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Insecticide discovery by drug repurposing: new synergis-
tic inhibitors against Periplaneta americana†

Beatriz Chafer-Dolz,→a José M. Cecilia,b, Baldomero Imbernón,c Estrella Núñez-Delicado,c

Victor Casaa-Ginera and José P. Cerón-Carrasco→d

Virtual screening (VS) procedures have been widely used to accelerate the drug discovery process.
They have also been implemented in other fields such as catalysts, energetic materials and more
recently into the design of novel insecticides. The latter is an industrial priority to meet current
legislation. Particularly challenging are cockroaches: they are associated to a number of diseases
while the available solutions are harmful to humans. Herein, we performed an in silico and in vivo
screening of the Drug Bank (DB) database for new potential voltage-dependent sodium channel
(VGSC) synergists against American cockroach (Periplaneta americana). The VS pipeline procedure
implements two ligand-based methods, e.g., Glide and METADOCK 2.0, which are further refined
by rescoring. The most promising compounds are tested with in vivo models. Our combined com-
putational and theoretical scheme leads to the discovery of miglitol as a new e!ective synergistic
compound when combined with commercial formulations. Miglitol speeds up the overall knockout
time by a factor of 12X while providing 100% of mortality after 24 hours. These results open the
door to enhanced insecticides as well as to a wider use of VS methods.

1 Introduction
Cockroaches have been in close contact with humans since time
immemorial.1,2 More than four thousand cockroach species have
been identified, of which 30 are harmful to humans.3 In par-
ticular, the American cockroach (Periplaneta americana) physi-
cally transmits pathogens including viruses, bacteria, fungi and
moulds, which cause diarrhoea, dysentery, cholera, leprosy,
plague, typhoid fever and viral diseases such as polio.4 The de-
velopment of efficient biocides has been selected as a priority re-
search line by the World Health Organisation (WHO).5

Voltage-activated sodium channels (Nav) constitute a major
target for controlling if not eradicate insects. Indeed, Nav plays
a critical role in generating membrane excitability6 and are the
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Fig. 1 Schematic representation of sodium channels and an intervening
synapse.

target of numerous chemical insecticides, human drugs and poi-
sonous neurotoxins. A recent work by Shen et al.7 represents
one of the main advances in that framework, as these authors
reported the cryogenic electron microscopy structure of a puta-
tive Nav channel from American cockroach (labelled hereafter as
NavPaS) at 2.60 Åresolution. The available experimental data –
that includes the position and interaction of inhibitors – is a cor-
nerstone for performing computational models. That structural
data motivated the present contribution that deals with the use
of molecular and in vivo models in the search of enhanced insec-
ticides against cockroaches.

Until now, most of the household insecticides are based
on pyrethroids, a family of compound that disrupt the ner-
vous system by targeting the voltage-dependent sodium channel
(VGSC).8,9 As a result, the membranes of electrically excitable
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cells become persistently depolarized and the insect is rapidly
paralysed and dies, often exhibiting a “knock-down” response.
However, the long persistence of pyrethroids in soils10 and, more
recently in other animals such as fish,11 has led in recent years to
control/limit their use. In that framework, the discover of a syn-
ergist might help to circumvent current insecticide solutions by
reducing the response time (measured as Knockdown time, KD)
and/or increasing mortality.12

Virtual screening (VS) methods based on docking simulations
are well-suited to find these new or alternative molecules. They
have been traditionally used to enhance the drug discovery pro-
cess by screening large databases of chemical compounds (i.e.,
ligands) to find new drug candidates that bind to a specific bi-
ological target.13–15 There are several codes to carry out molec-
ular docking16. For instance, AutoDock,17 Glide,18 BUDE,19 or
DOCK20 are able to perform simulation on the protein surface.
These methods are usually guided by the position of a particu-
lar ligand in the protein-ligand complex, with a focus on a spe-
cific binding region (i.e., binding site) while other regions of the
protein that might have activity remain unexplored. Alternative
molecular docking tools such as BINDSURF21 or METADOCK22,23

perform the so-called “blind-docking” regimen, e.g., an unbiased
search on the whole protein surface by dividing into arbitrary in-
dependent regions (or spots). Such blind-docking scheme is cer-
tainly more demanding than standard docking methods as simu-
lations are performed simultaneously at all available pockets on
the protein rather than being restricted to the binding site area. In
addition, the success of VS strongly depends on the ability of the
method to correctly rank candidates according to the estimated
affinity or scoring.24,25 This is a critical step in the classical drug
discovery pipeline as only the best ranked leads are continue the
process roadmap that goes from in vitro studies to in vivo investi-
gations and, eventually, to human trials.13

Inspired by all these accumulated findings, herein we propose
a refined VS pipeline to find new chemical compounds that in-
hibit the American cockroach NavPaS. Our main goal is to expand
the chemical space of search by repurposing old drugs as novel
insecticides.

2 Computational and Experimental Methods

2.1 Chemical models: targeted structure and compound
database

Nav channels play a critical role in a wide range of living organ-
ism, including mammals, by regulating the in/out–transport of
Na+ cations in cells, a step required for the correct generation
of the nerve impulse. It is therefore not surprising the huge clini-
cal efforts devoted to modulate these channels in the treatment of
nerve and muscle-related disorders.26 A similar reasoning applies
for insecticides but with an opposite goal: the use of toxins to
block that membrane proteins in insects might disrupt their nor-
mal nerve impulses and in turn help to incapacitate a plague pro-
gression. Indeed, first insecticidal pyrethrins, modern synthetic
pyrethroids as well as new pyrazoline-based derivatives all target
sodium channels.27

Our starting material is the available NavPaS structure de-

Fig. 2 Left panel: Experimental structure of the NavPaS in presence of
the guanidinium pore blockers TTX. Protein is plotted as yellow cartoon.
TTX inhibitor is displayed as ball and stick (colour scheme: carbon in
green, oxygen, nitrogen in blue and hydrogen in White) and sodium atom
located in the central pore (pink ball). Red panel: zoom into the binding
site region.

posited in the protein data bank (PDB) with code 6A95. That
structure was published by Shen and co-workers,28 which is il-
lustrated in Figure 2. As discussed by these authors, NavPaS in-
hibitors might be classified as pore blockers and gating modifiers.
The former are associated to small molecules capable to block the
core pore, while the latter interacts with the voltage-sensing do-
main.7 The 6A95 structure has been resolved with a pore blocker,
tetrodotoxin (TTX), which opens the door for performing compu-
tational models. The raw structural data of NavPaS was refined
with default parameters implemented in the Protein Preparation
Wizard Module by Schröringer.29 That step complete the struc-
ture by including all missing hydrogen atoms, assigning bond or-
ders30 and defining charges with Epik at pH = 7.0.31 The pro-
tonation states of all residues were computed with the PROPKA
code.32 A restricted optimization was finally carried out by mini-
mizing all hydrogen atoms with the last OPLS4 force field.33

As in any VS investigation, the source of compounds is a major
parameter. Herein, we decided to go for a well-known library of
compounds in the area of drug design, though less explored for
developing insecticides. More specifically, our protocol based on
screening the Drug Bank (DB) database,34 which contains more
than 10,000 compounds, including approved, nutraceutical, ex-
perimental and withdrawn drugs.35 DB is consequent one of the
prime sources of molecules in drug design so that it might be
used to expand the chemical space of insecticides. DB contains
molecules that target biomolecules present in human tissues, it
might also results a promising source of candidates for discov-
ering molecules compatible with targets present in other organ-
isms as insects. The structures deposited in the DB database
were downloaded and cured by using the LigPrep module imple-
mented in Schrörindger, which assigns bond orders, determines
protonation states at pH = 7.0 and optimizes structures with the
same OPLS4 force field. That module is also used to generate
all possible tautomers.36 LigPrep was also used to model a set of
pyrethroids that are used as positive controls: pyrethrin, piper-
onyl butoxide, cypermethrin, phenothrin and prallethrin.
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Fig. 3 Virtual screening strategies. The left panel illustrates the standard
protocol implemented in Glide, which performs a three steps docking
(HTVS, SP and XP) with a focus on the binding region of the small
inhibitor (TTX). Best 100-ranked conformations are displayed in blue
tubes and retained for MMGBSA refinement, which eventually lead to
first list of compounds based on the standard protocol of Schrödinger. An
alternative sampling is conducted by using these 100 compound as input
for METADOCK 2.0, which search for best conformations along with all
the NavPaS surface, displayed as red tubes. Outputs by METADOCK 2.0
are finally refined with MMGBSA to produce a second list of compounds.
Both Glide and METADOCK hits are analyzed for in vivo testing.

2.2 VS pipeline
Figure 3 shows the VS strategy developed to target the NavPaS,
which combines two main discovery schemes. As sketched, the
former is based on the Glide workflow focused on the active site.
A grid box of 20↑ 20↑ 20 Å3 is generated at the location of the
crystallized TTX inhibitor. Once the grid is defined, all ligands
went through the three stages of traditional GLIDE pipeline,37,38

i.e., high throughput virtual screening (HTVS), standard preci-
sion (SP) and extra precision (XP) protocols. In that approach,
the number of false positives are sequentially reduced from more
than 10,000 hits to 1,000 at the HTVS step. It is worth stress-
ing that both HTVS and SP implement the same scoring function.
However, HTVS is based on a less demanding torsional refine-
ment and sampling that allows to a quick rejection of compounds
incompatible with the central pore. SP step is used to redock
the best 1,000 hits generated by HTVS. The docking procedure is
completed by redocking the 100 best-scored compounds with XP
level of accuracy, which implements a more refined scoring func-
tion.39 A maximum of 10 conformations are allowed in that final
XP step.

Although that Glide three-level protocol allows for a fast
screening of large libraries, the search is mainly restricted to an
specific binding site. The number of generated conformations
is also limited (i.e., up to 10 conformations per ligand). That
approach keep computational cost under control as Glide exclu-
sively uses CPU resources. METADOCK 2.0 is used to enhance
the generation of conformations at such latter docking step. As
discussed elsewhere,23 METADOCK is a high throughput blind
docking method based on a parallel parameterized metaheuristic
scheme that runs on GPUs. This docking method is able to set up
different search mechanisms based on metaheuristics procedures
such as Genetic Algorithms (GAs), Greedy Search (GS), Scatter

Search (SS), Hill Climbing, just to mention few. Search methods
are defined by instantiating a set of configuration parameters that
define the metaheuristic’s stop condition, the number of individ-
uals in the initial population, the combination policy, mutations,
etc.† Accordingly, this parameter setting defines the effective-
ness of the docking procedure, so several parameter optimiza-
tions must be performed before launching the simulation. This
process is carried out by HYPERDOCK that develops a systematic
search.40,41

The individuals of the metaheuristics are associated to confor-
mations of the protein-ligand complex. For each ligand, a popu-
lation of conformations is generated and distributed among the
alpha-carbons on the protein surface. In this way, the entire sur-
face of the receptor is systematically searched. To determine the
goodness of a particular pose, the METADOCK 2.0 scoring func-
tion is calculated. We have previously assessed scoring functions
from the literature,23 including the scoring functions of AutoDock
Vina,42 Autodock 4.243 and BINDSURF.21 Such earlier analysis
revealed a trade-off between computation and prediction accu-
racy, which clearly benefited the AutoDock 4.0 scoring function.
Our present implementation is consistent with that previous strat-
egy. More specifically, the refinement phase developed by META-
DOCK 2.0 is fed by the 100 compounds with the highest affinity
generated in the HTVS and SP stages. After the refinement phase,
METADOCK 2.0 generates the 10 highest affinity conformations.

These docking methods generate a series of compounds that
are sorted out according to its scoring value. We stress that the
scoring functions of the methods are not equivalent, so the values
obtained by Glide and METADOCK 2.0 are not directly compara-
ble between them. It is important to note that though docking
is a valuable tool for screening novel compounds against biotar-
gets, such approaches might also lead to inactive molecules.44 In
that framework, post-refining should be implemented to further
improve numeric outcomes. Aiming to both homogenize and re-
fine the scoring values, the binding energies of the best-ranked
Glide and METADOCK 2.0 hits are eventually recomputed with
the MMGBSA method implemented in the Prime module.45,46

MMGBSA allows to refine the obtained computational results,
taking into account the energies before and after ligand bind-
ing, which in turn allows a more rigorous rescaling.47–50 In this
method, the ligand free energies are calculated as follows,

!Gbind = Gcomplex ↓Gtarget ↓Gligand (1)

where !Gbind represents the binding-free energy of each ligand,
and Gcomplex, Gtarget, and Gligand are the free energies of complex,
target (NavPaS), and ligand (DB entry), respectively. That equa-
tion might be rewritten as:

!GMMGBSA
bind = !EMM +!GGB +!GSA ↓T!S (2)

where !EMM is the total energy in gas phase (including the inter-
nal, electrostatic and the van der Waals contributions), !GGB is
the polar contribution to the solvation free energy computed with
generalized Born method, !GSA is the nonpolar solvation free
term predicted linear function of the solvent-accessible surface
area (SASA), and T!S is the conformational entropy change.51

+PVSOBM�/BNF�<ZFBS>�<WPM�> 1–11 | 3

Page 8 of 22New Journal of Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



These terms yield to the binding-free energy of each ligand within
the MMGBSA approach (!GMMGBSA

bind ).

Fig. 4 Topical application methodology in American cockroach. A) Initial
cockroaches sample, B) Morphology of male and female cockroaches, C)
Topical application, D) Assessment phase.

2.3 In vivo models

The in vivo procedure to test the efficacy of the selected com-
pounds on the American cockroach is restricted to available com-
pounds on the market with tolerable toxicity and cost. As an addi-
tional prerequisite for real commercial formulations, compounds
must be soluble in non-toxic solvents. The in vivo experiments
have been carried out in the biological laboratories of the com-
pany Francisco Aragón S.L.U. (Murcia, Spain). They have been
carried out on individual of Periplaneta americana from 3 differ-
ent strains. The first and oldest strain was collected in 2008, at FA
headquarter. 4 breeding lines of this insect were developed, thus
providing all three stages of its life cycle: egg, nymph and adult.
The second strain was purchased in 2018 from i2L Research Lab-
oratory Ltd. (Cardiff, U.K.) and a new breeding line was created
with this strain. The last strain under study was also collected
in 2021 in Murcia (Spain), composed of nymphs and adults of
American cockroaches, and a new breeding line was developed
with this third strain. All cockroaches were reared at 27.5 ± 0.5
↔C, 70 ± 5% Relative Humidity and a photoperiod of 12:12 (L:D)
and they were fed with water and pet’s food.

Figure 4 shows the methodology for in vivo testing to evaluate
the synergistic activity. It is based on topical application method-
ology in which each substance to be tested is diluted to the suit-
able selected concentration in a 0.05% Prallethrin solution. The
solvent depends on the solubility of each test substance to achieve
the desired concentration (see Table 2). It should be stressed that
the solvent itself guaranteed not to be toxic to the insect. More-
over, controls are established to identify the synergistic effect of
the target compound. The control is based on the solvent used to

dilute the target compound in a 0.05% prallethrin solution. The
basic steps of our in vivo are conceived as follows:

1. Three females and three males of American cockroach are
selected and placed in zip-closed bags.

2. To select the same number of males and females, we rely
on fences/styles (morphology). Females have fences and no
styles, and males have fences and styles.

3. The individual is immobilized with the help of tweezers and,
with the micropipette of 10 µl, is dosed directly and individ-
ually, a drop of 5 µl. The area chosen for the application of
the substances is in the ventral area.

4. Once the substance has been applied, the individual is
placed in a plastic cup and the time it takes for the individ-
ual to flip over is observed; also known as the knockdown
(KD) time.

To determine the synergistic activity of a substance on cock-
roaches, several in vivo metrics are recorded including KD time
(KD50 means time to knock down 50% of the individuals), which
quantifies the time course of action on the cockroach. This is of
particular relevance in household insecticides, as users demand a
quick response from the product, also favoring a reduction in the
application of insecticides in the environment. We observe that
cockroaches may flip over but recover after some time though,
so the percentage of mortality after 60-minutes and 24-hours are
also measured.

3 Results and discussion
3.1 Target validation
As described above, the target under study is NavPaS whose crys-
tallographic structure is achieved with TTX. Therefore, Glide and
METADOCK 2.0 should correctly reproduce the binding mode of
the TTX ligand to the sodium channel. To summarize that early
benchmark, the left-hand panel of Figure 5 overlays the experi-
mental (red) structure with predicted conformation obtained by

Na+

Fig. 5 Left panel: superposition of the structures of TTX in the core pore
environment of NavPaS: crystallographic structure in blue and redocking
geometry by Glide (red, RMSD = 0.62 Å) and METADOCK 2.0 (green,
RMSD = 0.68 Å). Channel is displayed with yellow cartoons and surfaces.
Na+ is showed as a ball. Right panel: superposition of the predicted
conformation for pyrethroids.
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Glide (red) and METADOCK 2.0 (green). It can be shown that
both predicted poses match the same location occupied by TTX in
the core pore, which is associated to a root mean square deviation
(RMSD) of 0.62 and 0.68 Å only for Glide and METADOCK 2.0
respectively. The benchmark step was completed by mimicking
the conformation of six pyrethroids including Prallethrin, which
was used as experimental control. As discussed, pyrethroids are
reported as well-known inhibitors of American cockroach sodium
channel.52 The right-hand panel of Figure 5 shows illustrated that
they are correctly docked into the central core of NavPaS by both
Glide and METADOCK 2.0.

Finally, the binding energies for compounds used as a baseline
(i.e., TTX and pyrethroids) are computed. These figures estab-
lish a binding energy threshold in order to figure out compounds
that may exceed this threshold and thus could be considered as
potential inhibitors of NavPaS. To homegeneize binding energy
figures between Glide and METADOCK 2.0, we use the MMGBSA
refinement. This process results in a binding energy of ↓47.74
kcal mol↓1 (Glide) and ↓51.77 kcal mol↓1 (METADOCK 2.0) for
TTX respectively. Pyretrhorids reach the core pore with higher
binding energies, showing Pyrethrin the highest affinity (↓51.72
kcal mol↓1), followed by piperonyl butoxide (↓48.13 kcal mol↓1).
The other pyrethroids lies in the range of ↓46/↓35 kcal mol↓1.

3.2 Computational screening

Even though the main goal is designing for an efficient strategy
for the discover of novel insecticides, computational cost is a ma-
jor parameter in any VS procedure. Consequently, this section re-
ports the discovered compounds as well as the required resources
for completing each of the proposed VS steps.

Glide VS-workflow is initiated with the HTVS step, which used
the DB database as an input, i.e. 9137 compounds. All Glide pa-
rameters are set up as default. In that standard protocol, 10% of
all compounds are retained for next steps, so that HTVS gener-
ates 913 candidate compounds as output. The overall execution
time of the HTVS procedure was 51 minutes. The 913 selected
compounds next fed into the SP procedure, which is completed in
1 hour and 11 minutes. SP generates 100 candidate compounds
as output that were selected for the last stage of the VS pipeline.
It is actually this last stage what makes different both workflows.
In the Glide-based workflow, docking simulations of these 100
compounds with the active site of the NavPaS was assessed with
the more refined XP regime, in which up to 10 conformations per
compound are retrained. That final docking required 7 hour and
42 minutes of execution time on the CPU, meaning an average
of ca. 277 seconds per compound. The standard VS-workflow
is completed by computing the binding-free energy of the top-
ranked compounds, which run for 1 hour and 24 minutes. For
the records, Glide and MMGBSA simulations have been carried
out in a 12-core 2.4GHz Intel Xeon™ workstation E5 2600v3, en-
dowed with 23GB DDDR4 RAM Memory, 256-GB SSD Hard Disk.

As sketched in Figure 3, METADOCK 2.0 workflow also per-
formed a simulation with the 100 previously selected compounds.
However, contrary to Glide, METADOCK 2.0 goes for a blind (sys-
tematic) docking by assessing the interaction at all 1,377 alpha
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Fig. 6 Results with METADOCK 2.0 (top panel) and subsequent rescor-
ing of all generated conformations with MMGBSA (bottom panel). As a
blind docking, the whole surface of theNavPaS target is explored. Confor-
mations inside of the core pore are displayed in blue (in channel) otherwise
conformations are represented by red spots (out-channel).

carbons (spots) throughout the sodium channel surface. It is
worth stressing the initial population generated is 300 †. Next, a
total of 413,100 different conformations were generated through-
out the sodium channel surface, i.e., 1,377 alpha carbons ↑ 300
individuals at each spot. A GPU-accelerated code is therefore
a must to perform such blind-docking simulations in complex
biosystems as NavPaS. Indeed, even with that large number of
conformations, the METADOCK 2.0 is able to process these 100
compounds in 8 hours and 51 minutes only. That performance
lead to an average execution time of 306 seconds per compounds
when running in a NVIDIA A100 device with 6912 CUDA cores,
40 GB of HBM2 memory and 1.9 TB/seconds. The speed up of
blind docking simulations becomes possible as METADOCK 2.0
was developed from scratch on CUDA programming language, so
that is fully compatible with NVIDIA GPUs. Even if Glide and
METADOCK 2.0 underling models rely on dissimilar theoretical
background, it is worth noting that METADOCK 2.0 took only
0.74 milliseconds per pose, significantly faster than the 27.72 sec-
onds per pose of Glide, more than four orders of magnitude of
difference. We finally select best 100 conformations of each lig-
and (10,000 conformations) that undergo MMGBSA refinement,
with a cost of 166 hours and 31 minutes.

We should note that numeric outputs by Glide and METADOCK
2.0 are not directly comparable as they rely on different scoring
functions. As discussed, the use of MMGBSA allows us to refine
the results, while homogenising the binding energies obtained by
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both methods. An inspection of Figure 3 reveals one of the main
differences between the standard workflow Glide–MMGBSA and
the enhanced sampling with METADOCK 2.0–MMGBSA. The for-
mer approaches conducts VS at the binding site (core pore) while
the latter explores the whole structure of the NavPaS target. As
a consequence, all conformations predicted by Glide are located
“in-channel”. On the contrary, METADOCK 2.0 located conforma-
tions “in-channel” (in the core pore, as TTX and Na+ cation) and
“out-channel”. Top panel of Figure 6 classifies METADOCK 2.0
conformations according to the computed score values vs. residue
number of the selected spot (see Section “VS pipeline"). Confor-
mations generated “in–channel” and “out–channel” are circled in
blue and red, respectively.

It is worth noting the similar number of in– and out–
conformations provided by METADOCK 2.0. This finding demon-
strates that ligands might target several residues. It is also re-
markable that METADOCK 2.0 predicts three residue areas: 0–
400, 400–900 and 900–1300, approximately. The largest interac-
tion (more negative METADOCK 2.0 score) lies in the region of
residues 500–900. A visual inspection demonstrated that not all
these residues correspond to the core pore. As a consequence,
a site-guided VS might produce a limited picture of the bind-
ing mode to target NavPaS. Bottom panel represent the interac-
tion energies of METADOCK conformations after MMGBSA refine-
ment. Refinement by MMGBSA significantly impacts in the rak-
ing by METADOCK 2.0 by compacting the energetic dispersion.
Indeed, three residue regions are still visible, though conforma-
tions with the largest binding energy “in-channel” (threshold of
↓60 kcal mol↓1) are now detected in these three residue areas.
Compounds “in-channel” with the highest binding energies are
extracted to complete our computational analysis.

Table 1 lists the best compounds obtained by the two pro-
posed VS workflows. As demonstrated by numeric results, there
is not a linear correlation between docking scores and MMGBSA
interactions energies, conclusions that are valid for both Glide
and METADOCK 2.0. As expected, docking is a valuable tool to
assess possible binding modes (conformations) of drugs inside
biomolecule pockets. However, interaction energies need to be
further refinement with more advanced levels of theory. Such
post-processing seems to be mandatory independently of the used
docking engine. In addition, Table 1 demonstrates that conforma-
tions generated with METADOCK 2.0 are largely anchored to the
NavPaS target. Standard Glide–MMGBSA workflow yields to a en-
ergetic window of ↓57.86/↓33.75 kcal mol↓1 in contrast with the
more negative values derived from the METADOCK 2.0–MMGBSA
sampling, with a top-ranked list with energies in the range of
↓68.56/↓ 51.88 kcal mol↓1. These numeric outcomes hint that
METADOCK 2.0 increases the interaction with the target by sta-
bilizing the pose, a results that might be directly related with the
larger amount of the generated conformations.

Regarding the chemical nature of the top-ranked compounds,
standard workflow locates dihydrostreptomycin as the best-
ranked MMGBSA hit (!GMMGBSA

bind = ↓57.86 kcal mol↓1), more
negative than the energy computed for the crystallographic TTX
in the Glide–MMGBSA framework (!GMMGBSA

bind = ↓47.74 kcal
mol↓1). Dihydrostreptomycin is an aminoglycoside antibiotic

Table 1 Top-ranked compounds predicted by the standard Schröndinger
protocol (Glide score, in kcal mol↓1) and by sampling with blind-docking
METADOCK 2.0. The results shown here correspond to the MMGBSA
output for a better comparison between methods. (!GMMGBSA

bind , in kcal
mol. Only molecules inside the channel are retained for discussion

Standard workflow
Moleculea Glide !GMMGBSA

bind
Dihydrostreptomycin -7.01 -57.86
Bedoradrine -4.31 -56.41
DB02732 -8.05 -55.97
DB01721 -3.80 -50.68
Plazomicin -11.30 -49.59
Capivasertib -0.32 -49.26
Netilmicin -6.12 -44.34
Indinavir -0.60 -42.75
Imidurea -6.94 -40.86
Acarbose -7.79 -34.91
Miglitol -7.83 -33.75

Enhanced sampling
Moleculea METADOCK 2.0 !GMMGBSA

bind
Nicofuranose -957.84 -68.56
Milvexian -757.69 -67.04
Aminoquinuride -1371.98 -61.20
DB02498 -4094.25 -60.92
DB01690 -3706.87 -60.41
Acteoside -1490.07 -60.30
DB02629 -1319.10 -59.77
Plazomicin -2155.52 -58.85
Diquafosol -3761.54 -53.81
Acarbose -2139.54 -53.51
DB01763 -3657.78 -51.88
a Generic names are given when available

that. A contrasting picture is provided by our enhanced sampling
scheme. As depicted in Table 1, METADOCK–MMGBSA locates
nicofuranose, a niacin derivative used as a hypolipidemic agent,
at the first place with a binding energy of !GMMGBSA

bind = ↓68.56
kcal mol↓1, which is the largest predicted interaction by our com-
putational protocol. Until know, neither of these two molecules
has been proposed as insecticide. Interestingly, the first placed
molecules in these two lists do not appear in their counterpart.
Diving into the lists (i.e., less negative MMGBSA values), the first
match is reached with plazomicin that ranks fifth in the standard
workflow (!GMMGBSA

bind ↓ 49.59 kcal mol↓1) vs. eight at the en-
hanced sampling (!GMMGBSA

bind ↓ 58.85 kcal mol↓1). A close in-
spection of Table 1 shows that plazomicin also exhibits a sig-
nificant negative values in both Glide (↓11.30 kcal mol↓1) and
METADOCK 2.0 (↓2155.52) scales. This compound (originally la-
belled as ACHN-490) is a next-generation aminoglycoside deriva-
tive with a potent clinical antibiotic activity.53 It has been ap-
proved by the Food and Drug Administration (FDA) in 2018 for
the treatment of infections caused by the multidrug-resistant En-
terobacteriaceae. 54 It is remarkable that one of the associated side
effects associated to aminoglycoside antibiotics is neuromuscular
blockade. That undesirable effect is due to the interaction with
channel proteins. Aminoglycosides might act as pore blockers at
some voltage-dependent channels, including Ca2+ and K+ chan-
nels.55 As demonstrated by Wright and co-workers,56 aminogly-
cosides are also able to inhibit sodium channels in in vivo rat mod-
els. That earlier evidence further support our discover, and con-
solidate plazomicin as a novel-promising NavPaS blocking. One
might also note a second match, e.g., acarbose, which is associ-
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ated to less negative binding energies though still present in both
lists at tenth position.

Unfortunately, the top candidate in the enhanced sampling
(nicofuranose) and in the consensus ranking (plazomicin) are ei-
ther commercially unavailable or associated to prohibitive prices
for developing industrial insecticide applications. Consequently,
we decided to expand our search by moving down in the ranked
list. As noted above, METADOCK–MMGBSA detected several
compounds with larger binding energy “in-channel” (threshold of
↓60 kcal mol↓1). As for Glide–MMGBSA is concerned, more mod-
erate values are observed. Consequently, we expand our search in
the for the standard workflow by imposing the energetic window
of pyrethroids (ca. ↓48/↓35 kcal mol↓1, see Target Validation).
All compounds that satisfied these inclusion criteria are listed in
Table 1. A systematic search was conducted in commercial ven-
dors to identity purchasable candidates, which passed to the final
in vivo testing stage.

3.3 In vivo testing

Computational predictions were confirmed by assessing the bi-
ological of the commercially available candidates, e.g., migli-
tol, acarbose, netilmicin sulfate, capivasertib and dihydrostrep-
tomycin. Prallethrin as a control pyrethroid (with purity higher
than 98%). Table 2 shows test solutions (TS) for topical applica-
tion on cockroaches. TS are divided into three groups: (1) solu-
tions to evaluate the insecticidal capability of candidate molecules
(TSxI), which are composed of 3% of these molecules diluted in
a suitable solvent; (2) solutions to evaluate the synergistic capa-
bility of candidate molecules (TSxS) when applied in solution to-
gether with a pyrethroid; and (3) control solutions (TSxC) which
does not include candidate molecules in the solution to evaluate
the starting point.

For the sake of validation, the solvent with the highest chemical
affinity has been selected for each candidate molecule to achieve
the desired concentration. These solvents were previously tested
for toxicity by applying topically to the cockroaches a solution
consisting of 100% of each solvent. All these tests were nega-
tive. Secondly, TSxS-based solutions also include prallethrin at
0.05% concentration. This dose has been experimentally set as
the minimum lethal dose in the target insect that allows us to
evaluate the synergistic effect. Prallethrin is a pyrethroid widely
used in commercial cockroach insecticides, as it is low cost and
offers an optimal dose/response ratio. Finally, three control solu-
tions (i.e., TSxC) are also designed by combining solvents (DMF,
DMSO and Water) and 0.05% prallethrin. In the case of the TS3S
solution, several emulsifiers have been used (TWEEN 20, EMUL-
SOGEN TS100, CALSOGEN 4814, SABOWAX EL-H-40) that allow
the netilmicin sulfate molecule to be solubilized in water. Table
2 also lists the received dose (in mg), which corresponds to an
application of 5 µl per insect as noted in Section 3.3.

Our first attempt was conducted with drugs in absence of any
other molecule (see TSxI formulations in Table 2). Only migli-
tol leads to a positive but moderate result with 2 out of 6 cock-
roaches died after 24 hours (33% 24-hour mortality). In addi-
tion, none of them died during first 60 minutes. Such low-ratio

(a)

(b)

(c)

Fig. 7 In vivo outcomes after the use of the selected test solutions (ID).
From top to bottom: (a) KD time in minutes (min) for the di!erent
mixtures under study; (b) percentage of the total cockroach population
that have flipped over after 60 minutes; (c) Percentage of the total
cockroach population that have been died after 24 hours.

of efficiency is not compatible with real commercial applications.
Therefore, we can rule out the insecticidal effect of the isolated
compounds, which motivates the evaluation of possible synergis-
tic effects (TSxS solutions listed in Table 2).

Figure 7 summarizes these in vivo metrics. Top panel (chart a)
displays the KD time (in minutes) of these solutions. As shown,
the miglitol-based solution (TS1S) outperforms all other formula-
tions. All cockroaches are flipped in less than five minutes. This
is one of our most remarkable findings: miglitol speeds knock-
out up by a factor of 12X compared to controls. The second
best-ranked solution corresponds to acarbose (TS2S), with a KD
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Table 2 Composition of test solutions designed to to assess insecticide e"ciency (TSxI), synergistic e!ects (TSxS) and control (TSxC) in cockroaches
models

.

ID Molecule Molecule (%-mg) Pyrethroid Pyrethroid (%-mg) Solvent Solvent (%-mg)
TS1I Miglitol 3.00-0.143 – – DMF 97.00-4.626
TS1S Miglitol 3.00-0.143 Prallethrin 0.05-0.0024 DMF 96.95-4.626
TS2I Acarbose 3.00-0.144 – – DMF 97.00-4.639
TS2S Acarbose 3.00-0.144 Prallethrin 0.05-0.0024 DMF 96.95-4.639

TS3I Netilmicin sulfate 3.00-0.148 – –

WATER
TWEEN 20

EMULSOGEN TS100
CALSOGEN 4814

SABOWAX EL-H-40

92.00-4.534
1.80-0.090
0.80-0.040
0.80-0.040
1.80-0.090

TS3S Netilmicin sulfate 3.00-0.148 Prallethrin 0.05-0.0025

WATER
TWEEN 20

EMULSOGEN TS100
CALSOGEN 4814

SABOWAX EL-H-40

91.95-4.534
1.80-0.090
0.80-0.040
0.80-0.040
1.80-0.090

TS4I Capivasertib 3.00-0.166 – – DMSO 97.00-5.367
TS4S Capivasertib 3.00-0.166 Prallethrin 0.05-0.0028 DMSO 96.95-5.367
TS5I Dihydrostreptomycin 3.00-0.167 – – DMSO 97.00-5.406
TS5S Dihydrostreptomycin 3.00-0.167 Prallethrin 0.05-0.0028 DMSO 96.95-5.406
TS2&1C – – Prallethrin 0.05-0.0024 DMF 99.95-4.718

TS3C – – Prallethrin 0.05-0.0025

WATER
TWEEN 20

EMULSOGEN TS100
CALSOGEN 4814

SABOWAX EL-H-40

94.95-4.761
1.80-0.090
0.80-0.040
0.80-0.040
1.80-0.090

TS5&4C – – Prallethrin 0.05-0.0028 DMSO 99.95-5.498

time of around 20 minutes. However, none o the other mixtures
(TS3S, TS4S, TS5S) leads to measurable synergistic effect when
combined with prallethrin. Figure 7 also plots the percentage of
the total population of cockroaches that have flipped over after 60
minutes (chart b) and the mortality after 24 hours (chart c) from
the application. These metrics might differ as the insects may ini-
tially be affected due to the nerve impulses caused by the action
of the test molecules, but a cockroach may recover shortly there-
after. Indeed, this outcome is reflected Figure 7 (charts b and c)
where the percentage of mortality is reduced from 60 minutes to
24 hours in TS3S and TS3C solutions. That limitation is not ob-
served neither in TS1S nor TS2S: the 100% of flip is retained at
both 60 minutes and 24 hours. All accumulated results reveal the
potential use of acarbose and, especially, miglitol as a synergistic
for insecticides.

4 Conclusions

The present contribution deals with the use of molecular and ex-
perimental models to search for new inhibitor of voltage-gated
sodium channel from the American cockroach Periplaneta amer-
icana (NavPaS). Our main goal is to enhance current insecticide
formulations. A systematic virtual screening (VS) of the Drug
Bank (DB) database is presented through two levels of theory
(Glide and METADOCK 2.0). The resulting list of compounds was
further refined with MMGBSA rescoring to generate a ranked list
of chemical based on to their ability to reach and block the core
pore.

There is one critical parameter that was not directly included

in our molecular models: commercial availability. If real indus-
trial applications are sought, the proposed insecticide must be
accessible at a low cost. Among all selected hits, 5 compounds
were purchasable. Miglitol, acarbose, netilmicin sulfate, capi-
vasertib and dihydrostreptomycin are available at a cost of less
$400 USD per 5 g, significantly cheaper than the reference pral-
lethrin, which is available with a cost of ca. $2000 USD per 5g.
All were tested in vivo with cockroach models and compared to
current prallethrin-based household insecticides. Our experimen-
tal results hint that miglitol is a potent synergistic for killing the
American cockroach. The performed in vivo assays demonstrated
that miglitol accelerates the knockdown by 12 times while simul-
taneously offering 100% mortality rate. Arcabose (one of the
candidates that appears in both computational schemes) has also
shown very promising results, reducing the knockdown time by
2X factor and also showing 100% mortality rate.

Of course, we do not claim to have performed here a complete
search of all other targets in the insecticide activity observed for
miglitol and acarbose. Indeed, both molecules are !-glucosidase
inhibitors used for antidiabetic drugs.57 Consequently, more ex-
tended computational and in vivo assays must be performed by
including additional model systems and/or other pyrethroid com-
binations. The present contribution is a first step towards the dis-
cover of that new generation of broad-spectrum synergists.

List of abbreviations

VS: virtual screening; DB: drug bank; WHO: World Health Or-
ganisation; Nav: voltage-activated sodium channels; NavPaS:
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voltage-activated sodium channels from American cockroach;
VGSC: voltage-dependent sodium channel; KD: knockdown time;
PDB: protein data bank; TTX: tetrodotoxin; HTVS: high through-
put virtual screening; SP: standard precision; XP: extra preci-
sion; CPU: central processing unit; GPU: graphics processing unit;
GA: genetic algorithm; GS: greedy search algorithm; SS: scatter
search algorithm; MMGBSA: molecular mechanics/generalized
Born surface area method; SASA: solvent-accessible surface
area; CUDA: Compute Unified Device Architecture; FDA: Food
and Drug Administration; TS: test solutions; DMF: dimethylfor-
mamide, DMSO: dimethylsulfoxide.
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Workflow overview

In our contribution, we propose a Virtual Screening (VS) pipeline to find new chemical

compounds that inhibit the American cockroach NavPaS, and may eventually act as syn-

ergistic of current insecticides to improve their response and/or mortality, by screening the

Drug Bank (DB) database that contains ca 10000 compounds.

Our VS methodology uses two ligand-based VS procedures; the commercial Glide solu-

tion, one of the industry standard in VS investigations, and the recently developed META-

DOCK 2.0, which provides a blind docking search by scanning the whole target surface.

These energy interactions, obtained by Glide and METADOCK 2.0, are further refined by

using MMGBSA rescoring to provide homogeneous energy interaction figures. Best ranked

compounds are proposed for in vivo testing. This last step is determined by the availability

of the identified products and/or their economic viability. The main contributions of the

paper includes the following:

1. An in-depth VS procedure is proposed, combining two different ligand-based docking

approaches and curating their results by MMGBSA rescoring. METADOCK 2.0 has

higher throughput in terms of the number of conformations simulated; 0.74 milisec-

onds/pose (METADOCK 2.0) vs. 27.72 seconds/pose (Glide). Moreover, META-

DOCK 2.0 increases the interaction with the target by stabilizing the pose, offering

wider picture of the binding mode to target NavPaS.

2. The DB database is fully screened virtually for NavPaS inhibitors of the American

cockroach. Best-ranked compounds are listed with high energy interaction figures.

3. A positive control is established with the predominant compound in household insecti-

cides to eliminate cockroaches (i.e. pyrethroids) to determine the energetic interaction

threshold of the docking methods and also to validate our target (i.e. NavPaS).

4. Five compounds are tested with in vivo models, which lead to two novel synergistic

compounds that improve the activity of currently used insecticides.
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5. Our in vivo experimental results show that miglitol reduces the knockdown time by

a factor of up to 12 times, from 60 minutes to 5 minutes, showing 100% of mortality

rate.

METADOCK 2.0 is freely available on

https://Baldoimbernon@bitbucket.org/Baldoimbernon/metadock_2.git.

Computational Details

Table 1: The nineteen metaheuristic parameters used for METADOCK2.0.

Metaheuristic
Parameters

Description

6*ParamIni INEIni Number of initial ligand conformations.
IIEF lex The intensification of the flexibility in the improvement functions.
PEIIni Percentage of the best conformations that are improved in the function Initialize.
IIEIni The intensification of the improvement in the function Initialize.
PBEIni Percentage of best conformations to be included in the initial set for the next iterations.\end{tabular
PWEIni Percentage of worst conformations to be included in the initial set for the next iterations.

2*ParamSel PBESel Percentage of the best conformations to be selected for combination.
PWESel Percentage of the worst conformations to be selected for combination.

3*ParamCom PBBCom Percentage of best-best conformations to be combined.
PWWCom Percentage of worst-worst conformations to be combined.
PBWCom Percentage of best-worst conformations to be combined.

2*ParamMut PMUCom Percentage of best conformations of the combination to be muted.
IMUCom The intensification of the mutation of elements generated by combination.

2*ParamImp PEIImp Percentage of best conformations of the combination to be improved.
IIEImp The intensification of the improvement of elements generated by combination.

ParamInc PBEInc Percentage of best conformations to be included in the reference set.
2*ParamEnd NIREnd Maximum number of steps without improvement.

MNIEnd Maximum number of iterations with or without improvement.
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Table 2: Parameter setting selected by HYPERDOCK with which the METADOCK exper-
iments have been developed.

INEIni 300 Number of initial ligand conformations.
IIEFlex 20 The intensification of the flexibility in the improvement functions.
PEIIni 100 Percentage of the best conformations that are improved in the function Initialize.
IIEIni 200 The intensification of the improvement in the function Initialize.
PBEIni 100 Percentage of best conformations to be included in the initial set for the next iterations.
PWEIni 0 Percentage of worst conformations to be included in the initial set for the next iterations.
PBESel 50 Percentage of the best conformations to be selected for combination.
PWESel 50 Percentage of the worst conformations to be selected for combination.
PBBCom 50 Percentage of best-best conformations to be combined.
PWWCom 20 Percentage of worst-worst conformations to be combined.
PBWCom 10 Percentage of best-worst conformations to be combined.
PMUCom 20 Percentage of best conformations of the combination to be muted.
IMUCom 10 The intensification of the mutation of elements generated by combination.
PEIImp 50 Percentage of best conformations of the combination to be improved.
IIEImp 100 The intensification of the improvement of elements generated by combination.
PBEInc 50 Percentage of best conformations to be included in the reference set.
NIREnd 3 Maximum number of steps without improvement.
MNIEnd 3 Maximum number of iterations with or without improvement.
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Table 3: Main active ingredients, solvents and emulsifiers used for in vivo testing

CAS number Materials Supplier
72432-03-2 Miglitol Target Molecule Corp.
56180-94-0 Acarbose Glentham Life Sciences Ltd
56391-57-2 Netilmicin sulfate Glentham Life Sciences Ltd
1143532-39-1 Capivasertib Target Molecule Corp.
128-46-1 Dihydrostreptomycin Carbosynth Ltd
23031-36-9 Prallethrin Endura S.p.A.
7732-18-5 Water –
68-12-2 Dimethylformamide (DMF) Fluorochem
67-68-5 Dimethyl sulfoxide (DMSO) TCI EUROPE N.V
– Tween 20 Croda Iberica SA
70559-25-0 Emulsogen TS100 Clariant Produkte (Deutschland) GmbH
– Calsogen 4814 Clariant Produkte (Deutschland) GmbH
61788-85-0 Sabowax EL-H 40 SABO SpA
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