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1. Introduction 

1.1 Motivation 

The ongoing climate change, driven by human consumption of fossil resources, has 

necessitated a paradigm shift in energy production, distribution and consumption towards 

sustainable and green solutions. In this context, Germany has made a commitment to combat 

climate change, aiming to achieve carbon neutrality by 2045 [1]. Consequently, the country's 

power generation landscape is undergoing rapid transformation, with renewable energy 

contributing a significant 56 % share in 2023 and an ambitious target of 80 % set for 2030 [2,3]. 

This high penetration of renewable energy presents substantial challenges in stabilizing the 

electricity grid, due to the high intermittency and unpredictability of renewable generation 

profiles. Simultaneously, other sectors such as mobility are advancing at a slower pace. The 

mobility sector, who is responsible for 20 % of the total greenhouse gas emissions is currently 

missing their climate targets with only 4 % share of non-fossil-fueled vehicles in Germany [4]. 

The anticipated electrification is expected to impose additional demands and dynamics on the 

grid, pushing the urgency for innovative solutions to ensure the success of the energy 

transition. In this context, the concept of Vehicle-to-Everything (V2X) emerges as a particularly 

promising solution to leverage bidirectional charging. Just recently, several industry 

associations submitted together a roadmap for the ramp-up of bi-directional charging 

technologies to the German government, highlighting the current topicality and importance of 

that topic [5]. 

Given these circumstances, electric vehicles (EVs) spend over 96% of their time idle, 

representing a huge untapped potential to utilize the battery energy storage for flexibility 

provision [6]. Within V2X, EVs are integrated into the energy ecosystem through bi-directional 

charging and smart communication, offering rapid and efficient flexibility. Depending on the 

configuration of the ecosystems, V2X expands the utility of EVs beyond simple transportation, 

introducing new value streams. Among these, Vehicle-to-Home (V2H) and Vehicle-to-Grid 

(V2G) are the most prominent concepts. [7] 

In the V2H configuration, EVs are connected to smart households, serving as additional home 

battery storage. This arrangement positions the EV owner as a so-called 'prosumer', capable 

of producing, storing, and consuming energy through the PV-household-EV setup. This setup 

enhances household energy self-sufficiency and self-consumption by storing surplus energy 

from solar photovoltaic (PV) systems during times of high production and low consumption. 

On the contrary, V2G integrates EVs into the electricity grid, where they serve as flexible asset 

for frequency stabilization and participation in spot market trading (SMT). Both concepts 

promote a decentralized grid while enhancing grid stability and thus facilitate the increased 

incorporation of renewables into the energy mix. Moreover, the additional revenue streams 

significantly strengthen the attractiveness of EVs and thereby accelerate the current stuttering 

electrification of the mobility sector. Previous studies indicate that combining both concepts 
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offers the greatest value for stakeholder including prosumers, encouraging to investigate both 

concepts in a combined manner [8]. 

Nevertheless, coordinating these services presents a highly complex task, that involves 

simultaneously maximizing revenue through value stacking, meeting EV owners' driving needs 

and minimizing battery degradation while adopting to the gird operational regulations. To 

accomplish this, specialized trading knowledge, including certificated EPEX trader and 

advanced bidding and optimization algorithms are needed [9,10]. Moreover, a single EV does 

not meet the minimum power capacity criteria for participation in the German balancing market 

[11]. Consequently, there is an inevitable need for an intermediary entity to aggregate multiple 

vehicles into a pool, thereby facilitating V2G access for single EV owners. This role is fulfilled 

by the EV aggregator (EVA), which coordinates the bi-directional charging operations and 

communicates between the energy markets and individual prosumers [10].  

In addition to the operational complexities associated with service coordination at the flexibility 

and energy markets, a continuous competition with the individual prosumers interest takes 

place. This competition forces the EVA to craft a compelling business model that presents an 

attractive value proposition to prosumers, encouraging them to participate in the EV pool rather 

than choosing for individual V2H applications. Depending on the so generated price incentives, 

the prosumers adapt their consumption behavior and participation choice, which, in turn, 

impact the EVA's operations and strategy. Hence, it becomes extremely relevant to study the 

strategic interaction between EVA and prosumers through effective pricing concepts, while 

optimizing the EVA´s operation, taking into account the competition with V2H.  

The Stackelberg game (SBG) theory covers this strategic market interaction and enables an 

effective investigation. Therefore, SBG describes the dynamics between a leading party, who 

initiates actions, and a following party, who responds to these initial actions. Both parties aim 

to optimize their respective objective functions in a selfish and uncooperative environment. 

Due to its hierarchical structure, a bi-level modeling approach is very promising for 

investigating this dynamic SBG. [12]  

Within this thesis, a mathematical model for a dynamic Stackelberg bi-level optimization is 

presented. The bi-level model features an upper-level (UL) optimization representing the EV 

aggregator's profit maximization efforts and a lower-level (LL) optimization reflecting EV 

owners' cost minimization within individual V2H ecosystems. In doing so, this thesis aims to 

provide new insights into optimal operating and pricing concepts for the EVA. 

1.2 Literature Research 

In recent years, V2X topics have drawn significant attention from researchers due to their 

potential to contribute positively to the energy transition. This is evidenced by the raise of 

published research articles in this domain. Simultaneously, mathematical optimization models 

have become an important tool for deeply analyzing the deployment and impacts of V2X 

concepts. In that sense, [7] presents a mathematical model for maximizing the economic value 

of EVs through a multi-use value stacking approach, incorporating various applications such 

as self-consumption increase, peak shaving, frequency regulation, and SMT. The findings 
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indicate that deploying an EV fleet in multiple value streams significantly enhances the 

economic benefits, highlighting the flexibility and synergies among different applications. In 

addition, [8] explores smart charging strategies for EVs, focusing on prosumer systems and 

the involvement in Germany's balancing market. The outcomes highlight the economic and 

ecological benefits of integrating EVs with renewable energy sources and grid services, 

emphasizing the potential of smart charging to optimize energy use and support grid stability. 

Although the concept of EVA is not new, it has seen a significant rise in research interest 

recently, covering areas such as optimal charging and coordination strategies and market 

participation strategies, bidding strategies, pricing concepts and integration of EVA into energy 

system [10,13]. The bi-level modeling approach, in particular, has been widely applied in EVA 

research, due to the relevance of Stackelberg game theory in energy trading and market 

appearance, which are prevalent topics for EVAs [12]. For instance, [14] examines EVA 

bidding strategies for optimal day-ahead reserve management, presenting a bi-level 

optimization model with a novel exact algorithm that aims to benefit all market participants. 

Regarding pricing strategies, [15] and [16] propose dynamic pricing schemes, including time-

of-use (TOU) contracts, to achieve optimal coordination and load management via price 

incentives. [17] employs a reinforcement learning algorithm for quarter-hourly dynamic pricing 

models. These studies underscore dynamic pricing's effectiveness in demand management 

and its benefits for all stakeholders. Furthermore, [18] details a stochastic bi-level optimization 

model to improve EVA trading strategies across several markets by accounting for 

uncertainties in market prices and EV fleet characteristics. Similarly, [19] introduces a multi-

period joint bidding and pricing strategy that incorporates a stochastic optimization approach 

to manage uncertainties in baseline load and a robust semi-dynamic traffic assignment model 

for estimating dynamic EV charging behaviors under variable charging prices. Finally, [20] 

discusses a bi-level optimization model for EVAs, aiming to develop pricing strategies that 

consider user response willingness and satisfaction. This approach seeks to minimize decision 

risks for EVAs in market participation, potentially reducing EVA income but enhancing user 

satisfaction overall.  

Despite these extensive research activities, a significant research gap remains, to which this 

thesis aims to contribute. There is a need for research into a mathematical approach to explore 

the leader-follower interactions between the EVA and multiple private prosumers. At the same 

time, a model for optimizing the value-stacking of multiple value streams for V2G and V2H 

applications concurrently is missing. This model would provide valuable insights into the 

operations and pricing concepts of an EVA. To the best of the author's knowledge, no public 

framework currently exists that addresses the mentioned research objective. By addressing 

this gap, this thesis contributes an additional piece towards developing a more holistic 

understanding of the EVA. 

1.3 Research Objective 

Derived from the previously mentioned research gap, the overarching research target is 

formulated as follows: This thesis aims to investigate how a reasonable pricing concept for the 

EVA should be designed in a selfish and non-cooperative environment to create a compelling 

offer to the prosumer for participating in the V2G service while considering the competition with 
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individual V2H alternatives. A special focus is put on determining an appropriate dynamic 

power price the EVA can offer to the prosumer for providing their power. At the same time, this 

thesis presents an innovative model approach for an EVA with optimized value-stacking, 

considering energy arbitrage, balancing services, load shifting, and self-consumption increase 

of the household. In doing so, it will be investigated how the pricing concept influences the 

operation of the EVA and the behavior of the prosumer within a dynamic SBG. Therefore, an 

effective bi-level optimization model is developed to quantitatively model and evaluate the 

given situation within representative scenarios. These scenarios do not only make economic 

sense for the EVA but also consider the prosumers individual interest under consideration of 

the current technical and regulatory landscape. This novel approach provides a new 

perspective in the exploration of the EVA business model, thereby creating new insights in the 

development of reasonable pricing and operating concepts for the EVA. 

To achieve this goal, the mathematical optimization model within this thesis will explore the 

leader-follower dynamics between EVA and prosumers. Therefore, the model is structured as 

a bi-level optimization, incorporating a mixed-integer-linear problem (MILP) in both levels. The 

rationale behind the choice of model comes from the hierarchical characteristics of a bi-level 

optimization as well as the already given FOCUS-framework by the RWTH Aachen, which 

serves as framework for the prosumer model [21]. By following this approach, the most efficient 

method to answer the derived research objective in an accurate and mathematical way is 

chosen, considering the limited resources of this master thesis.  

Overall, this thesis aims to contribute to a more holistic understanding of an EVA and take a 

further step towards successful implementation in the German market. In the author's view, a 

comprehensive investigation of the EVA concept is crucial for the ongoing transition of the 

energy system towards a more flexible, smart, and interconnected system. In that sense, the 

underlying intention of this thesis is to positively contribute to the global energy transition. 

However, while the proposed modelling approach is designed to capture the key dynamics of 

EVA and prosumer interactions effectively, it is based on certain assumptions detailed in 

Chapter 3. The limitations and implications of these assumptions, as well as other constraints 

of the model, will be thoroughly examined in the evaluation to provide a balanced view of the 

study's contributions and areas for future research. 

1.4 Outline 

The thesis comprises five Chapters and is structured as follows: Chapter 2 provides the 

necessary theoretical background, covering the electricity market, balancing market, EV and 

different V2X ecosystems, as well as the basics of mathematical programming. Subsequently, 

Chapter 3 introduces the proposed bi-level modeling framework, designed to optimize the 

operation of the EVA and analyze its interaction with prosumers. Then, Chapter 4 evaluates 

the presented model based on representative scenarios. Based on the results of the scenarios, 

insights for the development of operating and pricing concepts of the EVA are derived. The 

work is finalized with a conclusion and outlook in Chapter 5.  
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2. Theoretical Background 

As mentioned before, the EVA can unlock the flexibility potential of EVs, offering significant 

benefits to our energy system. For a more detailed investigation of the EVA concept, a basic 

understanding of underlying topics is required. This chapter aims to provide the required 

theoretical foundation for the subsequent development and evaluation of the bi-level 

optimization framework in the following Sections. Therefore, in the first Section the German 

electricity market is introduced and relevant ancillary services in the European balancing 

market are explained. Afterwards, the second Section discusses the concept of EV as multi-

purpose decentralized flexibility assets, focusing on the technical EV battery system, the most 

important V2X ecosystems, as well as the generic concept of the EVA. Lastly, the third Section 

introduces the necessary fundamentals in mathematical programming, bi-level optimization, 

and Stackelberg game theory, which will be applied to build the optimization model. 

2.1 German Electricity Market 

The ongoing energy transition impacts all domains of the energy industry, including the 

electricity grid and market. As Germany transitions from fossil fuels to renewable energy 

sources, it faces a significant increase in volatility and decreased controllability on the 

production side. Simultaneously, rising electrification across various sectors generates greater 

electricity demand, thus placing higher loads on the grid. Additionally, the enhanced 

interconnectedness within the energy sector, through different energy carriers such as 

hydrogen, positions the electricity grid as a pivotal and central link in the energy transition. 

These trends greatly amplify the complexity and dynamics within the electricity sector, 

emphasizing the need for a more robust and flexible grid [22]. 

To cope with these changes in the energy sector, the traditional centralized grid setup, 

characterized by inputs from large-scale electricity producers at high voltage levels and outputs 

at low voltage levels for smaller consumers, is evolving. The grid is becoming more flexible, 

demand responsive and decentralized, incorporating smart digital solutions to effectively 

manage short-term fluctuations by exchanging data in real time among all stakeholders, and 

providing appropriate incentives for participants to adjust their consumption and production 

profiles by steering flexible assets. An essential part of this evolution are the concepts of V2H 

and V2G, which integrate the EV battery as a decentralized flexibility resource into the local or 

central energy system. 

Understanding the broader environment and regulatory landscape surrounding these concepts 

is essential for their thorough investigation within this thesis. This includes acquiring a 

fundamental knowledge of the specific German electricity market. To comprehend the 

prosumer perspective, an overview of the mechanisms for price formation and the existing 

electricity tariffs in Germany is necessary. Furthermore, as an intermediary entity, the EVA 

operates within the energy market, necessitating a basic understanding of the mechanisms 

and regulations behind the most prevalent balancing services and trading platforms. 
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To provide the knowledge foundation, this Chapter is structured as follows: First, a detailed 

description of the German electricity market and structure is provided in Section 2.1.1, covering 

key stakeholders, trading and balancing mechanisms, as well as regulatory aspects. 

Subsequently, in Section 2.1.2, the resultant electricity price structures and tariff options for 

the prosumer are described, serving as important components for the later development of 

pricing concepts. Building on this comprehensive introduction, the subsequent Sections focus 

on the three prevalent value streams for V2G. Hence, SMT, FCR, and aFRR are explored in 

depth in 2.1.3, 2.1.4, and 2.1.5, respectively. These Sections focus on mechanisms for 

participation, remuneration schemes, and relevant regulatory considerations essential for the 

operation of an EVA. 

2.1.1  Market Overview & Structure 

Germany's electricity market, one of the largest and most dynamic in Europe, operates within 

a liberalized framework that fosters competitive interactions among various market segments. 

These segments encompass generation, wholesale trading, transmission, distribution. 

balancing and retail supply. All segments’ functions are under the regulatory oversight of the 

Federal Network Agency (Bundesnetzagentur). [22,23] Figure 1 shows the structure of the 

Electricity market. The four German Transmission System Operator (TSO) and over 900 

German Distribution System Operator (DSO) are responsible for operating the grid while 

ensuring the realization of the demand. Before realization of the demand, the energy is 

contractualized or traded through either the retail market or wholesale market. In this structured 

environment, the retail market serves residential, commercial, and industrial consumers, 

offering them the autonomy to select their electricity suppliers with customized agreements. 

Conversely, the wholesale market facilitates transactions among generators, traders, and 

retailers through a trading platform. [24] 

 

Figure 1: German electricity market structure and redispatch mechanism adapted from [25] 
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Within the wholesale market, two primary trading platforms exist: the Over-The-Counter (OTC) 

market and the exchange market. The OTC market is characterized by direct negotiations and 

trades between participants, bypassing a centralized exchange. This setup allows for greater 

flexibility in terms of pricing, contracts, and volume. On the other hand, the exchange market 

operates through a structured process where multiple participants submit bids and transactions 

are executed in a transparent and immediate manner. The exchange market can be divided 

into the futures market and the spot market. Futures market involve electricity being bought 

and sold from a few days up to six years ahead of delivery, while the spot market is where 

short-term transactions are immediately delivered. [24] The spot market trading mechanisms 

will be explained more detailed in Section 2.1.3. Germany hosts significant electricity 

exchanges such as the European Power Exchange (EPEX) SPOT, the European Energy 

Exchange (EEX), and Nord Pool, each playing a crucial role in the market's liquidity and 

efficiency [26]. 

To maintain the electricity grid´s operational integrity, the TSO implement grid balancing and 

redispatch measures. These actions are essential for stabilizing the grid frequency and thus 

avoiding system failures. Triggered by deviations between consumption and production, the 

reserved power capacity is activated by the TSOs. The deviations can occur due to fluctuations 

in consumption, unexpected changes in generation, bad forecasts and the failure of power 

plants or transmission lines. These balancing services are offered in a competitive marketplace 

for Balancing Service Providers (BSP), realized by the TSO´s public platform. There each BSP 

has a balancing account, which can generate imbalances, which in turn will trigger the reserves 

in the balancing services encounter the deviation in generation and consumption. [25] 

The ancillary services are divided in five different types of balancing services as visualize in 

Figure 2. These differ mainly in terms of activation time and duration of use and are gradually 

replaced by each other to restore and maintain grid stability after a deviation. The 

instantaneous reserve (IR) is an inherent characteristic of the electricity supply system. The 

inertial from synchronous machines and thermal power plants prevents power differences from 

directly leading to critical frequency deviations [27].  

 

Figure 2: German balancing services by activation time adapted from [28] 
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manual frequency restoration reserve (mFRR) to stabilize the grid. [24] At the very last, 

depending on the TSO, restoration reserve can be activated to maintain grid frequency for long 

term. However, each of them has individual technical requirements defined by the Network 

Code on Load-Frequency Control of ENTSO-E [29].  

Due to the rapid response capability of EV battery systems in adjusting their charging behavior, 

the most promising ancillary services for V2G are FCR and aFRR, as indicated in [7]. 

Therefore, this thesis will focus exclusively on these ancillary services for modeling purposes. 

They will be described in more detail in Sections 2.1.4 and 2.1.5.  

2.1.2  Electricity Price & Tariffs 

Between a customer and a supplier, several contract types may exist. For small-scale 

customers, the usual arrangement is a static tariff, setting a fixed price per energy unit 

consumed. In private households, energy consumption is often recorded by an analog meter, 

which the supplier checks annually. The customer's bill is then determined by their yearly 

energy consumption. However, if a household has a metering system that can track 

consumption in 15-minute intervals, known as a Smart Meter, it opens the possibility for more 

adaptive pricing models. 

With a Time-of-Use (TOU) scheme, the price for energy usage varies over time, providing 

incentives to use energy during periods that are beneficial both for the grid and economically 

advantageous for the customer [30]. This price variation usually depends on the time of day 

and season, constituting a static TOU tariff. Days are segmented into different periods, each 

assigned a specific rate. Conversely, a dynamic TOU tariff adjusts prices for every 15-minute 

interval, reflecting wholesale market rates [31]. Although dynamic tariffs are standard for large 

industrial consumers, they are rarer for smaller consumers, also due to the absence of the 

necessary smart metering infrastructure. Smart meters facilitate the measurement of energy 

consumption in high temporal resolution, allowing suppliers to create a detailed consumption 

profile over time for each customer [31]. This also creates new tariff options for charging 

electric cars. So-called "car power" tariffs measure consumption using a separate smart meter 

and allow the DSO to throttle the power supply in the event of peak loads in the grid. In 

exchange, the DSO charges lower grid fees for charging the electric car. [32] However, smart 

metering systems are not yet widely deployed among private consumers in Germany, but their 

adoption is gradually increasing [5]. Consequently, it's plausible to anticipate that private 

households will be equipped with smart meters in future scenarios, especially in the assumed 

ecosystem of V2X.  

Regardless of the tariff scheme, every electricity user must pay additional charges that depend 

on the supplier and regulatory expenses, such as taxes and levies. Table 1 outlines these 

components, providing average values for a private household in 2023. It's important to note 

that the actual costs may vary among different DSOs, consumer behaviors, household setups 

and from year to year. Given the current volatility in electricity prices, all values should be 

treated with caution. 
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Table 1: Composition of average electricity costs in Germany 2023 [33] 

Component Costs 

Electricity procurement, sales and profit margin 23.59 ct/kWh 

Grid fee (Netzentgelt) incl. measurements fee 9.35 ct/kWh 

Other Levies and duties 2.985 ct/kWh 

Electricity taxes 2.050 ct/kWh 

VAT 19 % of the total price 

 

The component of the electricity bill that suppliers can adjust encompasses charges for energy 

procurement, sales and their profit margin. On average, this accounts for 23.59 ct/kWh, 

representing 52 % of the total electricity price in 2023 [33]. These costs are further broken 

down into capacity and energy prices. However, for private households, the capacity price is 

of less significance, allowing it to be aggregated into an average overall price [34]. Depending 

on the specific TOU contract details, this portion may partially reflect the wholesale market 

electricity prices. Additionally, the TSO and DSO levies a net grid fee for grid operation and 

maintenance, amounting to 9.35 ct/kWh. Other charges and duties amount to 2.985 ct/kWh, 

covering Concession fees, the Combined Heat and Power Act (KWKG), Electricity Grid 

Charges Ordinance, offshore grid fees, and charges for disconnectable loads. [33] 

Furthermore, the German government imposes an electricity tax of 2.05 ct/kWh, eligible for a 

refund on self-consumed electricity. Laslty, the German Value Added Tax (VAT) is applied at 

a rate of 19 % on the total summed costs. Consequently, the average electricity price for a 

private household in Germany in 2023 is calculated to be 45.19 ct/kWh. [33] 

For prosumers, the feed-in tariff for solar PV-generated electricity is of great importance for the 

design and operation of the energy management of the smart house. With the abolition of the 

EEG surcharge as of 01.07.2022, the surcharge for the feed-in tariff for decentral generated 

electricity from solar PV was also reduced. For the partial feed-in of solar PV electricity, the 

average remuneration price in 2023 was 8.6 ct/kWh and 7.5 ct/kWh for peak power until 

10 kWp and 40kW, respectively. [35]  

2.1.3  Spot Market Trading 

The concept of SMT or also known as arbitrage trading refers within this thesis to the 

systematical utilization of price spreads between buying and selling energy in the spot market. 

With a flexible storage asset, such as an EV battery system, these trades help to adjust power 

balances in the market and thus grid stability, while generating revenue or mitigating costs for 

traders. [7] At present, mobile energy storage systems used for V2G applications are 

systematically disadvantaged by double taxation of the stored energy. The recently submitted 

recommendation for action on bi-directional charging from the National Centre for Charging 
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Infrastructure called for mobile energy storage systems to be exempt from double taxation in 

the same way that stationary energy storage systems are currently exempt. [36] In this 

scenario, only the end consumer will have to pay the taxes and levies once. That change in 

regulations enables the possible participation of EVs in SMT. Therefore, in the following the 

market environment and mechanism for SMT are explained. 

The spot market consists of the day-ahead and intraday markets, each serving unique 

functions and playing vital roles within the energy value chain. The day-ahead market primarily 

facilitates the secure trading of the majority of the produced or required electricity, while the 

intraday market allows for minor, short-term adjustments. [37] The Day-Ahead Market operates 

via a blind auction conducted daily throughout the year. In this auction, traders submit bids and 

offers for quarter, half, and full-hour segments for the following day, expressing their intent to 

buy or sell. Orders are accepted from 10:00 CET on the day preceding delivery, with all bids 

required to be consolidated in the shared order book before the Gate Closure Time at 12:00 

CET. This includes specifying the delivery period, volume, and all price levels from the 

auction's minimum to maximum prices. [38] 

The auction adheres to the principle of Market Clearing Price (MCP). Based on the ascending 

buy-orders, the Power Exchange constructs a demand curve, while the sell-orders form a 

descending supply curve, generating curves for each hour of the subsequent day, as shown 

in Figure 3. The MCP lies at the intersection of these curves. As a result of this order matching, 

the Power Exchange determines trades to purchase or sell a determined quantity of electricity 

to a defined delivery area for the matched MCP. The auction has the advantage of gathering 

liquidity at one point in time while offering full transparency on the traded Market Clearing 

Volumes. [38] 

 

Figure 3: MCP principle 

On the intraday market, market participants engage in continuous trading 24 hours a day, with 

delivery occurring on the same day. When a buyer and a seller match on a price, the trade is 

immediately executed. In Germany, electricity trading is possible until 5 minutes before 

delivery. Like in the day-ahead market, trading can be done using hourly, half-hourly, and 
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quarter-hourly contracts, along with block products. As mentioned, this market provides more 

flexibility, enabling traders to adjust their positions almost in real-time. During periods of low 

demand, prices can fall, potentially even below zero, on both the Day-ahead and Intraday 

markets. In such cases, producers must weigh the cost of shutting down plants against selling 

energy at a negative price. [38] This scenario happened in 2023 for over 300 hours on the day-

ahead market and 1729 quarter-hours in the intraday market, offering a valuable opportunity 

for other traders. [39] 

2.1.4  Frequency Containment Reserve 

To ensure the proper functioning of electrical devices, the grid's frequency must remain stable 

around 50 Hz. A deviation exceeding 0.01 Hz triggers the deployment of the required balancing 

power. FCR is the fastest reacting frequency reserve in the balancing mechanism and thus is 

activated first. As of April 2024, Germany has reserved 564 MW of FCR power [40]. With the 

anticipated increase in volatile renewable energy generation, the demand for reserve power is 

expected to rise [7,41,42]. The transition to shorter service time slots in 2020 has made it 

possible for more flexible assets, including those with underlying multi-purpose concepts such 

as EVs, to participate in FCR provision [43]. 

 

Figure 4: Grid frequency balancing principal adapted from [44] 

FCR needs to be fully activated within 30 seconds and covers a period of 15 minutes. In the 

central European FCR market, ENTSO-E dictates a 4-hour product duration, adjusted for 

daylight saving time, requiring bids to reserve power in 4-hour intervals. The day is segmented 

into six 4-hour slots, starting from 00:00 to 04:00. TSOs allow a minimum bid size and 

resolution of 1 MW from BSPs. TSOs systematically procure the necessary FCR volume daily, 

initiating the bidding window seven days prior at 11:00 CET and concluding it a day before 

implementation at 08:00 CET. BSP bids are organized in ascending price order to form a merit-

order list (MOL), prioritizing those that meet the demand at the lowest marginal costs. This 

process employs a marginal pricing mechanism, awarding all chosen bids at the MCP for their 

power reservation commitment. [45] If a BSP fails to deliver its reserved power, this is 
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considered as a breach of contract and penalties are imposed, depending on the severity of 

the non-delivery, the duration of the failure, and the current market conditions. [43] 

FCR, being a symmetric product, allows for the simultaneous provision of both negative and 

positive power adjustments through the activation or deactivation of resources for BSPs. The 

compensation within FCR schemes is provided for the reserved power, rather than for the 

actual energy delivered as the power provided is equalized on average. [43] FCR resources 

often include assets like hydroelectric plants, gas turbines, and energy storage systems, due 

to their rapid response capabilities [46]. The emergence of aggregators as intermediaries 

between EVs and grid operators has facilitated the participation of EV owners in the ancillary 

services market by pooling resources to meet minimum bid sizes and compliance 

requirements. 

2.1.5  Automatic Frequency Restoration Reserve 

The aFRR belongs to the secondary frequency control activated by automated systems to 

address more significant frequency deviations when FCR capacity is insufficient. Unlike FCR, 

which responds almost instantaneously, aFRR has a maximum full activation time of 5 minutes 

and is designed to sustain its response for at least 15 minutes. This staged approach ensures 

a gradual restoration of grid frequency. [47] 

In the aFRR market, the selection of bids is conducted via the MOL method. Different from 

FCR, in aFRR a pay-as-bid principle is applied for the power price where bids are compensated 

at their submission price if selected, while the energy bidding stays pay-as-cleared [48]. Also, 

power capacity and energy are traded distinctly with an additional separation in negative and 

positive bids for each. Thus, a participant can submit up to 4 bids for each 4-hour block. Power 

capacity bidding enables BSPs to commit a certain power capacity for durations specified in 

4-hour blocks, with market gates opening seven days ahead at 00:00 and closing the day 

before delivery at 09:00. Thereby, the selection is based on the Merit-Order List of the bided 

pr  e  n     , independent of the energy prices. Therefore, TSOs use historical data to 

forecast the expected power consumption and determine the required amount of capacity bids. 

Energy bids reflect the actual power delivery in case of activation. The minimum activation 

period is set at 15 minutes, with bids submitted from 12:00 CET the day before and closing 25 

m n tes  e   e   t   t  n.  ne g     s,     e   n      ,   e   m ens ted based on the actual 

delivery against the setpoint - a predetermined reference reflecting real-time frequency 

deviations. The bided energy price determines the selection of providers for delivering the 

energy. [49]  

The demand of aFRR depends on the product type and time slot and can vary roughly between 

1,600 MW and 2,000 MW in Germany on an exemplary week in April 2024. In addition the 

compensation price varies strongly even within a day. [40] This increases the complexity of 

aFRR market and shows the importance of advanced bidding strategies for optimized 

participation. 
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2.2 EV as Multi-Purpose Flexibility Asset 

Over time the charging of EVs evolved from unidirectional uncontrolled charging to smart 

charging, and lastly to bi-directional intelligent charging, owning to technological 

advances [50]. Controlling the bi-directional charging of EVs unlocks the full flexibility potential 

of EV batteries. In [51], decentralized flexibility is described as "the ability of distribution-grid 

connected assets to shift or change their expected consumption or generation pattern in 

response to a signal". 

To properly utilize this potential, it is essential to integrate the EV into an energy ecosystem 

and allow for smart data exchange to ensure a high degree of interconnectivity between all 

energy assets and participants within a favorable regulatory framework. This general concept 

is known as V2X, where X stands for any arbitrary configuration where the EV serves as mobile 

and decentralized flexibility within an energy ecosystem. Consequently, the EV is able to be 

integrated into multiple different energy ecosystems, such as vehicle-to-vehicle, vehicle-to-

load, vehicle-to-home, vehicle-to-grid, etc. [52] The most prevalent concepts are V2H and 

V2G, as they will be described in more detail below. 

All these concepts differ in individual system configuration and added value streams the 

flexibility of the EV is serving. However, the main purpose of the EV maintains the mobility 

provision. Additional value streams, where the EV owner benefits directly include the reduction 

of charging costs through increase in storing surplus energy, peak shaving, energy arbitrage 

or load shifting, and remuneration through participation in the balancing services. In addition, 

there are further non-financial value streams, such as stabilizing the grid, reducing grid 

congestion, emergency power supply, peer-to-peer energy trading, carbon-dioxide intensity 

reduction and mobile power supply for machinery & tools. [7]  

For a comprehensive understanding of the concepts previously mentioned, a basic technical 

understanding of the EV battery system is essential. This brief elaboration is presented in the 

subsequent Sections 2.2.1. Following this, the two most promising concepts, V2H and V2G, 

are explained in more detail in the Sections 2.2.2 and 2.2.3, respectively. The focus is set on 

the configuration of the energy ecosystem and the additional value streams they offer. Finally, 

Section 2.2.4 describes the concept of an EVA as a pivotal entity for enabling the V2G concept 

to single EVs. 

2.2.1  Electric Vehicle Battery System 

The battery system is the core component of the EV, which enables the decentralized flexibility 

for the emerging concepts of V2X by storing and releasing electrical energy through chemical 

reactions. At the same time, the battery represents the most cost-intensive, sensitive, and 

complex component of the EV [53]. The operational management and system integration is 

predominant for an optimized usage of the battery over the whole lifecycle and applications.  

To facilitate the effective implementation of V2X services, it is essential to equip EVs with 

durable batteries capable of sustaining many charging and discharging cycles [54]. Therefore, 

lithium-ion batteries are regarded as the most suitable for EVs due to its high energy density 
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and reliable stability, achieving the significant adoption in the individual automobile market [55]. 

Nonetheless, imperfections in the battery cause degradation thereby diminishing the lifecycle 

and available capacity over time [56]. This presents a significant challenge and serves as a 

crucial counterargument for V2X applications since additional cycles introduced by extra value 

streams can reduce the availability for the EV's primary mobility purpose. Main factors 

influencing battery lifespan include temperature, charge and discharge rates, state-of-charge 

(SOC) dwelling, and retention time [56]. However, [57] have demonstrated that strategically 

coordinated smart charging can maintain battery life near optimal levels despite the 

introduction of V2G services. 

To integrate the EV battery in a V2X system, several systems for controlling the battery 

operations, chare and discharge flows and facilitate communication within the system are 

needed. The Battery Management System (BMS), serving as the "brain" of the EV battery 

system, is a control unit designed to maximize battery performance efficiently while ensuring 

system safety. The BMS interact with the batteries and the Energy Management System 

(EMS), maintaining battery operation within predefined voltage, temperature, and current 

ranges. Further, the EMS is a control system that is responsible for monitoring and controlling 

energy flow while charging and discharging. During charging, the EMS controls the power 

conversion system (PCS), which is an electrical power unit integrated in the electric vehicle 

charger (EVC) responsible for converting the voltage level of the current flow. Given the 

relatively low operation voltage of batteries due to the chemical characteristics of the cells, a 

PCS is essential for adjusting the voltage from charging stations to the battery's required 

level. [53] 

 

Figure 5: Simplified EV charging infrastructure 

Lastly, bi-directional charging infrastructure is necessary to connect the EV with the grid, 

facilitating fast and efficient energy flow in both directions [54]. This infrastructure includes a 

bi-directional EVC for converting grid electricity to the appropriate voltage level for efficient 

charging and discharging. During converting and transporting the electricity, energy losses due 

to imperfections of the technical components need to be considered. Today charging efficiency 

range goes up to 95 %, depending on the technical component and power level [53]. The 

charging infrastructure spans an Alternating Current (AC) spectrum from Level-1 (up to 

1.9 kW) and Level-2 (up to 19 kW) to Level-3 (up to 90 kW), and Direct Current (DC) fast 
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charging stations, each distinguished by its power output [58]. In a private household setup, 

the most common power outputs are 3.7 kW, 7.4 kW or 11 kW AC, due to the power 

connection of the household and obligation to register higher power outputs at the grid operator 

[59]. 

2.2.2  Vehicle-to-Home 

V2H represents a forward-looking approach to decentralized energy management, integrating 

the capabilities of EVs with residential power systems to create a more sustainable, efficient, 

and resilient local energy ecosystem. At its core, V2H technology enables bi-directional energy 

flow between EVs and the home, transforming EVs into mobile energy storage units during 

idle times. This technology leverages the flexibility potential in EV batteries, which specially 

create value in combination with dynamic electricity tariffs, high purchase and feed-in price 

spread and energy surplus from power generation unit, such as solar PV. To realize this, an 

EMS in the smart home manages the energy flow between the power units in the household 

and allow constant communication through data exchange between the assets to control their 

operation.  

While V2H supports a decentralized and flexible grid, it mitigates the load and intermittency to 

which the grid is exposed. However, from prosumer perspective there are primarily three value 

streams he benefits financially from [7]: 

Load shifting. As the EV acts as a mobile energy storage unit, energy costs can be reduced 

through coordinated charging of the EV in combination with dynamic electricity tariffs. During 

periods of low energy prices, the EV stores energy which can be later released to meet the 

demand of household during times of high energy prices. This strategy diminishes exposure 

to high electricity prices, thereby lowering energy costs for the household. 

Increasing self-sufficiency. In scenarios where energy production exceeds consumption, 

surplus energy, which would otherwise be fed back to the grid at minimal compensation, can 

be stored in the EV and discharged later to cover the consumption needs with the self-sourced 

energy. In doing so the self-sufficiency is enhanced. Here, self-sufficiency is defined as the 

ratio of self-produced and consumed energy to the total consumed energy [60]. Given that 

electricity feed-in tariffs are generally lower than supply prices, storing surplus energy in the 

EV represents the more cost-efficient and sustainable option. This assumes the absence of 

other home battery storage solutions. 

Peak power shaving. Lastly, for households incur costs based on the maximum power 

demand within the billing period. To reduce these peak power costs, the EV can supplement 

the energy supply during periods of extremely high load, thereby lowering the peak power 

demand. This concept, known as peak power shaving, leads to savings on electricity bills for 

the owner. However, since these effects are relatively low in a private household setting, this 

aspect is not considered in this thesis. 

Despite the numerous benefits for the EV owner and other stakeholders in the grid, a 

widespread adoption of this technology has not yet realized. This is primarily due to 

infrastructure and regulatory challenges that need to be addressed. [36] From infrastructure 



Theoretical Background 16 

 

 

perspective, a smart meter, bi-directional EVC and EMS of the household is required to enable 

V2H. This infrastructure remains prohibitively expensive for private applications, such that the 

financial benefits do currently often not offset the high investment costs associated with setting 

up a single EV [61]. 

2.2.3  Vehicle-to-Grid 

With the raising share of renewables, the electricity grid becomes more volatile, necessitating 

flexibilities to compensate for these fluctuations and maintain stable grid frequency. Within the 

concept of V2G, the EV is connected via a bi-directional charging station to the grid, functioning 

as a decentralized flexibility for storing and releasing of energy in a smart manner. Thereby, 

V2G supports the system operators to stabilize the grid and promote a more sustainable 

electricity mix. Unlike V2H, where the EV is connected to a microgrid and serves as flexibility 

solely for the local energy system, V2G integrates the EV into the broader electricity grid, 

enabling direct communication and interaction with the system operators, who are responsible 

for balancing the grid. 

In the literature, the V2G concept is often referred to as the evolutionary step following V2H, 

as it can extend the functionalities of V2H [50]. Therefore, it can be considered a 

complementary technology to V2H, enabling participation in the electricity market through SMT 

and ancillary services such as FCR and aFRR. From a utility perspective, there are numerous 

economic benefits from V2G. These include ancillary services such as energy balancing, 

active and reactive power support, valley filling, peak shaving and load following for stabilizing 

and increasing resilience of the grid. Further, V2G can replace large-scale energy storage 

systems for balancing services, provide integration support for renewable energy sources and 

reduce electricity transport losses in grids with promotion of decentralized generation. 

Additionally, the savings in utility operations will minimize the overall service cost to customers, 

which will be reflected in energy prices. [54] From EV owner perspective, additional financial 

or energy-based remuneration can be generated through energy arbitrage and participation 

ancillary services.  

These different value streams create competition among these, especially for balancing 

services that require the reservation of power output and input, precluding the service of other 

value streams during this reservation period. A reasoned assessment of each value stream at 

every moment becomes crucial to optimize operation and maximize cost savings. [18] This 

underscores the need for an intermediary entity, which will be explained in more detailed in the 

next Section. 

However, several system requirements are needed for a seamless operation of V2G services. 

An EMS is required for allowing effective load management, distinguishing between critical 

and non-critical loads and ensuring energy prioritization. Further, a robust communication 

network is required that facilitate data exchange between EVs, charging stations, and the grid 

[62]. Real-time monitoring and management of energy flows is essential by smart metering 

infrastructure, which supports dynamic pricing and demand response strategies. Lastly, the 

entire V2G ecosystem's interoperability, security, and safety are underpinned by clear 
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regulatory guidelines and standardized protocols. More details for the technical requirements 

can be found in [54].  

While the potential benefits of V2G transition have been widely recognized, they may not come 

without significant challenges. One significant concern is battery degradation, as the frequent 

charging and discharging cycles with large depth of discharge (DOD) required by V2G 

operations can accelerate degradation on EV batteries, potentially shortening their lifespan 

and necessitating more frequent replacements [57]. Energy conversion losses also present a 

hurdle, with efficiency losses occurring at various stages of energy transfer between the grid 

and the EVs, leading to less effective use of the stored energy. Additionally, the impact on the 

distribution system cannot be overlooked; the integration of EVs into the grid introduces 

complexities in load management and requires upgrades to existing infrastructure to handle 

new patterns of energy demand and supply. [54] 

2.2.4  Electric Vehicle Aggregator 

A single EV faces two major hurdles in participating in V2G services on its own. First, the 

minimum bid size of 1 MW power capacity does not allow a single EV to participate in ancillary 

services [11]. Second, a single EV lacks the necessary capabilities to participate in the 

electricity market profitably [10]. Complex forecasting and mathematical optimization models 

are required, along with constant real-time communication with the TSO [10]. Because of this, 

an aggregation agent is needed to simplify the interactions between the EV owner and the 

electricity system, making it accessible for the private EV owner. Thus, the concept of an EVA 

emerges as an intermediary entity between the EV owners and the energy market, who 

aggregates multiple EVs into a pool and manages their operations. Thereby, the EV pool 

aggregation can enable significant benefits by compensating for individual weaknesses.  

Figure 6 illustrates the EVA's interaction with the EV owner and energy market, visualizing 

data, financial, and energy flow. The main responsibility of the EVA is to manage market 

participation and commercialization, schedule charging and discharging, and purchase 

electricity for vehicles. For the EV owner, the EVA acts as a service provider, taking 

responsibility for the flexibility potential of the EV and, therefore, financially and energy wise 

compensating them. From the energy market perspective, the EVA is considered as a virtual 

power plant, aggregating and managing decentralized flexibilities and participating as one in 

the energy market.  
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Figure 6: The concept of EVA as intermediary entity between EV pool and energy markets 

The operations of the EVA include managing the fleet to meet the customers' driving demands 

while optimizing revenue through V2G services in the electricity market. In a household setup, 

this can also include consideration of V2H services for cost reduction. Assessing the different 

value streams is a highly complex task, due to future reservations for balancing services and 

energy trading. Therefore, the EVA needs to forecast market prices as well as the driving 

profiles of its fleet. However, the EVA faces high level of uncertainty when performing in highly 

uncertain market conditions and due to the uncertain nature of fleet characteristics. Hence, the 

EVA is motivated to become more involved in intraday and balancing markets that are closer 

to real-time. [18] Optimizing the fleet composition can also have significant positive effects on 

the behavior and forecasting reliability of the fleet [63]. 

The underlying business model of the EVA is to exploits its EV fleet to maximize profits. The 

EVA's profit model is based on the revenue generated from energy trading and balancing 

services, subtracting the costs incurred for compensating EV owners for the use of their assets, 

and covering personnel and infrastructure expenses. [64] To enter in such a relationship, a 

compelling V2G tariff needs to be offered to the EV owner to accept the EV pool participation. 

The V2G tariff should lower the charging costs for the EV owner and include compensation for 

the utility loss of their batteries due to degradation when participating in V2G services [65]. For 

the services from EVs to be economically viable, the revenues must outweigh the cost 

compensation for the degradation of EV batteries. If this is not the case, then using EV batteries 

beyond supplying their motion needs does not make economic sense. [64] 
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2.3 Mathematical Programming 

Mathematical programming plays a pivotal role in addressing large and complex problems 

within the energy sector and other engineering domains. This Chapter briefly dives into the 

underlying theories and methods of computational optimization that enable effective 

quantitative investigation within this thesis. The focus is on introducing only the important 

aspects of mathematical programming, which form the core foundation for understanding the 

issue and choice of solving approach of the problem. 

Therefore, this Chapters sets the stage for the later in-depth description of the developed 

optimization model. The structure of the Chapter is as follows: after this first general 

introduction to mathematical programming, Section 2.3.1 describes the Stackelberg game 

theory and application for the real problem of an EVA. Afterwards, Section 2.3.2 provides all 

necessary theoretical background foundation needed for understanding the technical 

modelling approach of this thesis. 

2.3.1  Stackelberg Game Theory 

Stackelberg game theory (SBG), named after the German economist Heinrich Freiherr von 

Stackelberg [66], is a branch of non-cooperative game theory, extensively used in the literature 

due to its significance for investigating market participants interactions. It is a leader-follower 

game, in which there is a leader who sets his strategy first, and other players of the game 

become his followers, who adjust their strategies based on the strategies announced by the 

leader. [12] In this hierarchical setup, the leader has a strategic advantage by being the first 

mover, also called the Stackelberg leader [67]. SBG plays a crucial role in environments where 

individuals involved are rational and aim to optimize their individual payoff function. This model 

becomes particularly relevant in economics and decision-making scenarios where the actions 

of one entity preemptively influence the reactions of others. 

Like non-cooperative games, SBG can also be classified as static and dynamic situations. In 

static SBG, players choose their strategies once, either simultaneously or in sequence, without 

any knowledge of the other player's strategies. Conversely, dynamic SBG allows players to 

refine their strategies over multiple instances. [12] This variation is often referred as stage-

wise or sequential SBG, in which all players have full awareness of each other's strategies, 

with decisions made based on a comprehensive set of given information [68].  

  e t e   ’s            t  exten s t        s   m  ns  n s  en e   e e    t     nts  nte   t.  n 

the context of V2G services, Stackelberg game theory provides a framework for modeling the 

interaction between an EVA and EV owners, where participants act selfishly and rationally, 

aiming to optimize their own payoff functions. The EVA, acting as the leader, formulates 

strategic actions regarding energy pricing, charging, and discharging schedules. EV owners, 

as followers, adjust their behavior based on the agg eg t  ’s offer, aiming to optimize their 

own benefits. This leader-follower dynamic facilitates an efficient distribution of energy 

resources and effective positioning of the EVA in the competitive market. Thereby, the EVAs 

objective is to maximize profits, while t e      ne s’ g    is to minimize charging costs, all 

  t  n t e   nst   nts    t e e e t      g   ’s   e  t  n    eq   ements. 
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The SBG s   t  n      s t e     e  t   n    e t e      nte    ts’   t  mes  n  t en   t m  e 

their payoffs in a non-cooperative environment. In other words, SBG provides hierarchical 

support in which complex problems are broken down into layers of sequential problems to find 

optimal solutions at each layer. As all the participants optimize their actions by considering the 

actions of other players, there exists a point when no one can further improve their actions; 

this point is called the equilibrium point. In non-cooperative games, it is referred to as the Nash 

equilibrium [69]. To reach a SBG solution, the optimization problem for the follower, 

corresponding to the decision announced by the leader, is determined using the backward 

induction method. Then, the optimization problem for the leader is solved considering the 

response function of the follower. [12]  

2.3.2  Proposed Bi-level Optimization Method 

Bi-level optimization is a sophisticated area of mathematical programming that involves a 

nested structure where one optimization problem (the "upper level") directly contains another 

optimization problem (the "lower level") as a constraint [70]. This method effectively captures 

hierarchical decision-making processes and is often incorporated in SBG. Both optimization 

problems can generally be characterized as either a linear problem or a non-linear problem. 

The latter requires exponentially more computation time and cannot guarantee a solution since 

traditional linear solving methods, such as the Simplex algorithm, cannot be applied. Especially 

for large-scale problems like those discussed in this thesis, it is highly recommended to design 

them not as NLPs to limit computation time. Additionally, an optimization problem can be 

designed as a continuous or discrete problem, with the latter involving binary or integer 

decision variables. These so-called Mixed-Integer Linear Problems (MILP) also require 

additional computation time typically using branch-and-bound solving methods. However, in 

this case, the computation time grows linearly, and finding a solution is still guaranteed. In this 

thesis, a bi-level optimization method is chosen to model the interaction between EV owners 

and EVAs, incorporating a MILP at both levels. Generally, an optimization problem consists of 

an objective function to minimize or maximize and a set of constraints, both including decision 

variables and constant parameters [70]. Certain variables from the UL are also the subject to 

the LL, which creates the nested structure. The generic mathematical formulation is as follows, 

with u notated variables for UL-Model and l notated variables for LL-Model: [70,71] 

max 
𝑥𝑢 ∈ 𝑋𝑈, 𝑥𝑙 ∈ 𝑋𝐿

      𝐹(𝑥𝑢, 𝑥𝑙) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                                   

𝐺𝑘(𝑥𝑢, 𝑥𝑙) ≤ 0, 𝑘 ∈ {1, … , 𝐾}  

𝑥𝑙  ∈  𝑚𝑖𝑛(𝑓(𝑥𝑙): 𝑔𝑗(𝑥𝑙) ≤  0, 𝑗 ∈ {1, … , 𝐽}) 

𝑤𝑖𝑡ℎ 𝑥𝑢, 𝑥𝑙 ∈  ℤ𝑝, ℝ𝑞                  

Solving bi-level optimization problems is generally challenging due to characteristics like non-

convexity and the NP-hard nature of these problems. Solving approaches can be divided into 
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traditional methods and advanced metaheuristics. Traditional solving approaches typically 

address mathematically well-behaved bi-level problems, which assume linear or convex 

functions along with continuous differentiability and lower semi-continuity.[70] Common 

analytical solving methods for these include single-level reduction with Karush-Kuhn-Tucker 

(KKT) conditions, descent methods, penalty function methods, and trust-region methods [71]. 

However, due to the not well-behaved characteristics of the given optimization problem in this 

thesis, these approaches are not applicable. Especially, the large size and mixed integer 

variables do not allow most traditional solving approaches. However, more challenging bi-level 

problems are often addressed by applying metaheuristics, which effectively combine 

exploration and exploitation within the solution area. These approaches cannot guarantee the 

discovery of a global optimum and generally require intensive computational effort, but they 

can be very effective in finding a quick solution for complex problems.[71,72] 

Due to the high complexity and unique characteristics of the bi-level optimization problem in 

this thesis, an individual solving approach is chosen. Here, the bi-level problem is reformulated 

as a single-level problem by replacing the LL-problem with its first-order condition results [71]. 

This results in a single-level mathematical program with equilibrium constraints, which is then 

iteratively solved by exploring the space of sensible solutions using the method of exhaustion. 

This approach guarantees to find the best applicable solution with reduced computational 

effort. The detailed solving approach is described applied to the model in Chapter 3.  

Both levels of the bi-level problems are designed as single-level MILP problems, which are 

modeled in the Python programming language using the programming software VSCode [73]. 

Python is renowned for its simplicity and readability, featuring object-oriented programming 

that emphasizes code readability with its clean syntax [74]. The open-source software package 

Pyomo is used to formulate and solve the optimization problem within the model [75]. For 

solving these problems, the Gurobi-optimizer is taken, a state-of-the-art solver for 

mathematical programming. Gurobi is designed to exploit modern architectures and multi-core 

processors, utilizing the most advanced implementations of the latest algorithms.[76] 

To further reduce the computational efforts for large-scale, time-dependent optimization 

problems, a commonly applied method is time decomposition. This technique involves splitting 

the large original model into smaller sub-problems that can be solved more efficiently. The 

method applied within this thesis is known as the rolling-horizon (RH) approach, a very 

common approach in energy modelling. Figure 7 illustrates the schematic process of an 

optimization problem decomposed by the RH approach. In the RH method, the total simulation 

horizon is divided into several sub-problems, each then solved sequentially over a smaller 

timescale of the horizon. After solving every small-scale horizon, only a part of the subsequent 

solutions is retained to ensure the accuracy of the decomposed solution. The left overlap 

secures the continuity and sufficient accuracy of the overall solution. [77]  
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Figure 7: RH method adapted from [77] 
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3. Bi-level EVA Optimization Framework 

This Chapter introduces the bi-level EVA optimization framework for modeling the operations 

of an EVA by managing a pool of EVs from private prosumers. The framework enables users 

to aggregate multiple EVs into a pool and participate in V2G services in the energy market, 

while considering complementary V2H applications for the prosumer. In addition, the bi-level 

structure of the framework simulates the recurring interaction between the EVA and the 

prosumer in a dynamic SBG to determine a reasonable compensation within a defined pricing 

concept. The evaluation of the model, which investigates the pricing and operating concepts 

of the EVA, will be conducted in Chapter 4. 

First, the developed model design based on the facing problem situation as well as the solving 

approach is introduced in Section 3.1. Building on that, the model structure and class 

architecture are described in Section 3.2, followed by the program flow in Section 3.3. 

Chapter 0 describes then the framework configuration, the user is able to modify according to 

his needs. With these four Chapters in place, the necessary foundation is given to deep dive 

into the mathematical model description in Section 3.5. Here, the newly developed model 

equations and underlying model assumptions for the LL-Model, UL-Model and bi-level 

interaction are explained in detail. Lastly, a validation of the modelling method is conducted in 

Section 3.6 to verify the solving approach and modelling techniques used. 

3.1 Framework Concept 

The following Section 3.1.1 provides a detailed discourse into the problem situation of an EVA 

facing while approaching possible EV pool participants and planning its operations. Based on 

this, the model design is derived and rationale behind the choice of solving approach is 

explained in Section 3.1.2.  

3.1.1  Problem Situation 

To establish its EV pool, the EVA needs to present a compelling offer to prosumers to 

encourage their participation in the EV pool for V2G services. The decision of the prosumer 

has then a direct influence on the operations of the EVA, through the change in the EV pool 

configuration, which in turn, effects the offer. A decline of the offer may lead to a regeneration 

of the offer. This iterative negotiation process continues until both parties reach convergence 

in their respective objective functions, resulting in an accepted offer. If accepted, the prosumer 

will provide the EVC power and the EVA will compensate him accordingly. Figure 8 illustrates 

the given problem situation and the entanglement between pricing and operating concept. 

First, several assumptions are made, when analyzing this situation. It is assumed that a 

prosumer registers once to be available for selection. Subsequently, both parties can 

dynamically decide at every decision time step, set at 4 hours to correspond with the 

reservation time for balancing services, whether to participate based on the current offer and 

conditions. The 4-hour period represents the smallest decision time step, facilitating the 

highest dynamics in the SBG framework. Both actors act in a selfish and uncooperative 
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manner, as part of the SBG. Hence, both actors aim for their highest benefits in this 4-hour 

decision period. It cannot be guaranteed how each actor will act in later time steps, since the 

decision is always made according to the current circumstances. Also, it is assumed to divide 

the power of the EVC to serve for V2H and V2G simultaneously and even allowing opposed 

energy flow. Further, the EVC is connected to the EVA through a dedicated grid connection 

and meter point. Thus, the EV battery represents the only flexibility in the system to which the 

EVA has access.  

 

Figure 8: EVA offer generation process and entanglement with EVA operations 

The pricing concept is a decisive component for the interaction process, which sets the rules 

and form of the offered V2G tariff. The offer includes the required power share from the EV 

charger together with a compensation according to the V2G tariff. Therefore, the compensation 

needs to be based on the power provided by the prosumer. Since the EVA does not own assets 

to store energy the pricing concept inevitably features an energy valuation for the energy 

exchange between EVA and prosumer. This is an essential component, which is decisive for 

the decision in EV pool participation and energy distribution. In addition, the agreement 

features that the EVA complies with the SOC requirements of the EV, set by the EV owner. 

This typically includes a limited SOC range for V2X usage as well as a minimum SOC at 

departure. It is assumed that the EVA is informed about the current SOC and SOC 

requirements as well as the availability of the EV.  

Based on this situation, the deep entanglement between pricing and operational concepts of 

the EVA is revealed: First, the prosumer's decision has a direct influence on the available 

configuration, and thus on the operations of the EVA. Second, the V2G tariff inevitably includes 

an energy-based compensation component, which is directly tied to energy distribution and, 

consequently, the operations of the EVA. These interconnections result in a non-linear term in 

the objective function when attempting to solve it in a single-level model. This is caused by the 

generated profit is directly correlated with the power reserved for V2G multiplied by the 
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specified power price. A conventional non-linear single level model design would not be 

feasible given the size of the problem and the technical resources available. To address this 

challenge, a bi-level structure of the framework is chosen, which is going to be explained in 

the next Section. Through splitting the problem into multiple dedicated MILP problems, each 

problem can then be solved with less computational effort.  

3.1.2  Model Design and Solving Approach 

Figure 9 illustrates the design of the developed bi-level model. For each prosumer, a LL-Model 

is created, enabling V2H-only to reduce the electricity costs. The UL model builds around the 

EVA, incorporating the energy markets and the entire pool of prosumers. The rationale behind 

incorporating the entire pool of prosumers in the UL model, rather than just the EVs, is to 

enable an exact assessment of both technologies V2H and V2G at every moment. It is 

assumed that the prosumer must split the EVC power for every decision period to provide 

power for V2G and V2H services accordingly. This split is binding for the whole period of 4 

hours. With this model setup the optimal operational plan, combining V2H and V2G is 

achieved. By doing so, the need for an outer loop to determine the optimal power division 

between V2H and V2G is avoided. 

 

Figure 9: Bi-level optimization model design 

This saves significant amount of computation time. As a result of this setup, the EVA will never 
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Single prosumer optimization     

EV-pool optimization     

 ne g  

    ets
    ,     , 

    

   s me  n

            ng 

  n e t
 

 

   s me   

   s me   

   

 e  s  n 

 est   t  n

    e      e 

 ne g      

         

          

         

                 

         

          



Bi-level EVA Optimization Framework 26 

 

 

available for V2H. As this action would entail paying the prosumer more than what could be 

gained from such an action. This idea can be applied to a real-world scenario, where the EVA 

is aware of the prosumer detailed situation through advanced models and predictions.  

However, the described model design calculates the optimal operation plan for a fixed pricing 

concept rather than optimizing the pricing concept itself. To analyze the pricing concept while 

optimizing operations, an additional external logic in the bi-level model is required to modify 

the pricing concept. Within this thesis, a self-developed method based on the reformulation 

method and an iterative solving approach is applied. 

A widely known method for solving bi-level optimization models are the KKT conditions, as 

mentioned in Chapter 2.3.2. However, due to the complexity and size of the given optimization 

problem, these are not applicable. But the method works on the general principle of 

reformulating the bi-level problem into a single-level problem by solving one problem and 

transforming it into a constraint for the other problem [78]. This approach is known as 

reformulation method. Applying this method requires individual analysis and adaptation to the 

model, considering the problem design, restrictions, and limitations. Since the pricing concept 

for V2G is inherently multi-dimensional, only one parameter of the pricing concept can be 

optimized at a time through this method. Given the scope of this thesis, the focus will be on an 

exhaustive analysis of the power price, while analyzing certain designs of the energy exchange 

valorization, as described in more detail in Chapter 4.1. 

The solving approach includes the reformulation of the bi-level model and iterative increase of 

the input power price parameter. Therefore, the reformulation separates the LL-Model from the 

UL-Model by putting the outcome of the LL-Model as a restriction for the UL-Model. More 

precisely, a cost-value function for each prosumer is defined and determined in the LL-Model 

for the V2H-only case for every decision period, as it will be described mathematically in 

Chapter 3.5. This cost-value serves as a threshold within the UL-Model for the internal decision 

function of each prosumer. The decision function decides whether the prosumer accepts or 

declines the offer. The assumption behind that is, that the prosumer will accept the offer as 

soon as it is more economical beneficial for him than the V2H stand-alone case. Incorporating 

this decision logic as a restriction within the UL-model avoids the need for an external 

determination process of whom to choose for pool participation, which combination of values 

streams is the best and how to distribute the energy as part of the compensation. These 

decisions will be done within the model calculation as part to optimize the objective goal. 

Therefore, this integration significantly reduces computational time. 

By doing so, the optimal operation plan for a fixed power price can be calculated, considering 

the competition between V2H and V2G in the EV pool. When incrementally increasing the 

power price and recalculating the UL-Model, the results yielding the highest profit for the EVA 

are selected, and the process moves to the next timestep. The detailed program-flow for the 

solving process is explained in Chapter 3.3. 

However, this approach achieves only a solution that is nearly optimal for determining the 

power price dimension of the pricing concept, due to the discrete steps of the power price. 

Consequently, the solution's quality primarily depends on the chosen step size and the 

maximum number of increments, as explained below.  
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Figure 10 shows an illustration of the relation between profit and V2G power price during 

piecewise increase. Point 1 on the graph shows the profit of the EVA when setting no power 

price and relying solely on compensation through energy. As the power price increases, the 

profit gradually declines. Bend points may occur, such as at Point 2, indicating a shift in the 

operational plan due to the higher power price. An upward jump in profit occurs when a 

prosumer is convinced to join the EV pool, signaling a positive reply from the decision function 

in the model. This increase in the pool's power capacity can cause a significant rise in profit 

when the bid size limit for balancing services is reached, as shown at Point 3. By endlessly 

raising the power price, the profit will reach zero, meaning no V2G services are provided 

anymore. The power prices 𝑐1 and 𝑐2 represent two discrete power price steps. It is observed, 

that these steps do not achieve the maximum possible profit, indicated at Point 4. Although 

this deviation from the optimal solution is unavoidable, it is considered sufficiently minor 

compared to the total profit achieved by the EVA. Hence, a step size of 0.01  /kW*h with a 

maximum of 9 increments up to 0.09  /kW*h is recommended in order to not compromise the 

quality of the solution. 

 

Figure 10: Relation of EVA profit and discrete power price increases 

3.2 Framework Structure 

Building upon the previously described framework concept, this Section provides an overview 

of the layout design and architecture developed within the framework. Therefore, Section 3.2.1 

presents the technical model layout, including relevant components and energy flows. Then, 

Section 3.2.2 explains the class architecture used for building the python model. 

3.2.1  Model Layout 

Figure 11 shows the layout design of the UL-Model, visualizing the physical energy flow 

between the components in the Model. The UL-Model incorporates multiple single prosumer 

models as indicated in the figure. One prosumer model is exemplary shown in detail. The 
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prosumer model corresponds to each LL-Model of the framework, leaving out the connection 

to the VirtualAggregator and inserting an individual EMS.  

 

Figure 11: Overview model components and energy flow 

In the LL-Model each prosumer is containing an individual Household-EMS (HEMS). 

Characterized by no energy flow connections, the HEMS component serves as superior 

component to implement the respective strategy and optimization goal. This contains defining 

the objective function and implementing general restrictions to comply with the model 

assumptions. Within the single prosumer the energy flow between the components is generally 

unidirectional, expect for the dynamic bi-directional inverter (DBI-INV), representing the EVC. 

Notably, that the driving consumption (DRV-CSN) and electrical consumption (EL-CSN) can 

just receive energy, since they represent the demand of electricity for the household or for the 

EV to be served. The component PV system is connected through a static unidirectional 

inverter (S-INV) to the EVC, electrical consumption and to the grid. The grid is designed as 

external source for electricity, able to purchase and sell electricity to.  

Further, the UL-Model contains also a single EVA-EMS component, serving for the EVA to 

implement its strategy. The detailed functionalities of the EVA-EMS will be discussed in 3.5.2. 

In the UL-Model the prosumer´s have no HEMS but the rest of the structure remains identical 

as shown in Figure 11. Through the VirtualAggregator component, each individual prosumer 

is connected to the energy markets. This component allows simultaneous bi-directional energy 

flow from and to all connected components. 

Thereby, it serves the model purpose to aggregator multiple prosumers into an EV pool. 

However, this component does not represent a real physical component since this would be 
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done by the existing grid infrastructure, as indicated in the model. On the other side of the 

VirtualAggregator are the energy market components connected, consisting of each a 

component for aFRR, FCR and SMT. 

3.2.2  Class-Architecture 

The model is built up on the existing FOCUS-Framework from the RWTH Aachen for modelling 

energy systems of prosumer, communities and cities [21]. Thus, the fundamental class 

structure and component design were adopted from the FOCUS framework for the purpose of 

this thesis. Figure 12 shows the underlying class architecture of the model. The implemented 

object-oriented class structure enables each object within a class to perform individual 

operations, providing an ideal environment for representing architectures with multiple 

individual actors as seen in the UL-Model. The EMS component, which is central to the 

prosumer, incorporates most logical implementations for the model objective and was thus 

mostly redesigned. Other components used in the model, have been extended and modified 

to meet the specific requirements of this model.  

 

Figure 12: Class Architecture of the bi-level Model 

The overarching class, MainProsumer, comprise one or multiple Prosumer classes and is 

responsible for optimizing the created prosumer model. The Prosumer class is the core of the 

optimization model, linking the components and energy flows in the model layout, and 

activating the EMS to achieve its individual objectives. In that sense, the EVA in the UL-Model 

is modeled by using a single Prosumer class but adapted component configuration, including 

all prosumers components. However, to efficiently model these components, an inheritance 
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structure is utilized. The class AbstractComponent forms the fundament for several basic 

  m  nent’s    sses, such as BaseComponent, BaseGrid, BaseStorage, 

BaseGeneration, and BaseConsumption. These components inherit standard functions 

primarily for modeling purposes, but also already first logical constraints for the respective 

component type. Then the basic component classes serve for advanced component classes 

such as ElectricVehicle or DynamicBiInverter.  

3.3 Program Flow 

For incorporating the dynamic interaction between the EVA and prosumers for price 

negotiations, while the EVA operations, a bi-level model design was developed, as outlined in 

Chapter 3.1. These two dedicated models are sequentially solved through a specified 

approach and interact within the simulation run via the exchange of input and output data. The 

RH method assists in decomposing an extremely large and complex energy modelling problem 

into serval smaller problems, while simultaneously enabling the dynamic decision steps for 

SBG. These aspects are integral parts of the framework and program flow as explained below. 

Figure 13 illustrates the program flow of the presented bi-level optimization framework.  

 

Figure 13: Program flow of the bi-level optimization 

The program flow can be separated into two loops. The outer loop is responsible for 

implementing the RH method and establishing the dynamic decision process, while the inner 

loop determines the optimal power price within one decision time step. But before, an 

initialization step processes the input data and sets up the necessary variables for the bi-level 

interaction. Each iteration of the RH loop begins by setting the new time horizon, updating the 

input data as well as the SOC, and resetting the power price to zero. Subsequently, the LL-
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Model is constructed and solved for each prosumer within the EV pool, serving as reference 

case. The V2H cost-value function is calculated to determine the economic value of the V2H-

only case for the prosumer. Afterwards the inner loop starts to determine the optimal power 

price.  

The inner loop starts by calculating the UL-Model in a V2H-only case. Due to the model design 

and RH method, some decision periods can result in an operation plan, which results in 

negative profit for this decision period. In that case, the model will take the V2H-only operation 

plan. Afterwards, the V2H cost value is given as input to the UL-Model, serving as a threshold 

for the internal decision restriction. With the fixed pricing concept and V2H cost-value function, 

the UL Model calculates the optimal operation plan for the EVA, considering the 
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break criteria are assessed; if not met, the power price is incrementally increased, and the UL 

Model is resolved with the updated power price. The break criteria analyze the profit of the 

EVA, the availability and acceptance rate of the EV pool in order to prevent unnecessary 

iterations when no improvement in profit is expected anymore. The break criteria will be 

described in more detail in Chapter 3.5.3. When a break criterium is met, the optimal results 

are stored and selected for the next rolling horizon loop to update the SOC accordingly. A more 

detailed examination of the workflow within the individual models can be found in the appendix.  

3.4 Framework Configuration 

The framework is designed to be highly dynamic, allowing users to adjust a wide range of 

configurations. These can be accessed directly from the ‘runme’ script or be modified through 

the input data. Below, the key configurations essential for both general use and specifically for 

defining the EV pool are outlined.  

Initially, it is crucial to establish the simulation's temporal parameters. This involves setting five 

key values: 

• 𝑡𝑠𝑡𝑎𝑟𝑡 specifies the start date of the simulation. 

• 𝑡𝑠𝑡𝑒𝑝 sets the smallest unit of time - resolution in hours - used for calculations. 

• 𝑡𝑡𝑜𝑡𝑎𝑙 determine the total number of time steps, defining the simulation's end date. 

• 𝑡ℎ𝑜𝑟𝑖𝑧𝑜𝑛 defines the time steps for each RH calculation to implement the RH method. 

• 𝑡𝑟𝑜𝑙𝑙 defines the overlap used for progressing through the simulation timeline. 

In addition, a set of variables must be defined to adjust the solving approach and certain model 

assumptions. These variables are directly inserted into the ‘runme’ file. 𝐼𝑡𝑒𝑟𝑚𝑎𝑥  specifies the 

maximum number of iterations and, consequently, the maximum price increases undertaken 

by the solving approach. 𝑐𝑝𝑟𝑖𝑐𝑒_𝑎𝑑𝑑 represents the step size for increasing the power price per 

iteration. Further, the variable 𝑏 defines the minimum bid size and bid size resolution for FCR 

and aFRR. Lastly, the value for 𝑐𝑐𝑦𝑐𝑙𝑒 need to be defined. This value determines the costs 
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caused by additional cyclical aging of the battery for non-mobility applications, such as V2H 

and V2G.  

Next, the configuration of the EV pool must be defined. Therefore, JSON files are required as 

input for each prosumer for the LL-Model and for the EVA in the UL-Model. These files specify 

the components, their sizing parameters, cost parameters, and connections between the 

components. Table 2 provides an overview of the relevant input parameters for defining the 

EV pool configuration for each prosumer 𝑛 in the JSON file.  

Table 2: Input parameters of the JSON file for model configuration 

Parameter Sign 

Power Capacity EVC 𝑃𝑛
𝐸𝑉𝐶,𝑚𝑎𝑥

 

Power Capacity PV 𝑃𝑛
𝑃𝑉,𝑚𝑎𝑥

 

Power Capacity PV Inverter 𝑃𝑛
𝑃𝐼𝑁𝑉,𝑚𝑎𝑥

 

Battery Capacity 𝐸𝑛
𝑚𝑎𝑥 

Electricity Procurement Price 𝑐𝑝 

Levy 𝑐𝑙 

VAT 𝑐𝑣𝑎𝑡 

Electricity Injection Price 𝑐𝑖𝑛𝑗 

 

For the initialization step of the program, input data must be defined. This data is typically 

provided as time-series data in CSV files. The necessary input files include: 

Electricity demand: This includes all electrical loads within each prosumer's household, 

excluding EV charging. To accurately model EVA operations, it is advisable to use distinct 

profiles for each prosumer. The electricity demand time series may be sourced directly from 

existing data or generated artificially using the DemandGenerator tool within the framework. 

This tool generates representative profiles based on the standard load from the German 

Association of Energy and Water Industries (BDEW) [79]. The generator requires the annual 

demand for generating the time series data. 

Driving profiles: The driving profiles contain the time-series data of the electricity 

consumption of the EV due to driving and specify the departure and arrival times. Such data 

can be generated artificially to ensure representative simulation, as detailed in Section 4.2.2. 

Besides the power load time series, this data should include an additional column marked '1' 

when the car is departing. 

Weather data: This includes temperature and irradiance time-series data, which are essential 

for calculating the PV solar generation profile. It is important to use representative weather 

data in order to see accurate correlations between PV generation and electricity prices on the 

spot market. 
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Electricity prices: For the prosumer, time series data for electricity prices must be provided if 

a dynamic or TOU electricity tariff is used. Additionally, for the UL-Model the intra-day spot 

market data is required for enabling SMT. This dataset should contain only the raw 

procurement prices, as levies and taxes are automatically added in the model. 

aFRR and FCR data: For modelling the participation in balancing services, input data of the 

according balancing market is required. This includes time series data for the FCR price, grid 

frequency, aFRR power price, aFRR energy price, and aFRR set point. While this data can be 

sourced online from [40], the aFRR set point is a specially developed dataset for modeling the 

participation in balancing services. Further details on this and the necessary data and 

processing steps are described in [21]. 

3.5 Mathematical Model Description 

This Chapter dives into the mathematical model description, structured by first explaining the 

LL-Model in Section 3.5.1, followed by the UL-Model in Section 3.5.2, and finalizing with the 

bi-level interaction in Section 3.5.3. The focus is on explaining newly developed functionalities 

and components, which were created to serve the model's purpose. For more detailed 

information on the underlying FOCUS-Framework, please refer to [21] and [80]. To formulate 

the mathematical optimization model in the subsequent Sections, it is necessary to define the 

following sets: 

• 𝑇: The time series with all time steps 𝑡 over the total optimization horizon 𝑡𝑡𝑜𝑡𝑎𝑙. 

• 𝑇ℎ: The time series for the current RH-step 𝑡ℎ𝑜𝑟𝑖𝑧𝑜𝑛. This results to 𝑇ℎ ⊂ 𝑇. 

• 𝑇𝑟: The time series of the rolling horizon 𝑡𝑟𝑜𝑙𝑙, which are taken into the next RH-step. 

This results to 𝑇𝑟 ⊂ 𝑇ℎ.  

• 𝑇𝑑: The set of decision time points of a RH-step 𝑡ℎ𝑜𝑟𝑖𝑧𝑜𝑛. For every 𝑡𝑟𝑜𝑙𝑙  in 𝑡ℎ𝑜𝑟𝑖𝑧𝑜𝑛 exists 

a 𝑡𝑑 as decision point. The following equation (3.1) indicates this correlation. 

Consequently, the time points 00:00, 04:00, 08:00, etc. for each day are respective 

decision time points. 

𝑻𝒅 =  
𝑻𝒉𝒐𝒓𝒊𝒛𝒐𝒏

𝑻𝒓𝒐𝒍𝒍
 (3.1) 

• 𝑇𝑜𝑢𝑡,𝑛 : The time series when the EV of the prosumer 𝑛 is driving and thus not connected 

to the EVC. 

• 𝑇𝑑𝑒𝑝,𝑛 : The time series when the EV of the prosumer 𝑛 is departing from the household. 

• 𝑁: Containing all prosumers 𝑛 of the EV Pool. 
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3.5.1  LL-Model 

The LL-Model encompasses the single prosumer set-up with his household and at the same 

time builds a fundamental part of the UL-Model. A visualization of the components and flows 

was showed in Figure 11. The chosen prosumer setup reflects the minimum required setup for 

modeling consumption and production capabilities, combined with flexibility and driving 

constraints in the form of an EV. The model's challenge lies in managing both driving 

consumption and electrical consumption while minimizing total costs within the given 

constraints.  

The Energymanagementsystem acts as the core component to define the model strategy. 

The objective function, aimed at minimizing the total costs ℂ, is defined as follows: 

𝑴𝒊𝒏 ℂ =  ℂ𝒐𝒑 + ℂ𝒄𝒚𝒄𝒍𝒆 + ℂ𝒑𝒆𝒏𝒂𝒍𝒕𝒚 −  ℂ𝒆𝒏𝒆𝒓𝒈𝒚 

 

(3.2) 

The operating costs ℂ𝑜𝑝 in general cost caused by a component. In the LL-Model this applies 

only to the component ElectricalGrid for buying and selling electricity to the grid. The 

power drawn from the grid and power fed back into the grid is multiplied by the corresponding 

price of the electricity tariff with levies and taxes added on top. The operating costs are 

summed over the total time period 𝑇. 

ℂ𝒐𝒑 =  ℂ𝒈𝒓𝒅 (3.3) 

ℂ𝒈𝒓𝒅 =  ∑(𝑷𝒐𝒖𝒕𝒑𝒖𝒕,𝒕
𝒈𝒓𝒅

∗ (𝒄𝒑 + 𝒄𝒍) ∗ (𝟏 + 𝒄𝑽𝑨𝑻) − 𝑷𝒊𝒏𝒑𝒖𝒕,𝒕 
𝒈𝒓𝒅

∗ 𝒄𝒊𝒏𝒋

𝒕 ∈ 𝑻

)  ∗  ∆𝒕𝒔𝒕𝒆𝒑 (3.4) 

The cycle cost ℂ𝑐𝑦𝑐𝑙𝑒 refers to costs compensating for battery degradation caused by additional 

cycling due to applications other than mobility. This cost is calculated by multiplying the power 

input from the EV charger on the battery side, which is detailed in equation (3.6). The cycle 

costs enable a careful consideration value added through additional cycle and battery 

degradation. When calculating the cycle costs in the model, only the discharge direction is 

considered. Here, a simplified calculation of cycle costs is shown in equation (3.5):  

𝑪𝒚𝒄𝒍𝒆 𝑪𝒐𝒔𝒕 =  
𝑪𝒐𝒔𝒕 𝑩𝒂𝒕𝒕𝒆𝒓𝒚

𝑳𝒊𝒇𝒆 𝑪𝒚𝒄𝒍𝒆𝒔 ∗ 𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚
  (3.5) 

ℂ𝒄𝒚𝒄𝒍𝒆 =  ∑ 𝑷𝒕
𝑬𝑽𝑪,𝒊𝒏𝒑𝒖𝒕𝟐

𝒕 ∈ 𝑻

∗ 𝒄𝒄𝒚𝒄𝒍𝒆 ∗ ∆𝒕𝒔𝒕𝒆𝒑 (3.6) 

The penalty costs ℂ𝒑𝒆𝒏𝒂𝒍𝒕𝒚 are costs added to lower battery degradation due to calendric aging. 

Staying in high SOC regimes, the calendric degradation in lithium-ion batteries is increased 

significantly [57]. To prevent the EV battery staying too long in these high SOC regimes, the 

penalty costs correlate with the duration of stay. A binary variable indicates whether the SOC 

status of the battery exceeds the threshold of 80 % SOC: 
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𝒛𝒕
𝒂𝒃𝒐𝒗𝒆  ∈ (𝟏, 𝟎) (3.7) 

ℂ𝒑𝒆𝒏𝒂𝒕𝒍𝒚  =  ∑  𝒛𝒕 
𝒂𝒃𝒐𝒗𝒆 ∗ 𝒄𝒑𝒆𝒏𝒂𝒍𝒕𝒚

𝒕 ∈𝑻\𝑻𝒐𝒖𝒕

∗  ∆𝒕𝒔𝒕𝒆𝒑  (3.8) 

The energy costs ℂ𝑒𝑛𝑒𝑟𝑔𝑦 are introduced to prevent selling of the EV battery energy at the end 

of the calculation horizon 𝑇ℎ. In the LL-Model the grid injection with the price 𝑐𝑖𝑛𝑗 represents 

the only option to sell energy for the prosumer. Thus, taking this price for the final state of 

energy in the battery, does prevent the model sells the energy at the end of the calculation 

period:  

ℂ𝒆𝒏𝒆𝒓𝒈𝒚  =  𝐄𝐭𝐞𝐧𝐝
∗ 𝒄𝒊𝒏𝒋 (3.9) 

After defining the objective function, the Energymanagementsystem executes the function 

calculate_V2H_cost_function to calculate and store the value in the results, and pass 

it as part of the solving approach to the UL-Model for every prosumer n. The V2H cost-value 

function represents the actual costs for the prosumer for every decision time step 𝑡𝑑. 

𝝃𝒏,𝒕𝒅
𝑽𝟐𝑯 =  ℂ𝒕

𝒐𝒑
+  ℂ𝒕

𝒄𝒚𝒄𝒍𝒆
   ∀𝒏 ∈ 𝑵, 𝒕 ∈ 𝑻𝒓, 𝒕𝒅 ∈ 𝑻𝒅 (3.10) 

Modifications to the ElecVehicle component were necessary to implement driving 

constraints essential for modeling the use of the EV. This component inherits from the Li-ion 

Battery, which in turn inherits from BaseStorage, as seen in Figure 7. This arrangement 

includes functions and restrictions defined in the superior components. Further details are 

available in [21]. The restrictions (3.11) and (3.12) ensure that no power flows through the EVC 

in either direction when the EV is absent due to driving. 

𝑷𝒕,𝒏
𝑬𝑽𝑪,𝒊𝒏𝒑𝒖𝒕𝟏 =  𝟎   ∀𝒏 ∈ 𝑵, 𝒕 ∈ 𝑻𝒐𝒖𝒕,𝒏 (3.11) 

𝑷𝒕,𝒏
𝑬𝑽𝑪,𝒊𝒏𝒑𝒖𝒕𝟐 =  𝟎   ∀𝒏 ∈ 𝑵, 𝒕 ∈ 𝑻𝒐𝒖𝒕,𝒏 (3.12) 

To better model the uncertainty the EVA faces in managing the EV pool, a restriction sets the 

minimum SOC of the EV to 70 % upon departure. This addresses the unpredictability of travel 

duration and distance. Therefore, the EV driving profile is analyzed again, and a list, 𝑇𝑑𝑒𝑝,𝑛  is 

created for each prosumer, indicating the time steps for departing: 

𝑬𝒕,𝒏

𝑬𝒎𝒂𝒙
≥ 𝟎. 𝟕   ∀𝒏 ∈ 𝑵, 𝒕 ∈ 𝑻𝒅𝒆𝒑,𝒏 (3.13) 

Furthermore, the minimum SOC of the EV battery is set to 30 % to mitigate enhanced cyclic 

and calendric aging associated with very low SOC levels [57]. Setting the SOC to 30 % also 
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accommodates the unpredictability of departure needs, ensuring the EV can always undertake 

short trips: 

𝑬𝒕,𝒏

𝑬𝒎𝒂𝒙
≥ 𝟎. 𝟑   ∀𝒏 ∈ 𝑵, 𝒕 ∈ 𝑻 (3.14) 

With these formulas, the LL optimization model is comprehensively described. After building 

the model and solving the respective pyomo model for each prosumer, as outlined in the 

workflow in Figure 35 in the appendix, the results are systematically stored. Each component 

has the function get_base_variable_names to identify and store base variables in the 

result dataset. Moreover, the OptimizationModel class specifies which additional variables 

should be recorded. Settings are optimally chosen to ensure all critical model variables are 

documented in an Excel file. Adjustments can be tailored to user needs. 

3.5.2  UL-Model 

The UL-Model encompasses all prosumer models in the EV pool along with the 

VirtualAggregator, its own Energymanagementsystem, and components for FCR, 

aFRR and SMT as outlined in Figure 11. Details on the components and functions shared 

between both models are available in previous Section 3.5.1.  

A newly added component, the VirtualAggregator, inheriting from BaseComponent, 

facilitates bi-directional energy flow without capacity limits. Modeled without energy losses, it 

is serving as an ideal electrical conductor, which allows only two directions of energy flow. 

Thereby, preventing energy exchange between individual prosumers or different energy 

market components. To realize this component, four power variables are defined and 

interconnected through restrictions: 

𝑷𝒕
𝑽𝑪,𝒊𝒏𝒑𝒖𝒕𝟏 , 𝑷𝒕

𝑽𝑪,𝒊𝒏𝒑𝒖𝒕𝟐 , 𝑷𝒕
𝑽𝑪,𝒐𝒖𝒕𝒑𝒖𝒕𝟏 , 𝑷𝒕

𝑽𝑪,𝒐𝒖𝒕𝒑𝒖𝒕𝟐  ∈ (𝟎, ∞),   ∀𝒕 ∈ 𝑻 (3.15) 

𝑷𝒕
𝑽𝑪,𝒊𝒏𝒑𝒖𝒕𝟏 =  𝑷𝒕

𝑽𝑪,𝒐𝒖𝒕𝒑𝒖𝒕𝟏    ∀𝒕 ∈ 𝑻 

𝑷𝒕
𝑽𝑪,𝒊𝒏𝒑𝒖𝒕𝟐 =  𝑷𝒕

𝑽𝑪,𝒐𝒖𝒕𝒑𝒖𝒕𝟐    ∀𝒕 ∈ 𝑻 

(3.16) 

Modifications to the DynamicBiInverter class are necessary to enable the splitting of EVC 

power for V2H and V2G. The constraint constraint_bi_flow is deactivated to permit 

simultaneous energy flow in both directions without suppressing any flow due to opposing 

demands from V2H and V2G. 

Adjustments to the FCR and aFRR classes are required to adapt them for the EV pool. These 

modifications include implementing a fixed bid size 𝑏 (3.18). Therefore, three integer variables 

are defined (3.17) to ensure that offered powers are multiples of the bid size 𝑏: 

𝒛𝒕

𝒂𝑭𝑹𝑹𝒑𝒐𝒔,𝒊𝒏𝒕
, 𝒛𝒕

𝒂𝑭𝑹𝑹𝒏𝒆𝒈,𝒊𝒏𝒕
, 𝒛𝒕

𝑭𝑪𝑹,𝒊𝒏𝒕 ∈ ℕ,   ∀𝒕 ∈ 𝑻 (3.17) 
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𝑷𝒕

𝒂𝑭𝑹𝑹𝒑𝒐𝒔,𝒐𝒇𝒇𝒆𝒓
= 𝒃 ∗ 𝒛𝒕

𝒂𝑭𝑹𝑹𝒑𝒐𝒔,𝒊𝒏𝒕
   ∀𝒕 ∈ 𝑻 

𝑷𝒕

𝒂𝑭𝑹𝑹𝒏𝒆𝒈,𝒐𝒇𝒇𝒆𝒓
= 𝒃 ∗ 𝒛𝒕

𝒂𝑭𝑹𝑹𝒏𝒆𝒈,𝒊𝒏𝒕
   ∀𝒕 ∈ 𝑻 

𝑷𝒕
𝑭𝑪𝑹,𝒐𝒇𝒇𝒆𝒓

= 𝒃 ∗ 𝒛𝒕
𝑭𝑪𝑹,𝒊𝒏𝒕   ∀𝒕 ∈ 𝑻 

 

(3.18) 

The optimization model's goal is to minimize the total costs of the entire EV pool through 

accessing V2H and V2G in an optimal combination. Thereby, the profit is implicitly maximized 

through the selected optimization approach. The objective function, implemented in the 

EnergyManagementSystem, is: 

𝑴𝒊𝒏 ℂ =  ℂ𝒐𝒑 +  ℂ𝒄𝒚𝒄𝒍𝒆 +  ℂ𝒑𝒆𝒏𝒂𝒍𝒕𝒚 − ℂ𝒆𝒏𝒆𝒓𝒈𝒚 +  ℂ𝒄𝒐𝒎𝒑𝒆𝒏𝒔𝒂𝒕𝒊𝒐𝒏 (3.19) 

Where ℂ𝑜𝑝 includes operational costs caused by the grid summed over all prosumers 𝑁 and 

operating costs for FCR, aFRR, and SMT: 

 ℂ𝒐𝒑 = (∑ ℂ𝒏
𝒈𝒓𝒅

𝒏∈𝑵

) +  ℂ𝑭𝑪𝑹 +  ℂ𝒂𝑭𝑹𝑹 + ℂ𝑺𝑴𝑻 (3.20) 

The calculation of ℂ𝒏
𝒈𝒓𝒅

 is explained in (3.3) and is here summed up for the EV pool. The 

calculation of ℂ𝑭𝑪𝑹 and ℂ𝒂𝑭𝑹𝑹 is explained in previous work in [80]. ℂ𝑺𝑴𝑻 corresponds to the 

operating costs caused by buying and selling energy at the spot market, which is exclusively 

available for the EVA. Therefore, the SMT component inherits from BaseGrid and uses the 

spot market prices 𝑐𝑡
𝑖𝑑 to calculate the operating costs: 

ℂ𝑺𝑴𝑻 = ∑(𝑷𝒐𝒖𝒕𝒑𝒖𝒕,𝒕
𝑺𝑴𝑻 ∗ (𝒄𝒕

𝒊𝒅 + 𝒄𝒍) ∗ (𝟏 + 𝒄𝑽𝑨𝑻) −  𝑷𝒊𝒏𝒑𝒖𝒕,𝒕 
𝑺𝑴𝑻 ∗ 𝒄𝒕

𝒊𝒅)

𝒕∈𝑻

∗ ∆𝒕𝒔𝒕𝒆𝒑 (3.21) 

The terms for ℂ𝒄𝒚𝒄𝒍𝒆 and ℂ𝒑𝒆𝒏𝒂𝒍𝒕𝒚are defined for a single EV in (3.4), (3.6) and (3.7) respectively 

and are in the UL-Model aggregated over the EV pool. The term ℂ𝒆𝒏𝒆𝒓𝒈𝒚 is changed to comply 

with the access to the spot market. Therefore, the end energy is multiplied with lower value of 

the average spot market price in that period and the lowest purchase price for the prosumer in 

that period. The average of the spot market price 𝑐𝑆𝑀𝑇,𝑎𝑣𝑔 indicates the model to buy or sell 

energy from the EV, if the current spot market price is respectively below or above 𝑐𝑆𝑀𝑇,𝑎𝑣𝑔. 

Further, to prevent the model from buying energy at the prosumers grid and selling it at the 

spot market, the value can maximum be as high as the cheapest purchase price 𝑐𝑛
𝑒𝑙 in the 

   s me ’s electricity tariff.  

ℂ𝒆𝒏𝒆𝒓𝒈𝒚 = ∑ 𝐄𝐭𝐞𝐧𝐝,𝒏

𝒏∈𝑵

∗ 𝐦𝐢𝐧 (𝒄𝑺𝑴𝑻,𝒂𝒗𝒈, 𝒄𝒏
𝒆𝒍)  (3.22) 

The newly added term ℂ𝒄𝒐𝒎𝒑𝒆𝒏𝒔𝒂𝒕𝒊𝒐𝒏 accounts to the compensation payments made by the 

EVA to prosumers. This term consists of two parts (3.23): one for the power compensation in 

𝑇𝑟 (3.24) and another for an individual compensation in subsequent time steps (3.25). The 

variable for provided power for V2G 𝑷𝒏,𝒕
𝑽𝟐𝑮 is introduced below in (3.27). The variable for 
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individual compensation is defined in (3.26). This set up allows an optimistic operations 

planning post 𝑇𝑟. Optimistic operation planning enables the EVA to provide tailored 

compensations to prosumers—rather than uniform power price adjustments—to achieve the 

desired power levels in the EV pool for optimized operations: 

ℂ𝑪𝒐𝒎𝒑𝒆𝒏𝒔𝒂𝒕𝒊𝒐𝒏 =  ℂ𝑪𝒐𝒎𝒑𝑷𝒐𝒘𝒆𝒓 + ℂ𝑰𝒏𝒅 (3.23) 

ℂ𝑪𝒐𝒎𝒑𝑷𝒐𝒘𝒆𝒓 =  ∑ 𝑷𝒏,𝒕
𝑽𝟐𝑮 ∗ 𝒄𝒑𝒐𝒘𝒆𝒓,𝒊 

𝒏∈𝑵,𝒕∈𝑻𝒓

∗ ∆𝒕𝒔𝒕𝒆𝒑 (3.24) 

ℂ𝑰𝒏𝒅 =  ∑ 𝑪𝒏,𝒕
𝑰𝒏𝒅

𝒏∈𝑵,𝒕∈𝑻𝒅

 (3.25) 

𝟎 ≤ 𝑪𝒏,𝒕𝒅

𝑰𝒏𝒅 ≤ ∞   ∀𝒏 ∈ 𝑵, 𝒕𝒅 ∈ 𝑻𝒅  (3.26) 

A series of constraints is implemented to facilitate the internal decision-making process for EV 

pool participation by each prosumer. A new variable 𝑷𝒏,𝑡
𝑽𝟐𝑮 is introduced to account for the 

power reserved for V2G by each prosumer 𝑛. 

𝟎 ≤ 𝑷𝒏,𝒕
𝑽𝟐𝑮  ≤  𝑷𝒏

𝑬𝑽𝑪,𝒎𝒂𝒙   ∀𝒕 ∈ 𝑻  (3.27) 

Once power is reserved for pool participation, the offer cannot be varied for the current decision 

period 𝑇𝑟, excluding the time steps in 𝑇𝑜𝑢𝑡 when the vehicle is unavailable due to driving: 

𝑷𝒏,𝒕
𝑽𝟐𝑮 =  𝑷𝒏,𝒕+𝟏

𝑽𝟐𝑮    ∀𝒕 ∈ (𝑻𝒓 \({𝒍𝒂𝒔𝒕(𝑻𝒓)}\  𝑻𝒐𝒖𝒕)) (3.28) 

The provided power for V2G of each prosumer is restricted by the driving pattern (3.29), the 

V2H energy flow (3.30) and V2G energy flow (3.31). The energy flows from the EVC to meet 

electrical consumption (ELCSN), from the PV inverter to the EVC to store surplus energy, and 

from the EVC to the VirtualAggregator are decisive for the V2H and V2G usage and thus 

built in the constraints: 

𝑷𝒏,𝒕
𝑽𝟐𝑮 = 𝟎   ∀𝒏 ∈ 𝑵, 𝒕 ∈ 𝑻𝒐𝒖𝒕 (3.29) 

𝑷𝒏,𝒕
𝑽𝟐𝑮 ≤  𝑷𝒏

𝑬𝑽𝑪,𝒎𝒂𝒙 − 𝑷𝒏,𝒕
𝑬𝑽𝑪−𝑬𝑳𝑪𝑺𝑵 −  𝑷𝒏,𝒕

𝑷𝑽−𝑬𝑽𝑪   ∀𝒏 ∈ 𝑵, 𝒕 ∈ 𝑻 (3.30) 

𝑷𝒏,𝒕
𝑽𝟐𝑮 ≥  𝑷𝒏,𝒕

𝑬𝑽𝑪−𝑽𝑪   ∀𝒏 ∈ 𝑵, 𝒕 ∈ 𝑻 (3.31) 
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To integrate the available power from the EV pool with the power reserved for FCR and aFRR 

as well as utilized for SMT, the method add_multi_V2G_constraint is modified, according to 

the EV pool. This method implements three restrictions to manage the power (3.32), the energy 

input (3.33) and the energy output (3.34). Restriction (3.32) implicitly contains energy flow for 

SMT through including both inputs of the VirtualAggregator. 𝑡𝑟𝑒𝑠𝑒𝑟𝑣𝑒 corresponds to the 

reservation time for balancing services, which is defined as four hours: 

𝑷𝒕

𝒂𝑭𝑹𝑹𝒑𝒐𝒔,𝒐𝒇𝒇𝒆𝒓
+  𝑷𝒕

𝒂𝑭𝑹𝑹𝒏𝒆𝒈,𝒐𝒇𝒇𝒆𝒓
+  𝑷𝒕

𝑭𝑪𝑹,𝒐𝒇𝒇𝒆𝒓
+  𝑷𝒕

𝑽𝑪,𝒊𝒏𝒑𝒖𝒕𝟏 +  𝑷𝒕
𝑽𝑪,𝒊𝒏𝒑𝒖𝒕𝟐 − 𝑷𝒕

𝒂𝑭𝑹𝑹,𝒊𝒏𝒑𝒖𝒕

− 𝑷𝒕
𝒂𝑭𝑹𝑹,𝒐𝒖𝒕𝒑𝒖𝒕

−  𝑷𝒕
𝑭𝑪𝑹,𝒊𝒏𝒑𝒖𝒕

−  𝑷𝒕
𝑭𝑪𝑹,𝒐𝒖𝒕𝒑𝒖𝒕

≤  ∑ 𝑷𝒏,𝒕
𝑽𝟐𝑮

𝒏∈𝑵

   ∀𝒕 ∈ 𝑻 

(3.32) 

(𝑷𝒕

𝒂𝑭𝑹𝑹𝒑𝒐𝒔,𝒐𝒇𝒇𝒆𝒓
+  𝑷𝒕

𝑭𝑪𝑹,𝒐𝒇𝒇𝒆𝒓
) ∗ 𝒕𝒓𝒆𝒔𝒆𝒓𝒗𝒆 ≤ ∑(𝑬𝒏,𝒕

𝒏∈𝑵

− 𝟎. 𝟑 ∗ 𝑬𝒏,𝒕
𝒎𝒂𝒙)   ∀𝒕 ∈ 𝑻 (3.33) 

(𝑷𝒕

𝒂𝑭𝑹𝑹𝒏𝒆𝒈,𝒐𝒇𝒇𝒆𝒓
+  𝑷𝒕

𝑭𝑪𝑹,𝒐𝒇𝒇𝒆𝒓
) ∗ 𝒕𝒓𝒆𝒔𝒆𝒓𝒗𝒆 ≤ ∑(𝑬𝒏,𝒕

𝒎𝒂𝒙

𝒏∈𝑵

− 𝑬𝒏,𝒕)   ∀𝒕 ∈ 𝑻 (3.34) 

Finally, the decision function is formulated for implementing the internal decision process 

where the prosumer chooses whether to accept or decline an offer. This function integrates 

the financial and energy compensation aspects of the pricing concept. Analogous to the V2H 

cost-value function in the LL-model, the V2G cost-value function for the UL-Model is 

calculated. Here, additional terms for energy compensation (3.36) and financial compensation 

(3.37) are added. ℂ𝒏,𝒕
𝑪𝒐𝒎𝒑𝑬𝒏𝒆𝒓𝒈𝒚

 accounts for the difference of the energy at the beginning and 

end of the respective decision period, multiplied with a fixed cost value according to the pricing 

concept. This term puts a price for a deviation in SOC, which leads to a consideration between 

energy exchange and financial compensation.  

The term ℂ𝒏,𝒕𝒅

𝑪𝒐𝒎𝒑
 covers the financial compensation for the provided power within the decision 

time step and the individual compensation term for each 𝑡𝑑 in the RH-step. Since the individual 

compensation is only for optimistic operation planning in the time steps after the taken rolling 

time step, it is being restricted to zero (3.38) the first decision time step.  

𝝃𝒏,𝒕𝒅

𝑽𝟐𝑮 =  ℂ𝒏,𝒕𝒅

𝑮𝑹𝑫 +  ℂ𝒏,𝒕𝒅

𝒄𝒚𝒄𝒍𝒆
+  ℂ𝒏,𝒕𝒅

𝑪𝒐𝒎𝒑𝑬𝒏𝒆𝒓𝒈𝒚
− ℂ𝒏,𝒕𝒅

𝑪𝒐𝒎𝒑
    

∀𝒏 ∈ 𝑵, 𝒕𝒅 ∈ 𝑻𝒅 

(3.35) 

ℂ𝒏,𝒕𝒅

𝑪𝒐𝒎𝒑𝑬𝒏𝒆𝒓𝒈𝒚
= (𝑬𝒏,𝒕𝒓,𝒍𝒂𝒔𝒕

− 𝑬𝒏,𝟏) ∗ 𝒄𝒆𝒏𝒆𝒓𝒈𝒚 (3.36) 

ℂ𝒏,𝒕𝒅

𝑪𝒐𝒎𝒑
= ∑ 𝑷𝒏,𝒕

𝑽𝟐𝑮 ∗ 𝒄𝒑𝒐𝒘𝒆𝒓 ∗  ∆𝒕𝒔𝒕𝒆𝒑

𝒕∈𝑻𝒓

 + 𝑪𝒏,𝒕𝒅

𝑰𝒏𝒅  (3.37) 

𝑪𝒏,𝒕𝒅

𝑰𝒏𝒅 = 𝟎 ∀𝒕𝒅 = 𝟏 (3.38) 



Bi-level EVA Optimization Framework 40 

 

 

The underlying assumption for the decision logic is that, as soon as the V2G cost-value 

function 𝜉𝑛,𝑡𝒅

𝑉2𝑮 is lower than the V2H cost-value function 𝜉𝑛,𝑡𝒅

𝑉2𝑯, indicating a higher value gained 

for the prosumer from participating in the EV pool to the defined conditions, the prosumer will 

accept the offer. The constant 𝑒 accounts for a minimum benefit the prosumer requires to 

accept the offer, which is set to almost zero within this thesis to represent the highest EVA 

profit potential. The costs functions capture the value for the prosumer for the respective 

operation plan and allows so the EVA to adapt the operation plan to achieve added value for 

each prosumer and thus an acceptance of the offer. The choice of value stream as well as the 

energy distribution within the EV pool adapts according to the decision function and individual 

needs of each prosumer. To implement this logic, a binary variable is defined (3.39), which is 

then bounded by two constraints (3.40) to model the decision logic using the 'big M' method, 

where 'M' represents a large number [81]. The binary variable equals to one when accepting 

the offer and zero if not. Lastly, the binary variable is connected to the provided power for V2G 

in (3.41).  

𝒛𝒏,𝒕𝒅

𝑽𝟐𝑮  ∈ (𝟎, 𝟏)   ∀𝒏 ∈ 𝑵, 𝒕𝒅 ∈ 𝑻𝒅 (3.39) 

𝝃𝒏,𝒕𝒅

𝑽𝟐𝑮 − 𝝃𝒏,𝒕𝒅
𝑽𝟐𝑯 ≤ 𝑴 ∗ 𝒛𝒏,𝒕𝒅

𝑽𝟐𝑮 

𝝃𝒏,𝒕𝒅

𝑽𝟐𝑮 −  𝝃𝒏,𝒕𝒅
𝑽𝟐𝑯 ≥ (𝟏 −  𝒛𝒏,𝒕𝒅

𝑽𝟐𝑮) ∗ 𝑴 + 𝒆 

 

(3.40) 

𝒛𝒏,𝒕𝒅

𝑽𝟐𝑮 ∗  𝑷𝒏,𝒕
𝑽𝟐𝑮 = 𝟎  

∀𝒏 ∈ 𝑵, 𝒕 ∈ 𝒕𝒓, 𝒕𝒅 ∈ 𝑻𝒅 

(3.41) 

3.5.3  Bi-Level Interaction 

After detailing the two models in previous Sections, the mathematical description of their 

interaction within the ‘runme’ file is now presented. As illustrated in Figure 8, the interaction 

involves two loops: one implements the RH method and the other addresses the solving 

approach, previously explained in Section 3.3. 

The EVA profit is calculated from the results extracted from the UL-Model for the first decision 

period 𝑡𝑑 = 1, containing all time steps in 𝑇𝑟. All terms are multiplied by minus one to convert 

negative costs into profit. The terms ℂ𝒂𝑭𝑹𝑹, ℂ𝑭𝑪𝑹 and ℂ𝑺𝑴𝑻 remain as defined in (3.20), and 

ℂ𝑷𝒐𝒘𝒆𝒓𝑪𝒐𝒎𝒑 from (3.24) represents the financial compensation for power provision. Additionally, 

a term for cycle cost payments from EVA to the prosumer compensates for battery aging from 

V2G applications, as specified in (3.43):  

ℙ𝒕𝒅,𝒊
= (−𝟏) ∗ (ℂ𝒂𝑭𝑹𝑹 + ℂ𝑭𝑪𝑹 +  ℂ𝑺𝑴𝑻 −  ℂ𝑽𝟐𝑮,𝒄𝒚𝒄𝒍𝒆 − ℂ𝑷𝒐𝒘𝒆𝒓𝑪𝒐𝒎𝒑) (3.42) 
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ℂ𝑽𝟐𝑮,𝒄𝒚𝒄𝒍𝒆 =  ∑ 𝑷𝒏,𝒕
𝑬𝑽𝑪−𝑽𝑪

𝒏∈𝑵,𝒕∈𝑻𝒓

∗ 𝒄𝒄𝒚𝒄𝒍𝒆 ∗  ∆𝒕𝒔𝒕𝒆𝒑 (3.43) 

The power price for V2G services is incrementally increased with each iteration 𝑖 by the 

minimum price addition, set at  .    /kW*h. This procedure continues until one of the four 

break-criteria is met, as outlined below. These break-criteria are derived from logical 

constraints of the model or experience from test runs to minimize the computation time: 

• The first break criterion is met when the maximum iteration is reached, corresponding 

to the highest allowed power price increase. 

• The second break criterion is reached when the power provided by the EV pool 

exceeds the maximum possible bid sizes, and the operating costs from SMT are less 

than 0.10  . When this applies, no significant improvements through participation in 

balancing services are possible, and profit improvement through raising the power price 

and thus reducing the compensation by energy exchange has already been exhausted. 

• The third break-criterion considers the maximum available power of the EV pool, which 

is the minimum continuous power available from EVs in the pool at that decision step. 

The available power is limited through the absence of EVs due to driving demands. If 

this available power falls below the minimum bid size and the amount of operating costs 

from SMT are less than 0.10  , no significant profit improvement is expected.  

• The fourth break-criterion is met when the EVA profit remains zero or negative after 

two consecutive power price increases. This condition is based on experience gained 

from test and is employed to prevent unnecessary additional iterations. 

When a break criterion is met, the iteration yielding the highest profit for the EVA for the first 

decision period of this calculation is selected as the best result and carried over to the next 

RH-step by updating the SOC accordingly. Results from all iterations and RH-steps are 

systematically stored in an Excel file for convenient evaluation of the simulation run. 

3.6 Method Validation 

After the model was extensively described in the last Sections, it is required to validate the 

applied modelling methods according to the intended purpose. According to several 

institutions, mathematical model validation is  es    e   s “    ess     ete m n ng t e  eg ee 

to which a computer model is an accurate representation of the real world from the perspective 

   t e  nten e  m  e         t  ns” [82]. However, an experimental validation of the model 

cannot be conducted. Instead, a validation of different aspects of the modelling method is 

discussed in the following Sections. Since computation time is a major hurdle for solving such 

large-scale bi-level optimization problems, special focus is placed on computation time 

reduction techniques and their impact on accuracy. Therefore, Section 3.6.1discusses the 

impact on the solving approach. Then, Section 3.6.2 validates the modelling techniques 

applied to solve the model, such as RH method, parallel computing and solver settings.  
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3.6.1  Solving Approach 

For the solving the bi-level problem the reformulation method is applied. This method iteratively 

tests all steps within the defined solution space until a break criterion is met. The step size is 

set to 0.01  /kW*h with a maximum of 9 increases per decision period, resulting in a maximum 

price of 0.09  /kW*h for the provided power. As described in 3.1.2, with this method it is very 

unlikely to achieve the exact optimal value.  

However, the resulting error from this step size is relatively small. Firstly, it can be seen that 

the most profitable power price was zero in 77 % of the decision periods. These periods are 

unaffected by the solving approach are thus optimally resolved. Secondly, in only 0.7 % of the 

decision periods, the maximum power price led to the highest profit. Allowing to assume that 

the maximum number of price increases is sufficient high. Thirdly, an infinite small step size 

could only increase the EVA profit within one decision period by 2.64   g  en t e t t      e  

of 66 kW and reservation time of 4 h, which are the chosen configuration for the EV pool in this 

thesis. This is calculated by multiplying the highest EV pool participation with the power price 

step size and reservation time. Thus, half the step size would lead in the best case to an 

increase of the EVA profit of 1.32  , while roughly doubling the computation time. Still this 

increase in profit is only excepted for very few decision periods. For all decision periods, where 

a power price of zero is the optimum, no improvement will be achieved. Considering the 

increased computation time, the caused error due to the step size of 0.01   is acceptably low. 

3.6.2  Modelling Techniques 

Different modelling techniques, including RH method, parallel computing and solver settings 

for solving the model are discussed below. 

Rolling-Horizon  

The RH method is a crucial part of the model for two primary reasons. First, considering the 

size of a complete yearly optimization problem, it is unsolvable with the computational 

resources available. So temporal decomposition is urgently required. Second, to properly 

model the dynamic decision-making process, recalculating after each decision period is 

essential to incorporate the updated SOC requirements. This highlights the unavoidable need 

for implementing this technique, despite its inherent trade-off: a deviation from the global 

optimum due to the reduced calculation horizon.  

However, the selected time horizon and rolling horizon can influence the accuracy of the results 

and the utilization of different value streams. This is because the model lacks foresight beyond 

the horizon. Value streams over a large time scale, such as SMT and load shifting, will be 

disadvantaged through a too small choice of the horizon step. This prevents the model from 

considering trades beyond the scale of the horizon. Since the highest dynamic for decision 

taking in the model is aimed, the rolling horizon is not modified. But it is essential to validate 

the chosen horizon step of 1 day. To assess this, a comparison of EVA profit and computation 

time was performed across five daily simulations with 0.5-, 1-, 3- and 7-day horizons. Figure 

14 visualizes the resulting computation time for an exemplary daily simulation. The 
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computation time raises significantly with increasing time horizon, while the EVA profit remains 

almost the same for all time horizons.  

 

Figure 14: Computation time and EVA profit for different time horizons 

Consequently, extending the time horizon alone does not significantly affect the quality of the 

results. Instead, the combined choice of time horizon and rolling horizon is assumed to have 

a more substantial impact on the model. The rolling horizon is the period of each calculated 

time horizon, which is taken as final result, as previously explained for the RH method in 

Section 2.3.2. The choice of rolling horizon is determined by the length of the decision period, 

set to four hours in this thesis. Additionally, choosing a short horizon of 1 day replicates the 

unpredictability and limited foresight of real-world actors during the planning of EVA 

operations. Within the calculated horizon, the model operates with deterministic knowledge. In 

a real-world application, this could be approximated through advanced prediction models and 

collaboration with the prosumers. For horizons beyond 1 day, this assumption is not valid as 

predictions lose their accuracy and reliability over time. Furthermore, the prosumer can usually 

plan their current day well, knowing when to depart and for how long. However, the further this 

planning horizon extends, the more unreliable it becomes. Hence, the chosen horizon of 1 day 

provides a good balance between computation time, accuracy, and replication of real-world 

conditions. 

Parallel Computing 

High computation time is a significant challenge when dealing with large-scale and complex 

optimization models, such as the developed bi-level model. To efficiently manage yearly 

simulations within the available computational resources, the problem was temporally divided 

into four segments, each covering approximately three months. These segments were then 

processed simultaneously on the ISEA RWTH super-computer, which utilizes 256 CPU cores 

with a frequency of 3.28 GHz and 2 TB of available RAM, to maximize computational power. 
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To facilitate the simultaneous calculation of each model part, the EV profiles were artificially 

modified, and a model constraint was introduced to ensure that the end-of-simulation SOC 

values for the three segments were approximately known. At the three overlapping points of 

the simulation segments, the EV profiles were modified, so that all EVs departure at 8 am for 

varied distances. This setup represents an unlikely but possible scenario where the availability 

of EVs is too low for V2G to be conducted. Moreover, a constraint was implemented to maintain 

the SOC within a tight range of 10 % at the exact departure times of the EVs. This constraint 

ensures that the error in terms of SOC remains below 5 %, when joining the four model parts. 

The modification in the EV profile effects only 3 days out of 365, which is acceptable 

considering a shorten computation time by a quarter. 

Solver settings 

Lastly, a strategy was implemented to ensure reliable results within a reasonable computation 

time. Initially, for the UL-Model, a relative solution gap of 0.02 and an absolute solution gap of 

1   were set. Setting an absolute gap is crucial for the model, since the resulting objective 

function can be very close to zero. In that case the accepted absolute error with only setting a 

relative gap is unnecessarily low, resulting in very long calculation times.  

However, for the LL-Model, a more stringent relative gap of 0.001 was applied, considering its 

minimal impact on the bi-level optimization's computational demands. If a solution is not 

achieved within 600 seconds, the calculation is restarted with a relaxed relative gap of 0.06 

and an absolute gap of 4  . These deviations from the model objective to the global objective 

refer to the entire UL-Model settings. Since the UL-model does not directly optimize the EVA 

profit and through the RH method only a short part of the calculation is taken as solution, the 

estimated error from using this logic is comparably small. Also, experiences from test runs 

show, that certain decision steps and configurations are increasing the computation time 

immensely and can possibly lead to unsolvable time steps, which would stop the simulation. 

To overcome this, a logic was implemented, that if no solution after a certain time with 

increased gap is obtained, the program moves to the next decision step, if already a solution 

was obtained before.  

Nevertheless, it is important to validate how the solver settings, specifically the relative solution 

gap, influence the quality of the results. For this, daily test runs comparing computation time 

and EVA profit with different relative gap settings were conducted. Figure 15 visualizes the 

outcomes. For these test runs, the break criteria were disabled to ensure all runs performed 

the same number of iterations. It was observed that a decrease in relative gap values led to 

an exponential increase in computation time. Moreover, a lower relative gap does not always 

result in higher EVA profitability for two reasons. First, the objective value in the UL-Model 



Bi-level EVA Optimization Framework 45 

 

 

does not directly optimize EVA profit. Second, due to the RH method, only a small part of the 

solution is considered, which might remain unaffected by further optimization.  

 

Figure 15: Computation time and profit over different relative gap values 

Although a lower relative gap reduces the total electricity costs of the EV pool for that 

calculation horizon, it was noted that a 2 % relative gap setting yielded the highest EVA profit 

in the test run. However, this observation is based on a single exemplary day and does not 

constitute an exhaustive analysis. It can be assumed, that generally a lower relative gap does 

improve the quality of results. But more importantly, the results indicate a necessary trade-off 

between a lower gap setting and computation time. Based on experience from this and further 

test runs, a 2 % relative gap setting demonstrates sufficient performance with acceptable 

computation time. 
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4. Model Evaluation 

In this Chapter, the developed bi-level optimization model is evaluated by examining results 

from yearly simulations across three different scenarios. This evaluation pursues two primary 

objectives. First, to assess whether the bi-level model effectively models the interactions and 

operations of an EVA, thereby facilitating an investigation into EVA pricing concepts. Second, 

to derive insights from the outcomes of these scenarios to understand the design principles of 

EVA pricing concepts. These insights are discussed in regard to a more holistic view of the 

EVA in real-world conditions. 

Therefore, this Chapter is structured as follows: In Chapter 4.1 the evaluation approach for the 

subsequent Sections is presented. This includes, explaining the design of the chosen pricing 

concept and the rationale behind the design for the scenarios. Then in Section 4.2 the model 

configuration used for the yearly simulations, including parametrization and input data, is 

described. Lastly, Section 4.3 discusses the results from yearly simulations according to the 

three scenarios from the perspective of the EVA and EV owner. Therefore, a special 

emphasize is put on the business and operational aspects.  

4.1 Evaluation Approach 

The evaluation pursues to explore the pricing concepts employed by the EVA and their effects 

on operations and the business model. Through this evaluation, design directions for the 

pricing concept are identified, a reasonable power price for a TOU pricing scheme is 

developed, and the main factors influencing EVA operations and profitability are discussed. To 

accomplish these objectives, three scenarios are derived in the following.  

First, it is essential to examine the design of the pricing concept for the EVA. Figure 16 below 

visualizes the chosen pricing concept in this thesis. On one side, the EV owner is compensated 

through financial payments for providing their flexibility. These financial payments are based 

on battery aging incurred through V2G, priced through static cycle costs, and on the power 

provided, priced through the dynamic power price of each decision period.  

 

Figure 16: Pricing concept design in this thesis 
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On the other side, the EV owner is compensated through energy exchange. Since the EVA 

does not own assets and therefore cannot store energy themselves, the energy exchange 

between the EV owner and energy markets becomes an essential part of the compensation. 

In this thesis, no financial payments for the energy received or delivered between the prosumer 

and EVA are considered. This would represent an additional component of the pricing concept. 

However, the energy exchanged is valorized by a static price, equal for both directions of the 

energy exchange, as detailed in (3.36). The valorization of energy could potentially differ for 

delivering and receiving. Additionally, several temporal pricing schemes are possible for each 

component of the pricing concept, such as static, TOU, seasonal, and dynamic. 

Each component of a pricing concept influences e     t e ’s, making it impossible to 

investigate all parts simultaneously with the developed linear model. In order to optimally 

investigate the power price, other components of the pricing concept are kept fix, while 

determining the optimal dynamic power price in the model. The static valorization for the 

energy exchanged is changed within three scenarios to examine the intercorrelation of both 

power and energy pricing design components.  

Since there is no known common design for the pricing concept of an EVA, several design 

possibilities for the energy exchange compensation are reasonable. The underlying question 

 s: “   t  s t e     ent     e    t e ene g  for each actor?”. A simple determination of a static 

value in form of a price does not seem senseful, due to dynamic electricity prices and volatile 

production conditions of the solar PV. In addition, the availability and need of energy does 

change significantly for the prosumer. A more in-depth calculation would need to consider 

factors such as spot market prices, PV production, consumption needs and storage capacity 

of the prosumer. However, a deep investigation of the energy exchange compensation design 

while investigating the power price is beyond the scope of this thesis. But to understand the 

interplay between power price and energy valorisation, three scenarios are defined, which 

differ in the value for the energy exchanged. These values are derived, based on logical 

constraints, as explained in the following. 

Figure 17 visualizes the energy compensation structure with a price for receiving energy and 

delivering energy from the prosumer´s perspective. The upper limit for positive energy pricing 

 s set  t  . 8      ,        s t e m x m m   te    t e      e  e e t    t  t     ,  n     ng t xes 

and levies. This rate represents the highest price a prosumer would pay for receiving energy 

from the EVA. Converse  , t e    e    m t  s set  t    /kWh. Since the EVA lacks storage 

assets, it relies on prosumers to take energy when conducting V2G services. Similarly, for the 

negative energy price, the logical boundaries are derived    t e    s me ’s e e t    t  t     . 

The highest price at which energy could possibly be purchased from the grid, ignoring energy 

  n e s  n  n  st   ge   sses,  e  esents t e    e    m t  t  . 8  /kWh. The lower limit is set 

   t e    s me ’s  n e t  n     e  t  . 8  /kWh, as injecting the energy into the grid would 

otherwise be a more lucrative option. Based on these boundaries, three scenarios are derived, 

varying in their valuation of energy. As a simplification to make prices uniform the lower bound 

is set to 0.08             s t  e ene g  ex   nge. The resulting energy prices are 0.08  /kWh, 

0.23  /kWh, and 0.38  /kWh for the Low Energy (LE), Mid Energy (ME), and High Energy (HE) 

scenarios, respectively. 
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Figure 17: Energy exchange compensation design for the three scenarios 

4.2 Simulation Configuration  

The input data and parametrization do play a crucial role for the accuracy and reliability of a 

mathematical model. With reasonable sorted and processed input data, the model gets 

capable of replicating the real-world scenario, that it is accurate and representative enough to 

investigate the research target effectively. Therefore, the following two Sections provide an 

overview of the chosen parametrization and input data. 

4.2.1  Parameterization 

Parameterization describes the set of fixed values which are being used within the model. The 

choice of the parameters can either be done with the reason of corresponding to a real-world 

scenario or allowing effective and time efficient modelling. The following Table 3 gives an 

overview of general parameters defined within the model, while Table 4 shows the parameters 

of the prosumers in the EV pool. 

Table 3: Overview of simulation setup 

Parameter   

Simulation time 𝑡𝑡𝑜𝑡𝑎𝑙 1 [year] 

Horizon 𝑡ℎ𝑜𝑟𝑖𝑧𝑜𝑛 24 [h] 

Rolling horizon & decision period 𝑡𝑟𝑜𝑙𝑙 4 [h] 

Time step size 𝑡 15 [min]  

Cycle cost 𝑐𝑐𝑦𝑐𝑙𝑒  0.10 [     ] 

Bid size 𝑏 30 [kW] 
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Table 4: Overview of EV pool composition 

Parameter   

Number of prosumers 𝑛 9 

Battery capacity 𝐸𝑚𝑎𝑥 60 [kWh] 

EVC power 𝑃𝑖𝑛𝑣,𝑚𝑎𝑥 3.7 / 7.4 / 11 [kW] 

PV peak power 𝑃𝑃𝑉,𝑚𝑎𝑥 3 / 7 / 10 [kWp] 

 

The step size of 15 minutes is chosen to balance computational efficiency with the ability to 

accurately replicate dynamics in the energy markets, where the intra-day spot market price is 

traded in this interval. Cycle cost calculations are based on assumptions regarding battery 

costs and lifespan, as detailed in [83]. However, these values are slightly reduced to reflect 

underutilization of the battery over its assumed 10-year lifespan and to match with the SOC 

restriction applied in the model. Further, a simplified bid size of 30 kW is adopted for the model, 

as simulating a realistic EV pool size matching the 1 MW bid size is impractical. It is therefore 

assumed that the simulated EV pool represents a fraction of a larger EV pool with a total size 

of 2.2 MW. This assumption allows to replicate the hurdle of reaching the bid size threshold 

with a smaller-scale mathematical model. 

The EV pool represents three types of prosumers with common power sizes for the EVC an 

PV generator in the regulatory framework of Germany. The explanation behind the EVC power 

was given in Section 2.2.1. Further, it is regulatory and economically more attractive to install 

a maximum PV system of 10kWp for private households. The prosumer benefits from less 

registration work and higher injection remunerations [84]. As a consequence, this represents 

in most cases the highest adapted power size in the market for private households. However, 

generally when installing a larger PV system in a V2H ecosystem, it is natural to also install an 

EVC with sufficient charging power to exploit the benefits completely. Because of this, each 

prosumer type in the model (S, M, L) combines the respective size of PV system and EVC.  

4.2.2  Input Data 

The EVA operations are typically characterized by a high degree of unpredictability and 

randomness, stemming from the inherent unpredictability of private person choices and market 

dynamics. For representative modeling of EVA operations, variance and randomness in the 

input data among the EV pool participants is essential. The techniques applied to account for 

this are described in the following. The input data was sourced from the year 2022, except for 

the temperature and irradiance data used for solar PV generation. 

Electrical Consumption: A representative electrical consumption profile for a single-family 

house, including typical user patterns was used and modified for each prosumer. Figure 18 

shows the electricity consumption and PV generation profiles for a sample week in July 2022. 

Typical profiles characteristics for the electrical consumption with peaks in the morning and 

afternoon can be observed for the weekdays. At weekend days there are multiple peaks during 
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the day. To account for the variance in prosumer usage patterns, the electrical consumption 

profiles were randomly shifted by ±0-60 minutes and scaled by ±10 % in power load for every 

time step. This introduces a certain degree of variability, which better reflects real-world 

consumption patterns. In this thesis, the electrical consumption profiles do not correlate with 

the departure and arriving times of the driving profiles. 

Solar PV profile: Seasonal changes, climate, and weather have a significant influence on the 

actual production of solar PV. To account for this, real measured data for temperature and 

irradiance from 2006 at the Lindenberg station in Germany is utilized and converted into a PV 

generation profile. This data ensures that the model reflects realistic variations in solar 

production, typical for the seasonal and climatic changes in Germany. Figure 18 shows the PV 

production of a panel in July with 3 KWp peak power in addition to the electrical consumption 

pattern. Factors such as panel orientation, shading, and soiling were not considered.  

 

Figure 18: PV production and electricity consumption of a sunny week in July 

In addition to the typical daily production profile of solar PV panels, these systems also exhibit 

a typical production profile throughout the year. Figure 19 visualizes the monthly energy 

production of the PV system with 10 kWp and electrical consumption. The electrical load 

remains nearly constant throughout the year, as no electrical heating system is installed, 

resulting in only minor seasonal variations. The PV production profile increases during the year 

until it peaks in June and then declines thereafter.  
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Figure 19: Monthly PV production and Electrical consumption in the Simulation 

Electricity tariff: As mentioned in Section 2.1.2, electricity tariffs can vary based on different 

contractual designs and frequently change due to fluctuating energy prices. To enable the 

more potential of V2H with load-shifting, a current available two-shift TOU contract is used [85]. 

An energy consumption split of approximately 1:2 is assumed for night and day. Therefore, the 

ene g    ns me      ng t e n g t     m   :   t    :     s     e   t  . 79       ,     e t e 

ene g    ns me      ng t e         m   :   t    :     s     e   t  . 8 7      .   e m nt    

fixed costs of the contract are already included in the kWh price, as well as levies and taxes. 

For grid injection, the prosumers are remunerated with a fix price of  . 8      , independent 

from day and time.  

Energy market data: To model the operations of the EVA within the spot market and balancing 

services, realistic pricing data needs to be obtained and processed. In Germany, such data is 

publicly available, provided by the TSOs and stock markets for reasons of transparency. Intra-

day and day-ahead pricing data, aFRR power and energy prices and bids, as well as FCR 

prices and bids, can be found in [40] For the EPEX spot market price, the average traded price 

within the 15-minute interval is used. For the FCR power prices, an aggressive bidding strategy 

is assumed, where bids are always lower than the MCP, resulting in a 100 % participation rate. 

Regarding aFRR, a bidding strategy of 20 % is applied, meaning a relative position of 20 % of 

all bids in the merit-order list is selected to determine the participation rate. This bidding 

strategy is also considered as aggressive as it results in a very high participation rate. Before 

using the data in the model, it must be processed by applying filters and time aggregation. 

More details regarding the input data processing for the energy markets can be found in [80]. 

Figure 20 visualizes the intra-day spot market price at the EPEX power exchange for 2022, 

while Figure 21 visualizes the monthly average EPEX spot market price and positive and 

negative aFRR power and energy price for 2022. It can be observed that the prices and 

volatility at the EPEX spot market and for aFRR extremely raised in late summer 2022. The 

simulation year 2022 represents an abnormal year at the energy markets due to an energy 
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crises [86]. As it can be observed, the pricing data are pretty volatile and unsteady. The 

average price increases extremely in late summer with peak in August to October. 

 

Figure 20: Average traded 15-min intra-day spot market price at the EPEX for 2022 

 

Figure 21: Average monthly aFRR power and energy and EPEX price for 2022 

EV driving profiles: To generate representative and varied driving profiles for EVs, Probability 

Density Functions (PDFs) in form of a normal function were employed [87]. These PDFs define 

the probability for departure times, travel absence, and energy consumption through with 

defined mean values and standard deviations of the normal function. This probabilistic 

approach models the inherent variability and randomness in driving patterns to ensure they 

closely correspond to real-world behaviors, which is essential for effective modeling of the EVA 

operations. 
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The generated profiles replicate the driving patterns of a family car following a hybrid working 

model. The EV owner works in average two out of five days from home. On home office days, 

the car is not used, represented by a 60 % probability of departure for each day. The yearly 

driving consumption of the cars cumulates to roughly 12,000 km, assuming 20 kWh 

consumption per 100 km. The driving profiles were sampled from PDFs with different 

parameters for weekdays and weekends. Figure 22 visualizes the PDF characteristics of the 

generated EV driving profiles for weekday and weekend. Weekdays, representing more 

structured days with longer trips due to office times and less deviation than weekend trips. For 

weekdays, the mean departure time was set at 08:00 with a standard deviation of 60 minutes, 

while weekends had a mean of 13:00 with a standard deviation of 120 minutes. Weekday EV 

absence durations had a mean of 7 hours with a standard deviation of 60 minutes. For 

weekends, a shorter absence duration of 4 hours was set with a higher deviation of 120 

minutes. Energy consumption per trip was modeled with a mean of 10 kWh and a standard 

deviation of 2 kWh for weekdays, and 20 kWh with a standard deviation of 5 kWh for weekends. 

After generating these profiles and ensuring the data remained within logical and realistic 

ranges, the data was saved as CSV files to serve as input for the model. 

 

Figure 22: PDF for characteristics of generated EV driving profiles 

4.3 Analysis of Simulation Results 

This Chapter examines the functionality of the presented framework by analyzing the results 

from yearly simulations. First, a closer look into the EVA business aspects and operations is 

taken in Section 4.3.1. Afterwards, in Section 4.3.2 the prosumers perspective during the EV 

pool participation is examined. The analysis focus on comparing the three scenarios, prosumer 

types as well as revealing temporal patterns in the operations. 

For all three scenarios an identical EV pool configuration is being used as detailed in 

Section 4.2. Table 5 below lists the most important characteristics of the EV pool. The annual 

electrical consumption does not include electricity for electrical charging. The availability of the 
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EV is calculated by the idle time divided through the total simulation time. It represents the 

share of time the EV is connected to the EVC and thus available for V2X services.  

Table 5: EV pool prosumer characteristics 

Prosumer Annual 

Driving 

Need [km] 

Availability 

EV [%] 

Annual Electrical 

Consumption without EV 

Charging [kWh] 

Annual PV 

Production 

[kWh] 

EVC 

Power 

[kW] 

S1 14,300 84.93 3,995 2,385 3.7 

S2 13,367 85.76 4,359 2,385 3.7 

S3 12,702 85.56 4,138 2,385 3.7 

M1 13,415 85.76 3,849 5,565 7.4 

M2 14,687 85.01 4,675 5,565 7.4 

M3 13,738 85.23 4,074 5,565 7.4 

L1 13,044 85.56 4,627 7,950 11 

L2 13,299 85.56 4,698 7,950 11 

L3 13,976 84.45 4,169 7,950 11 

 

Due to the very high and volatile spot market prices in the third quarter of the year, the 

simulation for this period required significantly more computation time. This led to a more 

frequent increase in the relative gap, occurring in 8.3 % of the total decision periods. In 3.1 % 

of the decision periods, the V2H-only results were taken due to excessively long computation 

times for the EV pool calculation. The volatility in August, particularly for the HE scenario, made 

it challenging to find solutions within the given time. Consequently, the results for three weeks 

in August for the HE scenario were substituted with the data from the ME scenario. 

Figure 23 below shows the distribution of break criteria met and their respective average 

iteration during the simulations. The first iteration is always the V2H-only calculation. The 

applied break criteria significantly reduce the computation time, while the chances of missing 

a significantly better result are comparably low, as this could mostly occur with break criterion 

2 only. But the average iteration for this criterion is already very high at 6.9, letting assume that 

no improvement is expected by then. 
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Figure 23: Analysis of break criteria met during annual simulations 

4.3.1  EV Aggregator 

The following analysis examines the simulation results from the EVA's perspective, focusing 

on profitability, operations, and pricing concepts. The EVA aggregates multiple prosumers' 

flexibility within an EV pool and participates in the energy market as a unified flexibility to 

generate revenue and lower charging costs for the EV owners. Since the EVA does not own 

flexibilities, they need to adapt their operations to meet the requirements of each individual 

prosumer. Due to this, the simulated operations will not achieve the optimal potential for 

utilizing EV flexibility for V2G. This potential for a single EV was analyzed extensively with the 

FOCUS-framework in [80]. Although, the added restrictions for minimum bid size and SOC 

requirements reduce profitability but therefore do replicate the EV pool behavior in a more 

realistic environment. 

Figure 24 shows the power rates, power offered, and SOC of the EV pool managed by the 

EVA for a sample week in July, starting on 04.07.2022, for the ME scenario. Positive power 

rates represent the charge of the EV pool, visible by an increase in the EV pool SOC. High 

power rates due to positive aFRR are predominantly used in the afternoon hours. Bids for 

positive aFRR are raised significantly more often than for negative aFRR or FCR. During this 

summer week, the high PV production results in an abundance of surplus energy available for 

positive aFRR. Bids for negative aFRR and FCR are comparatively few but tend to occur during 

the night hours. Regarding power rates, positive aFRR causes high discharge power rates for 

the EV pool of up to 45 kW. The power rates for FCR and SMT are comparatively low up to 

15 kW. Lastly, it can be seen that the aggregated EV pool SOC does not vary strongly and 

remains mostly within the 60 % to 80 % SOC window. The EV pool SOC does fall during the 

weekend, due to longer driving trips and thus more driving consumption.  
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Figure 24: Power rates, offered power and SOC of the EV pool for a sample week in July 

A comparison of the EVA's revenue streams for the different scenarios is shown in Figure 25 

below. The EVA generates income through participation in aFRR, FCR, and SMT, while losses 

occur due to compensation to the prosumers for using their EV flexibility. The highest annual 

profit is 19,951       t e HE scenario, followed by 19,632    n  18,113       t e     n     

scenarios, respectively. As outlined in [63], the EV pool composition does strongly influence 

the revenue potential for the EVA. The calculated profit could possibly be improved, when 

optimizing the EV pool composition 

Notably, aFRR is the major income source for all three scenarios, contributing over 85 % of 

the revenue. It can be assumed, that the higher profitability in the HE and LE scenario is mainly 

due to better exploitation of extremely low or high energy valuation in the model. Although the 

compensation for battery cycling is the highest in the HE scenario compared to the other 

scenarios, indicating that slightly more energy is being transferred, more compensation is done 

through energy exchange rather than financial payments. In the ME scenario, the highest costs 

for power compensation occurred, suggesting that the energy valuation of 0.23             es 

the most fair and appropriate value. Thereby the ME scenario results in more benefits for the 

prosumer as it will be shown later. 
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Figure 25: Profitability analysis of the EVA for all scenarios 

However, FCR does only contribute with a minor share to the EVA revenue, which aligns with 

the results from [42]. FCR is characterized by a very high fluctuation with small energy flows 

in both directions. In means these fluctuations does cancel out each other, so that there is no 

net energy exchange and thus no energy price for participating in FCR. Generally, FCR 

activities do still result in a slightly loss of energy due to high conversion losses of the EVC at 

very low power rates [88]. Although the EVA can partially counter this by utilizing the 

aggregation of the EV pool to concentrate the power drain on only few participants, the high 

rate of energy exchange causes significant battery degradation, penalized by cycle costs. 

Additionally, a major advantage of V2X services lies in shifting energy in time according to 

consumption needs. However, participating in FCR neither helps reduce surplus energy nor 

achieve SOC requirements for driving. Thus, the EVA in the model clearly prefers participating 

in aFRR over FCR most of the time. 

Similar, SMT contributes only very little to the EVA revenue in every scenario. This can be 

attributed to several reasons. First, the applied pricing concept does not allow transferring 

money from the prosumer to the EVA, disadvantaging buying energy at the spot market to 

charge the prosumer's EV. Second, SMT is disadvantaged by the short rolling horizon of 4 

hours applied in the model to replicate the dynamic decision process. As a result, trades longer 

than the 4-hour period, which do not yield the highest profit for the current 4-hour period are 

not taken. Third, the applied day-night electricity tariff for the prosumers already notably lowers 

the costs for electricity during the night, raising the barrier for buying electricity at the SMT, as 

it competes with the cheap night tariff price. It is expected, that in the case of a static electricity 

price, the potential of SMT would be higher. 
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Table 6 compares the total power offered and energy traded for the three scenarios. Further 

examining of the EVA operations reveals that positive aFRR was roughly used three times 

more than negative aFRR across all scenarios. The higher utilization of positive aFRR can be 

explained by several factors: First, the power and energy price for positive aFRR is significantly 

higher than for negative aFRR, as shown in Figure 21. This price gap is much greater than the 

difference for buying and injecting energy for the prosumer, considering the night tariff. 

Therefore, the prosumer has always the option to buy energy at a stable medium price through 

their local electricity tariff to directly serve their consumption needs, avoiding conversion 

losses. This option competes strongly with negative aFRR for receiving energy. However, 

selling surplus energy through grid injection is not very economical, leaving positive aFRR or 

direct marketing at the spot market as only economical options. Secondly, the pricing concept 

design allows compensating the prosumer for providing their energy for positive aFRR 

participation. But giving energy to the prosumer cannot be financially compensated by 

receiving money from the prosumer in the pricing concept design. It can be concluded that the 

one-way-oriented pricing concept in combination with the mentioned pricing characteristics 

generally favor participation in positive aFRR services over negative aFRR services. 

Table 6: Total power offered, and energy traded through SMT within the scenarios 

 HE  ME  LE  

positive aFRR [kW] 42,870 39,420 41,100 

negative aFRR [kW] 14,460 15,360 14,310 

FCR [kW] 18,810 20,490 19,740 

SMT buy [kWh] 3,293 2,667 2,648 

SMT sell [kWh] 3,489 2,799 3,393 

 

The difference in profitability and operations between the three scenarios is relatively small. In 

the HE and LE scenario, a higher participation in positive aFRR is achieved as well as slightly 

more SMT trades than in the ME scenario. This could be explained by the extreme high or low 

energy valuation. For high energy valuation, the savings from injecting energy to the grid or 

directly serving the electrical consumption are considered less valuable compared to the 

energy value. For low energy valuation, taking energy from the prosumer can be more easily 

compensated due to a low energy valuation. Hence, the EVA can more freely decide how to 

use the energy, exploiting the compensations for its operations.  

Next, the results are analyzed regarding temporal dependencies. Figure 26 shows the monthly 

EVA profit as well as the power reserved throughout the year for the HE scenario. The figures 

for other scenarios can be found in the appendix. A noticeable drop in August is observed. As 

mentioned earlier, the extremely volatile and abnormal energy market prices during this period 

caused difficulties in solving certain time steps. To complete the simulation within the available 

time, certain time steps had to be substituted with V2H-only results when a solution could not 
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be achieved within a specific timeframe. This issue occurred particularly in August, resulting in 

a drop in EVA profit for that month. On one hand, it is estimated that the profit for August would 

 e      x m te    ,        g e      t e  e         n e  n  mal conditions. On the other hand, 

2022 was characterized by unusual energy prices, and the overall EVA profit in a typical year 

would likely be significantly lower. 

However, the EVA profit shows a strong correlation with the energy market prices as the profit 

increased by almost fourth fold from deep in February to peak in September. At the same time, 

the power provided only increases by up to 32 %. This makes clear that significant share of 

EVC power is not strongly contested for V2G. This is also evident from the high share of 71 % 

for 0     *h power prices the optimization determined, as it will be discussed below. 

 

Figure 26: Monthly EVA profit and power reserved in the HE scenario  

Since V2H and V2G compete for the limited power of the EVC, it is expected that this 

competition shifts in favor of V2G during the winter months. In the summer, when the solar PV 

system generates high amounts of energy, more power is required for storing the surplus 

energy. However, due to the abnormal changes in energy market prices in 2022, this 

assumption cannot be validated within this simulation. 

Subsequently, the daily distribution of the EVA profit and power price is analyzed. During the 

 e     s m   t  n,      e      e          *h led to optimal results in 71 % of the decision time 

steps where V2G was conducted. V2G was conducted in 85 % of the decision time steps. To 

understand these results, several aspects need to be highlighted. Firstly, the calculated power 

price is the optimized price for an optimal operation plan and power allocation, resulting in the 

lowest power prices possible. Translated to real-world conditions, this power price represents 

the lowest bound, not considering significant benefits for the prosumers or competition with 

other market participants. Secondly, a significant share of roughly half of the prosumer financial 

compensation is done through individual cycle costs payments. If only a power price is to be 

paid, this would increase significantly. Thirdly, the short decision period of 4 hours 

disadvantages load shifting for V2H and SMT. But the EVA has the attractive option to 
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participate in balancing services, while load shifting represents a major value stream of V2H. 

This possibly worsens the attractiveness of V2H for certain decision periods, making lower 

power prices more often sufficient. 

Figure 27 visualizes the statistical analysis results in form of a boxplot diagram of the EVA 

profit and power price for the different time slots of the day. Only the results for the ME scenario 

are shown, since the differences between the scenarios are not significant. Results for the 

other scenarios can be found in the appendix. Only the power prices from decision steps that 

  e  e    m n m m      t         e e  n    e  t     te    t V2H-only and insufficient profitable 

periods.  

 

Figure 27: Temporal boxplot of EVA profit and power price for the ME scenario 

The EVA profit remains fairly constant during the night, averaging 8-9  /4h, and then slightly 

decreases to 5-7  /4h for the time slots from 8 am to 4 pm, mainly due to the absence of EVs. 

The time slot from 4 pm to midnight represent the highest profitability for the EVA, with an 

average of 13-    /4h and a high spread. This corresponds to slightly higher aFRR prices and 

typical consumption peaks in the evening hours as it can be seen in the aFRR price analysis 

in the appendix. Additionally, the fully charged EV battery after the solar PV production period 

and the diminishing solar PV production rate encourage V2G services, especially highly 

economical positive aFRR during that time. 
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The statistical analysis of the power price shows similar patterns. During the night hours, the 

availability of the EV is secured and the competition with V2H is constantly low. Hence, the 

prosumer provides the required power without high power prices, as compensation through 

cycle costs and energy exchange is sufficient. Because of this, for most decision periods the 

optimal power price remain zero. During the day, with increased electrical consumption and 

solar PV production, as well as the need to charge the EV, the competition is generally higher, 

resulting more often in a higher power price. The average power price from 8 pm to 16 pm is 

    n   .       *h, while the median remains at zero. Particularly between 4 pm and 8 pm, 

a high average power price of 0.02     *h and median of 0.01     *h is met due to typical 

peaks in the consumption pattern and arrival of EVs. This leads to high competition between 

V2G and V2H, resulting in higher power prices. 

Overall, it can be concluded that a two-shift TOU power price scheme could be appropriate for 

the power price design. During the night (midnight to 8 am), a low power price       *h is 

sufficient, while a higher power price of 0.1- .      *h covers most periods during the day (8 

am to midnight) in the simulation. As mentioned before, for a real-world application, a generally 

  g e     e      e     .       *h could be considered on top in order to encourage 

prosumers to adapt their behavior and to strengthen the market position. As it was seen in 

Figure 25 the cycle compensation contributes to a significant amount of the total payments. A 

pricing concept design without an individual compensation for the battery aging incurred would 

result in even   g e     e      es.  t  s est m te  t  t    g     .       *h additional power 

price for every time slot could be added in that case. This estimation does not consider 

changes in the EVA operations, resulting from such a change in the pricing concept. However, 

a significant spread of the power price can be seen during the day, indicating that a dynamic 

pricing scheme is more efficient to cover these variations. 

Next, Figure 29 visualizes the average offered power for positive and negative aFRR as well 

as FCR for different time slots for the ME scenario. It becomes evident that positive aFRR is 

particularly utilized in the evening hours. As mentioned before, the evening hours offer 

extremely attractive conditions due to the high aFRR price, the constant availability of the EV, 

and the stored surplus energy. Even though some EVs are unavailable during the day for 

storing surplus energy, the aggregation benefits of the EV pool compensate for this. In such 

cases, the power is provided by all participating prosumers, but the energy is mainly drawn 

from those with a high SOC. The reduced provided power during the day is due to the absence 

of EVs. Interestingly, during the night, more power for negative aFRR is offered, representing 

an economical way to charge EVs that need to depart the next morning. Similarly, FCR is 

primarily offered during the night, from 8 pm to 8 am. Particularly, most power is used for FCR 

between midnight and 4 am. This can be explained by higher FCR prices at night and a 

reduced need to charge or discharge the EV. Additionally, more EVs are available at night, 

allowing for more bundled energy transfer and reducing conversion losses at low power rates 

of the EVC. 
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Figure 28: Average offered aFRR and FCR power per time slot for ME scenario  

4.3.2  EV owner 

In this Chapter, the simulation results from the prosumer perspective are examined, focusing 

on the resulting costs and customer satisfaction. The three scenarios and prosumer types are 

therefore compared. To ensure that the model is properly designed and considers the 

individual needs of the prosumer, an additional comparison with a V2H-only reference scenario 

is conducted. From the EVA perspective, it is evident that the model generates a positive profit. 

However, it is necessary to verify whether the model's operation plan benefits the prosumer. 

This is crucial because the reformulation of the bi-level model into a single-level problem does 

not directly optimize the prosumer's electricity cost reduction. The reference scenario captures 

the identical model configuration, input data, and RH setting but do not allow V2G. 

First, Figure 29 shows the various power rates for prosumer L2 in the ME scenario for a sample 

week in July. Driving consumption and electrical consumption are visualized as negative power 

rates, while EV charging through the grid is represented as positive rates in bright blue. V2H 

is depicted as positive power rates when charging the EV from the solar PV generator and as 

negative when discharging the EV to serve electrical consumption. Discharging the EV to inject 

energy directly into the grid did not occur during this week. The power rates for V2G refer to 

the positive and negative energy exchange due to aFRR, FCR, and SMT, managed by the 

EVA. 

Naturally, when the EV is driving, no charging or discharging of the EV through the EVC can 

occur. When the EV is available during the day, V2H is used to charge the EV with surplus 

energy, though with a limited amount of power. During the afternoon, the EV can be discharged 

to serve the electrical consumption needs, as seen on the last day. However, relatively low 

power rates of up to 6 kW are observed for V2H, which can be attributed to a certain share of 

power reserved for V2G. Higher power rates of up to 11 kW are used for V2G or direct charging 

of the EV from the grid. Direct charging the EV from the grid is only done before departing for 

a trip to meet the minimum SOC restrictions, with high charging rates of up to 11 kW observed. 



Model Evaluation 63 

 

 

The V2G applications results in many mini cycles of the EV battery, as seen in the second plot, 

where the SOC of the battery remains always within the 30-80 % SOC range. Most of the time, 

even smaller cycles between 50-80 % SOC are conducted.  

 

Figure 29: Prosumer L2 power rates and SOC for a sample week in July 

Figure 30 compares the average prosumer costs and incomes for each scenario. In the bi-

level model, the decision function ensures that the prosumer only accepts the offer if it provides 

at least a minimal benefit for this decision period. The benefit can be achieved financially or 

through energy exchange. Considering this, the operations from the bi-level model should 

result in at least slightly lower costs for the prosumer than in the V2H-only case. As expected, 

this is observed across all scenarios. The average costs for the prosumer in the V2H scenario 

are 1,025  ,     e  n case of EV pool participation the final costs for the prosumer are 834  , 

711  ,  n  798       t e   ,   ,  n     s en    s,  es e t  e  . As mentioned in the previous 

Section, the ME scenario does yield in the lowest profit for the EVA but therefore in the lowest 

costs for the prosumer. Thus, the ME scenario provides the most appropriate and fair energy 

valuation, enabling more balanced operations in favor of the prosumers. 
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Figure 30: Average prosumer costs for different scenarios 

However, economic benefits are not the only decision criteria for encouraging EV owners to 

participate in the EV pool. When installing bi-directional charging infrastructure for V2X 

services, additional criteria for customer satisfaction such as grid-autarky and incurred battery 

degradation can play a decisive role for the decision. Figure 31 shows the resulting grid-autarky 

and Equivalent Full Cycles (EFC) for all scenarios. Here, grid-autarky is defined as the total 

consumption need minus the energy sourced from the local grid connection at the    s me ’s 

electricity tariff conditions in relation to the total consumption need. The total consumption need 

includes both electrical and driving consumption in order to properly evaluate the V2G impact. 

In case of V2H-only the grid-autarky match the common definition of self-sufficiency [60]. The 

EFC refers only to the additional cycles due to bi-directional charging and excludes the driving 

of the car, which corresponds to roughly 43 cycles a year when driving 13,000 km. 

The results show that V2H application alone incurs significantly fewer additional EFC than a 

combined V2H and V2G strategy. The operation plan of the ME scenario resulted fewest 

additional EFC with an average of 31. Similar, all three scenarios yielded a lower gird-autarky 

than the V2H-only reference scenario. This aligns with the high utilization of positive aFRR, 

suggesting that utilizing surplus energy for balancing services, especially positive aFRR, is 

often more economical than using it to cover consumption needs. Still the ME scenario results 

in the highest grid-autarky degree at 34.06 %, compared to the other EV pool scenarios, 

indicating overall the highest customer satisfaction and economic benefits.  
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Figure 31: Average prosumer grid-autarky and EFC for different scenarios 

Next, a more detailed look into the differences between the prosumer types within the EV pool 

is given. The focus is set on the ME scenario, as it yields the highest prosumer benefits. Figure 

32 shows the average prosumer costs and compensation for the three prosumer types S, M, 

and L. 

 

Figure 32: Cost comparison of prosumer types for ME scenario 
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Obviously, larger prosumer sizes lead to lower electricity costs due to increased solar PV 

production in V2H-only and EV pool scenario. However, it can be observed that both the 

absolute compensation from the EVA and the relative share of net cost reduction increase with 

larger prosumer sizes. The net costs are calculated by subtracting the compensation payments 

from the grid costs. For prosumer type L, financial compensation payments reduce electricity 

costs by 52 %, whereas for prosumer type M and S, it accounts for only 32 % and 18 %, 

respectively. This also emphasizes the higher potential for prosumer type L to benefit from an 

increased power price. The average prosumer L would gain 572    nn         t e    e      e 

is raised by 0.01     *h in every decision period, assuming no change in the EVA's operation 

plan. In that case the prosumer type L would have reached negative total costs. This allows to 

conclude, that a larger EVC power size significantly improves the profitability for the prosumer. 

Notably, prosumer S achieves even without compensation payments lower total costs than in 

the V2H-only scenario. This can be explained by a higher amount of energy received through 

the EV pool participation, as it will be seen in the increased grid-autarky rate next. 

In the following, the customer satisfaction among different prosumer types is compared. Figure 

33 visualizes the participation rate and grid-autarky for the three prosumer types for the ME 

scenario. The results for the other scenarios can be found in the appendix. The participation 

rate is defined as the ratio of provided power to total power possible to provide. Here, the 

absence of the EVs due to their availability is taken into account, theoretically making it 

possible to reach a 100 % participation rate. 

 

Figure 33: Grid-autarky and participation rate among different prosumer types 

As previously observed, prosumer L benefits economically the most from participating in the 

EV pool. However, this does not apply in terms of customer satisfaction. Through EV pool 

participation, prosumer type L reduces their grid-autarky degree from 49.91 % to 39.35 %. 

Conversely, prosumer type S self-sufficiency rate increases from 20.70 % to 25.92 %. It can 

be assumed that the ratio between electrical consumption and PV production is decisive for 

this. Prosumer S generally lacks sufficient energy to satisfy their consumption needs, as these 

remain constant across prosumers, while the production rate increases with larger solar PV 
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systems. The specific need for prosumer S is indirectly implemented in their decision function, 

as they are more likely to accept an offer when receiving energy, creating the highest value for 

them. The model adapts the energy distribution accordingly to the specific needs of the 

prosumers. Conversely, prosumer L has more cheap surplus energy available, allowing to take 

energy from them and using it for positive aFRR. In exchange, prosumer type L favors more 

likely to receive a financial compensation. 

Therefore, it can be concluded that the model adapts the operation plan and energy distribution 

according to the prosumers' needs and situations. This emphasizes the strengths and benefits 

of EV pool aggregation compared to single flexibility participation. In the end, the slightly lower 

participation rate for smaller prosumer is observed, which can be explained by higher 

competition for the limited power with V2H. 

Lastly, the additional incurred EFC due to V2X applications are visualized in Figure 34 for the 

three prosumer types. It is evident that larger prosumers are significantly more utilized for 

energy exchange than smaller prosumers, since they have generally more surplus energy to 

provide as explained before. Thus, the battery of larger prosumer is therefore more often 

discharged and charged than for smaller prosumers, which generally lack of energy. 

Considering the typical lifespan of an EV, a certain number of additional cycles is acceptable 

for the EV owner, although this strongly depends on battery characteristics, external 

conditions, and further product usage.  

 

Figure 34: EFC incurred for different prosumer types  

Also, additional factors, such as DOD, SOC regime and power rates do also play a decisive 

role for battery aging [57]. Within the developed model, battery degradation sparing 

assumptions were applied, limiting the SOC range for V2X applications from 30 % to 80 % 

SOC. This significantly reduces degradation effects due to cyclic and calendric aging, as 

shown in [57]. Especially utilizing the advantages of an aggregated EV pool allows compliance 

with such a tight SOC range without significant performance losses. As it can be observed in 

Figure 29, the maximal DOD is 50 % of SOC, due to the SOC restriction, while many mini 
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cycles at a DOD of roughly 30 % are conducted due to V2G. Thus, most of the additional EFC 

due to V2G are conducted with a sparing DOD within a sparing SOC regime. Nevertheless, 

for larger prosumers a general higher power rate is observed. It should be validated, if 

implementing power rate reducing functionalities do significantly impact the V2G services of 

the EV pool. 

Also, it should be validated whether the applied static     e   sts     .           e 

reasonable. With higher cycle cost values, the model would adapt the operation plan to reduce 

the EFC incurred. Additionally, the size and composition of the EV pool can play a significant 

role. The configured EV pool with a total size of 66 kW is relatively tight compared to the 

possible double bid size of two times 30 kW for reserving power at the balancing market. 

Hence, only 6 kW are available for other value streams in case of two bids offered, which likely 

limits available EVC power for serving the household electrical consumption need. 
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5. Conclusion 

This Chapter draws a conclusion on the presented framework and analysis for critical reflection 

of the work. In the end, an outlook for possible future work is given.  

5.1 Framework 

The EV Aggregator (EVA) serves as an intermediary entity between EV owners and the energy 

market, facilitating private individuals' access to the energy market and thereby unlocking the 

flexibility potential of EV batteries. However, the competition with individual prosumers' 

interests forces the EVA to craft a compelling business model that presents an attractive value 

proposition, encouraging them to participate in the EV pool rather than opting for individual 

V2H applications. Depending on the generated price incentives, prosumers adapt their 

consumption behavior and participation choices, which, in turn, impact the EVA's operations 

and strategy. 

This work presents a bi-level optimization framework to capture this strategic interaction 

between the EVA and prosumers in a dynamic and competitive Stackelberg game for 

analyzing pricing and operational concepts. Building on the existing FOCUS-Framework 

[21,80], the developed framework allows within a customizable EV pool and prosumer 

configuration to concurrently maximize the EVA profit and minimize prosumers' electricity 

costs. This framework considers multiple value streams, such as increased PV self-

consumption, load shifting, energy arbitrage, aFRR, and FCR participation. Furthermore, the 

framework enables a dynamic decision-making process to determine an appropriate power 

price for every decision period offered to the prosumer. To facilitate this dynamic decision 

process, the rolling horizon method is applied for temporally decomposing the problem into 

sub optimization problems with one day horizon and a decision period of 4 hours. As a result, 

  t m  e    e  t  n    ns     t e    ’s ene g  m   et    t     t  n  n     s me s'     g ng 

schedules are generated. 

Within this work, new functionalities and adaptations to existing classes were made to cope 

with the new strategy of an EVA. Therefore, the EV pool is connected via a new 

VirtualAggregator class, which strictly reserves the EV charger power share according to the 

offer. To simulate real conditions for the EV pool, minimum bid size restrictions for balancing 

services and SOC restrictions are implemented. The resulting non-convex bi-level MILP 

optimization problem is solved by applying the reformulation method, which reduces the bi-

level problem to two dedicated single-level problems. At the heart of this reformulation method, 

a decision function in the EVA´s Energy Management System decides whether the prosumer 

accepts the offer based on a predefined benefit for the prosumer. Respective cost-value 

functions calculate the benefit for each offer by capturing the costs, compensation payments, 

and deviations in battery SOC for each prosumer and decision period. By this adaptation, the 

participation choice and energy distribution in the model are optimized according to the needs 

of the prosumer and EVA profit maximization efforts. By integrating the prosumers' electricity 

costs in the upper-level model, a precise assessment of all value streams at every moment is 

achieved. Since battery degradation is a major counter-argument for V2X applications, cycle 
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costs and a limited SOC range for bi-directional charging are implemented based on 

recommendations from the literature to reduce battery aging effects [57]. 

A general hurdle in solving bi-level optimization problems is the resulting high computation 

time. Several modeling techniques were applied and validated to achieve a user-friendly 

computation time without significant losses in quality. However, extremely long computation 

times for certain simulation periods are still encountered, when the energy market data shows 

enhanced volatility in late summer 2022. While the framework simplifies calculations, it does 

not fully capture the real-world uncertainties an EVA faces when planning its operations. V2G 

operations are idealized, excluding complexities such as bidding strategies, which may not 

fully represent the competitive nature of energy markets. The model also does not account for 

competition with other EVAs. Additionally, the short decision period of 4 hours disadvantages 

long-term trades on the spot market. To overcome this, longer decision intervals or an 

individual financial payment for the energy exchanged should be introduced to fully promote 

long-term energy trading. 

5.2 Simulation Analysis 

The analysis of the yearly simulation results provided critical insights into the operations and 

profitability of the EVA and the impact on prosumers. During model evaluation, three scenarios 

(HE, ME, LE) with different energy valuations were analyzed to assess the effectiveness of the 

developed bi-level model. The pricing concept allows compensation through energy exchange 

and financial payments based on the power provided and battery aging incurred. A 

heterogeneous EV pool composition is used for all three scenarios, containing nine prosumers 

(S, M, L) with a total charging power of 66 kW. The prosumer usage patterns were statistically 

modified to account for the randomness in individual behavior. 

For the simulation year 2022, the EVA achieved the highest annual profit of 19,951   in the HE 

scenario, followed by 19,632   and 18,113   in the LE and ME scenarios, respectively. It can 

be assumed that the EVA can better exploit the extremely high or low energy valuation, 

resulting in less benefit for the prosumers. Results show that FCR and SMT contribute only 

minimally to the revenue, with FCR characterized by high energy exchange rates, which lower 

profitability due to conversion losses and battery degradation costs. SMT is predominantly 

used for compensating the prosumer through energy exchange, especially in the HE scenario. 

Notably, over 85      t e    ’s  e en e is earned from participating in aFRR, highlighting its 

major role in the EVA's business model. Positive aFRR is utilized approximately three times 

more than negative aFRR due to higher associated power and energy prices and the high 

availability of surplus energy from the participating prosumers. Additionally, the pricing concept 

design favors positive aFRR since the EVA can compensate the prosumer financially for taking 

their energy but not the other way around. Temporal analysis indicated that the EVA's 

profitability closely correlates with spot market and aFRR prices. Up to a fourfold difference in 

profit between months is observed, raising questions about the stability of the EVA business 

model. Even at low market prices, considerable high amount of power is provided for balancing 

services, indicating that a significant share of EVC power is not contested for V2G services. 
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Further daily analysis of the EVA operations showed that the highest profitability is achieved 

during evening hours (4 pm to midnight), due to availability of EVs, stored surplus energy and 

slightly higher aFRR prices. Similar patterns are observed for the analysis of the power price. 

The simulation results suggested that a two-shift Time-of-Use power price scheme could be 

         te,   t         e      es     n      kW*h during the night (midnight – 8am) and 

higher prices around 0.01 – 0.02     *h during the day (8 am to midnight). These prices 

represent the lowest price possible to be offered in optimal conditions. Additionally, roughly 

half of the compensation payments were invoiced for individual cycle cost payments. If these 

aspects were included in the power price, it is estimated that roughly 0.01 – 0.02     *h can 

be added on top to the power price during the day to account for a higher prosumer benefit, 

battery aging, and securing market position. However, the high share of 71 % zero power price 

in combination with a high spread during the day indicates that a dynamic pricing scheme could 

be more appropriate to capture these dynamics. 

From the prosumer's perspective, prosumers do benefit economically from participating in the 

EV pool. The ME scenario yielded the highest prosumer benefits and customer satisfaction, 

indicating the most balanced and fair energy valuation. The average prosumer could reduce 

its electricity costs by a further 31 % compared to the V2H-only scenario, while the large 

prosumer even gained a 52 % cost reduction. This highlights the larger potential from more 

EVC power in combination with a larger PV system, which can even lead to negative total costs 

when power prices were adapted as recommended. 

Generally, the grid-autarky is lower in the EV pool scenarios compared to the V2H-only 

scenario, indicating that at some moments higher earnings from giving surplus energy to the 

energy market than serving own consumption needs can be achieved. Notably, prosumer S 

could improve their grid-autarky from 20.70 % to 25.92 % through EV pool participation, while 

   s me   ’s grid-autarky decreased from 49.91 % to 39.35 %. This highlights that the model 

adapts operation plans according to energy needs of each prosumer. The additional equivalent 

full cycles caused for different prosumers sizes, range from 23 to 40 with a maximum DOD of 

50%. Even though battery degradation sparing restrictions are considered, these additional 

cycles could shorten the lifespan of the EV. Also, further investigation should be done to 

determine a dynamic cycle cost value to account for different EV costs, changing external 

conditions, and intended uses. 

Overall, the bi-level model effectively captures the interactions between the EVA and 

prosumers for determining a power price, while demonstrating the feasibility and significant 

economic benefits of aggregated EV pool operations. The findings underscore the importance 

of tailored pricing schemes to optimize both economic and operational outcomes for all 

stakeholders involved. 

5.3 Outlook 

Building upon the work presented, future investigations should aim to further extend the 

framework functionalities to more efficiently examine EVA operations and pricing concepts in 

a more realistic environment. Initially, the framework should be used for further simulations 

with more extended and advanced pricing concepts, considering individual bi-directional 
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payments. This will provide a more comprehensive understanding of the interaction between 

the EVA and prosumers in the dynamic Stackelberg game environment. 

Future studies should also consider incorporating a more representative modeling of the 

competitive landscape. Currently, the model simplifies V2G operations and does not 

completely account for the complexities of bidding strategies, the unpredictability of prosumer 

behavior, or competition with other EVAs. Introducing these elements could provide a more 

realistic assessment of the EVA's market dynamics and competitive positioning, which is 

crucial for prosumer interaction. However, these additional features will likely increase 

computation time. Therefore, further framework development should aim to implement more 

time-efficient solving approaches to accommodate these enhancements. 

In the author's view, a significant avenue for future work is to evolve the role of the EVA beyond 

its current scope, positioning it as a more holistic energy manager, which would substitute the 

current electricity provider. In this more integrated role, the intermediary entity would expand 

its functionalities beyond flexibility and charging management of EVs towards energy 

optimization and commercialization for all energy assets of the prosumer within the 

aggregation pool. By doing so, a cooperative environment between the intermediary entity and 

the prosumers could be achieved, entirely optimizing benefits for all participants. This 

approach would fully unlock the aggregation and flexibility potential of private prosumers and 

offer a major step towards energy transition. 
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Appendix 

1 Workflow 

A more detailed examination of the workflow within the individual models is now presented. 

Figure 35 illustrates the most essential classes and functions for the workflow of the models. 

Both models share almost the same workflow. The grey-shaded boxes are used specifically 

for the UL-Model. The process begins with the 'runme' file, which sets up the input files, model 

parameters, strategy, and creates the MainProsumer class. This class is instrumental in 

generating Prosumer objects and accessing their functions. During the initialization of the 

prosumer object, the component classes are created and linked according to the model 

configuration. Subsequently, the optimize_sizing function calls the build_model 

function, which generates the OptimizationModel object by invoking the add_variables 

and add_constraints functions of each respective component. It also defines the strategy 

of the optimization through using implement_strategy of the EMS class, which sets the 

optimization objective. In the case of the UL-Model, additionally the function 

add_EVA_constraints is called and the classes FCR and aFRR are created. After 

constructing the model, it is solved using the Pyomo function solve. The results are then 

transferred to the save_results function to be stored in an Excel file. 

 

Figure 35: Workflow of the LL and UL-Model 

2 Input Data 

The table below shows several other input data used in the simulations, which were not 

explained in detail in the thesis. Among these is especially the efficiency of the PV inverter, 

EVC and battery system. For the EVC the data for a dynamic bi-directional inverter was used 
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   m t e m  e  “   -7000TL-  ”    m    .   e n n-linear efficiency curve is characterized 

by the six parameters below.  

Table 7: Efficiency values for PV Invert, EV Battery and EVC 

System Parameter Value 

PV Inverter 𝜂𝑃𝑉−𝐼𝑁𝑉 0.9694 

EV Battery 𝜂𝐸𝑉 0.99 

EVC 𝑃1 0.05 

 𝑃2 0.1 

 𝑃3 0.75 

 𝜂1 0.88 

 𝜂2 0.928 

 𝜂3 0.973 

3 Analysis 

Figure 36 – 44 show the presented analysis results for the remaining scenarios to complement 

the presented analysis in Chapter 4. 

 

Figure 36: Monthly EVA profit and power reserved in the ME scenario 
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Figure 37: Monthly EVA profit and power reserved in the LE scenario 

 

 

Figure 38: Boxplot of EVA profit and power price for time slots for the HE scenario 
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Figure 39: Boxplot of EVA profit and power price for time slots for the LE scenario 

 

Figure 40: Boxplot of power prices for aFRR and FCR in 2022 
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Figure 41: Participation rate and grid-autarky for LE scenario 

 

Figure 42: Participation rate and grid-autarky for HE scenario 
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Figure 43: EFC for each prosumer type for LE scenario 

 

Figure 44: EFC for each prosumer type for LE scenario 

 



Glossary 79 

 

 

Glossary  

  

AFRR Automatic frequency restoration reserve 

BSP Balancing Service Provider 

CET Central European Time 

DSO Distribution System operator 

EFC Equivalent full cycle  

EMS Energy management system 

EV Electric Vehicle 

EVA Electric Vehicle Aggregator 

EVC Electric Vehicle Charger 

FCR Frequency containment restoration 

KKT Karush-Kuhn-Tucker 

LL Lower Level 

LP Linear Problem 

MCP Market clearing price 

MILP Mixed-Integer-Linear Problem 

MOL  Merit Order List 

MW Mega Watt 

NLP Non-Linear Problem 

OTC Over the counter 

PDF Probability density function 

PV Photovoltaic 

RH Rolling Horizon 

RR Restoration reserve 

SBG Stackelberg game 

SMT Spot Market Trading 

SOC State of Charge 

ST Static tariff 

TOU Time-of-Use 

TSO Transmission System operator 

UL Upper Level 
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V2G Vehicle-to-Grid 

V2H Vehicle-to-Home 

V2X Vehicle-to-X (everything) 

VAT Value added Taxes 

IR instantaneous reserve 

KWP Kilo watt peak 
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