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Abstract

This paper investigates the stabilization of Networked Control Systems (NCS)
with mismatched disturbances through a novel Event-Triggered Control (ETC),
composed of a predictor-feedback scheme and a gain-scheduled Extended
State Observer (ESO). The key idea of the proposed control strategy is
threefold: i) to reduce resource usage in the NCS (bandwidth, energy) while
maintaining a satisfactory control performance; ii) to counteract the main
negative effects of NCS: time-varying delays, packet dropouts, packet disor-
der, and (iii) to reject the steady-state error in the controlled output due
to mismatched disturbances. Moreover, we address the co-design of the
controller/observer gains, together with the event-triggered parameters, by
means of Linear Matrix Inequalities (LMI) and Cone Complementarity Lin-
earization (CCL) approaches. Finally, we illustrate the effectiveness of the
proposed control synthesis by simulation and experimental results in a Un-
manned Aerial Vehicle (UAV) based test-bed platform.
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1. Introduction

Networked Control Systems (NCS) are characterized by the fact that the
control loop is closed over a real-time communication network, and there-
fore the components, i.e., controllers, sensors and actuators are spatially
distributed and connected [40]. The first works on NCS date from the last
decade of the previous century [16, 32, 21]. Since then, it has become a pro-
lific area (see for example in [15] and [39], where a general idea about NCS
is presented). Sharing a communication network implies well-known advan-
tages: low installation and maintenance costs, high reliability, increased sys-
tem flexibility, and decreased wiring and weight. However, NCS also lead
to some undesirable phenomena, which may cause poor performance or even
instability if they are not taken into account during the control design. A
recent survey that describes a general framework for analysis and control
synthesis of NCS can be found in [40] and references therein.

In this paper we will consider, together with the presence of mismatched
disturbances, the following network effects: time-varying communications de-
lays, packet dropouts, packet disorder and bandwidth constraints. Such phe-
nomena have been extensively investigated in the literature. For instance, the
effect of time-varying delays has been tackled under different control schemes:
via state-feedback control [4], multi-rate control [33], state estimators [26],
[30], and reset-based control in [2], [31]. Packet dropouts have been faced
using predictive control [20], predictor-observer methods [5, 8], gain schedul-
ing [9], etc. Packet disordering has also been investigated in [22, 23, 37] by
introducing different packet reordering mechanisms, and in [33, 7, 6] by using
dual-rate control.

In event-triggered control (ETC) [19, 18], data packets are transmitted
only when event-based conditions are satisfied. Compared to the traditional
time-triggered control, ETC enables to further reduce resource utilization,
such as bandwidth and energy consumption [28, 8]. Indeed, the design of
more efficient ETC strategies is a matter of current research, with interest-
ing applications related to the field of NCS: containment control of multia-
gent systems [44], leader-following consensus [45] and distributed formation
control [12], among others. As the controller is provided with less system
data, event-based state prediction techniques must be additionally included
in order to estimate the not available data and keep performance properties.
An ETC scenario can be developed in both continuous-time (see [19], and
references therein) and discrete-time frameworks (see [27] among others).

2



On another line of research, time delay compensation techniques (or dead-
time compensator (DTC) schemes) have been widely implemented in control
systems with input/output delay to improve the closed-loop performance of
classical controllers ([29, 13]). The underlying idea behind DTC consists in
obtaining a future prediction of the system state in order to find an equivalent
delay-free closed-loop system model, simplifying the control design. Never-
theless, this feature can only be achieved if delays are known in advance and
time-constant. In the presence of time-varying delay mismatches, the closed-
loop performance may be sharply degraded or even unstable if delay intervals
are sufficiently large. This fact may impose severe limitations on the applica-
bility of predictor-like techniques on NCS, where time delays are frequently
subject to time-variations, and other phenomena, such as packet dropouts
and packet disorder, may occur. The stability analysis of NCS using time
delay compensation techniques has been investigated [41, 38, 42].

It is worth mentioning that the existing error between the exact and the
approximated predictions in a disturbed system cannot be removed, even in
case of time-constant disturbances using integral action [34]. To overcome
this limitation, predictor-feedback approaches were recently combined with
Extended State Observer (ESO) to actively reject external disturbances in
the presence of time-constant delays [25, 17], and further extended to time-
varying delays [14]. These last works considered disturbances that affect
the state through channels in which the input has no direct influence (mis-
matched disturbances), which are generally more difficult to handle for dis-
turbance rejection purposes [3]. It is worthwhile mentioning that a complete
disturbance rejection is only achievable if the dynamics of the disturbance
component is known in advance. In such case, the disturbance signal can be
observed by an ESO in order to further cancel its steady-state effect in the
controlled output.

However, to the best authors’ knowledge, the control synthesis of event-
triggered predictor-feedback control with ESO to face time-varying delays,
packet loss, packet disorder, bandwidth constraints and mismatched distur-
bances in a single framework, has not been fully investigated.

In this paper, a novel event-triggered control strategy for NCS consisting
of a predictor-based control with a delay-dependent gain-scheduled ESO is
proposed, where the provided gain-scheduling method is used to counteract
the effect of the resulting time-varying delays due to transmission delays,
packet dropouts and packet disorders. In addition, the following key aspects
have been taken into account:
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• (i) The NCS under consideration contemplates the existence of two
independent links (from sensor to controller (SC), and from controller
to actuator (CA)).

• (ii) The negative effect of mismatched disturbances, along with time-
varying delays, packet dropouts and packet disorder in the sensor-to-
controller link are counteracted by a properly designed gain-scheduled
ESO [14].

• (iii) Time-varying delays, packet dropouts and packet disorder in the
controller-to-actuator link are partially compensated by the Artstein’s
reduction method [1].

• (iv) An event-triggered mechanism is implemented to reduce the num-
ber of data packets to be transmitted in both links. The design of the
control and observer gains, together with the event-triggered param-
eters, are carried out by Cone Complementarity Linearization (CCL)
algorithm [10] to improve the closed-loop performance.

The paper is structured as follows. In Section 2, the problem is de-
scribed and some assumptions and preliminaries are introduced. In Section
3, the proposed control structure is presented. Section 4 presents the stabil-
ity analysis for the considered NCS. Section 5 presents the control synthesis
algorithm. In section 6, simulation examples are presented. In section 7,
the control solution is experimentally validated using a UAV-based platform.
Finally, some conclusions and perspectives are outlined in Section 8.

2. Problem statement

Consider the NCS depicted in Figure 1, where the plant is described by
the following discrete-time system model:{

xk+1 = Axk +Buk−dCA
k

+ Fwk,

yk = Cxk, ys,k = Csxk,
(1)

where A ∈ Rn×n, B ∈ Rn×m, F ∈ Rn×q, C ∈ Rp×n and Cs ∈ Rps×n are the
system matrices, xk ∈ Rn is the system state, uk−dCA

k
∈ Rm is the delayed

control action, wk ∈ Rq is an unknown external disturbance, yk ∈ Rp is the
measured output, and ys,k ∈ Rps is the controlled output. Also, consider the
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Figure 1: Block-diagram of the NCS

output feedback controller uk = Fu
(
yk−dSC

k

)
, where Fu(.) : Rp → Rm is the

control scheme to be designed, and yk−dSC
k

is the delayed measured output
system.

The sensor and the actuator are both located closed to the plant, and they
interact with the remotely located controller through the sensor-to-controller
link (SC) for exchanging measurement data, and through the controller-to-
actuator (CA) link for exchanging control actions, respectively.

Let us consider the following assumptions:

Assumption 1. The controller is digitally implemented with sampling pe-
riod Ts, and the control actions are applied at the instants in which the
packets containing them are received, following a Zero Order Hold (ZOH)
method.

Assumption 2. A buffer operatively connected to the corresponding inter-
face for storing each received data packet is available in both sides (remote
and local). In this way, when data packets are lost, the last received one is
processed.

Assumption 3. The input and output delays dCAk , dSCk are assumed to be
unknown time-varying, and satisfy:

hCA1 ≤ dCAk ≤ hCA2 , (2)

hSC1 ≤ dSCk ≤ hSC2 ,

where each pair (hCA1 , hCA2 ) and (hSC1 , hSC2 ) are known.

Assumption 4. [36] The external disturbance wk ∈ Rq in (1) can be mod-
eled as wk = ωu,k + ωk, where ωu,k ∈ L2[0,∞) is a completely unknown
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bounded signal that represents the unmodeled disturbance components, and
ωk is a disturbance component represented by the exogenous system:

χk+1 = Awχk, ωk = Cwχk (3)

where χk ∈ Rr is the generator vector with unknown initial condition χ0, and
Aw ∈ Rr, Cw ∈ Rq×r are known matrices (the so-called exogenous system),
where the spectral radius of Aw is less or equal to 1.

Assumption 5. There exist K ∈ Rm×n and L ∈ R(n+q)×p such that the
matrices (A+BK) and (A− LC) are Schur stable, where

A =

[
A FCw

0p×n Aw

]
, C =

[
C 0p×q

]
. (4)

Assumption 6. There exists synchronization between the clocks of the sen-
sor, actuator and controller devices. Indeed, sensor and actuator are assumed
to be located closed to the plant and governed by the same clock. But, as the
controller is remotely located, in order to be synchronized with the local de-
vices, a synchronization protocol for networks can be used [11].

2.1. Packet dropouts and packet disorder

This section illustrates that both packet dropouts and packet disorder can
be treated as time-varying delays. For instance, several consecutive packet
dropouts lead to a monotonically increasing delay if the last received packet
is processed at each vacant sampling (see Fig. 2), which is consistent with
Assumption 2. Packet disorder can be detected by simply comparing the
timestamps corresponding to the last received data packet with the stored
one, before updating the local buffer: if the timestamp of the most recently
received data packet is older than the timestamp of the stored one, we have
a packet disorder. In this case, data packets containing older information are
replaced by the newer ones, and hence discarded [5]. Thus, packet disorders
can be treated as packet dropouts, and therefore as time-varying delays.

To better illustrate this, let us consider the example given in Fig. 3,
where the data packets p[1], p[4] are lost, and p[2], p[3] are subject to
packet disorder. Note from Fig. 3 that the received data packet p[2] is
older than the currently available p[3] in the local receiver buffer. There-
fore, p[2] is discarded (and hence faced as a packet dropout). Hence, it can
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Figure 2: Illustration of a monotonically increasing time-varying delay dk =
{d0, d1, d2, d3} = {1, 2, 3, 1} caused by packet dropouts (p[1] and p[2]).

be deduced from Fig. 3 that such phenomena leads to time-varying delays
dk: {d0, d1, d2, d3, d4, d5, d6} = {1, 2, 3, 1, 2, 3, 2}. Therefore, the time-varying
network-induced delays dSCk , dCAk include not only transmission delays, but
also packet dropouts and packet disorder phenomena. Let us denote NCA

and h̃CA2 the maximum possible number of consecutive packet dropouts and
the worst-case transmission delay in the controller-to-actuator link, respec-
tively (the same definitions hold for NSC and h̃SC2 in the sensor-to-controller
link). It is easy to see the following equivalences:

hCA2 = NCA + h̃CA2 , hSC2 = NSC + h̃SC2 (5)

where hCA2 , hSC2 are the upper bounds for the input and output delays given
in Assumption 3.

2.2. Timestamping-based delay measurement

Let kT = 0, 1, 2, ... and kR = 0, 1, 2, ... the value of each local clock cor-
responding to the transmitter and receiver devices respectively, which are
assumed to be synchronized (see Assumption 6). Using the same notation as
Fig. 2 and Fig. 3, the timestamp TkT = kT is assigned at each transmitted
data packet, denoted by p[TkT ]. Hence, the total discrete-time delay caused
by transmission delays, packet dropout and packet disorder can be measured
at the receiver by simply computing the difference kR − TkT , where TkT is
here the timestamp extracted from the most recently received data packet,
available in the local buffer.
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Figure 3: Illustration of the resulting time-varying delays dk = {d0, d1, d2, d3, d4, d5, d6} =
{1, 2, 3, 1, 2, 3, 2} caused by packet dropouts (p[1] and p[4]) and packet disorder between
data packets p[2] and p[3].

2.3. Preliminary results

Lemma 1. Given any arbitrary discrete-time signal uk, let ud,k = uk− uk−1
and

wd,k =
2

τCA

(
uk−dCA

k
− 1

2

(
uk−hCA

1
+ uk−hCA

2

))
, (6)

where τCA = hCA2 − hCA1 . Then, the time-varying operator ∆d : ud → wd

renders wd,k = 1
τCA

∑k−hCA
1 −1

i=k−hCA
2

φ(i)ud,i, where

φ(i) =

{
1 if i < k − dCAk − 1,

−1 otherwise,
(7)

and satisfies ||X∆dX
−1||∞ ≤ 1, for any invertible matrix X, where the sym-

bol ||.||∞ denotes the largest possible L2 induced norm of a general operator.

Proof: The proof is an adaptation of a similar result given in [43, Lemma
2] for continuous-time systems. Details are given in Appendix A. �

3. Proposed control strategy

Let us introduce the following event-triggered control strategy for the
system (1):

uk =

{
ũk if (9) is true

uk−1 otherwise,
(8)
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where ũk is defined later in (10), and the event-triggering condition (9) (given
below) is used to decide whether the control action uk must be sent to the
actuator: (

ũk − uTk−1
)T

Ωu

(
ũk − uTk−1

)
> σuũ

T
kΩuũk, (9)

being Ωu ∈ Rm, and the positive scalar σu, some parameters to be designed.
Given the controller parameters K,Kw to be later designed, let us define ũk
in (8) as

ũk = Kz ẑk +Kwω̂k, (10)

where

Kz = 2K
(
A−h

CA
1 + A−h

CA
2

)−1
, (11)

and ω̂k, ẑk are observed states, which respectively correspond to the dis-
turbance component ωk, and the following Arstein’s state transformation zk
with delays hCA1 and hCA2 :

zk = xk + Φk(h
CA
1 ) + Φk(h

CA
2 ), (12)

where

Φk(h
CA
i ) =

1

2

hCA
i −1∑
i=0

A−i−1Buk−hCA
i +i. i = 1, 2. (13)

The observed states ẑk, ω̂k are obtained from the gain-scheduled predictor-
based ESO:

ˆ̄zk+1 = Aˆ̄zk + B̃uk +AdSC
k Lek, (14)

where L is the observer gain to be designed, and

B̃ =

[
B̃

0q×m

]
, B̃ =

1

2

(
A−h

CA
1 + A−h

CA
2

)
B, (15)

being ˆ̄zk =
[
ẑTk ω̂Tk

]T
, and ek the observer error, defined as:

ek = ỹk−dSC
k
− CA−dSC

k ˆ̄zk (16)

+ CA−d
SC
k

(
Φk(h

CA
1 ) + Φk(h

CA
2 ) + Ωk(d

SC
k )
)
,

9



where

Ωk(d
SC
k ) =

dSC
k −1∑
i=0

Ad
SC
k −i−1Buk−dSC

k +i−dCA

k−dSC
k

+i

. (17)

Analogously to (8), the delayed measured output ỹk in (16) transmitted
by the sensor to the controller is defined by applying the following event-
triggering protocol in the sensor-to-controller link:

ỹk =

{
yk if (19) is true

ỹk−1 otherwise,
(18)

where yk is the output measurement given in (1), and the event-triggering
condition in the sensor device is defined below:(

yk − ỹTk−1
)T

Ωy

(
yk − ỹTk−1

)
> σyy

T
k Ωyyk, (19)

being Ωy ∈ Rp, and the positive scalar σy, some parameters to be designed.
Thus, the measurement data packets will be transmitted from the local sensor
to the remote controller if the condition (19) is satisfied.

We emphasize that the control and observer gains Kw, K and L defined
in (10), (11) and (14) respectively, together with the event-triggered param-
eters Ωu, σu,Ωy, σy defined in (9) and (19), are designed not only to stabilize
the closed-loop control system, but also to reduce the bandwidth usage as
far as possible, while satisfying different performance criterions: maximum
disturbance attenuation in the sense of H∞ norm, steady-state rejection of
mismatched disturbances with known dynamics, and robustness against time-
varying delays.

Remark 1. Note that, by setting σu = 0 and σy = 0 in (9) and (19) respec-
tively, a time-triggered control is obtained with sampling period Ts. Therefore,
a minimum sampling period equivalent to Ts is always guaranteed, preventing
the occurrence of Zeno-behavior.

Remark 2. The event-triggered control scheme (8) without input delay com-
pensation can be formulated by replacing Kz and ẑk by K and x̂k in (10),
respectively:

ũk = Kx̂k +Kwω̂k, (20)
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where x̂k is the observed plant state, obtained by means of the ESO:

ˆ̄xk+1 = Aˆ̄xk + Buk + L
(
ỹk−dSC

k
− C ˆ̄xk

)
, (21)

B =
[
BT 0m×q

]T
,

where ˆ̄xTk =
[
x̂Tk ω̂Tk

]
. Note that (20) and (21) are respectively obtained

from (8) and (14) by setting hCA1 = hCA2 = hSC1 = hSC2 = 0. Therefore, in the
absence of time delays, the expressions (10), (14) and (20), (21) are equiv-
alent. The above control scheme without delay compensation will be used to
illustrate the benefits of using predictor-approaches in Section 6 (Example 2)
and experimental results in Section 7. Some key aspects, such as the closed-
loop performance and the achieved percentage ratio of transmitted packets by
means of event-triggered protocols will be compared and discussed.

3.1. Delay-free interconnected state-space model

In this section, we show that the closed-loop control formed by the system
(1) and the control law (8) can be described by an equivalent delay-free
interconnected model (see Lemma 2 below). This result will be helpful to
address later the stability analysis of the closed-loop control system.

Lemma 2. The closed-loop system (1) with (8) can be modeled as the inter-
connected system formed by the delay-free model MS and the feedback system
∆:

MS :

{
ξk+1 = Ākξk + Ḡkw̄k + F̄wk,

ȳk = H̄ξk + D̄w̄k + J̄wk
, (22)

∆ :
{

w̄k = ∆̄kȳk, ,

where ∆̄k is an unknown time-varying operator having block-diagonal struc-
ture: ∆̄k = diag

(
∆d, ∆η, ∆∗ρ, ∆ν

)
with ∆d ∈ Rm, ∆η ∈ Rm, ∆∗ρ ∈ Rp,

∆ν ∈ Rn×m , and satisfying ||T1∆̄T−12 ||∞ ≤ 1, where the scaling factors T1
and T2 are defined as:

T1 = diag (X, Xu, Xy, In) , (23)

T2 = diag (X, Xu, Xy, Im) ,

XT
uXu = Ωu, XT

y Xy = Ωy

11



and

ξTk =
[
zTk uTk−1 ēTk

]
, ēk = z̄k − ˆ̄zk, K =

[
Kz Kw

]
(24)

Āk =

A+ B̃Kz 0 −B̃K
Kz 0 −K
0 0 A−AdSC

k LCA−dSC
k

 ,
Ḡk =

G √
σuB̃ 0 0

0 0 0 0

G 0 −τSC
√
σyAd

SC
k L 0

 , F̄ =

F + B̃Kw

Kw

0

 ,
H̄ =


Kz −Im −K
Kz 0 −K
C CΓ1 0
Kz −Im −K

 , D̄ =


0

√
σuIm 0 0

0 0 0 0
0 0 0 µC
0

√
σuIm 0 0

 ,
J̄T =

[
KT
w KT

w 0 KT
w

]
,

Γ1 =

hCA
1 −1∑
j=0

A−j−1 +

hCA
2 −1∑
j=0

A−j−1

 B

2
,

µ =

∣∣∣∣∣∣
∣∣∣∣∣∣

2∑
r=1

hCA
r −1∑
j=0

hCA
r −j−1∑
f=1

A−j−1
B

2
z−f

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

,

where B̃ and Kz are defined in (15) and (11) respectively. The symbol z
given in the above defined parameter µ stands for the discrete-time operator.

Proof: See Appendix A. �

The corollary given below (Corollary 1) shows that the closed-loop poles of
the control system, which are equivalent to the eigenvalues of Āk in (24), are
independent of the instant values of time delays dSCk and dCAk , and equivalent
to the eigenvalues of (A+BK) and (A− LC).

Corollary 1. The time-varying matrix Āk defined in (24) has m eigenvalues
equal to 0, and the rest of them are the eigenvalues of matrices (A + BK)
and (A− LC), ∀k ≥ 0.
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Proof: Noting the block-triangular structure of Āk:

Āk =

 A+ B̃Kz 0 −B̃K̃
Kz 0m −K̃
0 0 A−AdSC

k LCA−dSC
k

 ,
it can easily be deduced that its eigenvalues are the eigenvalues of the ma-
trices Ā1 and Ā2,k, where:

Ā1 =

[
A+ B̃Kz 0

Kz 0m

]
, Ā2,k = A−AdSC

k LCA−dSC
k .

Note that the matrix Ā1 has m eigenvalues equal to 0, and the rest of them
are the eigenvalues of (A + B̃Kz). Finally, the proof can be completed by
taking into account that:

• (i) The eigenvalues of (A + BK) are the same as Ξ2(A + BK)Ξ−12 for
any regular matrix Ξ2. Therefore, by choosing

Ξ2 = 0.5
(
A−h

CA
1 + A−h

CA
2

)
,

we have that Ξ2AΞ−12 = A. Also, taking into account from (15) and
(11) that B̃ = Ξ2B and Kz = KΞ−12 respectively, we deduce that
(A+ B̃Kz) has the same eigenvalues as (A+BK).

• (ii) The eigenvalues of (A − LC) are the same as Ξ1(A − LC)Ξ−11 for
any regular matrix Ξ1. Therefore, by choosing Ξ1 = AdSC

k , we deduce
that Ā2,k has the same eigenvalues as (A− LC), for any dSCk .

�

Remark 3. Note that the current and past measured delays dSCk , dCAk com-
prising transmission delays, packet loss and packet disorder (as explained in
Section 2.1 and Section 2.2) are used to update the control scheme during
control execution by means of the gain-scheduling law given in (14), (16) and
(17). Corollary 1 reveals that closed-loop system behavior approaches to the
nominal closed-loop performance given by the eigenvalues of (A + BK) and
(A− LC) for sufficiently slow time-varying delays, no matter how long they
are. Hence, it can be seen that this key feature is achieved thanks to the pro-
posed gain-scheduled observer, in combination with the predictor-based control
scheme.
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4. Stability analysis

The following theorem enables to prove the stability with decay-rate 0 <
β ≤ 1 of the closed-loop system (1) with the control law (8) and the predictor-
observer scheme (14), for any arbitrarily fast-time varying delays dSCk , dCAk .

Theorem 1. Given K, L, and scalars σu, σy, h
SC
1 , hSC2 , hCA1 , hCA2 > 0,

the closed-loop system (1) with the control law (8) and the predictor-observer
scheme (14) is robustly asymptotically stable with decay rate β if there exist
symmetric matrices P ∈ R2n+m+q > 0, S̃ ∈ Rm > 0, Ω̃u ∈ Rm > 0,
Ω̃y ∈ Rp > 0 and a scalar ρ > 0, such that the following LMIs are satisfied,
∀i = 1, · · · , hSC2 − hSC1 + 1:

Γ̂i < 0, (25)

where

Γ̂i =



−β2P 0 0 P ˆ̄ATi PH̄T PC̄T
s

(∗) −W1 0 W1
ˆ̄GT
i W1D̄

T W1D̄
T
s

(∗) (∗) −ρIq F̄ T J̄T 0
(∗) (∗) (∗) −P 0 0
(∗) (∗) (∗) (∗) −W2 0
(∗) (∗) (∗) (∗) (∗) −Ips


, (26)

and

ˆ̄Ai =

A+ B̃Kz 0 −B̃K
Kz 0 −K
0 0 A−AdiLCA−di

 , (27)

ˆ̄Gi =

G √
σuB̃ 0 0

0 0 0 0
G 0 −τSC

√
σyAdiL 0

 ,
W1 = diag

(
S̃, Ω̃u, Ω̃y, Im

)
,

W2 = diag
(
S̃, Ω̃u, Ω̃y, In

)
,

C̄s =
[
Cs CsΓ1 0

]
, D̄s =

[
0 0 0 µCs

]
,

ρ = γ2, τSC = hSC2 − hSC1 , τCA = hCA2 − hCA1 .

where di = hSC1 + i − 1, and F̄ , H̄, D̄, J̄ , Γ1 and µ are defined in (24). In
addition, the event-triggered parameters Ωu, Ωy are obtained as Ωu = Ω̃−1u ,
Ωy = Ω̃−1y .
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Proof: See Appendix B. �

Remark 4. The H∞ disturbance rejection performance γ =
√
ρ can be ob-

tained from Theorem 1 by solving the following convex optimization problem:

min ρ s.t LMIs (25) (28)

5. Control synthesis

Note that the matrix inequalities (25) are not linear if the control and
observer gains K and L are defined as LMI decision variables. Therefore,
the problem of control synthesis by means of Theorem (1) or (28) renders
non convex. In this section, we propose a Cone Complementarity Lineariza-
tion (CCL) algorithm to find the values of K and L that enhance as long
as possible some of the following closed-loop performance indices: maximum
allowable delays τSC , τCA, bandwidth usage through the event-triggered pa-
rameters σu, σy, decay rate performance β, and the H∞ disturbance rejection
γ corresponding to the transfer function between the disturbance input wk
and the controlled output ys,k.

Note that, by denoting Q = P−1 and Xy = Ω−1y in (75), and pre-and

post multiplying by diag
(
I, W̃1, I, I, I, I

)
(where W̃1 is defined below), we

obtain:

Γ̂∗i =



−β2Q 0 0 ˆ̄ATi H̄T C̄T
s

(∗) −X̃1 0 W̃1
ˆ̄GT
i W̃1D̄

T W̃1D̄
T
s

(∗) (∗) −γ2Iq F̄ T J̄T 0
(∗) (∗) (∗) −P 0 0
(∗) (∗) (∗) (∗) −W2 0
(∗) (∗) (∗) (∗) (∗) −Ips


,

W̃1 = diag (S, Ωu, Ip, I) , (29)

X̃1 = diag (S, Ωu, Xy, I)

Also, let us introduce the LMI conditions to relax the equality constraints
PQ = I and ΩyXy = I for the CCL algorithm:[

P I
I Q

]
≥ 0,

[
Ωy I
I Xy

]
≥ 0, (30)

together with the objective function to minimize:

min(trace(PQ+QP + ΩyXy + XyΩy)). (31)
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5.1. CCL algorithm description

Let σu, σy, β and γ the performance indices to be improved for control
design, and let δuσ , δyσ, δβ and δγ their corresponding incremental values for
each iteration. For instance, if one were only interested in finding a control
which only maximizes σy as much as possible, the increment δyσ should be
defined strictly positive, and the rest of incremental values should be set at
zero. The algorithm is described below:

• Step (i): Design K and L such that A + BK and A − LC are Schur-
stable, and Kw to achieve a null steady-state error of the external dis-
turbance wk.

• Step (ii): Solve the convex optimization problem (28) taking a suffi-
ciently positive small values for σu = σ0

u, σy = σ0
y, and β = β0 to find

a feasible solution. Set q = 0, P0 = P,Q0 = P−1,Ωy,0 = Ωy,Xy,0 = Ω−1y
and γ0 =

√
ρ.

• Step (iii): Solve the convex optimization problem min(trace(PqQ +

QqP + Ωy,qXy + Xy,qΩy)) subjet to the LMI’s (30) and Γ̂∗i < 0, i =

1, ..., hSC2 −hSC1 +1, where Γ̂∗i is defined in (29), considering σu = σqu+δuσ ,
σy = σqy + δyσ, β = βq − δβ and γ = γq + δγ, where Γ̂∗i is defined in (29),
and P,Q, S,Ωu,Ωy > 0,K,Kw,L are decision variables.

• Step (iv): If a feasible solution is found, go to step (v). Otherwise, set
δuσ = δuσ/h, δyσ = δyσ/h, δβ = δβ/h and δγ = δγ/h, for some h > 1, until
a feasible solution is found in Step (iii).

• Step (v): Check if (25) hold with the obtained values in Step (iv) taking

P = m1P
∗ + (1 −m1) (Q∗)−1 and Ωy = m2Ω

∗
y + (1 −m2)

(
X ∗y
)−1

, for
some 0 ≤ mi ≤ 1, i = 1, 2, where P ∗, Q∗, Ω∗y and X ∗y are the feasible
solutions obtained in Step (iii). If the inequalities (25) are true, go
to Step (vi). Otherwise, set δuσ = δuσ/h, δyσ = δyσ/h, δβ = δβ/h and
δγ = δγ/h, for some h > 1, and execute Steps (iii),(iv) and (v) until a
feasible solution is found.

• Step (vi): If the maximum number of iterations is still not reached, set
q = q + 1, Pq = Pq−1, Qq = P−1q−1, σ

q
u = σq−1u , σqy = σq−1y , εqβ = εq−1β ,

εqγ = εq−1γ and go to Step (iii). Otherwise, stop and exit.
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6. Simulation results

Two examples are provided in this section. The first example shows
the effectiveness of the proposed control synthesis algorithm in an open-
loop unstable plant brought from the literature, but including mismatched
disturbances. The second example illustrates the advantages of predictor-
based control approaches in terms of closed-loop performance and bandwidth
usage, considering the same plant model as the experimental setup.

6.1. Example 1

Consider the open-loop unstable plant studied in [24], where rejection
of mismatched disturbances has been carried out by the proposed gain-
scheduled ESO (which is an improvement of our work compared to the one
in [24]). Let Ts = 0.1s be the sampling period. The discrete-time system
model (1) renders:

A =

[
1.0101 0.0600

0 0.9900

]
, B =

[
0.1035
0.0995

]
, C =

[
1 1

]
. (32)

For simulation purposes, we introduce the following disturbance input wk,
where the component ωk with known dynamics is assumed to be on the form:

ωk =

{
0 if t < 9s || t > 27s

−0.2 otherwise.
(33)

and the unknown component wu,k is a randomly generated signal with max-
imum amplitude 0.05.

Let F = B, Cs = [0, 1]. Also, from (33), we can deduce that ωk can be
modeled using (3) with Aw = 1, Cw = 1. Now, let us consider the proposed
event-triggered control scheme (8)-(19) by choosing K and L (see below),
such that A+BK and A− LC are Schur-stable matrices:

K =
[
−0.2951 −0.4439

]
,

L =
[
83.8702 −81.3701 21.9998

]T
, Kw = −1.1511, (34)

σu = 3 · 10−4, σy = 3 · 10−5, Ωu = Ωy = 1.

where Kw has been set to achieve a steady-state rejection of any unknown
input disturbance wk of step form. By means of Theorem 1, we prove that
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Figure 4: (Example 1) Comparative results between the control settings (34) and (35) for
dSC
k = 2, dCA

k = 2 using the proposed control scheme (8)-(19).

the closed-loop system formed with K,Kw and L given in (34) is stable up
to σu = 3 · 10−4, σy = 3 · 10−5 with H∞ performance γ = 38.6275, by setting
β = 0.996 and dSCk = dCAk = 2.

With the objective of reducing the bandwidth usage and improve the
H∞ performance at the same time, we design by the proposed algorithm in
Section 5.1 a new control and observer gains. Since A + BK and A − LC
are Schur-stable matrices, Corollary 1 ensures the closed-loop stability for
any time-constant delays. Therefore, we have used K,Kw and L in (34) as
starting values for step (i) in the given algorithm. As a result, we obtain the

Control setting CA(%) SC(%)
See (34) 99.34 98.66
See (35) 64.44 92.00

Table 1: (Example 1) Comparison of the percentage of transmitted packets in both chan-
nels (columns SC(%) and CA(%)) for dSC

k = 2, dCA
k = 2 between the control settings (34)

and (35) using the proposed control scheme (8)-(19).
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Figure 5: (Example 1) Comparative results between the control settings (34) and (35) for
1 ≤ dSC

k ≤ 3, dCA
k = 2 using the proposed control scheme (8)-(19).

following control and observer gains:

K =
[
−0.2771 −0.4728

]
,

L =
[
84.8702 −83.3701 19.9998

]T
, Kw = −1.1529, (35)

σu = 0.9 · 10−2, σy = 2.4 · 10−3, Ωu = Ωy = 1,

where better H∞ performance γ = 11.59 has been obtained, in com-
parison to the original design given in (34). In this case, we have also set
β = 0.996, and dSCk = dCAk = 2.

Control setting CA(%) SC(%)
See (34) 97.81 99.11
See (35) 63.34 87.52

Table 2: (Example 1) Comparison of the percentage of transmitted packets in both chan-
nels (columns SC(%) and CA(%)) for 1 ≤ dSC

k ≤ 3, dCA
k = 2 between the control settings

(34) and (35) using the proposed control scheme (8)-(19).
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Comparative simulation results are depicted in Table 1 and Fig. 4 as-
suming dSCk = dCAk = 2. It can be appreciated that the dynamic performance
obtained by the designed control setting (35) (magenta solid-line) is better
than (34) (blue dashed-line), which confirms the effectiveness of the control
synthesis algorithm. Note also that the disturbance input wk defined in (33)
is effectively steady-state rejected in the controlled output ys,k, as expected
from the proposed ESO scheme.

Next, let 1 ≤ dSCk ≤ 3, where comparative results are given in Fig. 5 and
Table 2. Here we illustrate that the designed control scheme (35) (magenta
solid-line) clearly outperforms the original design (34) (blue dashed-line) even
in case of time-varying delays. For a fair comparison, the same time-varying
patterns for delays and unknown disturbance ωu,k have been used in both
simulations.

Note also that a reduction of the transmitted data packets has been
achieved in both cases. The ratio between transmitted data packets and
total number of transmitted ones along the control execution is compared
in Table 1 and Table 2 (see bold style) for time-constant and time-varying
delay cases, respectively.

6.2. Example 2

Consider the NCS, where the plant model is described by (1), which is
a discrete-time approximate model of the experimental platform used after-
wards with sampling period Ts = 0.01s. The system matrices are:

A =

[
1 0.01
0 1

]
, B = F =

[
0

0.001

]
, (36)

C = Cs =
[
1 0

]
.

Consider the following control and observer gains K and L, already used in
[14], to stabilize the system:

K = −
[
50 45

]
, LT =

[
0.57 3.62 60

]
, Kw = −1.9540, (37)

where Kw has been set to achieve a steady-state rejection of any unknown
input disturbance wk of step form.

For simulation purposes, we introduce a disturbance input signal wk = ωk,
where ωk is defined as:

ωk =

{
0 if t < 30s

−2.5 otherwise,
(38)
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Control SC(%) CA(%)
Delay-free case 17.45% 22.55%

Control without delay compensation 89.43% 72.53%
Proposed control scheme 17.73% 34.30%

Table 3: (Example 2) Comparison of the percentage of transmitted packets in both chan-
nels (columns SC(%) and CA(%)) using different control schemes for 1 ≤ dSC

k ≤ 17,
1 ≤ dCA

k ≤ 17. The event-triggered parameters are σu = 1·10−2, Ωu = 1 and σy = 1·10−5,
Ωy = 1.

Fig. 6 gives comparative results between the proposed control law (8)-
(19) with respect to the control scheme without delay compensation (see
Remark 2) using the control parameters given in (37). It can be appreciated
that the achieved response (dash-dotted magenta line) appears to be very
similar to the delay-free case (blue solid-line) using the proposed control
scheme. Time-varying delay intervals have been chosen to be 1 ≤ dSCk ≤ 17,
1 ≤ dCAk ≤ 17 since such delay intervals lead the closed-loop system to
the verge of instability (dashed green line) when no delay compensation is
implemented. The event-triggered parameters have been set in all cases as
σu = 1 · 10−2, Ωu = 1 and σy = 1 · 10−5, Ωy = 1. Note from Table 3 that
the percentage of transmitted data packets in both channels is similar to the
delay-free case using the proposed control, meanwhile such percentages are
sensibly greater without delay compensation, even using the same threshold
parameters. This fact can be explained because the convergence is faster
and there are less oscillations using the proposed control scheme. Therefore,
the average number of times that conditions (9), (19) are true is reduced,
leading to less number of transmitted packets. For a fair comparison, the
same time-varying delay patterns have been used in both simulations.

Fig. 7 gives comparative results using the proposed control law (8)-(19)
with control parameters (37) under different event-triggered parameters. It
can be seen that the closed-loop performance is hardly degraded for greater
values of σu and σy, but an important reduction of transmitted data packets
has been achieved in both channels (see Table 4). Note that by setting σu =
0.1 and σy = 10−4 (see third row in Table 4), the percentage of transmitted
data packets (13.15% and 22.31%) is less than the delay-free case (see first
row in Table 3) (17.45% and 22.55%), while exhibiting a similar response
(settling time around 5s and no overshoot) in both cases.
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Figure 6: (Example 2) Comparison of the output system (upper part) and the control
action (lower part) for 1 ≤ dSC

k ≤ 17, 1 ≤ dCA
k ≤ 17 using the proposed control scheme

(8)-(19) with respect to the nominal delay-free case and the same control scheme without
delay compensation. The event-triggered parameters are σu = 1 · 10−2, Ωu = 1 and
σy = 1 · 10−5, Ωy = 1.

σu σy SC(%) CA(%)
0.001 10−6 23.31% 42.58%
0.01 10−5 17.60% 32.98%
0.1 10−4 13.15% 22.31%

Table 4: (Example 2) Comparison of the percentage of transmitted packets in both chan-
nels using the proposed control scheme and different event-triggered parameters σu, σy
taking Ωu = 1,Ωy = 1 (columns SC(%) and CA(%)). Time-varying delays have been
chosen to be 1 ≤ dSC

k ≤ 17, 1 ≤ dCA
k ≤ 17
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Figure 7: (Example 2) Comparison of the output system (upper part) and the control
action (lower part) for 1 ≤ dSC

k ≤ 17, 1 ≤ dCA
k ≤ 17 using the proposed control scheme

(8)-(19) using different event-triggered parameters σu, σy taking Ωu = 1,Ωy = 1).

23



Figure 8: 3-DOF Hover of Quanser (experimental platform)

7. Experimental results

The proposed control law has been implemented in the 3DOF Hover of
Quanser shown in Fig. 8. This test-bed consists of a quadrotor installed in
a pivot joint, which enables it to spin in roll, pitch and yaw angles without
translational movement. The angles are measured by optical encoders with
an accuracy of 0.04◦. The four motors of the system can be set between
−10V and +10V . Moreover, the motors present a dead zone between ±0.5V .
The implemented control strategy has been executed in a PC with a real-
time Linux OS distribution, which enables to run the full algorithm with a
sampling time of 0.01s. The computer is connected to the Quanser hardware
by means of a data acquisition board with a resolution of 16bit.

The experiment has been performed considering only the roll angle, which
is denoted as θ(t). If the yaw and pitch angles are zero, the dynamics of θ(t)
can be approximated by the following model [35]:

θ̈(t) = Ksu(t) + w(t), Ks = 0.1, (39)

where u(t) is the input voltage of the motors used to control the roll axis,
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Ks = 0.1 is a constant representing the inertia moment, and w(t) represents
a load disturbance.

The discrete-time system model with sampling period Ts = 0.01s is the
same as Example 2, being (36) the system matrices. Moreover, the control
and observer gains are given in (37).

Two comparative experiments have been carried out in order to illus-
trate the effectiveness of the proposed strategy: (i) a comparison among the
ideal strategy (without delays), the control without delay compensation (see
Remark 2) in the presence of time-varying delays, and the proposed control
strategy in the presence of the same time-varying delays as the previous case,
and (ii): a comparison using different values of σy and σu with the proposed
control strategy, in order to illustrate the trade-off between performance and
bandwidth usage.

For a fair comparison, both experiments have been carried out using the
same time-varying delays, where 1 ≤ dOk ≤ 11 and 1 ≤ dIk ≤ 10. Such
delay intervals have been selected in order to lead the system to the verge of
instability in case of having no delay compensation, as discussed in Remark
2 (see case 1b in Fig. 9). The set-point changes between −5◦ and +5◦ (see
black dotted-line in the upper side of Fig. 9). With the objective to illustrate
the effectiveness of the ESO, the following load disturbance w(t) has been
introduced by software:

ωk =

{
0 V if t < 30s

−2.5 V otherwise.
(40)

The closed-loop responses of the first and second experiments are depicted in
Fig. 9 and Fig. 10, respectively. Table 5 shows the percentage of transmitted
packets for the different experiments carried out in the second experiment.
In light of the given results, a drastic bandwidth reduction can be appreci-
ated, with a slight degradation of the system performance. It can also be
appreciated the presence of some peaks in the interval 30s− 40s due to the
load disturbance w(t) given in (40), but after these peaks, the roll angle con-
verges to the reference value (see Fig. 9). This fact reveals that the load
disturbance w(t) is effectively steady-state rejected in the controlled output
(roll angle).

The results obtained in this section confirm the trends observed in the
simulation example, and hence, the proposed control solution is experimen-
tally validated.
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Figure 9: Experiment 1: Comparative among different control strategies. Ideal scheme
(without delays), control with delays but not considering them for the design and Proposed
scheme with delays (σy = 1e− 5, σu = 0.01)

However, notice that delay intervals have been chosen both in the exper-
imental setup and Example 2 to lead the closed-loop system without delay
compensation to the limit of stability, with the objective of better highlight-
ing the benefits of using predictor approaches. As could be expected, the
maximum allowable delay intervals are smaller in the experimental setup
than the obtained by simulation in Example 2. This fact explains why bet-
ter reductions of transmitted packets are obtained in the experiments than
simulation (Table 5 vs Table 4).
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Figure 10: Experiment 2: Comparative of different values of σy and σu.

σu σy SC(%) CA(%)
0.001 10−6 10.33% 35.88%
0.01 10−5 10.16% 17.72%
0.1 10−4 10.02% 12.11%

Table 5: (Experimental setup) Comparison of the percentage of transmitted packets in
both channels (columns SC(%) and CA(%))
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8. Conclusions

In this paper, a novel control strategy for NCS, composed of a predictor-
feedback scheme, event-triggered control and a gain-scheduled ESO, has been
presented. Time-varying delays, packet loss and packet disorder in both
links are counteracted, while the presence of mismatched disturbances is
steady-state rejected. Furthermore, a control synthesis algorithm based on
CCL and LMI has been provided in order to co-design the controller and
event-triggered parameters in the aim of improving system performance. The
benefits of our proposal are illustrated, that is, both communication problems
and mismatched disturbances slightly affect the NCS, since it is able to keep
satisfactory control properties despite reducing resource usage. Finally, the
control solution is experimentally validated in a test-bed platform based on
an unstable plant such as an Unmanned Aerial Vehicle (UAV).

Appendix A: Proof of Lemma 1

let us define S = XTX, and consider the L2 norm of wd,k and ud,k:

||wd||l2 =

(
∞∑
j=0

wTd,jSwd,j

) 1
2

, ||ud||l2 =

(
∞∑
j=0

uTd,jSud,j

) 1
2

. (41)

Applying Jensen’s inequality and replacing wd,j = 1
τCA

∑j−hCA
1 −1

i=j−hCA
2

φ(i)ud,i into

||wd||l2 we have that:

||wd||2l2 =
1

τ 2CA

∞∑
j=0

j−hCA
1 −1∑

i=j−hCA
2

φ(i)ud,i

T

S

j−hCA
1 −1∑

i=j−hCA
2

φ(i)ud,i

 (42)

≤ 1

τCA

∞∑
j=0

j−hCA
1 −1∑

i=j−hCA
2

φ2(i)uTd,iSud,i =
1

τCA

j−hCA
1 −1∑

i=j−hCA
2

∞∑
j=0

uTd,iSud,i︸ ︷︷ ︸
||ud||2l2

.

Then, we have that ||wd||2l2 ≤ ||ud||
2
l2

for any invertible matrix X, concluding
the proof.
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Appendix B: Proof of Theorem 2

Let x̄Tk =
[
xTk ωTk

]
. From (3), system (1) with ωu,k = 0 can be expressed

using the augmented state-space model:

x̄k+1 = Ax̄k + Buk−dCA
k
, (43)

where A and B are respectively defined in (4) and (21). Then, we have the
following h-step ahead state prediction of x̄k:

x̄k+h = Ahx̄k + Ω̄k+h(h), (44)

where

Ω̄k(h) =
h−1∑
i=0

Ah−i−1Buk−h+i−dCA
k−h+i

. (45)

From the definition of A and B in (4) and (43) respectively, it can be deduced

that Ω̄k+h(h) =
[
ΩT
k+h(h) 0m×q

]T
, where

Ωk(h) =
h−1∑
i=0

Ah−i−1Buk−h+i−dCA
k−h+i

. (46)

The h-step back of (44) yields:

x̄k = Ahx̄k−h + Ω̄k(h). (47)

Multiplying both-sides of (47) by CA−h we obtain:

CA−hx̄k = Cx̄k−h + CA−hΩ̄k(h). (48)

From the definition of A, C in (4), we obtain that (48) is equivalent to:

CA−hx̄k = Cxk−h + CA−hΩk(h). (49)

Replacing h by dSCk in the above expression we have:

CA−dSC
k x̄k = Cxk−dSC

k︸ ︷︷ ︸
ỹ
k−dSC

k

+CA−d
SC
k Ωk(d

SC
k ), (50)
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which leads to:

ỹk−adSC
k

= CA−dSC
k x̄k − CA−d

SC
k Ωk(d

SC
k ). (51)

On the other hand, from (14), and defining

ρk =
1
√
σy

(yk − ỹk) , (52)

we obtain:

ˆ̄zk+1 = Aˆ̄zk + B̃uk +AdSC
k Lỹk−dSC

k
+
√
σyAd

SC
k Lρk−dSC

k

+AdSC
k LCA−dSC

k

(
Φk(h

CA
1 ) + Φk(h

CA
2 ) + Ωk(d

SC
k )
)

−AdSC
k LCA−dSC

k ˆ̄zk. (53)

Substituting the term ỹk−dSC
k

from (51) into the above expression (53) and
rearranging terms, we have:

ˆ̄zk+1 = Aˆ̄zk + B̃uk (54)

+AdSC
k LCA−dSC

k

(
Φk(h

CA
1 ) + Φk(h

CA
2 )
)

+AdSC
k LCA−dSC

k

(
x̄k − ˆ̄zk

)
+
√
σyAd

SC
k Lρk−dSC

k
.

Noting that x̄Tk =
(
xTk , ω

T
k

)
and xk = zk − Φk(h

CA
1 ) − Φk(h

CA
2 ) (see (12))

it can be deduced that x̄k = z̄k − Φ̄k(h
CA
1 ) − Φ̄k(h

CA
2 ), where Φ̄k(h

CA
i ) =[

ΦT
k (hCAi ) 0m×q

]T
i = 1, 2 and z̄Tk = [zTk , ωTk ]. Then, replacing x̄k by z̄k−

Φ̄k(h
CA
1 )−Φ̄k(h

CA
2 ) into (54), and taking into account that CA−dSC

k Φ̄k(h
CA
i ) =

CA−d
SC
k Φk(h

CA
i ), i = 1, 2, we obtain:

ˆ̄zk+1 = Aˆ̄zk + B̃uk +AdSC
k LCA−dSC

k

(
z̄k − ˆ̄zk

)
(55)

+
√
σyAd

SC
k Lρk−dSC

k
.

Let ēk = z̄k − ˆ̄zk. Then, we can write ũk = K ˆ̄zk as:

ũk = Kz̄k −Kēk (56)

The one-step ahead zk+1 and ēk+1 yield:

zk+1 = Azk + B̃ (ũk +
√
σuηk) +Gwd,k + Fwk, (57)

ēk+1 =
(
A−AdSC

k LCA−dSC
k

)
ēk

+ Gwd,k −
√
σyAd

SC
k Lρk−dSC

k
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where

ηk =
1
√
σu

(uk − ũk) . (58)

Taking into account the above expressions, the augmented state-space model
renders: zk+1

uk
ēk+1

 =

A+ B̃Kz 0 −B̃K
Kz 0 −K
0 0 A−AdSC

k LCA−dSC
k

 zk
uk−1
ēk

 (59)

+

G0
G

wd,k +

√σuB̃0
0

 ηk −
 0

0

(τSC + 1)
√
σyAd

SC
k L

 ρ̃k
+

F + B̃Kw

Kw

0

wk,
where ρ̃k =

(
1

τSC+1

)
ρk−dSC

k
.

From (8), (9), (18), and (19), it can be deduced that the following condi-
tions always hold:

(uk − ũk)T Ωu (uk − ũk) ≤ σuũ
T
kΩuũk, (60)

(yk − ỹk)T Ωy (yk − ỹk) ≤ σyỹ
T
k Ωyỹk,

From (52) and (58), the above expressions can be equivalently written as:

ηk = ∆η,kũk, ρk = ∆ρ,kỹk (61)

where ∆η : ũ → η and ∆ρ : ỹ → ρ are time-varying operators satisfying
respectively:

||Xu∆ηX
−1
u ||∞ ≤ 1, ||Xy∆ρX

−1
y ||∞ ≤ 1 (62)

where XT
uXu = Ωu and XT

y Xy = Ωy. Together with ∆d : ud → wd (already
defined in Lemma 1), and the above defined ∆η, ∆ρ, the following normalized
time-varying delay operator ∆ρ,d is also introduced:

∆ρ,d : ρ→ ρ̃, (63)

∆∗ρ = ∆ρ ∆ρ,d : ỹ → ρ̃,
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where ρ̃k = ∆∗ρ,kρk =
(

1
τSC+1

)
ρk−dSC

k
. Noting that ||∆ρ||∞ ≤ 1, ||∆ρ,d||∞ ≤ 1,

we have that ||∆∗ρ||∞ ≤ 1. Therefore, from Lemma 1 and (61), we have that:wd,kηk
ρ̃k

 =

∆d 0 0
0 ∆η 0
0 0 ∆∗ρ

ud,kũk
ỹk

 , (64)

where

ud,k = uk − uk−1
=
[
Kz −Im −K

]
ξk +

√
σuηk +Kwwk,

ũk = K (z̄k − ēk) =
[
Kz 0 −K

]
ξk +Kwwk, (65)

ỹk = Cxk = Czk − C
(
Φk(h

CA
1 ) + Φk(h

CA
2 )
)

Note that the following equivalence is satisfied:

Φk(h
CA
1 ) + Φk(h

CA
2 ) = Γ1uk−1 − Πk (66)

where Γ1 is defined in (24), and

Πk =

hCA
1 −1∑
j=0

hCA
1 −j−1∑
f=1

A−j−1
B

2
ud,k−f (67)

+

hCA
2 −1∑
j=0

hCA
2 −j−1∑
f=1

A−j−1
B

2
ud,k−f

Also, with the above notation, the output ỹk in (65) can be expressed as:

ỹk =
[
C CΓ1 0

]
ξk − µCνk, νk = ∆νud,k, (68)

where ξTk =
[
zTk uTk−1 ēTk

]
, and the scalar µ is theH∞ norm of the operator

Πk : ud → ν, which is defined in (24).
Next, let us introduce the vectors:

w̄Tk =
[
wTd,k ηTk ρ̃Tk νTk

]
, (69)

ȳTk =
[
uTd,k ũTk ỹTk uTd,k

]
From the above definitions and (64), we can write:

w̄k = ∆̄ȳk, ∆̄ = diag
(
∆d, ∆η, ∆∗ρ, ∆ν

)
. (70)

Note from the structure of ∆̄ in (70) that T2∆̄ = ∆̄T1, where T1, T2 are
defined in (23), and therefore ||T1∆̄T−12 ||∞ ≤ 1. Finally, from (70), the
interconnected system (22) is obtained, concluding the proof.
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Appendix C: Proof of Theorem 1

Consider the Lyapunov function Vk = ξTk P
−1ξk, where P > 0 and ξTk

defined in (22). The system MS in (22) is asymptotically stable with decay
rate β, say ||ξk|| ≤ Ω||ξ0||−β,∀k ≥ 0, for some arbitrary Ω > 0 and any initial
condition ξ0, if the following condition holds:

∆βVk = Vk+1 − β2Vk < 0. (71)

On the other hand, note that the controlled output ys,k in (1) renders:

ys,k = C̄sξk + D̄sw̄k, (72)

where C̄s andD̄s are defined in (27).
It is well-known that the following condition along (MS):

∆βVk + ȳTkW−12 ȳk − w̄TkW−11 w̄k + yTs,kys,k − γ2wTk wk < 0, (73)

implies that ||T2MST
−1
1 ||∞ ≤ 1 and ||ys||2 ≤ γ2||w̄||2, where T1, T2 are defined

in (23) and W−11 = T T1 T1, W−12 = T T2 T2.
From (22) and (72), the expression (73) yields:

ξTk
(
ĀTkP

−1Āk − β2P−1 + H̄TW−12 H̄ + C̄T
s C̄s

)
ξk (74)

+ 2ξTk Ā
T
kPḠkw̄k + 2ξTk C̄

T
s D̄swk

+ 2ξTk Ā
T
kPF̄wk + w̄Tk

(
ḠT
kPḠk −W−11

)
w̄k

+ 2w̄Tk Ḡ
T
kPF̄wk + wTk

(
D̄T
s D̄s − γ2Iq

)
wk < 0.

Applying Schur Complement, the following inequality is obtained:

Γ̂i =



−β2P−1 0 0 ˆ̄ATi H̄T C̄T
s

(∗) −W−11 0 ˆ̄GT
i D̄T D̄T

s

(∗) (∗) −γ2Iq F̄ T J̄T 0
(∗) (∗) (∗) −P 0 0
(∗) (∗) (∗) (∗) −W2 0
(∗) (∗) (∗) (∗) (∗) −Ips


. (75)

Pre-and post multiplying the above inequality by

diag (P, W1, I, I, I, I) , (76)
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and writing

(
Āk, Ḡk

)
=

r∑
i=1

λi(d
SC
k )

(
ˆ̄Ai,

ˆ̄Gi

)
, (77)

where r = hSC2 − hSC1 + 1, being ˆ̄Ai,
ˆ̄Gi is defined in (27), and

λi(d
SC
k ) =

{
1 if dSCk − hSC1 + 1 = i

0 otherwise,
(78)

the inequality (74) is equivalent to:

r∑
i=1

λi(d
SC
k )Γ̃i < 0, (79)

where Γ̃i is defined in (26). Taking into account that the scalar functions λi(.)
in (78) satisfy the convex sum properties:

∑r
i=1 λi(.) = 1, 0 ≤ λi(.) ≤ 1, a

sufficient condition for (79) is given in (25).
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based dual-rate pid control strategy for a slow-rate sensing networked
control system. ISA transactions, 76:155–166, 2018.

[7] A. Cuenca, D. Antunes, A. Castillo, P. Garćıa, B. A. Khashooei, and
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