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ARTICLE INFO ABSTRACT

Handling Editor: J. E. Fernandez Effective and sustainable management of aquifers in regions with intensive groundwater use for irrigation re-
quirements accurate mapping or irrigated areas to control water resource exploitation and plan rational water
usage. This study proposes a cost-effective methodology based on satellite images to identify irrigated areas
utilizing surface water and groundwater resources. The methodology integrates soil moisture estimations,
environmental variables, and variables that affect to retention of water soil, that join a ground truth dataset, to
estimate irrigated surface through a machine learning method during the irrigation period of 2021. Spectral data
derived parameters and crop morphology, along with official data on agricultural parcels, were utilized to define
vineyard irrigation areas at the plot scale within the Requena-Utiel aquifer in Eastern Spain. A machine learning
classification technique was applied,yielding a remarkable precision of 91.8 % when compared to ground truth
data.Discrepancies between the remote sensing-based irrigated area estimation and official data are highlighted.
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This study represents the most accurate plot-scale irrigation mapping of woody crops in the region to date.

1. Introduction

Groundwater has been the main driver of the “silent revolution” that
has enabled the expansion of irrigation in many regions of the globe
(Giordano, 2009; Llamas and Martinez-Santos, 2005; Molle et al., 2018;
Shah et al., 2007). In many cases, this revolution has led to severe
over-exploitation of aquifers, with negative consequences for the
viability and profitability of agriculture, for the future of food produc-
tion, and for the sustainability of aquatic ecosystems (Gleeson et al.,
2012; Grogan et al., 2017). These problems arise from the lack of in-
terest and/or means of the authorities to control the expansion of
groundwater irrigation. On numerous occasions, the hydraulic admin-
istrators/bureaucracies have promoted these policies to boost agricul-
tural revenue. However, when the public sector begins witnessing
inefficiencies, they struggle to find effective mechanisms to regulate
excessive water withdrawals (Molle and Closas, 2020a, 2020b). The
“silent” almost anonymous nature of groundwater exploitation has
posed a challenge for the management and governance of many aquifers
due to the difficulty in avoiding the free-rider behavior of many users,
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some of whom have powerful vested interests (Hoogesteger and Wester,
2018, 2015). The “silence” of the revolution is synonymous with opacity
and, therefore, a source of frequent inequalities (Ameur et al., 2017;
Damonte and Boelens, 2019).

Experts have proposed various approaches to address this problem,
some based on improved governance, others on coercive control and
sanction measures, and increasingly on mixed “sticks” and “carrots”
policies (Birkenholtz, 2015; Closas et al., 2017; Lopez-Gunn, 2012;
Molle et al., 2018; Molle and Closas, 2020). In almost all cases, having
tools to estimate the irrigated area is essential. Sustainable groundwater
management relies on data (Sharples et al., 2020). Without a clear
knowledge of the use and users of the common resource, it is signifi-
cantly more challenging to develop state-led policies or the preferable
collective management instruments that allow sustainable exploitation
(Rouillard et al., 2021; Petit et al., 2021).

It is, therefore, necessary to measure the degree of exploitation of
groundwater resources in an efficient and quantifiable way. To this end,
geospatial analysis methodologies using remote sensing techniques and
geographic information systems have been identified as having great
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potential for sustainable environmental management (Bouasria et al.,
2021b; Bounif et al., 2021; Rahimi et al., 2021). The rapid advancement
in remote sensing technologies has enabled their application as a crucial
and emerging data source for environmental dynamics and agricultural
changes in recent years (Bouasria et al., 2021a; Mjiri et al., 2022; Rahimi
et al., 2022). In this context, the identification of irrigated areas proves
highly beneficial and has demonstrated relative success when applied in
diverse regions of the world (Ambika et al., 2016; Brown and Pervez,
2014; Castano et al., 2010; Foster et al., 2020; Vogels et al., 2019; Xie
et al., 2021).

The use of satellite imagery allows the development of digital the-
matic maps describing the spatial distribution of the irrigated land.
These technologies use mathematical algorithms that describe the
connection between the signal captured by the sensor and the surface
water content. Given a sequence of multi-spectral and multi-temporal
images, a classification process assigns an irrigation label to each
pixel. Some methods use Vegetation Indices from optical data for long
periods to understand interannual variability in irrigated areas (Ambika
et al., 2016). Following vegetation indices, it is proposed to monitor
seasonal irrigated cropland for quantifying areas under groundwater
irrigation using multiple optical satellite images to fill data gaps during
crop growth periods due to clouds in tropical regions (Sharma et al.,
2021), others compile relevant vegetation indices and climate variables
for mapping and quantifying irrigated and dry land agriculture areas
(Zurqgani et al., 2021).

Other satellites use global soil moisture (SM) data to classify irrigated
areas (Bazzi et al., 2019; Gao et al., 2017; Pageot et al., 2020; Rabiei
et al., 2021; Zohaib et al., 2019). These satellites such as SMOS and
SMAP use microwave radiometers, specifically L-band, to measure SM in
the first 10 cm of the soil profile. The method is based on the large
contrast of the dielectric properties of water and soil properties and
showed promise for monitoring soil moisture in agricultural areas
(Wigneron et al., 1996, 2017). However, the measurements obtained by
the radiometers are limited to within a few centimeters of the surface,
and they are unable to directly capture the soil moisture conditions of
the roots. In addition, these satellite data have a low spatial resolution
(835-50 km), although methods based on downscaling microwave
products through optical data have recently been developed (Dari et al.,
2021).

Several studies have demonstrated the effectiveness of combining
optical and synthetic aperture radar (SAR) time series data for accurate
SM estimation in crops with dense vegetation cover, such as cereals
(Bazzi et al., 2019; Gao et al., 2018). The use of this data to monitor SM
is significant as it is not affected by cloud cover and provides a high
temporal resolution. However, for other types of crops, such as woody
crops with high ground surface dominance, SAR data have a dominant
direct return from the ground surface and a multiple scattering
component that results in disturbing and unmodelled signal fluctuations
of soil and low-cover vegetation (Ballester-Berman et al., 2013).

Recently, a promising optical method, called Optical TRApezoid
Model (OPTRAM) has emerged as an effective approach for calculating
SM. The method is based on the Thermal-Optical TRApezoid Model
(TOTRAM), also known as the “trapezoid” or “triangle” model, which
measures SM using the Normalized Difference Vegetation Index (NDVI)
of optical and thermal data (Sadeghi et al., 2015). Unlike the “triangle”
model, the OPTRAM method uses a physical relationship between NDVI
and shortwave infrared reflectance (SWIR), parameterized in an index
called shortwave infrared transformed reflectance (STR). This method
has some advantages over TOTRAM as it can estimate soil moisture
directly from sensor observations that lack a thermal band, in addition,
thermal bands have a coarser spatial resolution compared to visible,
near-infrared, and mid-infrared bands. This enables the use of a greater
range of satellites, such as Sentinel 2, improving spatial and temporal
resolution without the need to use thermal data. The OPTRAM method
has been applied in recent studies to determine the soil moisture content
at the watershed scale (Mananze and Pocas, 2019; Sadeghi et al., 2017a)
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and at the plot scale (Babaeian et al., 2019, 2018; Chen et al., 2020).

The promising results of OPTRAM have allowed us to develop a
methodology consisting of image classification in machine learning
classifiers that are used as decision trees (Brodley and Friedl, 1997). In
recent years, the Random Forest (RF) method, applied to geographical
objects, has gained increasing attention in the literature. It has proven to
be an effective approach for analyzing high spatial resolution imagery
(Blaschke, 2010) and has shown promising results in crop mapping
using remotely sensed data in recent years (Akbari et al., 2020; Devkota
et al., 2024; Htitiou et al., 2019).

The expansion of groundwater irrigation in semi-arid regions of
Spain threatens its sustainability (De Stefano et al., 2014, 2015).
Consequently, water authorities and certain irrigation users have been
actively seeking efficient methods to restrict irrigation expansion and
manage groundwater overexploitation (Calera et al., 2017). Mapping
irrigated areas provides important data to improve the control and
management of groundwater use. The study’s main objective is to
develop an inexpensive and efficient method to detect irrigated areas of
woody crops at the plot scale. The method employs remote sensing and
geographical data classification, along with artificial intelligence tech-
niques to provide insights into the decision-making process of individual
irrigators. This  promotestransparent collective  groundwater
management.

2. Study area

The Requena-Utiel aquifer is located in the interior of the Valencian
Community and spans most of the Requena-Utiel region (Fig. 1). Vine-
yards cover 304.2 km2, which represents 90 % of the agricultural land.
The map uses different colours to distinguish between rain-fed and
irrigated vineyards. It also indicates vineyards that have consolidated
water rights in 2018, as indicated by the Jucar River Basin Authority.
Specifically, green colour specifically represents vineyards with
consolidated water rights, while clear orange is used for both rain-fed
vineyards. The groundwater system covers an area of 987.9 km2 with
an altitude ranging from 600 to 1200 m above sea level. The average
slope is 5 %.

The area has a Mediterranean climate with some continental influ-
ence, falling between the Koppen-Geiger Csa and Csb types. The mean
annual temperature is 14°C and a mean annual rainfall is 323 mm. The
irrigation season aligns with the driest part of the year, from June to
August (Fig. 2). The majority of soils have a clayey texture, except for a
narrow alluvial ridge along the Magro River.

In 1995, according to the statistics of the regional administration
(GVA, 2021), the irrigated area of Requena-Utiel occupied 1738 ha, of
which 1279 ha were forage and summer vegetables, and 449 ha dedi-
cated to wine vineyards. The rest of the region was occupied by rainfed
crops (58,524 ha), with 44,445 ha being vineyards. However, by 2019,
the irrigated area had significantly expanded to 11,660 ha of vineyards,
1546 ha of almond trees and 1415 ha of secondary crops. Since 1995,
the irrigated area had increased eight-fold. In most instances, the
development of new irrigation land has been made possible by installing
drip irrigation systems and vine trellises, driven by several factors. In the
absence of river resources, farmers promoted this transformation by
drilling wells. Irrigated crops expanded due to: i) the search for
increased production; ii) the promotion of irrigation modernization
through subsidies by the regional government; and iii) the evidence of
global warming and the trend of decreasing rainfall. However, this
process was conducted without proper planning or assessment of water
resources, jeopardizing the sustainability of the groundwater system.

In 2016, the Jucar River Basin Authority approved the Exploitation
plan of the Requena-Utiel groundwater body. This plan, established a water
allocation of 450 m3/ha for woody crops and wet years (900 m3/ha for
dry years, and 600 m®/ha for average years) to users with administrative
concessions. As part of this plan, irrigation was not allowed for those
areas that do not have administrative water concession until 2016 (CHJ,
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Fig. 1. Consolidated water rights mapping of the Requena-Utiel aquifer (source: CHJ, 2019).
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Fig. 2. Temporal behavior of ambient temperature and precipitation for the last five years 2017-2023. Source: SIAR (acronym for Agroclimatic Information System

2016). This plan has subsequently been updated without significant
changes (CHJ, 2020).

The existing official data regarding the irrigated area are highly
inconsistent, as shown in Table 1. The Jucar River Basin Authority es-
timates an area with consolidated water rights of 16,220 ha (inclouding
12,852 ha of vineyards), and the regional government estimates
13,844 ha of irrigated land (of which 11,771 ha are vineyards) (CHJ,
2019; GVA, 2021). This discrepancy arises because the Jucar River Basin

Table 1
Irrigated from official data (ha) in study area.
River Basin Authority Regional Government
Total irrigated area 16,220 14,621
Irrigated vineyard area 12,852 11,660
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Authority registers land with water rights, while the Regional Govern-
ment estimates irrigated land based on a survey, often resulting in un-
derestimations of the actual irrigated lands. Due to legal requirements,
farmers have had to join other users in an institution for the collective
management of the aquifer. However, they do not have precise knowl-
edge of the actual extent of the irrigated area. Additionally, in the
Requena-Utiel district, the non-irrigated area spans from 41,542 ha to
45,785 ha, out of which 23,139 ha to 24,185 ha consist of vineyards,
(GVA, 2021; SIGPAC, 2021). Both individual farmers and collective
organizations are seeking the expansion of non-irrigated areas to irri-
gated ones (Sanchis-Ibor et al., 2023). The further development of
reliable tools for estimating irrigated land is crucial.

3. Material and methods

This study uses spatial information and artificial intelligence tech-
niques to estimate the groundwater irrigated area of Requena-Utiel at
the plot scale. Random Forest was used as a classifier on crop plots,
configured as vector spatial objects to predict the irrigated area. The
value of the crop plot was determined by averaging the pixels that fall
within them, thus reducing intra-plot variability and excluding anom-
alous pixels. The analysis combines geographical data influencing crop
water status with soil moisture information and climate data from
multispectral imagery during the 2021 irrigation period.

The boundaries of the groundwater system were determined based
on the official mapping of groundwater bodies (CHJ, 2021). The land
use layers consist of both graphical and alphanumeric data, providing
the geographical reference of each plot, surface and land use data, and
other relevant details (SIGPAC, 2021). That is the geographical refer-
ence of each data plot on surface and land use and relevant details. Basic
information on vineyard characteristics was provided by the Designa-
tion of Origin’s Regulatory Council (CRDO). Geomorphological data,
acquired from the Territorial Action Plan on the Flood Risk Prevention
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in the Region of Valencia, PATRICOVA (2021), along with topographic
information such as slope and aspect, were provided by ALOS World 3D
(AW3D30) dataset. These datasets were integrated into Geographic In-
formation Systems as input data.

Sentinel-2 multispectral data from the Copernicus programme (Earth
Observation component of the European Union’s space programme)
were used to estimate soil moisture by combining spectral bands with
the OPTRAM method. To eliminate the potential influence of rainfall on
the soil moisture conditions of the plot, CHIRPS satellite images were
used for spatial mapping of rainfall. We opted for Google Earth Engine
(GEE) as our analytical platform for acquiring spectral bands. GEE
makes it possible for sequences of images to be loaded and resampled.
GEE employs an image pyramid based on the closest scale that is less
than or equal to the average of the pixels in the immediate lower level.
The analysis scale was determined based on the 10 m output to have the
highest possible resolution and based on the resolution of the Sentinel 2
multispectral used in the model.

Topographic and multispectral data and soil moisture estimates were
combined with the land use map using algebraic mapping techniques,
and mean plot values were obtained for all variables. In addition, both
irrigated and rainfed plots were used as reference data to train the
machine learning classifier. Finally, RF was applied as a classification
technique on a vector database to estimate the irrigated area. Fig. 3
shows the workflow and sequence of operations performed.

3.1. OPTRAM model implementation

The OPTRAM model is based on the linear physical relationship
between soil moisture and STR (2). The model is parameterized as a
function of the spatial distribution of the pixel between a vegetation
index and the STR. The method aims to replace the land surface tem-
perature (LST) of its predecessor method, the Thermal Optical Time-
series Ratio-based Algorithm (TOTRAM) with a humidity measure-
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Fig. 3. Flowchart representing the workflow overview.
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ment in the optical domain. Thus, the method develops a linear physical
relationship between soil moisture (W) (1) and shortwave infrared
reflectance (SWIR). The model has been shown to have high accuracy in
the 2210 nm region of the electromagnetic spectrum (Sadeghi et al.,
2017a, 2015).

0—6y SRT — STRy

W= = 1
6, —03 STR, — STRy )

STR is related to the SWIR band as follows:

a _RSWIR)Z

STR =
2 * Rswir

(2)

Where STRd and STRw are STR at dry (e.g., 6 ~0 cm® cm ™3, where 0 is
volumetric moisture content) and wet (e.g., 6=6s cm?® cm’3, where 0s is
saturated moisture content) states, respectively (Babaeian et al., 2018).
Rswir is the reflectance in the short-wave infrared.

Recent research has shown that normalized vegetation indices
represent the variability of vine vegetation, which, in turn, is related to
soil water stress. In other words, soil moisture influences the water
status of the crop, and this is reflected in the spectral characteristics of
the vegetation. Therefore, the OPTRAM method proposes the Normal-
ized Difference Vegetation Index (NDVI) to estimate soil moisture. To
use OPTRAM for woody crops, we replaced the NDVI vegetation index
with the Modified Soil Adjusted Vegetation Index (MSAVI2) (3) (Qi and
Kerr, 1994; Qi et al., 1994; Richardson and Wiegand, 1977).

The MSAVI2 index utilizes the red band (RED) to detect the strong
absorption of chlorophyll, resulting in increased values when vegetation
cover is sparse. Additionally, the near-infrared band (NIR) is used, and
its reflection by the vegetation is reduced to enhance the sensitivity of
the index to the combined effects of vegetation and soil (Xue and Su,
2017). Recent research (Babaeian et al., 2019; Towers et al., 2019) has
demonstrated that the MSAVI2 is more sensitive to vegetation in areas
where soil plays a significant role in land cover.

1mmw2:osﬂ@Nm+1y—V@Nm+1f—aNM—an 3)

Assuming an empirical linear relationship of STRd and STRw with
the vegetation fraction, the dry and wet edges of the optical trapezoid
are defined as follows (see Fig. 4, which illustrates the relationship be-
tween STRd, STRw, and the vegetation fraction).

Therefore, STR answers to the linear relationship at the wet and dry
boundary as follows:

STRy = ig + s4MSAVI2 3
STR,, = iy, + s, MSAVI2 @

Where ijands, are the limit and the slope of the dry point, and i,,s,, are

A
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Fig. 4. Scheme illustrating the parameters of the Optical TRapezoid Model
[Egs. (3 and 4) within the space STR-MSAVI2. Adapted from Babaeian
et al. (2018).
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the limit and the slope of the wet point.
By combining the equations, the soil moisture at each pixel can be
estimated as a function of STR and MSAVI2:

ig + saMSAVI2 — STR

= 5
ig— iy + (Sd — SW)MSAVIz )

The spacing between STR-MSAVI2 is expected to be invariant since
reflectance is a function that only considers soil properties and not at-
mospheric conditions. Thus, a universal relationship applicable to all
dates at a specific site is anticipated (Babaeian et al., 2018; Sadeghi
et al., 2017a).

The multispectral data required to implement the OPTRAM model
were acquired from the Sentinel-2 (S2) satellite. The selected bands
(Near Infrared band, NIR (b8): Shortwave, InfraRed band, SWIR (b12);
and Red band, RED (b4)), already corrected, were selected without
cloud cover (Sentinel-2 L2A). The S2 data have a high spatial resolution
(10-20 m) and a temporal imaging frequency of 5 days. During the 3-
month dry season, a total of 54 scenes were used and analyzed using 3
spectral bands: Short-Wavelength Infrared (SWIR), Near-Infrared (NIR),
and Red (RED). These spectral bands were employed to monitor soil
moisture levels throughout the dry season and predict whether the
parcel was irrigated. The data collected from the scenes provided
valuable insights into how soil moisture varied over time.

3.2. Climate dataset

Rainfall data were obtained from the Climate Hazards Group Infra-
Red Precipitation with Station data (CHIRPS) provided by the United
States Geological Survey (USGS) and the University of California, Santa
Barbara (UCSB). CHIRPS is a valuable resource used in areas with
limited weather stations. It incorporates a monthly rainfall dataset of
0.05° resolution satellite imagery and in-situ station data (Funk et al.,
2015).

CHIRPS data provide an image showing total rainfall every five days.
A total of 18 images taken during the three-month irrigation period (or
dry season) were used as input data. These images were summarized by
adding the rainfall amounts to create three monthly images. The original
CHIRPS data resolution was resampled to achieve a 10 meter spatial
resolution to align with output resolution in Google Earth Engine (GEE).

3.3. Characteristics of terrain surface and landforms

Certain factors, such as landforms and relief characteristics, influ-
ence moisture retention and aid in distinguishing between naturally wet
plots (e.g., shaded areas or valleys) and plots that receive irrigation
water. The physical characteristics of land, including slope and aspect,
play a crucial role in this process. Slope and aspect determine the
amount of solar radiation the soil receives, directly affecting soil mois-
ture conservation. For this study, a global digital surface model (DSM)
with a resolution of 30 m, provided by the ALOS World 3D (AW3D30)
dataset, was used as input data. The slope and aspect of each plot were
obtained from AW3D30 and resampled to a 10 m spatial resolution
using GEE.

The aquifer is situated in a plain characterized by flat terrain and
covered by an extensive pediment, intersected by the narrow floodplain
of the Magro River. These geomorphological units exhibit varying
sediment textures and slopes, which significantly influence water
retention in the soil. Therefore, geomorphological data from the official
cartography of PATRICOVA were used as input data. PRATICOVA cat-
egorizes different geomorphological units, including pediments, alluvial
fans, splay deposits, different floodplain forms, and two types of
ephemeral streams (cultivated flat-bottomed, non-cultivated V shape)
(Segura-Beltran et al., 2016).
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3.4. Crop data field

Crop data, such as the type of growing systems (vase and trellis)
where the vines are planted, condition the canopy density and water use
(Fig. 5). Bush vines are the most traditional and oldest form of vine
planting. In this system, the vines grow freely without any supporting
structures, creating a denser canopy that helps reduce water loss
through evaporation by providing more shade to the soil and conserving
moisture. This system can survive without irrigation. The trellis system
involves training the vines to grow on a structure. Generally, the trellis
system is beneficial for irrigation, as it allows for more efficient water
distribution and helps prevent water stress in the vines. During the
summer irrigation season, the grass between the rows disappears,
allowing for accurate soil moisture analysis without interference from
weeds. The prevailing irrigation technique in this area is drip irrigation,
where the emitter wets a small portion of the surface. Information
related to the specific irrigation systems used in the study area was
obtained from a local information system (CRDO) connected to a vine-
yard layer derived from SIGPAC.

A simple random sampling method was used to train the classifica-
tion between irrigated and non-irrigated plots. This method involved
conducting on-site visits to fields throughout the Requena-Utiel aquifer.

The area was surveyed over several days to document the actual land
conditions. The sampling involved assessing whether each plot was
irrigated or rainfed. Specialized field work software, QFIELD 3.0 (QGIS
Development Team, 2023) was used for data collection. This mobile app
is designed for field data collection. The sampled plots ranged from a
minimum area of 18 m? to a maximum of approximately 16 ha, ensuring
they are representative of the entire area and considering the image

4830000 - !
4815000 -
4800000 —
\\_‘
4785000 ~
I Rainfed
Ml Irrigated land
4770000 —

Agricultural land
[] Groundwater system

1 1
-165000 -150000

1
-135000

Agricultural Water Management 302 (2024) 108988

resolution. Fig. 5 shows a map of the sampled plots at the aquifer scale.
On the right side, we observe a) a plot classified as irrigated, where the
drip line is located under the plant in trellis, and b) a plot classified as
rainfed, with bush vines. Both aerial views illustrate the differences in
plant coverage across different planting systems.

The collected data were used to train the classifier model for eval-
uating and assessing the accuracy of the irrigation coverage maps. Of the
686 fields visited and validated, 374 were irrigated and 212 were
rainfed.

3.5. Random forest classifier

The random forest (RF) algorithm was used to build a classifier
model to estimate the moisture status of the plot and assign the labels
irrigated and non-irrigated. RF is a classifier with high potential for
agricultural crop type classification and crop yield prediction (Devkota
et al., 2024; Htitiou et al., 2019), and is superior in accuracy compared
to other existing algorithms (Belgiu and Dragu, 2016; Breiman, and
Cutler, 2005). RF is a set of machine learning algorithms consisting of
many decision tree classifiers, called estimators, where each tree pro-
duces its own predictions. The accuracy of the RF classifier depends on
the strength of the individual tree classifiers and their dependency on
each other. The forest uses averages to control overfitting (Breiman,
2001). Its architecture allows it to handle large data sets, allowing it to
analyze ground, crop, and remotely sensed variables.

The estimation variables and values used in the random forest clas-
sification included a combination of qualitative and quantitative fea-
tures. The specific variables used for classification were:

1
-120000

-105000

Fig. 5. The sampling map with labels assigned at the aquifer scale. On the right side, (a) illustrates a rainfed plot in bush vine, (b) represents a plot classified as
irrigated, where the drip line is positioned under the plants in trellis, while. Source of base map: Digital aerial orthophotographs of the Spanish National Orthophoto

Program (PNOA).
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3.5.1. Qualitative Estimators (Categorical Variables)
System: Type of plantation system for the crop, such as bush and
trellis. This feature helps canopy density, which impacts soil moisture.
Landforms: Geomorphological data including pediments, alluvial
fans, splay deposits, floodplain forms, and ephemeral streams, which
influence soil moisture retention.

3.5.2. Quantitative Estimators (Numerical Variables)

Terrain surface: Topographic data, slope and aspect, which deter-
mine the amount of solar radiation received by the soil, directly influ-
encing soil moisture retention.

Soil Moisture Content: Estimations of soil moisture during the
irrigation period, serving as a crucial indicator of crop water status.

Rainfall: Amount of rainfall during the irrigation period, which
helps distinguish soil moisture due to environmental conditions from
that due to irrigation input.

The combination of these qualitative and quantitative variables en-
ables the random forest classifier to accurately classify plots as irrigated
or non-irrigated plot. The algorithm takes advantage of the individual
strengths of the decision tree estimators to create an ensemble model
that can handle large datasets and effectively analyze spatial and agri-
cultural variables.

Ten decision tree estimators were employed to classify the irrigated
area. Two parameters were used to maximize the accuracy of the RF
model: the number of predictors in each node division of the decision
tree (Mtry), and the number of decision trees to run (n). Although some
authors recommend setting the number of decision trees to 500, our
model gave high accuracy with nTree=150. For the number of pre-
dictors in each split, Mtry = 4 was utilized, derived from the square root
of the number of input variables, as recommended by researchers
(Belgiu and Dragu, 2016).

3.5.3. Accuracy assessment of classification

The dataset was split into subsets for training and validation pur-
poses. The Random Forest (RF) model was trained and evaluated on
these subsets to assess its performance. Specifically, 75 % of the dataset
(510 plots) was allocated for training, while the remaining 25 % (171
plots) was set aside for testing. This approach allowed for an estimation
of the model’s accuracy and helped prevent issues, such as overfitting or
underfitting. Additionally, a cross validation method was employed to
further assess the model’s performance, ensuring its ability to generalize
beyond the training dataset.

A confusion matrix is provided to visualize and summarize the per-
formance of the RF classifier (Congalton, 1991). True Positives (TP)
represent cases where the model accurately predicts irrigated plots as
positive. False Positives (FP) indicate cases where the model incorrectly
predicts non-irrigated plots as irrigated. False Negatives (FN) denote
cases where the model incorrectly predicts irrigated plot as non-irrigate.
True Negatives (TN) represent cases where the model accurately pre-
dicts non-irrigated plots as negative.

Another important metric to assess the performance of machine
learning models is the F1 score, which is widely used for classification
tasks, particularly in scenarios with uneven class distribution. The F1
score combines two essential metrics: precision and recall. Precision
quantifies the proportion of correct ‘positive’ predictions made by the
model, while recall measures the proportion of positive class samples
that the model correctly identifies.

Furthermore, predictor importance was utilized to assess the
behavior of the model. This measure considers interactions with other
predictors and reflects the increase in model error or decrease in accu-
racy when specific predictor information is removed (Molar, 2018). The
importance of variables in RF classifier was determined using impurity
based measures. A higher value indicates greater importance for the
variable. Variable importance is computed as the normalized total of the
criterion the variable contributes.
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4. Results
4.1. OPTRAM-parameters

The parameterization process involved establishing a relationship
between these spectral indices and soil moisture values (Fig. 6).

To perform the parametrization, the satellite images were masked to
select only the pixels corresponding to vineyard land use and exclude
other land uses. This ensured that the analysis focused specifically on the
vineyard plot. The scatter plot of STR and MSAVI2 values for these
vineyards pixels formed a cloud of points.

The lines drawn between the wet and dry points in the scatter plot
created a trapezoidal shape, representing the relationship between the
STR and MSAVI2 values and soil moisture. Through analysis of this
trapezoidal shape, the OPTRAM model can estimate soil moisture for
each pixel in the vineyard plots based on its STR and MSAVI2 values.

Interestingly, the representation of the pixel distribution during the
dry season exhibited a consistent pattern across all the dates analyzed.
This finding supports the hypothesis that a universal parameterization
between STR, MSAVI2, and soil moisture remains relatively stable
during the dry months. Consequently, the OPTRAM model can provide
accurate soil moisture estimates for the vineyard plots throughout this
period, (Sadeghi et al., 2017a).

The coefficients of the OPTRAM model were derived by analyzing
the scatter plot depicting the relationship between the wet edge and the
dry edge. The wet edge represents points corresponding to conditions
where the soil has water content and the vegetation is well hydrated.
Conversely, the dry edge represents points indicating conditions with
lower soil moisture content and potential water stress for vegetation.

During the visual interpretation process, points that were likely
affected by oversaturated or shaded pixels were omitted to ensure the
accuracy and reliability of the coefficients. Oversaturated pixels occur
when the sensor’s sensitivity is exceeded, resulting in inaccurate mea-
surements, while shaded pixels can produce misleading results due to
reduced sunlight exposure.

In the scatter plot, the STR values serve as indicators of the amount of
water content in the plant’s root zone, (Babaeian et al., 2018). High STR
values are typically associated with full canopy vegetation and indicate
higher water content in the soil. As the vegetative vigor of the plant
increases, the STR values tend to rise, indicating healthier and
well-hydrated vegetation, (Sadeghi et al., 2017a).

By analyzing the scatter plot and considering the relationship be-
tween STR values, soil moisture, and vegetative vigor, the coefficients
were derived to parameterize the OPTRAM model. These coefficients
enable the model to estimate soil moisture based on the STR and
MSAVI2 values obtained from the satellite images. The process of
obtaining coefficients through visual interpretation helps ensure that the
model captures the true relationship between the spectral indices and
soil moisture, thereby providing accurate and meaningful estimates for
soil moisture in vineyard plots.

4.2. Soil moisture mapping using OPTRAM

Soil moisture estimates exhibited different values during the irriga-
tion period, with the lowest values obtained in July, coinciding with the
low precipitation values and high temperature in the area, as reported
by the station (see Fig. 2). Moisture values in some of the selected plots
increased in August, also coinciding with low rainfall and high tem-
peratures during this dry period. These higher moisture values may
indicate an irrigation supply scenario in the observed plots, especially
when compared with other plots experiencing minimum moisture values
under similar conditions. Fig. 7 visually represents these soil moisture
values over time, with the lowest values observed in July and some plots
showing increased moisture in August, suggesting a potential irrigation
supply scenario for those plots.
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Fig. 6. Pixel distribution within the STR-MSAVI2 feature space of vineyard crop at the Requena-Utiel Aquifer during the dry period of the irrigation season of 2021.
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Fig. 7. Soil moisture maps generated with OPTRAM model in vineyard crop of Requena-Utiel aquifer in the dry season (June-August) of 2021. The scale ranges from
0 indicating the minimum soil moisture value, to the maximum soil moisture value.

4.3. Classification of irrigation surface

4.3.1. Variables importance

Our analysis of the importance of predictors in classifying plots as
irrigated or non-irrigated during the dry season using a machine
learning model is shown in Fig. 8. Notably, the predictor with the
highest importance was the aspect (As), resulting in an increase in the
model’s error of 0.23. The moisture content of the plot varied signifi-
cantly based on different orientations, with north-facing slopes showing

higher soil moisture content due to reduced evaporation rates and
extended moisture retention periods.

Additionally, the relationship between landforms and soil moisture is
complex, influenced by various factors such as climate, geology, vege-
tation cover, and human activities. Specifically, landforms demon-
strated lower importance in predicting the plot’s status, with LD10
(Pediments) exhibiting a higher error increase compared to other
landform predictors. This difference may be attributed to the properties
of the pediments affecting soil moisture through changes in soil porosity,
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Fig. 8. Importance of each predictor for estimating the irrigated and non-
irrigated area with a random forest classifier during dry season.

resulting in greater moisture-holding capacity.

Our findings highlight the significance of plot aspect, soil moisture
content, and precipitation levels as crucial predictors for accurately
estimating irrigated and non-irrigated areas during the dry season. In
contrast, topographic features such as slope showed relatively lower
importance. Understanding the relative importance of these predictors
can enhance our ability to effectively manage water resources and
agricultural practices during critical periods of water scarcity.

4.3.2. Classification results

The evaluation of accuracy was conducted by applying established
approaches for identifying terrain characteristics. Table 5 displays this
matrix, with the reference data (indicating irrigated and irrigated plots)
represented in the columns, while the estimated outcomes obtained
through machine learning techniques are depicted in the rows.

Out of the 95 plots that were actually irrigated, the model accurately
identified 90 of them as irrigated, resulting in a rate of 94.74 %. How-
ever, there were 5 irrigated plots that were mistakenly classified as non-

Table 2
Estimation variables and values used in the classification of random forests.
QUALITATIVE QUANTITATIVE
LANDFORMS (LD2) Ephemeral TERRAIN Slope (As,
(LD) streams SURFACE degrees)
(LD4) River Aspect (S, m)
Corridor
(LD6) Alluvial
plain
(LD7) Torrential
fans
(LDO08) Splay
deposit (LD10)
Pediments
SYSTEMS (Syl) Vase PRECIPITATION June P06
(Sy) (Sy2) Trellis P) (mm)
July P07(mm)
August PO8(mm)
SOIL MOISTURE June W06
w) (mm)
July Wo07
(mm)
August W08
(mm)
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Table3
Structure of the confusion matrix.
0 1
Actuals 0 TN FP
1 FN TP

Prediction

Table4
The dry and wet parameters (Eq. 5) were obtained for the watershed based on S2
data for vineyard in the Requena-Utiel aquifer.

Dry edge Wet edge

ia Sa iy Sw

0.00 0.40 1.2 1.5
Table 5

Confusion matrix between the predicted label and true label plots represented in
percentage (number) for each row.

Predicted label

Non-irr. Irri.
True label Non-irrigated. 67 9
(88.15) (11.8)
Irrigated 5 90
(5.3) (94.7)

irrigated resulting in a rate of 5.26 %. On the other hand, out of the 76
plots that were non irrigated the model correctly identified 67 of them as
non-irrigated, indicating a negative rate of 88.16 %. However there
were 9 non-irrigated plots that were incorrectly classified as irrigated,
leading to a false positive rate of 11.84 %.

The confusion matrix provides an overview of how the model per-
forms in distinguishing between irrigated and non-irrigated plots.
Although the overall accuracy, which is 91.81 % is quite high, it’s
important to consider the balance between true positives and false
negatives, especially when it comes to managing water resources and
agricultural practices. The model’s ability to correctly identify non
irrigated plots is commendable, but there’s room for improvement in
reducing misclassifications, particularly false negatives, to enhance de-
cision making in water management.

The F1 score was also utilized to evaluate the classification model,
combining two metrics: precision and recall scores, as shown in Table 6.
F1 scores close to 1 indicate high precision and signify a well-performing
model.

In conclusion, the random forest algorithm has been proven to be an
asset for classifying areas as either irrigated or non-irrigated in the
Requena Utiel region. Its accuracy and ability to handle data make it an
effective tool. By analyzing the confusion matrix, we can gain insights
into the model’s strengths and weaknesses in predicting irrigation sta-
tus. These insights are crucial for managing water resources and pro-
moting sustainable agricultural practices.

4.4. Irrigated area mapping

The estimated values obtained from the machine learning classifier
have facilitated the creation of surface estimations for the irrigated
surface in vineyard located in the Requena-Utiel aquifer (see Fig. 9). The
map distinguishes irrigated zones in blue and non-irrigated zones in

Table 6
F1 score and its associated metrics,.
precision recall F1-score
Non-irrigated 0.93 0.88 0.91

Irrigated 0.91 0.95 0.93
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Fig. 9. Surface estimations of the irrigated (blue) and non-irrigated (yelow) surfaces in a vineyard area over theRequena-Utiel Aquifer during the irrigation sea-

son 2021.

orange. The application of classifiers to determine the water conditions
of the plants has demonstrated a high level of accuracy in identifying
irrigated crops. The results align with observed trends of irrigation
expansion in this aquifer (Sanchis-Ibor et al., 2023), and they also
exhibit logical discrepancies with statistical data.

The machine learning techniques for image classification developed
in this research have detected 13,568 ha of irrigated vineyards. The
error for the agricultural land cover of the Requena Utiel aquifer is 0.09.
In Fig. 10, the probability of correctly labeling each class is plotted. Non
irrigated areas have higher probability of being classified as false posi-
tives compared to irrigated plots.

Comparing these results with the official data on the irrigated area,
the estimated values differ by 8.8 %. This difference can be considered
acceptable, given the time elapsed since 2018, the fact that the River
Basin Authority records rights and not actual usage, and the time lag that
often occurs between the start of irrigation and the consolidation of
these rights. On the other hand, the irrigated area reported by the
regional government (8339 ha) is smaller than the water rights allocated

1.2

0.8
0.6
0.4

0.2

predictive probability

Non-irrigated Irrigated

Fig. 10. The predicted probability for classificated areas.

by the River Basin Authority, resulting in a larger difference of 38.34 %
between the regional government’s survey-based data and the remote
sensing detection. This discrepancy highlights an official
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underestimation of the irrigated area, as demonstrated by previous
studies based on direct field surveys (CVER, 2007).

The applied machine learning model demonstrated that, among the
data used, the aspect and soil moisture levels during the irrigation
period were the most significant predictive variables. Extracted from
satellites images, these variables establish the model as a reproducible
method applicable to various regions. Furthermore, the comparisons
made in this research highlight the effectiveness of integrating remote
sensing and machine learning data to obtain an updated inventory of
irrigated areas. This integration improves upon the current official re-
cords and can serve as a useful tool for monitoring irrigation expansion
not only in our study area but also in similar irrigated vineyard regions.
The high accuracy demonstrated by this approach establishes it as
valuable assess for enhancing water resource management and opti-
mizing agricultural planning strategies in the Requena-Utiel aquifer
region. Taking advantage of the knowledge derived from our study,
stakeholders can make informed decisions to ensure sustainable water
usage and promote agricultural productivity in the area.

5. Discussion

The study has demonstrated the high potential of using remote
sensing and artificial intelligence to estimate the irrigated area in viti-
cultural zones, making it a valuable technique for decision-making in
water planning and management. Accurately determining soil moisture
content and precipitation with high and temporal resolutions is crucial
for good classification results in irrigated and not irrigated vineyards.
Although aspect is a limiting factor in retaining soil moisture due to the
radiation it receives, it is possible that the significance of this variable
would be different according to the terrain’s roughness.

The integration of machine learning with remote sensing at to plot
scale provides a reliable methodology for detecting and controlling
irrigation expansion. By combining geographical data of water rights
and obtained irrigation plots, it becomes possible to identify presumably
irrigated lands without proper rights. Considering the margin of error of
this methodology, it can considerably facilitate inspection works in a
cost-effective manner. Moreover, the use of these technological tools
based on remote sensing, highly valued by local irrigators (Sanchis-Ibor
et al., 2023) has a deterrent effect on free-riders, as demonstrated in
other areas (Calera et al., 2017; Rouillard et al., 2021).

Despite the good fit of the model results, the approach has certain
limitations in practical application. Firstly, the baseline data obtained
through random sampling may be improved by using a cluster sampling
approach, which can save costs and simplify data collection (Stehman,
2009; Stehman and Foody, 2019). Secondly, the model error used in
machine learning techniques assesses accuracy on the available dataset
and may yield larger errors when predictions are made outside the range
of the training data. Thirdly, the OPTRAM method’s ability to estimate
soil moisture can be hindered by oversaturated and shaded pixels
(Sadeghi et al., 2017b). These limitations should be considered when
applying the methodology in practical scenarios. Finally, it is important
to consider research that highlights the cautious approach required
when using ML techniques for knowledge discovery in digital soil
mapping. This is due to the limitations of drawing causal conclusions
from variable importance measures, (Wadoux et al., 2020).

Additionally, the lack of an up-to-date database of irrigated areas
poses challenges in training artificial intelligence algorithms. Therefore,
the methodology relies on extensive fieldwork, which may gradually
reduce as more real field data becomes available. It is essential to
continue collecting data to refine the models and improve their accu-
racy. This iterative process will contribute to enhancing the reliability
and effectiveness of the methodology over time.

In the future, further research in this area should focus on obtaining a
longer time series of OPTRAM parameters and refining machine learning
models to adapt to changing environmental conditions. With these ad-
vancements, the integration of remote sensing and artificial intelligence
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will undoubtedly play a pivotal role in shaping sustainable water man-
agement strategies. This will enable a enabling a more precise and up-to-
date inventory of irrigated areas, and contributing to the conservation of
precious water resources in agricultural regions worldwide. This
forward-thinking approach holds promise for addressing the challenges
of water scarcity and promoting more efficient agricultural practices in
line of evolving environmental conditions.
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