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Abstract

In this paper, a disturbance observer-based quadrotor attitude controller for aggressive maneuvering is presented. The
controller is made up of the cascade connection between two control-loops: an outer quaternion-based attitude control-
loop and an inner disturbance observer-based angular velocity tracking control-loop. The disturbance observer is designed
to estimate and compensate for the Coriolis term and the external disturbances. It is shown that, for fast maneuvers,
the disturbance observer needs to take into account the motor dynamics. This allows increasing notably the observer
bandwidth, leading to significant improvements in the disturbance rejection capabilities. The stability of the resulting
closed-loop is analyzed. Also, different simulations and flight tests are carried out to validate the main results, showing
an outstanding tracking performance when aggressive attitude maneuvers are being executed, even in the presence of
strong disturbances such as suspended payloads.
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1. Introduction

Over the last years, the practical interest in quadrotor
Unmanned Aerial Vehicles (UAVs) has increased notably.
Their potential applications along with the advances in
computer and sensor technologies, and their associated
cost reductions, have hugely promoted the development
of this kind of UAVs. This fact impulses to the research
community to the study of new control strategies as any
improvement in the quadrotor controller may lead to more
robust and precise flight performance.
The first reports of a successful controlled quadrotor

hover flight were published during 2002-2004 by different
research groups (Altug et al., 2002; Bouabdallah et al.,
2004; Castillo et al., 2003; Hoffmann et al., 2004). Since
then, the number of studies about quadrotors has spiked
notably and a wide number of studies about quadro-
tor control (Bouabdallah and Siegwart, 2007; Raffo et al.,
2010; Guerrero-Castellanos et al., 2011; Tayebi, 2008;
Tayebi and McGilvray, 2006; Lee, 2012; Lee et al., 2013),
or quadrotor modelling/identification (Hoffmann et al.,
2007; Erginer and Altug, 2007; Pounds et al., 2010;
Chovancová et al., 2014; Derafa et al., 2006), can be
found.
Although it is widely known that: i) the quadro-

tor’s mathematical model is subject to topologi-
cal constraints coming from the Special Orthogonal
group, SO(3), (Bhat and Bernstein, 2000; Mayhew et al.,
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2011; Schlanbusch et al., 2012); ii) the system perfor-
mance is affected by the Coriolis effect (Pounds et al.,
2010; Chovancová et al., 2014); iii) the motor’s sub-
system contains a non-negligible transient response
(Madani and Benallegue, 2006; Derafa et al., 2006); and
iv) the quadrotor model is quite sensitive to exter-
nal disturbances (Liu et al., 2017); most of the pro-
posed controllers are designed by neglecting some of
these issues. In fact, the following assumptions are
usually made: small angles, knowledge of the in-
ertia matrix (in order to feed-forward the Coriolis
term), fast motor dynamics and absence of exter-
nal disturbances (Castillo et al., 2003; Hoffmann et al.,
2004; Altug et al., 2002; Bouabdallah and Siegwart, 2007;
Guerrero-Castellanos et al., 2011; Tayebi, 2008; Lee,
2012); which simplify the control design.

However, the recent heavy application demands in
quadrotors let authors rethink about the consideration
of those assumptions. In fact, small angles, fast mo-
tor dynamics and absence of external disturbances does
not hold in many applications. For example, when
the quadrotor operates in a windy environment, or
when aggressive attitude maneuvering is required in
large-size quadrotors. For these reasons, an actual re-
search area in quadrotor control is focused on the de-
sign of controllers avoiding these restrictions. A quite
common approach to this purpose is to develop con-
trollers that make use of quaternion algebra (Tayebi,
2008; Fresk and Nikolakopoulos, 2013; Mazinan et al.,
2015) and Disturbance Observer-Based (DOB) tech-
niques (Chen and Huang, 2009; Liu and Wang, 2015;
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Wang et al., 2015; Zhang et al., 2011; Zhang and Wang,
2015), which are able to attenuate external disturbances
and model uncertainties. In fact, experiments have
been reported where DOB controllers improve perfor-
mance noticeably (Sanz et al., 2016; Wang and Su, 2015;
Xiao and Yin, 2017). However, previous works still con-
sider fast motors dynamics in the disturbance observer de-
sign, an assumption that is not valid when fast attitude
maneuvers are being executed.

The main purpose of this work is to develop a novel
quaternion-based DOB controller for quadrotors that is
capable to carry out precise and aggressive attitude ma-
neuvers in the presence of high disturbances. The pro-
posed DOB controller estimates and compensates for the
external disturbances and the Coriolis term. Further-
more, the motor dynamics are not neglected when de-
signing the disturbance observer. Instead, it is consid-
ered that the motors dynamics are described by a first-
order model (Michael et al., 2010). This fact constitutes
the major departure from previous DOB quadrotor con-
trollers and it also introduces difficulties in the controller
design/analysis because the so-called disturbance matched
condition (Chen et al., 2016; Castillo et al., 2018) does no
longer hold, i.e. the external disturbances and the Cori-
olis term act in a different channel than the control ac-
tion. Nonetheless, it will be shown that considering the
motors dynamics allows increasing notably the observer
bandwidth, leading to important improvements in the con-
troller performance.

The tuning of the resulting controller turns out to be
very intuitive and its implementation is relatively sim-
ple. Extensive experiments are performed on a large-size
quadrotor prototype to illustrate the feasibility of this ap-
proach. The results show an outstanding performance,
being able to track fast angular references (even carrying
a suspended load) and perform precise 720 deg flips in
0.5 sec.

The rest of the paper is structured as follows. In Sec-
tion 1.1 the main notation is introduced. In Section 2, the
quadrotor mathematical model is presented and reformu-
lated conveniently. The proposed controller is developed
in Section 3 whereas its stability is analyzed in Section 4.
Simulations and tuning guidelines are discussed in Sec-
tion 5 and the experimental results are reported in Sec-
tion 6. Finally, in Section 7, some conclusions are given.

1.1. Notation and preliminaries

Vectors are represented by lower case bold symbols and
matrices by upper case bold symbols. The operator ‖ · ‖
denotes the standard Euclidean norm for vectors or the
corresponding induced norm for matrices. For any vector
x ∈ R

3, the skew-symmetric operator is defined by

S(x) ,





0 −x3 x2
x3 0 −x1
−x2 x1 0



 .

Figure 1: Inertial, body-fixed and desired reference frames. The goal
in attitude control is that B → D.

The inertial, body-fixed and desired attitude reference
frames are denoted by I, B andD, respectively (see Fig. 1).

A quaternion is denoted by q, [q0, q]
T ∈ R

4, where q0 ∈ R

is the real part and q ∈ R
3 the vector part. The Hamilton

quaternion product is represented by ⊗ while ( · )∗ is the
quaternion conjugation operator (Kuipers et al., 1999).
Finally, all quaternions appearing in this paper are con-
sidered to be unitary.

2. Quadrotor mathematical model

The attitude of a quadrotor is governed by the cascade
connection of two differential equations: the kinematics
and the dynamics. The kinematics relates the rate of
change of an attitude measure from the body angular ve-
locity, while the dynamics relates the rate of change of
angular velocity from the external torques.

2.1. Quaternion-based kinematic model

The relative orientation between B and I is determined
by a rotation θb ∈ R along an unitary axis ub ∈ R

3. This
is parametrized by the quaternion

qb,

(

qb0
qb

)

=

(

cos(θb/2)
sin(θb/2)ub

)

(1)

whose associated rotation matrix, R, is given by the Euler-
Rodrigues formula (Shuster, 1993):

R(q) = (q20 − qTq)I3 + 2qqT + 2q0S(q). (2)

If B is rotating with respect to I with an angular velocity
ωb ∈ R

3, then qb(t) satisfies that (see Theorem 3 of Jia
(2013))











q̇b0 = −
1

2
qb
Tωb,

q̇b =
1

2
[qb0I3 + S(qb)]ωb,

(3)

which is considered as the quaternion-based quadrotor
kinematic model.
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2.2. Dynamic model

The quadrotor rotational dynamics can be described by
the Newton’s second law (Castillo et al., 2005):

Jω̇b = −S(ωb)Jωb + τu + τδ(t), (4)

where −S(ωb)Jωb is the torque produced by the Coriolis
effect; J ∈ R

3×3 is the quadrotor inertia matrix, which is
a symmetric positive definite matrix and assumed to be
diagonal so that J,diag{Ixx, Iyy, Izz}; τu is the torque
produced by the motors and τδ(t) represents the torque
produced by the external disturbances, which is assumed
to satisfy the next property:

Assumption 1. The external disturbance, τδ(t), is con-
tinuous with first derivative bounded, i.e. ‖τ̇δ(t)‖ ≤ βτ̇δ
for some βτ̇δ ≥ 0.

According to the configuration depicted in Fig. 1, the
torques generated by the propellers can be modeled as





τu1

τu2

τu3



 =





−LkF LkF LkF −LkF
LkF LkF −LkF −LkF
kM −kM kM −kM













(Ω1)
2

(Ω2)
2

(Ω3)
2

(Ω4)
2









(5)
where L is the arm length, Ωi denotes the rotational speed
of the ith motor, and kF , kM are unknown constants. The
motor speeds are usually expressed as a linear combination









(Ω1)
2

(Ω2)
2

(Ω3)
2

(Ω4)
2









=









1 −1 1 1
1 1 1 −1
1 1 −1 1
1 −1 −1 −1

















Ωh
δΩφ
δΩθ
δΩψ









(6)

where Ωh is the total thrust and δΩ,[δΩφ, δΩθ, δΩψ]
T are

virtual control inputs generating torques in the x, y and
z axis, respectively. The transformation matrix in (6) is
non-singular and hence there is a one-to-one map between
the virtual control inputs and the motors speed.
The variable δΩ is often regarded in many works as

the actual control input to the system. However, if high
performance maneuvers are intended, the motor dynamics
need to be taken into account. A simple model for the
motors is given by (Michael et al., 2010):

δΩ̇ = −kmδΩ+ kmu (7)

with km > 0 and u,[uφ, uθ, uψ]
T , which is considered the

manipulated variable in what follows.
Using (4)-(7), the attitude dynamics are given by

{

ω̇b = B[δΩ+ σ(ωb, t)],

δΩ̇ = −kmδΩ+ kmu,
(8)

where

σ(ωb, t) , Ku
−1τδ(t)−Ku

−1S(ωb)Jωb,

Ku , 4 diag[LkF , LkF , kM ]

B , diag[4LkF/Ixx, 4LkF /Iyy, 4kM/Izz].

+
-

Figure 2: Block diagram of the control structure.

Remark 1. Note that σ(ωb, t) contains all the distur-
bances, that is, the external torques and the Coriolis term.
This term will be estimated and compensated in real-time
by the DOB control.

3. Proposed control strategy

Almost all quadrotors are equipped with sensors that
can be used to get measurements of qb and ωb. This per-
mits to develop a cascade control strategy that it is formed
by two sub-controllers: i). an outer attitude control-loop,
which generates the angular velocity reference signal, ωr

b
;

and ii). a DOB angular velocity tracking control-loop that
generates the control action, u, so that ωb → ω̄r

b
.

The connection between both controllers is carried out
through a Tracking Differentiator (TD). This is performed
in order to introduce to the inner control-loop a smoothed
angular velocity reference signal, ω̄r

b
, with first derivative

known. Figure 2 depicts a block diagram of the proposed
controller.

3.1. Attitude controller

Let us consider that the desired attitude, D, is gener-
ated by the same differential equation as the body kine-
matics (3):

Assumption 2. The relative orientation between D and
I is expressed by a trajectory, qd(t), satisfying

q̇d0 = −
1

2
qd

Tωd(t), q̇d =
1

2
[qd0I3 + S(qd)]ωd(t)

(9)
where the virtual angular velocity, ωd(t) ∈ R

3, satisfies
that ‖ωd(t)‖ ≤ βωd

, ∀t ≥ 0, for some βωd
≥ 0.

The attitude error, qe, is defined as the relative orienta-
tion between B and D, and it can be computed as

qe,[qe0 , qe]
T = (qd)

∗ ⊗ qb. (10)

The proposed kinematic control law is

ωr

b
= RT (qe)ωd(t)− kqe (11)

where qe is given by (10), qe is the vector part of qe, R
T (qe)

is given by (2) and k ∈ R is a positive constant for control
tuning.

3



Remark 2. The control law (11) has a geometrical in-
terpretation. As qe has the direction of the rotation axis
between D and B, then kqe is set in order to perform a
rotation in such direction. The term RT (qe)ωd is a feed-
forward term in order to compensate for the instant angu-
lar velocity of D.

Remark 3. In Castillo et al. (2016) it is proved that, if
the transient responses of the TD and the angular velocity-
tracking control-loop are neglected, i.e. ωb ≈ ωr

b
, then the

control law (11) achieves exponential convergence of qe to
zero.

Remark 4. For practical applications, in Section 5.2 it
is explained how any Euler-angles-based user-commanded
attitude trajectory can be transformed in order to satisfy
Assumption 2.

3.2. Tracking Differentiator

The following TD is employed:

d

dt

(

ω̄rb,i
˙̄ωrb,i

)

=

[

0 1
−ω2

td −2ωtd

](

ω̄rb,i
˙̄ωrb,i

)

+

[

0
ω2
td

]

ωrb,i(t),

(12)
where ωrb,i, i , {x, y, z} represents each axis of the angu-
lar velocity reference signal generated by (11); ω̄rb,i is the
smoothed reference signal; and ωtd > 0 is the TD band-
width, which is a tuning parameter.
The TD has two main functions in the proposed con-

troller. The first one is to produce a smooth angular
velocity reference signal with first and second derivatives
bounded. The second one is that it immediately provides
the exact value of ˙̄ωr

b
which must be known for the dy-

namic controller as shown in next section.

3.3. Angular velocity-tracking controller

Let us consider the following assumption for the angular
velocity-tracking control design.

Assumption 3. The matrix B and the motor dynamics,
km, are known.

Assumption 3 does not constitute a major problem since
those parameters can be easily identified in practice, even
without the need of explicitly knowing the inertia matrix,
J , or kF , kM .
The proposed dynamic control law is

u = B−1
(

−Kz + ˙̄ωr

b

)

− σ̂, (13)

where z , ωb − ω̄r

b
is the angular velocity-tracking error;

K ≻ 0 is the feedback gain matrix, which is a controller
tuning parameter; and σ̂ is an estimation of the lumped
uncertainty, σ(ωb, t), which is given by the following dis-
turbance observer:

˙̂
δΩ = −kmδ̂Ω+ kmu (14)

ξ̇ = −Λξ −Λ2B−1ωb −Λδ̂Ω (15)

σ̂ = ξ +ΛB−1ωb (16)

where Λ,diag [Λ11, Λ22, Λ33]
T
, Λii > 0 is the observer

bandwidth, which is also a tuning parameter.

Remark 5. The control law (13) has been designed con-
sidering the conventional assumption of fast motor dynam-
ics, i.e. δΩ ≈ u. In this sense, equation (13) is designed
to reject the effect of σ(ωb, t) and to drive z → 0 with expo-
nential decay-rate. However, note that the motor dynam-
ics are taken into account when computing the observer in
equation (14). This is because, in practical applications,
it is interesting to choose the observer bandwidth, Λ, as
large as possible in order to obtain fast estimations of the
lumped disturbance. For aggressive maneuvers, the inter-
esting values are higher than the the motors dynamics. As
it will be shown latter, neglecting the motors dynamics in
the disturbance observer design imposes a severe limitation
on the achievable disturbance rejection performance.

4. Closed-loop stability analysis

In this section the closed-loop system is studied. First
the stability of the disturbance observer (14)-(16) is ana-
lyzed. Then, the stability of the angular velocity-tracking
control-loop is studied and, finally it is shown that, if the
angular velocity-tracking control-loop is stable, then the
attitude error can be confined in a finite (small) region
around qe = [1, 0, 0, 0]T .

4.1. Disturbance Observer stability

Let us define the observation error as

σ̃ , σ(ωb, t)− σ̂. (17)

Then, the following result can be stated.

Proposition 1. Assuming that the initial conditions sat-
isfy δΩ(0) = δ̂Ω(0), then, the output of the observer (14)-
(16) provides an estimation of the unknown dynamics such
that the estimation error (17) satisfies

˙̃σ = −Λσ̃ + σ̇(ωb, t) (18)

Proof. Differentiating (16) and using (8), (15) and (16), it

follows that ˙̂σ = Λσ̃ + Λ
(

δΩ− δΩ̂
)

. Since the con-

stant km is assumed to be known and δ̂Ω(0) = δΩ(0)
then δ̂Ω ≡ δΩ, refer to (7) and (14). The propo-
sition follows by differentiating (17) and substituting
˙̂σ = − ˙̃σ + σ̇(ωb, t).

4.2. Angular velocity-tracking closed-loop stability

Note that, as the motor dynamics are being considered,
the quadrotor dynamic model (8) does not satisfy the so-
called matched condition, i.e. the control action, u, and
the lumped disturbance, σ(ωb, t), does not appear in the
same channel. So, for analysis purposes, let us translate
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the control action and the disturbance term into the same
channel by rewriting (8) as







ż = B
[

u+ δ̃Ω+ σ(ωb, t)
]

− ˙̄ωr

b

˙̃
δΩ = −kmδ̃Ω− u̇

(19)

where δ̃Ω , δΩ− u.
Now, the expressions (13), (17)-(19) lead to the follow-

ing closed-loop system:

ẋ =





−K B B

0 −Λ 0
0 0 −kmI3



x+





0
σ̇

−u̇



 (20)

where x,[zT , σ̃T , δ̃Ω
T
]T .

Note that u̇ can be expressed in terms of x. By adding
and subtracting σ(ωb, t) into (13), substituting (17) into
the resulting expression, differentiating it, and then, incor-
porating (18) and (20), it is obtained that

u̇ =
[

B−1K2 −B−1KB −Λ −B−1KB
]

x+B−1 ¨̄ωr

b
.

(21)
Therefore, by (20)-(21), the closed-loop system results

in

ẋ = Ax+ d(t,x) (22)

with

A,





−K B B

0 −Λ 0
−B−1K2 B−1KB +Λ B−1KB − kmI3





and d(t,x),[0, σ̇, −B−1 ¨̄ωr

b
]T .

At this point, the next stability result can be stated

Theorem 1. Consider that A is Hurwitz, that
‖σ̇‖ ≤ βσ1

‖x‖+ βσ2
, ‖ ¨̄ωr

b
‖ ≤ β ¨̄ωr

b

for all ‖x‖ ≤ βσ3
, with

βσ1
, βσ2

, βσ3
, β ¨̄ωr

b

≥ 0; and that

βσ1
<
λ
(

PA+ATP
)

2‖P 2‖
,

βσ3
≥

2
∥

∥P 3B
−1

∥

∥β ¨̄ωr

b

+ 2‖P 2‖βσ2

λ
(

PA+ATP
)

− 2‖P 2‖βσ1

, x∗,

where λ(·) , min{|λ1(·)|, |λ2(·)|, ...}, being λi(·) the eigen-
values of a given matrix; and P , [P 1, P 2, P 3] ≻ 0 a
solution to the Lyapunov equation (PA+ATP ) ≺ 0.
Then, for any ‖x(0)‖ ≤ x∗, ‖x(t)‖ ≤ x∗ for all t.

Proof. See Appendix A

Theorem 1 relies on the assumption of the exis-
tence of some constants βσ1

, βσ2
, βσ3

, β ¨̄ωr

b

, such that

‖σ̇‖ ≤ βσ1
‖x‖+ βσ2

, ∀ ‖x‖ ≤ βσ3
and ‖ ¨̄ωr

b
‖ ≤ β ¨̄ωr

b

. The
next proposition establishes its existence.

Proposition 2. Under Assumptions 1, 2, and if
the angular velocity reference signal ωr

b
generated by

(11) is smoothed by the TD (12); then, there exists
βσ1

, βσ2
, βσ3

, β ¨̄ωr

b

≥ 0 such that ‖σ̇‖ ≤ βσ1
‖x‖ + βσ2

,

∀ ‖x‖ ≤ βσ3
and ‖ ¨̄ωr

b
‖ ≤ β ¨̄ωr

b

.

Proof. See Appendix B

4.3. Attitude control-loop stability

The following theorem states that if the angular
velocity-tracking control-loop is stable, then the at-
titude error, ‖qe‖, is confined in a region around
qe = [1, 0, 0, 0]T .

Theorem 2. Consider that Assumption 2, and the con-
ditions of Theorem 1, hold. Then, there exist con-
stants, ǫz , max{‖z(t)‖}, ǫω , max{‖ωrb(t)− ω̄r

b
(t)‖},

such that, if qe0(0) >

√

1−
(

ǫz+ǫω
k

)2
and k > ǫz + ǫω,

then, for all t, the attitude error is bounded by

qe0(t) ≥

√

1−

(

ǫz + ǫω
k

)2

> 0,

‖qe(t)‖ ≤
ǫz + ǫω
k

< 1.

(23)

Proof. See Appendix C.

Theorems 1-2 say that the closed-loop control system
can be stabilized with an appropriate choice of the con-
troller parameters. This result is normally known as prac-
tical stability (Hahn, 1967).

On the one hand, Proposition 2 establishes the ex-
istence of some constants βσ1

, βσ2
, βσ3

, β ¨̄ωr

b

≥ 0 such

that the disturbance terms in (22) are bounded by
‖σ̇‖ ≤ βσ1

‖x‖+ βσ2
, ‖ ¨̄ωr

b
‖ ≤ β ¨̄ωr

b

, for all ‖x‖ ≤ βσ3
. The-

orem 1 states that, by varying the controller parameters,
K, Λ, the stability bounds, and the attractive region, for
a given βσ1

, βσ3
can be increased or decreased. On the

other hand, Theorem 2 states that, if the angular velocity-
tracking control-loop is stable, then, the attitude error can
be confined in a small region, whose size depends on the
quotient between k and ǫz + ǫω, being ǫz, ǫω, the upper
bounds of the angular velocity tracking error and the error
caused by the TD.

5. Controller Tuning Guidelines and Simulations

This section presents some tuning guidelines that are
useful for controller gain setting. Also, a methodology
to generate attitude trajectories satisfying Assumption 2
is proposed. Moreover, several simulation results are in-
cluded in order to show the main features of the proposed
control strategy.
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5.1. Controller tuning

Kinematic and dynamic feedback gains: The gains
K and k are parametrized by a single scalar, which is
related with the characteristic time of the closed-loop.
Let us assume that there are no external disturbances,

τδ(t) = 0, that u ≡ δΩ and that the TD (12) accurately
follows the input signal. Then, the linearized quadrotor
model around qe = 0 and wb = 0 is given by

¨̄η = bηuη − η̈r, η , {φ, θ, ψ} (24)

where η̄ , η − ηr, while η represents each of the Euler
angles. By using small-angles approximation, qe can be
written as

qe ≈

[

φ− φr

2
,
θ − θr

2
,
ψ − ψr

2

]T

, (25)

and, by using (24)-(25), the control (13) with
K = diag{kφ, kθ, kψ} can be approximately written as

uη =
1

bη

[

−
kkη
2

(η − ηr)−

(

k

2
+ kη

)

(η̇ − η̇r) + η̈r
]

which, plugged into (24), yields the characteristic polyno-
mial

s2 +

(

k

2
+ kη

)

s+
k

2
kη = 0.

A simple tuning consists of selecting k = 2τ−1
η and

kη = τ−1
η where τη is the desired characteristic closed-loop

time of the η-axis. Typical values for τη in quadrotor sys-
tems range between 0.15 s and 0.25 s for the roll and pitch
axes, and between 0.2 s and 0.75 s for the yaw axis.

Remark 6. Note that if τη is reduced, then K and k are
increased. This contributes to: i) reducing the attractive
region of Theorem 1, ii) reducing ǫz in Theorem 2 and, iii)
reducing the attractive region of Theorem 2.

Disturbance observer and TD: The disturbance ob-
server is tuned by following the typical approach in DOB
controllers. By Proposition 1, the disturbance observation
error can be seen a high-pass filter of the signal σ̇(·), whose
cut-off frequency directly depends on Λ. By increasing Λ,
disturbances of higher frequencies can be observed. There-
fore, its bandwidth should be designed to filter out all the
important frequencies contained in σ̇(·). These frequen-
cies are related with the angular velocity/acceleration of
the quadrotor’s maneuvers, and, also, with the maximum
frequency of τ̇ δ(t). The most appropriate choice for this
parameter may depend on each particular application. In
this paper, it is experimentally found that, if aggressive
maneuvers are going to be executed, then, the disturbance
observer bandwidth should be between 50-100 Hz. Finally,
the main purpose of the TD is to produce a smoothed an-
gular velocity reference signal, ω̄r

b
, with first derivative

known. Hence, its bandwidth should be designed to follow
all the frequencies contained in ωr

b
in order to reduce, as
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Figure 3: Effect of considering the motor dynamics in the distur-
bance observer design. The observer bandwidth can be increased up
100 rad/s without producing oscillations in the control action.

Mot. dyn. ISE{φr − φ} TV{u}
Λii = 100 rad/s 7.5998 1.0801

No Mot. dyn. ISE{φr − φ} TV{u}
Λii = 10 rad/s 6.7183 1.1502
Λii = 50 rad/s 4.5564 2.7090
Λii = 100 rad/s 3.2590 5.9214

Table 1: Integral Squared Error (ISE) and Total Variation (TV) of
signals in Figure 3

much as possible, the error introduced by the TD in the
control-loop, i.e. reducing the parameter ǫω in Theorem 2.
These frequencies are related with the angular velocity of
the quadrotor’s maneuvers. In this paper it is found that,
if the TD bandwidth is between 100-200 Hz, then the er-
rors introduced in the closed-loop by the TD can be almost
ignored.

5.2. Generation of Attitude Trajectories

Assumption 2 states that the desired attitude trajec-
tory, qd(t), needs to be generated by the same differential
equation as the body kinematics (11). Also, in order to
compute the control law (11), the variable ωd(t) needs to
be known. In this section it is shown how to generate a
trajectory satisfying Assumption 2.

In most practical applications, it is easier for the
pilot to introduce the attitude reference signal in
terms of the Euler-angles. If a feasible trajectory

6
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Figure 4: Sinusoidal reference tracking errors when the disturbance
estimation is not feed-forward.

ηr(t) ,{φr(t), θr(t), ψr(t)} ∈ C1 is given, then Assump-
tion 2 is satisfied and ωd(t) is given by

ωd =





1 0 − sin θr

0 cosφr sinφr cos θr

0 − sinφr cosφr cos θr









φ̇r

θ̇r

ψ̇r



 (26)

If a feasible ηr(t) is not given, let us assume that a gener-
ator reference signal ηrc(t) ,{φrc(t), θrc(t), ψrc(t)}/∈ C1 is
available (in practice, this signal may come from a remote
controller or any other source). Then ηrc(t) is smoothed
by using the same TD as the one in (12), providing a fea-
sible ηr(t) ∈ C1 with first derivative known. That is:

d

dt

(

ηr(t)
η̇r(t)

)

=

[

0 1
−ω2

tdr
−2ωtdr

](

ηr(t)
η̇r(t)

)

+

[

0
ω2
tdr

]

ηrc(t),

(27)
where ωtdr is the reference-signal TD bandwidth, which
should be chosen sufficiently large so that the smoothed
reference-signal, ηr(t), is able to accurately follow to
ηrc(t). Then, ωd is computed by (26).

Remark 7. It should be remarked that the Euler angles
are only used for a more human-friendly interaction. The
reference trajectories are converted to quaternion represen-
tation (Shuster, 1993), and then, the control law (10)-(11)
is computed in terms of quaternions.

5.3. Simulations

The only parameters that need to be identi-
fied in order to compute the control law (13) are
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Figure 5: Sinusoidal reference tracking errors when the disturbance
estimation is feed-forward.

RMS{φ, θ, ψ} TV{u}
With DOB {0.96, 0.93, 0.42} deg 0.3818

Without DOB {2.31, 2.39, 0.66} deg 0.3686

Table 2: Root Mean Square (RMS) and Total Variation (TV) of
signals in Figs 4, 5

B and km. A wide number of techniques have
been developed for quadrotor parameter identifica-
tion (Hoffmann et al., 2007; Chovancová et al., 2014;
Derafa et al., 2006; Michael et al., 2010) that can be used
to obtain B and km. In this case, a naive identifica-
tion to match the quadrotor dynamic model (8) leads to
B = diag{400, 400, 60} and km = 1/0.05 s−1. All the sim-
ulations below are carried out using these values. Fur-
thermore, the following parameters are selected for sim-
ulation purposes: J = diag{0.002, 0.002, 0.015} kg ·m2,
kF = 1.3, kM = 0.25, L = 15 cm; and they are not
needed in the control law implementation. The feedback-
gains have been chosen according to Section 5.1 with
τφ = τθ = τψ = 0.2 sec. Finally, the disturbance observer
bandwidth is set to Λii = 100 rad/s, while the TD (12)
bandwidth is set to wtd = 200 rad/s.

Three simulations are carried out in order to show three
different features of the proposed controller, which are: i)
The advantages of considering the motor dynamics in the
disturbance observer design; ii) The ability of controller
when attenuating the Coriolis effect and its performance
in trajectory tracking; and iii) The ability of controller
when attenuating unknown external disturbances.
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RMS{φ} TV{u}
With DOB 0.3846 deg 0.4393

Without DOB 2.4716 deg 0.1867

Table 3: Root Mean Square (RMS) and Total Variation (TV) of
signals in Figure 7

The first simulation results are shown in Fig. 3 and Ta-
ble 1. A step trajectory ηrc1 (t) = {10, 0, 0} /∈ C1, ∀t > 0 is
commanded. According to Section 5.2, since ηrc1 (t) does
not satisfy Assumption 2, it is smoothed by (27) with
ωtdr = 50 rad/s. The comparison shows the control perfor-
mance when the observer is computed by (14)-(16) (green
line) and when it is computed neglecting the motors dy-
namics, i.e. setting km ≈ ∞ in (14), (red, blue and black
lines). The results show that neglecting the motor dynam-
ics leads to oscillations in the control action as the observer
bandwidth is increased. This reveals that, for fixed k and
K, higher values in the disturbance observer bandwidth
can be chosen if the rotors dynamics are taken into ac-
count, enhancing the disturbance rejection capabilities.
For the second simulation, the following trajectory is

commanded:

ηrc2 (t) = {10 sin(2π/1.5t), 10 sin(2π/1.5t), 20 sin(2π/3t)},

for all t ∈ [2, 8]. Note that, as the trajectory is performed
simultaneously in the three axis, the Coriolis term is not
negligible, but the proposed disturbance observer (14)-(16)
should estimate and compensate for it. Simulation results
are shown in Figs. 4-6 and Table 2. Figure 4 depicts the
simulation results when the disturbance estimations are
not feed-forward in (13), i.e. σ̂ is set to zero. Figure 5
depicts the results when the disturbance estimations are
feed-forward and Figure 6 represents the observation and
observation error of the Coriolis term. It can be seen how
the trajectory tracking is enhanced due to the disturbance
observer, which is capable to estimate the Coriolis term.
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Figure 7: Effect of the uncertainty estimator in disturbance rejection

Finally, a third simulation is included to illustrate the
capabilities of the proposed controller when rejecting ex-
ternal time-varying disturbances. To this purpose, some
turbulent wind is simulated by passing white noise through
a low-pass filter and, then, it is input to the system. Fig-
ure 7, and Table 3, show a comparison of the proposed
control strategy and an scenario in which the uncertainty
is not compensated, that is, setting σ̂ = 0.

6. Experiments

A quadrotor prototype composed of an F330 DJI frame,
DJI motors 2212 920 Kv, Hobbywing ESCs 20 A, 8045
self-tightening propellers and a battery ACE 4000 mAh 3s
11.1 V 25C LIPO is used for the experiments (see Fig. 8).
The computational power is provided by a Pixhawk run-
ing PX4 firmware 1.4.2 in which the proposed control al-
gorithm has been programed. The control parameters and

Figure 8: Quadrotor prototype.
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Figure 9: Experimental data recorded during a remotely piloted
flight.

the identified parameters are the same as the ones used in
simulations. Several flights have been performed in order
to validate the different features of the proposed controller.

Overall performance: Two experiments are carried
out to simply evaluate the tracking performance. First,
a remotely piloted flight is performed indoors and aggres-
sive roll and pitch references are given through a remote
controller. The results of this experiment can be seen in
Fig. 9. The upper plot shows the quadrotor’s roll, φ, and
pitch, θ, angles; while the lower plot depicts the trajec-
tory tracking errors. The analysis of the data reveals a
Root Mean Square Error (RMSE) of 2.0 deg and 1.57 deg
for the roll and pitch angles, respectively. This is a fairly
good performance taking into account that the angular ref-
erences reach ±40 deg and ±30 deg in roll and pitch axes,
respectively.

A second experiment is performed outdoors in which
a double-loop attitude trajectory is commanded to the
quadrotor. This experiment is performed in order to test
the tracking performance when high aggressive maneuvers
are being performed. The data recorded during this ex-
periment is shown in Fig. 10, where it can be seen a fairly
good reference tracking even under this circumstances of
very high angular velocities/accelerations. It is needed to
remark that, for safety, the angular acceleration, ¨̄ωr

b
, has

been limited in this experiment. This is performed by a
small change in the TD (12), i.e. it is replaced by the
one presented in Castillo et al. (2016), which maintains
the same stability properties. A video of this experiment
can be seen in https://youtu.be/lBR78sg2T_E.

Tracking performance: In order to validate the con-
troller trajectory tracking performance, the same scenario
as in the second simulation of Section 5 is reproduced in
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Figure 10: Experimental data recorded during a double-loop
maneuver. A video of this experiment can be seen in
https://youtu.be/lBR78sg2T_E

this experiment. The quadrotor response, which is de-
picted in Fig. 11, reveals almost the same response as in
the simulation of Fig. 5. The analysis of the data reveal
a RMSE of 0.97, 0.96 and 0.66 deg for the roll, pitch and
yaw axis, respectively.

Disturbance rejection: The disturbance observer
plays an important role in the performance of the con-
troller as it has been shown through different simulations
in Section 5. For a better illustration, two experiments are
reported here. The first one is performed only in the roll
axis. A sinusoidal input signal is artificially added to the
generated control action just before it is sent to the motors
while the quadrotor is at hover. In this sense, the distur-
bance observer should detect this signal as an unknown
external disturbance, and it should generate the required
control action in order to cancel its effect, i.e. the same
signal. This experiment is performed twice, with and with-
out disturbance compensation. One can see in Fig. 12 that
the disturbance observer is able to reproduce the same dis-
turbance signal, mitigating substantially the deviation in
the roll angle. This experiment also points out the perfor-
mance improvement at hover (during the first 4 s), as the
deviation of the roll angle from zero drops from ±2 deg to
±0.2 deg when the compensation is active. Note also that
before, and after, the disturbance is introduced, the DOB
is also observing other disturbances (because σ̂ 6= 0); this
is probably caused by minor external disturbances affect-
ing to the quadrotor during the experiment.

Finally, the second experiment is intended to demon-
strate the usefulness of the proposed control strategy. A
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Figure 11: Experimental results showing tracking of sinusoidal ref-
erences.

suspended load of about 100 g, which can be regarded
as an external disturbance, is attached at the end of one
of the quadrotor arms. A remotely piloted flight is car-
ried out in this scenario. The results can also be seen
in Figure 13. Also, a video of this experiment can seen
in https://youtu.be/-QZg0m_jtIo. The analysis of the
recorded data reveals a RMSE of about 1.2 deg and 0.9 deg
in the roll and pitch angles, respectively, which is remark-
able.

7. Conclusions

In this paper, a new disturbance observer-based quadro-
tor attitude control has been proposed. The conventional
hypothesis of small angles, knowledge of the inertia ma-
trix, absence of external disturbances and fast motor dy-
namics are avoided in the controller design. This permits
to the resulting controller to perform precise and aggres-
sive attitude maneuvers in disturbed environments. The
controller is relatively simple to implement and only two
quadrotor parameters need to be identified. The stabil-
ity of the whole closed-loop system has been analyzed in
terms of Lyapunov’s theory. Simulations and experiments
show an outstanding control performance of the proposed
controller, even in the presence of important time-varying
external disturbances.
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Appendix A. Proof of Theorem 1

Consider the Lyapunov candidate function V = xTPx,
whose time-derivative along the trajectories of (22) is given
by

V̇ = xT (PA+ATP )x+ 2xTP 2σ̇ − 2xTP 3B
−1 ¨̄ωr

b
,

which, for all ‖x‖ ≤ βσ3
, it is norm-bounded by

‖V̇ ‖ ≤
[

(

− λ
(

PA+ATP
)

+ 2‖P 2‖βσ1

)

‖x‖+

+
(

2
∥

∥P 3B
−1

∥

∥β ¨̄ωr

b

+ 2‖P 2‖βσ2

)

]

‖x‖.

Then, for a small βσ1
, i.e. βσ1

<
λ
(

PA+A
T
P

)

2‖P 2‖
, it is veri-

fied that
(

−λ
(

PA+ATP
)

+2‖P 2‖βσ1

)

< 0; and, there-

fore, V̇ < 0 for all x such that,

βσ3
≥ ‖x‖ >

2
∥

∥P 3B
−1

∥

∥β ¨̄ωr

b

+ 2‖P 2‖βσ2

λ
(

PA+ATP
)

− 2‖P 2‖βσ1

, x∗.

This leads to the bound-condition over βσ1
, βσ3

and it
also implies that, if ‖x(0)‖ ≤ x∗, then ‖x(t)‖ ≤ x∗ for
all t.

Appendix B. Proof of Proposition 2

First, let us prove the existence of β ¨̄ωr

b

such that

‖ ¨̄ωr

b
‖ ≤ β ¨̄ωr

b

. Under Assumption 2, the reference angular

velocity generated by (11) is bounded by

‖ωr

b
‖ = ‖RT (qe)ωd(t)− kqe‖ ≤ ‖ωd(t)‖ + k‖qe‖,

≤ βωd
+ k.

(B.1)

Therefore, as ωrb is bounded and due to the internal sta-
ble dynamics of the TD (12), the variables ω̄r

b
, ˙̄ωr

b
, ¨̄ωr

b
in

(12) are also bounded. This proves the existence constants
βω̄r

b
, β ˙̄ωr

b

, β ¨̄ωr

b

≥ 0 such that

‖ω̄r

b
‖ ≤ βω̄r

b
, ‖ ˙̄ωr

b
‖ ≤ β ˙̄ωr

b

, ‖ ¨̄ωr

b
‖ ≤ β ¨̄ωr

b

, (B.2)

which proves the first statement.

Now, let us prove the existence of βσ1
, βσ2

, βσ3
such

that ‖σ̇‖ ≤ βσ1
‖x‖+ βσ2

, ∀‖x‖ ≤ βσ3
. Recalling that

σ(wb, t) = Ku
−1τδ(t)−Ku

−1S(ωb)Jωb, then

σ̇ = Ku
−1

(

τ̇δ(t)−
d

dt

(

S(ωb)Jωb

)

)

where the second element constitutes the time-derivative
of the Coriolis term. It is not hard to verify that

d

dt

(

S(ωb)Jωb

)

=
(

S(ωb)J − S(Jωb)
)

ω̇b

and therefore

‖σ̇‖ ≤ ‖Ku
−1‖

(

‖τ̇δ(t)‖+
∥

∥

∥

(

S(ωb)J − S(Jωb)
)

∥

∥

∥
‖ω̇b‖

)

≤ ‖Ku
−1‖

(

‖τ̇δ(t)‖+ 2
∥

∥J
∥

∥‖ωb‖‖ω̇b‖
)

.

(B.3)
Then, by the definition of the angular velocity tracking

error, z , ωb − ω̄r

b
, see Figure 2; by (B.2), by (22); and

by the fact that ‖z‖ ≤ ‖x‖; it is verified that

‖ωb‖ = ‖z + ω̄r

b
‖ ≤ ‖x‖+ βω̄r

b
(B.4)

‖ω̇b‖ = ‖ż + ˙̄ωr

b
‖ =

∥

∥[−K, B, B]x+ ˙̄ωr

b

∥

∥

≤ βz‖x‖+ β ˙̄ωr

b

,
(B.5)

where βz =
∥

∥[−K, B, B]
∥

∥. Substituting (B.4)-(B.5) into
(B.3) and incorporating Assumption 1 it is obtained that

‖σ̇‖ ≤ 2βz
∥

∥Ku
−1

∥

∥

∥

∥J
∥

∥‖x‖2+

+ 2
∥

∥Ku
−1

∥

∥

∥

∥J
∥

∥

(

βωd
+ β ˙̄ωr

b

)

‖x‖+

+
∥

∥Ku
−1

∥

∥βτδ + 2βω̄d
βω̄r

b

∥

∥Ku
−1

∥

∥.

and, therefore, as ‖σ̇‖ ≤ α1‖x‖
2 + α2‖x‖ + α3 with

α1, α2, α3 ≥ 0, then, one can find constants βσ1
, βσ2

, βσ3
,

such that ‖σ̇‖ ≤ βσ1
‖x‖+ βσ2

, ∀‖x‖ ≤ βσ3
.

Appendix C. Proof of Theorem 2

First, let us obtain an expression for the time-derivative
of the attitude error, q̇e. Differentiating (10) and incor-
porating (3) and (9) it is obtained that the attitude error
obeys the following differential equation (refer to (Tayebi,
2008) for details)











q̇e0 = −
1

2
qe
T
(

ωb −RT (qe)ωd(t)
)

,

q̇e =
1

2
[qe0I3 + S(qe)]

(

ωb −RT (qe)ωd(t)
)

.

(C.1)

where R(qe) is given by (2).
Now, let us express (C.1) in terms of z and in terms of

the angular velocity reference signal error, ω̃r

b
, introduced

by the TD, which is defined as:

ω̃r

b
, ωrb − ω̄r

b
. (C.2)

Recalling that ωb = z + ω̄r

b
= z +ωrb − ω̃r

b
, incorporating

(11) and substituting the resulting expression into (C.1)
leads to











q̇e0 = −
1

2
qe
T
(

z − ω̃r

b
− kqe

)

,

q̇e =
1

2
[qe0I3 + S(qe)]

(

z − ω̃r

b
− kqe

)

.

(C.3)

Let us now consider the Lyapunov candidate function

V = (1− qe0)
2 + qe

Tqe = 2(1− qe0), (C.4)
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whose time-derivative along the trajectories of (C.3) is

V̇ = −k‖qe‖
2 + qe

T (z − ω̃r

b
)

≤ ‖qe‖
(

− k‖qe‖+ ‖z(t)‖+ ‖ω̃r

b
‖
)

≤ ‖qe‖
(

− k‖qe‖+ ǫz + ǫω

)

=

=
√

1− q2e0

(

− k
√

1− q2e0 + ǫz + ǫω

)

,

(C.5)

where ǫz, ǫω ≥ 0 are the upper bounds of ‖z(t)‖ and
‖ω̃r

b
(t)‖, respectively.

Therefore, if k > ǫz + ǫω then, by (C.5), it holds that
V̇ < 0, for all

−

√

1−

(

ǫz + ǫω
k

)2

< qe0 <

√

1−

(

ǫz + ǫω
k

)2

,

which implies that, if qe0(0) >

√

1−
(

ǫz+ǫω
k

)2
, then the

attitude error is bounded by (23) for all t.
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