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1 Introduction 

1.1 Motivation 

Automated Driving (AD) has become a very popular technology in recent years. Different 

companies are actively developing this technology by making large investments in the sector; 

potential to improve safety and efficiency is also part of the actual research [1]. For example, in 

Europe, Easymile works to achieve sustainable public transport by using automated minibuses 

[2]. In America, Waymo develops this technology to avoid injuries and fatalities in the road as 

well as to improve mobility [3]. 

 However, technology is only sometimes perfect; this means that AD will sometimes fail, and a 

solution is needed. Sinha et al. [4] summarized some of the accidents that occurred in San 

Francisco between 2014 and 2019 for the future deployment of the vehicles. The statistics on 

the type of accident are shown in Figure 1. Crash rate report [4]. This thesis aims to move forward 

to achieve that objective. 

The most important condition to safe driving is perfectly perceiving and interpreting the vehicle's 

surroundings and the rest of the traffic. Being able to plan and control the situation according to 

them is crucial for that objective [5]. For that reason, for an operator controlling the vehicle from 

an external room, perfectly understanding the environment is even more crucial. It is essential 

to notice that the operator will typically intervene when the AD fails, which means that the 

situation the controller will be in may be a potential hazard and not easy to solve. Therefore, 

providing the operator with precise and comprehensive information is necessary to control such 

scenarios effectively. 

Fully autonomous driving vehicles are already driving in the streets. In California, the legislation 

allows driverless taxis and typical vehicles to share the roads, as can be seen in Figure 2. Waymo 

Figure 1. Crash rate report [4]. 
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driverless taxi in the streets of San Francisco [3]. Therefore, this thesis is a good opportunity to 

explore and initialize in AD and teleoperation. 

 

When an AD vehicle fails, a human teleoperator takes over control of the vehicle from a remote 

control center. For this assistance and for an effective intervention, the teleoperator must have 

good knowledge of the situation and the vehicle's surroundings to know how to act or what to do. 

This is called Situational Awareness (SA), and in the context of this thesis, it will mainly be 

achieved through live video stream sent by the Automated Vehicle (AV). 

1.2 Research purpose 

While driving, lots of different scenarios and events can occur. Therefore, it is crucial to identify 

the SA and the environment of the roads at the moment when the teleoperation is happening so 

that every important factor is communicated to the operator. Also, some things can be displayed 

differently in the teleoperation station than in reality. That could happen due to data loss during 

the video transmission, among other problems. 

Live video stream is a critical source of real time information that allows teleoperators to stay 

informed during critical moments of intervention [6]. To ensure the safety and efficacy of the AV, 

video quality is essential to improve the SA of the operator. Therefore, the improvement and 

development of SA for the teleoperator is helpful for the field of AD. 

During this thesis, multiple videos will be chosen to evaluate some important aspects of the SA 

and the environment of different driving situations. The evaluation will be done based on [7]. In 

this paper, many areas of the environment, divided into six layers of driving, are included. For 

the work, six videos were planned and filmed with the research vehicle EDGAR. Alternatively, if 

any video cannot be filmed due to weather conditions or problems, the simulator CARLA [8] can 

be used. 

The main objective of the thesis is to improve and analyze the SA of the remote teleoperator. 

For that reason, some questions open up: 

 Can the SA of a teleoperator be measured? 

Figure 2. Waymo driverless taxi in the streets of San Francisco [3]. 
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 How can the SA be measured? 

Many options for this might be possible. SA is an abstract thing that cannot be directly evaluated 

from zero to ten. The SA of a scenario not only depends on the scenario but also on the driver 

or, in this case, the teleoperator. Experience, confidence and ability are some factors that 

influence the environment perception. Also, people do not perceive danger in the same way, 

which is also essential to SA assessment. 

 How can video quality be evaluated? 

Many people think that resolution is equal to quality, but that is not true. The quality of a video is 

the result from the evaluation of multiple factors. For that reason, the existence of Video Quality 

Metrics (VQMs) is beneficial for this quality assessment. The different VQMs do not work all the 

same and do not focus on the same aspect of video quality. A deeper explanation of VQMs will 

be done in the next chapters. 

This work will focus on estimating the SA by correlating it with the quality of the live video stream. 

Figure 3. Research methodology of the thesis depicts the methodology followed to achieve the 

objectives.  

 

On one hand, the idea is to see if the perceived video quality is related to environment perception. 

SA evaluation is possible through subjective questionnaires and concrete observations. Also, 

some formal and detailed questions are essential to determine the environment's 

comprehension. For example, distance or time reactions can be useful in analyzing that 

perception. 

On the other hand, video quality can be easily evaluated as it is data and can be processed. The 

actual state of the art provides different VQMs that are able to evaluate a source video frame by 

frame. Determining what VQM is suitable for this analysis is also part of this work. 

Figure 3. Research methodology of the thesis. 
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1.3 Structure of the thesis 

logical order of arguments is presented as part of the objective to achieve the thesis goals. In 

Chapter 2, the most important definitions and the state of the art development are done. In the 

end, the research gap of the thesis is explained according to the previous documentation. 

Chapter 3 introduces the methodology that will be followed in the thesis. The discussion and 

election of six different video samples according to the current state of the art and SA definition 

is explained in this section. In this chapter, some VQMs are selected for later implementation in 

different environments. A subjective study will be developed, and that includes the creation of an 

online survey. The justification for the survey questions will be discussed in this chapter as well. 

The execution of the VQMs, the online survey, and the data process management method are 

also included.  

The results obtained in the study and with the VQM assessment are displayed in Chapter 4. The 

analysis of this data is a great part of the chapter as it allows to achieve conclusions in the 

following chapters. Graphics and tables are part of the statistical results obtained in this part. 

Chapter 5 is responsible for the discussion of the results previously obtained. Conclusive and 

consolidated statistical results will be shown to explain how good the objectives of the thesis 

were achieved. In the last section, chapter 6, the summary of the work is done, and conclusions 

are obtained. An overview of the work is also done.
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2 State of the art 

This section describes the state of the art in the relevant areas for automated driving. It includes 

the definition of teleoperation for AD and some teleoperation models, as well as the definition of 

SA and the suggested ways of evaluating it. On the other hand, some relevant qualities of human 

vision for the work are explained, and the current state of the art of the most important VQMs 

and some derivates are summarized. Also, the correlation between SA and VQMs is studied. 

2.1 Teleoperation for automated driving 

As AVs remain under continuous development, there are still multiple situations that cannot be 

solved by the vehicle itself. So-called disengagements, however, must be studied to maintain 

the potential of the business. There are two types of disengagements: failure detection and 

safety operations. Sinha et al. [9] classified and studied multiple AD disengagements from 

different companies and concluded that failure detection ones were more present with lower 

cumulative miles. Even though the author stated that previous studies are premature and 

cumulative disengagement studies in relation to cumulative miles are likely to be unreliable. A 

potential fallback solution to continue the vehicle operation is teleoperation [10]. 

 Teleoperation has the potential to substitute certain tasks of the automation by a human. It is 

important to note that human and machines are good in complementary tasks. Humans thrive in 

cognitive tasks, which include situational analysis, decision making, and planning, due to their 

capability of coping, and this makes them valuable. On the other hand, machines can be more 

precise and have shorter reaction time [11]. This is further depicted in Figure 4. 

Figure 4. Relevant skills between humans and 

machines according to [10]. 
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To replace different subsets of the automated driving software, multiple teleoperations are 

presented in the literature [12–14]. The further work will focus on six concepts described in [10]. 

Direct control 

Direct control is the most fundamental teleoperation concept (Figure 5. Conceptual description 

of direct control concept according to [1].). It replaces the entire automated system and requires 

the vehicle to obtain and collect information of the surroundings to execute basic control 

commands [15]. 

In direct control setup, the input data are video streams from the vehicle. These are collected 

with cameras on the vehicle and sent to the operator through a private network. This requires 

compression of the images, and sound stimulus can also be sent from the vehicle. 

Schimpe et al. [6] proposed a software for carrying out various teleoperation concepts research. 

In the study, direct control was included as one of the control modes and explained how primary 

controls are directly transmitted to the vehicle. 

Based on the video stream and other information proportioned by the vehicle, the operator 

controls the vehicle with commands similar to manual driving inside a vehicle. This includes 

steering wheel angle, throttle pressure, brake pressure, revolution management, and many other 

commands. Also, sound stimulus can be used. Then, all these commands are transmitted to the 

vehicle and executed [10]. 

Different studies have been conducted in relation to direct control. For example, [16] provided 

an open source framework for teleoperated driving. In the study, low-cost off-the-shelf 

components were used, and Robot Operating System (ROS) was the bridge to connect CARLA 

and the operator’s station. A flexible video streaming framework was also presented [17] and 

achieved promising results on bitrate handling and optimizing video resolution scaling factors. 

Shared control 

Direct control relies on the operator to safely drive the vehicle. Humans, however, can also make 

mistakes. To encounter this issue, shared control is proposed. This concept is based on the 

collaboration between humans and autonomous software to accomplish a task. The type of 

interaction, the task type, and the forms of user feedback are aspects that the software must 

take into account. Experience has shown that full autonomy still faces some problems under 

challenging tasks and that shared control improves performance by not relying entirely on 

humans, even though lots of reliability problems are yet to be solved [18, 19]. 

Figure 5. Conceptual description of direct control concept according to 

[1]. 
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Majstorović et al. [10] described shared control teleoperation as very similar to direct control in 

terms of command making. The main difference is that commands are accepted by the shared 

controller but not necessarily executed. The shared controller is responsible for determining the 

safety of the commands and deciding whether to execute them or intervene. In a critical situation, 

the shared controller may not consider the input commands safe and will reject them, overriding 

the control of the vehicle to avoid an accident [20]. 

Trajectory guidance 

As an alternative to direct and shared control, trajectory guidance is created. In this teleoperation 

control mode, the operator provides trajectory commands and a velocity profile. The operator 

must perceive the environment and plan the commands. The autonomous system makes only 

low-level control decisions. Such decisions include stabilization of the vehicle and acceleration, 

among others. Some experiments have proven that trajectory guidance is a good option for 

teleoperation, but they have encountered some problems. Trajectory guidance requires the 

operator to look several meters ahead, and this is sometimes only possible in predictable 

environments [10]. 

Video streaming latency can also be a major problem in this teleoperation mode. Gnatzig et al. 

explained the possibility of safe and reliable teleoperated system based on trajectory guidance. 

In the same paper, a teleoperation system was designed, including path management, lateral 

control, and longitudinal control as key elements to trajectory guidance teleoperation. The 

system included some safety features, for example, the vehicle was set to always stop at the 

end of the path. The results showed that the teleoperator needs to view several meters ahead, 

even with the path already being defined and this is possible in scenarios with few unpredictable 

events [11]. 

Waypoint guidance 

Waypoint guidance further reduces the responsibility of the operator compared to trajectory 

guidance. Via waypoint input from the operator inside a drivable area, the autonomous system 

is then responsible for planning a trajectory between these waypoints. This also includes setting 

a target velocity for the different trajectory sections by the vehicle and avoiding potential hazards 

along the trajectory. The vehicle takes over the same low-level control decisions from the 

trajectory guidance. Solely the decision making process remains at the human operator [10]. 

This concept is capable of functioning effectively in higher latencies. The operator's input is 

primarily based on the static environment surrounding the vehicle, and both latency and varying 

video quality do not present a safety concern during operation. In the event of obstacles within 

the driving path, the vehicle will come to a safe stop without the need for human intervention, 

which might result in time-inefficient stop-and-go driving behavior [10]. 

Interactive path planning 

In the context of interactive path planning, the operator bears the responsibility for decision-

making. The operator is presented with a variety of potential paths, generated by the automated 

software. It is crucial to note that the software does not propose trajectories that lead to collisions 

or otherwise fail to achieve the desired outcome. The majority of the developed methods can be 
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classified into two categories: heuristic search algorithms and numerical optimization 

approaches. The initial method prioritizes computational concerns and real-time control, 

whereas numerical optimization emphasizes dynamic behavior and trajectory performance [10, 

21]. 

This method avoids the stop-and-go driving behavior that appears on the last two teleoperation 

modes. It is possible because the machine provides the operator with different path options while 

driving, so the effect is avoided. Additionally, this method aims to present a limited yet sufficient 

number of path options to avoid overwhelming the driver and simplifying decision-making 

processes [21]. 

2.2 Situational awareness 

Driving is a difficult task that requires a high level of focus and attention. While driving, lots of 

stimuli are perceived, and the driver must be able to avoid them in order to drive safely. The act 

of texting while driving, whether it is sending or receiving of messages, can result in a potential 

threat on the road. These threats are closely associated with a reduction in the driver's perception 

of their surroundings [22]. 

Endsley defines Situational Awareness as "the perception of the elements in the environment 

within a volume of time and space, the comprehension of their meaning, and the projection of 

their status in the near future" on page 97 in [23]. Many things can affect the level of SA of a 

driver. For example, workload and stress can negatively affect conduction, but alternatively, 

training and experience can increase the level of focus and attention [23]. 

Fisher and Strayer [24] reached a model of the relation between SA and crash risk (Figure 6. 

Relationship between SPIDER processes, situational awareness and crash risk). This model is 

called SPIDER, and it includes Scanning, Predicting, Identifying, Deciding, and Executing 

appropriate Responses. In the same paper, they made a study where this relation was 

statistically analyzed. Even though many simplifications were done, they concluded that the 

probability of completing an action depends on the prior state's SA. They demonstrate a large 

relative crash risk increase with the interference of a secondary task in any SPIDER event. 

Endsley [23] developed the Situation Awareness Global Assessment Technique (SAGAT) to 

evaluate SA. In a proposed example study, the SA of multiple pilots was evaluated. SAGAT 

Figure 6. Relationship between SPIDER processes, situational 

awareness and crash risk according to [24]. 
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consisted in stopping in the middle of a simulation and asking SA questions. The questions 

depend on the environment surrounding, as more elements in the surroundings, more 

challenging the questions are. Various stops were done, and random questions were selected 

to allow statistical validity and consistency. SAGAT scores from multiple pilots are stratified into 

three types: immediate, intermediate, and long-range SA. The only inconvenience this method 

presented is the constant interruptions of the simulation. However, it could not be done during 

the simulation because it would interfere with environment perception. 

Uhrmeister conducted a study for automated driving using the SAGAT. For different scenarios, 

multiples questions were formulated. Such as, Information of other vehicles when the simulation 

stopped, the use of lighting by other vehicles or questions about participant opinion in accident 

avoidance [25]. 

SA as an overall depends on the awareness of multiple different objects and elements in the 

surrounding of the vehicle. Describing these elements is a complex task. Classifying and 

organizing the environmental factors that influence SA is needed to make a full description of 

the AV surroundings. 

Layer number Layer description Examples 

Layer 1 Road network and traffic guidance 

objects 

Roads, sidewalks, parking 

spaces 

Layer 2 Roadside structures Buildings, bridges, street 

illumination, publicity signs, 

nature 

Layer 3 Temporary modifications of Layer1 

and Layer 2 

Roadwork signs, emergency 

warnings, covered markings, 

auxiliar roads 

Layer 4 Dynamic objects Other vehicles (non moving as 

well), pedestrians, animals, 

moving objects 

Layer 5 Environmental conditions Precipitation, illumination, wind, 

pavement condition due to 

weather 

Layer 6 Digital information Changing traffic lights, 

information panels, switchable 

signs 

Table 1. Layer description of 6LM. 

Scholtes [7] describes the 6-Layer Model (6LM) for environmental evaluation. This model aims 

to formulate an environmental description independent from the system; for that reason, it should 

not contain any goals, values, or norms. A description of the layers from the 6LM will be done. 

Table 1 generally describes the different layers and Figure 7 shows a real example layer 

representation. 
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Layer one specifies where and how the driver should drive in the street, which means that this 

layer includes everything necessary for that to happen, excluding exceptional scenarios 

mentioned in other layers. This layer also includes traffic lights, driving signals, and everything 

related to pavement conditions or materials. In general, layer one describes the base of the road 

environment and makes its own driving possible in a normal driving scenario [7]. 

In layer two, everything that surrounds the road is included. It contains every static object that 

can be found not on the road. Layer two is the same as layer one but with the difference that 

layer two includes everything static not on the road and layer one everything static in the road. 

This layer increases the complexity of the environment and for that reason is very important to 

define it [7]. 

The next layer is a layer on its own, but in reality, it is the evolution of layers one and two. It 

comprises the temporary modifications of these two last layers. Actually, layer three does not 

include any different types of objects or signals. A clarifying example of this layer will be a 

construction area; temporary signals might impede the normal circulation of vehicles or the 

reconstruction of a bridge, disrupting the usual environment [7]. 

In layer four, dynamic objects are included, this means that now, the environment includes other 

moving vehicles and sudden movements. In reality, layer four considers all the objects that 

potentially move but do not necessarily have to be in movement. Parked cars are, according to 

that description, included in this layer, as well as garbage containers. With this layer, every object 

that can appear in a driving environment is classified [7]. 

 Layer five explains the environmental conditions that can occur in driving scenarios. It includes 

from weather to light conditions. This layer is crucial for the SA because it can generate risky 

driving conditions. Reflexes because wet pavement, fog or icy roads are mentioned in this 

section. Lighting conditions are critical in environmental perception, whether it is artificial or 

natural lightning. The lack of light or the excess of it is also part of this layer [7]. 

The last layer, layer six, focuses on communication or data exchange. This section also includes 

communication between different vehicles or infrastructure. Traffic management systems, 

including digital information signals, are mentioned in this section of the 6LM. Vehicle-to-

Everything (V2X) also is part of this layer as it is a technology that enables communication of 

Figure 7. Representation of layers in a real scenario. 
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information that might be occluded to the driver. For example, information about an incoming 

traffic jam or an intersection can be transmitted to drivers through V2X, and therefore, it will be 

represented in this layer [7]. 

For a future teleoperation control and SA perception, the operator will make use of a 

teleoperation system. The current teleoperation setup available in the Chair of Automotive 

Technology at the Technical University of Munich is a good example of a workplace and can be 

seen in Figure 8. The workplace has three monitors of 31.5" with 2K resolution and a framerate 

of 144 Hz. The setup is provided with pedals and steering wheel and the Vehicle Software runs 

on the EDGAR vehicle x86 PC, the videos are displayed on a projected sphere so that the 

teleoperator better perceives the surroundings of the vehicle. The computer used for the 

simulator has two graphic processors, 4090 RTX, an Intel i9 14900K CPU, and 192 GB of RAM 

to simulate all six cameras from the real vehicle at once. 

 

2.3 Human vision and perception 

Human vision is one of the most critical parts of our senses, and it involves different psychological 

and physiological components. That is why comprehending some aspects of it is useful to 

understand how the environment is perceived. Also, it is important to know the visual system's 

capabilities in order to simulate some of them during teleoperation control [26]. 

Peripheral vision and acuity 

Peripheral vision is defined as the capability to see what someone is directly looking at and some 

part of the rest of the environment. When a gaze is made directly to an object, it can be clearly 

seen, the surroundings of the gaze can also be seen but not as clearly as the main object [27]. 

This encompasses the ability to see objects or detect movement outside the direct line of vision. 

This ability is essential in detecting movement as it makes threats and sudden movement 

detection easy to predict. However, peripheral vision implies lower acuity and resolution, so it is 

not as easy to detect fine details and specific shapes [27]. 

Figure 8. Current teleoperation workplace at the Chair of 

Automotive Technology at Technical University of Munich. 
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Color perception 

Humans have two types of photoreceptors, this includes rods and cones. Our interest focuses 

on cones responsible for photopic vision at high light levels. There are three types of cones that 

can be classified according to the spatial sensitivity. L-cones, M-cones, and S-cones are named 

according to their sensitivity to long, medium, or short wavelengths. The cones have different 

peak sensitivities that coincide approximately with Red Blue Green (RGB) wavelengths. For that 

reason, monitor technology uses this same RGB combination to achieve a wide color display 

[28]. 

Foster [29] describes color constancy as the effect where the perceived or apparent color of a 

surface does not change even the intensity or spectral composition of the illumination. This effect 

allows humans to achieve a good perception of surfaces with independence of illumination 

variations, leading to better interaction with the real world. 

Depth perception 

Depth perception is crucial in relation to SA as it informs the observer about some key 

environmental information. Visual features that are perceived with both eyes can be used to 

determine the distance based on the shift in the position where the features are seen for each 

eye individually. This concept is also applied in the stereo vision using two cameras. But also 

monocular cues paired with the human past experience about certain object sizes or the area of 

overlap between different objects can be used to extract depth information with only one eye 

[30]. 

Thompson [31] analyzed different moving objects in a survey. For this purpose, Motion-in-Depth 

(MID) is required. The experiment concluded that binocular MID varies across eccentricity-

matched locations, and monocular MID showed different results depending on the eye. 

Additionally, the study determined that sensitivity in experimental conditions is relatively poor 

compared to experiences in the world; this indicates that sensory signals that contribute to 

natural perception are not necessarily used in an experiment. 

Light adaptation and contrast sensitivity 

The visual system is able to adapt to a huge range of light intensities. This adaptation allows for 

the discrimination of luminance variation at every level. This is important to be able to achieve a 

good environment perception in every condition. Pupillary aperture, photoreceptors, and neural 

adaptation are responsible for the light adaptation process [28]. 

Contrast sensibility is the effect that occurs when the visual system acknowledges the difference 

in luminance between objects so they can be distinguished. For example, imagine an object in 

a uniform background; contrast sensitivity is the relative difference in luminance between the 

object and the background [32]. 

2.4 Image quality metrics 

Image quality assessment has become a significant technological activity, and a lot of research 

is being done. The most important subjective quality metric is the Mean Opinion Score (MOS). 
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It is a subjective metric because it relies on human assessment, and apart from video, audio, 

and many different multimedia content can be evaluated [33]. 

VQMs are algorithms designed to evaluate the quality of a video. The goal is to predict the MOS 

of viewers. It is very useful when evaluating some video data that has been compressed or 

modified. With these metrics, loss of quality during any process can be evaluated. Metrics can 

be classified by the way they work. One of those classifications is the reference they used to 

assess the video quality [34, 35]: 

• Full reference. The metrics included in this section perform a frame-by-frame 

comparison between the video and a reference video. Therefore, they need the full 

original video, and they are suitable for quality analysis after compression and 

decompression or after video transmission. Full reference implies spatial and time 

alignment, which can be an issue [34, 35]. 

• No reference. These metrics analyze only the test video with no need of any other 

input. This makes them more flexible and easier to use as they do not need spatial 

and temporal alignment [34, 35]. 

• Reduced reference. This section includes the metrics between full reference and 

no reference. These metrics only use some parts of the reference or test video and 

use them to execute the comparison. This method allows for avoiding assumptions 

that no reference metrics make while managing enough information [34, 35]. 

2.4.1 Peak Signal to Noise Ratio (PSNR) 

This metric is a comparison between the highest power of a signal and the highest corrupting 

noise. PSNR is expressed in a logarithmic scale with a maximum value of 100 decibel (dB) and 

typical values in image processing from 30 dB to 40 dB. As said, the metric compares two signals; 

therefore, it is a full reference metric. The most common use is to measure the quality of images 

after compression coders. PSNR uses for the calculation the Mean Squared Error (MSE) [36, 

37]. 

The following equations explain how PSNR works [36]: 

𝑀𝑆𝐸 =  
1

𝑚𝑛
∑ ∑[𝑓(𝑥, 𝑦) − 𝑔(𝑥, 𝑦)]2

𝑛−1

𝑦=0

𝑚−1

𝑥=0

 ( 1 ) 

𝑃𝑆𝑁𝑅 = 10 ∙ log10 (
𝐼2

𝑀𝑆𝐸
) [𝑑𝐵] ( 2 ) 

where 𝐼 is the maximum pixel luminance value that is usually in 8-bit representation 255. 

PSNR is very used due to the simplicity and velocity of execution; it is, at the same time, easy to 

understand. Nowadays, the development of technology is exposing some limitations of the 

metric. Some studies are starting to prove that PSNR has a low correlation with subjective 

opinion [38–40]. 

Even though PSNR is very used, and, for example, standardization of video codecs depends on 

this metric, the current state of the art continuously argues about the adequation of PSNR for 

video quality evaluation [41]. 
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2.4.2 Structural Similarity Index Measure (SSIM) 

SSIM is a metric that analyses structural similarities between two images. It is a perception-

based metric that considers the change of structural information to be image degradation. This 

metric uses some important perception concepts like contrast and luminance masking. Similarly 

to SSIM, a metric is able to compare feature similarities; it is called the Feature Similarity Index 

Measure (FSIM). Both metrics are full reference metrics, and the index assessment can vary 

from zero to one, being one when the compared videos are the same [42, 43]. 

The mathematical explanation of the metric is as follows [44]: 

𝑙(𝑥, 𝑦) =
2𝜇𝑥𝜇𝑦 + 𝐶1

𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1

 ( 3 ) 

𝐶(𝑥, 𝑦) =
2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2

 ( 4 ) 

𝑆(𝑥, 𝑦) =
𝜎𝑥𝑦 + 𝐶3

𝜎𝑥𝜎𝑦 + 𝐶3
 ( 5 ) 

𝑆𝑆𝐼𝑀 = 𝑙(𝑥, 𝑦)𝛼 ∙ 𝐶(𝑥, 𝑦)𝛽 ∙ 𝑆(𝑥, 𝑦)𝛾 ( 6 ) 

When 𝛼 = 𝛽 = 𝛾 = 1 and 𝐶1 = 𝐶2: ( 7 ) 

𝑆𝑆𝐼𝑀 =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
 ( 8 ) 

 

SSIM needs grayscale images as input, but Hassan and Bhagvati [45] developed a variation 

based on SSIM to evaluate color images directly. By doing this, more meaningful information is 

analyzed. They demonstrated that this metric outperformed SSIM and some derivatives from it. 

2.4.3 Visual Information Fidelity (VIF) 

This metric is a full reference metric that uses both information sources. One is the mutual 

information between the input and output of the visual system and the other is the mutual 

information between the input of distorted image and the output of the visual system. It is 

important to explain that this metric uses a human vision model to weigh and evaluate the 

perceptual importance of the image as it takes into consideration the ability of humans to 

perceive visual data. The mathematical description of the metric is quite difficult but can be seen 

in [46, 47]. The metric result is comprehended between zero and one, being one the best score 

possible. 

Y. Han et al. [48] developed a metric based on VIF that demonstrated better predictive 

performance and had lower computational complexity. In this metric, VIF is used to get visual 

information from the sources to obtain 'effective visual information', and then to get the 

assessment result, all the information is put together in a fusion metric. 
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2.4.4 Detail Loss Metric (DLM) 

DLM is a full reference metric that focuses on luminance only to evaluate video quality. This 

metric is based on separating the measurement of detail loss that affects content visibility and 

the impairment that may distract the viewer. The inputs of the metric are converted to a grayscale 

for the analysis. The metric consists of decoupling a restored image's additive impairments to 

apply human visual system processing later. This model uses only a low-level vision system 

model to implement two characteristics: contrast sensitivity and contrast masking. Then, a 

calculation and adaptative comparison of the two quality measures is executed [49, 50]. 

2.4.5 Video Multi-Method Assessment Fusion (VMAF) 

With the objective of improving viewers experience, Netflix [50] developed VMAF. This metric 

uses multiple other metrics to predict subjective quality; it combines the strengths and 

weaknesses of some of the metrics used to provide a 0 to 100 result. At the moment this paper 

was published, VMAF used Visual Information Fidelity (VIF) and Detail Loss Metric (DLM) to 

assess quality. Simplifications of these metrics are used in VMAF; for example, for VIF, the loss 

of fidelity is represented as an elementary metric, and in DLM, it is also taken as an elementary 

metric. Netflix conducted a study in this same paper where VMAF outperformed other metrics 

excepting when the information source was live video streaming. 

García [51] tried to analyze Web Real-Time Communication (WebRTC) with VMAF by 

conducting an experiment where different metrics were tested against MOS, and the results 

obtained were that VMAF and VIF achieved better correlation than SSIM and PSNR, including 

some derivatives. Rassool [52] did a similar experiment resulting in a 0.948 for VMAF score 

correlation with MOS proving the good performance of the metric. 

Orduna [53] has also proven the practicality of VMAF by trying different applications for the metric. 

Originally, the metric was designed to work with Full High Definition (HD), but different studies 

have proved the capabilities of this metric to work with different types of content. This paper 

focused on 360 Virtual Reality (VR) content with no adaptation or training. 

It is important to say that VMAF is currently an open source metric [54] where developers can 

improve and propose new code modifications. 

Figure 9. Optical flow movement detection on a moving vehicle. 
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2.4.6 Optical flow 

Optical flow arises from the necessity to evaluate the motion of objects. Motion is crucial for the 

visual experience as it supports various visual tasks, including three-dimensional shapes and 

oculomotor control, perceptual organization, object recognition, and scene comprehension [55].  

Specifically, optical flow is defined as the distribution of apparent velocities of objects, surfaces 

or edges in an image. Optical flow arises from the relative motion between objects and the 

observer [55–57]. Figure 9. Optical flow movement detection on a moving vehicle shows a real 

evaluation of motion using the optical flow concept. 

 When taking optical flow to a real test, some problems are presented. Objects can move in three 

dimensions, but these images are typically displayed in a two-dimensional display. This means 

that the velocity of a moving object perceived on a screen is not necessarily the same as the real 

velocity due to this problem. Another problem with the relation between motion and image 

sequence is that some movements can be hidden from optical flow algorithms. For example, in 

a sphere rotating by its diameter line, optical flow cannot detect any apparent movement due to 

geometrical characteristics and because anything is changing in the image source, assuming 

there are no shade changes in the video [58]. 

The mathematical description of optical flow can be tough and needs some assumptions. Figure 

10. Pixel position change shows the concept of a moving pixel from a point to another in a 

specified time. It is easy to calculate the velocity with this information, but the main problem is 

detecting the pixels' correspondence. In this model, the motion is assumed to be small, so the 

same pixel must be in the vicinity of the first one. Also, the appearance of the pixel is assumed 

to not change in that small period of time. An approach to this is done [59, 60]: 

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + 𝑢, 𝑦 + 𝑣, 𝑡 + 1) ( 9 ) 

𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) ≈ 𝐼(𝑥, 𝑦) +
𝜕𝐼

𝜕𝑥
𝑢 +

𝜕𝐼

𝜕𝑦
𝑣 ( 10 ) 

The equality ( 9 ) is known as the brightness constancy constraint. If ( 9 ) and ( 10 ) are combined, 

the following is obtained: 

𝜕𝐼

𝜕𝑡
+

𝜕𝐼

𝜕𝑥
𝑢 +

𝜕𝐼

𝜕𝑦
𝑣 = 0 ( 11 ) 

Figure 10. Pixel position change according to [59]. 
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𝐼𝑡 + 𝐼𝑥𝑢 + 𝐼𝑦𝑣 = 0 ( 12 ) 

This result explains that the spatial motion of the camera movement explains any appearance 

change of a pixel. 

The mathematical explanation of optical flow extends much further, but usually, when the 

classical method is used, three different data and spatial penalty functions need to be 

implemented. These penalty functions are the quadratic Horn and Schunck (HS), equation 13, 

the Charbonnier equation 14, and the Lorentzian equation 15 [61]. 

𝜌(𝑥) = 𝑥2 ( 13 ) 

𝜌(𝑥) = √𝑥2 + 𝜖2 ( 14 ) 

𝜌(𝑥) = log (1 +
𝑥2

2𝜎2) ( 15 ) 

Sun [62] evaluated these three penalty functions and many more variations on the Middlebury 

optical flow benchmark. The results in Table 2. Average rank and EPE on the Middlebury test 

set with the different penalty functions [62] show the average ranking and end-point error (EPE) 

on the Middlebury test set. The Charbonnier showed good results despite being the simplest, 

and Lorentzian and HS performed well. 

Penalty function Average Rank Average EPE 

Charbonnier 34.8 0.408 

HS 49.0 0.501 

Lorentzian 42.7 0.530 

Table 2. Average rank and EPE on the Middlebury test set with the different penalty functions [62]. 

2.5 Situational awareness evaluation 

SA estimation is not a simple task, as it is known to represent perception and comprehension of 

the environment. Therefore, subjective opinions usually estimate SA but a method to estimate 

SA objectively is needed and that is where VQMs take action. 

Hayashi et al. [63] intended to evaluate SA with a standard glance model. The work focused on 

unscheduled takeover situations that they considered the most dangerous because the driver's 

attention is not always focused on related driving tasks. The created model analyzed how and 

where a driver looks at while driving. The results concluded that this model predicted the SA of 

the drivers well as most subjects focus on the right parts of the environment and parts of the car 

when executing a maneuver.  

In [64] SA is described as a tool to dynamic decision making as can be seen in Figure 11. 

Situational awareness and dynamic decision-making. Munir et al. described how to evaluate SA 

for better performance and the challenges that it represents. The paper is oriented toward the 
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military and Air Force perspectives but can be applied to every field. Many SA measurement 

techniques are proposed in this paper to achieve an SA score, and many of them utilize different 

types of probes. These measurement methods include self-rating techniques, observer-rating 

techniques, evaluation techniques during the activity, or performance-based techniques. The 

results showed that the metrics focused on some area of SA rather than in the totality for the 

assessment. However, the results obtained from the work recognize some techniques and 

technologies for improvement in SA. 

Engelke et al. [65] propose two models to complement different VQMs because most of them do 

not take into account the spatial regions of videos where saliency variations occur and the effect 

on the viewer's attention. These models showed improvement in quality prediction compared to 

VQMs, which had none of these models implemented. This study allows for future approaches 

in spatial and temporal visual degradation comprehension to evaluate saliency information. 

When evaluating SA, risk is sometimes forgotten in the different models, and it is actually one of 

the main objectives of the application of good SA knowledge. BowTie is a software that enables 

risk assessment at a tactical and strategic level. This tool enables teleoperators to comprehend 

the underlying logic of the environment and enhances the SA of the individuals for example to, 

operators that manage extensive streams of events [66]. 

The quality assessment in teleoperated driving is a challenging task, and the criteria for 

determining the minimum acceptable quality for remote driving still need to be determined. A 

study was conducted to determine the requisite quality for teleoperated driving. It employed an 

online survey and a variety of video quality metrics. The results demonstrated that video quality 

is dependent on environmental conditions, such as poor lighting or rainy weather. Conversely, 

the study concluded that a bitrate ranging from 299.20 Kbit/s to 831.92 Kbit/s is sufficient for a 

single camera under typical conditions [67]. 

2.5.1 Correlation between SA and VQMs 

In [41] the results obtained showed the correlation of PSNR with subjective opinion. The 

conclusion was that the metric should not be used for direct comparison to subjective opinion as 

it can vary from linear to non-linear content. PSNR is a specific metric that should only be used 

when different optimizations are done and for specific use. Table 3. Correlation between PSNR 

and subjective quality shows the performance of the mentioned metric compared with subjective 

opinion with different video contents and when all content is jointly evaluated. 

 

 

Figure 11. Situational awareness and dynamic decision-making. 
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Content SRC1 SRC2 SRC3 SRC4 SRC5 SRC6 

Correlation 

 

0.98 0.99 0.99 0.98 0.99 0.98 

Content SRC7 SRC8 SRC9 SRC10 ALL  

Correlation 0.99 0.98 0.99 0.98 0.71  

Table 3. Correlation between PSNR and subjective quality. 

 

García et al. [51] showed the correlation of the principal VQMs when compared to MOS using 

the Pearson correlation. In this study, every metric obtained good results, but according to the 

results in Table 4. Pearson correlation between MOS and objective metrics, the better predictive 

metrics were VMAF and VIF. 

 

 VMAF VIFp SSIM MS-SSIM PSNR PSNR-

HVS 

PSNR-

HVS-M 

MOS 0.915 0.938 0.885 0.809 0.878 0.879 0.871 

Table 4. Pearson correlation between MOS and objective metrics. 

 

As a summary of the state of the art, many papers conclude that PSNR is not a very adaptative 

metric and cannot be used with every video content [41]. Also, VMAF is considered as a very 

adaptative metric for all kinds of content and has proven to perform well [53, 68]. On the other 

hand, VIF has proven to be a good metric, better than many traditional human vision system 

metrics or even SSIM [46, 47]. 

Menon et al. [69] analyzed the Pearson correlation between different metrics for a thousand 

video sequences. The results in ¡Error! No se encuentra el origen de la referencia. show the 

positive similarities in quality prediction between VMAF and SSIM. 

Content PSNR SSIM VMAF 

PSNR 1.00 0.70 0.83 

SSIM 0.70 1.00 0.88 

VMAF 0.83 0.88 1.00 

Table 5. Pearson correlation between VQMs. 
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2.6 Research gap 

Multiple scientific publications emphasize the fact that the objective evaluation of SA is a 

significant development. At the same time, the state of the art also agrees that teleoperation SA 

is critical [5, 23, 24]. 

VQMs are well consolidated, and new variations and improvements of previous metrics are 

constantly being developed. A profound evaluation of individual metric performances has been 

conducted in the literature among different video contents [34, 37, 42]. A few studies that 

simulate real-world driving conditions and study the robustness of VQMs in these conditions exist 

[1, 67]. These metrics are well tested and usually are compared to each other with subjective 

studies to verify quality assessment. This verifies the continuous work to obtain a metric that best 

evaluates reality as humans can. 

However, there needs to be more focused research on how VQMs can relate with subjective 

opinion to obtain a SA estimation, and even less existing work is focused on teleoperation 

environments. Actually, existing studies do not sufficiently address the requirements and 

challenges of teleoperation scenarios, such as latency, real-time processing, or data loss during 

transmission. By applying VQMs on selected driving scenes and at the same time assessing the 

SA via state of the art study methods, a deeper correlation between the individual VQM score 

and the teleoperator SA is investigated. The potential results serve as a first step in closing the 

research gap. 
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3 Method 

This chapter explains how the work has been developed, starting with the proposition of three 

hypotheses that will be answered in the results chapter. Following, the video source selection 

and the content of it, taking into account multiple environment options, is presented. Further, the 

objective quality evaluation is explained, discussing which metrics were implemented and how 

they were achieved. In the last part, the subjective evaluation through a survey is detailed, and 

the survey execution and the objectives of it are included. 

3.1 Hypothesis 

To assess the relationship between video quality and situational awareness, three hypotheses 

are formulated. The first hypothesis comprehends the quality evaluation change depending on 

the evolving complexity of the videos measured by the involvement of the different layers that 

describe SA. The objective is to evaluate if the constant video quality is less suited for the scene 

when the complexity is increased. 

In order to respond to the second hypothesis, a layer classification needs to be done, where the 

apparition of different layers determines a video complexity. The goal of the hypotheses is to 

answer if the VQM show different quality assessment depending on the layers involved. 

The last hypothesis is to assess VQM importance and performance. This hypothesis aims to 

determine whether VQMs show similar results in assessing quality as human do. Ranking the 

sample videos based of objective quality evaluation and the individual metrics is part of this task, 

to show statistically how similar to human opinion and reliable the metrics are.  

Figure 12. Front center camera of the vehicle in 

CARLA simulator. 
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3.2 Sample videos selection 

For this thesis, multiple videos were filmed to evaluate the correlation of SA and objective quality. 

The videos are planned to describe urban driving situations. They must be able to resemble real 

situations and scenarios and for doing that, the current literature is of help. As explained in State 

of the art, with the help of some scientific papers [7] SA was fully covered in the sample content. 

Some of the sample videos were filmed using the open-source simulator CARLA with the 

EDGAR vehicle on it. On the other hand, some of them were filmed with the real EDGAR vehicle 

in the streets of Munich. The videos are always filmed with the front camera of the vehicle, both 

in the simulator and in reality. Also, no sound is recorded. This is showed in Figure 12 and Figure 

13. Among all the video samples, the selection is primarily decided for the content and coverage 

of the different layers to represent SA. On the other hand, the second criterion is the framerate, 

aiming to achieve an approximate average of 20 frames per second. Resolution is also 

accounted for, and a minimum of 720p is the objective. 

CARLA simulator is a powerful tool that provides images of different characteristics. The sample 

videos were filmed with a framework based on the Carla Python API, and then the ROS2 

interface of EDGAR was simulated. This includes ROS2 messages for the vehicle commands 

that are subscribed and executed in the simulator. Multiple functions for this purpose can be 

found in the following repository [70]. Then, the sensor topics are published by subscribing to the 

camera sensors and transforming them into messages to the respective topics. Further, the 

EDGAR data is published in different messages that include gear selection, velocity, indicators, 

honk and more elements. 

The videos filmed with the research vehicle are filmed and then compressed. The camera 

provides a video resolution of 1920 x 1200 therefore it meets the minimum requirement. As later 

indicated in Table 6. Description of source video material, the videos on average have a 

framerate radio between 18.4 to 19 frames per second. Before the compression, the videos were 

anonymized with a Meta tool [71] that blurs out license plates and faces. Then, a compression 

at 5000 Kbit is performed. 

The filmed videos last approximately from 8 to 12 seconds. The estimated duration is due in 

order to isolate a determinate situation and not a full driving experience. At the same time, the 

duration of the videos is conditioned to the subjective experiments. Videos should be long 

Figure 13. Front center camera of the research vehicle EDGAR. 
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enough to evaluate determinate characteristics but should not take too long for the subject to 

lose concentration or focus. For better resemblance with a real teleoperation situation, the 

chosen videos are all from the research vehicle EDGAR. However, some videos from the vehicle 

were not good enough to participate in the analysis. For example, videos inside a tunnel had 

very low framerate, and therefore, the quality was not good enough. That created some 

difficulties on the analysis of Layer 5. 

The content of the videos has been chosen based on the 6-layer model environment description 

explained in 2.2. Therefore, the videos include some of the different layers already mentioned. 

A brief description of the video samples is provided in Table 6. 

Video 

sample 

Source Frame rate 

average 

Description 

Video 1 EDGAR 18.7226 Straight line driving with few side vehicles or objects; 

medium speed with detention upcoming 

Video 2 EDGAR 18.5292 Straight line driving with multiple vehicles to the side; 

heavy speed in a highway 

Video 3 EDGAR 18.4779 Upcoming detection with multiple vehicles and 

emergency vehicle at high speed;  

medium speed 

Video 4 EDGAR 18.7761 Under construction area with vehicles in both 

directions;  

light speed with light steering 

Video 5 EDGAR 18.8615 Interurban road leading to a tunnel with low lighting; 

High speed 

Video 6 EDGAR 18.8305 Intersection with high number of vehicles and 

pedestrians; 

low speed with braking 

Table 6. Description of source video material. 

Video 1 

The first video is a low complexity sample and represents an easy situation with no evident 

distractions. This video aims to be as an example of the methodology for the subjective survey. 

The video consists of moderated straight speed with no side vehicles or objects, just a normal 

driving situation with low traffic intensity in the street surrounded by many buildings. 

In the video, Layer 1, Layer 2 and Layer 4 are included as it is the only and simplest way to 

describe an environment with other vehicles and pedestrians on it. 
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Video 2 

Video 2 represents another typical situation on an interurban environment. It has been filmed in 

a highway. The vehicle has a high speed according to the road requirements. The video aims to 

evaluate heavy speed perception as well as side information perception. At the end of the video, 

the vehicle approximates to a bridge and that alters lighting perceived by the camera. Throughout 

the entire video, multiple vehicles and road signs appear. 

With this video Layer 1, Layer 2, Layer 4 and Layer 5 are included. It is crucial to evaluate how 

dynamic objects affect perception and SA. 

Video 3 

In the third video, a road leading to an intersection is presented. The vehicle is travelling at a 

medium speed. Multiple vehicles appear, and they are closely situated to the vehicle, affecting 

safety perception and multiple aspects of SA. At the same time, an emergency vehicle with its 

corresponding blue lighting appears at high speed in the opposite direction making that an 

exciting event to evaluate. 

The video covers Layer 1, Layer 2, Layer 4 and Layer 6. It is crucial to evaluate videos with high 

speed difference to analyze the distraction that creates. To be able to detect a unique vehicle 

like this in a teleoperation drive is essential to guarantee safety. Layer 6 in present in the 

exchange of digital information and communication with the lighting. This video increases in 

complexity as dynamic objects are part of it and vehicles are close to the observer. 

Video 4 

The fourth video depicts a rout traversing a road under construction. The vehicle is driving at 

light speed through different curves signaled with temporary modifications on the street. 

Detained and moving vehicles can be seen in the other direction as the observer moves. The 

lane is confusing as many symbols appear, and white and yellow lines appear. 

Layer 3 is the principal focus of the video, as temporary objects on the road heavily modify the 

road and, therefore, its comprehension. At the same time, Layer 1, Layer 2, Layer 4 and Layer 

6 are part of the video represented by the road, surrounding buildings, moving vehicles and traffic 

lights respectively. 

Video 5 

The fifth video runs on a high speed road where the vehicle is about to enter a tunnel. To be able 

to correctly look into a darker area and detect potential hazards is a mandatory capability for 

teleoperation. In the video, other vehicles appear at high speed. 

With this content, Layer 1, Layer 2, Layer 4 and Layer 5 are covered. Light changes are crucial 

to evaluate and can occur suddenly. Even though light changes can be present in multiple and 

various conditions, this is a good example and subject of analysis. 
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Video 6 

In video 6, a high quantity of moving objects is presented. This includes pedestrians, cyclists and 

motorized vehicles. The video sample shows the EDGAR vehicle approximating and detaining 

behind another vehicle. At the intersection, vehicles are observed moving in multiple directions, 

some even overtaking stationary vehicles. Additionally, cyclists are observed traversing the 

roadway from the sidewalk. 

This video includes the highest quantity of objects with the capability of movement which implies 

a high definition of Layer 4. Layers 1 and 2 are also present in the description of non-moving 

objects in the environment. The last layer covered is Layer 6, represented in the traffic lights that 

communicate information about preference and direction. 

3.3 Objective quality assessment 

Objective quality assessment includes multiple algorithms and mathematical models to evaluate 

video quality without involving subjective human opinion. These methods are transformed into 

software and will be executed and tested. Results will be collected and later studied. 

The quality assessment is crucial to achieve a reliable method on quality estimation for the SA 

on teleoperation driving scenarios. Therefore, the data collected must be consistent with the 

original sources and, of course, with subjective opinions. 

In this chapter, the implementation of different algorithms will be discussed. PSNR, SSIM, VMAF, 

and optical flow implementation are treated in this chapter. These metrics help quantify video 

streams' fidelity and motion characteristics, which are essential for teleoperation applications. 

3.3.1 VQMs election 

For the implementation of the metrics a previous selection of which will be implemented needs 

to be done. The VQMs were initially planned to be implemented and executed through ROS2, 

which is a communication software between machines. The purpose of using this communication 

method is for future direct implementation with the research vehicle EDGAR. 

In reality, ROS2 implementation revealed many technical problems and ended up not being a 

priority for the work. So, for the objective evaluation, some metrics were executed through ROS2, 

and others were locally executed. 

In order to make a full study about quality assessment in the field of AD, the principal metrics 

needed to be tested. PSNR, SSIM, VMAF, and some extra metrics were elected to assess 

quality through their mathematical algorithms. 

PSNR proved to not be a suitable metric in many environments and that has been proven in 

Section 2.4.1 but more research needs to be done with driving situational samples. For that 

reason, PSNR was one of the metrics to be evaluated to determine how well it performs and to 

study if it should be part of objective quality assessment in this field. 

The next metric to be implemented and later evaluated is SSIM. This metric has so many 

different variations and improvements and thus it must be studied. In this research, just the 

normal metric is used to see the performance of SA quality assessment. 
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As literature has proven, VMAF is one if not the best metric for the majority of content. Especially, 

VMAF has proven to be adaptative to many different contents and even formats. Therefore, it is 

essential to see how well it performs with SA quality assessment. 

Optical flow is the final part of objective evaluation. The motion is essential in this kind of content 

so optical flow evaluation is key to analyze part of the SA of the teleoperator.  

3.3.2 ROS2 implementation 

For the implementation of PSNR, ROS2 environment and Publisher-Subscriber communication 

is used. This communication enables the exchange of information between a publisher and a 

subscriber by the use of a topic, an accessible node where the publisher publishes information 

and the subscriber nodes subscribe to it. When the node publisher publishes a message, in this 

case, the video frame by frame, a topic is created with this content. Then the topic needs to be 

accessed using the topic name by the node subscriber. Topics can have multiple publishers and 

multiple subscribers. In the last step, the subscriber executes his program with the topic 

information. This communication is the actual communication between the EDGAR research 

vehicle being the publisher of the live video stream and the programmer being the subscriber, 

and vice versa. In the future, when live video quality assessment is available, EDGAR vehicle 

will be a publisher of the video stream, and the quality evaluation station will be the subscriber 

to evaluate the video source [72]. 

The process starts with the execution of mp4converternode.py that can be found in the repository 

associated to this work. This Python code creates two different publishers that create two 

different topics with the original video and the compressed video frame by frame. Further, the 

PSNR script is executed subscribing to both topics and delivering the result of the algorithm for 

every frame. 

As stated in 2.4.1, PSNR is mathematically a straightforward algorithm and can be almost directly 

integrated into Python language programming. For this program, multiple external libraries need 

to be used. Numpy is used to calculate MSE of the different video frames, Math library is also 

needed to execute the logarithmic function as it is not included in base Python language. Finally, 

to allow ROS2 communication, the library rclpy [72] must be included. 

The function was implemented from an open-source developer [73]. he Python script analyzes 

the video and evaluates it with a rating in the logarithmic scale from 0 to 100. It is essential to 

note that for the later evaluation and comparison between metrics. 

3.3.3 FFmpeg implementation 

FFmpeg is a multimedia framework that can interact with almost anything humans and machines 

have created. This includes decode, encode, transcode, mux, demux, stream, filter and play. 

This framework is characterized by supporting many different formats. The open-source 

framework aims to provide the best technical solution for developers and users of applications 

or programs [74]. 

For the analysis of some quality metrics such as SSIM and VMAF, FFmpeg is the most suitable 

framework for testing them easily. FFmpeg includes many libraries, Libvmaf being one of them. 

This library allows the user to calculate the VMAF score for original and compressed videos. As 

explained in in State of the art, the VMAF method includes many other metrics, and that is why 
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they can be tested by following the same instructions. These are the so-called additional features 

of the library. Therefore, a quality assessment of VMAF and SSIM will be performed using this 

method. 

The metrics are tested locally on a computer. Using a Windows terminal, the following command 

results on the creation of a text file with the information of VMAF evaluation for each frame. 

ffmpeg -i distorted.mp4 -i reference.mpg -lavfi libvmaf=log_path=output.xml -f null - 

Additionally, Libvmaf has many more options. Correctly configuring the additional features, SSIM 

and PSNR evaluation can be easily achieved. For organizational and efficiency reasons, PSNR 

will also be executed via FFmpeg even being implemented in a ROS2 environment. The 

following commands result in two text files with PSNR and SSIM evaluation frame by frame.  

ffmpeg -i distorted.mp4 -i reference.mp4 -lavfi " [0:v][1:v]ssim=stats_file=ssim.log; 

[0:v][1:v]psnr=stats_file=psnr.log" -f null - 

3.3.4 Optical flow 

Høirup Nielsen [75] developed an open-source Python software regarding optical flow. The code 

is able to calculate the average variation of the motion in the video frame by frame. It also 

provides image source of the quantity of motion in the video, that can be seen in Figure 14 and 

Figure 15. With this content, the observer can have an idea of the average motion of the video. 

The algorithm calculates movement vectors for each pixel and compares them with the same 

pixel in the next frame. The difference of these vectors is what we call motion. This is possible 

because of the OpenCV library included in the program. For motion assessment, the function 

calcOpticalFlowFarneback calculates the dense optical flow using the Farnebäck [76] algorithm, 

that can be found in Bigun and Gustavsson’s book [77]. Besides the OpenCV library, Numpy is 

also needed to average the motion of each pixel to present a signal optical flow rating estimation 

per frame. 

Figure 14. Frame of a studied video with the flow displayed with 

arrows meaning direction and quantity of movement. 
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The metric was implemented locally in a Windows environment and tested with the source videos. 

The Python file is directly executed in a Windows terminal with the correct features and desired 

videos. OpenCv is responsible for obtaining and supplying the image to the rest of the code. 

However, the first and the more accessible videos don't show to much relevant information in 

the motion assessment as no sudden movements or high velocities appear. Very little variance 

can be found between the optical flow average values from the different pixels in the first videos. 

The data obtained by the metric is then saved in a different file for later statistical evaluation. 

3.4 Subjective study 

Subjective quality assessment involves the participation of humans to evaluate the quality of the 

video content. Unlike objective rating, this methodology relies on human personal perception 

and judgment. This is very useful to understand the end-user perception of video quality. This 

subchapter includes the design of the survey, the motivation of the questionnaire, and the 

execution methodology. 

3.4.1 Survey design 

The objective of the survey is to estimate a subjective evaluation for the different video samples, 

focusing on SA estimation. 

The survey is aimed for a participant with some driving experience. Therefore, the age, whether 

the subject has a driver's license, how many years of experience the subject has, and the 

approximate weekly usage of a vehicle are important to the survey. Participants will mostly be in 

an age range from 18 to 35, preferably with driving experience. Experience with driving 

simulators could be useful. 

A significant factor that must be considered is where the participants will participate in the survey. 

It is clear that quality and perception of a video is not the same in a HD computer display than in 

a smartphone. This information is essential to filter the results and to distinguish quality 

assessment from quality visualization limitations. 

The survey will consist of a short introduction of the video, followed by the actual video, and after 

that, a specific questionnaire. Table 7 provides a summary of the questions common to every 

Figure 15. Frame of a studied video with the Hue Saturation Value 

(HSV) meaning quantity of motion and direction. 
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video that will be asked following the viewing of the video. These questions are evaluated on a 

scale from 1 to 10, with 1 being the worst rate and 10 being the best rate. The ratings obtained 

in this section will be then compared and classified according to different criterions. The initial 

questions will be decisive to classify the information obtained in this section as maybe different 

driving experience result in different quality or conduction evaluation. 

On the other side, some specific questions for each video will be formulated. The reason for this 

is the increasing complexity of the video content and the increasing distractions and scenarios. 

Some questions will be asked to evaluate some specific factors of SA and concrete events. This 

depends on the content of the videos already explained in 3.2. For example, the comprehension 

of static or dynamic objects is evaluated. Additionally, distance safety perception or perception 

of a special vehicle is asked. 

Question number Description 

1 How clear was the overall scene in the video? 

2 How would you rate the quality of the video stream? 

3 Do you think the vehicle was well situated in the street? 

4 Do you think the velocity was according to the situation? 

5 How safe will you feel being in that vehicle? 

6 How good would you rate the conduction of the video? 

7 How good could you perceive the environment? 

8 How good would you rate visibility? 

9 Do you think the video provided sufficient information for a 

teleoperator to take control if needed? 

Table 7. Subjective study questions common to all videos and rated from 1 to 10. 

3.4.2 Subjective experiment execution 

An online LimeSurvey survey was created to display the video selection and evaluation of quality 

assessment and SA comprehension. In the first part of the survey, participants are informed 

about the field of the study and some basic knowledge about the technology of teleoperated 

driving. Then, some demographic questions about participants were asked, as well as the device 

used for the survey execution. 

The survey is structured in groups with questions. For each video, two groups were used to avoid 

the possibility of the participant going back and watching the video multiple times. In the first 

group, the video is displayed, and a verification question is asked. Then, on the second group, 

some questions are proposed. The evaluation from the main questions is a scale from 1 to 10, 

where 1 is the lowest rate and 10 is the highest. After this, participants are asked about the 

perceived velocity of the vehicle and then some specific questions for each video. These 
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questions are evaluated from 1 to 5 being 1 the lowest rating and 5 the highest or with yes/no 

type questions. At the end of each question group, a blank space is left for any extra comments. 

For the execution of the study, the use of a computer or a portable computer is recommended. 

The participants were told to watch the videos in full-screen mode and to avoid watching the 

video multiple times. The survey was designed to be completed in 8 to 12 minutes and was not 

limited to any specific software or device. In order to guarantee variation, multiple participants 

close to the author and supervisor of this work were contacted and sent the invitation for the 

study. 

For the analysis of the results, some previous determinations need to be done. The normality of 

the population of the survey is studied. For that purpose, the Shapiro-Wilk test [78, 79] is 

implemented. This method helps to determine and explain how the distribution of the participants 

is. Participants age, driving experience, weekly driving and the used device are studied with this 

test. For another part of the data analysis, the Friedman Test [80] will be used. This test is used 

to determine statistically significant difference between means from various groups which show 

the same subjects. Further, for the significant different groups, a correlation study is done. The 

Pearson-Correlation-Method will determine the correlation between metrics, layers and the 

survey questions. The last statistical method to be used will be the T-test. By this method we 

manage to study the significant difference between two groups, in this case the difference for 

the layers with low and high presence. We do this for each layer and for each metric to know the 

influence that the layer has on the evaluation of the metric. 

In order to obtain results that are comparable with objective quality assessment, the questions 

will be compared independently and converted to a comparable scale. This includes the 

calculation of the averages from all participants that finished the survey, avoiding any corrupted 

data, the variance, the maximum, and the minimum. Based on these statistical key values, the 

correlation between the rating and a VQM is determined using the Pearson-Correlation-Method. 

The other questions will be studied independently to evaluate the comprehension of some 

concrete parts of the videos.
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4 Results 

This chapter summarizes the results obtained for numerous videos. In the first place, a great 

volume of videos is objectively evaluated, and the metrics results can be found. The videos can 

be differentiated between being CARLA simulator videos, real videos recorded in Munich or the 

six previously selected videos. 

Secondly, the results from the subjective experiment execute with an online survey are 

presented. The distribution of the participants is studied, and the overall result are presented. 

The obtained results are used to validate the veracity of the proposed hypothesis. This is also 

included in the discussion of the results. 

For the most parts, in the following sections, the results will be color-coded by using blue for 

PSNR, orange for SSIM and green for VMAF. The results will be presented in different formats, 

including boxplots, histograms, linear graphic plots and data tables. 

4.1 Objective analysis 

During the execution of this work, many video samples have been studied. In this section of the 

chapter, the objective analysis of some videos filmed in the simulator CARLA and a great 

quantity of videos filmed in the streets of Munich is done. 

The videos are always analyzed with the three VQMs previously mentioned, and the processing 

of the results is executed in Excel. The graphic presentation and results are also obtained with 

this tool. The entire results are attached in the digital complements of this thesis, and usually the 

average, standard deviation, maximum and minimum are calculated. The color-coded results 

are constant during the entire documents. 

For a correct objective analysis, it is important to notice the ranges of the metric evaluation. 

PSNR for example is a metric which ranges can vary between 0 and 100, but in this kind of 

content, as mentioned in the state of the art, a rating from 30 dB to 40 dB is a common result 

[36]. On the other hand, SSIM rating can vary from 0 to 1 with results achieving close to 1 value 

when quality is good. Finally, VMAF can rate video quality with a scale from 0 to 100. For these 

reasons, the metrics cannot be compared directly as the ratings scales are not equal or constant. 

4.1.1 CARLA simulator videos 

Six different scenarios were tested with the VQMs. The different samples differ on traffic intensity 

and speed. For example, scenarios 1, 2, 3 and 5 describe a vehicle driving at 20 kph starting 

with no traffic and ending with high density traffic respectively. On the other side, scenario 4 
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shows a construction area and scenario 6 depicts an urban high traffic situation with a speed of 

25 kph. 

The results show similar performance between the metrics comparing the different scenarios. 

Quality is also well evaluated by the metric, which does not mean to be enough or sufficient for 

teleoperation. This can be better appreciated in Figure 16. 

Even though these results, a ranking for the different scenarios with each metric was done. In 

this study, the metrics did not show the same performance indicating different orders. Actually, 

PSNR and SSIM showed the same order on quality assessment, but not VMAF. On the other 

hand, every metric agrees by their methodology that scenario 5 should be ranked as the second 

best video in terms of quality. The metrics also agree on ranking scenario 4 as the third best 

quality video. The rest of the scenarios are not in the same order among the different metric but 

in reality, the evaluation of the worst to videos is closely matched. Table 8 shows the full ranking 

of the videos in term of quality for the different scenarios. 

The evolution of the quality during the video has been conducted for these samples. Figure 17 

shows an example of this representation for scenario 3, where PSNR and VMAF refer to the 

scale from 0 to 100 and SSIM to the scale from 0 to 1. 

Order PSNR SSIM VMAF 

First Scenario 1 Scenario 1 Scenario 2 

Second Scenario 5 Scenario 5 Scenario 5 

Third Scenario 4 Scenario 4 Scenario 4 

Fourth Scenario 2 Scenario 2 Scenario 1 

Fifth Scenario 3 Scenario 3 Scenario 6 

Sixth Scenario 6 Scenario 6 Scenario 3 

Table 8. Simulator CARLA videos order by quality assessed by three different metrics. 
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Figure 16. VQMs results for six different scenarios filmed in the simulator 

CARLA. PSNR and VMAF ranking from 0 to 100 and SSIM ranking from 0 

to 1. 
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4.1.2 Munich recording videos 

During the research vehicle EDGAR filming journey, many videos were filmed. This work 

includes 205 videos as an initial source for analyzing quality. These videos are differentiated by 

areas and streets, being the 205 videos organized in nine different categories. The different 

categories do not have the same number of videos and not all categories define and include at 

the same level of layers for SA assessment. 

The videos are tested with the implemented metrics, achieving results about average, median, 

standard deviation, maximum, minimum and quartile information. This information is then used 

to show in general terms the performance of the metrics. The results considerate all the videos 

Figure 18. Video quality metrics for all the videos filmed in Munich. The scale 

ranges from 0 for a poor evaluation to 100 for good quality assessment. 
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at the same time so they should be accounted as that. These results are then an indicator for 

quality among big sources of video and therefore should not be interpreted for specific quality 

results. Figure 18 depicts the previous commented results. For this polt, SSIM was normalized 

by multiplying by a factor of one hundreg to display correctly with the other metrics. 

For further results in following sections, the layers of each video were clasified in different 

categories. Table 9 shows the classification and the criteria followed. A part from the layers, the 

light burnouts were also accounted for. Overall this indicates what defines the situation on the 

video and helps to achieve a conclusion for hypothesis 2. 

Layer None Low High 

Layer 1 The layer is not present in 

the video 

One direction street Multiple directions or an 

intersection 

Layer 2 The layer is not present in 

the video 

Little to no traffic 

infrastructure 

More than two traffic signs 

and narrow surrounding 

Layer 3 The layer is not present in 

the video 

Minor elements (for 

example, cones) 

Affects the ego lane and 

highly modifies the scene 

Layer 4 The layer is not present in 

the video 

Objects do not show 

imminent interaction with 

the vehicle 

Objects might result in 

action of the ego vehicle 

Layer 5 Evaluation id one depending on the weather, for example, sunny, cloudy, foggy… 

Layer 6 This layer is not present in any videos as exchange of information is hard to capture 

through a video. 

Burnout There is no burnout in the 

video 
- A burnout appears during 

some of the duration of the 

video 

Table 9. Layer rating explanation for SA assessment for Munich videos. Burnout of the image also 

included. 
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Finally, a comparison between similar videos of the CARLA simulator and real videos is done. 

The videos recorded in the simulator are longer than the real ones. In the study case, the 

simulator video lasts one minute and twenty seconds and the real Munich recording lasts nine 

seconds. The velocity of the ego vehicle is also quite different, being slower in the simulator than 

in reality but overall, the videos present various environmental similarities. Both of the videos 

represent a moving vehicle crossing an intersection with other vehicles on it and then a straight 

driving through a wide avenue with two traffic directions. Figure 19 shows the comparison 

between both videos analyzed by the three metrics.  

4.1.3 Video selection analysis 

In this section, the selected videos in 3.2 are evaluated. The results obtained include metric 

evaluation frame per frame for each video, optical flow analysis and layer intensity assessment. 

The videos that are used in this section were selected with different criteria and therefore show 

different performance. The evolution of the metrics is essential to study these differences in 

quality for each of the samples. Figure 20 to Figure 25 show the evolution of the PSNR, SSIM 

and VMAF during time for every video. PSNR and VMAF are ranged in a scale from 0 to 100 

and SSIM in a scale from 0 to 1. 

 

Figure 20. Evolution of the VQMs for video 1. 

 

 

Figure 21. Evolution of the VQMs for video 2. 
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Figure 22. Evolution of the VQMs for video 3. 

 

 

Figure 23. Evolution of the VQMs for video 4. 

 

 

Figure 24. Evolution of the VQMs for video 5. 
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Figure 25. Evolution of the VQMs for video 6. 

 

Optical flow is a big part when analyzing a video content. In this section, the analysis over time 

of optical flow is done. Figure 26 shows the evolution of the optical flow rating for video 4. The 

rating represents the average of the motion of each pixel in every frame of the video, this was 

further explained in 3.3.4. This is an example of the rest of the evaluations for the other videos. 

 

In this section, an analysis of the involvement of the layers is also done. This is useful for the 

discussion of hypothesis two in further sections. The assessment was carried based on the same 

criteria as the entire Munich sample videos explained in Table 9. In the same way, layer 6 is not 

present throughout the videos and no burnouts of the image are considered. Therefore, the rest 

of the layers are evaluated according to the mentioned table. Furthermore, a weighted average 

of the different metrics for each layer is done considering the value none equal to zero, low equal 

to one and high equal to two. Table 10 shows the averages for each layer. 
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Layer PSNR SSIM VMAF 

Layer 1 29.684 0.822 29.135 

Layer 2 28.820 0.812 27.303 

Layer 3 25.515 0.733 22.719 

Layer 4 29.245 0.814 28.410 

Layer 5 29.948 0.834 28.997 

Layer 6 0 0 0 

Table 10. Weighted average considering no existence, low or high presence of the layer for every video. 

Layer 6 is not present and therefore shows a zero value. 

4.2 Survey results 

The survey period covered 5 days starting on August 2nd of 2024. The survey took approximately 

from 10 to 15 minutes to complete. A total of 79 participants took part. Frome these participants, 

70 (97.5%) completed at least one page of the survey and 52 (66%) fully complete the survey 

until last question. From these 52 final participants, 51 stated to have driving license. The 

participants chose their age range being the majority in a range from 15 to 30 years old (31 

participants, 59,6%). The Shapiro-Wilk Expanded test demonstrated that the age distribution 

over the different age ranges differing 15 years was not normally distributed. The same 

happened with years of experience and weekly driving average, obtaining average results for 

driving experience of 17,5 years and for weekly driving of 3,2 days. The instructions of the study 

recommended the use of a computer or laptop to better display the contents of the survey, 

however, it was not a compulsory requirement. The device election was also not normally 

distributed being the smartphone the most used device with 24 participants using it. This 

information is further described in A General participant information. 

During the survey, after the main questions, the estimated velocity was asked. For some videos, 

traffic signals indicated it, but the results show that the distribution of the estimated velocity for 

every video does not follow a normal distribution except for video 5. Figure 27 shows the normal 

distribution of the data for video 5. On the other hand, the average of the ratings indicates an 

adequate velocity for the majority of the videos. This will be further discussed in Discussion. 

Some participants encountered some doubts about the videos and questions. In relation with the 

perception of the safety, it was not clear if the question meant safety while driving or being driven 

by the AV. On the videos, the vehicle was controlled by a driver but in a future implementation, 

AD technology will develop this task or teleoperation if needed. Some participants also 

encountered serious problems when big light changes appeared, for example on tunnels or 

approximating to a bridge. One of the participants suggested to increase the safety distance 

because at some moments, vehicles in front could not be seen. On the other hand, a few 

participants commented about the quality being too low for high speeds but at the same time 

other subjects were able to identify traffic signals or even exit indication. A great number of 
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participants noted that in the construction zone displayed on video 4, the quality was not good 

enough to perceive the situation and it was very difficult to see the yellow lane lines. 

 

Figure 27. Normal velocity distribution assessed in the subjective opinion about video 5. 

4.3 Hypothesis 1: adaptation of constant quality 

To demonstrate the veracity of the hypothesis, the evaluation of the constant quality was done 

based on complexity evolution. The main data of the survey for every video was classified into 

nine topics including overall clearance, quality, situation on the street, velocity accordance, 

safety feeling, conduction rating, environmental perception, visibility and teleoperation control. 

These topics were rated on a scale from 1 to 10. After the data collection, results were organized 

depending on the topic, resulting then in a comparison for all the videos. The Friedman test was 

executed to determine the existence of significant difference between the videos. The results 

show that four out of nine questions had no significant difference between the rating of the six 

videos. The four topics that indicated no difference were the situation on the street, velocity 

accordance, environmental perception and teleoperation control. In further chapters, these 

results are discussed, and logical answers are proposed. 
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Figure 28. Statistical results for the nine topics in the subjective survey for video 1. 
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Figure 28 depicts as an example, the evaluation of the nine different topics for the video 1. This 

boxplot was also obtained for the rest of the videos.  

4.4 Hypothesis 2: involvement of layers 

Hypothesis two implies the demonstration of a correlation between layer involvement and video 

quality. The hypothesis states that when more layers are involved, the quality should be worse 

than when few layers are present. For this purpose, two similar studies were done. First the 

correlation between the layers and the metrics for the six video selection based on the Pearson-

Correlation-Method is done. The second study consists of the analysis of the significant 

difference for the layers using a source of 110 real videos and then the Pearson correlation study. 

In the study of the six selected videos, the Pearson method revealed very different results. Some 

layers are clearly correlated to the metric and other layers are clearly not. Table 11 shows the 

results of the method. When the value is higher than 0.5, it is considered to be correlated with 

the metric. A positive result indicates a direct correlation, and a negative result indicates an 

inverse correlation. 

Layer PSNR SSIM VMAF 

Layer 1 0.186 -0.126 0.567 

Layer 2 -0.617 -0.446 -0.522 

Layer 3 -0.858 -0.822 -0.681 

Layer 4 -0.505 -0.700 0.020 

Layer 5 0.235 0.257 0.200 

Layer 6 0 0 0 

Table 11. Pearson correlation between layers and metrics for the six selected video samples. 

When the subject of the analysis are 110 videos, results change. For the significance difference 

between the metrics, the Friedman method was substituted by the T-test, even though both aim 

to achieve the same results. The test shows significant difference between the low and high 

presence of the layers. So, for each quality metric, the layer involvement is evaluated, and quality 

assessments determines if the layer is or not significant. Table 12 depicts the results of this test. 

When the T-test value is below 0.05, it is considered that data has significant differences with a 

95% confidence, on the other case, data is considered not to have significant differences. For 

the results of the layers that presented significant differences, the Pearson correlation was 

carried out. The method presents no correlation between the layers and the metrics. It is 

important to note that this method studies a linear correlation between the data. 
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Layer PSNR SSIM VMAF 

Layer 1 0.466 0.408 0.051 

Layer 2 0.405 0.412 0.171 

Layer 3 0.045 0.012 0.215 

Layer 4 0.068 0.019 0.290 

Layer 5 1.9E-21 0.010 7.4E-24 

Burnout 0.037 0.034 0.385 

Table 12. T-test results for low and high presence of layers for each metric with a source of 110 videos. 

4.5 Hypothesis 3: video ranking comparison 

Regarding this hypothesis, some of the data used for hypothesis one is also used here. In this 

case, the focus falls on the general analysis of quality. For that, the subjective and objective data 

for the six selected videos is compared. Figure 29 shows the subjective quality assessment for 

the safety feeling, which has a significant difference among the six videos. The topics of the 

survey were analyzed with the Friedman test and the significant differences were presented in 

hypothesis one. 

 

Figure 29. Subjective ratings about safety feeling by 52 participants in online survey. 

Further, for the significant different topics, a correlation study between them and the metrics is 

done. The method used is again the Pearson-Correlation-Method. The correlation results for the 

significant questions can be seen in Table 13. The values show promising results that will be 

further discussed. Negative values indicate inverse correlation and positive values indicate direct 

correlation. 
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Question PSNR SSIM VMAF 

Overall clearance 0.754 0.848 0.875 

Quality of the stream 0.560 0.808 0.731 

Safety feeling 0.833 0.927 0.962 

Conduction rating 0.793 0.887 0.920 

Visibility rating 0.762 0.881 0.886 

Table 13. Correlation between the metrics and the significant questions from the survey. Done with the 

Pearson-Correlation-Method. 
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5 Discussion 

In this chapter, the results previously presented are discussed. First, the video election is 

explained, and its limitations are presented. Secondly, the VQMs results for simulation and real 

videos are compared and explained. This includes the analysis of the advantages or 

disadvantages the different frameworks. Also in this section, the six selected videos comparison 

between objective and subjective opinion is elaborated. This includes general ratings from the 

metrics and from the participants in the survey as well as a complexity study with the help of 

layer involvement. Finally, the demonstration of the hypothesis closes the chapter. 

5.1 Video election 

Initially, video election caused some inconveniences as real EDGAR videos and ROS2 

framework complicated the selection process. For the development of the work, the more videos 

available the better. That is why videos from both the CARLA simulator and reality are included. 

The different format of the videos between the simulator and the EDGAR research vehicle 

presented problems when evaluating using VQMs. The videos were mostly transformed to mp4 

format to be studied by the metrics. The video recordings conducted in Munich were subject to 

certain limitations. All videos were captured on the same day, resulting in no major differences 

in lighting conditions. 

In addition, the survey further complicated the choice because only a limited number of videos 

could be shown. These videos had to be carefully selected to represent a driver's environment 

in different situations. The selection criteria of the survey videos is clearly marked by the 

subjectivity of the author and that is why the analysis of a larger video source is also carried out. 

Another limitation faced by the survey was the correct viewing of the videos. Although the 

participants were told to view the content in full screen mode, the type of device may not have 

permitted this. On the other hand, in the survey, the integrated player, Youtube, was in charge 

of displaying the videos and, as commented by one participant, the quality of these could be 

worse than the maximum possible by the player. 

5.2 Objective and subjective evaluation 

The video contents in the simulator and in reality were very different. That is why the simulator 

CARLA results show a very good quality estimation compared to the real videos. Because they 

are already a digital content, the video compression is smoother and therefore when comparing 

original videos with compressed ones we get excellent results. In addition, the quality ranking of 
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each metric is identical in PSNR and SSIM for the different scenarios and in some cases 

coincides with VMAF as well. 

For the study of the real videos, the opportunity to have 205 videos is very helpful. With this 

analysis we can get a measure of how different metrics interpret quality for many different 

scenarios and situations. The results show not very high but sufficient values in most cases. For 

example, for PSNR, knowing that between 30 dB and 40 dB are good values for this type of 

content, the results are good. SSIM also shows good values on average. However, VMAF does 

not show very promising values as well as having a lot of dispersion in some data. 

Results clearly indicate that the video quality is better in the simulator than in the real videos after 

compression. Figure 19 clearly shows this statement. 

Further, the six videos chosen for their representation of SA were evaluated. The video quality 

evolution graphs for each metric show very stable values in most cases. However, all videos 

show an initial drop in quality for all VQMs. On the other hand, the optical flow of the sequences 

was evaluated as a fairly good parameter to identify large movements in the video. For example, 

in Figure 26 there are several peaks representing oncoming vehicles crossing the ego vehicle. 

In the most pronounced peak and contrasting with the original video, two bulky vehicles are 

clearly identified in the image. This analysis can be beneficial in identifying the number of moving 

objects in a video and how conspicuous they are to the driver. 

For the same videos, a weighted average was obtained depending on the presence of the layers 

describing the environment. Despite having few videos for this analysis, the results show very 

similar values for each metric in each layer apart from layer three which obtains lower results 

than the rest. This indicates that with high presence of this layer, temporary objects such 

roadwork signs or work fences, the quality is worse than the rest. 

The survey execution had some limitations. Among them is the number of participants, despite 

being an acceptable number, the more opinions, the better the general results. In addition, the 

age distribution was quite concentrated and that is why, together with the rest of the initial 

information of the participant, normal distributions of the information were not obtained. The 

positive and beneficial part for the experiment is that both drivers with great experience and 

drivers with few years of experience participated. Finally, the survey included a question about 

the perception of speed in each video. The results do not show a normal distribution in the speed 

data except for video 5. This is explained because this video takes place on a highway, and it is 

easier to estimate the speed. On the other hand, video 2 also takes place on a road of the same 

type with more vehicles and the same speed results are not obtained. 

5.3 Hypothesis achievement 

To prove the first hypothesis, the Friedman test determined that four out of nine questions did 

not show significant differences between the videos, which means that there is a general opinion 

on this aspect. This indicates that the increase in complexity in four out of nine videos is not 

reflected in the quality assessment. It can be due to multiple factors depending on the question, 

for example, situation on the street or velocity accordance. Regarding these questions, the 

perception of the vehicle driving correctly between the lines or driving with an according velocity 

is explained because of the driving rules the vehicle followed during the recording of the videos. 

The hypothesis statement then is false for these four questions of the survey. On the other hand, 

five questions presented significant differences between the videos, and thus it means that the 
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complexity changes on the content affects the view evaluation. That is easy to see on the safety 

feeling for example, where perception of security depends on multiple factors including the 

different scenarios or personal experiences and not entirely on video information. 

Hypothesis two poses a serious limitation: subjectivity in assigning the intensity of the layers. In 

addition, there is also the limitation that this assignment must be done manually by a human and 

that reduces the possible volume of videos. In this work, 110 videos were used to study the 

influence of the layers with the evaluations of the video metrics. The T-test method provided the 

significant difference in the quality of each layer between its evaluation as low or high presence. 

This was done depending on the video metric. The results of this analysis were shown in Table 

12. After this, the Pearson correlation was run and surprisingly it did not provide any relationship. 

However, it is important to know that the Pearson method measures a linear correlation, and this 

data may be correlated but not linearly. 

Further, to demonstrate hypothesis three, the Pearson correlation was performed to the 

questions and metrics, obtaining positive and very high values for the questions without 

significant differences. Therefore, this means that for these questions, the measurement made 

by the metrics is very good compared to human opinion. Overall, VMAF presented very good 

results, including high positive correlations with question assessment. However, PSNR 

performed even better, being the metric that best correlates with the questions in four of the five 

topics. In addition to this analysis, the correlation was evaluated using the same method with the 

mean order of all participants. In this case, VMAF stands out in four out of five topics and PSNR 

in the remaining one. Taking into account all these results, the hypothesis concludes that PSNR 

and VMAF are quite appropriate for analyzing teleoperation content and that SSIM does not 

show good results. 
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6 Conclusion 

This chapter provides an overview of the current state of the art in teleoperation and video 

metrics. In addition, the study carried out and the hypotheses raised are presented. Some of the 

most important results are then highlighted. Finally, windows for improvement found during the 

development of the thesis are identified with the aim of motivating future work and the 

improvement of video quality in teleoperated driving. 

6.1 Summary 

Teleoperation is a relatively modern technology and presents great opportunities for improving 

autonomous driving. This thesis aims to help determine the video quality perceived by humans 

using video metrics. For this purpose, from among those that the state of the art has developed, 

we take advantage of PSNR, SSIM and VMAF. These metrics have been shown in previous 

studies to be functional and useful and have therefore been chosen to analyze this content. 

To achieve the objective of determining the quality of an image perceived by a human, an online 

experiment with 52 final participants was conducted. The subjective study shared some 

similarities with SAGAT. This experiment included the viewing of six videos pre-selected to 

describe a driver's environment. In addition to the viewing, participants were asked for ratings 

for different topics about the video including the overall clearance, quality, situation on the street, 

velocity accordance, safety feeling, conduction rating, environmental perception, visibility and 

teleoperation control. 

As part of the quality assessment, 215 real videos recorded in the city of Munich were available 

as well as numerous videos recorded in the CARLA simulator. These videos were recorded in 

different parts of the city in order to obtain a wide variety of scenarios and situations. The content 

generally consisted of ten-second videos for the real and some simulator content, although other 

simulator videos lasted between one and two minutes. Subsequently, these videos are 

compressed to 5000 Kbit simulating the compression necessary for teleoperated driving. The 

results of the simulator videos showed that the compression slightly affects these contents, 

presenting very good quality for all metrics compared to real contents. 

During the development of the work, three hypotheses are raised. The first aims to evaluate the 

increase in the complexity of the videos according to the subjective opinion of the survey 

participants. The second aims to determine the significant differences between the video metrics 

depending on the incorporation of the different layers that constitute a complete description of 

the environment. Finally, the third hypothesis studies the general correlation that exists between 

the video metrics and human opinion to determine which ones are similar to subjective opinion 

and therefore are more useful in the sector. 
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The results obtained previously demonstrate for the first hypothesis that some aspects of driving 

are subjective to the quality of the image provided, but other aspects are independent of this 

because they are influenced by external factors. Therefore, only for some of the topics covered 

in the survey, the increase in complexity of the situation affects the assessment of these. 

The results of the second hypothesis obtained by means of the T-test indicate that the most 

basic attributes that constitute a driver's environment, layers 1 and 2, are not significantly 

different in any of the metrics used. However, for the rest of the attributes that describe the 

environment, there is some variability depending on the metric. This means that for PSNR and 

SSIM, the layers mostly show significant differences, whereas in VMAF they do not. 

Exceptionally, layer 5, responsible for describing the lighting conditions, shows significant 

differences in all the metrics. Despite these results, none of the significantly different layers 

present a linear correlation with the quality evaluated by the metrics. 

The last hypothesis shows that not all metrics have the same performance for analyzing content 

of this type. SSIM does not present promising results while PSNR and VMAF obtain very positive 

values. For the survey questions that showed significant differences, the Pearson correlation 

was performed. This method indicated that PSNR is the metric that most closely approximates 

the mean rating of the online survey, VMAF also obtained good values in this study. However, 

when the quality order of the six videos for these significant questions is analyzed, it is VMAF 

that comes closest followed by PSNR. It is therefore concluded that both metrics have a 

promising use and that the simplicity of PSNR provides performance advantages for the 

execution of analysis. 

6.2 Outlook 

The hypotheses raised have been satisfactorily resolved, although some details can be improved. 

During the writing of the thesis, some new questions were generated. These questions range 

from improving the subjective experiment to new tests with different content. 

The online experiment carried out yielded good results, however, a presential experiment that 

better represents the situation of a teleoperator would be beneficial to improve the veracity of the 

data. This includes the visualization of the environment with more cameras in the vehicle 

available and even with several screens as available in the chair of Automotive Technology at 

Technical University of Munich (Figure 8). In addition, the selective decision of participants could 

generate new results. The question therefore is whether with improvements in the subjective 

survey, the results obtained are verified or if otherwise there are differences. 

This thesis has primarily focused on video content from urban environments and that, therefore 

raises the last question. Unlike urban roads, rural roads typically contain fewer objects but often 

involve a higher frequency of curves and intersections, typically with higher speeds. Furthermore, 

temporary or unexpected objects that may appear on rural roads are often less predictable 

compared to urban environments. Teleoperation is studied in this case to improve AD and that, 

therefore, involves all types of spaces including all types of roads and available paths. This raises 

the question of whether VQMs are equally valid and effective in both urban and rural 

environments.



 

 

 

i 

List of illustrations 

 

Figure 1. Crash rate report [4]. .................................................................................................... 1 

Figure 2. Waymo driverless taxi in the streets of San Francisco [3]. .......................................... 2 

Figure 3. Research methodology of the thesis. .......................................................................... 3 

Figure 4. Relevant skills between humans and machines according to [10]. ............................. 5 

Figure 5. Conceptual description of direct control concept according to [1]. ............................... 6 

Figure 6. Relationship between SPIDER processes, situational awareness and crash risk 

according to [24]. ............................................................................................ 8 

Figure 7. Representation of layers in a real scenario. .............................................................. 10 

Figure 8. Current teleoperation workplace at the Chair of Automotive Technology at Technical 

University of Munich. .................................................................................... 11 

Figure 9. Optical flow movement detection on a moving vehicle. ............................................. 15 

Figure 10. Pixel position change according to [59]. .................................................................. 16 

Figure 11. Situational awareness and dynamic decision-making. ............................................ 18 

Figure 12. Front center camera of the vehicle in CARLA simulator. ......................................... 21 

Figure 13. Front center camera of the research vehicle EDGAR. ............................................ 22 

Figure 14. Frame of a studied video with the flow displayed with arrows meaning direction and 

quantity of movement. .................................................................................. 27 

Figure 15. Frame of a studied video with the Hue Saturation Value (HSV) meaning quantity of 

motion and direction. .................................................................................... 28 

Figure 16. VQMs results for six different scenarios filmed in the simulator CARLA. PSNR and 

VMAF ranking from 0 to 100 and SSIM ranking from 0 to 1. ........................ 32 

Figure 17. Evolution of the evaluation of three video quality metrics for scenario 3 of CARLA 

videos. .......................................................................................................... 33 

Figure 18. Video quality metrics for all the videos filmed in Munich. The scale ranges from 0 for 

a poor evaluation to 100 for good quality assessment. ................................ 33 

Figure 19. Comparison of two similar video content from CARLA simulator and reality. SSIM was 

normalized so it can be compared to the rest of the metrics. ....................... 34 

Figure 20. Evolution of the VQMs for video 1. .......................................................................... 35 

Figure 21. Evolution of the VQMs for video 2. .......................................................................... 35 



List of illustrations 

ii 

Figure 22. Evolution of the VQMs for video 3. .......................................................................... 36 

Figure 23. Evolution of the VQMs for video 4. .......................................................................... 36 

Figure 24. Evolution of the VQMs for video 5. .......................................................................... 36 

Figure 25. Evolution of the VQMs for video 6. .......................................................................... 37 

Figure 26. Optical flow evolution during time for video 4. ......................................................... 37 

Figure 27. Normal velocity distribution assessed in the subjective opinion about video 5. ....... 39 

Figure 28. Statistical results for the nine topics in the subjective survey for video 1................. 39 

Figure 30. Subjective ratings about safety feeling by 52 participants in online survey. ............ 41 



 

 

 

iii 

Table directory 

Table 1. Layer description of 6LM. .............................................................................................. 9 

Table 2. Average rank and EPE on the Middlebury test set with the different penalty functions 

[62]. ............................................................................................................... 17 

Table 3. Correlation between PSNR and subjective quality. .................................................... 19 

Table 4. Pearson correlation between MOS and objective metrics. ......................................... 19 

Table 5. Pearson correlation between VQMs. .......................................................................... 19 

Table 6. Description of source video material. .......................................................................... 23 

Table 7. Subjective study questions common to all videos and rated from 1 to 10. ................. 29 

Table 8. Simulator CARLA videos order by quality assessed by three different metrics. ......... 32 

Table 9. Layer rating explanation for SA assessment for Munich videos. Burnout of the image 

also included. ................................................................................................ 34 

Table 10. Weighted average considering no existence, low or high presence of the layer for every 

video. Layer 6 is not present and therefore shows a zero value. ................. 38 

Table 11. Pearson correlation between layers and metrics for the six selected video samples.

...................................................................................................................... 40 

Table 12. T-test results for low and high presence of layers for each metric with a source of 110 

videos. .......................................................................................................... 41 

Table 13. Correlation between the metrics and the significant questions from the survey. Done 

with the Pearson-Correlation-Method. .......................................................... 42 

 

 

 



 

 

 

iv 

Bibliography 



 

 

 

v 

Bibliography 

[1] S. Riedmaier, T. Ponn, D. Ludwig, B. Schick und F. Diermeyer, "Survey on Scenario-Based 

Safety Assessment of Automated Vehicles", IEEE Access, Jg. 8, S. 87456–87477, 2020, 

doi: 10.1109/ACCESS.2020.2993730. 

[2] L. Barthelmes, M. E. Görgülü und M. Kagerbauer, "Wissenschaftliche Begleitung der Easy-

Mile-Busse in Monheim am Rhein - Ergebnisbericht", 2024. 

[3] M. Schwall, T. Daniel, T. Victor, F. Favarò und H. Hohnhold, "Waymo-Public-Road-Safety-

Performance-Data" 

[4] A. Sinha, S. Chand, V. Vu, H. Chen und V. Dixit, "Crash and disengagement data of 

autonomous vehicles on public roads in California" (eng), Scientific data, Jg. 8, Nr. 1, S. 

298, 2021, doi: 10.1038/s41597-021-01083-7. 

[5] M. Baumann and J. F. Krems, "Situation Awareness and Driving" 

[6] A. Schimpe, J. Feiler, S. Hoffmann, D. Majstorovic und F. Diermeyer, "Open Source 

Software for Teleoperated Driving" in 2022 International Conference on Connected Vehicle 

and Expo (ICCVE), Lakeland, FL, USA, 2022, S. 1–6, doi: 

10.1109/ICCVE52871.2022.9742859. 

[7] M. Scholtes et al., "6-Layer Model for a Structured Description and Categorization of Urban 

Traffic and Environment", IEEE Access, Jg. 9, S. 59131–59147, 2021, doi: 

10.1109/ACCESS.2021.3072739. 

[8] A. Dosovitskiy, "CARLA an open driving simulator", Proceedings of the 1st Annual 

Conference on Robot Learning, S. 1–16, 2017. 

[9] A. Sinha, V. Vu, S. Chand, K. Wijayaratna und V. Dixit, "A Crash Injury Model Involving 

Autonomous Vehicle: Investigating of Crash and Disengagement Reports", Sustainability, 

Jg. 13, Nr. 14, S. 7938, 2021, doi: 10.3390/su13147938. 

[10] D. Majstorovic, S. Hoffmann, F. Pfab, A. Schimpe, M.-M. Wolf und F. Diermeyer, "Survey 

on Teleoperation Concepts for Automated Vehicles", 18. Aug. 2022. [Online]. Verfügbar 

unter: http://arxiv.org/pdf/2208.08876v1. 

[11] S. Gnatzig, F. Schuller und M. Lienkamp, "Human-machine interaction as key technology 

for driverless driving - A trajectory-based shared autonomy control approach" in 2012 RO-

MAN: The 21st IEEE International Symposium on Robot and Human Interactive 

Communication, Paris, France, 2012, S. 913–918, doi: 10.1109/ROMAN.2012.6343867. 

[12] M. P. Stéphane Bensoussan, "Computer-Aided Teleoperation of an Urban Vehicle - 

Advanced Robotics, 1997. ICAR '97. Proceedings., 8th International Conference on", 1997. 

[13] G. Niemeyer und J.-J. Slotine, "Stable adaptive teleoperation", IEEE J. Oceanic Eng., Jg. 

16, Nr. 1, S. 152–162, 1991, doi: 10.1109/48.64895. 



Bibliography 

vi 

[14] L. Basañez und R. Suárez, "Teleoperation" in Springer Handbook of Automation, S. Y. Nof, 

Hg., Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, S. 449–468, doi: 10.1007/978-

3-540-78831-7_27. 

[15] T. Fong und C. Thorpe, "Vehicle Teleoperation Interfaces" 

[16] M. Hofbauer, C. B. Kuhn, G. Petrovic und E. Steinbach, "TELECARLA: An Open Source 

Extension of the CARLA Simulator for Teleoperated Driving Research Using Off-the-Shelf 

Components" in 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 

2020, S. 335–340, doi: 10.1109/IV47402.2020.9304676. 

[17] A. Schimpe, S. Hoffmann und F. Diermeyer, "Adaptive Video Configuration and Bitrate 

Allocation for Teleoperated Vehicles" in 2021 IEEE Intelligent Vehicles Symposium 

Workshops (IV Workshops), Nagoya, Japan, 2021, S. 148–153, doi: 

10.1109/IVWorkshops54471.2021.9669258. 

[18] F. Stroppa et al., "Shared-Control Teleoperation Paradigms on a Soft-Growing Robot 

Manipulator", J Intell Robot Syst, Jg. 109, Nr. 2, 22. Sep. 2023, doi: 10.1007/s10846-023-

01919-x. 

[19] Y. Li, A. Takagi und K. P. Tee, "Editorial: Shared Control for Tele-Operation Systems" 

(eng), Frontiers in robotics and AI, Jg. 9, 2022, doi: 10.3389/frobt.2022.915187. 

[20] M. Andreas Julius Schimpe, "Uncoupled Shared Control Designs for Teleoperation of 

Highly-Automated Vehicles" 

[21] A. Hosseini, T. Wiedemann und M. Lienkamp, "Interactive path planning for teleoperated 

road vehicles in urban environments" in 2014 IEEE 17th International Conference on 

Intelligent Transportation Systems (ITSC), Qingdao, China, 2014, S. 400–405, doi: 

10.1109/ITSC.2014.6957723. 

[22] T. M. Allen, H. Lunenfeld und G. J. Alexander, "Driver information needs", Comittee on 

Motorist Information System 50th annual meeting. 

[23] M. R. Endsley, "Design and Evaluation for Situation Awareness Enhancement", 

Proceedings of the Human Factors Annual Meeting, Jg. 32, S. 97–101, 1988. 

[24] Donald L. Fisher, "Modeling situation awareness and crash risk", 2014. 

[25] J. Uhrmeister, "The validity of the SAGAT-questionnaire:: An empirical study using 

simulated driving situations", 2013. 

[26] H. R. Wu und K. R. Rao, "Digital Video Image Quality and Perceptual Coding" 

[27] H. Strasburger, I. Rentschler und M. Jüttner, "Peripheral vision and pattern recognition: a 

review" (eng), Journal of vision, Jg. 11, Nr. 5, S. 13, 2011, doi: 10.1167/11.5.13. 

[28] S. Winkler, "Digital Video Quality: Vision Models and Metrics" 

[29] D. H. Foster, "Color constancy" (eng), Vision research, Jg. 51, Nr. 7, S. 674–700, 2011, 

doi: 10.1016/j.visres.2010.09.006. 

[30] Adriana Fiorentini and Lamberto Maffei, "Binocular depth perception without geometrical 

cues", 1971. 

[31] L. Thompson, M. Ji, B. Rokers und A. Rosenberg, "Contributions of binocular and 

monocular cues to motion-in-depth perception" (eng), Journal of vision, Jg. 19, Nr. 3, S. 2, 

2019, doi: 10.1167/19.3.2. 



Bibliography 

 

vii 

[32] D. G. Pelli und P. Bex, "Measuring contrast sensitivity" (eng), Vision research, Jg. 90, S. 

10–14, 2013, doi: 10.1016/j.visres.2013.04.015. 

[33] Y. Gao, X. Min, Y. Zhu, J. Li, X.-P. Zhang und G. Zhai, "Image Quality Assessment: From 

Mean Opinion Score to Opinion Score Distribution" in MM '22: The 30th ACM International 

Conference on Multimedia, Lisboa Portugal, 2022, S. 997–1005, doi: 

10.1145/3503161.3547872. 

[34] S. Winkler und P. Mohandas, "The Evolution of Video Quality Measurement: From PSNR 

to Hybrid Metrics", IEEE Trans. on Broadcast., Jg. 54, Nr. 3, S. 660–668, 2008, doi: 

10.1109/TBC.2008.2000733. 

[35] S. Li, L. Ma und K. N. Ngan, "Full-Reference Video Quality Assessment by Decoupling 

Detail Losses and Additive Impairments", IEEE Trans. Circuits Syst. Video Technol., Jg. 

22, Nr. 7, S. 1100–1112, 2012, doi: 10.1109/TCSVT.2012.2190473. 

[36] Z. Kotevski und P. Mitrevski, "Experimental Comparison of PSNR and SSIM Metrics for 

Video Quality Estimation" 

[37] Q. Fan, W. Luo, Y. Xia, G. Li und D. He, "Metrics and methods of video quality assessment: 

a brief review", Multimed Tools Appl, Jg. 78, Nr. 22, S. 31019–31033, 2019, doi: 

10.1007/s11042-017-4848-x. 

[38] B. Girod, "What's wrong with mean-squared error? Digital images and human vision", MIT 

Press, S. 207–220, 1993. 

[39] Z. Wang, A. C. Bovik und L. Lu, "Why is image quality assessment so difficult?" in 

Proceedings of ICASSP '02, Orlando, FL, USA, 2002, IV-3313-IV-3316, doi: 

10.1109/ICASSP.2002.5745362. 

[40] P. C. Teo und D. J. Heeger, "Perceptual image distortion" in 1st International Conference 

on Image Processing, Austin, TX, USA, 1994, S. 982–986, doi: 10.1109/ICIP.1994.413502. 

[41] Q. Huynh-Thu und M. Ghanbari, "The accuracy of PSNR in predicting video quality for 

different video scenes and frame rates", Telecommun Syst, Jg. 49, Nr. 1, S. 35–48, 2012, 

doi: 10.1007/s11235-010-9351-x. 

[42] U. Sara, M. Akter und M. S. Uddin, "Image Quality Assessment through FSIM, SSIM, MSE 

and PSNR—A Comparative Study", JCC, Jg. 07, Nr. 03, S. 8–18, 2019, doi: 

10.4236/jcc.2019.73002. 

[43] Z. Wang, A. C. Bovik, H. R. Sheikh und E. P. Simoncelli, "Image quality assessment: from 

error visibility to structural similarity" (eng), IEEE transactions on image processing : a 

publication of the IEEE Signal Processing Society, Jg. 13, Nr. 4, S. 600–612, 2004, doi: 

10.1109/tip.2003.819861. 

[44] S. S. Channappayya, A. C. Bovik und R. W. Heath, "Rate bounds on SSIM index of 

quantized images" (eng), IEEE transactions on image processing : a publication of the IEEE 

Signal Processing Society, Jg. 17, Nr. 9, S. 1624–1639, 2008, doi: 

10.1109/TIP.2008.2001400. 

[45] M. Hassan, "Structural Similarity Measure for Color Images" 



Bibliography 

viii 

[46] H. R. Sheikh und A. C. Bovik, "Image information and visual quality" (eng), IEEE 

transactions on image processing : a publication of the IEEE Signal Processing Society, 

Jg. 15, Nr. 2, S. 430–444, 2006, doi: 10.1109/tip.2005.859378. 

[47] S. Rezazadeh und S. Coulombe, "Low-complexity computation of visual information fidelity 

in the discrete wavelet domain" in 2010 IEEE International Conference on Acoustics, 

Speech and Signal Processing, ICASSP 2010, Dallas, TX, 2010, S. 2438–2441, doi: 

10.1109/ICASSP.2010.5496298. 

[48] Y. Han, Y. Cai, Y. Cao und X. Xu, "A new image fusion performance metric based on visual 

information fidelity", Information Fusion, Jg. 14, Nr. 2, S. 127–135, 2013, doi: 

10.1016/j.inffus.2011.08.002. 

[49] S. Li, F. Zhang, L. Ma und K. N. Ngan, "Image Quality Assessment by Separately 

Evaluating Detail Losses and Additive Impairments", IEEE Trans. Multimedia, Jg. 13, Nr. 

5, S. 935–949, 2011, doi: 10.1109/TMM.2011.2152382. 

[50] Z. Li und A. Aaron, "Toward A Practical Perceptual Video Quality Metric", Netflix TechBlog, 

Juni 2016. 

[51] B. García, L. López-Fernández, F. Gortázar und M. Gallego, "Practical Evaluation of VMAF 

Perceptual Video Quality for WebRTC Applications", Electronics, Jg. 8, Nr. 8, S. 854, 2019, 

doi: 10.3390/electronics8080854. 

[52] R. Rassool, "VMAF reproducibility: Validating a perceptual practical video quality metric" in 

2017 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting 

(BMSB), Cagliari, Italy, 2017, S. 1–2, doi: 10.1109/BMSB.2017.7986143. 

[53] M. Orduna, C. Diaz, L. Munoz, P. Perez, I. Benito und N. Garcia, "Video Multimethod 

Assessment Fusion (VMAF) on 360VR Contents", IEEE Trans. Consumer Electron., Jg. 

66, Nr. 1, S. 22–31, 2020, doi: 10.1109/TCE.2019.2957987. 

[54] VMAF GitHub repository. Netflix. [Online]. Verfügbar unter: https://github.com/Netflix/vmaf 

[55] D. Fleet and Y. Weiss, "Optical flow estimation" 

[56] B. K. Horn und B. G. Scgunck, "Determining Optical Flow", Artificial Inteligence, Jg. 17, S. 

185–203, 1981. 

[57] Arush, Part 1 - Visual Feature Detection for Autonomous Vehicle Video Streams. [Online]. 

Verfügbar unter: https://medium.com/building-autonomous-flight-software/using-opencv-

to-detect-features-in-autonomous-driving-4d7c5348ee4 (Zugriff am: 17. Juli 2024). 

[58] S. Beauchemin und J. L. Barron, "The computation of optical flow", ACM Computing 

Surveys, Jg. 27, Nr. 3, 3. Sep. 1995. 

[59] Arush, Part 2 - The Math Behind Optical Flow. [Online]. Verfügbar unter: 

https://medium.com/building-autonomous-flight-software/math-behind-optical-flow-

1c38a25b1fe8 (Zugriff am: 17. Juli 2024). 

[60] Arush, Part 3 - Lucas-Kanade Optical Flow. [Online]. Verfügbar unter: 

https://medium.com/building-autonomous-flight-software/lucas-kanade-optical-flow-

942d6bc5a078 (Zugriff am: 17. Juli 2024). 

[61] M. Otte und H.-H. Nagel, "Optical Flow Estimation: Advances and Comparisons" 



Bibliography 

 

ix 

[62] D. Sun, S. Roth und M. J. Black, "A Quantitative Analysis of Current Practices in Optical 

Flow Estimation and the Principles Behind Them", Int J Comput Vis, Jg. 106, Nr. 2, S. 115–

137, 2014, doi: 10.1007/s11263-013-0644-x. 

[63] Hiroaki Hayashi et al., A Driver Situational Awareness Estimation System Based on 

Standard Glance Model for Unscheduled Takeover Situations. Piscataway, New Jersey: 

IEEE, 2019. [Online]. Verfügbar unter: 

https://ieeexplore.ieee.org/servlet/opac?punumber=8792328 

[64] A. Munir, A. Aved und E. Blasch, "Situational Awareness: Techniques, Challenges, and 

Prospects", AI, Jg. 3, Nr. 1, S. 55–77, 2022, doi: 10.3390/ai3010005. 

[65] U. Engelke, M. Barkowsky, P. Le Callet und H.-J. Zepernick, "Modelling saliency 

awareness for objective video quality assessment" in 2010 Second International Workshop 

on Quality of Multimedia Experience (QoMEX 2010), Trondheim, Norway, 2010, S. 212–

217, doi: 10.1109/QOMEX.2010.5516159. 

[66] E. Blaauwgeers, L. Dubois und L. Ryckaert, "Real-time risk estimation for better situational 

awareness", IFAC Proceedings Volumes, Jg. 46, Nr. 15, S. 232–239, 2013, doi: 

10.3182/20130811-5-US-2037.00036. 

[67] S. Neumeier, S. Stapf und C. Facchi, "The Visual Quality of Teleoperated Driving Scenarios 

How good is good enough?" in 2020 International Symposium on Networks, Computers 

and Communications (ISNCC), Montreal, QC, Canada, 2020, S. 1–8, doi: 

10.1109/ISNCC49221.2020.9297343. 

[68] A. V. Katsenou, F. Zhang, K. Swanson, M. Afonso, J. Sole und D. R. Bull, "VMAF-based 

Bitrate Ladder Estimation for Adaptive Streaming" in 2021 Picture Coding Symposium 

(PCS), Bristol, United Kingdom, 2021, S. 1–5, doi: 10.1109/PCS50896.2021.9477469. 

[69] V. V. Menon, P. T. Rajendran, R. Farahani, K. Schoeffmann und C. Timmerer, "Video 

Quality Assessment with Texture Information Fusion for Streaming Applications" in MHV 

'24: Mile-High Video Conference, Denver CO USA, 2024, S. 1–6, doi: 

10.1145/3638036.3640798. 

[70] Separate autoware_auto_msgs into several packages. [Online]. Verfügbar unter: 

https://gitlab.com/autowarefoundation/autoware.auto/autoware_auto_msgs/-

/blob/master/autoware_auto_control_msgs/msg/AckermannControlCommand.idl?ref_typ

e=heads 

[71] N. Raina et al., "EgoBlur: Responsible Innovation in Aria", 24. Aug. 2023. [Online]. 

Verfügbar unter: http://arxiv.org/pdf/2308.13093v2. 

[72] S. Macenski, T. Foote, B. Gerkey, C. Lalancette und W. Woodall, Robot Operating System 

2: Design, architecture, and uses in the wild. [Online]. Verfügbar unter: 

https://docs.ros.org/en/humble/Concepts/Basic/About-Topics.html. 

[73] Imavijit, Python | Spitzen-Signal-Rausch-Verhältnis (PSNR). [Online]. Verfügbar unter: 

https://www.geeksforgeeks.org/python-peak-signal-to-noise-ratio-psnr/ (Zugriff am: 15. 

Mai 2024). 

[74] J. Newmarch, "FFmpeg/Libav" in Linux Sound Programming, J. Newmarch, Hg., Berkeley, 

CA: Apress, 2017, S. 227–234, doi: 10.1007/978-1-4842-2496-0_12. 



Bibliography 

x 

[75] Computer Vision: Optical Flow. GitHub, 2021. [Online]. Verfügbar unter: 

https://github.com/niconielsen32/ComputerVision/blob/master/opticalFlow/denseOpticalFl

ow.py 

[76] Gunnar Farnebäck, "Two-Frame Motion Estimation Based on Polynomial Expansion" 

[77] J. Bigün und T. Gustavsson, Image analysis: 13th Scandinavian conference, SCIA 2003, 

Halmstad, Sweden, June 29-July 2, 2003 proceedings. Berlin, New York: Springer, 2003. 

[78] P. Royston, "Approximating the Shapiro-Wilk W-test for non-normality", Jg. 2, S. 117–119, 

1992. 

[79] C. Zaiontz, Shapiro-Wilk Expand Test. [Online]. Verfügbar unter: https://real-

statistics.com/tests-normality-and-symmetry/statistical-tests-normality-symmetry/shapiro-

wilk-expanded-test/ (Zugriff am: 10. August 2024). 

[80] Z. Bobbitt, How to Perform the Friedman Test in Excel (Zugriff am: 10. August 2024). 

 

  



 

 

 

xi 

Appendix 

A General participant information ........................................................ Conclusion 

 

  



Appendix 

xii 

 



 

 

 

xiii 

A General participant information 

The following data describes the general information of the participants in the online survey. 

Some important values from this were used in the different chapters of the thesis. 

Number of records in 
this query: 52  
Total records in survey: 52  
Percentage of total: 100,00%  

   

   
Summary for E01Q01   
Wie alt bist du?   
Answer Count Percentage 

Von 0 bis 15 (AO01) 1 1,92% 

Von 15 bis 30 (AO02) 25 48,08% 

Von 30 bis 45 (AO03) 8 15,38% 

Von 45 bis 60 (AO04) 14 26,92% 

+60 (AO05) 4 7,69% 

No answer 0 0,00% 

Not displayed 0 0,00% 

   

   
Summary for E01Q02   
Haben Sie einen Führerschein?  
Answer Count Percentage 

Yes (Y) 51 98,08% 

No (N) 1 1,92% 

No answer 0 0,00% 

Not displayed 0 0,00% 

   

   
Summary for E01Q03   
<p>Wie viele Jahre fahren Sie schon?</p>  
Calculation Result  
Count 52  
Sum 910,5  
Standard deviation 14,6  
Average 17,51  
Minimum 0  
1st quartile (Q1) 3,25  
2nd quartile (Median) 12  
3rd quartile (Q3) 30  
Maximum 46  
Null values are ignored in calculations  
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Q1 and Q3 calculated using minitab method  

   

   
Summary for E01Q04   
<p>Wie viele Tage fahren Sie durchschnittlich pro Woche?</p> 

Calculation Result  
Count 52  
Sum 168  
Standard deviation 2,06  
Average 3,23  
Minimum 0  
1st quartile (Q1) 1  
2nd quartile (Median) 3  
3rd quartile (Q3) 5  
Maximum 7  
Null values are ignored in calculations  
Q1 and Q3 calculated using minitab method  

   

   
Summary for E01Q05   
Wo machen Sie das Experiment?  
Answer Count Percentage 

Computer (1) 8 15,38% 

Laptop (2) 18 34,62% 

Tablet (3) 2 3,85% 

Smartphone (4) 24 46,15% 

Other 0 0,00% 

No answer 0 0,00% 

Not displayed 0 0,00% 

 


