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Abstract
On the basis of the generalized Poisson–Boltzmann equation derived from the Bogolyubov chain
of equations for the equilibrium distribution functions in the pair correlation approximation, a
general expression is proposed for the Helmholtz free energy of a system that contains any number
of components and whose particles interact via arbitrary potentials. This opens up an
extraordinary opportunity to simultaneously treat a whole range of physical effects including
partial ionization, quantum effects of diffraction and electron degeneracy, short- and long-range
interactions of charged particles with neutrals, finite size effects, etc. It is shown that all medium
constituents are tied together in a single screening matrix, whose determinant and trace determine
the excess contribution to the free energy. The approach developed is then applied to the problem
of the ionization potential depression (IPD) leading to quite simple analytical expressions, which
turn out to be useful for various practical purposes. In particular, for a single ionization from the
neutral state the IPD is shown to significantly depend on the ionization degree such that it consists
of the difference of charged and neutral contributions for a fully ionized plasma and turns non-zero
for an almost neutral medium. On the other hand, for a multiple ionization process finite size
effects of atoms and ions are demonstrated to be of great importance and accounted for in order to
achieve good agreement with experimental data on the IPD under warm dense matter conditions.

Nowadays, it is well understood that one of the frontiers of modern plasma theory is to consistently describe
warm dense matter (WDM) states [1] appearing in inertial confinement fusion researches [2, 3], shock
compression experiments [4, 5], pulsed-power optical and free electron laser irradiation facilities [6, 7],
planetary interiors and dense cold stars such as brown and white dwarfs [8–10]. As is common for any
branch of the contemporary physics, there exists a whole range of ab initiomodeling techniques, such as the
path integral quantumMonte–Carlo method [11, 12], the density functional theory [13, 14] and the
Thomas–Fermi molecular dynamics method [15], that provide quite an adequate insight into the processes
taking place in WDM, thereby urging a further theoretical systematization of the experimental and
simulation data already available.

The physical properties of thus omnipresent WDM are determined by numerous phenomena, which
include the interparticle correlations, partial ionization and degeneracy, quantum effects, substantial
occupation numbers of excited states of atoms and ions, etc. Exactly for this reason in general and the
absence of small parameters in particular, only a few theoretical approaches have been worked out to
accurately predict the static and dynamic properties of WDM under various external conditions [11, 16]. As
for the thermodynamic characteristics, the most justified approach is brought by the physical picture that
fundamentally treats the mixture of electrons and nuclei within the grand-canonical ensemble of quantum
statistics. However, its internal mathematical complexity usually results in the activity/fugacity expansions,
like in OPAL and ACTEX, that still imply additional approximations, such as diagrammatic techniques and
alike, to assure the applicability to a broader temperature-density domain and/or distinct materials. Note
that within the physical picture the occupation numbers for compound particles, such as atoms and
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molecules, remain unknown but are as yet needed to recover, e.g. the radiative opacities measured
experimentally [17, 18]. In contrast to the physical picture, chemical models assume that the bounded
species are all equal members of the system and the central role is played by the Helmholtz free energy, which
severely relies on the linear mixing for plasmas, atomic and molecular liquids rather than strict analysis of
interparticle correlations [19, 20]. A subsequent free energy minimization procedure provides the
corresponding occupation numbers together with the thermodynamic quantities, which are then widely used
for astrophysical applications. It is worthwhile mentioning that thus engaged chemical models are capable of
assuring quite a reasonable agreement with experimental results at a much lower computational cost.

Below, we deal with a medium of arbitrary composition with unspecified interparticle interaction
potentials and the whole consideration is aimed at developing a generalized chemical model that goes far
beyond the linear mixing rule by accurate derivation of the Helmholtz free energy. It is firmly based on the
precise handling of microscopic correlations between all matter components and, eventually, the key position
is occupied by the macroscopic potentials taking into account collective events in the medium. It is
anticipated that this will pave a new way for the investigation of not only the ionization balance and the
thermodynamic quantities, but for the study of the transport coefficients as well.

The system of interest in the following is confined in a volume V and contains an arbitrary number s of
particle species that are then denoted by the subscripts a,b, c, . . ., thereby taking the consecutive natural
numbers from 1 to s. All medium components are assumed to be in thermal equilibrium specified by some
temperature T and each component, say a, is characterized by the particle number density na, its individual
massma and electric charge ea, if applicable. Notice that even different excited states of the same sort of
particles can be regarded as distinct entities.

Because of high density/pressure and rather low temperature, a distinctive feature of WDM is rather
strong interactions between all plasma components and for the purpose of systematic treatment of
interparticle correlations, we employ the following generalized Poisson–Boltzmann equation [21, 22]:

∆iΦ ab(r
a
i ,r

b
j ) = ∆iφ ab(r

a
i ,r

b
j )−βnc

ˆ
∆iφ ac(r

a
i ,r

c
k)Φ cb(r

b
j ,r

c
k)dr

c
k, (1)

which distinguishes between the true microscopic interaction potential φ ab(rai ,r
b
j ) and its macroscopic

counterpart Φ ab(rai ,r
b
j ), accounting for the collective events in the medium. Here rai denotes the radius vector

of the ith particle with∆i being the corresponding Laplace operator; β = (kBT)−1 stands for the inverse
temperature in energy units with kB beeing the Boltzmann constant. Note that the Einstein notation is
implied right above and everywhere below stating that the summation has to be performed over the repeated
indexes of particle species.

It should be instantly stressed that the generalized Poisson–Boltzmann equation is originally rooted in
the renormalization procedure for interparticle interactions in the medium, which is completely valid in the
framework of the pair correlation approximation of the Bogolyubov chain of equations for equilibrium
distribution functions. It is important that the above defined macroscopic potentials strictly coincide both
with the potential of mean force and the average pair potential [23].

By means of the Fourier transformation the set of governing equation (1) immediately takes the linear
algebraic form and its solution for the Fourier transform of the macroscopic potential Φ̃ab(k) can be suitably
written via the Fourier transform of the microscopic potential φ̃ab(k) in the following tensor form:

Φ̃ab(k) = φ̃ac(k)ε
−1
cb (k), (2)

where

εab(k) = δab +βnaφ̃ab(k) (3)

is then called the screening tensor and δab denotes the Kronecker delta.
Being defined in the space of particle species, the screening tensor εab(k) turns fairly crucial for the

present consideration and is neatly written in the matrix from as follows:

εab(k) =


1+βn1φ̃11(k) βn1φ̃12(k) . . . βn1φ̃1s(k)

βn2φ̃12(k) 1+βn2φ̃22(k) . . . βn2φ̃2s(k)
...

...
. . .

...
βnsφ̃1s(k) βnsφ̃2s(k) . . . 1+βnsφ̃ss(k)

 . (4)

It is rather timely to make a few remarks concerning the structure of the master relations (2) and (3).
First of all, the whole method described herein substantially relies on the existence of the Fourier transforms
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of the microscopic potentials, which is not the case, for example, for hard core or Lennard–Jones types of
potentials. Secondly, provided that the microscopic potential is a symmetric tensor with respect to the
particle species permutation due to Newton’s third law, φ ab(rai ,r

b
j ) = φ ba(rbj ,r

a
i ), the same holds for the

macroscopic potential, Φ ab(rai ,r
b
j ) = Φ ba(rbj ,r

a
i ). And, most importantly for the following, the Fourier

transform of the macroscopic potential is a pure rational function of β, whose order in β is exactly equal to
the number s of the particle species in the system.

To proceed with the generalized chemical model, the Helmholtz free energy of a system of interacting
particles, Ftot, is conventionally represented as a sum of the ideal, Fid, and excess, Fex, parts, viz.
Ftot = Fid + Fex. The ideal part of the Helmholtz free energy rigorously obeys the linear mixing rule so that it
consists of independent contributions from all system components, i.e.

βFid
V

= na

[
ln

(
naλ3

a

σa

)
− 1

]
, (5)

where λa = (2πℏ2/makBT)1/2 refers to the thermal de Broglie wavelength with ℏ being the reduced Planck
constant and σa denotes either the internal partition function or the corresponding spin factor as it is
required by the statistical physics. In particular, both free electrons and protons, being elementary particles,
have the spin factor of 2, whereas for the composite particles a summation has to be performed over the
energy spectrum of bounded states. Note that for the electron subsystem, the partial degeneracy effects can
also be taken into account via the simple ideal Fermi gas relations [24].

On the other hand, the excess part, Fex, of the Helmholtz free energy compromises the linear mixing rule
and is finally yielded by the self-consistent chemical model as follows: [25, 26]

βFex
V

=
β

2
nanbφ̃ab(0)−

1

16π 3

ˆ
dk

ˆ
dββnanbφ̃ ab(k)Φ̃ ab(k). (6)

The excess part of the Helmholtz free energy formally contains an integral over the system inverse
temperature β, which literally requires for the direct knowledge of the correlation functions behavior across
the coupling regimes. The same formally holds for expression (6), however, the corresponding obstacle is
hidden in the macroscopic potential Φ̃ ab(k), which, as is mentioned above, is a rational function of β. Of
course, for an arbitrary number of particle species the integration in (6) is significantly cumbersome to
perform analytically but, nevertheless, the final expression for the excess part of the Helmholtz free energy
can be demonstrated to have the following form

βFex
V

=
β

2
nanbφ̃ab(0)+

1

16π 3

ˆ
dk [ln(detεab(k))− tr (εab(k)− δab)] , (7)

whose validity can be simply proved using the relations (2) and (3) by differentiating the second term over β.
Formula (7) shows beyond doubt that the free energy is readily expressed via the determinant and the

trace of the screening tensor (4), which explicitly depends on the number densities and the microscopic
interaction potentials of all particle species. Thus, it is inferred that the excess part of the free energy cannot
be decomposed into independent contributions from the medium components that are all tied together by
the same screening tensor εab(k). Nevertheless, the linear mixing rule can still be recovered if either the
original physical system can be divided into non-interacting subsystems or if the off-diagonal contributions
to the tensor determinant can be estimated to be numerically irrelevant.

It is also worth emphasizing that formula (7) for the free energy is extremely advantageous from the
viewpoint of practical numerical calculations because the integration over the inverse temperature has been
fully performed. Despite the fact that both expressions (6) and (7) have been formally obtained under
assumption that the microscopic potentials are all temperature independent, it is as yet straightforward to
demonstrate that formula (7) holds for the most general case of temperature dependent microscopic
potentials, which turns rather important for quasi-classical treatment of quantum-mechanical effects of
diffraction and symmetry.

As a matter of fact, the general outlook to be advocated is that the excess part of the free energy (7) can be
applied to a vast variety of systems with a rather fruitful idea in mind of including all essential physics into
the microscopic potentials. To demonstrate how the current method works in practice to achieve quite visual
analytical results, we choose the long-standing problem of the ionization potential depression (IPD), which
is the phenomenon that less amount of energy is needed for bounded electrons in atoms or ions to be
liberated into the plasma continuum rather than into the vacuum. In the past decade significant progress has
been made in the experimental determination of the IPD with the further focus on comparison with two
available analytical expressions [27, 28]. The first of the analytical approaches was put forward by Ecker and
Kröll (EK) [29] in an attempt to generalize the Saha equation with regard to the plasma chemical potential,
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whereas the second one was developed by Stewart and Pyatt (SP) [30] to virtually interpolate between the
Debye–Hückel (DH) and the ion-shpere limits. In spite of the increased experimental resolution in
measuring the IPD, neither one of the above mentioned analytical expressions has been unambiguously
corroborated. Indeed, on the one hand, data on the spectral line disappearance seem to support the SP
model [31], but, on the other hand, experiments with the K-shell ionization in aluminium are in a position
to validate the EK formula [32], whereas the results of x-ray scattering measurements on imploding CH
spheres [33] do not look to favor any of the two analytical expressions. Such an unsatisfactory situation
resulted in a whole flow of simulations and numerical calculations to account for various physical effects,
which include the Hartree–Fock–Slater model [34], the density functional theory [35, 36], the grand
canonical Monte Carlo simulation [37], the quantum statistical approximation for ionic dynamical
correlations [38], the atomic-solid-plasma model for single and multiple core hole states [39], the
in-medium Schrödinger equation for incorporating the electron Pauli blocking and degeneracy [40], etc.

The above brief overview instantaneously reveals that the discrepancy between available experimental
data and theoretical predictions on the IPD is primarily prescribed to that both the EK and SP relations are
solely designed to classically treat the charged particle correlations in the plasma medium, completely
ignoring other important contributions. Below we propose more general analytical formulas for the IPD that
are, to some extent, capable of incorporating a whole range of physical phenomena. They are to be firmly
based on expression (7) for the Helmholtz free energy, whose subsequent minimization is to provide the
exact medium composition under appropriate external constraints.

To begin with, we take a widely spread physical system at thermal equilibrium that consists of three
particle species, i.e. free electrons, singly ionized ions and neutral atoms at the ground state denoted by the
subscripts 1,2 and 3, respectively. By fixing the total number density n= n2 + n3 of heavy particles, defining
the ionization degree via α= n2/n and assuming the system quasineutrality, the Helmholtz free energy
minimization yields the following generalized Saha equation

α2

1−α
=

λ3
3σ1σ2

nλ3
1λ

3
2σ3 exp(βI(α))

, (8)

where the IPD I(α) is found as

I(α) =
1

nV

∂Fex
∂α

(9)

with σ1,σ2,σ3 being the appropriate internal partition functions and λ1,λ2,λ3 denoting the corresponding
thermal de Broglie wavelengths.

The IPD (9) together with the excess part of the free energy (7) renders the calculation scheme quite
effective to take into account various physical effects. The first instantaneous inference to be made is that the
IPD (9) strongly depends on the ionization degree α and, at the same time, naturally embraces the neutral
component, which is neglected both in the EK and SP approaches. In order to demonstrate the importance
of neutrals, let us first assume that the plasma is almost fully ionized with the ionization degree α≈ 1. Then
the IPD Ihigh for this regime of high ionization can be rewritten as the difference between the charged and
neutral contributions:

Ihigh = Ich − In, (10)

which are defined via simple integrals

Ich,n =
βn

4π2

ˆ ∞

0

Nch,n(k)

Dhigh(k)
k2dk (11)

with the following notations:

Nch(k) = φ̃11(k)
2 + φ̃22(k)

2 + 2φ̃12(k)
2

+βn(φ̃11(k)+ φ̃22(k))[φ̃11(k)φ̃22(k)− φ̃12(k)
2], (12)

Nn(k) = φ̃13(k)
2 + φ̃23(k)

2 −βn [2φ̃12(k)φ̃13(k)φ̃23(k)

−φ̃11(k)φ̃23(k)
2 − φ̃22(k)φ̃13(k)

2
]
, (13)

Dhigh(k) = 1+βn[φ̃11(k)+ φ̃22(k)]+β2n2[φ̃11(k)φ̃22(k)− φ̃12(k)
2]. (14)
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Figure 1. The IPD Ihigh in warm dense hydrogen as a function of the Coulomb coupling parameter Γ for the fixed value of rs = 5.
The green line represents the neutral contribution In; the red one corresponds to the charged contribution Ich; the blue line
provides the total IPD of Ihigh, while the black dashed line and the black dotted lines display the results obtained within the SP
model [30] and the EK model [29], respectively.

On the one hand analytical formulas (10)–(14) are both visual and helpful for evaluating the IPD in
various types of plasmas, which can be reasonably realized by a suitable choice of the microscopic potentials.
At the same time it is straightforward to demonstrate that for the pure Coulomb interaction potentials and
complete elimination of the neutral component, the EK relation for the IPD can be easily recovered, which in
this case coincides with the results of the DH theory.

From the theoretical point of view final formula (10) is rather expected beforehand since the IPD is
actually determined by the difference in the excess free energy before and after ionization process. From the
numerical perspective, however, it has still to be demonstrated that the neutral contribution really matters,
which is systematically performed below for warm dense hydrogen that is characterized by the Coulomb
coupling Γ = e2/akBT and the density rs = a/aB parameters, where e is the elementary charge,
a= (3/4πn)1/3 stands for the mean interparticle spacing, aB = ℏ2/mee2 andme denote the Bohr radius and
the electron mass. To treat the quantum diffraction effects in mutual interactions between free electrons and
protons, we choose the microscopic potentials in the form of the improved Kelbg potentials [41] with the
pure electronic part supplemented by the density-dependent symmetry effects as stated in [42]. As for the
interactions between the charged components and neutral hydrogen atoms, the corresponding microscopic
potentials are selected in the adiabatic dipole approximation to take into account both the short-range
ion-core and long-range polarization effects as suggested in [43]. In figure 1 the IPD Ihigh in a hydrogen
plasma is plotted in eV as a function of the coupling parameter in the range of Γ = 0.01÷ 0.40 at the fixed
value of the density parameter rs = 5 and in the same figure both the EK and SP analytical relations are
displayed as well. It can be shown that the quantum diffraction normally suppresses the IPD, but the
symmetry (degeneracy) effects are responsible for the opposite action to finally dominate in the charged
component contribution Ich depicted in figure 1 in red. It is also seen that the neutral component
contribution In, painted in green, cannot be utterly ignored since it reaches almost 10% of the ionization
potential (≈13.6 eV) of an isolated hydrogen atom. Additionally, it can be analytically demonstrated that the
contribution of neutrals is proportional to aB/rD as compared to the EK model with rD being the Debye
radius. Detailed numerical estimations show that the relative contribution of neutrals reaches approximately
0.5 percent when aB/rD approaches 0.22 or, consequently, it really matters in the range of Γ> r2s /125. Note
that the total IPD Ihigh reveals a more sophisticated behavior on the coupling parameter, exceeding both the
EK and SP predictions at very weak couplings and lying in between them at larger values of Γ.

To contrast the above considered case of high ionization with α≈ 1, we now turn to the situation, in
which the hydrogen medium remains almost neutral. On putting α≈ 0 into the general expressions (9)
and (7), the IPD Ilow for this low ionization state is ultimately obtained in the following form

Ilow = nφ̃33(0)+
βn

4π2

ˆ ∞

0

Nlow(k)

Dlow(k)
k2dk, (15)

with the notation

Nlow(k) = φ̃13(k)
2 + φ̃23(k)

2 − φ̃33(k)
2, (16)

Dlow(k) = 1+βnφ̃33(k). (17)
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Figure 2. The IPD Ilow in warm dense hydrogen as a function of the Coulomb coupling parameter Γ. The green, red, and blue
lines correspond, respectively, to rs = 15, rs = 10, and rs = 5.

We therefore predict in equation (15) the existence of the IPD even for a practically neutral environment,
whose behavior is largely driven by the interaction between hydrogen atoms. To carry out numerical
estimates, presented graphically in figure 2 for the coupling parameter range Γ = 1.4÷ 2.6 at some fixed
values of the density parameter rs, the microscopic interaction potential of hydrogen atoms has been chosen
in the form of the Morse potential [44], which is quite proper for the description of the pressure dissociation
of hydrogen molecules. Figure 2 clearly confirms that the IPD grows when the number density of atoms
increases and reaches rather substantial magnitudes in comparison with the ionization potential of an
isolated hydrogen atom. Note that the specified region of the plasma thermodynamic parameters has been
used to assure that the ionization degree stays low and, at the same time, the formation of hydrogen
molecules is effectively tackled. It is worth stressing that in figure 2 direct comparison with the EK and SP
predictions seems meaningless since they both formally turn zero because the number densities of charged
particles virtually vanish.

Hence, it is inevitably concluded from the two limiting cases considered above that for the warm dense
plasma domain the neutral component cannot be neglected in the theoretical analysis when considering the
ionization of neutral atomic or molecular states. Note that the corresponding contributions are completely
absent in both the EK and SP approximations for the IPD.

With the purpose of comparison with available experimental data, an attention is centered on a
somewhat different setting when the WDM consists of free electrons and two sorts of positively charged ions
with the respective charge numbers Z and Z+ 1, correspondingly denoted in the following by the subscripts
1,2 and 3. Consequently, the focus is shifted to the multiple ionization process when an ion in the charge
state Z+ 1 is created by the ion in the charge state Z emitting a free electron. As in the above case of the
hydrogen plasma, the total number density n= n2 + n3 of heavy ions is presumed fixed, the ionization
degree is then defined via α= n2/n together with assuming the system local quasi-neutrality, such that the
IPD for the case of almost total ionization α≈ 1 is derived from expression (9) as

IZ,Z+1 =
βn

4π2

ˆ ∞

0

NZ,Z+1(k)

DZ,Z+1(k)
k2dk, (18)

where

NZ,Z+1(k) = φ̃23(k)
2 − φ̃22(k)

2 + φ̃12(k)
2 +Z[φ̃11(k)

2 − φ̃12(k)
2 + φ̃13(k)

2]

+βnZ
[
(φ̃22(k)− φ̃11(k))(φ̃12(k)

2 − φ̃11(k)φ̃22(k+ φ̃11(k)φ̃23(k)
2) )

+φ̃22(k)φ̃13(k)
2 − 2φ̃12(k)φ̃13(k)φ̃23(k)

]
, (19)

DZ,Z+1(k) = 1+βn[Zφ̃11(k)+ φ̃22(k)]+β2n2Z[φ̃11(k)φ̃22(k)− φ̃12(k)
2]. (20)

On the one hand, in the case of pure Coulomb interactions between the plasma constituents the DH
limiting form can be correctly restored from formulas (18)–(20). On the other hand, it can be easily
understood that in order to study the IPD, it is necessary to take into account the finite size of ions or of the
so-called ion-core effect. Indeed, the ionization energy of an isolated ion is roughly proportional to its charge
and inversely proportional to its size, whereas the IPD is determined by some characteristic distance, which
could be either the average interparticle distance or the Debye screening radius. For a positive experimental
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Figure 3. The IPD IZ,Z+1 in warm dense aluminium vs. the charged state Z at the mass density ρ= 2.7 g cm−3 and temperature

T= 200 eV. The green, red, and blue lines represent our results for d̃= 0.15, d̃= 0.08, and d̃= 0.01, respectively; the black
dashed, black dotted, and black solid lines stand for the results of the SP [30], and the DH and the modified EK [29] models,
respectively; the filled circles with error bars provide the experimental data of [32, 46].

detection, the IPD must be of the order of the ionization potential itself, which means that the size of the ions
must be comparable with the mean interparticle spacing or with the Debye screening length, i.e. the
dimensions of ions cannot be ignored when considering the surrounding plasma distribution. It is simple to
numerically verify that the above speculations are especially true for the WDM conditions, although, only
point-like particles are treated in both the EK and SP theoretical estimates, which is definitely one of the
possible sources of discrepancy when a straightforward comparison is undertaken with experimental data.

In order to embody the finite size of ions, a soft empty-core potential is employed in the following form
[45]: φab(r) = eaeb/r[1− exp(−r2/d2ab)], where ea,eb are the charges of interacting particles separated by
some distance r and dab refers to the cut-off distance. In particular, we assume that d11 = 0 for the interaction
between electrons, however, the quantum effects are still treated in the way it has been done above for the
hydrogen plasma to account for the diffraction effects and electron degeneracy. As for the interaction of
electrons with both sorts of ions, it is assumed, for the sake of simplicity, that in the interionic potentials
d12 = d13 = d, whereas d22 = d33 = d23 = 2d. Figure 3 depicts the numerical results for the IPD in the
aluminum plasma with the mass density ρ= 2.7 g cm−3 and temperature T= 200 eV. The finite size effects
are displayed for three particular values of the dimensionless size parameter d̃= δ/a normalized to the mean
interionic spacing a= (3/4πn)1/3. It is observed that the IPD drops when the dimensionless size parameter
grows and gradually covers the whole domain in between the DH and SP analytical expressions, also
reproduced in figure 3 together with the EK results. It is also seen that the experimental data of [32, 46] are
well fitted for the size parameter d̃= 0.08, which corresponds to d= 1.26 · 10−11m. In reality the ionic size
must vary with its charge number Z as well and, moreover, the IPD itself turns out to be rather sensitive to
the choice of the form of the interionic potential. Thus, figure 3 clearly demonstrates the importance of
handling the finite size of ions to smoothly describe the experimental data. Notice that, as evidenced by the
present numerical estimations, the quantum effects of diffraction and symmetry play an important role for
rather high Z values, reaching almost 10eV, which is twice as large as the experimental error.

Finally, it is possible to conclude that the generalized chemical model developed herein seems to be
suitable for the description of various physical systems since it is capable of simultaneous accounting for
various effects such as the partial ionization, the electron degeneracy, the quantum diffraction, the short-
and long-range interaction of neutrals as well as the formation of molecules. In addition, the present
approach can be easily extended to study not only the IPD but the thermodynamic and transport properties,
which is to be implemented elsewhere in due course.
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