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Abstract

This paper deals with the closed-loop stability of an Extended State Observer (ESO)-based control for systems with
locally Lipschitz uncertainties. Novel stability conditions are developed, in terms of Linear Matrix Inequalities, in order
to prove local/global Input-to-State stability or local/global Exponential stability, respectively. The stability conditions
presented in this paper does not require neither the uncertainty to satisfy the so-called matched condition, nor the system
to satisfy some special internal structure, such as the canonical integral chain form. Various LMI-based optimization
methodologies are developed in order to optimize the presented results.
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1. Introduction

It is known that all industrial systems are affected by
external disturbances and/or internal uncertainties that
bring adverse effects in the controller performance, de-
grading its nominal behavior, or even causing instability
[1, 2, 3, 4]. In order to deal with them, different Distur-
bance/Uncertainty Estimation and Attenuation (DUEA)
techniques have been proposed [1], from which the Ex-
tended State Observer (ESO) [5, 6] has become of no-
tably interest. The ESO-based control was proposed as
a methodology to estimate, and compensate, for these
unknown uncertainties. Since it was proposed, it has
been subject to theoretical developments [7, 8, 9], it has
been successfully applied in different practical applications
[10, 11, 12, 13] and it has become the main core of the Ac-
tive Disturbance Rejection Control (ADRC) [5, 14].
In spite of these results, there is a lack of numerical

methods to guarantee its closed-loop stability when the
system is affected by state-dependent uncertainties and ex-
ternal disturbances, which widely appear in practice. Ini-
tially, the ESO was proposed for a system expressed as a
chain of n integrators, with the uncertainty, f(·), and the
control action, u(t), satisfying the so-called matched condi-
tion [6]. Its closed-loop stability was firstly guaranteed un-
der the assumption of global boundedness of d

dt
(f(·)) [15];

an strong assumption that was also taken in the works
that followed [16, 17, 18, 19], and was not relaxed until
2009 and 2011 in [20] and [21], respectively. Recent re-
sults have indicated that the stability of an ESO-based
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controller can be guaranteed if the partial derivatives of
f(·) are bounded [14, 22, 23].
However, to consider that the system is expressed as a

chain of n integrators, satisfying the matched condition,
is a strong restriction that cannot be always considered as
pointed out in [1, 8, 9]. Therefore, it was recently devel-
oped in [8, 9], a Generalized ESO (GESO) for systems with
possibly mismatched uncertainties. However, due to the
technical difficulties, its closed-loop stability was proved
by recovering the restrictive assumption of global bound-
edness of d

dt
(f(·)). The main problem with this assump-

tion is that, in general, it cannot be strictly guaranteed (a
priory) if f(·) is dependent on the system state. Previous
works need to consider that the system is originally sta-
ble [21], or that the dependency of f(·) on the system state
is weak-enough [8, 9], in order to assure the boundedness of
d
dt
(f(·)). However, these are restrictive assumptions that

may not hold in some applications.
This paper presents LMI-based stability conditions for

the GESO-based control when system is affected by locally
Lipschitz uncertainties. In contrast to previous results, the
stability conditions do not rely on the assumption of global
boundedness of d

dt
(f(·)). Instead, simple local require-

ments over its partial derivatives are taken. Also, different
LMI-based optimization methodologies, which can be used
to get numerical results of the closed-loop response, are
given. The presented stability conditions are also be valid
for the conventional ESO, or the linear ADRC, since the
so-called matched condition, or the plant being expressed
in the canonical integral chain form, are particular cases
of the problem being considered.
The rest of the paper is structured as follows. Section 1.1

presents the main notation. Section 2 introduces the prob-
lem being considered. The main results are given in Sec-
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tion 3, where the stability theorems are developed. In
Section 4, different LMI-based optimization methodologies
are introduced. Finally, Sections 5 and 6 contain numeri-
cal examples and the main conclusions, respectively.

1.1. Notation

Through the paper, Rn denote the n-dimensional Eu-
clidean space with vector norm ‖ · ‖. R

n×m denotes the
set of n×m real matrices. The superscript ‘T’ denotes ma-
trix transposition, while the notation P ≻ 0 means that
P is positive definite. The symmetric elements of a sym-
metric matrix are denoted by (∗), while the maximum and
minimum eigenvalues of a given matrix, P , are denoted by
λ(P ) and λ(P ), respectively.
Let ξ , [xT , eTo ]

T ∈ R
2n+q, with x ∈ R

n and eo ∈ R
n+q.

A symmetric matrix 0 ≺ Pi ∈ R
(2n+q)×(2n+q), defines an

ellipsoid in R
2n+q given by

Ei ,
{

ξ ∈ R
2n+q

∣

∣ ξTPiξ ≤ ki, ki > 0
}

,

whose projection onto R
n, E⊥

i , is automatically defined by
P⊥
i ∈ R

n:

E⊥
i ,

{

x ∈ R
n
∣

∣xTP⊥
i x ≤ ki, ki > 0

}

.

2. Problem formulation

Let us consider the following class of non-linear systems:
{

ẋ = Ax+Buu+Bff(x, ω(t)),

y = Cx
(1)

where x = [x1, . . . , xn]
T ∈ R

n is the system state; u ∈ R
m

is the control action; y ∈ R
p is the measurable output;

A ∈ R
n×n, Bu ∈ R

n×m, C ∈ R
p×n are the nominal sys-

tem matrices; ω(t) : R≥0 → R
r is a differentiable time-

varying function representing the external disturbances;
f : A× R

r → R
q is a possibly non-linear function, differ-

entiable in A×R
r, for some domainA ⊆ R

n containing the
origin; while Bf ∈ R

n×q indicates which state derivatives
are affected by f(x, ω(t)).
The function f(x, ω(t)) represents an unknown term

that contains the internal uncertainties and external dis-
turbances. The main control purpose is to stabilize system
(1), while being actively compensating for f(x, ω(t)). To
this purpose, the next control law is considered [8]:

u = Kxx̂+Kf f̂ , (2)

where Kx is a state feedback gain, Kf is a distur-

bance feed-forward gain and x̂, f̂ are estimates of x and
f(x, ω(t)), respectively.

In order to get the estimates x̂, f̂ , note that, for all
x ∈ A, system (1) can be equivalently represented in the
extended-state form:

{

η̇ = Āη + B̄uu+ B̄f ḟ(x, ω(t)),

y = C̄η,
(3)

where

η , [xT , fT (x, ω(t))]T ,

Ā ,

[

A Bf

0 0

]

, B̄u ,

[

Bu

0

]

, B̄f ,

[

0
Iq

]

,

C̄ ,
[

C 0
]

,

ḟ(x, ω(t)) ,
∂f

∂x

(

x, ω(t)
)

ẋ+
∂f

∂ω

(

x, ω(t)
)

ω̇(t).

This allows to construct the following ESO [8], which
provides the desired estimates:

˙̂η = Āη + B̄uu+ L(y − C̄η̂), (4)

where L ∈ R
(n+q)×p is the observer gain.

Let us consider the following assumptions:

Assumption 1. The pair (A,Bu) is controllable.

Assumption 2. The pair (A,C) is observable and

rank

([

A Bf

C 0

])

= n+ q.

Assumption 1 guarantees that Kx can be found such
that (A+BuKx) is Hurwitz, while Assumption 2 guaran-
tees the observability of (Ā, C̄), as it was shown in [24].

3. Closed-loop stability

Let us define the observation error as

eo ,

[

eo,x
eo,f

]

,

[

x− x̂

f(x, ω(t))− f̂

]

= η − η̂. (5)

By differentiating (5) and substituting (3) and (4), the
observation error dynamics are given by

ėo =
(

Ā− LC̄
)

eo + B̄f ḟ(x, ω(t)). (6)

The control action in (2) can be rewritten as

u = Kxx̂+Kf f̂ = Kxx+Kff(x, ω(t))−Kxeo,x −Kfeo,f

= Kxx+Kff(x, ω(t)) + Eoeo
(7)

where Eo , −
[

Kx, Kf

]

.
Finally, by substituting (7) into (1) and incorporat-

ing (6), the following closed-loop is obtained:

ξ̇ = Φcξ + Γ1f(x, ω(t)) + Γ2ḟ(x, ω(t)), (8)

where

ξ , [xT , eTo ]
T , Φc ,

[

A+BuKx BuEo

0 Ā− LC̄

]

,

Γ1 ,

[

BuKf +Bf

0

]

, Γ2 ,

[

0
B̄f

]

.

In the next sections, the local/global stability of the
closed-loop (8) is analyzed. To this purpose, let us de-
fine an n-dimensional ball, Br ,

{

x ∈ R
n
∣

∣ ‖x‖ ≤ r
}

⊆ A,
r > 0, and let us state the following assumption, being
needed for well-posedness problem formulation:
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Figure 1: Illustration of the sets being considered in this problem.

Assumption 3. Under Assumptions 1-2 and the control
law (2), (4), and in the absence of external disturbances
(i.e. ω(t) = 0, ω̇(t) = 0), the state x∗ = 0 is the unique
equilibrium point of (8) in Br. ▽

3.1. Input-to-State Stability.

In order to prove ISS, let us consider that

Assumption 4. There exist scalars, βf ≥ 0, βω̇ ≥ 0,
βdx ≥ 0, βdω ≥ 0, such that,

‖f(x, ω(t))‖ ≤ βf , ‖ω̇(t)‖ ≤ βω̇
∥

∥

∥

∂f

∂x

(

x, ω(t)
)

∥

∥

∥
≤ βdx,

∥

∥

∥

∂f

∂ω

(

x, ω(t)
)

∥

∥

∥
≤ βdω,

for all x ∈ Br, t ≥ 0. ▽

Assumption 4 states that f(x, ω(t)) and its partial
derivatives are bounded in Br × R≥0 (not necessarily glob-
ally bounded). This also implies that f(x, ω(t)) is Lip-
schitz in Br × R≥0 and, if the control action is chosen
such that x(t) does not leave Br, it also ensures the
existence and uniqueness of the solution of (1) for all
t ≥ 0 [25]. Note that, in contrast to previous works
[8, 21], whose stability results rely on different assumptions
that imply the boundedness of ḟ(x, ω(t)); Assumption 4
just guarantees the following worst-case upper bound:
‖ḟ(x, ω(t))‖ ≤ βdωβω̇ + βdxẋ(t), for all x ∈ Br and t ≥ 0.
Now, let us recall the next well-known result, being

needed for the subsequent analysis:

Lemma 1. (ISS). Define V (ξ(t)) = ξ(t)TPξ(t), with
P ≻ 0. Let V̄ (t) , V (ξ(t)) be absolutely continuous and
let g1(x(t), t), g2(x(t), t) be essentially bounded functions,
i.e. ‖g1(x(t), t)‖ ≤ α1, ‖g2(x(t), t)‖ ≤ α2, for all t ≥ 0,
with α1 ≥ 0, α2 ≥ 0. If there exist δ > 0, γ1 ≥ 0, γ2 ≥ 0
such that

˙̄V (t)+δV̄ (t)−γ1‖g1(x(t), t)‖
2−γ2‖g2(x(t), t)‖

2 ≤ 0, ∀t ≥ 0

then, the ellipsoid E ,

{

ξ ∈ R
2n+q

∣

∣ ξTPξ ≤
γ1α

2

1
+γ2α

2

2

δ

}

,

is a positively invariant and exponentially attractive set,
with decay rate δ/2, for ξ(t).

Proof. The proof is similar to the one presented in
Lemma 4.1 of [26], where the term b‖ω(t)‖2 is substituted
by γ1‖g1(x(t), t)‖

2 + γ2‖g2(x(t), t)‖
2. �

The above lemma is employed in the next theorem,
which represents conditions for the local ISS of (1) con-
trolled by (2), (4).

Theorem 1. (Local ISS). Let i , {0,∞}. Under As-
sumptions 1-4, given any δi, let there exist positive definite
Pi ∈ R

(2n+q)×(2n+q) and scalars τi > 0, γ1i ≥ 0, γ2i ≥ 0,
that satisfy the following LMIs:

Ψi
iss ,









ψi
iss PiΓ1 + τiβ

2
dx∆

T
ξ ∆f PiΓ2 PiΓ2

(∗) −γ1i + τiβ
2
dx∆

T
f ∆f 0 0

(∗) (∗) −τi 0
(∗) (∗) (∗) −γ2i









� 0, (9)

being ψi
iss , PiΦc + ΦT

c Pi + δiPi + τiβ
2
dx∆

T
ξ ∆ξ,

∆ξ , [(A+BuKx), BuEo] and ∆f , (BuKf +Bf ).
Assume additionally that

ri ,

√

γ1iβ
2
f + γ2i(βdωβω̇)

2

λ(P⊥

i )δi
< r. (10)

Then, for all states ξ starting from the initial ellipsoid

E0 ,

{

ξ ∈ R
2n+q

∣

∣ ξ
T
P0ξ ≤

γ10β
2
f + γ20(βdωβω̇)

2

δ0

}

,

the solution x(t) of the closed-loop system (1)-(2), (4), does
not leave the ball Br and it exponentially approaches, with
a decay rate δ∞/2, to the attractive ellipsoid

E⊥
∞ ,

{

x ∈ R
n
∣

∣xTP⊥
∞x ≤

γ1∞β
2
f + γ2∞(βdωβω̇)

2

δ∞

}

.

Proof. See Appendix B. �

Figure 1 represents an illustration of the sets that are be-
ing considered in this problem. The domainA is the region
of Rn in which f(x, ω(t)) is continuously differentiable and,
therefore, is the set in which the extended state represen-
tation (3) is equivalent to the original system (1). Br is the
ball where Assumptions 3-4 hold. Theorem 1 states that,
if (9)-(10) hold, then for any ξ(0) , [xT (0), eTo (0)]

T ∈ E0,
the state x(t) does not leave Br and it approaches to E⊥

∞.
If ξ(0) /∈ E0, convergence is not guaranteed as the state
could leave Br.
Conditions (9)-(10) have a simple meaning. Condi-

tion (9) guarantees that the obtained ellipsoids, E0, E∞,
are positively invariant and exponentially attractive, i.e.
any trajectory ξ(t) starting inside the ellipsoids is kept in-
side them for all t ≥ 0, while trajectories starting outside
approach to them. Condition (10) guarantees that E⊥

0 and
E⊥
∞ are strictly inside Br. It is clear that, if (9)-(10) are

satisfied, then the stability result of Theorem 1 hold.
Note also that Theorem 1 defines two i-independent sets

of parameters, i.e. si , {Pi, δi, τi, γ1i , γ2i} with i = 0,∞,
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that may satisfy (9)-(10). The parameters in s0 define
the set of allowable initial states E0, while the parameters
in s∞ define the terminal ellipsoid E∞. This provides an
additional degree of freedom so that Theorem 1 can be
optimized to find E⊥

0 as large as possible and E⊥
∞ as small

as possible (as depicted in Figure 1). In Section 4, differ-
ent optimization methodologies to address this issue are
introduced.
Finally, the next corollaries can be established. Corol-

lary 1 shows that local ISS is guaranteed for weak-enough
uncertainties if A+BuKx and Ā−LC̄ are Hurwitz. Corol-
laries 2 and 3 represent simplified stability conditions for
the cases of matched uncertainties and A ≡ Br ≡ R

n,
respectively.

Corollary 1. (Local ISS for weak-enough uncertainties).
Consider that Assumption 4 is satisfied with a small-
enough βf , βdx and βdωβω̇. Then, if A+BuKx and Ā−LC̄
are Hurwitz, the solution x(t) of the closed-loop system
(1)-(2), (4) is locally ISS for any ξ(0) sufficiently close to
the origin.

Proof. Since A+BuKx and Ā−LC̄ are Hurwitz, given
any δi, there exist Pi such that PiΦc +ΦT

c Pi + δiPi ≺ 0.
Then, by Schur complements, Ψi

iss ≺ 0 for large enough
γ1i , γ2i , τi, and small enough βdx. On the other hand, for
a given Pi, γ1i , γ2i , δi, condition (10) is satisfied if βf and
βdωβω̇ are sufficiently small. Therefore, if the initial state
is chosen sufficiently close to the origin, then ξ(0) ∈ E0 and
Theorem 1 is verified. �

Corollary 2. (Local ISS for matched uncertainties). Con-
sider that Bf = Bu, Kf = −I. Given any δi, i , {0,∞},
let there exist positive definite Pi ∈ R

(2n+q)×(2n+q) and
scalars τi > 0, γ2i ≥ 0, that satisfy the following LMIs:

Ψ̄i
iss ,





ψi
iss PiΓ2 PiΓ2

(∗) −τi 0
(∗) (∗) −γ2i



 � 0. (11)

Assume additionally that ri =

√

γ2i
(βdωβω̇)2

λ(P⊥

i
)δi

< r.

Then, for any arbitrarily large βf , and for all states

ξ starting from E0 =
{

ξ ∈ R
2n+q

∣

∣ ξTP0ξ ≤
γ20

(βdωβω̇)2

δ0

}

,

the solution x(t) of the closed-loop system (1)-(2), (4),
does not leave the ball Br and it exponentially ap-
proaches, with a decay rate δ∞/2, to the attractive ellipsoid

E⊥
∞ =

{

x ∈ R
n
∣

∣xTP⊥
∞x ≤

γ2∞
(βdωβω̇)2

δ∞

}

.

Proof. If Bu = Bf and Kf = −I, then Γ1 ≡ 0 and
∆f ≡ 0. In this case the LMI in (9) is reduced to (11),
subject to γ1i ≥ 0. As γ1i is a free parameter, it can be
set γ1i = 0, which completes the proof. �

Corollary 3. (Global ISS). Consider that A ≡ Br ≡ R
n,

i.e. r → ∞. Given any δ∞, let there exist a positive def-
inite P∞ ∈ R

(2n+q)×(2n+q) and scalars τ∞ > 0, γ1∞ ≥ 0,
γ2∞ ≥ 0, that satisfy Ψ∞

iss � 0. Then, for any initial state,

the solution x(t) of the closed-loop system (1)-(2), (4), ex-
ponentially approaches, with a decay rate δ∞/2, to the at-
tractive ellipsoid E⊥

∞.

Proof. Since r → ∞, condition (10) holds in any case.
Also, if there exist δ∞, P∞, τ∞, γ1∞ , γ2∞ such that
Ψ∞

iss � 0, it can be always set δ0 ≤ δ∞, P0 = P∞, τ0 = τ∞,
γ10 = γ1∞ and γ201 = γ2∞ ; which satisfy Ψ0

iss � 0. By de-
creasing δ0, the set of allowable initial states, E0, can be
made arbitrarily large. �

3.2. Exponential Stability

In order to prove ES, let us consider that

Assumption 5. There exist scalars, βω̇ ≥ 0, βdx ≥ 0, and
matrices, Π1 ∈ R

n×n, Π2 ∈ R
n×n, such that

‖f(x, ω(t))‖ ≤ ‖Π1x‖,
∥

∥

∥

∂f

∂x

(

x, ω(t)
)

∥

∥

∥
≤ βdx,

‖ω̇(t)‖ ≤ βω̇,
∥

∥

∥

∂f

∂ω

(

x, ω(t)
)

ω̇(t)
∥

∥

∥
≤ βω̇‖Π2x‖,

for all x ∈ Br, t ≥ 0. ▽

Assumption 5 is stronger than 4 as it further restricts
the class of uncertainties to those whose terms f(x, ω(t))
and ∂f

∂ω
(x, ω(t))ω̇(t) vanish when the state goes to zero.

In the same way, let us recall the next result being
needed for the subsequent analysis:

Lemma 2. (ES). Define V (ξ(t)) = ξ(t)TPξ(t), with
P ≻ 0. Let V̄ (t) , V (ξ(t)) be absolutely continuous. If
there exists δ > 0 such that

˙̄V (t) + δV̄ (t) ≤ 0, ∀ t ≥ 0 (12)

then ξ(t) is exponentially stable with decay-rate δ/2.

Proof. The proof follows from Lemma 1. �

The above lemma is employed to establish the following
theorem representing conditions for the local ES.

Theorem 2. (Local ES). Let i , {0,∞}. Under As-
sumptions 1-3 and 5, given any δi, let there exist positive
definite Pi ∈ R

(2n+q)×(2n+q) and scalars τ1i ≥ 0, τ2i ≥ 0,
τ3i ≥ 0, that satisfy the following LMIs:

Ψi
es ,









ψi
es PiΓ1 + τ1iβ

2
dx∆

T
ξ ∆f PiΓ2 PiΓ2

(∗) −τ2i + τ1iβ
2
dx∆

T
f ∆f 0 0

(∗) (∗) −τ1i 0
(∗) (∗) (∗) −τ3i









� 0,

(13)
being

ψi
es ,PiΦc +ΦT

c Pi + δiPi+

+ τ1iβ
2
dx∆

T
ξ ∆ξ +HT (τ2iΠ

T
1 Π1 + τ3iβ

2
ω̇Π

T
2 Π2)H.

Then, for all states ξ starting from the initial ellipsoid
Ē0 ,

{

ξ ∈ R
2n+q

∣

∣ ξTP0ξ ≤ λ(P⊥
0 )r2

}

, the solution x(t) of
the closed-loop system (1)-(2), (4), does not leave the ball
Br and it is exponentially stable with a decay rate δ∞/2.
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Proof. See Appendix B. �

Theorem 2 also defines two i-independent set of param-
eters, i.e. s̄i , {Pi, δi, τ1i , τ2i , τ3i} with i = 0,∞; which
may satisfy (13). The set s̄0 should be optimized so that
the initial ellipsoid is obtained as large as possible, while
the set s̄∞ should be optimized so that the higher expo-
nential decay rate is obtained. These optimization issues
are discussed in Section 4.

Remark 1. The same arguments employed in Corollar-
ies 1-3 could be reproduced for the ES.

4. Optimization issues

In this section, different optimization problems are in-
troduced in order to check, and optimize, the stability con-
ditions presented in Theorems 1 and 2.

4.1. Numerical optimization of Theorem 1

Let si , {Pi, δi, τi, γ1i , γ2i}, with i = 0,∞, be the sets of
parameters in Theorem 1 that should be optimized. The
set s∞ is optimized such that E∞ is minimized [27]. This
can be performed by solving

max
{s∞,α}

α

s.t. Ψ∞
iss � 0, P∞ ≻ αI2n+q ,

γ1∞β
2
f + γ2∞(βdωβω̇)

2 = δ∞,

α > 0, δ∞ > 0, τ∞ > 0, γ1∞ ≥ 0, γ2∞ ≥ 0.

(14)

The first constrain assures that condition (9) of The-
orem 1 is satisfied. The second constraint assures that
λ(P∞) ≥ α. The third constraint forces that r∞ in (10)

takes the form r∞ =
√

1
λ(P⊥

∞
)
≤

√

1
α
. So, if α is max-

imized, then r∞ is being minimized. Finally, note that
the feasibility of (14) guarantees (9) but not (10), which
should be checked with the obtained values in s∞.
The set s0 is optimized such that E0 is maximized. This

can be done by minimizing the condition number of P0 (so
that E0 is as similar as possible to an sphere), while forcing
condition (10) to be strictly satisfied, i.e. as an equality.
In this way, the largest ellipsoid such that its projection
strictly fits inside Br is obtained. This can be performed
by solving the next optimization problem for different fixed
(and decreasing) values of α, until the following equality
holds r0 = r.

min
{s0,α,γ}

γ,

s.t. Ψ0
iss � 0, P0 = αP, γI2n+q � P � I2n+q,

γ10β
2
f + γ20(βdωβω̇)

2 = δ0,

γ ≥ 1, α > 0, δ0 > 0, τ0 > 0, γ10 ≥ 0, γ20 ≥ 0,
(15)

The second and third constraints force E0 to have the
following form E0 =

{

ξ ∈ R
2n+q

∣

∣ ξT (αP )ξ ≤ 1
}

. Hence, if

γ is minimized, then P0 is forced to be as similar as possible
to an sphere; while, by decreasing α, E0 is enlarged; so α
should be chosen such that (10) strictly holds.

4.2. Numerical optimization of Theorem 2.

Let s̄i , {Pi, δi, τ1i , τ2i , τ3i}, with i = 0,∞, be the set of
parameters in Theorem 2 that should be optimized. The
set s∞ is optimized such that δ∞ is maximized. This can
be performed by solving:

max
s̄∞

δ∞,

s.t. Ψ∞
es � 0,

P∞ ≻ 0, δ∞ > 0, τ1∞ > 0, τ2∞ > 0, τ3∞ > 0.
(16)

The set s0 is optimized in order to obtain the largest Ē0.
This can be done by minimizing the condition number of
P0 by solving:

min
s0,γ

γ,

s.t. Ψ0
es � 0, P0 ≻ 0, γI2n+q � P0 � I2n+q,

δ0 > 0, τ10 > 0, τ20 > 0, τ30 > 0.

(17)

5. Numerical examples

5.1. Example 1

Let us consider the following system:

{

ẋ(t) = x(t) + u(t) + βx(t) + ω(t), ∀ |x| < r,

y = x,
(18)

where β ≥ 0 is an unknown parameter and ω(t) = sin(t)
represents the external disturbance.
The control law (2), (4) is applied with L = [41, 400]T ,

Kx = −2 and Kf = −1. Let us consider r = 1. For all
x ∈ Br and t ≥ 0, Assumption 4 is satisfied with

‖f(x, ω(t))‖ ≤ β + 1, ‖ω̇(t)‖ ≤ 1
∥

∥

∥

∂f

∂x

(

x, ω(t)
)

∥

∥

∥
≤ β,

∥

∥

∥

∂f

∂ω

(

x, ω(t)
)

∥

∥

∥
≤ 1,

Theorem 1 is applied to check the closed-loop ISS. Con-
sider an upper bound of β ≤ 2. Theorem 1 is optimized
according to (14)-(15). The resulting s0, s∞ are presented
in Table 5.1. Since both s0, s∞ satisfy (9)-(10) (concretely
(10) is satisfied with r∞ = 0.15 < 1 and r0 = 0.99 < 1),
the results of Theorem 1 hold.
A simulation result is presented in Figure 2, where sys-

tem (18), with β = 2, is controlled under (2), (4). The

initial state is set to x(0) = x̂(0) = x0 and f̂(0) = 0. It
is verified that ξ(0) ∈ E0 for all x0 ≤ 0.625, so the simu-
lation is performed with x0 = 0.625. It can be seen that
the the simulation results match with the results given by
Theorem 1.
On the other hand, Theorem 1 can be also employed

to get robustness properties of the closed-loop response
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Figure 2: Simulation of Example 5.1.

P∞ δ∞ τ∞ γ1∞ γ2∞
[

45.4 −248 2.95
−248 151e3 −3.17e3
2.95 −3.17e3 81.7

]

1.33 5.57 0 1.33

P0 δ0 τ0 γ10 γ20
[

1 0.14 −0.052
0.14 13.4 −0.70

−0.052 −0.70 0.15

]

0.5 0.1 0 0.5

Table 1: Example 5.1. Results of the optimization for β = 2.

against the uncertain parameter β. It is verified that the
closed-loop becomes unstable for β ≥ 10.17. By evaluation
of Theorem 1 it is found that none set, si, satisfying (9),
can be found if β > 10.04, which is remarkable.

5.2. Example 2.

Let us consider the system presented in [8], which, in
order to satisfy Assumption 3, is conveniently rewritten
after translating its equilibrium point up to the origin:











ẋ1 = x2 + f(x),

ẋ2 = −2x1 − x2 + u(t),

y = x1,

being f(x) , eβx1 − 1, and β ≥ 0 a constant unknown
parameter.
As proposed in [8], the observer gain is set to

L = [14, −66, 125]T , the state-feedback gain is set to
Kx = [−4, −4] and the disturbance feed-forward gain is
set to Kf = −5. Let us fix Br of radius r = 1. For all
x ∈ Br and t ≥ 0, Assumption 5 is satisfied with

‖f(x, ω(t))‖ ≤
∥

∥

∥

[

eβ − 1 0
0 0

]

· x
∥

∥

∥
, ‖ω̇(t)‖ = 0,

∥

∥

∥

∂f

∂x

(

x, ω(t)
)

∥

∥

∥
≤ βeβ ,

∥

∥

∥

∂f

∂ω

(

x, ω(t)
)

ω̇(t)
∥

∥

∥
≤ ‖0nx‖,

Theorem 2 is optimized by solving (16)-(17) in order
to get robustness properties of the closed-loop against the

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.2

0

0.2

0.4

x
1
(t
)

β = 0
β = 0.54
β = 1.59

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (sec)

-1

-0.5

0

0.5

x
2
(t
)

Figure 3: Simulation of Example 5.2 for different values of β.
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-0.2

0

0.2

0.4

0.6

0.8

x
2

Br

(EES
0 )⊥

(0,0)
(x0, 0)
β = 0
β = 0.54
β = 1.59

Figure 4: Representation of Br, (EES
0

)⊥ and state-trajectories for
different values of β.

uncertain parameter β. It is found that none set of pa-
rameters, s̄i, satisfying (13), can be found if β > 0.54.
Simulation results are depicted in Figures 3-4. The

initial state is set to x1(0) = x0, x̂1(0) = x0, x2(0) = 0,

x̂2(0) = 0 and f̂(0) = 0. It can be checked that, for
x0 ≤ 0.21, this initial state belongs to the allowable set of
initial states for all β < 0.54; so it is set x0 = 0.21. Fig-
ures 3-4 depict simulation results for β = 0, β = 0.54,
and β = 1.59, respectively. The trajectories leave Br

for β > 1.59 and the closed-loop becomes unstable for
β > 2.04.

6. Conclusions

In this paper, different LMI-based stability conditions
for a generalized extended state observer-based control
have been developed. The provided stability conditions
does not rely on the assumption of global boundedness of
the total disturbance derivative. Furthermore, they can
be easily optimized by LMI solvers to get numerical prop-
erties of the closed-loop behavior. The results presented
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in this paper are also valid for the conventional Extended
State Observer or the Active Disturbance Rejection Con-
trol, since both techniques are particular cases of the prob-
lem being considered.
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Appendix A. Proof of Theorem 1

By Lemma 1. Let us consider the Lyapunov function
Vi(ξ) = ξTPiξ, Pi ≻ 0, and let us set g1(x, t) = f(x, ω(t)),
g2(x, t) =

∂f
∂ω

(

x, ω(t)
)

ω̇(t) with α1 = βf and α2 = βdωβω̇.
If there exist γ1i > 0, γ2i > 0, δi > 0 such that

V̇i+δi Vi−γ1i‖f(x, ω(t))‖−γ2i

∥

∥

∥

∂f

∂ω

(

x, ω(t)
)

ω̇(t)

∥

∥

∥

2

≤ 0, (A.1)

for all t ≥ 0, then, the ellipsoid

Ei ,

{

ξ ∈ R
2n+q

∣

∣ ξTPiξ ≤
γ1iβ

2
f + γ2i(βdωβω̇)

2

δi

}

(A.2)

is positively invariant and exponentially attractive.
Hence, the proof is reduced to show how (9)-(10) imply

(A.1). The derivative of Vi, with ξ̇ substituted by (8) is

V̇i =ξ
T (PiΦc +ΦT

c Pi)ξ + 2ξTPiΓ1f + 2ξTPiΓ2dfx

+ 2ξTPiΓ2dft,
(A.3)

where, for simplicity, f , f(x, ω(t)), dfx ,
∂f
∂x

(

x, ω(t)
)

ẋ,

and dft ,
∂f
∂ω

(

x, ω(t)
)

ω̇(t).
Substituting (A.3) into (A.1) leads to

ξ
T (PiΦc + ΦT

c Pi)ξ + 2ξTPiΓ1f + 2ξTPiΓ2dfx+

+ 2ξTPiΓ2dft + δiξ
T
Piξ − γ1if

T
f − γ2idf

T
t dft ≤ 0,

being expressed as φT (Ψi
iss,0)φ ≤ 0, φ , [ξT , f, dfx, dft]

T ,

Ψi
iss,0 ,









PiΦc +ΦT
c Pi + δiPi PiΓ1 PiΓ2 PiΓ2

(∗) −γ1i 0 0
(∗) (∗) 0 0
(∗) (∗) (∗) −γ2i









So, if Ψi
iss,0 � 0, then (A.1) is satisfied. The next step

follows by the application of the S-procedure in the term
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dfx. It is known that

dfx =
∂f

∂x

(

x, ω(t)
)

[Ax+Buu+Bff ]

=
∂f

∂x

(

x, ω(t)
)

[Ax+Bu(Kx(x− eo,x) +Kf (f − eo,f )) +Bff ]

=
∂f

∂x

(

x, ω(t)
)

[∆ξξ +∆ff ],

with ∆ξ , [(A+BuKx), BuEo], ∆f , (BuKf +Bf ).
Hence, by Assumption 4 and for all x ∈ Br, the following

upper bound can be established:

dfT
x dfx ≤ β2

dx

[

ξT∆T
ξ ∆ξξ + 2ξT∆T

ξ ∆ff + fT∆T
f ∆ff

]

,
(A.4)

which can be written as φT (Ψi
iss,1)φ ≤ 0, with

Ψi
iss,1 ,









−β2
dx∆

T
ξ ∆ξ −β2

dx∆
T
ξ ∆f 0 0

(∗) −β2
dx∆

T
f ∆f 0 0

(∗) (∗) 1 0
(∗) (∗) (∗) 0









(A.5)

The knowledge of Ψi
iss,1 � 0 implies that Ψi

iss,0 � 0 if

there exist τi > 0 such that φTΨi
iss,0φ ≤ τiφ

TΨi
iss,1φ ≤ 0.

This holds if φT (Ψi
iss,0 −Ψi

iss,1)φ ≤ 0, leading to (9).
So, if (9) holds, then the ellipsoid (A.2) is attractive

and positively invariant. Condition (10) follows from a
short analysis of the sets that are being considered in this
problem. Lemma 1 considers that g1(x, t) = f(x, ω(t)) and
g2(x, t) = ∂f

∂ω
(x, ω(t))ω̇(t) are bounded. However, by As-

sumption 4, this bounds can be only established in Br. So
it must be required that x(t) lies inside Br for all t ≥ 0.
As mentioned in Section 1.1, the ellipsoid (A.2) has a

projection onto R
n given by

E⊥
i ,

{

x ∈ R
n
∣

∣ xTP⊥
i x ≤

γ1iβ
2
f + γ2i(βdωβω̇)

2

δi

}

.

Therefore, it must be imposed that E⊥
i ⊆ Br, which

is satisfied if (10) holds. Finally, the theorem follows by
defining two independent solutions, given by i , {0,∞},
such that both satisfy (9)-(10). In this case, two attractive
ellipsoids, i.e E0, E∞; are obtained. If the initial state is
restricted to be inside E0, then x(t) ∈ Br for all t ≥ 0, and
x(t) approaches to E∞ with a exponential rate δ∞/2.

Appendix B. Proof of Theorem 2

By Lemma 2. Let us consider the Lyapunov func-
tion Vi = ξTPiξ, where the derivative V̇i, which is given
by (A.3), is substituted into (12) and it is expressed as
φT (Ψi

es,0)φ ≤ 0, with φ , [ξT , f, dfx, dft]
T and

Ψi
es,0 =









PΦc +ΦT
c P + δP PΓ1 PΓ2 PΓ2

(∗) 0 0 0
(∗) (∗) 0 0
(∗) (∗) (∗) 0









The term dfx satisfies the inequality (A.4), which leads
to φT (Ψi

iss,1)φ ≤ 0, being Ψi
iss,1 defined in (A.5). The

terms f and dft satisfy the inequalities in Assumption 5,
which lead to φT (Ψi

es,1)φ ≤ 0, φT (Ψi
es,2)φ ≤ 0, with

Ψi
es,1 =









−HTΠT
1 Π1H 0 0 0

(∗) 1 0 0
(∗) (∗) 0 0
(∗) (∗) (∗) 0









Ψi
es,2 =









−β2
ω̇H

TΠT
2 Π2H 0 0 0

(∗) 0 0 0
(∗) (∗) 0 0
(∗) (∗) (∗) 1









where H , [In, 0n×(n+q)]
T is defined so that x = Hξ.

By the S-procedure, the knowledge of Ψi
iss,1 � 0,

Ψi
es,1 � 0, Ψi

es,2 � 0, implies that Ψi
es,0 � 0 if there exist

τ1 > 0, τ2 > 0 and τ3 > 0 such that

φTΨi
es,0φ ≤ τ1φ

TΨi
iss,1φ+ τ2φ

TΨi
es,1φ+ τ3φ

TΨi
es,2φ ≤ 0,

leading to (13).
Finally, similarly to Theorem 1, the proof follows by

defining two independent solutions that satisfy (13); while
the set of allowable initial states is defined so that it
strictly fits inside Br.
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