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Geometry construction is a fundamental aspect of any radiation transport simulation, regardless of the Monte 
Carlo code being used. Typically, this process is tedious, time-consuming, and error-prone. The conventional 
approach involves defining geometries using mathematical objects or surfaces. However, this method comes 
with several limitations, especially when dealing with complex models, particularly those with organic shapes. 
Furthermore, since each code employs its own format and methodology for defining geometries, sharing 
and reproducing simulations among researchers becomes a challenging task. Consequently, many codes have 
implemented support for simulating over geometries constructed via Computer-Aided Design (CAD) tools. 
Unfortunately, this feature is lacking in penRed and other PENELOPE physics-based codes. Therefore, the 
objective of this work is to implement such support within the penRed framework.
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However, since these geometric models offer a certain level of flexibility, these representations have limitations 
when it comes to simulating highly intricate and irregular shapes. Anatomic structures, for example, require 
detailed representations of organs, tissues and bones, which are difficult to achieve using basic geometric 
objects. Similarly, complex devices or intricate mechanical systems may have designs that cannot be accurately 
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increases, geometry construction process becomes more difficult, tedious, time-consuming and error-prone [2]. 
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Also, as each Monte Carlo geometry library uses its own format and construction method, reproducing the same 
geometry among different codes is a challenging task.

Solution method: To face the problems stated above, the objective of this work is to implement the capability to 
simulate using irregular and adaptable meshed geometries in the penRed framework. This kind of meshes can be 
constructed using Computer-Aided Design (CAD) tools, the use of which is very widespread and streamline the 
design process. This feature has been implemented in a new geometry module named “MESH_BODY” specific 
for this kind of geometries. This one is freely available and usable within the official penRed package1. It can be 
used since penRed version 1.9.3𝑏 and above.
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1. Introduction

Monte Carlo (MC) simulations of radiation transport are currently 
applied in several fields of research such as: radiation therapy and pro-

tection, electromicroscopy, x-ray fluence, accelerator technology and 
detector characterization, among other applications. Due to the huge 
amount of possible applications, and with the purpose of covering dif-

ferent configurations of the simulation system (particle types, physics 
models, energy ranges, geometry types, etc), several MC codes have 
been developed over the years. Some of them are EGSnrc [1], MCNP 
[2], PENELOPE [3], Geant4 [4], PHITS [5] or FLUKA [6]. In addition 
to these codes, there are many others that stem from them, specialized 
in specific applications or adding new capabilities.

One of the latest additions to this list of MC frameworks is the 
Parallel ENgine for Radiation Energy Deposition (penRed) code [7], a 
highly parallel, efficient, and adaptable framework for MC simulations. 
Written in C++, penRed incorporates the physics and functionalities 
of PENELOPE, making it a general purpose framework. In addition, 
penRed includes many other tallies and functionalities, especially for 
the field of medical physics [8].

While MC codes have proven valuable in simulating complex ra-

diation scenarios, they rely heavily on accurate geometrical representa-

tions. In the same way as many others MC codes listed, penRed employs 
simple geometric quadric surfaces like planes, spheres and cylinders 
to define geometries. However, since these geometric models offer a 
certain level of flexibility, these representations have limitations when 
it comes to simulating highly intricate and irregular shapes. Anatomic 
structures, for example, require detailed representations of organs, tis-
sues and bones, which are difficult to achieve using basic geometric 
objects. Similarly, complex devices or intricate mechanical systems may 
have designs that cannot be accurately represented within the con-

straints of such geometric models. Moreover, when the complexity of 
the model increases, geometry construction process becomes more dif-

ficult, tedious, time-consuming and error-prone [9].

In addition to this type of geometry construction, some MC codes, 
including penRed, allow the use of voxelized geometries. This can be 
useful when simulating, for example, phantoms based on scanner im-

ages. However, voxelized phantoms have a drawback in that they offer 
limited resolution due to the size of the voxels. Another complication is 
the lack of flexibility, making them challenging to translate or deform 
objects within the phantom in a simple way.

At present, due to the advancements in computer-aided design 
(CAD) technologies, the usage of software tools based on a graphical 
user interface (GUI) for three-dimensional geometry construction has 
significantly increased in recent years. Using CAD software, it is possi-
2

1 https://github .com /PenRed /PenRed.
ble to create more complex and flexible 3D geometries with less effort 
and difficulty compared to create them using a set of primitive solids. 
Furthermore, CAD geometries help streamline the process of their con-

structions, especially when simulating elements of experimental setups 
that have been previously designed using this type of software. This ap-

proach avoids introducing user-induced errors in the geometry, which 
results in reducing errors in the MC simulation, saving time and ef-

fort in the geometry creation processes. This can be particularly usable 
when combining geometries with structural information from patients 
and applicators, for example.

To address these limitations of mathematical surfaces and voxelized 
geometries, some MC codes have implemented the possibility of defin-

ing geometries based on triangular meshed surfaces or irregular vol-

umetric meshes of tetrahedral volumes, allowing the straightforward 
definition of complex structures using existing 3D design codes. Both 
approaches are flexible enough to accurately represent complex struc-

tures in three dimensions. For these reasons, such modeling capabilities 
have become increasingly prevalent in fields such as medical physics, 
radiation therapy and biomedical engineering, where accurate repre-

sentation of complex anatomical structures and devices is crucial for 
precise simulations and treatment planning. Moreover, as this kind of 
geometry definition can be converted from standardized mesh formats, 
this approach streamlines the reproduction of simulations with different 
codes and research groups since the geometry can be shared easily.

Therefore, to achieve the benefits stated above, the objective of this 
work is to implement the capability to simulate on irregular and adapt-

able meshed geometries in the penRed framework. This has been done 
implementing a new geometry module named “MESH_BODY” specific 
for this kind of geometries, which is freely available and usable within 
the official penRed package.2 It can be used since penRed version 1.9.3𝑏
and above.

2. State of the art

In this section the authors aim to describe the meshed geometries 
supported by different transport codes.

In 2004, Geant4 implements the G4Tet class to allow the capabil-

ity of realize a tetrahedral meshes using a large number of individual 
tetrahedron objects: G4Tets [10]. Besides this feature, the G4Tessel-

latedSolid class allows to implement directly in Geant4 a CAD-based 
geometry as polygon-mesh. However, when a very accurate modeling 
is need or a highly complex geometries are intended to be used, a large 
number of facets are required, which results in a long computation time. 
In 2013, with the aim to address this speed limitation, a new Geant4 
solid class, DagSolid was developed [11].
2 https://github .com /PenRed /PenRed.

https://doi.org/10.1016/j.cpc.2021.108065
https://doi.org/10.1016/j.fusengdes.2010.05.030
https://github.com/PenRed/PenRed
https://github.com/PenRed/PenRed
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Fig. 1. Volumetric meshed liver model from the adult mesh-type reference 
computational phantom of the ICRP Publication 145 [16]. At left, the exter-

nal surface of the liver is shown. On the right image, the same model was cut 
to show the internal structure with volumetric elements.

The DagSolid class is based on the direct accelerated geometry for 
the Monte Carlo (DAGMC) [9]. This software package consists on a ray-

tracing acceleration using a hierarchical structure of oriented bounding 
box (OBB) tree with the aim of improving the calculation speed of in-

terference detection. The authors of this work have been integrated 
DAGMC into many Monte Carlo radiation codes, including MCNP5 [12], 
MCNP6, Geant4, FLUKA, Tripoli4, OpenMC, and Shift codes. As exam-

ple case, the integration with MCNP5 has been used to perform fusion 
neutronics analysis [9]. Later, in 2012, Los Alamos National Laboratory 
(LANL) develops an extension in MCNP version 6 to provide the capa-

bility for neutrons and photon tracking on an unstructured mesh [13]

with no need of external tools.

Moreover, several other codes offer the ability to simulate intri-

cate geometries, using methods like tetrahedral unstructured meshes 
or triangular surface meshes, to face the difficulties stated above. For 
instance, EGSnrc [1] includes the EGS_Mesh class for this specific pur-

pose.

Speaking about PENELOPE-based codes, the tool penmesh [14] was 
designed to work with geometric structures based on triangular mesh 
surfaces and relies on the PENELOPE 2006 libraries. However, as far as 
the authors know, penmesh is no longer actively supported or available 
for use with the most recent PENELOPE versions. As a result, not only 
users of penRed but also those who use PENELOPE directly can find 
value in having this capability integrated.

3. Material and methods

The problem addressed in this work is not how to implement a 
ray-tracing algorithm for mesh-based geometries, as it is a well-known 
problem in computer graphics. Instead, the goal is on efficiently im-

plementing it in the penRed environment to facilitate simulations in 
complex and organic geometries. To achieve it, this section describes 
the types of meshes that will be supported and outline a generic al-

gorithm for incorporating new geometries into the penRed framework. 
Then, the validation tests and benchmarks are detailed.

3.1. Surface versus volumetric unstructured meshes

Firstly, we must decide whether to implement transport on volumet-

ric or surface-based meshes in order to achieve the best balance for our 
simulations.

Volumetric unstructured meshes are commonly employed in finite 
element simulations, such as computational fluid dynamics problems 
[15]. In such scenarios, complex geometries are discretized into small 
volume elements (see Fig. 1), with each element storing the local mean 
state of the substance within its corresponding volume. These local 
states are then utilized to update the entire system based on a phys-

ical model, typically involving interactions with neighboring volume 
elements.

However, in radiation transport simulations, particles are individ-

ually simulated rather than being modeled as a substance filling the 
3

entire geometric system. Consequently, the discretization into smaller 
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volume elements becomes unnecessary, and the geometry can be effec-

tively represented using only the surface mesh with an empty interior 
volume. This approach is similar to the techniques employed in video 
games or animation rendering.

To determine the most suitable approach for penRed, we will ana-

lyze the advantages and disadvantages of both volumetric and surface-

based meshes. It is important to note that regular volumetric meshes, 
such as voxelized geometries, are not under consideration, as they lack 
the capability to accommodate complex and organic surfaces and are 
already integrated into the penRed package.

On one hand, unstructured volumetric meshes use larger amount of 
memory to store the geometry compared to their surface-based counter-

parts. This is because the extra discretization of the geometry in smaller 
volume elements. The number of those elements depends on the de-

sired resolution and the boundary shapes. Nevertheless, one advantage 
of volumetric meshes is the possibility to calculate magnitudes within 
the mesh element volumes themselves, especially useful for visualiza-

tion and when the bodies are heterogeneous, as each element can be 
assigned different physical properties. However, in many simulations, 
we use homogeneous media within each body, and the region to be vi-

sualized is not the entire geometry. Consequently, volumetric meshes 
introduce memory wastage in regions where the simulation does not 
tally results. If necessary, it may be more efficient to create a detailed 
volumetric mesh to tally results only in the regions of interest.

On the other hand, performance strongly depends on the geometry, 
simulation parameters, and the optimization techniques applied in each 
case. However, regardless of the type of mesh used, the fundamental 
calculation for particle transport involves determining the intersection 
point of the particle track with either the volume elements for unstruc-

tured volumetric meshes or the surfaces of objects for surface-based 
geometries. This task is commonly referred to as the ray-tracing prob-

lem. In both cases, triangles are commonly employed to define both 
volume elements and object surfaces, simplifying the performance com-

parison to the number of triangles that need to be checked for particle 
transport.

In the case of volumetric meshes, the calculation of ray-tracing de-

pends on the number of inner volume elements and can escalate rapidly, 
especially for high resolutions or organic objects with intricate sur-

faces. Alternatively, for surface-based meshes, employing techniques 
like octrees to subdivide surfaces into regions, minimizing the number 
of ray-tracing checks [14], enables us to restrict the testing of surface 
triangles to a small region close to the particle track. Moreover, even 
for complex geometries, the required memory is typically small enough 
to store the entire surface in GPU memory, allowing the simulation to 
leverage GPU acceleration for ray-tracing. However, implementing GPU 
acceleration for particle transport is beyond the scope of this work and 
may be considered in future versions.

For these reasons, in this work, we implement particle transport 
using ray-tracing on surface meshes. Specifically, we use triangular 
meshes, as this is a well-studied problem in computer graphics [17–19]. 
The algorithm used to calculate the ray-triangle intersection was pre-

sented by Möller [17], providing a good balance between memory usage 
and speed.

3.2. Algorithm

In this section, the algorithm implemented in penRed to model 
the particle tracking through geometries as a ray-tracing problem with 
surface-based elements is described.

In this algorithm, some restrictions will be imposed on the geom-

etry definition in order to speed up the calculation without affecting 
the geometry construction flexibility. First, objects cannot intersect, un-

derstanding it as their surfaces crossing, but overlapping surfaces is 
allowed. This is not a significant limitation since the surface mesh pro-
vides enough flexibility to prevent object intersections. This approach 
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Fig. 2. Object genealogical tree.

Fig. 3. Overlapping objects example. Geometry representation (left) and the 
corresponding genealogical tree (right). The geometry arrows represent parti-

cles crossing between objects.

allows us to structure the geometry objects with a genealogical tree as it 
is shown in Fig. 2, where each body completely contains its daughters.

Hence, there is no necessity to calculate the ray-tracing for all exist-

ing body surfaces to perform particle movement within the geometry, 
resulting in a reduction of the overall computational cost. In the initial 
stage, a particle situated within a specific body only needs to check its 
boundaries and the immediate offspring boundaries. Therefore, during 
this initial check, particles exclusively consider the bodies connected 
on the genealogical tree with the one containing them. However, upon 
crossing a boundary, it is essential to test if it overlaps with another 
surface. In such instances, the particle can skip intermediate bodies in 
the genealogical tree. The left image of Fig. 3 provides an example ge-

ometry which illustrates various overlapping cases, where each arrow 
denotes the movement of a particle within the geometry system. The 
starting point of the arrow indicates the initial body of the particle, 
while the endpoint indicates the final body after the particle movement. 
In addition, the right image of the Fig. 3 represents the corresponding 
genealogical tree. The three represented cases are described following,

• The top arrow is going from Body 1 to Body 3. In this case, the 
particle skip the intermediate World body in the genealogical tree 
path, because bodies 1 and 3 share both, parent (World) and the 
crossed boundary by the particle.

• The bottom-left arrow is going directly from World to Body 2, al-

though Body 2 is not a direct World daughter, skipping Body 1 in 
the genealogical tree path.

• Analogous to previous case, bottom-right arrow goes directly from 
Body 2 to World, because the common boundary between Body 1
and Body 2 is crossed by the particle.

To determine if two or more bodies can share their boundaries, a 
collision box is constructed for each one, including all the body mesh 
4

triangles. Furthermore, this collision box is also used to check if a parti-
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cle can cross any body triangle, avoiding calculations for distant bodies 
to speed up the simulation.

As illustrated in the previous example, the handling of the World

body differs from others due to its lack of a parent. Consequently, if a 
particle crosses the World surface outward, it escapes from the geometry 
system. Furthermore, the World is treated as a surrounding object and 
is therefore not permitted to share boundaries with other bodies.

All these restrictions have been considered when defining the algo-

rithm to move the particle within the geometry. Following the nomen-

clature used in PENELOPE and penRed, the geometry class method 
responsible for this process is the step function. The corresponding pseu-

docode is presented in Code 1, in the Appendix A, and described in this 
section.

In addition, generic assumptions required by any penRed geometry 
must be satisfied. These are outlined below:

• The geometry must consist of bodies filled with a single material. 
In this case, each body is confined by a mesh surface.

• Material index 0 is reserved for void regions.

• Optionally, bodies can be assigned a detector identifier.

• An interface is defined as a change in material or detector be-

tween bodies. Consequently, two bodies in contact with the same 
material do not constitute an interface unless they belong to differ-

ent detectors.

• A particle escapes from the geometry system if it cannot reach a 
non-void region.

• When reaching an interface, the particle must be stopped unless the 
new material after crossing the interface is void. In such cases, the 
particle must be moved through the void until a non-void region is 
reached, or the particle escapes from the geometry.

For brevity, some functions of the code are not shown in this docu-

ment. However, the complete code can be found in the penRed repos-

itory.3 Note as well that this algorithm can be used to implement any 
geometry based on a single or collection of objects, as it is indepen-

dent of their structure as long as it fulfills the penRed restrictions for 
geometry modules. These ones are detailed in the implementation doc-

umentation located in the penRed repository.4

The particle state includes information such as the position, direc-

tion, body, and material identifiers, among other quantities irrelevant 
to tracking. This information is necessary for the step routine, which 
needs to know the particle starting body and construct the ray based 
on the particle position and direction. Additionally, the step routine re-

quires the maximum distance to travel in the current material (DS) and 
information about the geometry bodies (bodies), including the world.

As outputs, the step routine is expected to provide the updated par-

ticle state, including changes in position, material, and body index if a 
boundary has been crossed. It also calculates the distance traveled in-

side the original material (DSEF), the total distance traveled (DSTOT), 
considering the possibility of crossing void regions, and the number of 
bodies crossed (NCROSS).

Initially, the algorithm checks if the particle is inside the geometry 
system (Line 4). If not, the particle body index is expected to exceed 
the total number of bodies contained in the geometry. If it is outside, 
the algorithm then verifies if the particle is directed towards the world

body. In that case (Lines 5 − 15), if the world has a non-void material, 
the particle movement is halted due to the material change (Lines 12 −
14). Otherwise, particle tracking continues, as the void region must be 
traversed. If the particle does not reach the geometry, it escapes, and 
the tracking terminates (Lines 16 − 23).

Next, we need to determine if the particle is within a void region or 
not, setting the isInVoid flag accordingly (Lines 26 − 29). Although the 

3 https://github .com /PenRed /PenRed.

4 doc/PenRed_implementation_guide.pdf.

https://github.com/PenRed/PenRed
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Fig. 4. ICRP145 female phantom mesh edited with Blender.
particle cannot be stopped in a void region once its simulation starts, it 
might be sampled in those regions before being moved to start the sim-

ulation. Subsequently, a loop initiates (Line 32), iterating over bodies as 
the particle moves through the geometry. The maximum distance to be 
traveled in each iteration depends on the body material. If it is a void 
region, no travel limit is applied; otherwise, the value of DS restricts 
the maximum distance to travel within the material (Lines 35 − 38). 
The maximum travel distance is constrained as it finds closer bound-

aries, avoiding computing distant bodies (Lines 40 −50). Depending on 
the closest boundary, three possible cases must be considered, which 
determine the value of travelType:

• 0: The particle cannot reach any boundary before the maximum 
travel distance. Therefore, the particle is moved, and the loop con-

cludes (Lines 52 − 55).

• 1: The particle crosses the current body boundary (Lines 56 −70). If 
the crossed body is the world, the particle escapes from the geom-

etry system, and the function terminates. Otherwise, overlapping 
boundaries with outer bodies are examined to determine the final 
body where the particle crosses.

• 2: The particle crosses a daughter body boundary (Lines 71 − 73). 
Overlapping boundaries with inner bodies are examined to deter-

mine the final crossed body.

Once the closest distance and the next body to cross are determined, 
the particle is moved to the corresponding point (Line 84) and the vari-

ables nextBody and nextMat are assigned with the body index where the 
particle has moved and its corresponding material respectively (Lines 
86 − 102). If nextMat is 0, it indicates that the particle is moving into a 
void region. Consequently, the count of bodies crossed (NCROSS) must 
be incremented if the particle is not already in a void region in order 
to prevent double counting (Lines 86 − 90). If nextMat is not 0 and the 
particle is situated in a void region, it must be halted, and the loop con-

cludes (Lines 91 −93). If it is not in a void region and the initial particle 
material differs from nextMat, the particle must also be halted due to 
the material interface (Lines 99 − 102). However, if both materials are 
identical, the particle will continue only if the detector number of the 
bodies match (Lines 95 − 98). Assigning bodies as “detectors” can be 
done during the simulation configuration to force an interface between 
bodies even if them share the same material. This feature is used in 
5

some tallies and, by default, a detector index 0 is assigned to all bodies. 
Once the loop is completed, the output values are updated, and the step
function concludes.

3.3. Geometry construction

To construct geometries for simulation with penRed, the mesh ge-

ometry files must follow the format described in the documentation. 
However, users do not need to create these files manually nor con-

vert them from other format themselves. Instead, we have developed 
a Python plugin for Blender5 that facilitates the export of Blender-

constructed geometries into the penRed format.

For instance, Fig. 4 depicts the Blender environment. In this case, the 
female phantom recently published by the International Commission on 
Radiological Protection (ICRP) in the ICRP145 [16] is imported into 
Blender, enabling the export of its geometry into the penRed format. 
This phantom has been chosen in this work because its high level of 
detail concerning the radiosensitive organs and tissues of the human 
body, and will be described in section 3.4.

In addition to harnessing Blender 3D environment and its versatile 
tools for constructing geometries, we can also leverage Blender ability 
to import a wide range of 3D mesh formats, including ABC, USD, OBJ, 
FBX, PLY, STL, and more. These imported meshes can then be exported 
to be used within penRed. The plugin itself, along with its documenta-

tion, is included in the penRed package for user convenience.

3.4. Validation tests and benchmark

To validate our implementation, we first compared the simulations 
available in the penRed examples. These examples are adaptations of 
the PENELOPE [3] package and have been carried out using both 
quadric and triangular mesh surface geometries. For the sake of brevity, 
we will discuss only three examples in this work:

• The 1-disc example, with and without variance reduction tech-

niques.

The geometry of this example corresponds to a homogeneous disc 
phantom of Cu, with radius of 0.01 cm at plane 𝑋𝑌 and height of 
0.005 cm at 𝑧 axis with the base at 𝑧 = 0 cm. The source is a point 
source of electrons, monoenergetic with energy of 40 keV located 
at (𝑥, 𝑦, 𝑧) = (0, 0, −0.0001) cm.
5 https://www .blender .org/.

https://www.blender.org/
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Fig. 5. X-Ray tube example geometry constructed with Blender. The components shown, arranged from top to bottom, are as follows: wolframium anode (blue), 
aluminium filter (gray) and silicon detector (yellow). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
The quantities tallied in both versions of this example, are the 
cylindrical and spatial dose distribution, the energetic spectrum 
of emerging particles distribution, the energetic spectrum of par-

ticle fluence, the energy spectrum of particles impacting the disc, 
and the material energy deposition information. Notice that energy 
spectrums are normalized to the energy bin width.

The second version of this example, which incorporates variance 
reduction techniques, uses the same geometry as the first version 
and the same source configuration. In this scenario, interaction 
forcing, x-ray and bremsstrahlung splitting are activated. The con-

figuration file specifies which body undergoes the variance reduc-

tion techniques (the disc phantom) and the type of particle and 
interaction to be forced-in, electrons in this case. In this version of 
the example, the number of histories of the simulation is reduced 
due to the applied splitting.

• The 3-detector-1 example features a geometry comprising a NaI 
cylindrical detector with a diameter and height of 5.08 cm, ac-

companied by a 1.27 cm Fe backing. Regarding the source config-

uration, this example is set up with a point-like Co-60 gamma-ray 
source emitting characteristic photons with equal probabilities of 
emission and energies of 1.17 and 1.33 MeV. The photons are di-

rected to impinge on the NaI crystal from above. In this case, no 
variance reduction techniques are applied, and the tallied quanti-

ties include the total energy deposited in the detector material, the 
energy deposition spectrum registered by the NaI detector, as well 
as the energetic spectrum of emerging particles.

• The 4-x-ray-tube example represents a simple x-ray generator. Its 
geometry includes a wolframium anode, an aluminium filter and 
a silicon detector, as it is shown in Fig. 5. In this example, the 
source is configured as a monoenergetic electron beam of 150 keV 
directed to the anode to produce bremsstrahlung photons. Since 
the efficiency of the photon production with this configuration is 
very low, variance reduction techniques are applied to increase the 
simulation efficiency forcing the photon production and splitting 
them. The simulation is configured to measure the energetic spec-

trum of particle fluence crossing the filter, the energy spectrums of 
particles impacting both, the filter and the detector, and the time 
of flight spectrum of impacting particles at the detector. Addition-

ally, the energetic spectrum of emerging particles distribution and 
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the energy deposition in all bodies and materials are tallied.
Table 1

Summarized simulation parameters of the presented examples.

Histories Source Cutoffs (keV)

Number Particle E (keV) 𝛾 𝑒− 𝑒+

1-disc-noVR 1.4 ⋅ 108 𝑒− 40 1 1 1
1-disc-VR 1.1 ⋅ 107 𝑒− 40 1 1 1
3-detector 1.2 ⋅ 108 𝛾 (1.17,1.33) ⋅ 103 5 50 50
4-x-ray-tube 4.1 ⋅ 106 𝑒− 150 10 10 10

Some of the simulation parameters used for each example are sum-

marized in the Table 1.

The process of adapting the examples, initially defined with the 
quadric geometry package, to be simulated using the surface mesh ge-

ometry package only affects the geometry definition. PenRed, being 
designed as a highly modular framework with automatic compatibil-

ity assurance among modules, allows seamless utilization of all tallies, 
variance reduction techniques, and other components for mesh simu-

lations without any additional effort. Consequently, the only necessary 
modifications in the simulation configuration file are those related to 
the geometry configuration.

In addition, the geometry needs to be defined as a compilation of 
mesh surfaces following the penRed format. This process is stream-

lined through the use of the previously described Blender plugin. For 
instance, Fig. 5 illustrates the construction of the example 4-x-ray-tube

in the Blender environment. Furthermore, the plugin can be used to 
convert standard mesh file formats to the penRed one, providing the 
flexibility for the user to create the geometry with its chosen CAD soft-

ware.

For more detailed information about each simulation, please refer 
to the penRed documentation. Furthermore, all the necessary files to 
run these simulations can be found in the penRed repository. Addition-

ally, we adapted the ICRP145 phantom [16] with Blender to be simu-

lated with penRed and compare the results with those provided using 
MCNP6. Specifically, we selected the simulation corresponding to the 
female phantom with the entire liver serving as a gamma source. The 
adult Mesh-type Reference Computational Phantoms (MRCPs) provided 
by the ICRP, are considered as the most advanced type of computa-
tional phantoms which can be implemented directly into MC codes. The 
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female MRCP height and weight is in accordance with the reference val-

ues, 163 cm and 60 kg. This one is composed of 2.6 million triangular 
facets including all the radio sensitive organs and tissues relevant to 
dose calculations due to radiation exposure.

In terms of benchmarks, we repeated the phantom simulation while 
applying different optimization parameters to measure the performance 
improvements. All simulations, tests and benchmarks, were conducted 
using a single node equipped with an Intel(R) Core(TM) i9-10900K 
CPU running at 3.70 GHz and with 64 GB of RAM. The used optimiza-

tions are focused on minimize the amount of ray-triangle intersections 
checks. These ones are listed below:

• Body tree: As discussed before, the bodies conforming the geom-

etry follow a kinship hierarchy limiting the number of bodies that 
can be crossed by the particle.

• Octrees: Instead of testing all surface triangles belonging to a 
specific body individually, they are grouped into spatial regions 
defined by bounding boxes. Consequently, before initiating any 
ray-tracing check with a triangle in a given region, the algorithm 
ensures that the particle track intersects the corresponding bound-

ary box. If not, it deduces that the track cannot cross any triangles 
within the tested region, leading to a significant reduction in the 
required computational time.

Furthermore, the regions containing the surface triangles can be 
further grouped into higher-level regions, creating a hierarchy of 
regions. In penRed, we have established three levels of regions. 
The topmost level consists of a single bounding box encompassing 
the entire object surface. The second level regions comprises a set 
of sub-regions, which, in turn, contain the triangles to be tested.

The subdivision of all geometry bodies into these three-level re-

gions, or octrees, is automatically handled by penRed. However, 
users have the flexibility to adjust the sizes of different region lev-

els, indicating the desired number of sub-elements contained in 
each one, to speed-up the simulation.

• Triangle collision spheres: Add a collision sphere to each triangle 
surrounding it. Before to apply the triangle-ray intersection algo-

rithm, the distance between the track and the triangle center is 
calculated. If it is greater than the sphere radius the triangle is ig-

nored.

As result, the whole geometry is subdivided in many levels, depend-

ing on the body tree structure, and three extra levels using the octrees 
in each body.

4. Results

4.1. Validation

The initial validation tests, which compared equivalent simulations 
using quadric and mesh-based geometries, demonstrate a high level of 
agreement between both geometry types. In Fig. 6, we can observe 
the results for the 1-disc example. The top graph displays the energy 
spectrum of the emerging electrons in the 𝑍 positive hemisphere, corre-

sponding to the 𝐴𝑁𝐺𝑈𝐿𝐴𝑅_𝐷𝐸𝑇 tally, for the case with no variance 
reduction, whereas the bottom graph represents the energetic spectrum 
fluence, integrated across the entire disc volume, for the incoming par-

ticles, for the variance reduction case.

Concerning the detector and x-ray examples, Fig. 7 presents par-

tial results. The top image illustrates the energy deposition spectrum 
recorded by the NaI detector, while the second image depicts the energy 
spectrum of the photons impacting the detector in the x-ray example.

The presented results clearly demonstrate a robust agreement be-

tween both geometry types. Furthermore, this behavior holds true for 
the results of all examples, including the omitted in this document for 
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brevity.
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Fig. 6. Results corresponding to the example 1-disc. Energy spectrum of elec-

trons escaping the geometry system upwards in 𝑍 direction with no variance 
reduction (top) and energy spectrum of fluence registered integrated across the 
entire disc volume, for the variance reduction case (bottom). All results have 
been calculated with both, quadric (Reference) and triangular mesh (Simula-

tion) geometry types and are normalized to energy bin width.

To thoroughly validate this agreement, we conducted a detailed ex-

amination of the deviations between simulations, affirming the absence 
of significant systematic differences between both types of geometries. 
To reach this conclusion, we compared all results, bin by bin, between 
both simulations types by calculating the absolute bin difference (𝑑𝑖) as 
defined in Eq. (1),

𝑑𝑖 = 𝑣𝑎𝑙𝑢𝑒
𝑞𝑢𝑎𝑑

𝑖
− 𝑣𝑎𝑙𝑢𝑒𝑚𝑒𝑠ℎ

𝑖
(1)

where 𝑖 represents the bin number, 𝑣𝑎𝑙𝑢𝑒𝑞𝑢𝑎𝑑
𝑖

denotes the value ob-

tained for the 𝑖-th bin from the simulation with the quadric geometry, 
and 𝑣𝑎𝑙𝑢𝑒𝑚𝑒𝑠ℎ

𝑖
is the corresponding value from the mesh geometry sim-

ulation. Additionally, we calculated the standard deviation (𝜎𝑖) associ-

ated with 𝑑𝑖 using the Eq. (2),

𝜎𝑖 =
√

(𝜎𝑞𝑢𝑎𝑑
𝑖

)2 + (𝜎𝑚𝑒𝑠ℎ
𝑖

)2 (2)

where 𝜎𝑞𝑢𝑎𝑑
𝑖

and 𝜎𝑚𝑒𝑠ℎ
𝑖

are the standard deviations of bin 𝑖 obtained 
from the quadric and mesh simulations, respectively. Finally, the devi-

ation 𝑑𝑖 is converted to standard deviation units (𝑞𝑖) as,

𝑞𝑖 =
𝑑𝑖

𝜎𝑖
(3)

An illustrative example is provided in Fig. 8, where the value 𝑞𝑖 has 
been represented for the energy spectrum of x-ray impacting photon 
(Fig. 7, bottom). As depicted, the discrepancies between both simu-

lations consistently remain below the 3𝜎 and are evenly distributed 
around zero. This indicates that the possible systematic uncertainties 

introduced by differences between geometry and tracking models are 
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Fig. 7. Results for the NaI detector and the x-ray tube examples. The top image 
corresponds to the energy deposition spectrum registered by the NaI detector, 
while the bottom one shows the energy spectrum of the photons impacting the 
silicon detector of the x-ray tube. All results have been calculated with both, 
quadric (Reference) and triangular mesh (Simulation) geometry types and are 
normalized to energy bin width.

Fig. 8. Differences between quadric and mesh simulations for the energy spec-

trum of impacted particles, measurement at the silicon detector, in the x-ray 
tube example. Differences are shown bin by bin in standard deviation units.

not significant when compared to the statistical uncertainties inherent 
in the Monte Carlo simulation.

To conclude the validation process, we performed the phantom sim-

ulation employing identical simulation parameters to those disclosed by 
the ICRP, facilitating a direct comparison. The details of these param-

eters are outlined below. This specific example involves internal body 
irradiation, where the entire liver volume is designated as a monoener-

getic gamma isotropic source with an emission energy of 1 MeV. The 
tracking cutoff for each particle type was established at 1 keV, mean-
8

ing that any particle with energy below this value is considered to be 
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locally absorbed. The simulation was executed with a total of 1 ⋅ 107
histories. The MCNP6 results provided by the ICRP, measure the ab-

sorbed dose in each material. Therefore, for the purpose of comparison, 
the equivalent magnitude was tallied through a penRed simulation.

The total penRed simulation time, including the initialization and 
geometry pre-processing step, in this conditions was less than 8 hours 
with a total memory usage of 1.75 GB using 20 parallel threads. Notice 
that this memory usage does not correspond only to the memory re-

quired to store the geometry, but includes also the materials databases, 
tallies, source information and all the other data used by the program.

To avoid values with substantial fluctuations resulting from low sta-

tistical counts, we have focused only on bodies with a energy deposition 
greater than the 0.5% of the energy deposited in the source material 
(1.51 ⋅ 105 eV per history). Therefore, only materials with an energy 
deposition exceeding 754.68 eV per history are considered. The sum-

marized results are presented in Table 2.

It is important to note that discrepancies may arise due many fac-

tors. First, both codes use different physics implementations and cross 
section databases, particularly concerning electron transport [20], es-

pecially for low-energy electrons [21] as well as the selection of multi-

scatter parameters [22]. In addition, it should be acknowledged that 
the results provided by the ICRP145 phantom package were based on 
a unstructured volumetric mesh with tetrahedrals as volume elements. 
Therefore, mesh preprocessing for penRed and MCNP6 simulations dif-

fered. This discrepancy could introduce also type B uncertainties into 
the simulation, specially on complex and thin objects. Nevertheless, as 
shown in the table, the highest disparity observed in the measured en-

ergy deposition is only 3.2%, which is a more than reasonable value 
taking into account these considerations.

4.2. Optimization

To test the impact of the previously discussed optimization tech-

niques, several tests have been performed using the same hardware as 
the validation simulations. For the shake of brevity, only the tests per-

formed for the MRCP female phantom are discussed following. Since 
we are not focusing on results accuracy, the particles cuttoffs have been 
relaxed to increase the number of simulated histories per second and 
achieve a stable speed value with fewer simulation time. These cuttoffs 
have been fixed to a range of 0.5 cm for all particle types. A compari-

son of simulation speed, in histories per second, for different number of 
octree split size is shown in Table 3. On one hand, for each cell in the 
table, the first column indicates the number of objective three level re-

gions in each second level region in the octree hierarchy. On the other 
hand, the first row assigns the objective number of triangles in each 
three level region in the octree. Although the program tries to restrict 
the number of inner elements to the specified sizes, it prioritizes to join 
regions with a high overlaps allowing to extend the number of inner 
elements at most twice the specified size. Therefore, the number of ele-

ments in each region can differ significantly. Moreover, as the phantom 
has many bodies, the region size values have been set globally for all 
geometry bodies. As these parameters can be set individually for each 
body, it is possible to tune up the configuration to achieve a better per-

formance.

As we can see in Table 3, the simulation speed strongly depends on 
the chosen values of number of elements in each region level. Therefore, 
it is worth to perform short simulations with different parameter values 
to maximize the performance, specially on long simulations. Finally, 
to evaluate the impact of employing collision spheres for individual 
triangles, we conducted the same simulation using the optimal octree 
parameters, specifically, 20 inner regions within each outer region and 5
triangles within each inner region, but with the triangle collision sphere 
check disabled. The resulting simulation speed was 30486 histories per 
second. Consequently, utilizing this technique is advantageous, as it re-
sults in a 43% increase in simulation speed in this case.
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Table 2

Body energy deposition comparison between MCNP6 and penRed.

Body MCNP6 (eV/g) penRed (eV/g) Difference (%)

4300 Ribs cortical 2387.4 ± 9.0 2387.4 ± 9.0 0.00
4400 Ribs spongiosa 4044.2 ± 13.4 4052.4 ± 13.5 0.20
4900 Thoracic spine cortical 2848.3 ± 10.8 2887.7 ± 11.0 1.40
5000 Thoracic spine spongiosa 4440.7 ± 14.7 4411.7 ± 14.5 −0.65
5100 Lumbar spine cortical 1981.7 ± 9.0 2044.9 ± 9.0 3.20
5200 Lumbar spine spongiosa 3454.5 ± 12.8 3388.1 ± 12.5 −1.90
5600 Sternum spongiosa 774.6 ± 6.0 770.8 ± 6.0 −0.49
5700 Cartilage costal 1261.8 ± 7.6 1257.4 ± 7.5 −0.36
5800 Cartilage discs 1096.0 ± 7.0 1073.9 ± 7.0 −2.00
6200 Breast left adipose tissue 1000.4 ± 7.0 994.4 ± 7.0 −0.60
6400 Breast right adipose tissue 1787.6 ± 9.3 1786.5 ± 9.5 −0.06
6500 Breast right glandular tissue 1353.4 ± 8.3 1355.4 ± 8.5 0.15
7100 Gall bladder contents 2916.4 ± 12.2 2909.0 ± 12.5 −0.25
7200-7203 Stomach wall surface 3774.24 ± 13.5 3768.8 ± 13.5 −0.14
7300 Stomach contents 5040.9 ± 16.1 5032.9 ± 16.0 −0.16
7403 Small intestine wall surface 3980.0 ± 13.5 4002.3 ± 13.5 0.50
7602 Ascending colon wall surface 796.6 ± 6.0 785.9 ± 6.0 −1.40
8700 Heart wall 4617.6 ± 14.8 4601.9 ± 15.0 −0.34
8800 Blood in heart chamber 6291.5 ± 18.2 6257.2 ± 18.0 −0.54
8900 Kidney left cortex 1652.4 ± 8.8 1655.4 ± 9.0 0.18
9200 Kidney right cortex 3883.1 ± 14.0 3879.8 ± 14.0 −0.08
9300 Kidney right medulla 986.5 ± 6.9 979.8 ± 7.0 −0.68
9500 Liver 150940 ± 90 150984.0 ± 85 0.03
9700 Lung(AI) left 2696.0 ± 11.0 2695.9 ± 11.0 −0.014
9900 Lung(AI) right 9660 ± 22 9724.4 ± 22.0 0.66
11300 Pancreas 4535.7 ± 15.4 4530.3 ± 15.5 −0.12
12700 Spleen 1874.4 ± 9.6 1867.9 ± 9.5 −0.34

Table 3

Simulation speed in histories per second for different values of octree parameters. The 
top row indicate the objective number of triangles in each three level region. The left 
column specifies the objective number of three level regions in each second level one.

2nd\3rd 1000 200 100 50 20 10 5 2

10000 1177.0 8058.8 15375 15669 12036 10083 9254.8 7739.5
100 1165.2 8100.4 18535 25809 29876 29025 27969 26963
50 1174.9 8230.9 19401 28686 35401 35975 35214 34449
20 1188.4 8076.7 19739 31218 41002 43208 43580 42298
10 1168.9 8081.2 20054 31167 40459 41416 41408 39718
5. Conclusions and future work

In this work, we have expanded the abilities of penRed to simu-

late on triangular mesh-based shapes. This was a missing feature not 
only in penRed but also in other PENELOPE physics-based software. 
This enhancement now enables penRed users to simulate and create or-

ganic shapes and complex designs using specialized tools like Blender. 
Thanks to the Blender ability to import different mesh formats, users 
have the flexibility to choose their preferred design environment. Addi-

tionally, the complete description of the internal penRed mesh format 
is provided in the documentation, making it straightforward to create a 
custom format converter if needed.

Our results demonstrate excellent agreement between simulations 
based on quadric and mesh-based geometries. Furthermore, we con-

ducted simulations using the ICRP145 phantom, showing good agree-

ment between the results provided in the phantom package and the 
penRed simulations, confirming the accuracy of our code. Moreover, 
this simulation case only requires 1.75 GB of memory to store not only 
the phantom data, but also the material, tallies and other required in-

formation.

We have also provided an algorithm description that allows users to 
implement various types of geometries, empowering them to customize 
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or create their own geometric modules.
Additionally, our benchmark tests indicate that better performance 
is achieved with relatively small octree sizes. However, the optimal 
size might vary depending on the specific geometry being simulated. 
Therefore, we recommend conducting an initial benchmark to fine-tune 
settings for long-duration simulations.

Looking ahead, our future plans involve test other ray-triangle inter-

section algorithms and implementing the transport algorithm on GPUs 
to boost simulation speed for these types of geometries.
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Appendix A. Step code

Algorithm 1 Step algorithm.

Input: State, DS, bodies, world

Output: State, DSEF, DSTOT, NCROSS

1: 𝐷𝑆𝐸𝐹 ← 0
2: 𝐷𝑆𝑇𝑂𝑇 ← 0
3: 𝑁𝐶𝑅𝑂𝑆𝑆 ← 0
4: if 𝑆𝑡𝑎𝑡𝑒.𝐼𝐵𝑂𝐷𝑌 ≥ 𝑏𝑜𝑑𝑖𝑒𝑠.𝑠𝑖𝑧𝑒 then ⊳ Means the particle is outside the 

geometry

5: if 𝑆𝑡𝑎𝑡𝑒 can cross 𝑤𝑜𝑟𝑙𝑑 then

6: 𝑑𝑠2𝐼𝑛 ← 𝑆𝑡𝑎𝑡𝑒.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑤𝑜𝑟𝑙𝑑)
7: 𝑆𝑡𝑎𝑡𝑒.𝐼𝐵𝑂𝐷𝑌 ←𝑤𝑜𝑟𝑙𝑑.𝑖𝑛𝑑𝑒𝑥

8: 𝑆𝑡𝑎𝑡𝑒.𝑀𝐴𝑇 ←𝑤𝑜𝑟𝑙𝑑.𝑀𝐴𝑇

9: 𝐷𝑆𝑇𝑂𝑇 ← 𝑑𝑠2𝐼𝑛
10: 𝑁𝐶𝑅𝑂𝑆𝑆 ← 1
11: 𝑆𝑡𝑎𝑡𝑒.𝑚𝑜𝑣𝑒(𝑑𝑠2𝐼𝑛)
12: if 𝑤𝑜𝑟𝑙𝑑.𝑀𝐴𝑇 is not 0 then ⊳ The world is not a void region

13: 𝐷𝑆𝐸𝐹 ← 𝑑𝑠2𝐼𝑛
14: end function

15: end if

16: else ⊳ The particles does not reach the geometry

17: 𝑆𝑡𝑎𝑡𝑒.𝐼𝐵𝑂𝐷𝑌 ← 𝑏𝑜𝑑𝑖𝑒𝑠.𝑠𝑖𝑧𝑒

18: 𝑆𝑡𝑎𝑡𝑒.𝑀𝐴𝑇 ← 0
19: 𝐷𝑆𝐸𝐹 ←∞
20: 𝐷𝑆𝑇𝑂𝑇 ←∞
21: 𝑆𝑡𝑎𝑡𝑒.𝑚𝑜𝑣𝑒(∞)
22: end function

23: end if

24: end if

25: ⊳ At this point, the particle is inside the geometry system

26: 𝑖𝑠𝐼𝑛𝑉 𝑜𝑖𝑑← 𝑓𝑎𝑙𝑠𝑒 ⊳ Flag if it is in a void region

27: if 𝑆𝑡𝑎𝑡𝑒.𝑀𝐴𝑇 is 0 then

28: 𝑖𝑠𝐼𝑛𝑉 𝑜𝑖𝑑← 𝑡𝑟𝑢𝑒

29: end if

30: 𝑛𝑒𝑥𝑡𝑀𝑎𝑡 ← 𝑆𝑡𝑎𝑡𝑒.𝑀𝐴𝑇

31: 𝑛𝑒𝑥𝑡𝐵𝑜𝑑𝑦 ← 𝑆𝑡𝑎𝑡𝑒.𝐼𝐵𝑂𝐷𝑌

32: while 𝑡𝑟𝑢𝑒 do

33: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑜𝑑𝑦 ← 𝑛𝑒𝑥𝑡𝐵𝑜𝑑𝑦

34: 𝑏𝑜𝑑𝑦 ← 𝑏𝑜𝑑𝑖𝑒𝑠[𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑜𝑑𝑦]
35: 𝑡𝑟𝑎𝑣𝑒𝑙←𝐷𝑆 ⊳ Set the maximum distance to travel in this iteration

36: if 𝑛𝑒𝑥𝑡𝑀𝑎𝑡 is 0 then

37: 𝑡𝑟𝑎𝑣𝑒𝑙←∞
38: end if

39: 𝑡𝑟𝑎𝑣𝑒𝑙𝑇 𝑦𝑝𝑒 ← 0 ⊳ Flag travel inside the actual body

40: if 𝑆𝑡𝑎𝑡𝑒 can cross 𝑏𝑜𝑑𝑦 before 𝑡𝑟𝑎𝑣𝑒𝑙 then

41: 𝑡𝑟𝑎𝑣𝑒𝑙𝑇 𝑦𝑝𝑒 ← 1 ⊳ Flag travel crossing body boundary

42: 𝑡𝑟𝑎𝑣𝑒𝑙← 𝑆𝑡𝑎𝑡𝑒.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑏𝑜𝑑𝑦) ⊳ Update maximum travel distance

43: 𝑛𝑒𝑥𝑡𝐵𝑜𝑑𝑦 ← 𝑏𝑜𝑑𝑦.𝑝𝑎𝑟𝑒𝑛𝑡
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44: end if
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45: for each 𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟 ∈ 𝑏𝑜𝑑𝑦.𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟𝑠 do

46: if 𝑆𝑡𝑎𝑡𝑒 can cross 𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟 before 𝑡𝑟𝑎𝑣𝑒𝑙 then

47: 𝑡𝑟𝑎𝑣𝑒𝑙𝑇 𝑦𝑝𝑒 ← 2 ⊳ Flag crossing daughter boundary

48: 𝑡𝑟𝑎𝑣𝑒𝑙← 𝑆𝑡𝑎𝑡𝑒.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟)
49: 𝑛𝑒𝑥𝑡𝐵𝑜𝑑𝑦 ← 𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟.𝑖𝑛𝑑𝑒𝑥

50: end if

51: end for

52: if 𝑡𝑟𝑎𝑣𝑒𝑙𝑇 𝑦𝑝𝑒 is 0 then ⊳ Particle remains in actual body

53: 𝐷𝑆𝐸𝐹 ←𝐷𝑆𝐸𝐹 + 𝑡𝑟𝑎𝑣𝑒𝑙
54: 𝑆𝑡𝑎𝑡𝑒.𝑚𝑜𝑣𝑒(𝑡𝑟𝑎𝑣𝑒𝑙)
55: break ⊳ Stop loop

56: else if 𝑡𝑟𝑎𝑣𝑒𝑙𝑇 𝑦𝑝𝑒 is 1 then ⊳ Crosses body boundary

57: if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑜𝑑𝑦 is 𝑤𝑜𝑟𝑙𝑑.𝑖𝑛𝑑𝑒𝑥 then ⊳ Escapes from 
geometry

58: 𝑆𝑡𝑎𝑡𝑒.𝐼𝐵𝑂𝐷𝑌 ← 𝑏𝑜𝑑𝑖𝑒𝑠.𝑠𝑖𝑧𝑒

59: if 𝑆𝑡𝑎𝑡𝑒.𝑀𝐴𝑇 is 0 then

60: 𝐷𝑆𝐸𝐹 ←∞
61: else if 𝑛𝑒𝑥𝑡𝑀𝐴𝑇 is not 0 then

62: 𝐷𝑆𝐸𝐹 ←𝐷𝑆𝐸𝐹 + 𝑡𝑟𝑎𝑣𝑒𝑙
63: end if

64: 𝑆𝑡𝑎𝑡𝑒.𝑀𝐴𝑇 ← 0
65: 𝐷𝑆𝑇𝑂𝑇 ←∞
66: 𝑁𝐶𝑅𝑂𝑆𝑆 ←𝑁𝐶𝑅𝑂𝑆𝑆 + 1
67: 𝑆𝑡𝑎𝑡𝑒.𝑚𝑜𝑣𝑒(∞)
68: end function

69: end if

70: solveOverlapsUp(travel,State,currentBody,nextBody)

71: else

72: solveOverlapsDown(travel,State,nextBody,nextBody)

73: end if

74: if 𝑛𝑒𝑥𝑡𝑀𝑎𝑡 is 0 then

75: if 𝑆𝑡𝑎𝑡𝑒.𝑀𝐴𝑇 is 0 then

76: 𝐷𝑆𝐸𝐹 ←𝐷𝑆𝐸𝐹 + 𝑡𝑟𝑎𝑣𝑒𝑙
77: else

78: 𝐷𝑆𝑇𝑂𝑇 ←𝐷𝑆𝑇𝑂𝑇 + 𝑡𝑟𝑎𝑣𝑒𝑙
79: end if

80: else

81: 𝐷𝑆𝐸𝐹 ←𝐷𝑆𝐸𝐹 + 𝑡𝑟𝑎𝑣𝑒𝑙
82: 𝐷𝑆 ←𝐷𝑆 − 𝑡𝑟𝑎𝑣𝑒𝑙
83: end if

84: State.move(travel)

85: 𝑛𝑒𝑥𝑡𝑀𝑎𝑡 ← 𝑏𝑜𝑑𝑖𝑒𝑠[𝑛𝑒𝑥𝑡𝐵𝑜𝑑𝑦].𝑀𝐴𝑇

86: if 𝑛𝑒𝑥𝑡𝑀𝑎𝑡 is 0 then

87: if not 𝑖𝑛𝑉 𝑜𝑖𝑑 then ⊳ Count void region cross only once

88: 𝑁𝐶𝑅𝑂𝑆𝑆 ←𝑁𝐶𝑅𝑂𝑆𝑆 + 1
89: 𝑖𝑛𝑉 𝑜𝑖𝑑← 𝑡𝑟𝑢𝑒

90: end if

91: else if 𝑖𝑛𝑉 𝑜𝑖𝑑 then ⊳ Void to material cross. Stop it.
92: 𝑁𝐶𝑅𝑂𝑆𝑆 ←𝑁𝐶𝑅𝑂𝑆𝑆 + 1
93: break

94: else if 𝑛𝑒𝑥𝑡𝑀𝑎𝑡 is 𝑆𝑡𝑎𝑡𝑒.𝑀𝐴𝑇 then ⊳ No material change

95: if 𝑏𝑜𝑑𝑖𝑒𝑠[𝑛𝑒𝑥𝑡𝐵𝑜𝑑𝑦].𝐾𝐷𝐸𝑇 is not 𝑏𝑜𝑑𝑦.𝐾𝐷𝐸𝑇 then

96: 𝑁𝐶𝑅𝑂𝑆𝑆 ←𝑁𝐶𝑅𝑂𝑆𝑆 + 1
97: break ⊳ Stop on detector change

98: end if

99: else ⊳ Material changed, stop moving

100: 𝑁𝐶𝑅𝑂𝑆𝑆 ←𝑁𝐶𝑅𝑂𝑆𝑆 + 1
101: break

102: end if

103: end while

104: 𝐷𝑆𝑇𝑂𝑇 ←𝐷𝑆𝑇𝑂𝑇 +𝐷𝑆𝐸𝐹
105: 𝑆𝑡𝑎𝑡𝑒.𝑀𝐴𝑇 ← 𝑛𝑒𝑥𝑡𝑀𝑎𝑡

106: 𝑆𝑡𝑎𝑡𝑒.𝐼𝐵𝑂𝐷𝑌 ← 𝑛𝑒𝑥𝑡𝐵𝑜𝑑𝑦
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