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Abstract. This paper explores the potential of artificial intelligence (AI) to 
support collaboration in the industrial equipment life cycle. The industrial 
equipment industry involves complex multidisciplinary collaboration with 
suppliers and customers across many machinery life cycle stages, including 
design, manufacturing, use and end-of-life. This paper conceptualises a set of AI-
enabled digital solutions within the AIDEAS European project scope. With a case 
study of an industrial equipment company, we illustrate how AI solutions can be 
used to support collaboration in the supply chain across machinery life cycles. 
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1 Introduction  

Increasing consumption and economic globalisation have forced companies to improve 
production processes through Industry 4.0 (I4.0) technologies, such as Artificial 
Intelligence (AI), Big Data Analytics (BDA), Block Chain (BC), Cloud Systems (CS), 
Cyber-Physical Systems (CPS), Internet of Things (IoT), Additive Manufacturing (AM) 
and Digital Twins (DTs). Thanks to these technologies, it has been possible to optimise 
and improve production processes. Moreover, I4.0 technologies are considered by [1] 
as enabling increased collaboration between companies. To this end, companies are 
exploring novel approaches to collect data throughout the production chain to optimise 
industrial processes, which leads to a digitisation and optimisation trend in industry [2]. 
Introducing new technologies offers the possibility of sharing different resources across 
information systems by facilitating the integration of different solutions throughout a 
product’s life cycle. Thanks to this infrastructure, the interaction between different 
companies is facilitated by increasing collaboration along the production chain and a 
machine’s life cycle.  

The following sections introduce the AIDEAS project [3] on which this paper is 
based, and whose main aim is to develop AI technologies that can support the entire life 
cycle of industrial equipment. The primary goal of this project is to develop and use 
these technologies as a strategic tool to enhance collaboration among supply chain 
partners, achieve sustainability principles in the network, increase collaborative 
partners’ agility, and promote collaborative enterprises’ resilience. The project 
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particularly focuses on machinery manufacturing companies in the European Union 
(EU).  

The objective of the paper is to conceptualise a set of AI-based tools to deal with the 
collaborative perspective in each product life cycle (PLC), including design, 
manufacturing, use and disposal, by considering the circular economy (CE) perspective.  

To fulfil the indicated objective, the paper is organised as follows: Section 2 caries 
out a state of the art following a four-scope approach that addresses the interconnections 
between collaborative networks (CNs), PLC, I4.0 and CE. Section 3 conceptualises the 
AIDEAS AI-based solutions, to be implemented into the four different PLC phases. 
Section 4 presents a case study in a food inspection industrial equipment company, in 
which the conceptualised AI tools considered in its business processes. Finally, 
discussion appears in the conclusions section. 
 

2 State of the Art  

Integrating AI into manufacturing has become increasingly vital for reducing the 
complexity of managing manufacturing processes. As researchers continue to explore 
new ways to improve efficiency in the manufacturing phase, I4.0 has emerged as a 
response to integrate advanced technologies like AI, Robots, IoT, and Cloud Computing 
by enhancing the resilience and sustainability of production systems [4]. Smart factories 
are an example of this integration, which employs context-aware applications and self-
regulating mechanisms to optimise production processes [5]. The significance of 
innovation and digitisation in products, services and processes has highlighted the need 
to adopt advanced AI technologies in manufacturing processes. Among the various 
subclasses of AI, one that stands out prominently in this context is Machine Learning 
(ML), which has emerged as one of the most extensively employed techniques [6]. 
These algorithms are proven essential tools for handling high-dimensional problems 
and data, which are constant characteristics of CN. By focusing on computer science 
and engineering, AI offers several benefits in industrial sectors, including greater 
innovation, process optimisation, resource optimisation and improved quality [7]. It is 
noteworthy that these benefits have revolutionised the PLC by enabling the optimisation 
of processes and resources, and improving quality in all stages, from design and 
manufacture to removal and disposal, and at all the levels of supply chain stakeholders. 

This state of the art section explores the literature from a four scope approach: (i) 
PLC; (ii) CE, (iii) supply chain collaboration; and (iv) I4.0 technologies. This section 
elucidates how these four concepts can foster a synergistic effect, culminating in a 
robust framework for promoting sustainable and efficient practices: 
• The PLC refers to the different stages that a product goes through from creation to 

disposal. A product’s life cycle comprises four main phases: (i) beginning of life, 
which includes the design of a product; (ii) middle of life, which involves the 
resource, manufacturing and distribution of a product; (iii) use of life, which entails 
a product being used and after-sales support for customers; (iv) end-of-life, which 
includes a product’s retirement and disposal. Each phase has unique activities and 
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goals that are important to understand by all the supply chain partners to effectively 
manage the product, from the product’s design to its disposal [8].  

• Emergent framing around waste and resource management has gained momentum 
in response to the intrinsic limit of sustainability that affects the modern world. It is 
known as CE. This framing seeks to provide an alternative to prevalent linear take-
make-dispose practices perpetuated by current business models to prioritise 
continuous production, consumption and disposal to stay competitive [9]. CE 
promotes the waste and resource cycling notion to address the existing model’s 
limits and weaknesses, a concern that has been voiced for two decades.  

• CNs are acknowledged as a key facilitator in the evolution towards CE in supply 
chains [10]. CNs also play a crucial role in integrating I4.0, including AI. According 
to the I4.0 vision, smart manufacturing enterprises are organised into multiple layers 
of networked and collaborative subsystems. Each layer becomes a CN of smart 
components with increasing levels of intelligence and autonomy. The interactions 
between these layers lead to an exchange among smart production units, smart 
logistics, smart products, smart organisational and engineering units, and people. 
Collaboration between these entities is a requirement to support agile and resilient 
processes [11] [12]. According to [13], integrating collaboration into business 
processes, practices and standards is necessary to shift from the unsustainable linear 
economic system to a more sustainable circular system. Thus collaboration is 
crucial for harnessing the potential benefits of CE and I4.0, which are the two 
prominent industrial patterns in recent times. Their combined implementation into 
an industrial setting can enhance supply chain efficiency and competitiveness [14].  

• The promising scope of AI techniques has led to them being implemented in 
different PLC phases. Wang et al. [15] provide an example of a framework that 
classifies the different AI applications and how they can be translated into different 
life cycle phases. To the best of our knowledge, there is no work in the literature 
that addresses the four-scope approach in which AI technology supports the 
different PLC phases by considering the collaborative perspective of supply chain 
partners in all the phases, from design to disposal, including the circularity concept. 

 
In a highly globalised world, with the emergence of new players, it is crucial that the 
EU continues to explore disruptive ways to improve its ecosystem and maintain its 
position as the world's leading producer and exporter of machine tools. The EU's 
technological edge in the industrial equipment sector is threatened by China's rapid 
growth. China has launched strategic plans such as "Made in China 2025" to modernise 
its industrial capabilities and impact on the competitive landscape. Whilst EU has 
highlighted the need, according to the current Horizon Europe framework programme, 
for digitalising manufacturing enterprises in the scope of the industrial equipment life, 
especially in SMEs.  
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3 Industrial equipment life cycle supported by AI 

One of the challenges that CNs face is to develop solutions that test, analyse and then 
decide about the designs that affect the entire PLC. At this point, engineers involved at 
the different PLC points face the need to better understand all the stages that their 
product goes through during its whole life cycle, and relevant information or data. 
Consequently, they have to handle a large amount of reliable information that will 
require different technological solutions being used. At this point, by properly 
integrating various AI tools, synergies can be achieved across all factory functions, 
which will ultimately have a positive impact on productivity, quality, costs, 
sustainability, and much more. To obtain these benefits, it is crucial to carefully select 
the right AI techniques and technologies for each PLC stage [16]. 

This section conceptualises of the main AI tools in each phase. Each AI tool works 
as a platform to support the design, manufacturing, use and recycle phases of the PLC 
by enabling the connection of data and information among the involved supply chain 
partners. Each AI tool will be designed to facilitate information exchange and can, 
therefore, improve the collaboration of all the stakeholders who participate in the PLC, 
including designers, manufacturers, suppliers, customers and service providers.   

  
3.1 AI in the design phase 

In order to achieve an optimal design that meets market needs and engineering 
requirements, a continuous problem description and solution development process is 
necessary. The knowledge produced in each design process stage can be captured using 
computational support tools, which can also help with decision making. To be more 
effective, designers must have access to more support tools throughout early conceptual 
design phases because these stages might make it difficult for them to process, arrange 
and represent design data [17]. Therefore, in the design phase, three AI-based tools are 
conceptualised, and each one is explained below: 
• Machine Design Optimiser (MDO). An AI-powered tool for optimising dynamic 

machines and their components. The AI assistant adjusts the model parameters 
based on users’ objective functions while considering manufacturing and 
operational limitations, boundary conditions and target criteria. It also analyses the 
impact of design parameters on machine evolution during its life cycle 

• Machine Synthetic Data Generator (MDG). It synthesises high-quality datasets by 
simulations to train the optimisation modules in MDO. This tool allows designers 
to generate realistic machine design simulations and to evaluate performance in 
different scenarios by making AI solutions accessible for small-scale and short-term 
projects 

• CAx Addon. An interoperability mechanism to integrate AI-assisted optimisation 
modules (MDO and MDG) with current CAD/CAM/CAE systems. APIs and UIs 
combine each optimisation module's unique functionality while also considering the 
needs of other common CAx solutions designers to employ AI-powered tools like 
MDO and MDG to enhance machine efficiency and to improve industrial equipment 
designs in the design phase 
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3.2 AI in the manufacturing phase 

AI has the huge potential to contribute significantly to several aspects of the 
manufacturing phase. One key area where AI can help is to optimise inventory 
management, to reduce production and setup times, and to improve storage and 
delivery. The complexity of optimally performing this type of activity lies in the vast 
amount of data that must be handled because industrial equipment and bill of materials 
are huge. AI can analyse large amounts of data to predict future demand, adjust 
inventory levels and minimise waste and, thus, reduces costs. AI can also optimise 
warehouses and logistics to ensure that products are efficiently stored and delivered on 
time. By leveraging AI technologies, manufacturers can significantly improve 
efficiency, profitability and customer satisfaction, which all lead to better business 
performance and growth. Although there are publications on AI applications for defect 
prediction or maintenance diagnostic purposes, more work that focuses on AI in 
industrial equipment manufacturing needs to be done. Therefore, this section 
conceptualises three tools to cover the main processes of the manufacturing phase. 
• Procurement Optimiser Toolkit (PO). It is an AI solution that helps manufacturers 

to optimise materials inventory and purchasing while considering customer lead 
times. PO reduces inventory costs and the risk of stockouts with advanced 
algorithms that forecast demand, recommend reorder points, and suggest cost-
effective or available alternatives 

• Fabrication Optimiser Toolkit (FO). It is an AI solution that predicts production and 
setup times, dependences, and other factors that influence production scheduling 
and resource allocation. This enables manufacturers to respond quickly to changing 
conditions and make informed decisions about resource allocation, reducing 
downtime and increasing productivity. FO optimises manufacturing processes, 
reduces waste, and improves quality and competitiveness 

• Delivery Optimiser Toolkit (DO). It is an advanced solution that optimises product 
storage, transportation, logistics scheduling and planning. DO leverages AI to 
deliver the most efficient solutions possible by reducing transportation costs, 
increasing delivery speed and improving customer satisfaction. It also identifies and 
resolves bottlenecks in the supply chain, which improves efficiency 
 

3.3 AI in the use phase 

In this stage, the product is in the hands of the end customer and/or some service 
providers, e.g., maintenance. The history of the product about conditions of use, failures 
and maintenance can be collected to create an up-to-date report on the product’s 
condition. Industrial equipment involves devices designed for tasks in industrial 
environments. They are robust, durable, efficient and productive, and employ advanced 
technology to improve their performance. Their smooth operation in the use phase 
ensures that quality goods or services are produced. 

AI solutions, such as quality monitoring and machine vision, detect defects in real 
time and reduce the number of defective products, while ML algorithms and predictive 
maintenance prevent failures and defects in production. The Zero Defects philosophy 
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and AI solutions aim to improve product quality and increase production profitability 
[18]. Integrating these solutions into a factory’s daily operation improves its 
competitive market position. 
• Machine Calibrator Toolkit (MC). It uses AI to calibrate industrial equipment 

efficiently by reducing time and costs. It can also improve accuracy and precision 
to meet required specifications 

• Condition Evaluator Toolkit (CE). It employs advanced algorithms to determine the 
condition of machines, to identify potential problems before they become critical, 
and to optimise maintenance schedules 

• Anomaly Detector Toolkit (AD). It resorts to ML to detect component- or machine-
level anomalies by enabling manufacturers to take corrective action before 
problems become critical 

• Adaptive Controller Toolkit (AC). It trains machine controllers to perform 
optimally and to adapt to changing conditions in real time by reducing the risk of 
unplanned downtime and improving efficiency 

• Quality Assurance Toolkit (QA). It applies AI to monitor the quality of 
manufactured products by identifying potential problems before the product is 
delivered to the customer and reducing the risk of returns and warranty claims  
 

3.4 AI in the repair-reuse-recycle phase 

This phase is the last life cycle phase. It aims to find alternatives for machines to return 
to some previous phases of their life cycle, and always depends on the state of the 
machine. In this phase, the potential of AI-based tools is used to promote sustainability 
in the machine sector by extending machines’ useful life, reducing waste and improving 
material flow efficiency. 
• Prescriptive Maintenance toolkit (PM). It uses AI algorithms to predict a machine’s 

remaining useful life and to identify necessary maintenance requirements. In this 
way, maintenance can be performed more accurately and costly failures that may 
compromise machine performance can be avoided 

• Smart Retrofitter toolkit (SM). It applies AI to optimise working conditions and 
product quality during retrofitting. The retrofitting process involves upgrading or 
improving older machines to give them a second life, and to reduce the amount of 
generated waste. By means of this tool, customers can simultaneously obtain 
economic and environmental benefits 

• Life Cycle toolkit (LC). It combines AI and life cycle methodologies to identify the 
best way to end a machine’s life cycle. A multi-objective optimisation strategy 
balances economic, social and environmental benefits to ensure a sustainable 
solution 

• Disassembler toolkit (DIS). It utilises AI models to optimise machine disassembly 
and recycling processes, which helps to reduce waste and to improve material 
circulation efficiency 
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3.5 Machine passport  

Machine passport (MP) will provide an intelligent platform responsible for acquiring, 
managing and exchanging large-scale data from multiple sources across devices. The 
MP is, therefore, designed to store and share the manufacturing data collected 
throughout the different PLC phases, including design, manufacture, use and repair-
reuse-recycle. It aims to develop protocols, standards and data exchange interfaces that 
facilitate the integration, sharing and exchange of intelligent and reliable data between 
different types of computer-aided systems and manufacturing phases. This is achieved 
by using an intelligent platform to acquire, manage and share large-scale manufacturing 
data from multiple sources, which can be visualised with a variety of devices and 
dashboard interfaces. 

Unified standard service modelling techniques ensure data compatibility, 
interoperability, consistency and quality. The MP therefore ensures traceability 
throughout the machines’ life cycle. With this information, it is possible to identify the 
phases when greatest distress occurs. By identifying the point at which a machine's 
performance declines, a plan can be drawn up to improve its design, manufacture or use 
based on reliable accurate information. The MP uses explainable AI algorithms to guide 
the orchestration of large-scale data flow and knowledge management throughout the 
PLC manufacturing phase. By manipulating ML knowledge, the MP facilitates 
decision-making processes related to the PLC by guiding optimal configuration 
strategies to repair, reuse and recycle industrial equipment.  

Thanks to the MP, it is now possible to track the condition of machines throughout 
their life cycle, which makes it possible to identify the phase in which machines undergo 
the most stress. This information can then be used to improve practices in that stage or 
to anticipate potential problems in earlier stages through better designs by eliminating 
inefficiencies or applying alternative materials, which results in less wear and tear and 
a longer life cycle for machines. 
 
4 Use case: food inspection industrial equipment company 

The AIDEAS project works with four industrial scenarios, in which AIDEAS solutions 
are conceptualised. As each of the industrial pilots involve equipment manufacturers 
from different sectors, AIDEAS solutions address diverse sets of collaborative 
processes. The pilot used in this paper specialises in the development and production of 
artificial vision equipment that utilises machine vision and X-ray technologies to sort 
fresh fruit and vegetables, and to inspect food products. This section focuses on 
conceiving the AIDEAS solutions to enable the food inspection industrial equipment 
company to improve collaboration with supply chain stakeholders.  

To define the use case of the aforementioned pilot, we ran the methodology to define 
use cases for the validation of European research projects Results (MUCER) [19] that 
consists of: (i) modelling AS-IS scenarios in each use case; (ii) redefining the business 
processes for each use case as TO-BE scenarios, which incorporate the AIDEAS 
European project solutions and show evolution from AS-IS scenarios. As the objective 
of this paper is to show how AIDEAS solutions can be formulated to support 
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collaboration with supply chain partners in industrial equipment network, this paper 
conceptualises TO-BE scenarios of the MUCER methodology. Accordingly, the food 
inspection company included four different business processes in which to conceive 
AIDEAS solutions for boosting supplier and customer collaboration along three of the 
life cycle phases, which are: manufacturing, use, and repair-reuse-recycle. With the 
AIDEAS solutions’ conceptualisation, the advances expected for the food inspection 
company are: 
• A1. Optimise machinery manufacturing and storage processes for improved 

efficiency, reduced costs and increased productivity by considering suppliers’ 
restrictions and unpredictable behaviours  

• A2. Increase efficiency in managing machine deliveries to customers 
• A3. Reduce machine setup times for optimal customer utilisation, which leads to 

zero defects of product inspection 
• A4. Improve smart maintenance planning 
The following sections describe the four scenarios that fulfil the listed advancements. 
Each scenario reflects the consideration of some previously conceptualised AIDEAS 
solutions. We highlight how AIDEAS tools support collaboration with supply chain 
partners. Finally for each scenario, we list the benefits defined by the studied use case 
thanks to considering the conceptualised AIDEAS solutions.  
 
4.1 AI-based assessment for procurement and production planning in the 

manufacturing phase 

The manufacturing phase comprises two use cases that involve the incorporation of AI 
technologies to deal with the procurement, manufacturing and delivery processes, 
which employ the PO, FO, DO solutions. In this section we deal with the PO and FO 
solutions, while next section 4.2 conceptualises the DO solution. 

In the food inspection pilot, PO will help to optimise inventory and replenishment 
based on requirements from manufacturing (of components) and after sales (spare parts) 
and will enable the advancement A1 to be met. In addition, it will need to update 
procurement to deal with the uncertainty of the component lead time. FO will be applied 
for automating the allocation of resources and production planning based on machine 
type, run times, available components, bill of materials and operators. It will also 
recalculate production planning when components are short.  
FO and PO will play a crucial role in collaboratively computing the Materials 
Requirement Plan (MRP) while considering the uncertainties that arise from 
suppliers. One of the key challenges in the MRP is the unpredictability of supplier 
performance, such as delays, quality issues or unexpected changes in supply chain 
dynamics. By leveraging AI algorithms, such as ML and predictive analytics, PO 
will be able to analyse the data related to supplier performance, including historical 
data, real-time data and external data sources, and can use this information to 
generate an accurate timely MRP that allows real-time feedback and input from 
suppliers' uncertainties.  



9  

The expected benefits obtained by considering PO and FO will be to: (i) increase 
resource efficiency; (ii) reduce downtime; (iii) cut the manufacturing cost; (iv) 
improve inventory and purchasing for both machine components and spare parts. 
 
4.2 AI-based assessment for delivery planning in the manufacturing phase 

The DO system, considered into the food inspection pilot will be used to optimise the 
delivery of inspection machines and to fulfil advancement A2. In this use case, the 
AIDEAS food inspection pilot collaborates with its customer. 
The aim will be to optimise space in delivery and, therefore, inventory and transport 
costs.  Currently, there are only two types of standard platforms that fit two types of 
machines with different proportions. However, these platforms should be adjusted to 
different machines to optimise the space occupied in both the company’s working areas 
and transport media. 

DO will be fed by customer requirements and machine specifications. This may 
involve understanding customer expectations regarding packaging requirements, and 
any special handling or storage needs. Based on the collected requirements, the parties 
involved in the delivery process will draw up a plan for how goods or services will be 
delivered, including the timeline, delivery route, and any necessary transportation and 
logistics arrangements. 
The foreseen obtained benefits will be to: (i) improve the design of platforms to 
transport single and multiple machines in a standard container to optimise space; 
(ii) optimise the cargo transportation unit; (iii) optimise the loading of machines in 
a standard container. In Figure 1, the configuration process of the delivery process is 
represented with business process modelling notation (BPMN). It depicts the 
collaboration points between the manufacturer and the customer, and how the DO 
solution is used to support the delivery process of machines. 

 
Fig. 1. BPMN: manufacturer-customer collaboration in inspection machine manufacturing 
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4.3 AI-based assessment for the configuration of inspection machines in the 

use phase 

The use phase is composed of a scenario that will involve incorporating AI technologies 
to deal with the proper configuration of the inspection machine once it is installed at the 
customer site, which employs the QA solution. 

In the use phase, one of the processes to be performed is the configuration of the 
machine, which will enable to deal with advancement A3. In this scenario, of the 
AIDEAS food inspection pilot, the company collaborates with its customer to provide 
proper machine use when it is at the customer site.  

The customer will define a set of requirements for the machine to be manufactured 
and assembled in the food inspection machinery company. The configuration of the 
inspection machines starts at the manufacturer’s site when the inspection machine is 
produced according to customer requirements and when the collection of what the 
manufacturer names “recipes” is programmed. Each recipe contains the configuration 
of the machine according of a set of characteristics of the product to be sorted (e.g., 
product type, its size and quality). Depending on the market, the classified product is to 
be delivered, so the recipe can change. For example, products classified in an inspection 
machine can be delivered to a very restrictive market in quality terms or to markets 
where quality is not so restrictive. Therefore, the recipe (machine configuration) of the 
inspection machine is different when the product to be sorted is delivered to a distinct 
market kind. Moreover, depending on the initial quality of the product to be classified, 
or its colour, size, etc., configuration also changes.  

When the food inspection machine is classifying homogeneous products, all 
elements are expected to be similar in terms of size, shape, colour, texture, quality, 
among others. This makes the classification task easier because the process can rely on 
very specific and easily measurable criteria in the recipe configuration. However, when 
the product to be classified widely varies, such as a batch of food of different sizes, 
shapes, colours and textures, the classification task can be much more complicated. In 
this case, more accurate and flexible recipes are needed, which make the classification 
task more complex and require more time and resources. Therefore, it is important to 
consider product homogeneity when configuring the inspection machine. In this way, 
the appropriate recipes with accurate classification criteria must be chosen to make a 
precise and efficient classification. 

Currently, the inspection machinery producer defines a collection of recipes that 
respond to different characteristics of the products to be classified.  When the machine 
is delivered to the customer site, QA will check and monitor the entrance of the product 
in the machine and, according to the identified characteristics, QA will automatically 
propose a recipe of the inspection machine. If the product changes characteristics, QA 
will detect such changes and automatically proposes a new recipe or configuration on 
the machine. Therefore, the machine recipe will be automatically selected by QA 
according to the characteristics of the product to be classified and the market to where 
it will be delivered. In Figure 2, the configuration process of the inspection machine is 
represented by BPMN. The collaboration points between the manufacturer and the 
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customer, and how the QA solution will be used, are indicated to support machine 
calibration for accurate recipe selection. 

The benefits that will be obtained by applying QA are to: (i) reduce the inspection 
machine configuration time; (ii) optimise the work of the operators at the foot of 
the machine when a recipe is chosen to start classifying a new product without the 
worker having to make appropriate recipe estimation; (iii) increase accuracy during the 
selection recipe process. 

Therefore, QA will enable to automatically select the proper machine configuration 
according to the type and quality of the product that enters the machine to be classified. 
QA will also change the machine configuration automatically when the QA hardware 
detects changes in the characteristics the product that enters the machine to be classified. 

 
Fig. 2. BPMN: of manufacturer-customer collaboration in inspection machine configuration 

 
4.4 AI-based assessment for predicting maintenance requirements in the 

inspection machine in the R3 phase 

The R3 phase is composed of a use case that will involve the incorporation of AI 
technologies to predict maintenance actions in an inspection machine and will support 
its proper repair once installed at the customer site, which will use the PM solution. 

R3 phase one of the process to be performed involves the repair of the inspection 
machine and allows to achieve advancement A4. In this use case, the AIDEAS food 
inspection pilot will collaborate with its customer to provide proper machine 
maintenance when it is at the customer site.  

The PM tool will be able to predict the useful life of a component or inspection 
machine. It should anticipate the time when the component will be changed before 
product classification failures start. The critical components defined by manufacture to 
apply predictive maintenance include X-ray generator, straps, chains, bands or bearings. 
The PM will be fed by: (i) the machine’s years of use at the customer site ; (ii) after-
sales manager’s experience; (iii) the estimated use of the component defined by the 
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supplier; (iv) the real data of component use, which is monitored by the customer; (v) 
the last date when the component was changed; (vi) the last date when the component 
was repaired; (vii) component age; (viii) km of the machine; and (ix) hours of work per 
day and work rate of machines. 

In Figure 3, the maintenance process of the inspection machine is represented by 
BPMN. The collaboration points between the manufacturer and customer, and how the 
PM solution will be used to support the prescriptive maintenance of machine 
components and ensure machines’ long end-of-life is depicted.   

 
Fig. 3. BPMN: manufacturer-customer collaboration in inspection machine predictive 

maintenance 
 
5 Conclusions 

One of the key technologies that drives I4.0 is AI, which enables machines and systems 
to learn from data and to make decisions on their own. AI is transforming the way that 
enterprises of supply chains operate and offers the potential to optimise all the PLC 
phases, including design, manufacturing, use and disposal, to reduce costs, improve 
quality and enhance sustainability in all phases by considering a circular approach. CNs 
are also an important I4.0 aspect because they enable different actors in the value chain 
to share data, resources and knowledge. AI can enhance the effectiveness of CNs by 
providing real-time insights and predictions, and by enabling better decision making 
and coordination among network participants. The PLC, AI, and CN combination has 
the potential to revolutionise the way enterprises make things and create value in the 
future. So this paper conceptualises a set of AI tools that support all the PLC phases by 
enhancing collaboration among the network partners involved in each phase. When the 
conceptualisation phase ends, we will move on to the implementation phase of the 
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proposed AI tools. Future implementation will involve selecting appropriate AI 
algorithms, preparing and cleaning data, and integrating AI tools into an infrastructure. 
Further, AI tools will be tested to assess the benefits of the AIDEAS project in the 
industrial pilots. Finally, the MP solution is still in its early stages of conceptualisation, 
therefore, the next steps are to identify the data whose traceability is crucial in the 
machine manufacturing industry. In the use case considered, MP data will contain the 
machine unique identification and IDs of crucial components, such as the ensembled 
x-ray cameras. 
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