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Matching algorithms can be used for identifying errors in quantum systems, being the
most famous the Blossom algorithm. Recent works have shown that small distance quan-
tum error correction codes can be efficiently decoded by employing machine learning tech-
niques based on neural networks (NN). Various NN-based decoders have been proposed
to enhance the decoding performance and the decoding time. Their implementation differs
in how the decoding is performed, at logical or physical level, as well as in several neu-
ral network related parameters. In this work, we implement and compare two NN-based
decoders, a low level decoder and a high level decoder, and study how different NN pa-
rameters affect their decoding performance and execution time. Crucial parameters such
as the size of the training dataset, the structure and the type of the neural network, and
the learning rate used during training are discussed. After performing this comparison,
we conclude that the high level decoder based on a Recurrent NN shows a better balance
between decoding performance and execution time and it is much easier to train. We then
test its decoding performance for different code distances, probability datasets and under
the depolarizing and circuit error models.

Quantum computers are a promising solu-
tion to a class of complex problems that clas-
sical supercomputers cannot currently solve or
require an immensely large amount of time to
solve. However, since quantum computing is
still in its early stages, classical computers are
still the driving force, using the prototypes of
quantum computers as accelerators for specific
applications.

In the recent past, there is an increasing
dominance of heterogeneous, multi-core archi-
tectures with multiple processors. In such ar-
chitectures, a classical core processor interacts
with different co-processors such as Graphics
Processing Units (GPUs), Field Programmable
Gate Arrays (FPGAs), Tensor Processing Units
(TPUs) and in this case a quantum processor.
Such a quantum processor requires both clas-
sical and quantum computing components, be-
cause it needs a lot of monitoring and control
from the classical part. Typically, when devel-
oping such an architecture, one has to develop
a full stack going from algorithms up to the chip
implementation.

Figure 1 provides an overview of the quan-
tum system stack consisting of the following
layers [1]:
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FIG. 1. Overview of the quantum computer system
stack

� The top layers involve the quantum algo-
rithms alongside the language constructs
and compilers that are required to gener-
ate a series of instructions that belong to
the Quantum Instruction Set Architecture
(QISA).

� The micro-architecture layer translates
these instructions into pulses to operate
in the quantum chip. These pulses are
sent through the quantum to classical in-
terface.

� As can be seen by the 3rd dimension
of Figure 1, quantum error correction
(QEC) is a key part when building a fault-
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tolerant quantum accelerator and it af-
fects several layers of the stack, including
the micro-architecture.

As shown in Figure 2, different micro-
architectural blocks are required to keep track
of the errors and identify the location and type
of these errors such as the Decoding block and
the Pauli frame unit. In this work, we focus on
the Decoder logic block of Figure 2 that is part
of the QEC process, as we will explain in the
next paragraphs.

Constant active quantum error correction is
regarded as necessary in order to perform reli-
able quantum computation and storage due to
the unreliable nature of current quantum tech-
nology. Qubits inadvertently interact with their
environment even when no operation is ap-
plied, forcing their state to change (decohere).
Moreover, application of imperfect quantum
gates results in the introduction of errors in the
quantum system. Quantum error correction is
the mechanism that reverses these errors and
restores the state to the desired one.

Quantum error correction involves an en-
coding and a decoding process. Encoding is
used to enhance protection against errors by
employing more resources (qubits). In this pa-
per, we limit ourselves to surface code encod-
ing [3, 4]. Decoding is the process that is used
to identify the location and type of error that
occurred. As part of quantum error correction,
decoding has a limited time budget that is de-
termined by the time of a single round of error
correction. In the case that the decoding time
exceeds the time of quantum error correction,
either the quantum operations are stalled or a
backlog of inputs to the decoding algorithm is
created [5]. Many classical decoding algorithms
have been proposed with the most widely used
being the Blossom decoder [6]. Blossom has
been shown to reach high decoding accuracy,
but its execution time scales polynomially with
the number of qubits [7], which can be prob-
lematic for large quantum systems needed to
solve complex problems. However, there are
optimized versions of Blossom for topological
codes, that report linear scaling with the num-
ber of qubits [8] and even a parallel version stat-

ing that the average processing time per detec-
tion round is constant independent of the size of
the system [9]. Also, there exist other decoders
like the union find decoder that is presented
in [10], which report an almost linear scaling
of the execution time as the quantum system
increases linearly. In addition, Blossom’s exe-
cution time also depends on the physical error
rate. Blossom performs a Minimum Weight Per-
fect Matching (MWPM) on a graph that is cre-
ated based on the amount of errors that have
been generated and detected. Then, higher er-
ror rates lead to bigger graphs and longer ex-
ecution time. In this case, the execution time
scales polynomially with the physical error rate.

An alternative to classical decoders is to use
a neural network for identifying errors. They
exhibit constant execution time with the physi-
cal error rate and their execution time scales lin-
early with the linear increase of the number of
qubits. Also, they have been proven to provide
better decoding performance than many clas-
sical decoding algorithms [11–17]. Note that,
most of neural network based decoders use the
neural network as a probability distribution,
however there exist decoders that create an ex-
act mapping between belief propagation and
deep neural networks, as presented in [18].

Neural network based decoder implementa-
tions differ in how the neural network performs
the decoding, the type and structure of the net-
work, the amount of samples used for training
and many other aspects. Therefore, their decod-
ing performance and their reported execution
time also differs depending on the implemen-
tation choices that were made.

The contributions of this paper can be sum-
marized as follows:

1. So far, there is no thorough compari-
son made between different neural net-
work based decoders under the same
conditions. In this paper, we have im-
plemented two different NN-based de-
coders, namely the high level and low
level decoder, and analyzed their de-
coding performance and execution time
while exploring different NN parame-
ters. We show that the high level decoder
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FIG. 2. Overview of the quantum micro-architecture [2]

exhibits constant execution time regard-
less of the physical error rate and scales
linearly with the linear increase of the
qubits in the quantum system, while able
to reach at least equivalent decoding per-
formance to the Blossom decoder (base-
line).

2. Usually when NN-based decoders are
designed, achieving the highest decoding
performance is the main goal, however,
in this work we emphasize the impor-
tance of small execution time, due to the
limited available time budget of quantum
error correction. Therefore, the neural
network based decoders implemented in
this paper should present a good balance
between decoding performance and exe-
cution time.

3. We analyze how the choice of the dataset
affects the training of neural network
based decoders. We show that sampling
and training at the different physical er-
ror rates that the decoder is being eval-
uated, leads to higher decoding perfor-
mance than sampling and training to a
single physical error rate and evaluat-
ing the decoder at a vastly different error
rate.

The rest of the paper is organized as follows:
in section I we provide a brief introduction to
quantum error correction. In section II, we ex-
plain how the different NN-based decoders, as
found in literature, are implemented. In sec-
tion III, many parameters of the neural network
based decoders are discussed. In section IV, we
provide the results with the best neural network
based decoder for the different error models.
Finally, in section V, we draw our conclusions
about this research.

I. Quantum error correction

Similar to classical error correction, quan-
tum error correction encodes a set of unreliable
physical qubits to a more reliable qubit, known
as logical qubit.

Various quantum error correcting codes
have been developed so far, but in this work
we only consider the surface code [3, 4, 19–21],
one of the most promising QEC codes. The sur-
face code is a topological stabilizer code that
has a simple structure, local interactions be-
tween qubits and is proven to have high toler-
ance against errors [7, 20, 22–28]. It is usually
defined as a planar lattice of qubits over two di-
mensions.

In the surface code, a logical qubit consists
of physical qubits that store quantum informa-
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tion, known as data qubits, and physical qubits
that are used to detect errors in the logical qubit
through their measurement, known as ancillary
or ancilla qubits (see Figure 3). A logical qubit
is defined by its logical operators (X̄,Z̄) that de-
fine how the logical state of the qubit can be
changed. Any operator of the form X⊗n or Z⊗n

that creates a chain that span both boundaries of
the same type can be regarded as a logical op-
erator, with n being the number of data qubits
that are included in the logical operator.

An important feature of the surface code is
the code distance. Code distance, (d), describes
the degree of protection against errors. More
accurately, is the minimum number of physical
operations required to change the logical state
[3, 29]. In surface code, the degree of errors
(d.o.e.) that can be successfully corrected, is cal-
culated according to the following equation:

d.o.e. =
⌊

d− 1
2

⌋
(1)

The smallest surface code created is known
as the rotated surface code [30] and it is pre-
sented in Figure 3. It consists of 9 data qubits
placed at the corners of the square tiles and
8 ancilla qubits placed inside the square and
semi-circle tiles. Each ancilla qubit can interact
with its neighboring 4 (square tile) or 2 (semi-
circle tile) data qubits.

AX0

AZ1

AZ0 AZ2

AZ3

AX2

AX1

AX3

X

Z

Parity checks
AX0=X0X1
AX1=X1X2X4X5
AX2=X3X4X6X7
AX3=X7X8

AZ0=Z3Z6
AZ1=Z0Z1Z3Z4
AZ2=Z4Z5Z7Z8
AZ3=Z2Z5

0 1 2

3 4 5

6 7 8

FIG. 3. Rotated surface code with code distance 3.
Data qubits are enumerated from 0 to 8. X-type an-
cilla are in the center of the white tiles and Z-type
ancilla are in the center of grey tiles

As mentioned, ancilla qubits are used to de-
tect errors in the data qubits. Although quan-
tum errors are continuous, the measurement

outcome of each ancilla discretizes quantum er-
rors into bit-flip (X) and phase-flip (Z) errors,
that can be detected by Z-type ancilla and X-
type ancilla, respectively. The circuit that is
used to collect the ancilla measurements for the
surface code is known as syndrome extraction
circuit. It is presented in Figure 4 and it signi-
fies one round of error correction. It includes
the preparation of the ancilla in the appropri-
ate state, followed by 4 (2) CNOT gates that
entangle the ancilla qubit with its 4 (2) neigh-
boring data qubits and then the measurement
of the ancilla qubit in the appropriate basis.
The measurement result of the ancilla is a bi-
nary value, which is calculated as the parity
between the state of the data qubits connected
to it. Each ancilla performs a parity-check of
the form of X⊗4/Z⊗4 (square tile) and X⊗2/Z⊗2

(semi-circle tile), as presented in Figure 4. When
the state of the data qubits involved in a parity-
check has not changed, then the parity-check
will return the same value as in the previous er-
ror correction cycle. In the case where the state
of an odd number of data qubits involved in a
parity-check is changed compared to the previ-
ous error correction cycle, the parity-check will
return a different value than the one of the pre-
vious cycle (0 ↔ 1). The change in a parity-
check in consecutive error correction cycles is
known as a detection event.

1

|0〉 Z |+〉 X

FIG. 1.
FIG. 4. Syndrome extraction circuit for individual Z-
type (left) and X-type (right) ancilla, with the ancilla
placed in the bottom

Note that the parity-checks are used to iden-
tify errors in the data qubits without having to
measure the data qubits explicitly and collapse
their state. The state of the ancilla qubit at the
end of every parity-check is collapsed through
the ancilla measurement, but is initialized once
more in the beginning of the next error correc-
tion cycle [31].

The parity-checks must conform to the fol-
lowing rules: i) must commute with each other,
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ii) must anti-commute with errors and iii) must
commute with the logical operators. An exam-
ple of these parity-checks for a d=3 rotated sur-
face code is presented in Figure 3. The nota-
tion Xi or Zi refers to the ith data qubit used in
a given parity-check.

Gathering all measurement outcomes, forms
the error syndrome. Surface code can be de-
coded by collecting the ancilla measurements
out of one or multiple rounds of error correc-
tion and providing them to a decoding algo-
rithm that identifies the errors and outputs data
qubit corrections.

A single error on a data qubit will be sig-
nified by a pair of neighboring parity-checks
changing value from the previous error correc-
tion cycle. In the case where an error occurs
at the sides of the lattice, only one parity-check
will provide information about the error. Multi-
ple data qubit errors that occur near each other,
form one dimensional chains of errors which
create only two detection events located at the
endpoints of the chains (see Figure 5 on the left
side and the red line on the right side). On
the other hand, a measurement error, which is
an error during the measurement itself, is de-
scribed as a chain between the same parity-
check over multiple error correction cycles (see
the blue line in Figure 5 on the right side). This
blue line represents an alternating pattern of
the measurement values (0-1-0 or 1-0-1) coming
from the same parity-check for consecutive er-
ror correction cycles. If such a pattern is identi-
fied and is not correlated with a data qubit er-
ror, then it is considered a measurement error,
so no corrections should be applied. Therefore,
to properly distinguish between data and mea-
surement errors, multiple error correction cy-
cles need to be run before corrections are pro-
posed.

There exist decoding algorithms that can
decode efficiently the surface code, however
optimal decoding is a NP-hard problem [32].
For example, maximum likelihood decoding
(MLD) searches for the most probable error that
produced the error syndrome, whereas Blos-
som searches for the least amount of errors that
produced the error syndrome [8, 33]. MLD has
a significantly higher decoding performance

Z

AX0

AX1

AX2

AX3

AZ0

AZ1

AZ2

AZ3

876

53

210

FIG. 5. Rotated surface code with code distance
3. Left: Phase-flip (Z) error at data qubit 4, which
causes two detection events (shown in red). Right:
Three consecutive rounds of error correction. The
red dots indicate detection events that arise from a
data qubit error and the blue dots indicate detection
events that arise from a measurement error

than Blossom. However,it has an exponentially
increasing execution time while the code dis-
tance increases linearly. For that reason, ap-
proximate versions of MLD have been devel-
oped like the [34], which reports a running time
of O(nχ3), where χ is a parameter that controls
the approximation precision.

Although the Blossom decoder reaches
lower decoding performance than MLD, the ex-
ecution time of the optimized version exhibits
linear scaling with the number of qubits. Fur-
thermore, note that there exists a parallel ver-
sion of Blossom described in [9], that claims
constant execution time regardless of the size of
the system. Therefore, there is a clear trade-off
between decoding performance and execution
time, which is a key aspect of the decoder as
there is a limited time budget for error correc-
tion.

The time budget for decoding is calculated
based on the time required by the quantum
operations involved in an error correction cy-
cle. Therefore, the time budget varies based
on the type of quantum technology, the choice
of quantum error correcting code and the way
quantum operations are performed. For exam-
ple, in the case of superconducting qubits for a
d=3 rotated surface code reported in [5, 31], the
time budget for an error correction cycle is cal-
culated to be ˜700nsec, making most decoders
unusable for near-term experiments based on
these parameters. Furthermore, if noisy error
syndrome measurements are assumed, then d
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error correction cycles are required to provide
the necessary information to the decoder, so in
this scenario ˜2.1µsec will be the upper limit
for the time budget of decoding. However, as
quantum technology matures and the fidelity of
quantum operations increase, the time budget
for QEC will also change.

An alternative decoding approach is to use
neural networks to assist or perform the decod-
ing procedure, since neural networks provide
fast and constant execution time, while main-
taining high application performance. In this
paper, we are going to discuss decoders that
include neural networks and compare them to
each other and to the un-optimized version of
the Blossom algorithm as described in [35]. In
the following two sections we describe the im-
plementation details of the NN-based decoders
and the tuning of certain NN parameters.

II. Neural network based decoders
Artificial neural networks (ANN) have been

shown to reach high application performance
and constant execution time after being trained
on a set of data generated by the applica-
tion. ANN is a collection of weighted inter-
connected nodes that can transmit signals to
each other. The receiving node processes the
incoming signal and sends the processed result
to its connected node(s). In this work, we fo-
cus on two types of neural networks known
as Feed-forward neural networks (FFNN) and
Recurrent neural networks (RNN). In the case
of RNNs, we used Long Short-Term Memory
(LSTM) cells. Since it was easy to generate in-
put data and their corresponding output from
the simulations, we used supervised learning to
train the neural network. Finally, we used the
mean squared error rate as a cost function and
the Rectified Linear Unit (ReLU) as the activa-
tion function.

Neural network based decoders for quan-
tum error correcting codes have been recently
proposed [11–14, 16, 17]. There are two cate-
gories in which they can be divided: i) decoders
that search for exact corrections at the physical
level and ii) decoders that search for corrections
that restore the logical state. We are going to re-
fer to the former ones as low level decoders (lld)

[13, 14] and the latter ones as high level decoders
(hld) [11, 12, 16, 17].

In this paper, we implement both decoders
and compare them to each other and with the
un-optimized Blossom decoder. The compari-
son is in terms of the decoding performance and
the execution time. In the next sections, each
decoder implementation is explained and the
differences between them are presented.

A. Inputs/Outputs
Low level decoders take as input the error

syndrome and produce as output an error prob-
ability distribution for each data qubit based on
the observed syndrome. Therefore, a prediction
is made that attempts to correct exactly all phys-
ical errors that have occurred.

High level decoders take as input the er-
ror syndrome and produce as output an error
probability for the logical state of the logical
qubit. Based on this scheme, the neural net-
work does not have to predict corrections for
all data qubits, rather just for the state of the
logical qubit, which makes the prediction sim-
pler. This is due to the fact that there are only
4 options as potential logical errors, Ī, X̄, Z̄, Ȳ,
compared to the case of the low level decoder
where the output is equivalent to the number of
data qubits. Moreover, trying to correctly pre-
dict each physical error requires a level of high
granularity which is not necessary for error cor-
recting codes like the surface code.

B. Sampling and training process
During the sampling process, multiple error

correction cycles are run and the correspond-
ing inputs and outputs for each decoder are
stored. Due to the degenerate nature of the sur-
face code, the same error syndrome might be
produced by different sets of errors. Therefore,
we need to keep track of the frequency of occur-
rence of each set of errors that provide the same
error syndrome.

For the low level decoder, based on these
frequencies, we create an error probability dis-
tribution for each data qubit based on the ob-
served error syndrome. For the high level de-
coder, based on these frequencies, we create an
error probability distribution for each logical
state based on the observed error syndrome.
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When sampling is terminated, we train the
neural network to map all stored inputs to their
corresponding outputs. Training is terminated
when the neural network is able to correctly
predict at least 99% of the training inputs. Fur-
ther information about the training process are
provided in section III.

C. Implementation details

Implementations of low level decoders typ-
ically include a single neural network. To ob-
tain the predicted corrections for the low level
decoder, we sample from the probability dis-
tribution that corresponds to the observed er-
ror syndrome for each data qubit, and predict
whether a correction should be applied at each
data qubit. However, this prediction needs to
be verified before being used as a correction,
because the proposed corrections must gener-
ate the same error syndrome as the one that
was observed. Otherwise, the corrections are
not valid (see Figure 6a and b), since the de-
coder is predicting corrections for a different er-
ror syndrome than the one that was observed.
In such a case the decoding performance will
decrease significantly. Only when the two error
syndromes match, the predictions are used as
corrections on the data qubits (see Figure 6a and
c). If the observed syndrome does not match the
syndrome obtained from the predicted correc-
tions, then the predictions must be re-evaluated
by re-sampling from the probability distribu-
tion. This re-evaluation step makes the decod-
ing time non-constant, which can be a big dis-
advantage. There are ways to minimize the av-
erage amount of re-evaluations, however this is
highly influenced by the physical error rate, the
code distance and the strategy of re-sampling.

In Figure 6, the decoding procedure of the
low level decoder is described with an exam-
ple. On 6a, we present an observed error syn-
drome shown in red dots and the bit-flip errors
on physical data qubits (shown with X on top
of them) that created that syndrome. On 6b, the
decoder predicts a set of corrections on physi-
cal data qubits and the error syndrome result-
ing from these corrections is compared against
the observed error syndrome. As can be seen
from 6a and 6b, the two error syndromes do not

match, therefore the predicted corrections are
deemed invalid. On 6c, the decoder predicts a
different set of corrections and the correspond-
ing error syndrome to these corrections is com-
pared against the observed error syndrome. In
the case of 6a and 6c, the predicted error syn-
drome matches the observed one, therefore the
corrections are deemed valid.

X

X

X

X

X

X

X

X

X

XX

a) b) c)

FIG. 6. Description of the decoding process of the
low level decoder for a d=5 rotated surface code. (a)
Observed error syndrome shown in red dots and bit-
flip errors on physical data qubits shown with X on
top of them. (b) Invalid data qubits corrections and
the corresponding error syndrome. (c) Valid data
qubits corrections and the corresponding error syn-
drome

Implementations of high level decoders typ-
ically involve two decoding modules that work
together to achieve high speed and high level
of decoding performance. Either both decod-
ing modules can be neural networks [12] or one
can be a neural network and the other one a
non-neural network module[11, 16]. The non-
neural network module of the latter design will
only receive the error syndrome out of the last
error correction cycle and predict a set of cor-
rections. In our previous experimentation [11],
this module was called simple decoder. The cor-
rections proposed by the simple decoder do not
need to exactly match the errors that occurred,
as long as the corrections correspond to the ob-
served error syndrome (valid corrections). The
other module which in both cases is a neural
network, should be trained to receive the er-
ror syndromes out of all error correction cycles
and predict whether the corrections that are go-
ing to be proposed by the simple decoder are
going to lead to a logical error or not. In that
case, the neural network outputs extra correc-
tions, which are the appropriate logical opera-
tor that erases the logical error. The output of
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both modules is combined and any logical error
created by the corrections of the simple decoder
will be canceled due to the added corrections of
the neural network (see Figure 7).

Furthermore, the simple decoder is pur-
posely designed in the simplest way in order
to remain fast, regardless of the quality of pro-
posed corrections. By adding the simple de-
coder alongside the neural network, the correc-
tions can be given at one step and the execution
time of the decoder remains small, since both
modules are fast and operate in parallel.

In Figure 7, the decoding procedure of the
high level decoder is described with an exam-
ple. On 7a, we present an observed error syn-
drome shown in red dots and the bit-flip errors
on physical data qubits (shown with X on top
of them) that created that syndrome. On 7b, we
present the decoding of the simple decoder. The
simple decoder receives the last error syndrome
of the decoding procedure and proposes cor-
rections on physical qubits by creating chains
between each detection event and the nearest
boundary of the same type as the error. In Fig-
ure 7b, the corrections on the physical qubits
are shown with X on top of them, indicating
the way that the simple decoder functions. The
simple decoder corrections are always deemed
valid, due to the fact that the predicted and ob-
served error syndrome always match based on
the construction of the simple decoder. In the
case of Figure 7a-b, the proposed corrections of
the simple decoder are going to lead to an X̄
logical error, therefore we use the neural net-
work to identify this case and propose the ap-
plication of the X̄ logical operator as additional
corrections to the simple decoder corrections, as
presented in 7c.

III. Implementation parameters
In this paper, we compare both decoder de-

signs. To achieve that, we implement the high
level and low level decoder and test them un-
der the same conditions. We investigate how
different implementation parameters affect the
following metrics:

1. The decoding performance: it indicates
the accuracy of the algorithm during

X

X

X

X

X

X

X

X

a) b) c)

FIG. 7. Description of the decoding process of the
high level decoder for a d=5 rotated surface code.
(a) Observed error syndrome shown in red dots and
bit-flip errors on physical data qubits shown with
X on top of them. (b) Corrections proposed by the
simple decoder for the observed error syndrome. (c)
Additional corrections in the form of the X̄ logical
operator to cancel the logical error generated from
the proposed corrections of the simple decoder

the decoding process. The typical way
that decoding performance is evaluated
is through lifetime simulations. In life-
time simulations, multiple error correc-
tion cycles are run and decoding is ap-
plied in frequent windows. Depending
on the error model, a single error correc-
tion cycle might be enough to success-
fully decode, as in the case of perfect er-
ror syndrome measurements (window =
1 cycle), or multiple error correction cy-
cles might be required, as in the case of
imperfect error syndrome measurements
(window = d cycles). When the life-
time simulations are stopped, the decod-
ing performance is evaluated as the ra-
tio of the number of logical errors found
over the number of windows run until
the simulations are stopped.

2. The execution time: it is the time that the
decoder needs to perform the decoding
after being trained. It is calculated as the
difference between the time when the de-
coder receives the first error syndrome of
the decoding window and the time when
it provides the output. For the low level
decoder, the execution time will be the in-
ference time of the neural network. For
the high level decoder, the execution time
will be the determined as the maximum
time between the execution time of the
simple decoder and the inference time of
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the neural network.

These decoders were tested for two error
models, the depolarizing error model and the
circuit noise model. The depolarizing error
model assigns X,Z,Y errors with equal proba-
bility p/3, known as depolarizing noise, only
on the data qubits. No errors are inserted on
the ancilla qubits and perfect parity-check mea-
surements are used. Therefore, only a single
cycle of error correction is required to find all
errors. The circuit noise model assigns depo-
larizing noise on the data qubits and the an-
cilla qubits. Furthermore, each single-qubit gate
is assumed perfect but is followed by depolar-
izing noise with probability p/3 and each two-
qubit gate is assumed perfect but is followed
by a two-bit depolarizing map where each two-
bit Pauli has probability p/15, except the error-
free case, which has a probability of 1− p. De-
polarizing noise is also used at the preparation
of a state and the measurement operation with
probability p, resulting in the wrong prepared
state or a measurement error, respectively. An
important assumption is that the error probabil-
ity of a data qubit error is equal to the probabil-
ity of a measurement error, therefore d cycles of
error correction are deemed enough to decode
properly.

A. Choosing the training dataset
The first step when designing a neural net-

work based decoder is gathering data that will
be used as the training dataset. The best
dataset for a neural network based decoder is
the dataset that achieves the highest decoding
performance. Naively, one could suggest that
including all possible error syndromes, would
lead to the best decoding performance, how-
ever, as the code distance increases (size of the
system increases), including all error syndrome
becomes infeasible. As the code distance in-
creases, the size of the space including all po-
tential errors gets exponentially large as shown
in Table I (state space). Therefore, we need to
include as little but as diverse as possible error
syndromes, which will provide the maximum
amount of generalization. The size of the train-
ing dataset that we used for each code distance

is also presented in Table I (training dataset).
As shown, by employing such a technique, it
seems impossible to continue beyond d=7 for
the circuit noise model. For that distance, we
gather error syndromes out of 10 error correc-
tion cycles and each error syndrome contains
48 ancilla qubits. Therefore, the full space that
needs to be explored is 3.1x10144. For the depo-
larizing error model, the highest code distance
that we were able to decode efficiently was d=9.
A potential candidate to assist in overcoming
this scalability challenge and go to higher code
distances is a distributed decoding strategy as
found in [36] and [37].

The idea of using a distributed technique
is to avoid processing all the error informa-
tion from the whole code all-together. By lim-
iting the amount of error information that is be-
ing processed at all times, the error syndrome
space is always limited, thus making it easier
to scale to larger code distances. In [36], a neu-
ral network decoder that is designed based on
the Renormalization Group (RG) technique is
explained. In RG decoding, the code is ini-
tially divided into small overlapping regions.
Then, the error information out of these re-
gions is combined to represent the error infor-
mation of larger regions. This process of up-
dating the error information while moving from
a smaller region to a larger one is continued
until the whole code ends up being one sin-
gle region. In [37], a similar approach is de-
scribed. The main difference is that the code
is always divided into specific size of overlap-
ping regions and the information out of these
small regions is forwarded to the whole code at
once. Therefore, both techniques rely on divid-
ing the code into overlapping regions and then
updating the error information of each region
in order to decode the whole code. Based on
such a scheme, the maximum number of error
information, which is translated into the maxi-
mum number of inputs of the neural network
decoder, is always capped to a value that is
much smaller compared to the case of the non-
distributed approach.

In our previous experimentation[11], we
showed that sampling at a single physical error
rate that always produces the fewest amount



10

TABLE I. Dataset sizes for the depolarizing and the
circuit noise error model

Code State space Training dataset
distance Depolarizing/ Depolarizing/

Circuit Circuit
d=3 256 / 4.3x109 256 / 5x105

d=5 1.6x107 / 4.3x109 2x105 / 2x106

d=7 2.8x1014 / 3.1x10144 3x106 / 2x107

d=9 1.2x1024 / 9.7x10288 2x107 / -

of corrections, is enough to decode small dis-
tance rotated surface codes with a decent level
of decoding performance. This concept of al-
ways choosing the fewer amount of correc-
tions is similar to the Minimum Weight Per-
fect Matching that Blossom algorithm uses. Af-
ter sampling and training the neural network
at a single physical probability, the decoder is
tested against a large variety of physical er-
ror rates and its decoding performance is ob-
served. We call this approach, the single proba-
bility dataset approach, because we create only
one dataset based on a single physical error
rate and test it against many. Using the sin-
gle probability dataset approach to decode var-
ious physical error probabilities is not optimal,
because when sampling at low physical error
rates, less diverse samples are collected, there-
fore the dataset is not diverse enough to cor-
rectly generalize to unknown training inputs.

The single probability approach is realistic
for an experiment, since in an experiment there
is only one error probability that the quantum
system operates and at that probability the sam-
pling, training and testing of the decoder will
occur. However, this is not a good strategy for
testing the decoding performance over a wide
range of error probabilities. This is due to the
degenerate nature of the surface code, since dif-
ferent sets of errors generate the same error
syndrome. One set of errors is more probable
when the physical error rate is small and an-
other when it is high. When training the neural
network, only one of these sets of errors, and
always the same, is going to be selected for a
given error syndrome regardless of the physi-
cal error rate being tested. Therefore, training a
neural network based decoder in one physical

error rate and testing its decoding performance
in a widely different physical error rate might
lead to poor decoding performance. The main
benefit of this approach lies in the fact that only
a single neural network has to be trained and
used to evaluate the decoding performance for
all the physical error rates that are tested. In the
single probability dataset approach, the set with
the fewer errors is always selected, because this
set is more probable for the range of physical
error rates that we are interested in.

To achieve a better decoding performance,
we created multiple datasets that were obtained
by sampling at various physical error rates and
trained a different neural network at each phys-
ical error rate that was sampled. We call this
approach, the multiple probabilities datasets
approach. Each dedicated training dataset that
was created by sampling at a specific physical
error probability is used to test the decoding
performance at that same physical error proba-
bility and the probabilities close to that. By sam-
pling, training and testing the performance for
the same physical error rate, the decoder has the
most relevant information to perform the task
of decoding.

As we mentioned, depending on the sam-
pling probability (physical error rate), differ-
ent error syndromes will be more frequent than
others. We chose to include the most frequent
error syndromes in the training dataset. Since
the objective of the decoding performance is to
reach at least equivalent decoding performance
to Blossom (baseline) with the smallest possi-
ble dataset, we increase the dataset size until it
reaches Blossom’s performance. Note that we
do not claim to find the optimal training dataset
to maximize the decoding performance, rather
have a good balance between decoding perfor-
mance and execution time. As we mentioned,
we take the Blossom’s performance as a base-
line since it is the most popular decoder. Due
to the multiple probabilities datasets, we train
each dataset and evaluate the decoding perfor-
mance for that probability and the ones close to
it.

The results of using a single probability
dataset versus multiple probabilities datasets
are shown in Figures 12 and 13 and will be dis-
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cussed in Section 5.

B. Structure of the neural network
While investigating the size of a dataset,

some preliminary investigation of the structure
has been done, however only after the dataset
is defined, the structure in terms of layers and
nodes is explored in depth.

Initially, different configurations of layers
and nodes have been tested for: i) distance 3
and 5 surface code, ii) the high- and low level
decoder, iii) RNN and FFNN, and iv) the de-
polarizing error model. In our configurations,
the number of nodes of the last hidden layer
is selected to be equal to the number of out-
put nodes. The rest of the hidden layers were
selected to have decreasing number of nodes
going from the first to the last layer. As an
example, in Figure 8 we present the investiga-
tion of multiple configurations of nodes and
layers for the d=3 high level decoder using a
RNN. Training stops at 5000 training epochs,
since a good indication of the training accuracy
achieved is evident by that point. Then, the one
that reached the highest training accuracy was
selected (in this case we chose the 16, 4). We
continued training it till at least the same de-
coding performance as Blossom was reached.

In addition, we observed through this exper-
imentation that the main factors that affect the
configuration of the neural network are the size
of the training dataset, the similarity between
the training samples and the type of neural net-
work. For instance, we found that the number
of layers selected for training are affected more
by the samples, e.g. the similarity of the in-
put samples, and less by the size of the training
dataset.

As we just mentioned, after selecting the
configuration that showed the highest train-
ing accuracy we continue training it. In Fig-
ure 9, the decoding performance of the high
level and low level decoder with FFNN and
RNN and Blossom are shown. For even the
small decoding problem of d=3, the more so-
phisticated Recurrent neural network seems to
slightly outperform the Feed-forward neural
network. This can also be seen in Table II, where
the pseudo-threshold values for d=3 and d=5
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FIG. 8. Different configurations of layers and nodes
for the high level decoder using a RNN (d=3, depo-
larizing error model). The nodes of the tested hid-
den layers are presented in the legend

are shown. The pseudo-threshold is defined as
the highest physical error rate that the quan-
tum device should operate in order for error
correction to be beneficial for a given code dis-
tance. Then, the highest the pseudo-threshold,
the highest the decoding performance. The
pseudo-threshold values for all decoders inves-
tigated in Figure 9 can be found as the points of
intersection between the decoder curve and the
black dashed line, which represents the points
where the physical error probability is equal to
the logical error probability (y = x).

TABLE II. Pseudo-threshold values for the tested
decoders (d=3 and d=5) under depolarizing error
model

Decoder Pseudo-threshold Pseudo-threshold
d=3 d=5

FFNN lld 0.0911 0.1124
RNN lld 0.0949 0.1172

FFNN hld 0.0970 0.1219
RNN hld 0.0970 0.1233
Blossom 0.0825 0.1037

Note that, the difference between the decod-
ing performance of the RNN and FFNN is even
more obvious at larger code distances and for
the circuit noise model, where the RNN nat-
urally fits better due to its temporal dynamic
behavior. Moreover, training of the FFNN be-
comes much harder compared to the RNN as
the size of the dataset increases, making the ex-
perimentation with FFNN even more difficult.

Another observation from Figure 9 and Ta-
ble II is that the high level decoder is outper-
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forming the low level decoder. Although there
are ways to increase the decoding performance
of the latter, mainly by re-designing the repeti-
tion step to find the valid corrections in less rep-
etitions, we found no merit in doing so, since
the decoding performance would still be simi-
lar to the high level decoder’s and the repetition
step would still not be eliminated.

FIG. 9. Left: Comparison of decoding performance
between Blossom algorithm, low level decoder and
high level decoder for the d=3 rotated surface code
for the depolarizing error model. Right: Zoomed in
at the region defined by the square

C. Training process
1. Batch size

Training in batches instead of the whole
dataset at once, can be beneficial for the train-
ing accuracy and training time. By training in
batches, the weights of the neural network are
updated multiple times per training iteration,
which typically leads to faster convergence. We
used batches of 1000 or 10000 samples, based on
the size of the training dataset.

2. Learning rate
Another important parameter of training

that can directly affect the training accuracy and
training time is the learning rate. The learning
rate is the parameter that defines how big the
updating steps will be for each weight at every
training iteration. Larger learning rates in the
beginning of training can lead the training pro-
cess to a minimum faster during gradient de-
scent, whereas smaller learning rates near the
end of training can increase the training accu-
racy. Therefore, we devise a strategy of a step-
wise decrease of the learning rate throughout

the training process. If the training accuracy has
not increased after a specified number of train-
ing iterations (e.g. 50), then the learning rate is
decreased. The learning rates used range from
0.01 to 0.0001.

3. Generalization
The training process should not only be fo-

cused on the correct prediction of known in-
puts, but also the correct prediction of inputs
unknown to training, known as generalization.
Without generalization, the neural network acts
as a Look-Up Table (LUT), which will lead to
sub-optimal behavior as the code distance in-
creases. In order to achieve high level of gener-
alization, we continue training until the close-
ness between the desired and predicted value
up to the 3rd decimal digit is higher than 95%
over all training samples.

4. Training time and execution time
Timing is a crucial aspect of decoding and in

the case of neural network based decoders we
need to minimize both the training time and the
execution time as much as possible.

Training time: it is the time required by the
neural network to adjust its weights in a way
that the training inputs provide the correspond-
ing outputs as provided by the training dataset
and adequate generalization can be achieved. It
is proportional to the size of the training dataset
and the number of qubits. The number of qubits
is increasing in a quadratic fashion, 2d2− 1, and
the selected size of the training dataset in our
experimentation is increasing in an exponential
way, 2d2−1. Therefore, training time should in-
crease exponentially while scaling up.

However, the platform that the training
occurs, affects the training time immensely,
since training in one/multiple CPU(s) or
one/multiple GPU(s) or a dedicated chip in
hardware will result in widely different train-
ing times. The neural networks that were used
to obtain the results in this work, required be-
tween half a day to 3 days, depending on the
number of weights and the inputs/outputs of
the neural network, on a CPU with 28 hyper
thread cores at 2GHz with 384GB of memory.

Execution time: In Figure 10, we present the
constant and non-constant execution time with
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the physical error rate for the high level decoder
and the low level decoder, respectively. The low
level decoder has to repeat its predictions be-
fore it provides a valid set of corrections which
makes the execution time non-constant. With
careful design of the repetition step, the average
number of predictions can decrease, however
the execution time will remain non-constant.

Note that results shown in Figure 10 are only
to illustrate the behavior of the execution time
of the two decoders, therefore the time scale is
not representative. In order to obtain a realis-
tic time estimate, a hardware implementation
should be made which has not been performed
by this or any other group yet.

FIG. 10. Execution time for the high level de-
coder (hld) and the low level decoder (lld) for
Feed-forward (FFNN) and Recurrent neural net-
work (RNN) for d=3 rotated surface code for the de-
polarizing error model

As seen in Figure 10, the RNN has a higher
execution time compared to the FFNN. This is
due to the RNN typically using more weights
compared to the FFNN.

Although the execution time of the high
level decoders is constant with the error rate, it
appears to increase linearly with the code dis-
tance. In Table III, we provide the calculated
average time of decoding a surface code cycle
under depolarizing noise for all distances tested
with the high level decoder with RNNs.

There are factors such as the number of
qubits, the type of neural network being used
and the number of inputs/outputs of the neu-
ral network that influence the execution time.

Based on the analysis presented in this sec-

TABLE III. Average time for surface code cycle un-
der depolarizing error model

Code distance Avg. time / cycle
d=3 4.14msec
d=5 11.19msec
d=7 28.53msec
d=9 31.34msec

tion, we can conclude that:

1. High level decoders can achieve higher
decoding performance compared to low
level decoders and they exhibit constant
execution time with the physical error
rate.

2. Recurrent neural networks reach higher
decoding performance compared to
Feed-forward neural networks, mainly
due to the use of more weights, but that
leads to a higher execution time.

3. Recurrent neural networks are much eas-
ier to train compared to Feed-forward
neural networks, and have the inherent
notion of time, which is beneficial for the
circuit noise model. Training and evalu-
ating a decoder based on Feed-forward
neural networks becomes extremely dif-
ficult as the code distance increases.

Based on these observations, we decided to
create high level decoders based on Recurrent
neural networks, in order to have a good bal-
ance between execution time and decoding per-
formance. As we mentioned, to accomplish that
balance, we search for the smallest dataset that
can achieve equivalent or better decoding per-
formance than Blossom (baseline). Increasing
the number of samples in the training dataset
will lead to better decoding performance at the
cost of a bigger neural network requiring more
training time and larger execution time. In ad-
dition, Recurrent neural networks are easier to
train, allowing to decode higher code distances.

IV. Results
In this section, we analyze the decoding per-

formance of the high level decoder based on
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RNN for: i) different code distances, ii) the de-
polarizing and circuit error model, and iii) both
datasets, single and multiple probabilities.

As we previously mentioned, the way that
decoding performance is tested is by running
simulations that sweep a large amount of phys-
ical error rates and calculate the corresponding
logical error rate for each of them. This type
of simulations are frequently referred to as life-
time simulations and the logical error is calcu-
lated as the ratio of logical errors found over the
error correction cycles performed to accumu-
late these logical errors. Decoding performance
can also be evaluated by the pseudo-threshold
for a given code distance or by the threshold
for a set of several code distances for the same
QEC code. The threshold represents the protec-
tion against noise for a family of error correct-
ing codes, like the surface code. The threshold
value is defined as the point of intersection of all
the curves of multiple code distances (see Fig-
ures 12 and 13).

The flow from input to output of the neural
network based decoder that was used to obtain
the results is described in Figure 11 for both the
depolarizing and the circuit error model. For
the case of the depolarizing error model, neural
network 1 is not used, so the error syndrome is
forwarded directly to the simple decoder since
perfect syndrome measurements are assumed.
The decoding process is similar to the one pre-
sented in Figure 7.

The decoding algorithm for the circuit noise
model consists of a simple decoder and 2 neu-
ral networks. Both neural networks receive the
error syndrome as input. Neural network 1 pre-
dicts which detection events at the error syn-
drome belong to data qubit errors and which
belong to measurement errors. Then, it out-
puts the error syndrome relieved of the detec-
tion events that belong to measurement errors
to the simple decoder. The simple decoder pro-
vides a set of corrections based on the received
(updated) error syndrome. Neural network 2
receives the initial error syndrome and predicts
whether the simple decoder will make a logi-
cal error and outputs a set of corrections which
combine with the simple decoder corrections at

the output.

Error
Syndrome

Neural
Network1

Neural
Network2

Simple
Decoder

Corrections

FIG. 11. The flow from input to output for the high
level decoder that was used for the depolarizing and
the circuit noise model

A. Depolarizing error model
For the depolarizing error model, we used

5 training datasets that were sampled at these
physical error rates: 0.2, 0.15, 0.1, 0.08, 0.05.
Perfect error syndrome measurements are as-
sumed, so the logical error rate can be calcu-
lated per error correction cycle.

Figure 12 shows the decoding performance
achieved by the high level decoder when
trained using single and multiple probabilities
datsets and Blossom (baseline) under the de-
polarizing error model for different code dis-
tances (d= 3, 5, 7, 9). The neural network
based decoder with the multiple probabilities
datasets exhibits higher decoding performance
(lower logical error rate), which is expected
since it has more relevant information in its
dataset. This can also be seen in Table IV, where
the multiple probabilities datasets show higher
pseudo-thresholds than the single probability
dataset. Note that, the NN-based decoder has
been trained to have similar or better decod-
ing performance than Blossom, which is also re-
flected by the pseudo-threshold values.

TABLE IV. Pseudo-threshold values for the depolar-
izing error model. The pseudo-threshold increases
as the code distance increases

Decoder d=3 d=5 d=7 d=9
Blossom 0.0823 0.1034 0.1137 0.1193

Single prob.
dataset

0.0971 0.1096 0.1245 N/A

Multiple prob.
dataset

0.0982 0.1219 0.1272 0.1245

The threshold of the rotated surface code
for the depolarizing model has improved from
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Threshold

FIG. 12. Decoding performance comparison be-
tween the high level decoder trained on a single
probability dataset, the high level decoder trained
on multiple probabilities datasets and Blossom de-
coder for the depolarizing error model with perfect
error syndrome measurements. Each point has a
confidence interval of 99.9%

0.140 for the single probability dataset approach
to 0.146 for the multiple probabilities datasets
approach, while the threshold of Blossom is
calculated to be 0.142. Therefore, the goal of
reaching equivalent decoding performance to
Blossom was achieved. However, we should
mention that the theoretical upper limit for the
depolarizing error model with noiseless error
syndrome measurements for the toric code is
0.189 [38]. Also, there exist various decoders
that can reach close to the upper limit decod-
ing performance for the surface code like the
Maximum Likelihood Decoder (0.18) [34], the
Markov Chain Monte Carlo (0.17) [39], the neu-
ral decoder described in [14] (0.165) and for the
toric code the Renormalization Group decoder
(0.164) [40].

B. Circuit noise model

For the circuit noise model, we used 5 train-
ing datasets that were sampled at the follow-
ing physical error rates: 4.5x10−3, 1.5x10−3,
8.0x10−3, 4.5x10−4, 2.5x10−4. Since, imperfect
error syndrome measurements are assumed the
logical error rate is calculated per window of d
error correction cycles.

As in the previous section, we observe from
Figure 13 and Table V that the results with
the multiple probabilities datasets for the cir-
cuit noise model are significantly better, espe-

cially as the code distance is increased. The
case of the d=3 is small and simple enough to
be solved equally well by both approaches. In
the case of d=7, we observe that for the physical
error rates tested above the pseudo-threshold
value, which is the sampling and training prob-
ability, the decoder does not perform efficiently,
rather its performance is closer to the perfor-
mance of d=5. However, below the pseudo-
threshold value the samples included in the
training dataset become relevant again and the
performance resembles the performance of d=7.

We were not able to use the Blossom algo-
rithm with imperfect measurements for code
distances higher than 3, therefore we decided
not to include it. However, we note that the
results that were obtained in terms of pseudo-
threshold are close to the results in the litera-
ture corresponding to the circuit noise model.
The optimized version of Blossom as described
in [23, 41] achieves 4.20x10−4, 2.10x10−3 and
3.2x10−3 for d=3, 5 and 7, respectively. More-
over, another neural network based decoder
which is presented in [16], reports 3.18x10−4

and 7.11x10−4 for d=3 and d=5, respectively.

TABLE V. Pseudo-threshold values for the circuit
noise model

Decoder d=3 d=5 d=7
Single prob.

dataset
3.99x10−4 9.23x10−4 1.41x10−3

Multiple prob.
dataset

4.44x10−4 1.12x10−3 1.66x10−3

The threshold of the rotated surface code
for the circuit noise model has improved from
2.25x10−3 for the single probability dataset ap-
proach to 3.2x10−3 for the multiple probabili-
ties datasets approach, that signifies that the use
of dedicated datasets when decoding a given
physical error rate is highly advantageous. The
surface code threshold for the Blossom algo-
rithm is ˜6x10−3 [23, 41].

V. Conclusions
This work focused on comparison between

different decoding strategies that employ neu-
ral networks to decode the rotated surface code.
Such kind of decoders are currently being in-
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FIG. 13. Decoding performance comparison be-
tween the high level decoder trained on a sin-
gle probability dataset and the high level decoder
trained on multiple probabilities datasets for the
circuit noise model with imperfect error syndrome
measurements. Each point has a confidence interval
of 99.9%

vestigated due to their good decoding perfor-
mance and constant execution time.

We implemented two different ways that
neural networks can be used to assist (high level
decoder) or perform (low level decoder) the de-
coding and discussed how tuning of the neu-
ral network parameters will affect their decod-
ing performance and decoding time (execution
time).

We showed that the high level decoder can
achieve better decoding performance when us-
ing the same dataset size and has a constant
execution time with the physical error rate for
a given code distance and it increases linearly
with respect to the code distance. For the
FFNN and the RNN, we observed that although
FFNNs can have smaller execution time, RNNs
can be trained easier, therefore successfully de-
code higher code distances and achieve better
decoding performance. Based on these observa-
tions, we further analyzed the decoding perfor-
mance of a high level decoder based on a RNN.

We showed that sampling and training
based on multiple datasets at different physi-
cal error rates, can increase the decoding perfor-
mance due to the higher relevance of the sam-
ples. As expected, equivalent decoding per-
formance to Blossom was achieved for d ≤ 9
for the depolarizing error model with noiseless
syndrome measurements and successful decod-

ing was achieved for d ≤ 7 for the circuit noise
model with noisy syndrome measurements.

We were not able to go to higher code dis-
tances due to the exponential increase of the
dataset with the linear increase of the code dis-
tance, which poses an important challenge to
such kind of decoders since much larger code
distances need to be employed to have mean-
ingful quantum computation and storage. A
possible solution would be to use techniques
based on distributed decoding.
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