.6 and Table 5.7, for LCT1 and LCT2, respectively, and
Table 5.8 shows the results yielded by LCT1 on the ZJY dataset.

Table 5.6: Performance of model LCT1 on the CV dataset in short running times.

τ
s̄ t̄ #Instances

#Optimal Reduction (%)

(min) 60 s 120 s 300 s 3600 s 60 s 120 s 300 s 3600 s

10

3 5 40 40 40 40 40 37 37 37 37
4 5 40 11 19 40 40 40 40 40 40
5 5 40 0 0 1 27 34 35 37 39
6 5 40 1 1 1 2 27 28 29 30
7 5 40 0 0 0 0 26 28 30 30
8 5 40 0 0 0 0 21 23 25 26
4 6 40 7 16 36 40 20 20 20 20
5 6 40 0 0 0 22 17 18 18 18

Total 320 59 76 118 171 28 29 29 30

15

3 5 40 25 40 40 40 62 62 62 62
4 5 40 5 6 9 12 50 53 56 62
5 5 40 0 1 2 4 35 42 47 54
6 5 40 0 1 1 2 27 30 32 39
7 5 40 0 0 0 0 21 26 30 36
8 5 40 0 0 0 0 14 16 23 29
4 6 40 0 0 0 1 22 24 27 29
5 6 40 0 0 0 0 18 19 21 24
Total 320 30 48 52 59 31 34 37 42

Total 320 30 48 52 59 31 34 37 42

Results obtained with LCT1 for the instances of the CV dataset with s̄ stacks and t̄ tiers,
and crane time limit τ . Column #Instances shows the number of instances per category.
Columns #Optimal contains the number of instances proven optimal by the model using
different running time limits. A feasible solution is obtained for every instance and running
time limit. The average percentage reduction in the number of inaccessible containers in
the feasible solutions obtained for each running time limit is displayed in the Reduction (%)
columns. Source: Jiménez-Piqueras et al., 2024.

107

Chapter 5. Premarshalling problems considering crane times

Table 5.7: Performance of model LCT2 on the CV dataset in short running times.

τ
s̄ t̄ #Instances

#Optimal Reduction (%)

(min) 60 s 120 s 300 s 3600 s 60 s 120 s 300 s 3600 s

10

3 5 40 40 40 40 40 37 37 37 37
4 5 40 39 40 40 40 40 40 40 40
5 5 40 16 29 35 40 37 39 39 39
6 5 40 5 10 21 39 30 30 30 30
7 5 40 0 0 6 35 28 29 30 30
8 5 40 0 0 1 32 24 25 26 26
4 6 40 40 40 40 40 20 20 20 20
5 6 40 27 36 39 40 18 18 18 18

Total 320 167 195 222 306 29 30 30 30

15

3 5 40 40 40 40 40 62 62 62 62
4 5 40 7 8 11 28 53 56 59 62
5 5 40 1 3 3 5 46 51 52 53
6 5 40 1 1 2 2 31 34 37 43
7 5 40 0 0 0 0 26 30 34 38
8 5 40 0 0 0 0 20 24 26 33
4 6 40 4 6 16 35 25 28 29 29
5 6 40 0 0 2 15 21 23 23 25

Total 320 53 58 74 125 36 38 40 43

Results obtained with LCT2 for the instances of the CV dataset with s̄ stacks and t̄ tiers,
and crane time limit τ . Column #Instances shows the number of instances per category.
Columns #Optimal contains the number of instances proven optimal by the model using
different running time limits. A feasible solution is obtained for every instance and running
time limit. The average percentage reduction in the number of inaccessible containers in
the feasible solutions obtained for each running time limit is displayed in the Reduction (%)
columns. Source: Jiménez-Piqueras et al., 2024.

As expected, the number of optimal solutions increases significantly with the
running time limit. However, the increase in the reduction of inaccessible
containers is much less pronounced. This is because feasible solutions obtained
within short running time limits are already of good quality.

For example, with a 10-minute crane time limit on the CV dataset, we observe
a difference in the reduction of inaccessible containers of only 2% and 1%,
respectively, for LCT1 and LCT2, when comparing the results obtained at
60 and 3600 seconds displayed in Tables 5.6 and 5.7. For the ZJY dataset,
this difference is also low, at 7%, as can be deduced from Table 5.8. With a
higher crane time limit of 15 minutes, the differences are slightly larger but

108

5.4 Computational experiments

still small: 11% for LCT1 and 7% for LCT2 on the CV dataset, and 18% on
the ZJY dataset.

Overall, there is an average reduction in the number of inaccessible containers
of at least 28% for all the models, datasets, and crane time limits. The figures
analyzed in this section demonstrate that using LCT1 and LCT2 provides good
heuristic solutions.

Table 5.8: Performance of model LCT1 on the ZJY dataset in short running times.

τ
s̄ t̄ #Instances

#Optimal Reduction (%)

(min) 60 s 120 s 300 s 3600 s 60 s 120 s 300 s 3600 s

10

6 4 20 0 0 0 4 31 31 34 37
7 4 20 0 0 0 0 27 29 31 31
8 4 20 1 2 3 3 30 38 43 44
9 4 20 0 0 0 0 28 33 36 38
6 5 20 0 0 0 0 16 17 18 18

Total 100 1 2 3 7 27 30 32 34

15

6 4 20 0 1 4 4 35 43 51 60
7 4 20 0 0 0 0 27 30 32 43
8 4 20 2 3 4 4 33 42 48 55
9 4 20 0 0 0 2 24 30 33 46
6 5 20 0 0 0 0 18 21 23 27

Total 100 2 4 8 10 28 33 37 46

Results obtained with LCT1 for the instances of the ZJY dataset with s̄ stacks and t̄ tiers, and
crane time limit τ . Column #Instances shows the number of instances per category. Columns
#Optimal contains the number of instances proven optimal by the model using different
running time limits. A feasible solution is obtained for every instance and any running time
limit. The average percentage reduction in the number of inaccessible containers in the
feasible solutions obtained for each running time limit is displayed in the Reduction (%)
columns. Source: Jiménez-Piqueras et al., 2024.

109

Chapter 5. Premarshalling problems considering crane times

5.5 Concluding remarks

The classical premarshalling formulations provide a sequence of relocations
to fully arrange a bay. However, obtaining a partial bay arrangement when
the crane availability is insufficient to complete the premarshalling process re-
mained an open problem. This study introduces the Container Premarshalling
Problem under Limited Crane Time (CPMP-LCT).

As a previous step to modeling the novel problem, we have addressed the
Container Premarshalling Problem with Crane Time Minimization Objective
(CPMPCT). We have introduced a constraint programming formulation for
this problem, which outperforms the state-of-the-art mathematical program-
ming model.

Given a crane time limit, a basic partial premarshalling can be obtained by
solving the CPMP or its crane time variant, the CPMPCT, considering only
the initial relocations performed within the time limit. However, we have
shown that the bay configurations achieved this way are of low quality and
may even worsen the initial bay configuration. In contrast, the solutions ob-
tained through the CPMP-LCT have proven to offer significantly better par-
tial arrangements. Moreover, the models proposed in this study to solve the
CPMP-LCT provide feasible solutions for instances unsolved by the state-of-
the-art models for complete premarshalling.

We have explored alternative constraint programming models for the CPMP-
LCT. This chapter presents the details and computational experiments for the
most relevant formulation and an alternative one tailored for scenarios where
all containers in the bay have distinct priorities. Additionally, the constraint
programming models proposed serve as effective heuristics for the CPMP-LCT,
offering good-quality feasible solutions in short running times.

Incorporating crane times is a significant advancement toward addressing real-
world scenarios in the premarshalling problem, and our constraint program-
ming model for the CPMPCT contributes to it by yielding more efficient solu-
tions than previous proposals. However, the essential part of this study goes
beyond measuring crane times: it considers a crane time limit in the arrange-
ment process. This enhancement allows the formulation to adapt to multiple
real-life scenarios where there may not be enough time to arrange the bay
entirely.

110

Chapter 6

Alternative approaches for the
premarshalling problem under

limited crane time

The introduction of the Container Premarshalling Problem under Limited
Crane Time (CPMP-LCT) means a significant improvement in adapting the
original premarshalling formulation to the practical requirements of port ter-
minals. This novel version defines partial premarshalling solutions when the
available time is insufficient for a complete arrangement. The goal of partial
premarshalling is the same as for complete premarshalling: to best prepare the
bay for the subsequent retrieval of containers. However, defining an objective
that ensures this condition is not straightforward.

The objective of minimizing the number of inaccessible containers presented in
Chapter 5 may be advantageous in particular scenarios, but it fails to provide
sufficiently efficient partial premarshalling solutions from a general perspec-
tive. In this chapter, we explore alternative objectives for the CPMP-LCT
and provide constraint programming models and solution methods tailored to
each one. A computational study allows us to evaluate the solutions yielded
by each approach and propose a general objective for the CPMP-LCT, high-
lighting the advantages of the alternatives in specific scenarios.

111

Chapter 6. Alternative approaches for the premarshalling problem under limited crane time

6.1 Alternative objectives for the CPMP-LCT

The Container Premarshalling Problem under Limited Crane Time (CPMP-
LCT) aims to find a sequence of container relocations that arranges a set
of containers most efficiently without exceeding a given available crane time.
When a complete arrangement of the containers can be performed within the
time limit, this is considered the most efficient solution if no other conditions
are imposed. However, when only a partial premarshalling is possible due to
crane time limitation, defining the objective to pursue for obtaining efficient
solutions may be unclear.

The approach proposed in Chapter 5 for the CPMP-LCT seeks the minimiza-
tion of the number of inaccessible containers in the bay. A container is consid-
ered inaccessible if one or more relocations are needed before its retrieval from
the beginning of the retrieval process. Conversely, a container is accessible
if this one and all containers with earlier retrieval priorities can be retrieved
without additional relocations.

When minimizing the inaccessible containers, a relocation is considered more
inconvenient the earlier in the retrieval process it must be performed. This
objective focuses on maximizing accessibility for containers with the earliest
retrieval priorities. Hence, this approach may be advantageous when possi-
ble retrieval interruptions allow for additional premarshalling before retrieving
containers from later priority groups. Also, these solutions mitigate the risk
of being affected by changes in the retrieval priorities, which typically have a
greater impact on containers scheduled for the latest retrievals. However, in
different scenarios, an alternative objective might be more beneficial or improve
other aspects of the solutions.

Solving the CPMP-LCT by minimizing the inaccessible containers overlooks
those that remain inaccessible after the partial premarshalling. If the subse-
quent container retrieval is expected to be performed uninterruptedly, a more
advantageous approach might be to minimize the total number of relocations
needed to retrieve the whole set of containers, instead of only focusing on those
that must be retrieved first. This objective corresponds to that of the Block
Relocation Problem (BRP). The BRP aims to sequence container retrievals
and relocations within the bay to ensure all containers are retrieved according
to the priority schedule while minimizing the overall number of relocations. An
example of a BRP solution is depicted in Figure 6.1, where the nine containers
in the bay are retrieved using seven relocations within the bay.

112

6.1 Alternative objectives for the CPMP-LCT

Figure 6.1: An example of a solution to the BRP.

167

398

425

1 2 30

1

2

3

4

5

6

7

8

9

1

(3, 0)

67

398

425

2

(2, 1)

3

(2, 3)

1

6

7

398

4251

6

97

38

4251

6

97

38

45

2

1

(2, 0)

6

7

38

495

2

1

(3, 2)

6

7

8

495

3

2

1

(3, 0)

6

7

8

95

4

3

2

1

(3, 0)

4 5 6 7

10

(1, 3)

7

6

895

11

(1, 0)

12

(2, 1)

4

3

2

1

7

6

89

5

4

3

2

1

6

897

5

4

3

2

1 897

6

5

4

3

2

1

(2, 0)

89

7

6

5

4

3

2

1

(1, 0)

9

8

7

6

5

4

3

2

1

(3, 0)

9

8

7

6

5

4

3

2

1

(2, 0)

13 14 15 16

7

68

95

4

3

2

1

(1, 2)

7

68

95

4

3

2

1

(1, 2)

8 9

An example of a BRP solution for an instance sourced from the CV dataset (details about
this dataset can be found in Section 3.3.1). The initial bay layout is shown in the top left
corner. The subsequent layouts represent the sequence of retrievals, highlighted in blue, and
relocations within the bay, highlighted in magenta. On the left of the bay layouts, there
is a dummy stack for placing the containers that are retrieved from the bay. This stack is
identified by 0, as indicated in the initial layout, where the indexes for the real stacks and
the tiers are also depicted. At each stage, the next container to be retrieved from the bay is
highlighted in yellow. The relocation or retrieval performed at each stage is indicated by an
arrow and a pair (s, r) where s and r are the origin and destination stacks. The container is
highlighted with a thick border, and a dot indicates its origin slot. Source: Elaborated by
the author (2024).

Finding a solution for the CPMP-LCT that minimizes the number of reloca-
tions in the retrieval phase entails solving the BRP to evaluate the objective
function. This makes the problem highly complex and challenging to solve.
Therefore, besides studying the objective of minimizing the BRP relocations,
which ideally describes the efficiency of a partial premarshalling solution, we
also propose an intermediate approach between minimizing inaccessible con-
tainers and minimizing relocations in the retrieval phase, aiming to combine
the advantages of both objectives.

113

Chapter 6. Alternative approaches for the premarshalling problem under limited crane time

The intermediate approach between the two objectives described so far is based
on two main ideas:

▷ Using a more straightforward objective function than that of the BRP,
which still yields solutions with a similar number of relocations required
during the retrieval phase.

▷ Reducing the number of inaccessible containers while also addressing
those that remain inaccessible.

The containers that remain inaccessible after partial premarshalling require
relocations to be retrieved because some of them block the retrieval of others.
We consider a container is a blocking container if it is placed at a higher tier
than another container in the same stack with an earlier retrieval time. While
minimizing the number of blocking containers does not guarantee reducing
the number of relocations in the retrieval phase to a minimum, a decrease in
blocking containers often implies a reduction in the number of BRP relocations,
as shown in Section 6.4. Therefore, we introduce a new term for blocking
containers into the objective function of minimizing the inaccessible containers.
Specifically, we define the objective of minimizing the sum of inaccessible and
blocking containers.

In summary, the objective functions for the CPMP-LCT studied in this chapter
are the following:

a) Minimizing the inaccessible containers: This objective focuses on unblock-
ing the maximum number of containers in the order of retrieval priorities.
It is described in Chapter 5, and we propose an enhanced solution method
for it in Section 6.2.1 of this chapter.

b) Minimizing the sum of inaccessible and blocking containers: This is an in-
termediate approach between the other two objectives. It aims to reduce
the number of inaccessible containers as in objective (a) but also addresses
the containers that remain inaccessible after partial premarshalling, aim-
ing to reduce the number of blocking containers among them, which is
correlated with objective (c). We propose a constraint programming for-
mulation and a solution method for this approach in Section 6.2.2.

c) Minimizing the BRP relocations: This is the objective of the Block Re-
location Problem (BRP) and aims to minimize the number of relocations
required to retrieve all the containers from the bay after premarshalling.
This approach simultaneously solves the CPMP-LCT over the initial bay

114

6.1 Alternative objectives for the CPMP-LCT

layout and the BRP over the configuration resulting from premarshalling.
A constraint programming model and its corresponding solutions method
are presented in Section 6.2.3.

Figure 6.2 illustrates optimal final layouts resulting from solving the CPMP-
LCT with the three alternative objectives on the same instance for a crane time
limit of ten minutes. Some figures associated with this example are displayed
in Table 6.1.

We observe that the number of inaccessible containers is reduced from 8 in the
initial layout to 5 in the final layout provided by the objectives of minimizing
the inaccessible containers and the sum of inaccessible and blocking contain-
ers. However, the number of inaccessible containers increases when using the
objective of minimizing BRP relocations, resulting in a final layout where all
the containers are inaccessible.

The objective that most reduces the number of blocking containers is (b), which
includes a specific term for blocking containers. It is followed by objective (c),
which provides 3 blocking containers, and then objective (a), with the same
number of blocking containers as in the initial layout, 4.

The initial bay layout requires 7 relocations to retrieve all the containers from
the bay. This number is reduced by all the approaches, with objectives (b)
and (c) achieving the most significant reductions. By minimizing the sum of
inaccessible and blocking containers or the BRP relocations, the containers can
be retrieved from the layout after premarshalling using 3 relocations. However,
an additional relocation is needed for the layout resulting from minimizing the
inaccessible containers, making a total of 4 relocations.

This example illustrates the nature of objective (b) as an intermediate ap-
proach between objectives (a) and (c). Minimizing the sum of inaccessible and
blocking containers provides the same number of inaccessible containers as
only minimizing inaccessible containers but also reduces the number of block-
ing containers, producing a bay configuration that requires the same number
of relocations to retrieve the containers as the approach of minimizing BRP
relocations.

115

Chapter 6. Alternative approaches for the premarshalling problem under limited crane time

Figure 6.2: Examples of optimal final layouts for the alternative objectives.

167

398

425

a)

9

7

16

38

425

b)

2

17

368

495

c)

2

6

1

378

495

An example of optimal final layouts for an instance sourced from the CV dataset (details
about this dataset can be found in Section 3.3.1) solving the CPMP-LCT with a crane time
limit of ten minutes. The initial bay layout is depicted on the left, and on the right, the
figure shows the final layouts of the solutions yielded by the objectives of a) minimizing
the number of inaccessible containers, b) minimizing the sum of inaccessible and blocking
containers, and c) minimizing the relocations required for container retrieval. Inaccessible
containers that are not blocking containers are highlighted in orange and those that are
inaccessible and also blocking containers are highlighted in red. Some figures corresponding
to this example are displayed in Table 6.1. Source: Elaborated by the author (2024).

Table 6.1: Features of optimal solutions for the alternative objectives.

Initial a) Minimize b) Minimize c) Minimize
bay #Inaccessible #Inaccessible #BRP

layout + #Blocking relocations

#Inaccessible 8 5 5 9
#Blocking 4 4 2 3
#BRP relocations 7 4 3 3

The table displays the number of inaccessible containers, blocking containers, and BRP
relocations for the initial bay layout and the final bay layouts depicted in Figure 6.2, resulting
from the objectives of a) minimizing the number of inaccessible containers, b) minimizing
the sum of inaccessible and blocking containers, and c) minimizing the relocations required
for container retrieval. The best values are shown in bold. Elaborated by the author (2024).

116

6.2 Constraint programming models and solution methods for the CPMP-LCT

6.2 Constraint programming models and solution methods
for the CPMP-LCT

This section introduces constraint programming models for the two novel ob-
jectives for the CPMP-LCT proposed in this chapter: minimizing the sum
of inaccessible and blocking containers and minimizing the BRP relocations.
Moreover, we have designed solution methods for each of these approaches.
Additionally, we present an enhanced procedure for addressing the original
objective of minimizing the inaccessible containers in the CPMP-LCT.

The solution method proposed for minimizing the inaccessible containers in-
volves using LCT1, described in the preceding chapter in Section 5.3.2, along
with an additional formulation introduced in this section, referred to as LCT-I.
In the name of model LCT-I, “I” signifies Inaccessible, indicating the objec-
tive of minimizing inaccessible containers, while “LCT” denotes Limited Crane
Time, as in LCT1. Similarly, we denote the constraint programming model
developed for minimizing the sum of inaccessible and blocking containers as
LCT-IB, with “B” representing Blocking. Finally, the model designed to mini-
mize BRP relocations is labeled LCT-BRP.

All the models presented in this section require a fixed number of premar-
shalling stages, k̄. We use the same value as specified for LCT1 in Section 5.3.4,
(5.27), which is the ceiling of the quotient between the crane time limit, τ , and
the minimum crane time required for a relocation, tmin.

6.2.1 LCT-I: A model and a solution method for minimizing the
inaccessible containers

In Chapter 5, the CPMP-LCT is addressed using LCT1 to define an opti-
mization problem and passing this formulation to a constraint programming
solver. However, constraint programming solvers are generally more adept at
solving satisfaction problems than optimization ones. Therefore, it may be
advantageous to guide the search for an optimal solution using an iterative al-
gorithm, employing the solver at each iteration to solve a satisfaction problem.
This strategy has been successfully employed for the constraint programming
models presented in Chapters 3 and 4.

In this section, we describe an algorithm designed to enhance the efficiency of
the LCT1 model introduced in Section 5.3.2 for solving the CPMP-LCT with
the original objective of minimizing inaccessible containers. The algorithm

117

Chapter 6. Alternative approaches for the premarshalling problem under limited crane time

consists of two phases: the first phase uses the LCT1 model, while the second
phase employs a newly proposed formulation, LCT-I.

First phase: Model LCT1

In the first phase of the proposed algorithm for solving the CPMP-LCT with
the objective of minimizing inaccessible containers, we use the LCT1 formula-
tion, adapting it to define a satisfaction problem. To achieve this, we transform
the objective function (5.18) into constraint (6.1), which imposes an upper limit
f on the objective. ∑

s∈S

∑
t∈T

qs,t ≤ f (6.1)

We denote the best objective value achieved as f∗, which is updated at each
iteration of the algorithm whenever a solution is found. This parameter is
initialized with the number of inaccessible containers in the initial layout, cor-
responding to the objective value of the trivial solution where no relocations
are performed. At each iteration, the value of parameter f is set to f = f∗−1,
intending to either find a better solution than the current best or identify
infeasibility.

Specifically, the first iteration of the algorithm aims to solve the problem with
a maximum number of inaccessible containers f or demonstrate the optimality
of the trivial solution. If a solution is discovered, the parameters f and f∗ are
updated, and a new iteration is performed. This procedure is repeated when-
ever a new solution is found. However, if an infeasible problem is encountered
during any iteration, the algorithm terminates, as the best solution has been
proven optimal.

Additionally, the first phase of the algorithm incorporates a fail limit per ite-
ration. This prevents the algorithm from becoming trapped in an iteration
where the solver cannot either find a feasible solution to the problem or prove
its infeasibility. If the fail limit is reached, the algorithm proceeds to the second
phase.

118

6.2 Constraint programming models and solution methods for the CPMP-LCT

Second phase: Model LCT-I

The purpose of the second phase is to enhance, or ideally, prove the optimality
of the best solution identified thus far when the first phase seems to not progress
in this regard. The idea behind the second phase is to address the CPMP-LCT
from a different perspective, transforming the partial premarshalling problem
to be solved at each iteration into a complete premarshalling problem. Based
on this concept, we formulate the LCT-I model.

The LCT-I model is designed to address satisfaction problems. Hence, no
objective function is defined for it. It is derived from the formulation for com-
plete premarshalling MCT, including all the constraints from this model, (5.2)
to (5.17), except for constraints (5.9) that identify badly placed containers.
Instead, constraints (5.9) are replaced by (6.2), along with (6.3) if there are
repeated priorities in the bay, as detailed in subsequent paragraphs.

Additionally, LCT-I incorporates constraints (5.20) and (5.23) from LCT1.
Constraints (5.20) are included in LCT-I for the same purpose as in LCT1:
discarding equivalent solutions to narrow down the search space. Constraints
(5.23) impose the crane time limit τ . However, in contrast to LCT1, a model
for partial premarshalling, LCT-I is a formulation for complete premarshalling.
Consequently, in LCT-I, the limit τ does not restrict the number of relocations
to perform but solely determines the feasibility of achieving a complete ar-
rangement: if the time needed for complete premarshalling exceeds the limit,
the problem is deemed infeasible.

Constraints (6.2), and optionally (6.3), are the key for translating the partial
premarshalling targeted in each iteration into a complete premarshalling prob-
lem. These constraints ensure that the limit on inaccessible containers imposed
by (6.1) in the first phase is also incorporated in the second phase.

(
xk
s,t+1 > xk

s,t

)
·
(
xk
s,t < p̂

)
≤ wk

s,t+1 ∀s ∈ S, t ∈ T \ {t̄}, k ∈ K (6.2)∑
s∈S, t∈T \{t̄}

((
xk
s,t+1 > xk

s,t

)
− wk

s,t+1

)
·
(
xk
s,t == p̂

)
≤ γ ∀k ∈ K (6.3)

In LCT-I, there are no variables for identifying the inaccessible containers as in
LCT1. Instead, the LCT-I model focuses on badly placed containers, similar
to other formulations for complete premarshalling. However, constraints (6.2)
and (6.2) allow the connection between these two types of containers using
parameter p̂.

119

Chapter 6. Alternative approaches for the premarshalling problem under limited crane time

The original constraints (5.9) from MCT indicate that if a container in slot
(s, t) has an earlier retrieval time than a container in slot (s, t + 1), then the
container in (s, t + 1) is badly placed. Conversely, the new constraints (6.2),
replacing (5.9), express that if a container in slot (s, t) has a retrieval time
p < p̂ and p is an earlier retrieval time than that of a container occupying
(s, t+1), then the container in (s, t+1) is badly placed since it blocks the one
in (s, t).

In the first phase, constraints (6.1) permit f containers to remain inaccessible.
In the second phase, constraints (6.2) allow the containers with priorities p̂ to
p̄ to remain inaccessible by neglecting the blockages between these containers.
This can be interpreted as if the last f containers to be retrieved were regrouped
into a single priority group, thus not blocking each other.

If all the containers in the bay have distinct priorities, the f last containers
to be retrieved correspond to the f last priority groups, i.e., priority groups
p̂ = p̄− f + 1 to p̄. However, if there are repeated priorities, p̂ would take the
priority of the p̄− f +1 container to be retrieved, which may not be the value
p̄−f+1. In this case, if the priority group assigned to p̂ has multiple containers
and the f last containers to be retrieved do not include all of them, (6.3) must
be incorporated into the formulation. Let γ be the number of containers in
priority group p̂ that are part of the f containers that are permitted to remain
inaccessible, then constraints (6.3) impose that the blockages on at most γ
containers with priority p̂ can be neglected.

The second phase of the algorithm begins by assigning p̂ the priority of the
p̄ − f + 1 container to be retrieved, where f = f∗ − 1, and f∗ corresponds
to the number of inaccessible containers in the best solution found during the
first phase. Using this value for p̂, the LCT-I model is employed to solve
the problem of obtaining a partial premarshalling with at most f inaccessible
containers. If a solution is found, the parameters f∗, f , and p̂ are updated,
and a new iteration is performed. If an infeasible problem is encountered at
some point, the last solution obtained is proven optimal.

120

6.2 Constraint programming models and solution methods for the CPMP-LCT

6.2.2 LCT-IB: A model and a solution method for minimizing the
sum of inaccessible and blocking containers

We propose the LCT-IB model to solve the CPMP-LCT with the objective
of minimizing the sum of inaccessible and blocking containers. The LCT-
IB formulation results from modifying the LCT1 formulation, presented in
Section 5.3.2, to include the blocking containers in the objective function.

LCT-IB contains all the groups of decision variables from LCT1, but with qs,t
turning into integer variables to accommodate the blocking containers.

qs,t =

2 If there is an inaccessible and blocking container in slot
(s, t) in the final stage

1 If there is an inaccessible but not blocking container in slot
(s, t) in the final stage

0 If slot (s, t) is empty or it is occupied by an
accessible container in the final stage

∀s ∈ S, ∀t ∈ T

The objective function of LCT-IB is analogous to (5.18) from LCT1, but uses
the integer variables qs,t. All the constraints in LCT1 are included in LCT-
IB, with one group of constraints slightly modified and an additional group of
constraints added.

Constraints (5.21) and (5.22) from LCT1 ensure that variables qs,t are positive
when there is an inaccessible container in slot (s, t). This condition must also
be imposed in LCT-IB, but the parameter c̄ in (5.22) has to be multiplied by 2
in LCT-IB. This adjustment prevents the variables qs,t on the right-hand side
of the inequality from being incorrectly forced to be equal to 2. Consequently,
constraints (5.22) from LCT1, are substituted with (6.4) in LCT-IB.

A new group of constraints, (6.5), is included in LCT-IB to ensure a variable
qs,t takes a value of 2 when, in any tier below t within stack s, there is a
container with an earlier retrieval time than the container in slot (s, t). This
condition indicates the presence of a blocking container in slot (s, t).∑

i∈S

∑
j∈T

(xk̄
s,t > xk̄

ij) · qi,j ≤ 2 c̄ · qs,t ∀(s, t) ∈ L (6.4)

∑
j∈T :j<t

(xk̄
s,t > xk̄

s,j) ≤ t̄ ·
(
qs,t == 2

)
∀(s, t) ∈ L : t > 1 (6.5)

121

Chapter 6. Alternative approaches for the premarshalling problem under limited crane time

Solving method

We propose using LCT-IB along with an iterative algorithm equivalent to the
first phase of the algorithm described in Section 6.2.1. At each stage, we solve
a satisfaction problem by replacing the objective function with constraint (6.1)
that imposes an upper limit f on it, as described for LCT1 in the previous
section. The only difference is that in LCT-IB, the limit f is applied to the
sum of inaccessible and blocking containers instead of only the number of
inaccessible containers.

The algorithm used for LCT-IB comprises a single phase, and the fail limit
applied in the first phase of the algorithm described in Section 6.2.1 is not
used here.

The parameter f∗, representing the best objective value found, is initialized
with the value of the objective function in the initial bay layout, corresponding
to the trivial solution of no relocations. The algorithm then performs a first
iteration with an upper limit on the objective function set to f = f∗ − 1.
Whenever a solution is found, f∗ and f are updated, and a new iteration is
conducted. When an infeasible problem is encountered, the last solution found
is proven optimal. Otherwise, if the algorithm stops due to the running time
limit, it returns the best feasible solution obtained up to that point.

6.2.3 LCT-BRP: A model and a solution method for minimizing
the relocations in the retrieval phase

We have developed the model LCT-BRP to solve the CPMP-LCT using the
objective of the BRP. This approach aims to find a partial premarshalling
solution within a limited crane time that minimizes the number of relocations
needed during the subsequent retrieval of all containers in the bay.

The LCT-BRP model solves the CPMP-LCT and the BRP altogether. Thus,
a solution comprises a sequence of relocations performed during the premar-
shalling phase (corresponding to CPMP-LCT) and the subsequent sequence of
retrievals and relocations conducted during the retrieval phase (corresponding
to BRP). The set of stages is extended according to this requirement, using
the notation described in the following subsection, which also explains how
the bay configuration is adapted to describe the sequence of movements in the
retrieval phase.

122

6.2 Constraint programming models and solution methods for the CPMP-LCT

Notation

A solution to the CPMP-LCT with the objective of minimizing the BRP re-
locations consists of two phases: the premarshalling phase and a subsequent
retrieval phase. The set of stages used in all models presented in this thesis,
K, includes stages corresponding to these two phases in the LCT-BRP for-
mulation. As in previous models, k̄ indicates the total number of stages, and
additionally, k̄1 denotes the number of stages in the first phase, corresponding
to premarshalling. We use the following sets of stages:

• General sets, including or not the initial stage: K0 := {0, 1, 2, . . . , k̄} and
K := {1, 2, . . . , k̄}.

• Sets of stages corresponding to the premarshalling phase, including or
not the initial stage: K0

1 = {0, 1, . . . , k̄1} and K1 = {1, . . . , k̄1}.

• A set of stages corresponding to the retrieval phase: K2 = {k̄1+1, . . . , k̄}.

The bay configuration is extended during the retrieval phase to account for
container retrievals. Specifically, a dummy stack denoted by 0 is considered to
place the containers retrieved from the bay. The number of tiers in stack 0 is
equal to the number of containers in the bay, c̄, as all of them must be retrieved.
We define the set of all stacks, including the retrieval one, as L0 :=

(
{0}×C

)
∪L,

where C = {1, . . . , c̄} is the set of containers and L := S × T corresponds to
the set of bay slots.

The parameter mp indicates the number of containers in priority group p in
this model, similar to previous ones. However, for the particular case of p = 0,
while m0 counts the empty slots in the premarshalling phase, it is replaced by
m0

0 := m0 + c̄ in the second stage to incorporate the empty slots of stack 0.

Formulation

The formulation LCT-BRP is derived from the LCT1 model presented in Sec-
tion 5.3.2. The sets of variables from LCT1 are extended in LCT-BRP to
include the stack for the retrieval of containers and the stages corresponding
to the retrieval phase. Variables qs,t that identify the inaccessible containers
in LCT1 are omitted in LCT-BRP, but an additional group of variables is de-
fined, bs,t, to identify the blocking containers at the end of the premarshalling
phase:

123

Chapter 6. Alternative approaches for the premarshalling problem under limited crane time

bs,t =

{
1 If there is a blocking container in slot (s, t) in stage k̄1
0 Otherwise

∀(s, t) ∈ L

In LCT-BRP, the variables that describe the bay configuration, δks,t and xk
s,t,

are defined for all (s, t, k) ∈
(
L ×K0

1

)
∪
(
L0 ×K2

)
.

Variables yk
s,t, which indicate the slot (s, t) where the container relocated at

stage k is placed, are extended to stack 0 in the retrieval phase, so they are
defined for all (s, t, k) ∈

(
L×K1

)
∪
(
L0×K2

)
. No container can be retrieved from

stack 0, so variables zks,t are not defined in that stack, but for all (s, t, k) ∈ L×K.

The sets of variables that describe the crane movements, gks,r and uk
s,r, are not

extended because they are only needed in the premarshalling phase.

The objective function of minimizing the number of relocations in the retrieval
phase can be expressed as (6.6), using variables y over the set of bay slots
during the retrieval phase. The destination slots of the retrievals performed in
this phase are in stack 0, so they are not counted in the objective function.

min
∑

(s,t,k)∈L×K2

yk
s,t (6.6)

The constraints for initializing variables x and δ, namely (6.7) and (6.8), remain
unchanged from LCT1.

x0
s,t = αx

s,t ∀(s, t) ∈ L (6.7)

δ0s,t = αδ
s,t ∀(s, t) ∈ L (6.8)

The LCT-BRP is designed by adapting most of the constraints of LCT1 to
the new sets of stages and stack, replacing some of them with new ones, and
omitting those related to variables qs,t, namely (5.21) and (5.22). The en-
tire set of constraints for LCT-BRP is displayed below, along with Table 6.2,
which indicates the correspondence between the constraints from LCT-BRP
and LCT1.

124

6.2 Constraint programming models and solution methods for the CPMP-LCT

Table 6.2: Correspondence between constraints from models LCT-BRP and LCT1.

LCT-BRP LCT1

(6.9), (6.10), (6.11) (5.6)
(6.12) (5.7)
(6.13) (5.8)
(6.18), (6.19) (5.12)
(6.20) (5.13)
(6.21) (5.20)
(6.22) (5.16)
(6.23) (5.17)
(6.24), (6.25) (5.14)
(6.26), (6.27), (6.28), (6.29) (5.19)
(6.30) (5.23)

The left column shows the constraints of LCT-BRP, replacing the corresponding constraints
from LCT1 indicated in the right column. Source: Elaborated by the author (2024).

Count
(
xk
s,t : (s, t) ∈ L, xk

s,t = p
)
= mp ∀p ∈ P0, k ∈ K1 (6.9)

Count
(
xk
s,t : (s, t) ∈ L0, xk

s,t = p
)
= mp ∀p ∈ P, k ∈ K2 (6.10)

Count
(
xk
s,t : (s, t) ∈ L0, xk

s,t = 0
)
= m0

0 ∀p ∈ P0, k ∈ K2 (6.11)(
xk
s,t > 0

)
= δks,t ∀(s, t, k) ∈(

L ×K1

)
∪
(
L0 ×K2

)
(6.12)(

xk
s,t == xk−1

s,t

)
=
(
δks,t == δk−1

s,t

)
∀(s, t, k) ∈(
L × (K1 ∪ {k̄1 + 1})

)
∪(

L0 × (K2 \ {k̄1 + 1})
)

(6.13)(
xk
0,t > 0

)
≤
(
xk
0,t−1 ≤ xk

0,t

)
∀t ∈ C \ {1},
k ∈ K2 \ {k̄1 + 1} (6.14)∑

s∈S,t∈T

δks,t + k ≤ k̄ ∀k ∈ K2 (6.15)

∑
s∈S, t∈T

bs,t ≤ k̄ − k̄1 − c̄ (6.16)

125

Chapter 6. Alternative approaches for the premarshalling problem under limited crane time

bs,t =

((∑
j∈T :j<t

(xk̄1
s,t > xk̄1

s,j)
)
> 0

)
∀s ∈ S, t ∈ T \ {1} (6.17)

∑
(s,t)∈L

yk
s,t ≤ 1 ∀k ∈ K1 (6.18)

∑
(s,t)∈L0

yk
s,t ≤ 1 ∀k ∈ K2 (6.19)

∑
(s,t)∈L

zks,t ≤ 1 ∀k ∈ K (6.20)

∑
(s,t)∈L

zk+1
s,t ≤

∑
(s,t)∈L

zks,t ∀k ∈
(
K1 \ {k̄1}

)
∪(

K2 \ {k̄}
)

(6.21)

gks,r =

(∑
t∈T

(
zks,t + yk

r,t

)
== 2

)
∀s ∈ S, r ∈ S \ {s},
k ∈ K (6.22)

uk
s,r =

(∑
t∈T

(
yk−1
s,t + zkr,t

)
== 2

)
∀s ∈ S, r ∈ S \ {s},
k ∈ K \ {1} (6.23)

yk
s,t ≤ δk+1

s,t ∀(s, t) ∈ L, k ∈ K \ {k̄} (6.24)∑
i∈K2:i<k

yi
0,t ≤ δk0,t ∀t ∈ C, k ∈ K2 \ {k̄1 + 1} (6.25)

AllowedAssignments
(
C,

δk−1
s,t , δk−1

s,t+1, δ
k
s,t, δ

k
s,t+1,

zks,t, z
k
s,t+1 , y

k
s,t, y

k
s,t+1

)
∀s ∈ S, t ∈ T \ {t̄}, k ∈ K (6.26)

δk̄1+1
0,t = 0 ∀t ∈ C \ {1} (6.27)

δk̄1+1
0,t = yk̄1+1

0,t ∀t ∈ C (6.28)

AllowedAssignments
(
D,

δk−1
0,t , δk−1

0,t+1, δ
k
0,t, δ

k
0,t+1, y

k
0,t, y

k
0,t+1

)
∀t ∈ C \ {c̄}, k ∈ K2 \ {k̄1 + 1} (6.29)

126

6.2 Constraint programming models and solution methods for the CPMP-LCT

∑
s∈S

(∑
r∈S
r ̸=s

(
h0
0,s · g1s,r +

∑
k∈K\{1}

(
h0
r,s · uk

r,s

)
+
∑
k∈K

(
h1
s,r · gks,r

))
+

∑
k∈K

∑
t∈T

((
vt + lt) · zks,t + vt · yk

s,t

))
≤ τ (6.30)

LCT-BRP contains three groups of Count constraints to ensure the number
of containers in each priority group and the number of empty slots remain
constant. Constraints (6.9) impose this condition during the premarshalling
phase. Constraints (6.10) and (6.11) correspond to the BRP phase, with (6.10)
ensuring the correct number of containers with a given priority and (6.10)
maintaining constant the number of empty slots, including the dummy stack
for retrievals.

Positive values of variables x must correspond to the value 1 for variables δ,
as expressed by (6.12). Constraints (6.13) ensure that the priority associated
with a slot does not change between stages if no container is placed or removed.

The formulation includes constraints (6.14) to ensure that retrievals are per-
formed according to the priority schedule. These constraints indicate that if
a slot in stack 0 is occupied, the container below it must belong to the same
priority group or be assigned an earlier retrieval.

An additional group of constraints, (6.15), is introduced to detect infeasibilities
faster. These constraints express that the number of containers in the bay at
stage k during the retrieval phase must be less or equal to the number of
remaining stages. A solution violating this constraint is infeasible because, at
most, one container can be retrieved per stage.

In the retrieval phase, some relocations may be necessary, and the number of
blocking containers in the bay layout after premarshalling is a lower bound
to this number of relocations. This lower bound is imposed by (6.16), with
variables b defined in terms of variables x through constraints (6.17). These
constraints ensure a variable bs,t takes the value 1 when there is a blocking
container in slot (s, t), i.e., when a container at a lower tier of the same stack
has an earlier retrieval priority.

The condition allowing at most one movement per stage is defined similarly to
LCT1 for the premarshalling phase by (6.18) and (6.20). However, in the re-
trieval phase, it must be extended to account for the retrievals from the bay. To

127

Chapter 6. Alternative approaches for the premarshalling problem under limited crane time

this end, (6.19) is incorporated using variables y to identify the retrievals, i.e.,
the container movements with destination stack 0. Additionally, constraints
(6.21) indicate that a container movement cannot be performed at a stage un-
less another movement is conducted in the previous one, except for stage k̄1,
because no movement may be performed during the last premarshalling stages.

The constraints (6.22) and (6.23) define the crane movements for the set of
stages K1, as the crane time must be measured in the premarshalling phase to
impose on it the upper limit defined by (6.30). Variables gks,r indicate when
the crane’s trolley moves loaded with a container from stack s to stack r, i.e.,
gks,r must be equal to 1 when a container is retrieved from stack s and placed
in stack r, as expressed by (6.22). Variables uk

s,r must be equal to 1 when the
trolley moves unloaded from stack s to stack r, which occurs when a container
was placed in stack s in k− 1, and a container must be retrieved from stack r
at k, as indicated by (6.23).

The conditions relating bay configuration variables with variables identifying
the container movements are expressed by (6.24) to (6.29) in LCT-BRP.

Constraints (6.24) ensure that the slot where a container is placed remains
occupied in the subsequent stage. This condition can be strengthened for
stack 0 because when a container is retrieved from the bay and placed in stack
0, that movement is permanent. Hence, (6.25) is added to express that a slot
in stack 0 where a container is placed must remain occupied during all the
following stages.

The table constraints (6.26) are the same as (5.19) from LCT1 but for the
extended set of stages K = K1 ∪ K2, and constraints (6.27) to (6.29) are in-
corporated for stack 0. The Allowed Assignments constraint (6.26) determines
the connection between the relocations of containers with the definition of
slots as empty or occupied and ensures containers are relocated to allowed
slots, avoiding empty spaces between containers in a stack.

All the slots in stack 0 must be empty in the first stage of the retrieval phase,
except maybe the one at the first tier. Variables δ are initialized with this
information by (6.27). The slot at the first tier must be occupied in the first
stage if a container is moved there and empty otherwise, as indicated by (6.28).
Table constraints (6.29) correspond to (6.26) for stack 0. Variables z are not
included in (6.29) because this group is not defined for stack 0, as no container
can be retrieved from that stack.

128

6.2 Constraint programming models and solution methods for the CPMP-LCT

There are two main versions of the Block Relocation Problem: the restricted
and the unrestricted. In the restricted version, an additional condition is im-
posed on the containers that can be elected to be relocated at each stage. Only
those that block the retrieval of the following container needed to be retrieved
can be relocated. This condition is not considered in the unrestricted version,
where any container at the top of each stack can be relocated. The condition
for the restricted version in LCT-BRP is imposed by (6.31).∑

t∈T

zks,t ≤
∑
t∈T

zk+1
s,t +

∑
t∈C

yk
0,t ∀s ∈ S, k ∈ K2 \ {k̄} (6.31)

Solution method

Similarly to the algorithms previously described for the other approaches, the
search for a solution using the LCT-BRP model is also guided by an interactive
algorithm, solving a satisfaction problem with a different upper bound on the
objective value at each iteration.

However, instead of including a constraint limiting the objective value, in this
case, the number of BRP relocations is limited by the number of stages defined
for the relocation phase. A total of c̄ retrieval movements are needed in the
BRP phase, so the rest of the stages provided for this phase can be used for
relocations inside the bay. Hence, by fixing the number of stages in the retrieval
phase, we impose an upper limit on the BRP relocations, which is the objective
value.

When using the algorithm, constraints (6.19) are substituted with (6.32), and
(6.20) are replaced with (6.33), but only for the stages in K2, ensuring exactly
one movement per stage in the retrieval phase. Also, the objective function
(6.6) is omitted. ∑

(s,t)∈L0

yk
s,t = 1 ∀k ∈ K2 (6.32)

∑
(s,t)∈L

zks,t = 1 ∀k ∈ K2 (6.33)

The algorithm begins by solving the problem with a maximum number of
relocations in the retrieval phase equal to the number of blocking containers
in the initial bay layout. If a solution is found, a binary search is conducted

129

Chapter 6. Alternative approaches for the premarshalling problem under limited crane time

to find a solution with a smaller objective value or to prove the optimality
of the best solution found. In case the problem solved in the first iteration
is infeasible, the number of stages for the retrieval phase is increased by one,
and a new iteration is performed. This process is repeated until an optimal
solution is discovered or the running time limit is reached.

6.3 A constraint programming model for the Block
Relocation Problem

One of the objectives proposed for the CPMP-LCT in this chapter is to mini-
mize the number of relocations in the retrieval phase after premarshalling,
which corresponds to the objective of the Block Relocation Problem (BRP).

To delve into the differences between solutions obtained using the alternative
objectives studied, we compare them in terms of inaccessible containers, block-
ing containers and BRP relocations in Section 6.4. The number of inaccessible
containers and blocking containers can be directly calculated for every solu-
tion. However, obtaining the number of relocations needed to retrieve the
containers from the bay requires solving the BRP. For this purpose, we present
a constraint programming model for solving the BRP, denoted as CP-BRP.

CP-BRP is equivalent to the part of LCT-BRP related to BRP. Hence, the
set of stages K = {1, . . . , k̄} used in CP-BRP corresponds to the stages K2 =
{k̄1 + 1, . . . , k̄} in LCT-BRP.

The variables of CP-BRP are those from LCT-BRP except for gks,r and uk
s,r,

which are only used in the premarshalling part of LCT-BRP. Additionally,
variables bs,t from LCT-BRP incorporate a new index in CP-BRP, bks,t, being
defined for every stage.

All the variables involved in the CP-BRP model are displayed on the next page,
followed by the constraints of the formulation and Table 6.3, which indicates
the correspondence between constraints from CP-BRP and LCT-BRP. All the
constraints from LCT-BRP have been considered for building the CP-BRP,
except for those involving variables gks,r and uk

s,r, namely (6.22), (6.23) and
(6.30). The objective function of the CP-BRP model, (6.34), is equivalent to
that of the LCT-BRP.

min
∑

(s,t,k)∈L×K

yk
s,t (6.34)

130

6.3 A constraint programming model for the Block Relocation Problem

xk
s,t =

{
p If a container with priority p is in slot (s, t) at stage k
0 If slot (s, t) is empty at stage k

∀(s, t) ∈ L0, k ∈ K0

δks,t =

{
1 If there is a container in slot (s, t) at stage k
0 If slot (s, t) is empty at stage k

∀(s, t) ∈ L0, k ∈ K0

bks,t =

{
1 If there is a blocking container in slot (s, t) at stage k
0 Otherwise

∀(s, t) ∈ L : t > 1 k ∈ K \ {k̄}

yk
s,t =

{
1 If a container is moved to slot (s, t) during stage k
0 Otherwise

∀(s, t) ∈ L0, k ∈ K

zks,t =

{
1 If a container is removed from slot (s, t) during stage k
0 Otherwise

∀(s, t) ∈ L, k ∈ K

Table 6.3: Correspondence between constraints from models CP-BRP and LCT-BRP.

CP-BRP LCT-BRP CP-BRP LCT-BRP

(6.35) (6.7) (6.45) (6.20)
(6.36) (6.8) (6.46) (6.21)
(6.37) (6.9), (6.10), (6.11) (6.47) (6.24)
(6.38) (6.12) (6.48) (6.25)
(6.39) (6.13) (6.49) (6.26)
(6.40) (6.14) (6.50) (6.27)
(6.41) (6.15) (6.51) (6.28)
(6.42) (6.16) (6.52) (6.29)
(6.43) (6.17) (6.53) (6.31)
(6.44) (6.18), (6.19)

The columns labeled CP-BRP show the constraints of this model replacing the corresponding
constraints from LCT-BRP. Source: Elaborated by the author (2024).

131

Chapter 6. Alternative approaches for the premarshalling problem under limited crane time

x0
s,t = αx

s,t ∀(s, t) ∈ L0 (6.35)

δ0s,t = αδ
s,t ∀(s, t) ∈ L0 (6.36)

Count
(
xk
s,t : (s, t) ∈ L0, xk

s,t = p
)
= mp ∀p ∈ P0, k ∈ K (6.37)(

xk
s,t > 0

)
= δks,t ∀(s, t) ∈ L0, k ∈ K (6.38)(

xk
s,t == xk−1

s,t

)
=
(
δks,t == δk−1

s,t

)
∀(s, t) ∈ L0, k ∈ K (6.39)(

xk
0,t > 0

)
≤
(
xk
0,t−1 ≤ xk

0,t

)
∀t ∈ C \ {1}, k ∈ K \ {1} (6.40)∑

s∈S,t∈T

δks,t + k ≤ k̄ ∀k ∈ K (6.41)

∑
s∈S, t∈T \{1}

bks,t + k +
∑

(s,t)∈L

δks,t ≤ k̄ ∀k ∈ K \ {k̄} (6.42)

bks,t =

((∑
j∈T :j<t

(xk
s,t > xk

s,j)
)
> 0

)
∀(s, t) ∈ L : t > 1,

k ∈ K \ {k̄} (6.43)∑
(s,t)∈L0

yk
s,t ≤ 1 ∀k ∈ K (6.44)

∑
(s,t)∈L

zks,t ≤ 1 ∀k ∈ K (6.45)

∑
(s,t)∈L

zk+1
s,t ≤

∑
(s,t)∈L

zks,t ∀k ∈ K \ {k̄} (6.46)

yk
s,t ≤ δk+1

s,t ∀(s, t) ∈ L, k ∈ K \ {k̄} (6.47)∑
i∈K:i<k

yi
0,t ≤ δk0,t ∀t ∈ C, k ∈ K \ {1} (6.48)

AllowedAssignments
(
C,

δk−1
s,t , δk−1

s,t+1, δ
k
s,t, δ

k
s,t+1,

zks,t, z
k
s,t+1 , y

k
s,t, y

k
s,t+1

)
∀s ∈ S, t ∈ T \ {t̄}, k ∈ K (6.49)

δ10,t = 0 ∀t ∈ C \ {1} (6.50)
δ10,t = y1

0,t ∀t ∈ C (6.51)

AllowedAssignments
(
D,

δk−1
0,t , δk−1

0,t+1, δ
k
0,t, δ

k
0,t+1, y

k
0,t, y

k
0,t+1

)
∀t ∈ C \ {c̄}, k ∈ K \ {1} (6.52)

132

6.3 A constraint programming model for the Block Relocation Problem

Compared to the LCT-BRP, the only difference in the constraints describing
the bay layout through variables x and δ, namely (6.35) to (6.41), is the set
of bay slots and the stages where they are defined. Constraints (6.35) and
(6.36) assign the initial bay layout to the variables. The Count constraints
(6.37) ensure the number of containers with a specific retrieval priority and
the number of empty slots remain constant. The connection between variables
x and δ is established through (6.38) and (6.39). Constraints (6.38) indicate
that variables x and δ are both equal to 0 (for empty slots) or both positive (for
occupied slots). If the value of a variable x or δ remains unchanged between
stages, (6.39) ensure it also remains unchanged for the corresponding variable
in the other set. Constraints (6.40) impose that the retrievals from the bay are
performed according to the priority schedule.

In CP-BRP, the definition of variables bks,t has been extended to every stage,
compared to LCT-BRP, and the constraints have been modified accordingly.
The condition in LCT-BRP, which states that the number of stages in the BRP
phase must allow at least as many relocations as there are blocking containers
in the layout after premarshalling, is extended in CP-BRP to every stage, as
expressed in (6.42). These constraints indicate that the remaining stages must
be enough to retrieve the containers still in the bay and relocate the blocking
containers at least once. Constraints (6.43) ensure a variable bks,t takes the
value 1 if there is a blocking container in slot (s, t) at stage k (i.e., a container
with a later priority than a container below) and takes the value 0 otherwise.

The constraints describing the movements and establishing a connection be-
tween the variables referring to the bay layout and those identifying the move-
ments are (6.44) to (6.52).

At most one movement is allowed per stage, as indicated by (6.44) and (6.45),
and they must be performed consecutively in the first stages as imposed by
(6.46). The destination slot of a relocation must remain occupied in the sub-
sequent stage, as determined by (6.47), and the destination slot in stack 0 of
a retrieval must remain occupied for the rest of the stages, as expressed by
(6.48).

The Allowed Assignments constraints (6.49) ensure the bay layout changes
according to the relocations performed, only placing and removing containers
in allowed slots. The table constraints (6.52) impose these conditions for stack
0, together with (6.50) and (6.51) for the initial stage.

In addition to the constraints expressing the condition of the restricted version
of the BRP, (6.53), an extra group of constraints is incorporated in the CP-

133

Chapter 6. Alternative approaches for the premarshalling problem under limited crane time

BRP, (6.54). These constraints indicate that only a blocking container can be
relocated. This condition does not apply to the unrestricted version, where
any container can be moved.∑

t∈T

zks,t ≤
∑
t∈T

zk+1
s,t +

∑
t∈C

yk
0,t ∀s ∈ S, k ∈ K \ {k̄} (6.53)

zk+1
s,t ≤ 1−

(
bks,t ==

∑
c∈C

yk+1
0,c

)
∀(s, t) ∈ L : t > 1, k ∈ K \ {k̄} (6.54)

Solution method

We solve the BRP using CP-BRP along with an iterative algorithm, omitting
the objective function (6.34) in the formulation. We use the number of stages
k̄ to guide the search for an optimal solution.

The number of blocking containers in the initial layout is a lower bound for
the relocations needed to retrieve all the containers from the bay. We assign k̄
the sum of this lower bound and the number of containers in the bay, so it is a
lower bound for the total number of movements, counting both relocations and
retrievals. A first iteration is performed using this value for k̄. If a solution
is found, it is optimal. Otherwise, if the problem is infeasible, the number of
stages is incremented by one, and a new iteration is performed. Essentially,
this is the same algorithm used for the constraint programming models for the
CPMP described in Chapter 3, but defining the number of stages according to
a lower bound for the BRP.

6.4 Computational experiments

In this section, we describe the computational study and analyze the results
obtained. We compare the solution method presented for the original model
for the CPMP-LCT, LCT1, in Section 5.3.2, with the solution method pro-
posed in this chapter for minimizing the inaccessible containers, which uses
the LCT1 model and a novel formulation LCT-I. Then, we evaluate the LCT-I
approach together with the two other alternative approaches proposed using
other objectives, LCT-IB and LCT-BRP, to delve into the differences in their
solutions.

The experiments are conducted over 320 instances from the CV dataset, which
is described in Section 3.3.1, where also technical details of the experiments are

134

6.4 Computational experiments

provided. The crane times data is sourced from Parreño-Torres et al., 2020,
as in the experiments of the previous chapter. Additionally, the algorithm
described in Section 6.2.1 for solving the CPMP-LCT with the objective of
minimizing the inaccessible containers incorporates a fail limit of 500 000 in
the first phase.

6.4.1 Performance of the proposed models and solution methods
for the CPMP-LCT

The premarshalling under limited crane time always has a trivial feasible so-
lution since conducting no movement satisfies all the constraints. However,
finding an optimal solution or a good feasible solution is not easy, and this dif-
ficulty strongly depends on the chosen objective. Table 6.4 shows the number
of optimal solutions and the average running time for the different strategies
presented in this chapter and the model LCT1 using the solution method de-
scribed in Section 5.3.4.

The algorithm described in Section 6.2.1 of this chapter for solving the CPMP-
LCT with the original objective of minimizing the number of inaccessible con-
tainers is denoted in Table 6.4 by LCT-I, the name of the model used in the
second phase of this algorithm. The method employed to solve the same prob-
lem, but only using model LCT1, as described in the previous chapter, is
denoted in the table by LCT1.

The algorithm approach involving the LCT-I model solves almost all the in-
stances used in the computational study with optimality proof. This means a
significant increase in optimal solutions compared to the method solely using
LCT1 and the solver. In addition, we observe a marked decrease in running
time when employing the iterative algorithm. Therefore, the solution method
proposed in this chapter for minimizing inaccessible containers significantly
improves the performance of the original method.

The complexity of the objective function considered for the CPMP-LCT clearly
affects the number of optimal solutions and the running time, as reflected in
Table 6.4. Minimizing the number of relocations in the retrieval phase after
premarshalling is the most complex objective. It provides the lowest number
of optimal solutions and the highest running times. Conversely, minimizing
the number of inaccessible containers provides the shortest running times and
the most significant number of optimal solutions. These figures indicate the
intermediate complexity of the objective of minimizing the sum of inaccessible
and blocking containers compared to the other two objectives.

135

Chapter 6. Alternative approaches for the premarshalling problem under limited crane time

Table 6.4: Performance of LCT1, LCT-I, LCT-IB and LCT-BRP for the CPMP-LCT.

c̄ s̄ t̄
#Optimal Average CPU (s)

LCT1 LCT-I LCT-IB LCT-BRP LCT1 LCT-I LCT-IB LCT-BRP

9 3 5 40 40 40 40 7 2 3 8
12 4 5 40 40 40 40 116 31 48 306
15 5 5 27 40 40 22 2259 70 1285 2133
16 4 6 40 40 40 20 176 36 62 2232
18 6 5 2 40 4 3 3503 190 3336 3428
20 5 6 22 40 39 2 2761 59 1775 3379
21 7 5 0 40 0 0 3600 564 3600 3600
24 8 5 0 34 0 0 3600 1251 3600 3600

Total 171 314 203 127 2003 275 1713 2044

Results on 320 instances from the CV dataset, grouped into eight categories of 40 instances,
ordered by the number of containers in the bay, c̄. The bays in each category have s̄ stacks and
t̄ tiers. The number of optimal solutions obtained is displayed in the #Optimal columns, and
the average running time for all the instances is presented in the Average CPU (s) column.
The best values are shown in bold. Source: Elaborated by the author (2024).

6.4.2 Differences in the solutions yielded by the three different
objectives

Tables 6.5 and 6.6 show the average percentage reduction in inaccessible con-
tainers, blocking containers, and BRP relocations, for optimal and feasible so-
lutions obtained through the three approaches discussed in this study. These
reductions represent the difference between the final layout provided by the
best solution found for each instance and its initial layout. The BRP reloca-
tions are given as part of the solution when using the objective of minimizing
these relocations. For the other approaches and for the initial bay layouts, the
number of relocations necessary for retrieving the containers from the bay has
been calculated using the BRP model described in Section 6.3.

The data displayed in Table 6.5 for the solutions proven optimal by all the
approaches offers valuable insights into how each objective influences the char-
acteristics of the solutions. The LCT-I approach achieves the most significant
reduction in the number of inaccessible containers, closely followed by the
approach minimizing the sum of inaccessible and blocking containers. The ob-
jective of minimizing BRP relocations yields the largest reduction in blocking
containers, which is very similar to the reduction achieved by minimizing the
sum of inaccessible and blocking containers. This similarity suggests a cor-

136

6.4 Computational experiments

relation between reducing the number of BRP relocations and the number of
blocking containers, aligning with the underlying principle of the LCT-IB ap-
proach. As expected, the reduction in relocations during the retrieval process
is most significant in the solutions provided by LCT-BRP. We also observe
that this reduction is notably greater for LCT-IB than LCT-I, indicating the
effectiveness of the former as an approximation for LCT-BRP. These observa-
tions demonstrate the capacity of the LCT-IB approach to deliver good-quality
solutions for the other two objectives.

Table 6.5: Comparison of optimal solutions yielded by LCT-I, LCT-IB and LCT-BRP.

c̄ s̄ t̄
#Inaccessible reduction (%) #Blocking reduction (%) #BRP relocations red. (%)

LCT-I LCT-IB LCT-BRP LCT-I LCT-IB LCT-BRP LCT-I LCT-IB LCT-BRP

9 3 5 37 36 27 32 51 49 41 53 59
12 4 5 40 39 26 30 47 50 42 53 60
15 5 5 47 46 32 42 52 60 49 59 65
16 4 6 20 20 12 14 25 27 26 33 41
18 6 5 67 67 46 79 79 79 79 79 79
20 5 6 18 18 18 11 47 47 11 50 50
21 7 5 0 0 0 0 0 0 0 0 0
24 8 5 0 0 0 0 0 0 0 0 0

Total 37 36 26 31 46 48 41 51 58

Results on 320 instances from the CV dataset, grouped into eight categories of 40 instances,
ordered by the number of containers in the bay, c̄. The bays in each category have s̄ stacks
and t̄ tiers. The table shows the average percentage reduction in inaccessible containers,
blocking containers, and BRP relocations between the initial and final bay layouts of the
instances optimally solved by all three approaches, LCT-I, LCT-IB and, LCT-BRP. The best
values are shown in bold. Source: Elaborated by the author (2024).

Since an optimal solution is not always found, it is interesting to evaluate
the feasible solutions. Table 6.6 is built analogously to Table 6.5, but with
the results for all feasible solutions. Minimizing the sum of inaccessible and
blocking containers is the most attractive objective, providing more significant
reductions in the number of BRP relocations and blocking containers than
the other two approaches. Moreover, the reduction in inaccessible containers
is extremely close to that achieved by minimizing the number of inaccessible
containers. Consequently, the LCT-IB approach provides good solutions in
terms of the original CPMP-LCT objective and, at the same time, greatly
enhances the solutions concerning the reduction in blocking containers and
relocations in the retrieval phase.

137

Chapter 6. Alternative approaches for the premarshalling problem under limited crane time

Table 6.6: Comparison of feasible solutions yielded by LCT-I, LCT-IB and LCT-BRP.

c̄ s̄ t̄
#Inaccessible reduction (%) #Blocking reduction (%) #BRP relocations red. (%)

LCT-I LCT-IB LCT-BRP LCT-I LCT-IB LCT-BRP LCT-I LCT-IB LCT-BRP

9 3 5 37 36 27 32 51 49 41 53 59
12 4 5 40 39 26 30 47 50 42 53 60
15 5 5 39 38 22 30 44 40 41 51 49
16 4 6 20 20 10 12 21 18 24 28 30
18 6 5 30 29 13 24 39 25 34 44 29
20 5 6 18 18 6 11 21 9 20 28 14
21 7 5 30 29 7 23 35 16 32 42 16
24 8 5 26 25 2 15 28 5 25 35 3

Total 30 29 14 22 36 26 32 42 33

Results on 320 instances from the CV dataset, grouped into eight categories of 40 instances,
ordered by the number of containers in the bay, c̄. The bays in each category have s̄ stacks
and t̄ tiers. The table shows the average percentage reduction in inaccessible containers,
blocking containers, and BRP relocations between the initial and final bay layouts of the
instances solved by all three approaches, LCT-I, LCT-IB, and LCT-BRP. The best values
are shown in bold. Source: Elaborated by the author (2024).

In conclusion, if the conditions in practice define a specific interest in minimiz-
ing the number of inaccessible containers over other objectives, as indicated in
Section 5.2, the LCT-I approach is recommended due to its high rate of opti-
mal solutions and shorter running times, compared to the other alternatives.
However, in scenarios where such conditions are not prevalent, minimizing the
sum of inaccessible and blocking containers is the most suitable objective. This
approach offers versatile solutions, effectively reducing both inaccessible and
blocking containers, as well as BRP relocations, making it well-suited for a
broad range of cases.

6.5 Concluding remarks

The Premarshalling Problem under Limited Crane Time (CPMP-LCT) is an
extension of the classical Premarshalling Problem (CPMP). It aims to provide
a complete premarshalling solution when the availability permits while also
defining a partial premarshalling solution within the given crane time limit if
a complete arrangement is not possible. Therefore, the CPMP-LCT is more
versatile and realistic than the CPMP. However, it also necessitates more com-

138

6.5 Concluding remarks

plex formulations and involves the challenging task of evaluating the efficiency
of partial premarshalling solutions.

The ultimate goal of the CPMP-LCT is the same as that of the CPMP: to best
prepare the bay for container retrieval after premarshalling. A layout without
blockages between containers is the ideal configuration for the retrieval phase
since it requires no additional relocations. While such configuration is ensured
by complete premarshalling, it is not achievable with partial premarshalling,
so criteria for defining efficient partial premarshalling solutions must be deter-
mined.

The original version of the CPMP-LCT presented in Chapter 5 aims to mini-
mize the number of inaccessible containers in the bay. This objective focuses on
unblocking the maximum number of containers in retrieval order, i.e., priori-
tizing the containers that must be retrieved first. Consequently, this approach
is advantageous when the information about the last retrievals is missing or
likely to change. It is also beneficial if the retrieval of containers from the bay
may be interrupted, allowing for additional premarshalling of containers with
the latest priorities. In this chapter, we propose an enhanced solution method
for this approach, using an additional formulation and an iterative algorithm,
which has demonstrated a significant improvement over the original method.

While the original objective is advantageous for specific scenarios, an alterna-
tive objective may be more appropriate in a general case. A beneficial approach
for preparing the bay for the retrieval phase is minimizing the relocations
needed to retrieve all the containers from the bay. This means finding partial
premarshalling solutions that minimize the objective function of the Block Re-
location Problem (BRP). We propose a constraint programming model and a
solution method for solving the CPMP-LCT with this objective. Additionally,
we provide a constraint programming model for the BRP to assess the relation
with this objective of the solutions provided by other approaches.

Unfortunately, solving the CPMP-LCT with the objective of minimizing the
relocations in the retrieval phase is highly complex, as it requires solving the
CPMP-LCT and the BRP simultaneously. Therefore, we explore another ob-
jective that combines the advantages of the two other objectives studied. This
intermediate objective is to minimize the sum of inaccessible and blocking con-
tainers. We have developed a constraint programming model and a solution
method for solving the CPMP-LCT with this objective. The computational ex-
periments reveal that this approach offers high-quality partial premarshalling
solutions in terms of the three objectives studied, demonstrating its adequacy
for solving the CPMP-LCT in a general case.

139

Chapter 7

Conclusions and future work

The purpose of this thesis is to provide more realistic formulations of the
container premarshalling problem and develop an effective, flexible solution
method that can address the original problem and these alternative variants.
We have examined the assumptions of the original formulation and defined
novel versions of the problem by modifying several assumptions to align with
the resource availability and the operational requirements of port terminals.
Subsequently, we have developed constraint programming models and tai-
lored algorithms specific to each formulation. The constraint programming
approaches presented in this thesis improve the performance of state-of-the-art
mathematical programming models for premarshalling variants already studied
in the literature and enable us to validate the novel problems introduced.

This chapter summarizes the main conclusions of this thesis. We review the
progress made toward developing a more realistic formulation of the premar-
shalling problem. Additionally, we discuss the significance of the proposed
solution methods and how constraint programming enabled us to accomplish
the objective of developing effective solution methods for various formulations
and alternative approaches. Finally, we suggest directions for future research
that build on the work presented in this thesis.

141

Chapter 7. Conclusions and future work

7.1 Reformulating unrealistic assumptions for the
premarshalling problem

While numerous optimization methods have been proposed for premarshalling,
the classical formulation of the problem is not realistic enough for successful
application at port terminals. This thesis addresses this issue by introducing
novel formulations that contribute to bridging the gap between theoretical
methods and practical applications.

First, we examine the classical Container Premarshalling Problem (CPMP).
Chapter 3 provides a detailed description of the original formulation and its
assumptions. The CPMP seeks to find a sequence of relocations within a bay
of containers that results in an arrangement where no container blocks the
retrieval of another, with this sequence comprising the minimum number of
relocations possible.

Two key assumptions in the CPMP are that relocations can only occur within
the bay being arranged, and that the crane is fully available for premarshalling.
These assumptions are unrealistic in practice and are reformulated in this the-
sis, defining two novel problem versions: the Container Premarshalling Prob-
lem with an Auxiliary Bay (CPMP-AB) and the Container Premarshalling
Problem under Limited Crane Time (CPMP-LCT). The CPMP-AB is pre-
sented in Chapter 4, and the CPMP-LCT is studied in Chapters 5 and 6.

Another assumption of the CPMP is that all relocations incur the same cost.
An alternative approach, known as the Container Premarshalling Problem with
Crane Time Minimization Objective (CPMPCT), has been studied in the lite-
rature. This version allows for more efficient solutions by considering relocation
costs based on crane movement duration. This thesis addresses the CPMPCT
as a preliminary step for defining the CPMP-LCT in Chapter 5.

7.1.1 Using an auxiliary bay for premarshalling

The Container Premarshalling Problem with an Auxiliary Bay (CPMP-AB)
introduces the use of an auxiliary bay as additional space for relocating con-
tainers during the arrangement process. Although this is a common practice
at port terminals, the classical formulation overlooks this option.

The objective of the CPMP-AB is to arrange a bay with the minimum number
of relocations, as in the original CPMP. However, this version permits reloca-
tions between the bay being arranged (main bay) and another bay (auxiliary
bay). We propose two approaches for defining the cost of these inter-bay reloca-

142

7.1 Reformulating unrealistic assumptions for the premarshalling problem

tions. One approach minimizes two objectives in lexicographic order: initially
minimizing the total number of relocations to arrange the main bay and then,
with that total fixed, minimizing the number of relocations between bays. The
other approach minimizes the total cost of relocations, assigning double the
cost to those between bays compared to relocations within the main bay.

The solutions obtained through the computational study show that using an
auxiliary bay can significantly reduce the relocations required for premar-
shalling, particularly in bays with high occupancy rates and limited space
for relocation. Furthermore, the auxiliary bay enables solving instances that
would be infeasible if only relocations within the bay to be arranged were
allowed.

The two proposed allowance levels for inter-bay relocations extend the ap-
plicability of the solutions to port terminals with varying operational needs.
Allowing inter-bay relocation without a penalty leads to more instances ob-
taining a reduction in the total number of relocations and a more substantial
reduction than when this kind of relocation incurs a higher cost. Port ter-
minals permitting around 20% of relocations in a premarshalling solution to
occur between bays could implement the first approach, which fully exploits
the potential of using an auxiliary bay. Alternatively, the approach penalizing
inter-bay relocations is more appropriate when only about 10% of relocations
are allowed between bays. Both approaches improve on the solutions provided
by the original CPMP by enhancing the utilization of port resources.

7.1.2 Considering crane times and limited availability of the crane

The study of the Container Premarshalling Problem with Crane Time Min-
imization Objective (CPMPCT) and the introduction of the Container Pre-
marshalling Problem under Limited Crane Time (CPMP-LCT) in this thesis
contribute to obtaining more realistic premarshalling solutions. These prob-
lems arise from modifying two classical assumptions: uniform relocation cost
and unlimited crane availability. On the one hand, considering varying relo-
cation costs based on different durations leads to more efficient solutions, as
previously demonstrated in the literature. On the other hand, recognizing that
premarshalling is only performed during idle periods of the crane conflicts with
the classical assumption of unlimited crane availability. To address this, we
propose the novel CPMP-LCT.

The original CPMP formulation assumes a uniform cost for all relocations,
aiming to minimize their total number. However, the time required for reloca-

143

Chapter 7. Conclusions and future work

tions can vary significantly. As a result, solutions that minimize the total crane
time are more efficient than those that focus on minimizing the number of re-
locations. This is the rationale behind the CPMPCT, a version of the premar-
shalling problem already defined in the literature. We address the CPMPCT
as a preliminary step toward a more realistic formulation, the CPMP-LCT,
that introduces the constraint of limited crane availability in addition to con-
sidering the time taken by relocations. The CPMP-LCT defines a complete
arrangement of the bay when it can be performed within the available time
and a partial arrangement otherwise, while the original formulation does not
cover the latter case.

A partial arrangement may be advantageous over not conducting premar-
shalling due to limited time. However, defining good-quality partial premar-
shalling solutions is a challenging task. A simple procedure might be to par-
tially apply a sequence of relocations intended to fully arrange a bay, stopping
at an intermediate step before the time limit is exceeded. Nevertheless, this
procedure typically yields poor-quality partial premarshalling solutions. In
contrast, the CPMP-LCT significantly enhances the quality of partial solu-
tions, as demonstrated through the computational study in this thesis.

The quality of a partial premarshalling solution is determined by its poten-
tial to increase the efficiency of the subsequent retrieval process, which is the
same goal as in designing complete premarshalling solutions. Maximum ef-
ficiency during the retrieval phase is achieved when no container blocks the
retrieval of another. However, after partial premarshalling, there are still block-
ages between containers, necessitating additional relocations during retrieval.
Therefore, defining efficient partial premarshalling solutions is notably more
challenging than defining complete ones, which simply require a layout with-
out blocking containers. For this reason, we have analyzed three alternative
objectives for the CPMP-LCT.

The initial objective we studied for the CPMP-LCT prioritizes the accessibil-
ity to containers that must be retrieved first according to the given retrieval
sequence. Specifically, it minimizes the number of inaccessible containers, with
a container considered inaccessible if this or any container with an earlier re-
trieval time is blocked by another container. This objective is particularly
advantageous when there is inaccurate information about later retrievals or
when additional premarshalling is possible after some containers have been re-
trieved. However, there may be more suitable approaches in general situations,
as this overlooks containers that remain blocked after partial premarshalling,
potentially leading to additional relocations during retrieval.

144

7.1 Reformulating unrealistic assumptions for the premarshalling problem

We have studied an alternative objective that addresses the containers involved
in blockages after partial premarshalling: minimizing the total number of re-
locations required during the retrieval phase. It corresponds to the objective
of the Block Relocation Problem (BRP), which aims to retrieve all containers
from the bay according to the retrieval schedule with the minimum number
of relocations. This objective is naturally derived from the original definition
of premarshalling: a complete premarshalling solution ensures no relocations
are needed during retrieval, and this approach for the CPMP-LCT seeks to
minimize relocations when achieving zero relocations is not feasible. How-
ever, employing this objective entails solving the CPMP-LCT and the BRP
simultaneously, with a strong interdependence between them, which is notably
challenging.

Therefore, we have additionally explored a third objective that balances the
complexity of the other two and yields good values for both criteria: mini-
mizing the sum of inaccessible and blocking containers. The computational
analysis demonstrates that this intermediate objective effectively yields effi-
cient partial premarshalling solutions in general cases. It prioritizes the con-
tainers that must be retrieved first, similar to the initial objective studied,
while also increasing the reduction in relocations needed during the retrieval
phase, approaching the BRP objective. Moreover, this approach significantly
reduces the complexity of the problem compared to minimizing relocations in
the retrieval phase.

7.1.3 Future research lines toward a more realistic premarshalling
formulation

With the reformulation of the assumptions indicated in the previous sections,
this thesis represents a significant advancement toward developing a realistic
formulation of the premarshalling problem, facilitating its implementation at
port terminals. Nevertheless, there is still potential for further improvement
in this direction.

The CPMP assumes complete knowledge of the retrieval order for containers
after premarshalling. However, this is not the case in practice. In this the-
sis, the formulation of the CPMP-LCT acknowledges possible changes in the
expected retrieval times of containers. Nevertheless, a more specific considera-
tion of this uncertainty could be integrated into the formulation by employing
strategies similar to those described for the robust CPMP in the literature.

145

Chapter 7. Conclusions and future work

Furthermore, additional conditions regarding the final layout should be in-
corporated. The current formulations in the literature only consider retrieval
priorities to differentiate between containers. However, containers have other
relevant distinguishing features, such as their weight, which may require spe-
cific bay configurations to ensure the stability of the stacks. Moreover, for
safety reasons, marked differences in stack height and empty stacks next to
much higher stacks must be avoided. These requirements become even more
critical during adverse weather conditions, such as strong winds.

Additionally, to achieve a premarshalling formulation suitable for practical im-
plementation, it would be necessary to integrate all the enhanced assumptions.
This formulation would consider an auxiliary bay together with limited crane
time, incorporate a strategy for dealing with the uncertainty in retrieval times,
and ensure compliance with safety regulations.

7.2 Constraint Programming: An effective and versatile
solution method for premarshalling

Constraint programming has demonstrated its effectiveness in solving combi-
natorial problems across various fields. Despite this, it has received very little
attention in the literature on premarshalling. This thesis explores its appli-
cation, offering constraint programming solution methods for several versions
of the premarshalling problem. Those addressing premarshalling approaches
already studied in the literature allow us to assess the efficiency of constraint
programming for the premarshalling problem and are a base for developing
solution methods for the novel formulations proposed in this thesis.

The extensive literature on premarshalling and the flexibility that constraint
programming offers in defining constraints facilitate modeling the problem us-
ing this technique. Nevertheless, finding a truly effective formulation is a chal-
lenging task. This difficulty is addressed throughout this thesis, particularly
in Chapter 3, where the original version of the problem is studied.

7.2.1 Designing constraint programming models

Computational experiments in this thesis reveal that the mathematical pro-
gramming models for the CPMP from the literature do not perform well when
applied within the constraint programming framework. Indeed, constraint pro-
gramming requires modeling strategies different from classical operations re-
search techniques, such as integer programming. In Chapter 3, we describe

146

7.2 Constraint Programming: An effective and versatile solution method for premarshalling

the modeling process followed to build a constraint programming model for
the CPMP and present three intermediate formulations that lead to the final
formulation we propose.

Essentially, the modeling strategy employed begins with a basic formulation
containing the minimum decision variables necessary to describe the problem.
It then systematically incorporates more variables and constraints. Additional
variables are valuable only if they identify specific information that aids in
the search process. Simply adding more variables does not necessarily im-
prove performance. In fact, it can reduce the model’s efficiency if not carefully
selected.

The effectiveness of the additional variables in the proposed models is explained
by the table constraints included in the formulations presented in Chapters 4 to
6, which address the alternative versions of the CPMP explored in this thesis.
These formulations are derived from the model designed for the CPMP, with
table constraints replacing a large set of constraints from this initial model.
These global constraints are a simplified way of imposing the same conditions
as the original set of constraints and capture the core structure of the problem.
They involve all the additional variables incorporated during the construction
of the model for the CPMP and ensure a strong connection between the bay
layout and container relocations.

The last group of decision variables introduced during the CPMP modeling
process deserves particular attention. These binary variables indicate whether
or not there is a badly placed container in a slot. During the search process,
constraints involving these variables help detect partial solutions that will not
lead to feasible solutions, allowing for the earlier elimination of the correspond-
ing branches of the search tree.

7.2.2 A versatile and effective solution method

The constraint programming approaches proposed in this thesis are designed
to be easy to implement, reproduce, and adapt to various problem variants.
These features were essential for this thesis since the goal of defining more
realistic formulations for the premarshalling problem involves developing and
testing a significant number of formulations. Additionally, validating the novel
problems proposed required analyzing optimal solutions. Hence, developing an
exact solution method was a requisite for this study.

The need for a highly flexible and exact solution method led us to use a solver.
It allows for developing models that can be easily adapted to varying require-

147

Chapter 7. Conclusions and future work

ments, unlike other exact methods such as complex ad-hoc algorithms. While
the literature on premarshalling includes significant mathematical program-
ming contributions that benefit from the advantages of using a solver, con-
straint programming was almost unexplored for this problem.

The development of constraint programming models for the original CPMP
and its variant with crane time minimization objective, CPMPCT, revealed
the potential of this technique for addressing the premarshalling problem. In
both cases, the constraint programming models proposed in this thesis outper-
form the state-of-the-art mathematical programming models. This achieve-
ment established a solid base for developing constraint programming models
for the novel premarshalling variants defined in this study, namely the CPMP-
AB and the CPMP-LCT, yielding satisfactory results that validate the new
formulations.

In the proposed methods, we mainly employ the solver to tackle satisfaction
problems, guiding the search for optimal solutions through iterative algorithms.
Constraint programming typically excels in satisfaction problems rather than
optimization problems. Accordingly, the algorithms devised for the proposed
models significantly enhance the solution methods. These methods generally
provide a significant number of optimal solutions and can also generate good-
quality feasible solutions in the absence of an optimality proof. Particularly,
results presented in this thesis for the CPMP-LCT show that the models can
deliver high-quality feasible solutions within short running times, suggesting
the method’s suitability as a heuristic approach.

7.2.3 Future research lines from a solution method perspective

As detailed in the previous sections, the constraint programming approaches
developed in this thesis offer significant advantages. They are versatile, easy
to implement, and capable of providing high-quality solutions. These features
have been crucial for the development of this study and are also beneficial
for users seeking a simple solution approach that is easy to use and adapt to
changing requirements.

Even then, the methods developed in this thesis could be improved, or new
techniques could be explored to address the newly proposed problems. For
instance, the constraint programming models could be tested with alternative
solvers to investigate the possibility of better performance. Additionally, fur-
ther research could focus on developing more complex ad-hoc algorithms to
ensure optimality over a broader range of solutions and reduce running times.

148

Bibliography

Araya, I., & Toledo, M. (2023). A fill-and-reduce greedy algorithm for the
container pre-marshalling problem. Operational Research, 23 (51). https:
//doi.org/10.1016/j.cor.2019.104781 (cit. on p. 21).

Bacci, T., Mattia, S., & Ventura, P. (2019). The bounded beam search algo-
rithm for the block relocation problem. Computers & Operations Research,
103, 252–264. https://doi.org/10.1016/j.cor.2018.11.008 (cit. on p. 23).

Bacci, T., Mattia, S., & Ventura, P. (2020). A branch-and-cut algorithm for
the restricted block relocation problem. European Journal of Operational
Research, 287, 452–459. https://doi.org/10.1016/j.ejor.2020.05.029 (cit.
on p. 23).

Barták, R. (2011). History of constraint programming. In Wiley encyclopedia of
operations research and management science. John Wiley & Sons. https:
//doi.org/10.1002/9780470400531.eorms0382 (cit. on p. 24).

Boge, S., Goerigk, M., & Knust, S. (2020). Robust optimization for premar-
shalling with uncertain priority classes. European Journal of Operational
Research, 287, 191–210. https://doi.org/10.1016/j.ejor.2020.04.049 (cit.
on p. 22).

149

https://doi.org/10.1016/j.cor.2019.104781
https://doi.org/10.1016/j.cor.2019.104781
https://doi.org/10.1016/j.cor.2018.11.008
https://doi.org/10.1016/j.ejor.2020.05.029
https://doi.org/10.1002/9780470400531.eorms0382
https://doi.org/10.1002/9780470400531.eorms0382
https://doi.org/10.1016/j.ejor.2020.04.049

Bibliography

Boge, S., & Knust, S. (2023). The blocks relocation problem with item families
minimizing the number of reshuffles. OR Spectrum, 45, 395–435. https:
//doi.org/10.1007/s00291-022-00703-x (cit. on p. 23).

Bortfeldt, A., & Forster, F. (2012). A tree search procedure for the container
pre-marshalling problem. European Journal of Operational Research, 217,
531–540. https://doi.org/10.1016/j.ejor.2011.10.005 (cit. on pp. 19–21,
47).

Caserta, M., & Voß, S. (2009). A corridor method-based algorithm for the pre-
marshalling problem. In M. Giacobini, A. Brabazon, S. Cagnoni, G. A. D.
Caro, A. Ekárt, A. I. Esparcia-Alcázar, M. Farooq, A. Fink, & P. Machado
(Eds.), Applications of evolutionary computing (pp. 788–797). Springer,
Berlin, Heidelberg. https://doi.org/https://doi.org/10.1007/978-3-642-
01129-0_89 (cit. on pp. 21, 50).

Covic, F. (2018). A literature review on container handling in yard blocks. In
R. Cerulli, A. Raiconi, & S. Voß (Eds.), Computational logistics (pp. 139–
167). Springer International Publishing. https://doi.org/10.1007/978-3-
030-00898-7_9 (cit. on p. 19).

da Silva Firmino, A., de Abreu Silva, R. M., & Times, V. C. (2019). A reactive
GRASP metaheuristic for the container retrieval problem to reduce crane’s
working time. Journal of Heuristics, 25, 141–173. https://doi.org/10.1007/
s10732-018-9390-0 (cit. on p. 23).

de Melo da Silva, M., Toulouse, S., & Calvo, R. W. (2018). A new effec-
tive unified model for solving the pre-marshalling and block relocation
problems. European Journal of Operational Research, 271, 40–56. https:
//doi.org/10.1016/j.ejor.2018.05.004 (cit. on pp. 20, 38, 41, 43, 47).

Esteban-Chapapría, V., & Serra-Peris, J. (2021). Vulnerability of coastal areas
due to infrastructure: The case of Valencia port (Spain). Land, 10 (12),
1344. https://doi.org/10.3390/land10121344 (cit. on p. 4).

Expósito-Izquierdo, C., Melián-Batista, B., & Moreno-Vega, M. (2012). Pre-
marshalling problem: Heuristic solution method and instances generator.
Expert Systems with Applications, 39, 8337–8349. https ://doi .org/10 .
1016/j.eswa.2012.01.187 (cit. on pp. 20, 21, 50).

150

https://doi.org/10.1007/s00291-022-00703-x
https://doi.org/10.1007/s00291-022-00703-x
https://doi.org/10.1016/j.ejor.2011.10.005
https://doi.org/https://doi.org/10.1007/978-3-642-01129-0_89
https://doi.org/https://doi.org/10.1007/978-3-642-01129-0_89
https://doi.org/10.1007/978-3-030-00898-7_9
https://doi.org/10.1007/978-3-030-00898-7_9
https://doi.org/10.1007/s10732-018-9390-0
https://doi.org/10.1007/s10732-018-9390-0
https://doi.org/10.1016/j.ejor.2018.05.004
https://doi.org/10.1016/j.ejor.2018.05.004
https://doi.org/10.3390/land10121344
https://doi.org/10.1016/j.eswa.2012.01.187
https://doi.org/10.1016/j.eswa.2012.01.187

Bibliography

Farrelly, J., & Grimes, D. (2022). An iterated local search approach to the
container pre-marshalling problem. 33rd Irish Signals and Systems Con-
ference, 1–6. https://doi.org/10.1109/ISSC55427.2022.9826140 (cit. on
p. 21).

Gheith, M., Eltawil, A. B., & Harraz, N. A. (2016). Solving the container pre-
marshalling problem using variable length genetic algorithms. Engineering
Optimization, 48 (4), 687–705. https://doi.org/10.1080/0305215X.2015.
1031661 (cit. on p. 21).

Hottung, A., Tanaka, S., & Tierney, K. (2020). Deep learning assisted heuristic
tree search for the container pre-marshalling problem. Computers & Ope-
rations Research, 113, 104781. https://doi.org/10.1016/j.cor.2019.104781
(cit. on p. 21).

Hottung, A., & Tierney, K. (2016). A biased random-key genetic algorithm for
the container pre-marshalling problem. Computers & Operations Research,
75, 83–102. https://doi.org/10.1016/j.cor.2016.05.011 (cit. on p. 21).

Huang, S.-H., & Lin, T.-H. (2012). Heuristic algorithms for container pre-
marshalling problems. Computers & Industrial Engineering, 62, 13–20.
https://doi.org/10.1016/j.cie.2011.08.010 (cit. on p. 21).

Jiménez-Piqueras, C., Parreño-Torres, C., Alvarez-Valdes, R., & Ruiz, R. (2024).
The container premarshalling problem under limited crane time: A con-
straint programming approach. Computers & Operations Research, 166.
https://doi.org/https://doi.org/10.1016/j.cor.2024.106635 (cit. on pp. 10,
73, 91–93, 104–109).

Jiménez-Piqueras, C., Ruiz, R., Parreño-Torres, C., & Alvarez-Valdes, R. (2023).
A constraint programming approach for the premarshalling problem. Eu-
ropean Journal of Operational Research. https://doi.org/https://doi.org/
10.1016/j.ejor.2022.07.042 (cit. on pp. 9, 33, 41, 43, 51–55, 57–59).

Jin, B. (2020). A note on “An exact algorithm for the blocks relocation problem
with new lower bounds”. Computers & Operations Research, 124, 105082.
https://doi.org/10.1016/j.cor.2020.105082 (cit. on p. 23).

Jin, B., & Tanaka, S. (2023). An exact algorithm for the unrestricted container
relocation problem with new lower bounds and dominance rules. European

151

https://doi.org/10.1109/ISSC55427.2022.9826140
https://doi.org/10.1080/0305215X.2015.1031661
https://doi.org/10.1080/0305215X.2015.1031661
https://doi.org/10.1016/j.cor.2019.104781
https://doi.org/10.1016/j.cor.2016.05.011
https://doi.org/10.1016/j.cie.2011.08.010
https://doi.org/https://doi.org/10.1016/j.cor.2024.106635
https://doi.org/https://doi.org/10.1016/j.ejor.2022.07.042
https://doi.org/https://doi.org/10.1016/j.ejor.2022.07.042
https://doi.org/10.1016/j.cor.2020.105082

Bibliography

Journal of Operational Research, 304 (2), 494–514. https://doi.org/10.
1016/j.ejor.2022.04.006 (cit. on p. 23).

Jin, B., & Yu, M. (2021). Note on the dominance rules in the exact algorithm
for the container pre-marshalling problem by Tanaka & Tierney (2018).
European Journal of Operational Research, 293 (2), 802–807. https://doi.
org/10.1016/j.ejor.2020.12.041 (cit. on p. 20).

Jovanovic, R., Tanaka, S., Nishi, T., & Voß, S. (2019). A grasp approach for
solving the blocks relocation problem with stowage plan. Flexible Services
and Manufacturing Journal, 31, 702–729. https://doi.org/10.1007/s10696-
018-9320-3 (cit. on p. 23).

Jovanovic, R., Tuba, M., & Voß, S. (2017). A multi-heuristic approach for solv-
ing the pre-marshalling problem. Central European Journal of Operations
Research, 25, 1–28. https://doi.org/10.1007/s10100-015-0410-y (cit. on
p. 21).

Jovanovic, R., Tuba, M., & Voß, S. (2019). An efficient ant colony optimization
algorithm for the blocks relocation problem. European Journal of Opera-
tional Research, 274, 78–90. https://doi.org/10.1016/j.ejor.2018.09.038
(cit. on p. 23).

Kimns, A., & Wilschewski, F. (2023). A new modeling approach for the un-
restricted block relocation problem. OR Spectrum, 45, 1071–1111. https:
//doi.org/10.1007/s00291-023-00728-w (cit. on p. 23).

Kizilay, D., & Eliiyi, D. T. (2021). A comprehensive review of quay crane
scheduling, yard operations and integrations thereof in container termi-
nals. Flexible Services and Manufacturing Journal, 33, 1–42. https://doi.
org/10.1007/s10696-020-09385-5 (cit. on p. 19).

Lee, Y., & Chao, S.-L. (2009). A neighborhood search heuristic for pre-marsha-
lling export containers. European Journal of Operational Research, 196,
468–475. https://doi.org/10.1016/j.ejor.2008.03.011 (cit. on p. 21).

Lee, Y., & Hsu, N.-Y. (2007). An optimization model for the container pre-
marshalling problem. Computers & Operations Research, 34, 3295–3313.
https://doi.org/10.1016/j.cor.2005.12.006 (cit. on p. 19).

152

https://doi.org/10.1016/j.ejor.2022.04.006
https://doi.org/10.1016/j.ejor.2022.04.006
https://doi.org/10.1016/j.ejor.2020.12.041
https://doi.org/10.1016/j.ejor.2020.12.041
https://doi.org/10.1007/s10696-018-9320-3
https://doi.org/10.1007/s10696-018-9320-3
https://doi.org/10.1007/s10100-015-0410-y
https://doi.org/10.1016/j.ejor.2018.09.038
https://doi.org/10.1007/s00291-023-00728-w
https://doi.org/10.1007/s00291-023-00728-w
https://doi.org/10.1007/s10696-020-09385-5
https://doi.org/10.1007/s10696-020-09385-5
https://doi.org/10.1016/j.ejor.2008.03.011
https://doi.org/10.1016/j.cor.2005.12.006

Bibliography

Lee, Y., & Lee, Y.-J. (2010). A heuristic for retrieving containers from a yard.
Computers & Operations Research, 37 (6), 1139–1147. https://doi.org/10.
1016/j.cor.2009.10.005 (cit. on p. 23).

Lersteau, C., & Shen, W. (2022). A survey of optimization methods for block
relocation and premarshalling problems. Computers & Industrial Engi-
neering, 172, 108529. https://doi.org/10.1016/j.cie.2022.108529 (cit. on
p. 19).

Lin, D.-Y., Lee, Y.-J., & Lee, Y. (2015). The container retrieval problem with
respect to relocation. Transportation Research Part C: Emerging Tech-
nologies, 52, 132–143. https://doi.org/10.1016/j.trc.2015.01.024 (cit. on
p. 23).

Liu, S., Liu, S., Lu, C., Zhou, M., & Abusorrah, A. (2022). Valid inequality
and variable fixation for unrestricted block relocation problems. IEEE
Transactions on Intelligent Transportation Systems, 23 (10), 18822–18834.
https://doi.org/10.1109/TITS.2022.3151069 (cit. on p. 23).

Lu, C., Zeng, B., & Liu, S. (2020). A study on the block relocation problem:
Lower bound derivations and strong formulations. IEEE Transactions on
Automation Science and Engineering, 17, 1829–1853. https://doi.org/10.
1109/TASE.2020.2979868 (cit. on p. 23).

Parreño-Torres, C., Alvarez-Valdes, R., & Parreño, F. (2022). A beam search
algorithm for minimizing crane times in premarshalling problems. Euro-
pean Journal of Operational Research, 302 (3), 1063–1078. https://doi .
org/10.1016/j.ejor.2022.01.038 (cit. on p. 22).

Parreño-Torres, C., Alvarez-Valdes, R., & Ruiz, R. (2019). Integer program-
ming models for the pre-marshalling problem. European Journal of Opera-
tional Research, 274, 142–154. https://doi.org/10.1016/j.ejor.2018.09.048
(cit. on pp. 20, 38, 41, 43, 47, 48, 56, 60).

Parreño-Torres, C., Alvarez-Valdes, R., Ruiz, R., & Tierney, K. (2020). Mini-
mizing crane times in pre-marshalling problems. Transportation Research
Part E: Logistics and Transportation Review, 137, 101917. https://doi.
org/10.1016/j.tre.2020.101917 (cit. on pp. 22, 23, 84, 85, 102, 103, 135).

153

https://doi.org/10.1016/j.cor.2009.10.005
https://doi.org/10.1016/j.cor.2009.10.005
https://doi.org/10.1016/j.cie.2022.108529
https://doi.org/10.1016/j.trc.2015.01.024
https://doi.org/10.1109/TITS.2022.3151069
https://doi.org/10.1109/TASE.2020.2979868
https://doi.org/10.1109/TASE.2020.2979868
https://doi.org/10.1016/j.ejor.2022.01.038
https://doi.org/10.1016/j.ejor.2022.01.038
https://doi.org/10.1016/j.ejor.2018.09.048
https://doi.org/10.1016/j.tre.2020.101917
https://doi.org/10.1016/j.tre.2020.101917

Bibliography

Quispe, K. E. Y., Lintzmayer, C. N., & Xavier, E. C. (2018). An exact algo-
rithm for the blocks relocation problem with new lower bounds. Computers
& Operations Research, 99, 206–217. https://doi.org/10.1016/j.cor.2018.
06.021 (cit. on p. 23).

Rendl, A., & Prandtstetter, M. (2013). Constraint models for the container
pre-marshaling problem. In G. Katsirelos & C.-G. Quimper (Eds.), The
twelfth international workshop on constraint modelling and reformulation
(modref 2013) (pp. 44–56). (Cit. on pp. 19, 22, 38, 47).

Rossi, F., van Beek, P., & Walsh, T. (Eds.). (2006). Handbook of constraint
programming. Elsevier. (Cit. on p. 24).

Sutherland, I. (1963). Sketchpad: A man-machine graphical communication sys-
tem [Doctoral dissertation, Massachusetts Institute of Technology]. (Cit.
on p. 24).

Tanaka, S., & Mizuno, F. (2018). An exact algorithm for the unrestricted block
relocation problem. Computers & Operations Research, 95, 12–31. https:
//doi.org/10.1016/j.cor.2018.02.019 (cit. on p. 23).

Tanaka, S., & Tierney, K. (2018). Solving real-world sized container pre-marsha-
lling problems with an iterative deepening branch-and-bound algorithm.
European Journal of Operational Research, 264, 165–180. https://doi.org/
10.1016/j.ejor.2017.05.046 (cit. on pp. 20, 47).

Tanaka, S., Tierney, K., Parreño-Torres, C., Alvarez-Valdes, R., & Ruiz, R.
(2019). A branch and bound approach for large pre-marshalling problems.
European Journal of Operational Research, 278, 211–225. https://doi.org/
10.1016/j.ejor.2019.04.005 (cit. on pp. 20, 47, 77).

Tanaka, S., & Voß, S. (2022). An exact approach to the restricted block reloca-
tion problem based on a new integer programming formulation. European
Journal of Operational Research, 296 (2), 485–503. https://doi.org/10.
1016/j.ejor.2021.03.062 (cit. on p. 23).

Tierney, K., Pacino, D., & Voß, S. (2016). Solving the pre-marshalling problem
to optimality with A* and IDA*. Flexible Services and Manufacturing
Journal, 29, 223–259. https://doi.org/10.1007/s10696-016-9246-6 (cit. on
pp. 20, 40, 50).

154

https://doi.org/10.1016/j.cor.2018.06.021
https://doi.org/10.1016/j.cor.2018.06.021
https://doi.org/10.1016/j.cor.2018.02.019
https://doi.org/10.1016/j.cor.2018.02.019
https://doi.org/10.1016/j.ejor.2017.05.046
https://doi.org/10.1016/j.ejor.2017.05.046
https://doi.org/10.1016/j.ejor.2019.04.005
https://doi.org/10.1016/j.ejor.2019.04.005
https://doi.org/10.1016/j.ejor.2021.03.062
https://doi.org/10.1016/j.ejor.2021.03.062
https://doi.org/10.1007/s10696-016-9246-6

Bibliography

Tierney, K., & Voß, S. (2016). Solving the robust container pre-marshalling
problem. In A. Paias, M. Ruthmair, & S. Voß (Eds.), Lecture notes in com-
puter science (pp. 131–145, Vol. 9855). Springer, Cham. (Cit. on p. 22).

Ting, C.-J., & Wu, K.-C. (2017). Optimizing container relocation operations at
container yards with beam search. Transportation Research Part E, 103,
17–31. https://doi.org/10.1016/j.tre.2017.04.010 (cit. on p. 23).

UNCTAD. (1992). Review of maritime transport 1992 (tech. rep.). United Na-
tions Conference on Trade and Development. (Cit. on p. 3).

UNCTAD. (2018). 50 years of review of maritime transport, 1968–2018: Re-
flecting on the past, exploring the future (tech. rep.). Transport, Trade Fa-
cilitation Newsletter, Series No. 10, United Nations Conference on Trade,
and Development. (Cit. on p. 3).

UNCTAD. (2021). Review of maritime transport 2021 (tech. rep.). United Na-
tions Conference on Trade and Development. (Cit. on p. 3).

UNCTAD. (2022). Review of maritime transport 2022 (tech. rep.). United Na-
tions Conference on Trade and Development. (Cit. on p. 3).

UNCTAD. (2023). Review of maritime transport 2023 (tech. rep.). United Na-
tions Conference on Trade and Development. (Cit. on p. 3).

van Brink, M., & van der Zwaan, R. (2014). A branch and price procedure for
the container premarshalling problem. arXiv, 1406.7107v1. https://doi.
org/10.1007/978-3-662-44777-2_66 (cit. on pp. 20, 49).

Wang, N., Jin, B., & Lim, A. (2015). Target-guided algorithms for the container
pre-marshalling problem. Omega, 53, 67–77. https://doi.org/10.1016/j.
omega.2014.12.002 (cit. on pp. 21, 22, 63).

Wang, N., Jin, B., Zhang, Z., & Lim, A. (2017). A feasibility-based heuristic for
the container pre-marshalling problem. European Journal of Operational
Research, 256, 90–101. https://doi.org/10.1016/j.ejor.2016.05.061 (cit. on
p. 21).

155

https://doi.org/10.1016/j.tre.2017.04.010
https://doi.org/10.1007/978-3-662-44777-2_66
https://doi.org/10.1007/978-3-662-44777-2_66
https://doi.org/10.1016/j.omega.2014.12.002
https://doi.org/10.1016/j.omega.2014.12.002
https://doi.org/10.1016/j.ejor.2016.05.061

Bibliography

Weerasinghe, B. A., Perera, H. N., & Bai, X. (2024). Optimizing container ter-
minal operations: A systematic review of operations research applications.
Maritime Economics & Logistics, 26, 307–341. https://doi.org/10.1057/
s41278-023-00254-0 (cit. on p. 19).

Zhang, R., Jiang, Z.-Z., & Yun, W. Y. (2015). Stack pre-marshalling problem:
A heuristic-guided branch-and-bound algorithm. International Journal of
Industrial Engineering : Theory Applications and Practice, 22, 509–523.
https://doi.org/10.23055/ijietap.2015.22.5.1514 (cit. on pp. 20, 49).

Zweers, B. G., Bhulai, S., & van der Mei, R. D. (2020a). Optimizing pre-
processing and relocation moves in the stochastic container relocation
problem. European Journal of Operational Research, 283 (3), 954–971. https:
//doi.org/10.1016/j.ejor.2019.11.067 (cit. on p. 23).

Zweers, B. G., Bhulai, S., & van der Mei, R. D. (2020b). Pre-processing a
container yard under limited available time. Computers & Operations Re-
search, 123, 105045. https://doi.org/10.1016/j.cor.2020.105045 (cit. on
p. 23).

156

https://doi.org/10.1057/s41278-023-00254-0
https://doi.org/10.1057/s41278-023-00254-0
https://doi.org/10.23055/ijietap.2015.22.5.1514
https://doi.org/10.1016/j.ejor.2019.11.067
https://doi.org/10.1016/j.ejor.2019.11.067
https://doi.org/10.1016/j.cor.2020.105045

This thesis aims to bridge the gap between the

mathematical formulation of the container

premarshalling problem and its practical

application. It addresses both theoretical and

technical aspects of this optimization problem.

On the theoretical side, this thesis contributes

novel problem variants to the scientific

literature. It studies and reformulates unrealistic

assumptions made in the original formulation.

On the technical side, it presents constraint

programming approaches for both the newly

proposed variants and previous formulations.

These methods demonstrate the efficiency of

constraint programming in solving the container

premarshalling problem.

	Resumen
	Resum
	Abstract
	Acknowledgements
	Agradecimientos
	Contents
	List of Figures
	List of Tables
	1 Motivation and scope of the research
	1.1 Motivation of the research
	1.1.1 Containerized maritime trade
	1.1.2 The role of optimization at container port terminals

	1.2 Scope
	1.3 Objectives
	1.3.1 More realistic formulations
	1.3.2 A versatile solution method

	1.4 Outline
	1.5 Scientific contributions associated with this thesis
	1.5.1 Published papers in international journals
	1.5.2 Papers in preparation
	1.5.3 Oral presentations at international conferences
	1.5.4 Oral presentations at Spanish national conferences
	1.5.5 Oral presentations at workshops and seminars

	2 Introduction
	2.1 Optimization of port terminal operations
	2.1.1 Seaside operations
	2.1.2 Yard operations
	2.1.3 Landside operations

	2.2 Literature review
	2.2.1 Solving the Container Premarshalling Problem (CPMP)
	2.2.2 Related problems

	2.3 Constraint Programming
	2.3.1 Constraint Satisfaction Problems
	2.3.2 Types of constraints
	2.3.3 Particular cases and extensions of CSPs
	2.3.4 Search strategies

	3 A constraint programming approach for the premarshalling problem
	3.1 CPMP: The Container Premarshalling Problem
	3.1.1 Notation

	3.2 Constraint programming models
	3.2.1 CP2: Constraint programming model with 2 groups of variables
	3.2.2 CP3: Constraint programming model with 3 groups of variables
	3.2.3 CP4: Constraint programming model with 4 groups of variables
	3.2.4 CP5: Constraint programming model with 5 groups of variables
	3.2.5 Solution method

	3.3 Computational experiments
	3.3.1 Technical details of the experiments
	3.3.2 Size of the CP models
	3.3.3 Performance of models CP2, CP3, CP4 and CP5
	3.3.4 Performance of the algorithm
	3.3.5 Comparison with the state-of-the-art integer programming model and between constraint programming and mathematical programming approaches

	3.4 Concluding remarks

	4 Solving the premarshalling problem with an auxiliary bay
	4.1 CPMP-AB: The Container Premarshalling Problem with an Auxiliary Bay
	4.1.1 Notation

	4.2 Constraint programming models for the CPMP-AB
	4.2.1 AB: Model for premarshalling with an auxiliary bay
	4.2.2 ABp: Alternative model with a penalty for inter-bay relocations
	4.2.3 Solution method

	4.3 Computational experiments
	4.3.1 Performance of the proposed models
	4.3.2 Differences in the solutions when considering or not an auxiliary bay, and when including or not a penalty for inter-bay relocations

	4.4 Concluding remarks

	5 Premarshalling problems considering crane times
	5.1 CPMPCT: The Container Premarshalling Problem with Crane Time Minimization Objective
	5.1.1 Crane time specifications and notation

	5.2 CPMP-LCT: The Container Premarshalling Problem under Limited Crane Time
	5.2.1 Partial premarshalling solutions

	5.3 Constraint programming models for the CPMPCT and the CPMP-LCT
	5.3.1 MCT: A model for premarshalling minimizing crane time
	5.3.2 LCT1: A model for premarshalling under limited crane time
	5.3.3 LCT2: An alternative model for bays where all container priorities differ
	5.3.4 Solution method

	5.4 Computational experiments
	5.4.1 Minimizing crane time: MCT vs IPCT
	5.4.2 Performance of the proposed models for the CPMP-LCT: LCT1 and LCT2
	5.4.3 Heuristic solutions in short times for the CPMP-LCT

	5.5 Concluding remarks

	6 Alternative approaches for the premarshalling problem under limited crane time
	6.1 Alternative objectives for the CPMP-LCT
	6.2 Constraint programming models and solution methods for the CPMP-LCT
	6.2.1 LCT-I: A model and a solution method for minimizing the inaccessible containers
	6.2.2 LCT-IB: A model and a solution method for minimizing the sum of inaccessible and blocking containers
	6.2.3 LCT-BRP: A model and a solution method for minimizing the relocations in the retrieval phase

	6.3 A constraint programming model for the Block Relocation Problem
	6.4 Computational experiments
	6.4.1 Performance of the proposed models and solution methods for the CPMP-LCT
	6.4.2 Differences in the solutions yielded by the three different objectives

	6.5 Concluding remarks

	7 Conclusions and future work
	7.1 Reformulating unrealistic assumptions for the premarshalling problem
	7.1.1 Using an auxiliary bay for premarshalling
	7.1.2 Considering crane times and limited availability of the crane
	7.1.3 Future research lines toward a more realistic premarshalling formulation

	7.2 Constraint Programming: An effective and versatile solution method for premarshalling
	7.2.1 Designing constraint programming models
	7.2.2 A versatile and effective solution method
	7.2.3 Future research lines from a solution method perspective

	Bibliography

