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We characterize those pairs (ψ, ϕ) of smooth mappings ψ :
Rd → C, ϕ : Rd → Rd for which the corresponding weighted 
composition operator Cψ,ϕf = ψ · (f ◦ϕ) acts continuously on 
S (Rd). Additionally, we give several easy-to-check necessary 
and sufficient conditions of this property for interesting special 
cases. Moreover, we characterize power boundedness and 
topologizablity of Cψ,ϕ on S (Rd) in terms of ψ, ϕ. Among 
other things, as an application of our results we show that 
for a univariate polynomial ϕ with deg(ϕ) ≥ 2, power 
boundedness of Cψ,ϕ on S (R) for every ψ ∈ OM (R) only 
depends on ϕ and that in this case power boundedness of Cψ,ϕ

is equivalent to (Cn
ψ,ϕ)n∈N converging to 0 in Lb(S (R)) as 

well as to the uniform mean ergodicity of Cψ,ϕ. Additionally, 
we give an example of a power bounded and uniformly 
mean ergodic weighted composition operator Cψ,ϕ on S (R)
for which neither the multiplication operator f �→ ψf nor 
the composition operator f �→ f ◦ ϕ acts on S (R). Our 

* Corresponding author.
E-mail addresses: viaslo@upv.es (V. Asensio), ejorda@mat.upv.es (E. Jordá), 

thomas.kalmes@math.tu-chemnitz.de (T. Kalmes).
https://doi.org/10.1016/j.jfa.2024.110745
0022-1236/© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC 
BY license (http://creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.jfa.2024.110745
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jfa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfa.2024.110745&domain=pdf
mailto:viaslo@upv.es
mailto:ejorda@mat.upv.es
mailto:thomas.kalmes@math.tu-chemnitz.de
https://doi.org/10.1016/j.jfa.2024.110745
http://creativecommons.org/licenses/by/4.0/


2 V. Asensio et al. / Journal of Functional Analysis 288 (2025) 110745
results complement and considerably extend various results 
of Fernández, Galbis, and the second named author.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

Weighted composition operators play an important role in functional analysis and 
operator theory. Given a set Ω, a self mapping ϕ on Ω and a function ψ on Ω, beyond 
the fundamental question of when a weighted composition operator Cψ,ϕ acts on a given 
function space F(Ω) – that is, when the operation Cψ,ϕf = ψ ·(f ◦ϕ) results in a function 
belonging to F(Ω) for every f ∈ F(Ω) – it is a natural task to characterize operator 
theoretic properties of Cψ,ϕ on F(Ω) by properties of ψ and ϕ. Obviously, the class of 
weighted composition operators contains multiplication operators, i.e. ϕ(x) = x, as well 
as composition operators, i.e. ψ(x) = 1.

In the present article, we consider weighted composition operators on the space S (Rd)
of rapidly decreasing smooth functions. While the space OM (Rd) of multipliers for S (Rd)
has been characterized by L. Schwartz [22,33], the functions ϕ on R for which the cor-
responding composition operator acts on S (R) have been characterized only recently 
in [18]. Apart from characterizing the pairs (ψ, ϕ) for which Cψ,ϕ acts on S (Rd), we 
also characterize power boundedness and (m-)topologizability for weighted composition 
operators on S (Rd) in terms of ψ and ϕ.

In recent years, mean ergodicity, power boundedness, and topologizablity of (weighted) 
composition operators and multiplication operators on various spaces of (generalized) 
functions have attracted the attention of a large number of authors. We give only a 
sample of articles (and refer to references therein); see e.g. [1,4–6,9–12,14,15,21,23–29,32].

Recall that a continuous linear operator T on a locally convex Hausdorff space E is 
power bounded precisely when the set of its iterates {Tn; n ∈ N} is equicontinuous. This 
notion is closely connected with T being mean ergodic, i.e. with the property that for 
every x ∈ E the sequence of Cesàro means 

( 1
n

∑n
m=1 T

m(x)
)
n∈N converges. Whenever 

the Cesàro means converge uniformly on bounded sets, T is uniformly mean ergodic. 
By a classical result of Lorch [30], on reflexive Banach spaces, every power bounded 
operator is mean ergodic, which characterizes reflexivity of Banach spaces, as has been 
shown in the celebrated work [16] by Fonf, Lin, and Wojtaszczyk. Bonet, de Pagter, and 
Ricker [8, Proposition 3.3] proved that Lorch’s result remains true for (semi-)reflexive 
Hausdorff locally convex spaces. Additionally, by [28, Theorem 2.5], on Montel spaces, 
mean ergodic operators are automatically uniformly mean ergodic. Thus, power bounded 
operators of S (Rd) are already uniformly mean ergodic.

While the interest for power boundedness for operators on locally convex Hausdorff 
spaces stems from its close relationship to (uniform) mean ergodicity, topologizable op-
erators were introduced by Żelazko in [35] (see also [7]). Recall that a continuous linear 
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operator T on a locally convex Hausdorff space E is topologizable if for every continu-
ous seminorm p on E there is a continuous seminorm q on E and a sequence (an)n∈N
of positive numbers such that (anTn)n∈N is equicontinuous from E equipped with p
into E equipped with q. This property characterizes those T for which there is a unital 
subalgebra A of L(E) (with composition as multiplication) which contains T and which 
admits a locally convex topology making A into a topological algebra such that the map 
A × E → E, (S, x) �→ Sx is continuous. While the notion of m-topologizability (where 
the sequence (an)n∈N in the definition of topologizablity can be chosen as a sequence 
of powers (Mn)n∈N , M > 0) was also introduced by Żelazko [34], a renewed interest 
in this property stems from a recent result of Golińska and Wegner [19] stating that 
m-topologizable operators on sequentially complete locally convex spaces generate uni-
formly continuous semigroups of operators. It should be noted that in contrast to Banach 
spaces, on arbitrary locally convex spaces in general not every continuous linear operator 
generates a strongly continuous semigroup, see [17].

Our results for power boundedness for weighted composition operators Cψ,ϕ are 
sharp when ψ, ϕ are univariate polynomials. They allow to provide natural examples 
of infinite dimensional subspaces of L(S (R)) consisting entirely of power bounded 
operators, or – except the zero operator – entirely of non-power bounded operators, 
respectively. Concrete examples of such infinite dimensional vector spaces are {Cψ,ϕ :
ϕ(x) = x2 +1, ψ polynomial} (Theorem 5.10) and {Cψ,ϕ : ϕ(x) = (1/2)x, ψ polynomial}
(Proposition 5.4), respectively. We point out that examples of the second kind cannot 
occur for operators defined on Banach spaces.

The article is organized as follows. In section 2 we characterize those pairs (ψ, ϕ) for 
which the corresponding weighted composition operator Cψ,ϕ acts on S (Rd). Under 
mild additional assumptions on ψ and ϕ, in section 3, we give a characterization for 
the latter property which is easier to check in many situations including composition 
operators. In section 4 we characterize power boundedness and (m-)topologizability of 
Cψ,ϕ on S (Rd). As a concrete example we show power boundedness of Cexp,exp on 
S (R), i.e. ψ = ϕ = exp. It should be noted that neither the composition by exp nor 
the multiplication by exp acts on S (R). As an application of our findings in section 4, 
in section 5 we study power boundedness of weighted composition operators on S (R)
for the case that ϕ is a (univariate) polynomial. Among others, we prove that power 
boundedness of translation operators, i.e. ϕ(x) = x + b, b �= 0, can be achieved by 
multiplication with constants of modulus strictly smaller than 1. We also show that for 
deg(ϕ) ≥ 2, power boundedness of the composition operator Cϕ is equivalent to the power 
boundedness and/or uniform mean ergodicity of the weighted composition operators 
Cψ,ϕ for arbitrary ψ ∈ OM (R). In the short final section 6, we apply arguments from 
section 5 to show that a univariate polynomial ϕ is necessarily a translation whenever 
there is ψ ∈ OM (R) such that Cψ,ϕ is weakly supercyclic, i.e. there is f ∈ S (R) with 
{λCn

ψ,ϕf ; λ ∈ C, n ∈ N} is weakly dense in S (R). This complements recent results on 
hypercyclicity of weighted translation operators on S (R) by Goliński and Przestacki 
[20].
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Throughout, we use standard notation from functional analysis [31] and dynamics of 
linear operators on locally convex spaces [3,8].

2. Weighted composition operators on S (Rd)

The main purpose of this section is to characterize those pairs (ψ, ϕ), ψ ∈ C∞(Rd)
and ϕ : Rd → Rd smooth mapping, for which the corresponding weighted composition 
operator Cψ,ϕ acts on S (Rd), where we say that Cψ,ϕ(f) = ψ · (f ◦ϕ) acts on S (Rd) if 
Cψ,ϕf ∈ S (Rd) for every f ∈ S (Rd). Obviously, in this case Cψ,ϕ is a linear mapping 
on S (Rd). As usual, we say that ϕ is a symbol for S (Rd) if Cϕ := C1,ϕ acts on 
S (Rd). Additionally, we recall that ψ is a multiplier for S (Rd) if Mψ := Cψ,idRd

acts 
on S (Rd). We shall see in Example 2.9 below that neither Cϕ acting on S (R) nor ψ
being a multiplier for S (R) is necessary for Cψ,ϕ to act on S (R).

We first fix some notation which is valid throughout this paper. As usual, for a smooth 
function f : Rd → C and a multi index α = (α1, . . . , αd) ∈ Nd

0 we write f (α)(x) =
∂αf(x) = ∂|α|

∂x
α1
1 ···∂xαd

d

f(x), where as usual |α| =
∑d

j=1 αj . While we also denote the 

Euclidean norm of x ∈ Rd by |x|, it will always be clear from the context whether we 
refer to the length of a multi index or the Euclidean norm of a vector. Next, we recall 
some notation from [13] used in the multivariate version of the Faà di Bruno formula. 
On the set Nd

0 of multi indices, for α = (α1, . . . , αd), β = (β1, . . . , βd), we write α ≺ β

provided one of the following holds:

(i) |α| < |β|,
(ii) |α| = |β| and α1 < β1, or
(iii) |α| = |β|, α1 = β1, . . . , αk = βk and αk+1 < βk+1 for some 1 ≤ k < d.

Moreover, for β ∈ Nd
0\{0} and λ ∈ Nd

0 we define the set

p(β, λ) =

⎧⎨⎩(k1, . . . , k|β|; �1, . . . , �|β|) ∈ N2|β|d
0 : for some 1 ≤ s ≤ |β|,

kj = �j = 0 for 1 ≤ j ≤ |β| − s; |kj | > 0 for |β| − s + 1 ≤ j ≤ |β|, and

0 ≺ �|β|−s+1 ≺ · · · ≺ �|β| are such that
|β|∑
j=1

kj = λ,

|β|∑
j=1

|kj |�j = β

⎫⎬⎭ .

It is straightforward to show |λ| ≤ |β| whenever p(β, λ) �= ∅. Then, for a smooth function 
f : Rd → C, a smooth mapping ϕ : Rd → Rd, and for every β ∈ Nd

0\{0} we have

(f ◦ ϕ)(β) (x) =
∑
λ∈Nd

0

f (λ)(ϕ(x))
∑

p(β,λ)

β!
|β|∏
j=1

(
ϕ(�j)(x)

)kj

kj ! (�j !)|kj |
1≤|λ|≤|β|
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(see [13, Remark 2.2]), where ϕ(�j)(x) = (ϕ(�j)
1 (x), . . . , ϕ(�j)

d (x)) and where for y =
(y1, . . . , yd) ∈ Cd and k = (k1, . . . , kd) ∈ Nd

0 , as usual yk = yk1
1 · · · ykd

d , so that

(
ϕ(�j)(x)

)kj

=
d∏

i=1

(
ϕ

(�j)
i (x)

)kj,i

=
d∏

i=1

(
∂|�j |

∂x
�j,1
1 · · · ∂x�j,d

d

ϕi(x)
)kj,i

,

with �j = (�j,1, . . . , �j,d), kj = (kj,1, . . . , kj,d) ∈ Nd
0 . It follows immediately from the 

definition of the set p(β, λ) that p(β, 0) = ∅. Thus, employing the usual convention that 
the sum of summands indexed by the empty set equals zero, for every β ∈ Nd

0\{0} we 
have

(f ◦ ϕ)(β) (x) =
∑
λ∈Nd

0
0≤|λ|≤|β|

f (λ)(ϕ(x))
∑

p(β,λ)

β!
|β|∏
j=1

(
ϕ(�j)(x)

)kj

kj ! (�j !)|kj |
.

Abusing notation, for β = 0, we further set p(0, λ) = ∅ whenever λ ∈ Nd
0\{0} and 

p(0, 0) = {(0, 0)} (0 ∈ Nd
0 ) so that, by the usual convention 0! = 1 and 00 = 1

∑
p(0,λ)

0!
|0|∏
j=1

(
ϕ(�j)(x)

)kj

kj ! (�j !)|kj |
=

{
0, λ �= 0,
1, λ = 0,

where we also applied the usual convention that the product of factors indexed by the 
empty set equals one. Thus, for f and ϕ as above, for ψ ∈ C∞(Rd), and for every multi 
index α ∈ Nd

0 , by applying Leibniz’ rule and Faà di Bruno’s formula, after reordering, 
we get

(ψ · (f ◦ ϕ))(α)(x)

=
∑
β∈Nd

0
β≤α

∑
λ∈Nd

0
0≤|λ|≤|β|

f (λ)(ϕ(x))
(
α

β

)
ψ(α−β)(x)

∑
p(β,λ)

β!
|β|∏
j=1

(
ϕ(�j)(x)

)kj

kj ! (�j !)|kj |

=
∑
β∈Nd

0
|β|≤|α|

∑
λ∈Nd

0
0≤|λ|≤|β|

f (λ)(ϕ(x))
(
α

β

)
ψ(α−β)(x)

∑
p(β,λ)

β!
|β|∏
j=1

(
ϕ(�j)(x)

)kj

kj ! (�j !)|kj |

=
∑
λ∈Nd

0
0≤|λ|≤|α|

f (λ)(ϕ(x))
∑
β∈Nd

0
β≤α,|λ|≤|β|

(
α

β

)
ψ(α−β)(x)

∑
p(β,λ)

β!
|β|∏
j=1

(
ϕ(�j)(x)

)kj

kj ! (�j !)|kj |
,

where we have used that 
(
α
β

)
=

∏d
j=1

(
αj

βj

)
= 0 if there are αj , βj ∈ N0 with βj > αj

since 
(
z
)

= z(z−1)···(z−m+1) for z ∈ C and m ∈ N0.
m m!
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For ψ ∈ C∞(Rd), a smooth mapping ϕ : Rd → Rd and α, λ ∈ Nd
0 with |λ| ≤ |α| we 

denote

Fϕ,ψ
α,λ (x) :=

∑
β∈Nd

0
β≤α,|λ|≤|β|

(
α

β

)
ψ(α−β)(x)

∑
p(β,λ)

β!
|β|∏
j=1

(
ϕ(�j)(x)

)kj

kj ! (�j !)|kj |
(2.1)

and thus

(ψ · (f ◦ ϕ))(α)(x) =
∑
λ∈Nd

0
0≤|λ|≤|α|

f (λ)(ϕ(x))Fϕ,ψ
α,λ (x). (2.2)

Now we are ready to prove a first technical lemma which will also be used in section 4.

Lemma 2.1. Let I be a non-empty set, (ψi)i∈I ∈ C∞(Rd)I and let ϕi : Rd → Rd be 
smooth mappings, i ∈ I. Assume that there are α, λ ∈ Nd

0 with |λ| ≤ |α| and p > 0 such 
that

∀ q > 0 : sup
i∈I

sup
x∈Rd

(1 + |x|)p
(1 + |ϕi(x)|)q |F

ϕi,ψi

α,λ (x)| = ∞. (2.3)

Then there is f ∈ S (Rd) satisfying

sup
i∈I

sup
x∈Rd

(1 + |x|)p|(ψi · (f ◦ ϕi))(α)(x)| = ∞.

Proof. Let λ0 ∈ Nd
0 be the minimum with respect to the linear ordering ≺ of Nd

0 of 
the finite set of λ ∈ Nd

0 with |λ| ≤ |α| for which (2.3) holds. Let (xj)j∈N , (ij)j∈N be 
sequences in Rd and I, respectively, such that |xj+1| > |xj | + 1 and

(1 + |xj |)p
(1 + |ϕij (xj)|)j

|Fϕij
,ψij

α,λ0
(xj)| > j. (2.4)

At this step, we continue the proof by considering two cases. First we assume 
(|ϕij (xj)|)j∈N to be unbounded. By making an abuse of notation and identifying (xj)j∈N
with a subsequence, we can assume |xj+1| > |xj | + 1 and |ϕij+1(xj+1)| > |ϕij (xj)| + 1
for every j ∈ N, and let (l(j))j∈N be a strictly increasing sequence of natural numbers 
such that

lim
j→∞

(1 + |xj |)p
(1 + |ϕij (xj)|)l(j)

|Fϕij
,ψij

α,λ0
(xj)| = ∞. (2.5)

Fix 	 ∈ D(B(0, 1/2)), 	(λ0)(0) = 1 and 	(λ)(0) = 0 for λ ∈ Nd
0\{λ0}. We define

f(x) :=
∑ 	(x− ϕij (xj))

(1 + |ϕij (xj)|)l(j)
.

j∈N
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Since the summands which define f are smooth functions with mutually disjoint compact 
supports and because limj l(j) = ∞, it is standard to check f ∈ S (Rd). Moreover, by 
(2.2) and the definition of Fϕ,ψ

α,λ

(1 + |xj |)p|(ψij · (f ◦ ϕij ))(α)(xj)| = (1 + |xj |)p

∣∣∣∣∣∣∣∣∣
∑
λ∈Nd

0
0≤|λ|≤|α|

f (λ)(ϕij (xj))F
ϕij

,ψij

α,λ (xj)

∣∣∣∣∣∣∣∣∣
= (1 + |xj |)p|f (λ0)(ϕij (xj))F

ϕij
,ψij

α,λ0
(xj)|

= (1 + |xj |)p
(1 + |ϕij (xj)|)l(j)

|Fϕij
,ψij

α,λ0
(xj)|

so that by (2.5)

sup
i∈I

sup
x∈Rd

(1 + |x|)p|(ψi · (f ◦ ϕi))(α)(x)| ≥ sup
j∈N

(1 + |xj |)p|(ψij · (f ◦ ϕij ))(α)(xj)| = ∞

as desired.
Next, let us suppose that (|ϕij (xj)|)j∈N is bounded. We observe that the choice of λ0

implies the existence of q > 0 and C ∈ (0, ∞) such that, for each λ ∈ Nd
0 with λ ≺ λ0,

sup
x∈Rd

(1 + |x|)p
(1 + |ϕij (x)|)q |F

ϕij
,ψij

α,λ (x)| ≤ C.

Next, we fix f ∈ D(Rd) such that f(x) = xλ0/λ0! in a neighborhood of the bounded 
subset {ϕij (xj); j ∈ N} of Rd. Then, a moment’s reflection reveals that f (λ) ≡ 0 in a 
neighborhood of {ϕij (xj); j ∈ N} whenever λ0 ≺ λ and obviously, for every q > 0 there 
is M ∈ (0, ∞) with

sup
j∈N,

λ∈Nd
0 ,|λ|≤|α|

∣∣∣f (λ)(ϕij (xj))
∣∣∣ (1 + |ϕij (xj)|)q ≤ M.

Now we have by (2.2) and (2.4), for j ∈ N,

(1 + |xj |)p|(ψij · (f ◦ ϕij ))(α)(xj)| = (1 + |xj |)p

∣∣∣∣∣∣∣∣∣
∑
λ∈Nd

0
0≤|λ|≤|α|

f (λ)(ϕij (xj))F
ϕij

,ψij

α,λ (xj)

∣∣∣∣∣∣∣∣∣
≥ (1 + |xj |)p

∣∣∣f (λ0)(ϕij (xj))F
ϕij

,ψij

α,λ0
(xj)

∣∣∣
−

∑ ∣∣∣f (λ)(ϕij (xj))
∣∣∣ (1 + |ϕij (xj)|)q

(1 + |xj |)p
(1 + |ϕij (xj)|)q

∣∣∣Fϕij
,ψij

α,λ (xj)
∣∣∣
λ≺λ0
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≥ (1 + |ϕij (xj)|)j
(1 + |xj |)p

(1 + |ϕij (xj)|)j
∣∣∣Fϕij

,ψij

α,λ0
(xj)

∣∣∣− ∑
λ≺λ0

MC ≥ j −
∑
λ≺λ0

MC

so that again

sup
i∈I

sup
x∈Rd

(1 + |x|)p|(ψi · (f ◦ ϕi))(α)(x)| ≥ sup
j∈N

(1 + |xj |)p|(ψij · (f ◦ ϕij ))(α)(xj)| = ∞

as desired. �
Theorem 2.2. Let ψ ∈ C∞(Rd) and let ϕ : Rd → Rd be smooth. Then, the following are 
equivalent.

(i) ψ · (f ◦ ϕ) ∈ S (Rd) for every f ∈ S (Rd).
(ii) The weighted composition operator Cψ,ϕ : S (Rd) → S (Rd), f �→ ψ · (f ◦ ϕ) is 

correctly defined and continuous.
(iii) For all α, λ ∈ Nd

0 with |λ| ≤ |α| and for every p > 0 there exists q > 0 such that

sup
x∈Rd

(1 + |x|)p
(1 + |ϕ(x)|)q |F

ϕ,ψ
α,λ (x)| < ∞.

Proof. Obviously, (ii) implies (i), and (i) implies (iii) by Lemma 2.1 applied to I = {1}
and ψ1 = ψ, ϕ1 = ϕ. Additionally, using (2.2) it is straightforward to show that (iii) 
implies (ii). �

The evaluation of condition (iii) from the above theorem for concrete ψ, ϕ might be 
quite involved due to the rather complicated expression for Fϕ,ψ

α,λ in (2.1). Therefore, we 
now give necessary and sufficient conditions for Cψ,ϕ to act on S (Rd) which are easier 
to evaluate. Since for α ∈ Nd

0 and λ = 0 it holds Fϕ,ψ
α,λ (x) = ψ(α)(x), Theorem 2.2 (iii) 

immediately implies the following necessary condition.

Corollary 2.3. If the weighted composition operator Cψ,ϕ : S (Rd) → S (Rd), f �→ ψ · (f ◦
ϕ) is well defined then for each α ∈ Nd

0 and p > 0 there is q > 0 such that

sup
x∈Rd

(1 + |x|)p
(1 + |ϕ(x)|)q |ψ

(α)(x)| < ∞.

Theorem 2.2 immediately implies the next sufficient condition for Cψ,ϕ to act on 
S (Rd). It will be shown in Theorem 3.3 below that under some mild additional assump-
tions on ψ, ϕ this sufficient condition is also necessary.

Corollary 2.4. Let ψ ∈ C∞(Rd) and let ϕ : Rd → Rd be smooth. Assume that for each 
α ∈ Nd

0 and p > 0 there is q > 0 such that
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sup
x∈Rd

(1 + |x|)p
(1 + |ϕ(x)|)q |ψ

(α)(x)| < ∞,

and for each α ∈ Nd
0 there is q > 0 such that

sup
x∈Rd

1
(1 + |ϕ(x)|)q |ϕ

(α)(x)| < ∞.

Then Cψ,ϕ acts on S (Rd).

Remark 2.5. For the special case of a multiplication operator, i.e. ϕ(x) = x for all x ∈ Rd, 
for kj , �j ∈ Nd

0 we have

(
ϕ(�j)(x)

)kj

=
d∏

i=1

(
∂�jxi

)kj =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if �j = kj = 0,
0, if |�j | ≥ 2,
0, if |�j | = 1, kj /∈ span{�j},
1, if |�j | = 1, kj ∈ span{�j}.

Therefore, defining

p0(β, λ) := {(k1, . . . , k|β|; �1, . . . , �|β|) ∈ p(β, λ) : |�|β|| ≤ 1 and kj ∈ span{�j}
for all 1 ≤ j ≤ |β|}

it follows that

Fϕ,ψ
α,λ (x) =

∑
β∈Nd

0
β≤α,|λ|≤|β|

(
α

β

)
ψ(α−β)(x)

∑
p0(β,λ)

β!
|β|∏
j=1

1
kj !

.

In order to continue, let et = (δj,t)1≤j≤d (Kronecker’s δ), 1 ≤ t ≤ d, be the standard 
basis vectors of Rd and for β ∈ Nd

0\{0}, β =
∑d

t=1 βtet let I(β) := {1 ≤ t ≤ d : βt �= 0}
so that ∅ �= I(β) = {t1, . . . , tβ} with 1 ≤ t1 < . . . < tβ ≤ d. Moreover, we denote the 
number of elements of I(β) by |I(β)|. With this notation, for β ∈ Nd

0\{0} we conclude

p0(β, λ)

=

⎧⎨⎩(k1, . . . , k|β|; �1, . . . , �|β|) ∈ p(β, λ) : |�|β|| = 1, kj ∈ span{�j} for all 1 ≤ j ≤ |β|,

kj = �j = 0 for 1 ≤ j ≤ |β| − |I(β)|, �|β|−|I(β)|+1 = et1 , . . . , �|β| = etβ ,

|kj | > 0 for |β| − |I(β)| + 1 ≤ j ≤ |β|,
|β|∑
j=1

kj = λ,

|β|∑
j=1

|kj |�j = β

⎫⎬⎭
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=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∅, if β �= λ,

{(k1, . . . , k|β|; �1, . . . , �|β|) ∈ N2|β|d
0 : kj = �j = 0, 1 ≤ j ≤ |β| − |I(β)|,

�|β|−|I(β)|+1 = etβ , �|β|−|I(β)|+2 = etβ−1, . . . , �|β| = et1 ,

k|β|−|I(β)|+1 = βtβetβ , k|β|−|I(β)|+2 = βtβ−1etβ−1, . . . , k|β| = βt1et1}, if β = λ,

so that for λ �= 0

Fϕ,ψ
α,λ (x) =

(
α

λ

)
ψ(α−λ)(x)

which also holds true for λ = 0 (recall that the above multinomial coefficient is zero 
whenever λ ≰ α).

Hence, Theorem 2.2 characterizes those ψ ∈ C∞(Rd) for which the corresponding 
multiplication operator Mψ : S (Rd) → S (Rd), f �→ ψf is correctly defined by the 
property that for every α, λ ∈ Nd

0 with λ ≤ α and every p > 0 there is q > 0 such that

sup
x∈Rd

(1 + |x|)p
(1 + |x|)q |ψ

(α−λ)(x)| < ∞.

Obviously, this holds precisely when for each γ ∈ Nd
0 there is r > 0 such that

sup
x∈Rd

(1 + |x|)−r|ψ(γ)(x)| < ∞.

Thus, for the special case ϕ(x) = x, Theorem 2.2 gives the well known characterization 
of the space of multipliers of S (Rd) as OM (Rd).

Additionally, by Corollary 2.3, if ϕ is a non-constant elliptic polynomial, Cψ,ϕ acts on 
S (Rd) if and only if ψ ∈ OM (Rd). Therefore, if d = 1, this equivalence holds whenever 
ϕ is a non-constant univariate polynomial.

Remark 2.6. Next, we consider the special case d = 1 in Theorem 2.2. We define for 
β, λ ∈ N0\{0} with λ ≤ β

q(β, λ) =

⎧⎨⎩(i1, . . . , iβ) ∈ Nβ
0 :

β∑
j=1

ij = λ,

β∑
j=1

jij = β

⎫⎬⎭ ,

and for (i1, . . . , iβ) ∈ q(β, λ) we set

L(i1, . . . , iβ) := {1 ≤ j ≤ β : ij �= 0} and s(i1, . . . , iβ) := |L(i1, . . . , iβ)|.

Then, ∅ �= L(i1, . . . , iβ) ⊂ {1, . . . , β} and 1 ≤ s(i1, . . . , iβ) ≤ β. It is straightforward that 
the correspondence q(β, λ) → p(β, λ) which maps (i1, . . . , iβ) into
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(0, . . . , 0, iminL(i1,...,iβ), . . . , imaxL(i1,...,iβ); 0, . . . , 0,minL(i1, . . . , iβ), . . . ,

maxL(i1, . . . , iβ))

is correctly defined and bijective, where we have (twice) β− s zeros. With this it follows 
for d = 1 that for ψ, ϕ ∈ C∞(R), ϕ real valued, α, λ ∈ N0 with λ ≤ α

Fϕ,ψ
α,λ (x) =

α∑
β=λ

(
α

β

)
ψ(α−β)(x)

∑
i1,...,iβ∈N0,
i1+···+iβ=λ,

i1+2i2+···+βiβ=β

β!
β∏

j=1

1
ij !

(
ϕ(j)(x)

j!

)ij

.

Noticing that ij = 0 for j > β − λ + 1 the above simplifies to

Fϕ,ψ
α,λ (x) =

α∑
β=λ

(
α

β

)
ψ(α−β)(x)

∑
i1,...,iβ−λ+1∈N0,
i1+···+iβ−λ+1=λ,

i1+2i2+···+βiβ−λ+1=β

β!
β−λ+1∏
j=1

1
ij !

(
ϕ(j)(x)

j!

)ij

=
α∑

β=λ

(
α

β

)
ψ(α−β)(x)Bβ,λ

(
ϕ′(x), . . . , ϕ(β−λ+1)(x)

)
,

where Bβ,λ denotes the corresponding Bell polynomial, i.e.

∀x1, . . . , xβ−λ+1 ∈ R : Bβ,λ(x1, . . . , xβ−λ+1)

=
∑

i1,i2...,iβ−λ+1∈N0,
i1+i2+···+iβ−λ+1=λ,

i1+2i2+···+(β−λ+1)iβ−λ+1=β

β!
β−λ+1∏
r=1

1
ir!

(xr

r!

)ir
(2.6)

for β, λ ∈ N with λ ≤ β, and B0,0 = 1, Bβ,0 = 0, β ∈ N.

Corollary 2.7. Let ψ, ϕ ∈ C∞(R), ϕ be real valued. Then, the following are equivalent.

(i) ψ · (f ◦ ϕ) ∈ S (R) for every f ∈ S (R).
(ii) The weighted composition operator Cψ,ϕ : S (R) → S (R), f �→ ψ·(f ◦ϕ) is correctly 

defined and continuous.
(iii) For every α, β, λ ∈ N0 with α ≥ β ≥ λ and for each p > 0 there is q > 0 such that

sup
x∈R

(1 + |x|)p
(1 + |ϕ(x)|)q

∣∣∣ψ(α−β)(x)Bβ,λ

(
ϕ′(x), . . . , ϕ(β−λ+1)(x)

)∣∣∣ < ∞.

Proof. By Theorem 2.2 and Remark 2.6, (i) and (ii) are equivalent and hold precisely 
when for every α, β, λ ∈ N0 with α ≥ β ≥ λ and each p > 0 there is q > 0 with
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sup
x∈R

(1 + |x|)p
(1 + |ϕ(x)|)q

∣∣∣∣∣∣
α∑

β=λ

(
α

β

)
ψ(α−β)(x)Bβ,λ

(
ϕ′(x), . . . , ϕ(β−λ+1)(x)

)∣∣∣∣∣∣ < ∞.

Evaluating the latter condition first for λ = α, then for λ = α− 1 etc. finally shows that 
(i), (ii), and (iii) are equivalent. �
Remark 2.8. For a real valued ϕ ∈ C∞(R) it follows from Corollary 2.7 with ψ ≡ 1 that 
the corresponding composition operator Cϕf = f ◦ ϕ acts on S (R) if and only if

∀α, λ ∈ N0, α ≥ λ ∀ p > 0 ∃ q > 0 :

sup
x∈R

(1 + |x|)p
(1 + |ϕ(x)|)q

∣∣∣Bα,λ

(
ϕ′(x), . . . , ϕ(α−λ+1)(x)

)∣∣∣ < ∞. (2.7)

Since B0,0 ≡ 1 and Bα,1(x1, . . . , xα) = xα, condition (2.7) implies

• there is k > 0 such that |ϕ(x)| ≥ |x|1/k whenever |x| ≥ k, and
• for every α ∈ N0 there are C, q > 0 such that |ϕ(α)(x)| ≤ C(1 + |ϕ(x)|)q.

On the other hand, the previous two conditions easily imply condition (2.7) so that 
Corollary 2.7 gives an alternate characterization to that in [18, Theorem 2.3]. Further-
more, the characterization in [18, Theorem 2.3] is also valid for several variables (see [18, 
Remark 2.4(1)]), which can be deduced from Theorem 2.2, too, in a similar way.

Example 2.9. For the case ϕ = ψ, we have that Cϕ,ϕ : S (R) → S (R) is continuous if 
and only if for every α ∈ N0 and p > 0 there exists q > 0 such that

sup
x∈Rd

(1 + |x|)p
(1 + |ϕ(x)|)q |ϕ

(α)(x)| < ∞.

Indeed, necessity follows from Corollary 2.3 while sufficiency is due to Corollary 2.4. For 
ϕ(x) = ψ(x) = exp(x), we thus have that Cexp,exp is continuous. Observe that neither the 
composition operator Cexp nor the multiplication operator Mexp acts on S (R). We will 
show in Example 4.9 below that Cexp,exp is even power bounded, and therefore uniformly 
mean ergodic, on S (R).

Proposition 2.10. Let ϕ : Rd → Rd be smooth such that for each p > 0

sup
x∈Rd

(1 + |ϕ(x)|)p
(1 + |x|) < ∞.

Moreover, let ψ ∈ C∞(Rd) be such that Cψ,ϕ acts on S (Rd). Then ψ ∈ S (Rd).

Proof. Let α ∈ Nd
0 and p > 0. By applying Corollary 2.3 for p + 1 we get q > 0 and 

C > 0 such that
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sup
x∈Rd

(1 + |x|)p|ψ(α)(x)| ≤ C sup
x∈Rd

(1 + |ϕ(x)|)q
(1 + |x|) .

By hypothesis on ϕ, the supremum on the right is finite so the assertion follows. �
Theorem 2.11. Let ϕ : Rd → Rd be smooth. Then, Cψ,ϕ acts on S (Rd) for every ψ ∈
S (Rd) if and only if ∂kϕi ∈ OM (Rd) for every 1 ≤ i, k ≤ d.

Proof. Let ∂kϕi ∈ OM (Rd) for every 1 ≤ i, k ≤ d. By the multivariate Faà di Bruno 
formula, f ◦ ϕ ∈ OM (Rd) for every f ∈ S (Rd). Hence ψ · (f ◦ ϕ) ∈ S (Rd) whenever 
ψ ∈ S (Rd).

Now, let Cψ,ϕ act on S (Rd) for every ψ ∈ S (Rd). We assume that there are 1 ≤
i, k ≤ d such that ∂kϕi /∈ OM (Rd). Hence, there is α ∈ Nd

0 such that

∀ j ∈ N : sup
x∈Rd

|ϕ(α+ek)
i (x)|

(1 + |x|)j = ∞.

Thus, there is a sequence (xj)j∈N such that |xj+1| > |xj | + 1 as well as

|ϕ(α+ek)
i (xj)|

(1 + |xj |)j
> j

for each j ∈ N.
Now, we distinguish two cases. In case (ϕ(xj))j∈N is unbounded, by abuse of notation, 

we identify (xj)j∈N with a subsequence satisfying |ϕ(xj+1)| > |ϕ(xj)| + 1, j ∈ N. Let 
	, g ∈ D(B(0, 1)) be such that 	 = 1 in B(0, 1/2) and g(ei)(0) = 1 as well as g(β)(0) = 0
for β ∈ Nd

0\{ei}. It is standard to show that

ψ(x) :=
∑
j∈N

	(x− xj)
(1 + |xj |)j/2

(2.8)

belongs to S (Rd), as does

f(x) =
∑
j∈N

g(x− ϕ(xj))
(1 + |xj |)j/2

.

By the multivariate Faà di Bruno formula, for j ∈ N we conclude

| (ψ · (f ◦ ϕ))(α+ek) (xj)| =
∣∣∣ψ(xj) (f ◦ ϕ)(α+ek) (xj)

∣∣∣
=

∣∣∣∣ψ(xj)
∂f

∂xi
(ϕ(xj))ϕ(α+ek)

i (xj)
∣∣∣∣

= |ϕ(α+ek)
i (xj)|

j
> j, (2.9)
(1 + |xj |)
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so that ψ · (f ◦ ϕ) /∈ S (Rd) contradicting the hypothesis that Cψ,ϕ acts on S (Rd).
To finish the proof, we consider the case when (ϕ(xj))j∈N is bounded. We define ψ as 

in (2.8) and we consider a function f ∈ D(Rd) such that f(x) = xi on a neighborhood 
of {ϕ(xj) : j ∈ N}. Then (2.9) holds which again gives the desired contradiction. �

For smooth and bounded ϕ : Rd → Rd, by Corollary 2.3, ψ ∈ S (Rd) is a nec-
essary condition for Cψ,ϕ to act on S (Rd). Therefore, as an immediate corollary of 
Theorem 2.11 we have the following.

Corollary 2.12. Let ϕ : Rd → Rd be smooth and bounded. Then, Cψ,ϕ acts on S (Rd) for 
every ψ ∈ S (Rd) if and only if ϕ ∈ OM (Rd).

3. Small decay multipliers

In this section, we shall prove that for a family of weighted composition operators, 
including composition operators, the sufficient conditions from Corollary 2.4 are also 
necessary for Cψ,ϕ to act on S (Rd). In order to do so, we first prove the following result 
which will also be of use in section 4 below.

Lemma 3.1. Let I be a non-empty set and let ϕi : Rd → Rd be smooth mappings, i ∈ I. 
Moreover, let ψi ∈ C∞(Rd), i ∈ I, be such that for some m > 0

inf
i∈I

inf
|x|≥m

(1 + |x|)m(1 + |ϕi(x)|)m|ψi(x)| > 0. (3.1)

Assume that there are α ∈ Nd
0 and p > 0 such that

sup
i∈I

sup
x∈Rd

(1 + |x|)p
(1 + |ϕi(x)|)q |ψ

(α)
i (x)| = ∞ (3.2)

for all q > 0, or that there is α ∈ Nd
0 such that

sup
i∈I

sup
x∈Rd

1
(1 + |ϕi(x)|)q |ϕ

(α)
i (x)| = ∞ (3.3)

for all q > 0. Then there is f ∈ S (Rd) satisfying

sup
i∈I

sup
x∈Rd

(1 + |x|)max{p,m+1} max{|(ψi · (f ◦ ϕi))(x)|, |(ψi · (f ◦ ϕi))(α)(x)|} = ∞.

Proof. If there are α ∈ Nd
0 and p > 0 satisfying (3.2) for every q > 0, then the result 

follows by Lemma 2.1 with λ = 0.
Thus, in order to complete the proof, we may assume that for every β ∈ Nd

0 and p > 0
there is q(β, p) > 0 such that
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sup
i∈I

sup
x∈Rd

(1 + |x|)p
(1 + |ϕi(x)|)q(β,p) |ψ

(β)
i (x)| < ∞. (3.4)

We now fix α ∈ Nd
0 with minimal |α| such that (3.3) holds for every q > 0. Clearly, 

|α| ≥ 1, and for every β ∈ Nd
0 with β ≤ α, β �= 0, there is q′(β) > 0 such that

sup
i∈I

sup
x∈Rd

1
(1 + |ϕi(x)|)q′(β) |ϕ

(α−β)
i (x)| < ∞. (3.5)

With m as in (3.1), we choose sequences (ij)j∈N , (lj)j∈N , and (xj)j∈N in I, N and Rd, 
respectively, such that lj+1 > lj > m +max{q(β, m) : β ≤ α} +max{q′(β) : 0 �= β ≤ α}, 
|xj+1| > 1 + |xj | > 1 + m, and |ϕ(α)

ij
(xj)| > j(1 + |ϕij (xj)|)lj , j ∈ N.

Next, we distinguish two cases. Suppose that (|ϕij (xj)|)j∈N is bounded. Take f ∈
D(Rd) such that f ≡ 1 on a neighborhood of {ϕij (xj) : j ∈ N}. By (3.1) and the 
boundedness of (|ϕij (xj)|)j∈N we conclude infj∈N(1 + |xj |)m|ψij (xj)| > 0 which implies

sup
i∈I

sup
x∈Rd

(1 + |x|)m+1|(ψi · (f ◦ ϕi))(x)| ≥ sup
j∈N

(1 + |xj |)m+1|ψij (xj)||f(ϕij (xj))| = ∞

proving the assertion in this case.
Now, suppose that (|ϕij (xj)|)j∈N is unbounded. By identifying (ϕij (xj))j∈N with 

a subsequence, we assume |ϕij+1(xj+1)| > 1 + |ϕij (xj)|, j ∈ N. Since |ϕ(α)
ij

(xj)| >
j(1 + |ϕij (xj)|)lj there is 1 ≤ k ≤ d such that the k-th component ϕij ,k of ϕij satisfies 
|ϕ(α)

ij ,k
(xj)| > j√

d
(1 + |ϕij (xj)|)lj , j ∈ N. Let g ∈ D(B(0, 1)) be such that g(x) = xk in a 

neighborhood of the origin. It is then standard to show that the function

f(x) =
∑
j∈N

g(x− ϕij (xj))
(1 + |ϕij (xj)|)lj−m

belongs to S (Rd). Since for β ∈ Nd
0 with β ≤ α, β �= α, by the choice of g and the 

multivariate Faà di Bruno formula, we have

(
f ◦ ϕij

)(α−β) (xj) =
ϕ

(α−β)
ij ,k

(xj)
(1 + |ϕij (xj)|)lj−m

,

while obviously, (f ◦ ϕij )(xj) = 0. Hence, for 0 �= β ≤ α we obtain

sup
j∈N

(1 + |xj |)m|ψ(β)
ij

(xj)
(
f ◦ ϕij

)(α−β) (xj)|

≤ sup
j∈N

(1 + |xj |)m|ψ(β)
ij

(xj)|
|ϕ(α−β)

ij
(xj)|

(1 + |ϕij (xj)|)lj−m

≤ sup (1 + |xj |)m
(1 + |ϕ (x )|)q(β,m) |ψ

(β)
ij

(xj)|
|ϕ(α−β)

ij
(xj)|

(1 + |ϕ (x )|)q′(β) < ∞,

j∈N ij j ij j
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where we have used lj −m > max{q(β, m) : β ≤ α} + max{q′(β) : 0 �= β ≤ α} together 
with (3.4) and (3.5).

On the other hand,

(1 + |xj |)m|ψij (xj)(f ◦ ϕij )(α)(xj)|

= (1 + |xj |)m(1 + |ϕij (xj)|)m|ψij (xj)|
|ϕ(α)

ij ,k
(xj)|

(1 + |ϕij (xj)|)lj

≥ (1 + |xj |)m(1 + |ϕij (xj)|)m|ψij (xj)|
j√
d
.

Combining the above with (3.1), the boundedness of 
(
(1 + |xj |)m|ψ(β)

ij
(xj)(f ◦

ϕij )(α−β)(xj)|
)
j∈N for 0 �= β ≤ α, and Leibniz’ rule finally give

sup
i∈I

sup
x∈Rd

(1 + |x|)m|(ψi(f ◦ ϕi))(α)(x)| = ∞,

which completes the proof. �
Definition 3.2. For a smooth mapping ϕ : Rd → Rd a function ψ ∈ C∞(Rd) is said to be 
of small decay with respect to ϕ if there is m > 0 such that

inf
|x|≥m

(1 + |x|)m(1 + |ϕ(x)|)m|ψ(x)| > 0.

As an immediate consequence of the previous lemma we obtain the following result.

Theorem 3.3. Let ϕ : Rd → Rd be smooth and let ψ ∈ C∞(Rd) be of small decay with 
respect to ϕ. Then Cψ,ϕ acts on S (Rd) if and only if for each α ∈ Nd

0 and p > 0 there 
is q > 0 such that

sup
x∈Rd

(1 + |x|)p
(1 + |ϕ(x)|)q |ψ

(α)(x)| < ∞ and sup
x∈Rd

1
(1 + |ϕ(x)|)q |ϕ

(α)(x)| < ∞.

Proof. By Corollary 2.4 the conditions are sufficient for Cψ,ϕ to act on S (Rd) while 
Lemma 3.1 also implies necessity. �
4. Power boundedness and topologizability

In this section we study power boundedness and related properties for weighted com-
position operators Cψ,ϕ on S (Rd). For p > 0 and α ∈ Nd

0 , obviously

∀ f ∈ S (Rd) : ‖f‖p,α = sup (1 + |x|)p|f (α)(x)|

x∈Rd
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defines a continuous norm ‖ ·‖p,α on S (Rd) and the set of norms {‖ ·‖p,α : p > 0, α ∈ Nd
0}

defines the standard topology on S (Rd). Whenever we equip the vector space S (Rd)
only with the norm ‖ ·‖p,α we write Sp,α(Rd). Obviously, every continuous linear mapping 
from S (Rd) into itself is in particular a continuous linear mapping from S (Rd) into 
Sp,α(Rd).

Next, for a smooth mapping ϕ : Rd → Rd and n ∈ N we set ϕn := ϕ ◦ · · · ◦ϕ the n-th 
iteration of ϕ. Additionally, we set ϕ0(x) = x and for ψ ∈ C∞(Rd) and n ∈ N we define

ψn,ϕ(x) :=
n∏

j=1
ψ(ϕj−1(x)), x ∈ Rd.

In particular, ϕ1 = ϕ and ψ1,ϕ = ψ.

Lemma 4.1. Let I be a non-empty set, (ψi)i∈I ∈ C∞(Rd)I and let ϕi : Rd → Rd be 
smooth mappings, i ∈ I, such that the weighted composition operators Cψi,ϕi

act on 
S (Rd), i ∈ I.

(a) Let α ∈ Nd
0 and p > 0 be fixed. Then, the set of continuous linear mappings {Cψi,ϕi

:
i ∈ I} is equicontinuous from S (Rd) into Sp,α(Rd) if and only if for every λ ∈ Nd

0
with |λ| ≤ |α| there is q > 0 such that

sup
i∈I

sup
x∈Rd

(1 + |x|)p
(1 + |ϕi(x)|)q

∣∣∣Fϕi,ψi

α,λ (x)
∣∣∣ < ∞. (4.1)

(b) The set of continuous linear mappings {Cψi,ϕi
: i ∈ I} is equicontinuous on S (Rd)

if and only if for every α, λ ∈ Nd
0 with |λ| ≤ |α| and each p > 0 there is q > 0 such 

that (4.1) holds.

Proof. Clearly, (b) is a direct consequence of (a). In order to prove (a), since S (Rd) is a 
Fréchet space, by the Uniform Boundedness Principle equicontinuity of {Cψi,ϕi

: i ∈ I}
from S (Rd) into Sp,α(Rd) is equivalent to the boundedness of {Cψi,ϕi

f : i ∈ I} in 
Sp,α(Rd) for every f ∈ S (Rd). Thus, by Lemma 2.1 and (2.2), we obtain the claimed 
equivalence. �
Theorem 4.2. Let ϕ : Rd → Rd be a smooth mapping and let ψ ∈ C∞(Rd). Then, the 
following are equivalent.

(i) Cψ,ϕ acts on S (Rd) and is power bounded.
(ii) For all α, λ ∈ Nd

0 with |λ| ≤ |α| and each p > 0 there exists q > 0 such that

sup sup (1 + |x|)p
(1 + |ϕ (x)|)q

∣∣∣Fϕn,ψ
n,ϕ

α,λ (x)
∣∣∣ < ∞.
n∈N x∈Rd n
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Proof. Since Cn
ψ,ϕf = Cψn,ϕ,ϕn

f for every f ∈ S (Rd), n ∈ N, the assertion follows 
immediately from Theorem 2.2 and Theorem 4.1 (b). �
Remark 4.3. Using the same arguments as in Remark 2.5, by Theorem 4.2, for ψ ∈
OM (Rd) the corresponding multiplication operator Mψ is power bounded on S (Rd) if 
and only if for every γ ∈ Nd

0 there is r > 0 such that

sup
n∈N

sup
x∈Rd

(1 + |x|)−r
∣∣∣(ψn)(γ) (x)

∣∣∣ < ∞,

i.e. the sequence (ψn)n∈N is bounded in OM (Rd) (cf. [2, Theorem 4.3]).

Using Remark 2.6 as in the proof of Corollary 2.7 one obtains the following result.

Corollary 4.4. Let ψ, ϕ ∈ C∞(R), ϕ be real valued. Then, the following are equivalent.

(i) Cψ,ϕ acts on S (R) and is power bounded.
(ii) For all α, β, λ ∈ N0 with α ≥ β ≥ λ and for each p > 0 there is q > 0 such that

sup
n∈N

sup
x∈R

(1 + |x|)p
(1 + |ϕn(x)|)q

∣∣∣(ψn,ϕ)(α−β) (x)Bβ,λ

(
ϕ′
n(x), . . . , ϕ(β−λ+1)

n (x)
)∣∣∣ < ∞.

The next theorem follows immediately from Lemma 3.1 and Theorem 3.3.

Theorem 4.5. Let ϕ : Rd → Rd be a smooth mapping and let ψ ∈ C∞(Rd) be of small 
decay with respect to ϕ. Then, the following are equivalent.

(i) Cψ,ϕ acts on S (Rd) and is power bounded.
(ii) The following two conditions are satisfied:

(a) For all p > 0 and α ∈ Nd
0 there exists q > 0 such that

sup
n∈N

sup
x∈Rd

(1 + |x|)p
(1 + |ϕn(x)|)q |(ψ

n,ϕ)(α)(x)| < ∞.

(b) For all α ∈ Nd
0 there exists q > 0 such that

sup
n∈N

sup
x∈Rd

1
(1 + |ϕn(x)|)q |ϕ

(α)
n (x)| < ∞.

Remark 4.6. We observe that, arguing as in Corollary 2.3 and Corollary 2.4, the hypoth-
esis for ψ to be of small decay with respect to ϕ in Theorem 4.5 is only needed for the 
necessity of (b) in (ii). Condition (a) is necessary for the power boundedness of Cψ,ϕ

while (a) and (b) together are always sufficient conditions for the power boundedness of 
Cψ,ϕ whether ψ is of small decay with respect to ϕ or not.
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Remark 4.7. Obviously, ψ(x) ≡ 1 is of small decay with respect to every smooth ϕ :
Rd → Rd so that Theorem 4.5 is applicable to composition operators. Employing the 
same arguments as in Remark 2.8, we derive easily that the composition operator Cϕ

acts on S (Rd) and is power bounded if and only if it satisfies the two conditions

(a) there are k, l > 0 such that for every n ∈ N it holds |ϕn(x)| ≥ |x|k whenever |x| ≥ l, 
and

(b) for every α ∈ N0 there are C, q > 0 such that |ϕ(α)
n (x)| ≤ C(1 + |ϕn(x)|)q for every 

n ∈ N, x ∈ Rd.

For d = 1, this characterization has been obtained in [14, Proposition 3.9]. We observe, 
that when d = 1, then any polynomial ϕ with deg(ϕ) ≥ 2 satisfies condition (a) above. 
Indeed, this is easily obtained from lim|x|→∞

|ϕ(x)|
|x| = ∞. Combining this observation 

with [14, Theorem 3.11] we obtain that condition (b) above is satisfied if and only if 
deg(ϕ) ≥ 2 and ϕ has no fixed points (and hence the degree of ϕ is even).

Remark 4.8. Because S (Rd) is a Montel space, [8, Proposition 3.3] combined with [28, 
Theorem 2.5] yield that Cψ,ϕ as well as its transpose are uniformly mean ergodic when-
ever Cψ,ϕ is power bounded on S (Rd).

Example 4.9. In Example 2.9 we have already seen that for ψ = ϕ = exp the weighted 
composition operator Cexp,exp acts on S (R) although neither exp is a symbol for S (R)
nor exp ∈ OM (R). We will now show that Cexp,exp is even power bounded on S (R), and 
thus uniformly mean ergodic, by Remark 4.8. To do so, we first notice that

(ϕn)′ (x) = (ϕ′)n,ϕ (x) = ϕn,ϕ(x) = ϕ1(x)ϕ2(x) · · ·ϕn(x). (4.2)

Thus, by Corollary 4.4, Cexp,exp is power bounded on S (R) if for every p > 0 and α ∈ N0
there is q > 0 such that

sup
n∈N

sup
x∈R

(1 + |x|)p
(1 + |ϕn(x)|)q |(ϕ

n,ϕ)(α)(x)| < ∞ (4.3)

holds.
In order to prove (4.3), we show as a first step the following auxiliary inequality.

∀α ∈ N0 ∃nα ∈ N ∀n ≥ nα, x ∈ R : (ϕn,ϕ)(α)(x) ≤ ϕ1(x)(ϕn(x))2+α. (4.4)

In order to prove that (4.4) indeed holds true, we note that due to ϕ2,ϕ = ϕ1ϕ2 the 
inequality (4.4) holds for α = 0 and n = 2. Now, assume that the inequality (4.4) holds 
for α = 0 and some n ≥ 2. Then, since (ϕn(x))2 ≤ ϕn+1(x) for every x,

ϕn+1,ϕ(x) = ϕn,ϕ(x)ϕn+1(x) ≤ ϕ1(x)(ϕn(x))2ϕn+1(x) ≤ ϕ1(x)(ϕn+1(x))2
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so that (4.4) also holds for α = 0 and n + 1 proving the validity of (4.4) for α = 0 with 
n0 = 2.

In order to establish (4.4) for α = 1 we first provide some auxiliary estimates. As 
ϕ(x) = ex, for every n ≥ 1,

ϕn(x) = eϕn−1(x) =
∞∑
j=0

(ϕn−1(x))j

j! ,

so that

∀ j ∈ N0, n ∈ N, n ≥ 2, x ∈ R : (ϕn−1(x))j ≤ j!ϕn(x). (4.5)

Besides that, since for n ≥ 1 it holds ϕn(R) = (ϕn−1(0), +∞) we also have

∀n ≥ 5, x ∈ R : n ≤ ϕn−2(0) ≤ ϕn−1(x). (4.6)

For arbitrary C > 0 and j ∈ N, choosing N ≥ 5 so large that C(j + 2)! ≤ N , by (4.6)
and (4.5), it holds for all x ∈ R and n ≥ N ,

nC(ϕn−1(x))j = n(C(j + 2)!) (ϕn−1(x))j

(j + 2)! ≤ (ϕn−1(x))2 (ϕn−1(x))j

(j + 2)! ≤ ϕn(x). (4.7)

To show (4.4) for α = 1, we introduce Ψn(x) := 1 +ϕ1,ϕ(x) +· · ·+ϕn−1,ϕ(x). Applying 
(4.2) we then obtain

(ϕn,ϕ)′(x)

= (ϕ1 · · ·ϕn)′(x) = (ϕ1)′(x) · ϕ2(x) · · ·ϕn(x) + · · · + ϕ1(x) · · ·ϕn−1(x) · (ϕn)′(x)

= (ϕ1(x) · · ·ϕn(x))(1 + ϕ1(x) + · · · + ϕ1(x) · · ·ϕn−1(x))

= ϕn,ϕ(x)Ψn(x). (4.8)

By inequality (4.5) for j = 0, ϕn(x) ≥ 1 for every n ≥ 2, x ∈ R, implying ϕn,ϕ(x) ≤
ϕn+1,ϕ(x) for n ≥ 1, x ∈ R. Hence, Ψn(x) ≤ 1 + (n − 1)ϕn−1,ϕ(x), x ∈ R, n ∈ N. 
Applying (4.6), (4.4) for α = 0 and (4.7) for C = 2, j = 3 there is N ≥ 2 · 5! such that 
for all n ≥ N and all x ∈ R,

Ψn(x) ≤ 1 + (n− 1)ϕn−1,ϕ(x) ≤ 1 + ϕn−1(x)ϕn−1,ϕ(x) ≤ 1 + (ϕn−1(x))3

≤ 2(ϕn−1(x))3 ≤ ϕn(x).

Hence, by (4.8) and by (4.4) for α = 0, for all n ≥ N and all x ∈ R,

(ϕn,ϕ)′(x) = ϕn,ϕ(x)Ψn(x) ≤ ϕ1(x)(ϕn(x))3
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which proves (4.4) for α = 1.
Now, fix α ∈ N and assume that for all β < α there exists nβ ∈ N (without losing 

generality, nβ < nγ if β ≤ γ and β �= γ) such that (4.4) is satisfied, i.e.,

(ϕn,ϕ)(β)(x) ≤ ϕ1(x)(ϕn(x))2+β , x ∈ R, n ≥ nβ . (4.9)

We show (4.4) for α and nα, where nα ∈ N satisfies nα ≥ max{nβ ; β ≤ α, β �= α} + 1
and is such that for every x ∈ R and n ≥ nα

2α−1n(ϕn−1(x))α+2 ≤ ϕn(x), (4.10)

which is possible by (4.7). From (4.8) and Leibniz’ rule, for every n ≥ nα

(ϕn,ϕ)(α)(x) = (ϕn,ϕΨn)(α−1)(x) =
∑

β≤α−1

(
α− 1
β

)
(ϕn,ϕ)(β)(x)(Ψn)(α−1−β)(x). (4.11)

Moreover, by Leibniz’ rule, for all γ ∈ N0, j ∈ N, and x ∈ R,

(ϕj+1,ϕ)(γ)(x) = (ϕj,ϕ)(γ)(x)ϕj+1(x) +
∑
γ̃<γ

(
γ

γ̃

)
(ϕj,ϕ)(γ̃)(x)(ϕj+1)(γ−γ̃)(x)

≥ (ϕj,ϕ)(γ)(x)ϕj(0) ≥ (ϕj,ϕ)(γ)(x).

Applying the above inequality for j = 1, . . . , n − 2, by the choice of nα, using inequal-
ity (4.9), for every n ≥ nα, and taking in account ϕn−1(x) > 1 for all x ∈ R, we get for 
each β ≤ α− 1

(Ψn)(α−1−β)(x) = (1 + ϕ1,ϕ + · · · + ϕn−1,ϕ)(α−1−β)(x)

≤ dα−1−β

dxα−1−β
1 + (n− 1)(ϕn−1,ϕ)(α−1−β)(x)

≤ 1 + (n− 1)ϕ1(x)(ϕn−1(x))α−β+1

≤ (1 + ϕ1(x))n(ϕn−1(x))α−β+1

≤ ϕn−1(x)n(ϕn−1(x))α−β+1

≤ nϕn−1(x)α+2

≤ 1
2α−1ϕn(x). (4.12)

Thus, combining (4.9) with (4.11) and (4.12) for n ≥ nα, we conclude

(ϕn,ϕ)(α)(x) ≤ 1
2α−1

∑ (
α− 1
β

)
ϕ1(x)(ϕn(x))2+βϕn(x) ≤ ϕ1(x)(ϕn(x))2+α, x ∈ R.
β≤α−1
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The proof of (4.4) is complete.
In order to derive (4.3) from (4.4), let p > 0 and α ∈ N0 be fixed. Set q = p + 3 + α. 

Then, for n ≥ nα it follows for x ≥ 0

(1 + x)p

(1 + ϕn(x))p+3+α
(ϕn,ϕ)(α)(x) ≤ (1 + x)pϕ1(x)

(1 + ϕn(x))p+1 ≤ 1

while for x < 0 we have

(1 + |x|)p
(1 + ϕn(x))p+3+α

(ϕn,ϕ)(α)(x) ≤ (1 + |x|)pϕ1(x) ≤ sup
y≥0

(1 + y)p exp(−y) < ∞.

In the remainder of this section, we deal with (m-)topologizability of weighted com-
position operators on S (Rd).

Proposition 4.10. Let ϕ : Rd → Rd be a smooth mapping and let ψ ∈ C∞(Rd). Then, 
the following are equivalent.

(i) Cψ,ϕ acts on S (Rd) and is topologizable (m-topologizable).
(ii) For all α, λ ∈ Nd

0 with |λ| ≤ |α| and each p > 0 there exists q > 0 such that

∀n ∈ N : sup
x∈Rd

(1 + |x|)p
(1 + |ϕn(x)|)q

∣∣∣Fϕn,ψ
n,ϕ

α,λ (x)
∣∣∣ < ∞ (< Mn for some M > 0).

Proof. We only prove the assertion for topologizability. The proof for m-topologizability 
is done by the same argument with obvious modifications.

By definition, Cψ,ϕ is topologizable on S (Rd) if and only if for every p > 0 and α ∈ Nd
0

there is a sequence (an)n∈N in (0, ∞) such that {anCn
ψ,ϕ : n ∈ N} is equicontinuous 

from S (Rd) into Sp,α(Rd). Since anCn
ψ,ϕ = Canψn,ϕ,ϕn

, n ∈ N, by Lemma 4.1 (a), Cψ,ϕ

is topologizable precisely, when for every α ∈ Nd
0 and p > 0 there is (an)n∈N in (0, ∞)

such that for each λ ∈ Nd
0 with |λ| ≤ |α| there is q > 0 with

sup
n∈N

sup
x∈Rd

(1 + |x|)p
(1 + |ϕn(x)|)q

∣∣∣anFϕn,ψ
n,ϕ

α,λ (x)
∣∣∣ < ∞,

where we have used that Fϕn,anψ
n,ϕ

α,λ (x) = anF
ϕn,ψ

n,ϕ

α,λ (x), x ∈ Rd. Since the number of 
λ ∈ Nd

0 with |λ| ≤ |α| is finite, the latter property is easily seen to be equivalent to (ii) 
which proves the Proposition. �
Remark 4.11.

(i) Again, using Remark 2.6 as in the proof of Corollary 2.7, for d = 1 a weighted 
composition operator Cψ,ϕ on S (R) is topologizable, respectively m-topologizable, 
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if and only if for all α, β, λ ∈ N0 with α ≥ β ≥ λ and for each p > 0 there is q > 0
such that

∀n ∈ N : sup
x∈R

(1 + |x|)p
(1 + |ϕn(x)|)q

∣∣∣(ψn,ϕ)(α−β) (x)Bβ,λ

(
ϕ′
n(x), . . . , ϕ(β−λ+1)

n (x)
)∣∣∣ < ∞,

respectively if and only if for all α, β, λ ∈ N0 with α ≥ β ≥ λ and for each p > 0
there are M, q > 0 such that

∀n ∈ N : sup
x∈R

(1 + |x|)p
(1 + |ϕn(x)|)q

∣∣∣(ψn,ϕ)(α−β) (x)Bβ,λ

(
ϕ′
n(x), . . . , ϕ(β−λ+1)

n (x)
)∣∣∣ ≤ Mn.

For the special case ψ = 1, similar as in Remark 2.8, the above characterizations of 
(m-)topologizablity simplify to the two conditions
– there is k > 0 such that for each n ∈ N there is rn > 0 such that |ϕn(x)| ≥ |x|1/k

for all |x| ≥ rn, and
– for every α ∈ N there is q > 0 (resp. there are M, q > 0) with supx∈R

|ϕ(α)
n (x)|

(1+|ϕn(x)|)q <

∞ (resp. supx∈R
|ϕ(α)

n (x)|
(1+|ϕn(x)|)q ≤ Mn) for every n ∈ N.

(ii) Similarly as in Remark 4.3, by Proposition 4.10, for ψ ∈ OM (Rd) the corresponding 
multiplication operator Mψ is (m-)topologizable on S (Rd) if and only if for every 
γ ∈ Nd

0 there is r > 0 (resp. there are M, r > 0) such that

∀n ∈ N : sup
x∈Rd

(1 + |x|)−r
∣∣∣(ψn)(γ) (x)

∣∣∣ < ∞,

respectively

∀n ∈ N : sup
x∈Rd

(1 + |x|)−r
∣∣∣(ψn)(γ) (x)

∣∣∣ ≤ Mn

Analogously to the proof of Theorem 4.5, we can characterize topologizability and 
m-topologizability in a much more operable way.

Theorem 4.12. Let ϕ : Rd → Rd be a smooth mapping and let ψ ∈ C∞(Rd) be of small 
decay with respect to ϕ. Then, the following are equivalent.

(i) Cψ,ϕ acts on S (Rd) and is topologizable (m-topologizable).
(ii) The following two conditions are satisfied:

(a) For all p > 0 and α ∈ Nd
0 there exists q > 0 such that, for all n ∈ N

sup (1 + |x|)p
(1 + |ϕ (x)|)q |(ψ

n,ϕ)(α)(x)| < ∞ (< Mn for some M > 0).

x∈Rd n
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(b) For all α ∈ Nd
0 there exists q > 0 such that, for all n ∈ N

sup
x∈Rd

1
(1 + |ϕn(x)|)q |ϕ

(α)
n (x)| < ∞ (< Mn for some M > 0).

Remark 4.13. Condition (a) in Theorem 4.12 is necessary for Cψ,ϕ to be topologiz-
able (m-topologizable) without the assumption that ψ is of small decay with respect 
to ϕ. Additionally, conditions (a) and (b) are always sufficient for topologizability (m-
topologizability) of Cψ,ϕ.

Example 4.14. Fix ψ ≡ 1. From Remark 4.11(i), observe that if ϕ is a polynomial, then 
Cϕ : S (R) → S (R) is topologizable if and only if Cϕ is well defined if and only if 
deg(ϕ) ≥ 1. On the other hand, for ϕ(x) = x + 1, x ∈ R, n ∈ N, p ≥ 1 it holds

sup
x∈R

(1 + |x|)p
(1 + |ϕn(x)|)p = sup

x∈R

(
1 + |x|

1 + |x + n|

)p

= (1 + | − n|)p ≤ (2p)n.

Hence condition (a) in Theorem 4.12 is satisfied. Since condition (b) in Theorem 4.12
is trivially satisfied, the corresponding composition operator, the so-called translation 
operator Cx+1, is m-topologizable but not power bounded, because by the same com-
putation as above it does not satisfy condition (a) of Theorem 4.5, as observed in [14, 
Remark 2].

Example 4.15. Let ϕ : R → R, ϕ(x) = ax + b, a, b ∈ R, a /∈ {0, 1}. Then Cϕ is m-
topologizable. In fact, it follows from Theorem 4.12 and

lim
n

1
|a|n sup

x∈R

1 + |x|
1 +

∣∣∣anx + b(1−an)
1−a

∣∣∣ = |b|
|a− 1| , if |a| > 1

and

lim
n

|a|n sup
x∈R

1 + |x|
1 +

∣∣∣anx + b(1−an)
1−a

∣∣∣ = max
{

1, |b|
|1 − a|

}
, if 0 < |a| < 1.

Finally, for a = −1, we have C2
ϕ = idS (R).

Example 4.16. Let ϕ(x) =
√

1 + x2, and let ψ be a fixed non-null polynomial, which 
is of small decay with respect to ϕ. Then Cϕ : S (R) → S (R) is power bounded 
by [14, Example 2]. We show that for Cψ,ϕ : S (R) → S (R) topologizable and m-
topologizability are equivalent and that this holds precisely when ψ is constant. Moreover, 
Cψ,ϕ : S (R) → S (R) is power bounded if, and only, if ψ ≡ c for some |c| ≤ 1.

Indeed, since Cϕ is power bounded, by Remark 4.7 and Theorem 4.12, (m-
)topologizability of Cψ,ϕ is equivalent to condition (a) from Theorem 4.12 (ii).
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Hence, if ψ ≡ c ∈ C, condition (a) for m-topologizability from Theorem 4.12 (ii) 
holds.

On the other hand, if deg(ψ) ≥ 1, for every q ∈ N, we find n = q + 1 so that

sup
x∈R

|ψn,ϕ(x)|
(1 + |ϕn(x)|)q = sup

x∈R

|ψ(x)ψ(ϕ(x)) · · ·ψ(ϕn−1(x))|
(1 +

√
n + x2)q

= ∞,

since the numerator has degree n · deg(ψ) = (q + 1) · deg(ψ) and the denominator, q. 
Therefore Cψ,ϕ is not topologizable (and not power bounded).

Finally, fix ψ ≡ c. If |c| ≤ 1, then, Cψ,ϕ is power bounded. Otherwise, for all q > 0,

sup
n∈N

sup
x∈R

|ψn,ϕ(x)|
(1 + |ϕn(x)|)q = sup

n∈N
sup
x∈R

|ψ(x)ψ(ϕ(x)) · · ·ψ(ϕn−1(x))|
(1 +

√
n + x2)q

≥ sup
n∈N

cn

(1 +
√
n)q

= ∞,

so Cψ,ϕ is not power bounded.

5. Power boundedness of weighted composition operators for polynomials

5.1. Power boundedness of Cψ,ϕ on S (R) for ϕ(x) = ax + b

In this subsection we study univariate polynomials of degree one. For a ∈ R\{0}, b ∈
R, as is well known, and may be checked by Remark 2.8, ϕ(x) = ax + b is a symbol for 
S (R). For the special case ϕ(x) = x the composition operator Cψ,ϕ is the multiplication 
operator Mψ. Power boundedness of multiplication operators in one variable has been 
characterized by Albanese and Mele (cf. Remark 4.3). Furthermore, from the fact that, 
for any locally convex space E, a continuous linear operator T ∈ L(E) is power bounded 
if and only if T 2 is, the next proposition follows immediately.

Proposition 5.1. Let ϕ(x) = −x + b and ψ ∈ OM (R). The composition operator Cψ,ϕ is 
power bounded if and only if ((ψ · (ψ ◦ ϕ))n)n∈N is a bounded sequence in OM (R).

By the same argument as in the corresponding part of Example 4.16, we derive the 
next proposition.

Proposition 5.2. Let ϕ : R → R, x �→ ax + b, a, b ∈ R, a �= 0, and let ψ ∈ C∞(R) be a 
non constant polynomial. Then Cψ,ϕ is not topologizable.

Proposition 5.3. Let ϕ : R → R, x �→ x + b, b ∈ R \ {0} and let ψ ∈ C∞(R) be a 
polynomial. Then Cψ,ϕ is power bounded if and only if there is c ∈ C, |c| < 1 such that 
ψ(x) = c for all x ∈ R. In this case, the sequence (Cn

ψ,ϕ) is convergent to 0 in Lb(S (R)).

Proof. Without loss of generality, we assume ψ �= 0. Since ψ is a polynomial it is of 
small decay with respect to ϕ. Condition (b) of Theorem 4.5 (ii) is trivially satisfied.
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Assume that Cψ,ϕ is power bounded. By Proposition 5.2 ψ has to be constant, ψ = c. 
In case of |c| = 1 we know that Cϕ is not power bounded [14, Remark 2]. Additionally, 
by condition (a) in Theorem 4.5 (ii), for some q > 0 we have

∞ > sup
n∈N

sup
x∈R

|c|n (1 + |x|)
(1 + |ϕn(x)|)q ≥ sup

n∈N
|c|n(1 + |bn|)

which implies |c| < 1. Therefore, the sequence (Cn
ψ,ϕ) of iterates is clearly pointwise con-

vergent to 0 and because S (R) is a Montel space, we conclude that (Cn
ψ,ϕ) is convergent 

to 0 in Lb(S (R)).
On the other hand, if ψ is constant, ψ = c with |c| < 1, for p > 0 we have

sup
n∈N

sup
x∈R

|c|n (1 + |x|)p
(1 + |ϕn(x)|)p = sup

n∈N
sup
x∈R

|c|n
(

1 + |x|
1 + |x + nb|

)p

≤ sup
n∈N

|c|n(1 + |bn|) < ∞

so that Cψ,ϕ is power bounded by Theorem 4.5. �
Proposition 5.4. Let ϕ : R → R, x �→ ax +b, a, b ∈ R, |a| /∈ {0, 1} and let ψ be a non-null 
polynomial. Then Cψ,ϕ is not power bounded. In case |a| > 1, Cψ,ϕ is not power bounded 
for every ψ ∈ C∞(R) which is of small decay with respect to ϕ.

Proof. We first consider the case |a| > 1. Let x0 = −b
a−1 be the unique fixed point of ϕ. 

We have

|ϕ′
n(x0)|

1 + |ϕn(x0)|
= |a|n

1 + |x0|
.

Hence, condition (b) from Theorem 4.5 (ii) does not hold.
Assume now |a| < 1 and ψ to be a non-null polynomial. By Proposition 5.2 we can 

reduce to the case ψ(x) = c, with c ∈ C\{0}. Since Cψ,ϕ is power bounded if and only 
if C2

ψ,ϕ is, we can assume 0 < a < 1. Let p ≥ 1 such that ap < |c|. On account of 
ϕn(x) = anx + b1−an

1−a , for each q ≥ p, we have

sup
n∈N

sup
x∈R

(1 + |x|)p
(1 + |ϕn(x)|)q |c|

n ≥ sup
n∈N

(
1 + 1

an

)p
(1 + |ϕn

( 1
an

)
|)q

|c|n

≥ sup
n∈N

(
|c|
ap

)n 1(
1 +

∣∣∣1 + b1−an

1−a

∣∣∣)q = ∞.

By Theorem 4.5, Cψ,ϕ is not power bounded. �
5.2. Power boundedness of Cψ,ϕ with ϕ being a polynomial with deg(ϕ) ≥ 2

The main purpose of the current subsection is to prove Theorem 5.10 below which 
completements Proposition 5.4 with a statement for polynomial ϕ of degree larger than 
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one. For this, we first observe that Theorem 4.5 and Remark 4.7 immediately yield the 
following result.

Proposition 5.5. Let ϕ : Rd → Rd be a symbol for S (Rd) such that there exists k, l > 0
such that |ϕn(x)| ≥ |x|k when |x| ≥ l, n ∈ N, and let ψ ∈ C∞(Rd) be of small decay 
with respect to ϕ. If Cψ,ϕ acts on S (Rd) and is power bounded then Cϕ is also power 
bounded on S (Rd).

Lemma 5.6. Let ϕ : Rd → Rd be a symbol for S (Rd) such that Cϕ is power bounded. 
Additionally, assume that |ϕn|2 = o(|ϕn+1|) uniformly as n → ∞, i.e.

∀ε > 0 ∃N ∈ N ∀n ≥ N,x ∈ Rd : |ϕn(x)|2 ≤ ε|ϕn+1(x)|.

(i) There is k ≥ 0 such that for every ψ ∈ OM (Rd) and m ∈ N0 there are Mm, q′m > 0
such that for every β ∈ Nd

0 with |β| ≤ m it holds

sup
n∈N

sup
|x|≥k

|(ψn,ϕ)(β)(x)| ≤ Mm(1 + |ϕn(x)|)q′m . (5.1)

(ii) Assume that

∃n0 ∈ N, c > 0 ∀n ≥ n0, x ∈ Rd : |ϕn(x)| ≥ c. (5.2)

Then, for every ψ ∈ OM (Rd) and m ∈ N0 there are Mm, q′m > 0 such that for every 
β ∈ Nd

0 with |β| ≤ m it holds

sup
n≥n0

sup
x∈Rd

|(ψn,ϕ)(β)(x)| ≤ Mm(1 + |ϕn(x)|)q′m . (5.3)

Proof. Since Cϕ is power bounded, by Remark 4.7

∃k ≥ 0 ∀|x| ≥ k, n ∈ N : |ϕn(x)| ≥ 1. (5.4)

Before we continue, we need to establish the auxiliary estimate (5.5) below. For this, 
we recall that for β ∈ Nd

0 we have

(ψ ◦ ϕn)(β)(x) =
∑
λ∈Nd

0
0≤|λ|≤|β|

ψ(λ)(ϕn(x))
∑

p(β,λ)

β!
|β|∏
j=1

(ϕ(�j)
n (x))kj

kj !(�j !)|kj |
.

As ψ ∈ OM (Rd), for all λ ∈ Nd
0 there exist Cλ, qλ > 0 such that

|ψ(λ)(ϕn(x))| ≤ Cλ(1 + |ϕn(x)|)qλ , x ∈ Rd, n ∈ N.
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The power boundedness of Cϕ and Remark 4.7 (b) thus imply

∀β ∈ Nd
0 ∃C ′

β , q
′
β ∀n ∈ N, x ∈ Rd : |(ψ ◦ ϕn)(β)(x)| ≤ C ′

β(1 + |ϕn(x)|)q′β .

Now, let us fix m ∈ N0. Combining the above with (5.4), we obtain the existence of 
Cm, qm ≥ 1 such that

∀β ∈ Nd
0 , |β| ≤ m,n ∈ N, |x| ≥ k : |(ψ ◦ ϕn)(β)(x)| ≤ Cm|ϕn(x)|qm . (5.5)

Next, we fix n1 ∈ N large enough such that

∀n ≥ n1, x ∈ Rd : max{3, 22mC2
m}|ϕn(x)|2 ≤ |ϕn+1(x)|.

From the continuity of Cn
ψ,ϕ = Cψn,ϕ,ϕn

and Corollary 2.3 we obtain the existence of 
Mm, q′m > 0 with qm ≤ q′m such that

∀β ∈ Nd
0 , |β| ≤ m, 1 ≤ n ≤ n1, |x| ≥ k : |(ψn,ϕ)(β)(x)| ≤ Mm(1 + |ϕn(x)|)q′m . (5.6)

Therefore, for β ∈ Nd
0 with |β| ≤ m and x ∈ Rd with |x| ≥ k we conclude

|(ψn1+1,ϕ)(β)(x)| = |(ψn1,ϕ · (ψ ◦ ϕn1))(β)(x)|

≤
∑
γ≤β

(
β

γ

) ∣∣∣(ψn1,ϕ)(γ) (x)
∣∣∣ · ∣∣∣(ψ ◦ ϕn1)

(β−γ) (x)
∣∣∣

≤ Mm(1 + |ϕn1(x)|)q′m
∑
γ≤β

(
γ

β

)
Cm|ϕn1(x)|qm

= Mm((1 + |ϕn1(x)|)2)q′m/22mCm(|ϕn1(x)|2)qm/2

≤ Mm(1 + 3|ϕn1(x)|2)q′m/2(22mC2
m|ϕn1(x)|2)qm/2

≤ Mm(1 + |ϕn1+1(x)|)q′m/2|ϕn1+1(x)|qm/2

≤ Mm(1 + |ϕn1+1(x)|)q′m

where we have also used that 2|ϕn1(x)| ≤ 2|ϕn1(x)|2 for |x| ≥ k, and 1 ≤ qm ≤ q′m. Thus, 
(5.6) not only holds for 0 ≤ n ≤ n1 but also for n = n1 + 1. Proceeding recursively, we 
conclude

∀β ∈ Nd
0 , |β| ≤ m,n ∈ N0, |x| ≥ k : |(ψn,ϕ)(β)(x)| ≤ Mm(1 + |ϕn(x)|)q′m ,

i.e. (5.1) which proves (i).
Assume that (5.2) holds. Refering to this additional hypothesis instead of (5.4), the 

same arguments which led to (5.5) yield

∀β ∈ Nd
0 , |β| ≤ m,n ≥ n0, x ∈ Rd : |(ψ ◦ ϕn)(β)(x)| ≤ Cm|ϕn(x)|qm . (5.7)
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With the aid of (5.7) in place of (5.5), the validity of (5.3) is derived with the same 
arguments as (5.1). This proves (ii). �

Remark 5.7. Let ϕ : Rd → Rd be a symbol for S (Rd) such that Cϕ is power bounded. 
Assume that |ϕ(x)| > 0 for each x ∈ Rd. Then condition (5.2) holds. Indeed, by Re-
mark 4.7 there is k > 0 such that |ϕ(x)| ≥ k1/k whenever |x| ≥ k. Since |ϕ| has no zeros 
and {x : |x| ≤ k} is compact, there is c > 0 such that |ϕ(x)| ≥ c, x ∈ Rd. In particular, 
|ϕ| ≥ c on each of the sets ϕn−1(R), n ∈ N, which shows that (5.2) holds true.

Moreover, in case of d = 1, the additional hypothesis (5.2) is automatically satisfied 
for every polynomial ϕ : R → R for which Cϕ is power bounded on S (R) without fixed 
points and deg(ϕ) ≥ 2. Indeed, we have either ϕ(x) > x for each x ∈ R or ϕ(x) < x

for each x ∈ R. In particular, limn→∞ |ϕn(x)| = ∞ for every x ∈ R. By Remark 4.7, 
there is k > 0 such that |ϕn(x)| ≥ k1/k for each x ∈ R\[−k, k] and every n ∈ N. We 
now consider the case ϕ(x) > x, x ∈ R. The arguments for the case ϕ(x) < x, x ∈ R, 
are mutatis mutandis the same. In particular, (ϕn(x))n∈N is strictly increasing for each 
x ∈ R. Additionally, for each x ∈ [−k, k] there is nx ∈ N such that ϕn(x) > k1/k for all 
n ≥ nx. For every x ∈ [−k, k], let δx > 0 be such that ϕnx

(y) > k1/k for every y ∈ R

with |x − y| < δx. Since [−k, k] is compact and the sequences (ϕn(x))n∈N , x ∈ [−k, k], 
are strictly increasing, there is n0 ∈ N such that ϕn(x) ≥ k1/k for all x ∈ [−k, k] and 
n ≥ n0. We conclude that (5.2) is true.

Combining Remark 4.7, Remark 4.6, Lemma 5.6, and Remark 5.7, we immediately 
derive the following result.

Theorem 5.8. Let ϕ : Rd → Rd be a symbol for S (Rd) such that |ϕn|2 = o(|ϕn+1|)
uniformly as n → ∞. Moreover, assume that there is n0 such that |ϕn0(x)| > 0 for each 
x ∈ Rd. Then, the following are equivalent.

(i) Cϕ is power bounded on S (Rd).
(ii) Cψ,ϕ is power bounded on S (Rd) for every ψ ∈ OM (Rd) and/or for every smooth 

ψ of small decay with respect to ϕ.

In order to strengthen the above theorem in case d = 1 we first prove another auxiliary 
result.

Proposition 5.9. Let E be a Montel locally convex space and let T ∈ L(E).

(i) If λT is power bounded for some λ > 1, then (Tn)n∈N is convergent to 0 in Lb(E).
(ii) If 

( 1
nk T

n
)
n∈N is bounded in Lb(E) for some k > 0, then λT is power bounded for 

every λ ∈ (0, 1).
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Proof. If λ > 1 and (λnTn(x))n∈N is bounded in E for every x ∈ E then (Tn(x))n∈N
is convergent to 0 for every x ∈ E, and this is equivalent to (Tn)n is convergent to 0 in 
Lb(E) since (Tn)n∈N is equicontinuous and E is Montel. This proves (i). To prove (ii), 
we proceed by contradiction. Let 0 < λ < 1 and let x ∈ E and let p be a continuous 
seminorm on E such that (λnp(Tn(x)))n∈N is unbounded. For every k > 0, λn < 1

nk

eventually, hence 
( 1
nk p(Tn(x))

)
n∈N is also unbounded. �

We can finally prove the main theorem of this subsection which complements Sec-
tion 5.1. Note that polynomials ϕ : R → R with deg(ϕ) ≥ 2 are symbols for S (R) by 
Remark 2.8.

Theorem 5.10. Let ϕ : R → R be a polynomial with deg(ϕ) ≥ 2. The following are 
equivalent.

(a) ϕ does not have fixed points (hence, ϕ is of even degree).
(b) Cϕ is power bounded on S (R).
(c) Cϕ is (uniformly) mean ergodic on S (R).
(d)

(
Cn

ϕ

)
n∈N converges to 0 in Lb(S (R)).

(e) Cϕ is Cesàro bounded on S (R), i.e. the sequence ( 1
n

∑n
m=1 C

m
ϕ )n∈N is bounded in 

Lb(S (R)).
(f) Cψ,ϕ is power bounded on S (R) for every ψ ∈ OM (R) and/or for every smooth ψ

of small decay with respect to ϕ.
(g) (Cn

ψ,ϕ)n∈N is convergent to 0 in Lb(S (R)) for every ψ ∈ OM (R) and/or for every 
smooth ψ of small decay with respect to ϕ.

(h) (Cn
ψ,ϕ)n∈N is (uniformly) mean ergodic on S (R) for every ψ ∈ OM (R) and/or for 

every smooth ψ of small decay with respect to ϕ.

Proof. The equivalence among (a), (b), and (c) is [14, Theorem 3.11] (combined with [28, 
Theorem 2.5(b)]), and (d) is equivalent to (b) due to [14, Corollary 3.12]. Clearly (b) im-
plies (e). If we assume (e), then 

( 1
nC

n
ϕ

)
is bounded in Lb(S (R)), and Proposition 5.9(ii) 

yields that Cψ0,ϕ is power bounded for ψ0(x) = 1
2 . Proposition 5.5 implies that Cϕ is 

power bounded and (e) implies (b). The equivalence (b) and (f) holds by Theorem 5.8. 
Trivially, (g) implies (b), and if (f) is satisfied, then C2ψ,ϕ = 2Cψ,ϕ is power bounded, 
and (g) follows by Proposition 5.9(i). This shows that (a) to (g) are equivalent. Finally, 
(f) implies (h) by [8, Proposition 3.3] and [28, Theorem 2.5(b)] while (h) implies (e) by 
[28, Theorem 2.5(b)]. �
Remark 5.11. Besides extending the results about composition operators on S (R) from 
[14,15] to weighted composition operators, showing that the ergodic properties rely only 
on the symbol, Theorem 5.10 also improves [14, Theorem 3.11 and Corollary 3.12] for 
composition operators, by showing that Cesàro boundedness and mean ergodicty are 
equivalent for composition operators. Analyzing the proof, we can even replace the prop-
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erty of Cesàro boundedness in condition (e) by the boundedness of 
( 1
nkCϕn

)
in Lb(S (R))

for some k > 0.

6. Supercyclicity of weighted composition operators with ϕ being a univariate 
polynomial

In this short section we use the ideas of Lemma 5.6 in order to prove the next result 
which complements the results from [20].

Proposition 6.1. Let ϕ : R → R be a polynomial such that Cψ,ϕ is weakly supercyclic for 
some ψ ∈ OM (R). Then ϕ(x) = x + b with b �= 0.

Proof. If ψ(x0) = 0 for some x0 ∈ R then Cψ,ϕ(S (R)) ⊆ Ker(δx0), and Cψ,ϕ can-
not be weakly supercyclic. If ϕ(x0) = ϕ(x1) for some x0 �= x1 then Cψ,ϕ(S (R)) ⊆
Ker(ψ(x0)

ψ(x1)δx1 − δx0), and again we conclude that Cψ,ϕ is not weakly supercyclic. Hence 
Cψ,ϕ is not weakly supercyclic if ϕ has even degree. If ϕ is constant, the range of Cψ,ϕ

is the span of ψ, and again Cψ,ϕ is not weakly supercyclic.
When ϕ(x) = ax + b and a �= 1, a �= 0, then for x0 := − b

a , if we denote by X the 

linear span of {δx0 , δ
(1)
x0 } ⊆ S (R)′, satisfies C ′

ψ,ϕ(X) ⊆ X, and the matrix representing 

the restriction of C ′
ψ,ϕ to X in the basis {δx0 , δ

(1)
x0 } is

(
ψ(x0) ψ′(x0)

0 aψ(x0)

)
.

Since a �= 1 we conclude that C ′
ψ,ϕ has two eigenvalues, and then Cψ,ϕ is not weakly 

supercyclic by [3, Proposition I.26].
When ϕ(x) = x, Cψ,ϕ is a multiplication operator with {δx : x ∈ R} being eigenvec-

tors of C ′
ψ,ϕ, and again we conclude by [3, Proposition I.26] that Cψ,ϕ cannot be weakly 

supercyclic. If ϕ has two fixed points again the same argument applies.
To finish, we have to conclude that Cψ,ϕ is not weakly supercyclic when ϕ is a poly-

nomial of odd degree bigger or equal than 3 with only one fixed point a and ψ(x) �= 0 for 
any x ∈ R. We proceed by contradiction. Since non null multiples of weakly supercyclic 
operators are weakly supercyclic, we can assume ψ(x0) = 1. Under these hypotheses, 
there is k > |a| such that |x| ≥ k implies |ϕ(x)| > |x| and |ϕn(x)|2 < |ϕn+1(x)| for all 
n ∈ N. Let M, q > 0 such that |ψ(x)| ≤ M |x|q for |x| > k. We argue as in Lemma 5.6 to 
get |ψn,ϕ(x)| ≤ M |ϕn(x)|q for all |x| > k. From [3, Proposition I.26] we get that Cψ,ϕ

restricted to Ker(δa) is weakly hypercyclic, and, for any |x| > k and f ∈ Ker(δa), being 
a hypercyclic vector

|Cn
ψ,ϕf(x)| = |ψn,ϕ(x)| · |f(ϕn(x))| ≤ M |ϕn(x)|q|f(ϕn(x))| ≤ M sup |x|q|f(x)|,
x∈R
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and this supremum is finite since f ∈ S (R), which is a contradiction with the assumption 
that f is a weakly hypercyclic vector. �

For the translation operator, i.e. Cϕ with ϕ(x) = x + 1, we refer the reader to [20] for 
sufficient conditions on ψ ∈ OM (R) for Cψ,ϕ to be weakly supercyclic on S (R) as well 
as for other linear dynamical properties for these operators.
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