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Abstract

In this paper, a novel predictive Extended State Observer (ESO)-based discrete controller with guaranteed stability is
developed. Predictive controllers based on ESOs are gaining acceptance for controlling MIMO systems with disturbances,
uncertainties or actuator constrains. However, one main concern about this control structure regards its closed-loop
stability; which is not strictly guaranteed with the previous formulations. The proposed solution adds two new elements
in the performance cost-index that permits to prove that –under the same assumptions that are normally taken in the
ESO literature– the resulting closed-loop will be Input-to-State Stable against state-dependent uncertainties, observation
errors and actuator constraints. A simulation case study of the glucose control in patients with type-1 diabetes is
additionally included in order to illustrate the main advantages of this control structure.
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1. Introduction

Disturbance rejection is one of the most fundamental
problems in control, as every system may show uncertain
behaviors that could have negative effects in feedback reg-
ulator [1]. These uncertain behaviors mostly arise from:
mismatches between the nominal and the real system un-
modeled or unknown dynamics, couplings with other sys-
tems, or unknown inputs that the system experiences dur-
ing its operation –such as external forces or torques [2].

The Extended State Observer-Based Controllers (ES-
OBCs) are becoming one of the most popular solutions to
mitigate the effect of these uncertainties [3, 4, 5, 6, 7, 8].
In particular, there is a current tendency to use predic-
tive ESOBCs to reduce the uncertain behaviors of rela-
tively complex systems, such as: uncertain MIMO systems
with mismatch disturbances or hard control constraints [9].
Many works suggesting to employ predictive ESOBCs for
these types of systems can be found, including applica-
tions such as: formation control of multiple robots [10],
ultra-supercritical boiler-turbines [11], missile and lunar
modules autopilots [12, 13], motion control of aerial drones
and autonomous vessels [14, 9], wheeled inverted pendu-
lum systems [15] and synchronous motors [16].

However, one main concern about predictive ESOBCs
regards its closed-loop stability; which is not strictly guar-
anteed by the most part of previous formulations. In this
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sense, formulating a new predictive ESOBC with guaran-
teed stability is an important issue that should be tackled.

Therefore, this paper constructs a novel predictive ESO-
based controller with guaranteed stability. The main
contribution is to show that the closed-loop Input-to-
State (ISS) stability is guaranteed –under the same as-
sumptions that are normally taken in the ESO literature–
if a fixed terminal-cost and a disturbance compensation
terms are included in the cost-index.

The rest of the paper is structured as follows. Sec. 2
contains the problem formulation and some preliminaries.
In Sec. 3, the predictive ESOBC is developed; whereas its
closed-loop ISS is analyzed in Sec. 4. Sec. 5 aims to estab-
lish some relationships between this predictive controller
and the so-called Generalized ESOBC [17]. Sec. 6 contains
an illustrative simulation in order to highlight the advan-
tages of this control approach if compared against conven-
tional predictive controllers and non-predictive ESOBC.
Finally, the main conclusions are summarized in Sec. 7.

1.1. Notation and definitions

The following comparison functions are employed: i) a
K-function, γ(·) : R+ → R+; which is continuous and
strictly increasing, with γ(0) = 0; ii) a K∞-function,
γ∞(·) : R+ → R+, which is a K-function satisfying
lims→∞ γ(s) =∞; and iii) a KL-function, β(s, t) : R+ ×
R+ → R+; which, for fixed t, is a K-function in s; and, for
a fixed s, it is decreasing in t, satisfying limt→∞ γ(s, t) = 0.

For any vector x and any matrix ∆ of appropriate di-
mensions: ‖x‖ ,

√
xTx, ‖x‖∆ ,

√
xT∆x; while ‖∆‖ de-

notes the corresponding induced-norm for matrices.
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Define k ∈ N ∪ {0}. For any function φk : k → Ra,
with a ∈ N, denote φ[0,j] , [φT0 , φ

T
1 , . . . , φ

T
j ]T , j ∈ N; and

‖φ[0,j]‖∞ , sup{‖φk‖ : k ∈ [0, j]}.

2. Problem formulation

Let us consider the following class of non-linear systems:{
ẋ(t) = Ax(t) +Buu(t) +Bff(x(t), ω(t)),

y(tk) = Cx(tk); tk+1 − tk , h > 0,
(1)

where x(t) = [x1(t), . . . , xn(t)]T ∈ Rn is the system state;
y(tk) ∈ Rr is a discrete measurable output; u(t) ∈ Rm
is the control action, which it is assumed to be re-
stricted inside the closed-set umin ≤ u(t) ≤ umax, being
umax ∈ Rm, umin ∈ Rm its upper and lower bounds, re-
spectively; A ∈ Rn×n, Bu ∈ Rn×m, Bf ∈ Rn×q, C ∈ Rr×n
are the nominal system matrices, being A Hurwitz;
ω(t) : R≥0 → Rp is a differentiable time-varying function
representing the external disturbances; f : Rn × Rp → Rq
is a possibly non-linear function, differentiable in Rn×Rp.

The function f(x, ω(t)) is regarded as an unknown term
representing the lumped effect of the internal uncertainties
and the external disturbances.

Let us consider the following assumptions:

Assumption 1. There exists –unknown– scalars, εf ≥ 0,
εω̇ ≥ 0, εdx ≥ 0, εdω ≥ 0, such that

‖f(x, ω(t))‖ ≤ εf , ‖ω̇(t)‖ ≤ εω̇∥∥∥∂f
∂x

(x, ω(t))
∥∥∥ ≤ εdx, ∥∥∥∂f

∂ω
(x, ω(t))

∥∥∥ ≤ εdω,
for all x ∈ Rn, t ≥ 0.

Assumption 2. For any initial state, x(0), and any
bounded u(t), the solution of (1) satisfies that ‖x(t)‖ ≤ εx,
∀t ≥ 0, εx ≥ 0.

Assumption 3. u(t) = uk, ∀t ∈ [tk, tk+1).

Assumptions 1-2 are commonly employed in the ESO-
based literature [18, 19, 20]. They basically say that the
uncertain function f(·) is differentiable and it does not
destabilizes the system (1). Assumption 3 states that the
controller generates a discrete control action, uk, at t = tk,
which is introduced to the system via ZOH –being nor-
mally the case in predictive ESOBCs.

Discretized extended-state representation of system (1)

In order to formulate the predictive ESOBC, system (1)
needs to be firstly rewritten in a discretized extended-state
representation:

Proposition 1. Under Assumption 3, the system state
and the lumped uncertainty at the sampling instants:
x(tk), f(x(tk), ω(tk)); are given by

x(tk+1) = Φx(tk) + Γ1uk + Γ2f(x(tk), ω(tk)) +Ox,k,
(2a)

f(x(tk+1), ω(tk+1)) = f(x(tk), ω(tk)) +Of,k, (2b)

with Γ1 , φ(h)Bu, Γ2 , φ(h)Bf , φ(x) ,
∑∞
i=1

Ai−1xi

i! ,

Φ , eAh, and

Ox,k ,
∫ tk+1

tk

φ(tk+1 − s)Bf
d

ds

(
f(x(s), ω(s))

)
ds,

Of,k ,
∫ tk+1

tk

d

ds

(
f(x(s), ω(s))

)
ds.

(3)

Proof. Refer to Appendix A.

Prop. 1 gives a discretized version of classical procedure
of extending the state with the disturbance and leaving the
disturbance derivative as the new uncertain system input.
However, in the discrete case, the new uncertain inputs ap-
pear in the integral forms Ox,k and Of,k –although they
still depending on the disturbance derivative and, conse-
quently, they are null for constant disturbances.

Finally, the next assumption is considered for the ob-
server design as it assures the observability of (2):

Assumption 4. [21] The triplet (Φ,Γ1, C) is observable

and rank

([
Φ− In Γ2

−C 0

])
= n+ q.

Remark 1. Observability of the triplet (A,Bu, C) does
not necessarily imply observability of (Φ,Γ1, C). The ob-
servability may be lost due to undesired zero-pole cancel-
lations [22].

3. Predictive ESO-based controller

This section develops the predictive ESO-based con-
troller. To this purpose a discrete-time ESO is
firstly considered in order to get estimates of x(tk)
and f(x(tk), ω(tk)) in terms of the available measure-
ments, y(tk). Then, the estimates are employed to com-
pute a sequence of future state-predictions –under the as-
sumption that the disturbances remain constant over the
prediction-horizon– and, finally, the control action is de-
fined as the signal minimizing a constrained quadratic-cost
penalizing deviations in the state-predictions from zero.

A discrete-time ESO

Based on (2), the following discrete ESO is considered:

x̂k+1 = Φx̂k + Γ1uk + Γ2f̂k + Lx(y(tk)− Cx̂k), (4a)

f̂k+1 = f̂k + Lf (y(tk)− Cx̂k), (4b)
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where x̂k and f̂k are estimates of x(tk) and f(x(tk), ω(tk)),
respectively; while Lx and Lf are design matrices of ap-
propriate dimensions.

The observer (4) can be seen as a discretized version
of the generalized ESO [17] or, similarly, as a particular
structure of the Proportional Integral Observer (PIO) [21].

State-predictions and control sequence

Let N ∈ N be the prediction horizon. Consider a se-
quence of control actions uk , [uTk|k u

T
k+1|k ... u

T
k+N−1|k]T ,

with uk|k , uk; and a sequence of future state-predictions,

xk , [x̂Tk|k, x̂
T
k+1|k, ..., x̂

T
k+N |k]T , with x̂k|k , x̂k. The no-

tation x̂k+j|k denotes a prediction of x(tk+j) that is made
with the available observations at t = tk.

The state-predictions are computed by:

x̂k+j+1|k = Φx̂k+j|k + Γ1uk+j|k + Γ2f̂k, 0 ≤ j ≤ N − 1.
(5)

Note that, under perfect observation conditions –i.e.
x̂k = x(tk), f̂k = f(x(tk), ω(tk))– the future-states are
predicted by neglecting the residual terms Ox,k and Of,k
in (2). This is equivalent to say that the disturbance will
remain constant over the whole prediction-horizon; which
can be interpreted as an strengthen version of the implicit
assumption of null-disturbance derivative that is taken for
the ESO design [17, 23, 18].

Predictive controller

Based on (4)-(5), the following performance cost-index
is considered:

VN (x̂k, f̂k,uk) ,
N−1∑
j=0

[
||x̂k+j|k||2Q + ||uk+j|k + Γ†1Γ2f̂k||2R

]
+ ||x̂k+N |k||2P , (6)

where Q ∈ Rn×n and R ∈ Rm×m are positive definite
weighting matrices; and 0 ≺ P ∈ Rn×n is defined such that
ΦTPΦ− P +Q = 0.

The control action is then generated by:

uk = Ku∗k, (7)

being K , [Im, 0m,m·(N−1)] and

u∗k = arg min
uk

VN (x̂k, f̂k,uk) (8a)

s.t. Eq. (5) (8b)

umin ≤ uk+j|k ≤ umax, (8c)

Eqs. (7)-(8) represent the proposed predictive ESOBC
with guaranteed stability. As VN (·) is a quadratic-cost,
problem (8) has always a feasible solution if umax > umin.

The main differences with respect to other predic-
tive ESOBC are two elements in the cost (6): i) the
fixed-terminal cost, ||x̂k+N |k||2P , and ii) the disturbance-

compensation term, Γ†1Γ2f̂k.

Both elements play a key role in the closed-loop prop-
erties of the resulting controller. The fixed-terminal cost
needs to be included in order to guarantee its closed-loop
stability [24]. It permits to deal with some technical diffi-
culties that arise due to the finite-horizon nature of VN (·)
–more details on this are given in Sec. 4. The disturbance
compensation term is introduced in order to penalize devi-
ations of the control action from Γ†1Γ2f̂k; which is regarded
as the optimal value to compensate for the matched part
of f̂k. This term endows to the controller with the prop-
erty of rejecting constant matched disturbances.

4. Closed-loop stability

This section analyzes the closed-loop stability of the pro-
posed predictive ESOBC.

The main result is to prove that –for matched distur-
bances– the state x(tk) will be driven by (7)-(8) to a
bounded region around the origin whose size exclusively
depends on the observation errors of (4). This is the same
behavior that is normally required for non-predictive ES-
OBCs. The result is proved by using the optimal cost,
VN (x̂k, f̂k,u

∗
k), as a Lyapunov function; which is possible

thanks to the insertion of ||x̂k+N |k||2P and Γ†1Γ2f̂k in (6).
To this end, the properties of observation-error resulting

from (2), (4), are firstly analyzed:

Input-to-State Stability of the observation error

Let us define the augmented states:

ηk , [x(tk)T , f(x(tk), ω(tk))T ]T ,

η̂k , [x̂Tk , f̂
T
k ]T ,

OTk , [OTx,k,OTf,k]T .

By subtracting (4) from (2), the observation error,
η̃k , ηk − η̂k, satisfies:

η̃k+1 = (M − LG) η̃k +Ok, (9)

being M ,

[
Φ Γ2

0 Iq

]
; G ,

[
C 0

]
; L ,

[
LTx LTf

]T
.

The following lemma establish the ISS of (9):

Lemma 1. Under Asm. 1-4. Let Lx, Lf be matri-
ces such that M − LG has its eigenvalues inside the
unit circle. Then, there exist a class KL-function,
β1(·, ·), a class K-function, γ1(·), a bounded constant,
µ , h

√
‖φ(h)Bf‖2 + 1, and a bounded sequence,

χk , sups∈[tk,tk+1]{‖ẋ(s)‖}; such that, for each initial
state η̃0, the observation error satisfies that:

‖η̃k‖ ≤ β1

(
‖η̃0‖, tk

)
+ γ1

(
µ(εdx‖χ[0,k−1]‖∞ + εdωεω̇)

)
;

Proof. Asm. 4 guarantees the existence of Lx, Lf such that
(M−LG) has its eigenvalues inside the unit circle [21]. Let
Lx, Lf be some matrices satisfying it; then there exist a
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class KL-function, β1(·, ·), and a class K-function, γ1(·),
such that [25]:

‖η̃k‖ ≤ β1(‖η̃0‖, tk) + γ1(‖O[0,k−1]‖∞). (10)

By taking norms in (3), expressing d
dsf(x(s), ω(s)) in

terms of its partial derivatives and applying the bounds in
Asm. 1; we have:

‖Ox,k‖ ≤ µ̄(εdxχk + εdωεω̇)h,

‖Of,k‖ ≤ (εdxχk + εdωεω̇)h,

with µ̄ , sups∈[tk,tk+1]{‖φ(tk+1−s)Bf‖} = ‖φ(h)Bf‖, ∀ k.
The proof follows by doing:

‖Ok‖ =
√
‖Ox,k‖2 + ‖Of,k‖2 ≤ (εdxχk + εdωεω̇)µ,

with µ , h
√
µ̄2 + 1; and substituting it into (10).

Lemma 1 illustrates some qualitative properties of the
observation-error behavior that are insightful. For con-
stant disturbances, i.e. (εdx‖χ[0,k−1]‖∞ + εdωεω̇) = 0, the
observation-error is bounded by ‖η̃k‖ ≤ β1(‖η̃0‖, tk); indi-
cating that it goes to zero as k → ∞. This is the same
property that actually holds for the continuous-time case.

For non-constant disturbances, the following ultimate
bound holds: ‖η̃k‖ ≤ γ1

(
µ(εdx‖χ[0,k−1]‖∞ + εdωεω̇)

)
; in-

dicating that the observation-error may increase with re-
spect to (εdx‖χ[0,k−1]‖∞ + εdωεω̇) –i.e. the rate of vari-
ation of the disturbance– or with respect to µ –i.e. the
discretization period.

Input-to-State Stability of the predictive ESOBC

The following theorem establish the ISS of the resulting
closed-loop formed by (7)-(8) and (1).

Theorem 1. Under Asm. 1-4. Consider that Γ2 = αΓ1,
α ∈ R, and that umin ≤ −αf̂k ≤ umax, ∀ k. Then, the
closed-loop formed by (7)-(8) and (1) satisfies that:

||x(tk)|| ≤ β2(||x0||, k) + γ2(||η̃[0,k−1]||).

being β2(·, ·) a class KL-function; γ2(·) a class K∞-
function; and η̃k , η(tk)− η̂k.

Proof. Let us consider VN (x̂k, f̂k,u
∗
k) –with VN (·) given

by (6) and u∗k resulting by solving (8)– as a Lyapunov
function. Then, the following inequalities hold:

‖x̂k‖2Q ≤ VN (x̂k, f̂k,u
∗
k) ≤ c‖x̂k‖2, (11)

VN (x̂k+1, f̂k+1,u
∗
k+1)− VN (x̂k, f̂k,u

∗
k) ≤ (12)

− ||x̂k||2Q + Ψ(||ỹk||),

being c > 0, ỹk , y(tk) − Cx̂k, and Ψ(·) a class K∞-
function.

Inequality (11) is proved in Appendix B.1, while (12)
is proved in Appendix B.1.

This implies that there exist a KL-function, β̄2(·, ·), and
a class K-function, ᾱ2(·) such that [25]:

||x̂k|| ≤ β̄2(||x̂0||, k) + ᾱ2(||ỹ[0,k−1]||∞). (13)

The rest of the prove follows by considering the obser-
vation error definition:

‖x(tk)‖ ≤ ‖x̂k‖+ ‖x̃k‖ ≤ ‖x̂k‖+ ‖η̃k‖

where, by (13),

‖x(tk)‖ ≤ β̄2(||x̂0||, k) + ᾱ2(||ỹ[0,k−1]||∞) + ‖η̃k‖,
≤β̄2(||x0 − x̃0||, k) + ᾱ2(||η̃[0,k−1]||∞||) + ||η̃k||,
≤β̄2(2 max(||x0||, ||x̃0||), k) + ᾱ2(||η̃[0,k−1]||) + ||η̃k||,
≤β̄2(2||x0||, k||) + β̄2(2||x̃0||, 0) + ᾱ2(||η̃[0,k−1]||) + ||η̃k||,
≤β2(||x0||, k) + α2(||η̃[0,k−1]||);

which completes de proof.

By Theorem 1, it is seen that the ultimate bound of x(tk)
depends on the observation error; which was the desired
property. By Lemma 1, the observation-error depends on
the rate of variation of f(x(t), ω(t)) and on the discretiza-
tion period; being null for constant disturbances. Thus,
this predictive controller achieves asymptotic convergence
for constant matched disturbances.

5. Comparisons with the Generalized ESOBC

This section is introduced in order to illustrate how
this predictive ESOBC relates with the Generalized ES-
OBC [17] in the case of no actuator constraints.

Let us substitute (5) into (6), and after some algebraic
manipulation, problem (8) can be expressed as:

u∗k = arg min
uk

uTkHuk + c(x̂k, f̂k)Tuk

s.t. Imumin ≤ uk ≤ Imumax,
(14)

with c(x̂k, f̂k) , 2
[
ΥT

1QΠx̂k + ΥT
1QΥ2f̂k +RTImΓ†1Γ2f̂k

]
and H , ΥT

1QΥ1 +R; being

Π ,


In
Φ
Φ2

...
ΦN

 , Υ1 ,


0 0 ... 0

Γ1 0 ... 0
ΦΓ1 Γ1 ... 0

...
...

. . .
...

ΦN−1Γ1 ΦN−2Γ1 ... Γ1

 ,

Υ2 ,


0

Γ2

(Φ + I)Γ2

...
(ΦN−1 + . . .Φ + I)Γ2

 , R ,


R 0 ... 0
0 R ... 0
...

...
. . .

...
0 0 ... R

 ,
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Param. Value Quantifies

τ1 49 (min−1) Delay in absorption
τ2 47 (min−1) Delay in absorption
Cl 2010 (ml/min) Insulin clearance
p2 1.06e-2 (min−1) Delay in insulin action
SI 8.11e-4 (ml/µU) Insulin sensitivity
kgezi 2.20e-3 (min−1) Effect of glucose to

reduce glucose itself
kegp 1.33 (mg/dl/min) Glucose production rate

Table 1: Parameters in (17). Numerical values corresponding to the
ones identified for Patient 1 in [26].

Q ,


Q 0 ... 0 0
0 Q ... 0 0
...

...
. . .

...
...

0 0 ... Q 0
0 0 ... 0 P

 , Im ,


Im
Im
...
Im

 .

with Im ∈ Rm·N×m, Π ∈ Rn·(N+1)×n, Υ1 ∈ Rn(N+1)×mN ,
Υ2 ∈ Rn(N+1)×r, R ∈ Rm·N×m·N , Q ∈ Rn·(N+1)×n·(N+1).

If there is no active saturations –i.e. umax = +∞,
umin = −∞; then, the solution of (14) is given by:

∂
(
uTkHuk + c(x̂k, f̂k)Tuk

)
∂uk

∣∣∣∣∣
uk

= Hu∗k + c(x̂k, f̂k) = 0

which, by (7), results in:

uk = Kxx̂k +Kf f̂k, (15)

with

Kx , −KH−1ΥT
1QΠ,

Kf , −KH−1(ΥT
1QΥ2 +RTImΓ†1Γ2),

(16)

which corresponds to a discretized version of the GESOBC
presented in [17]; but with different gains given by Q, R.

6. Simulation study

This section introduces an illustrative example to high-
light the advantages of this control approach. To this
end, a simulation for closed-loop glucose control in pa-
tients with type-1 diabetes has been considered; a recently
popular control problem that involves strong actuator sat-
urations and disturbances.

Glucose-Insulin model for patients with type-1 diabetes.

Let us consider the following system [27, 26, 28]:

ẋ1(t) = − 1

τ1
x1(t) +

1

τ1Cl
u(t),

ẋ2(t) =
1

τ2
x1(t)− 1

τ2
x2(t),

ẋ3(t) = p2SI x2(t)− p2 x3(t),

ẋ4(t) = −kgezix4(t)− x3(t)x4(t) + kegp + d(t),

y(tk) = x4(tk),

(17)

where u(t) represents the insulin delivery at Sub-
Cutaneous (SC) level, x1(t) is the insulin concentration at
SC level, x2(t) is the plasma insulin concentration, x3(t) is
the insulin effect, x4(t) is the Gucose Concentration (GC)
and d(t) represents the glucose appearance following a
meal. The rest of the parameters are defined in Table 1.

System (17) is a clinically identified model that repre-
sents –for a given person– how the GC in blood, x4(t), is
affected by: i) insulin deliveries at sub-cutaneous level, i.e.
u(t); and ii) meals that the person takes, i.e. d(t), which
have the following form [26]:

d(t) =
CH(t)

VGτ2
m

te−
t
τm , (18)

where CH represents the amount of consumed carbohy-
drates, while VG = 253 and τm = 47 are the identified
parameters for Patient 1 in [26].

Control objective and limitations

The main objective is to design a controller that au-
tomatically injects insulin, u(t), in response to unan-
nounced/unknown meals that the person takes, d(t).

The objective is to keep the GC at x∗4 = 100 (mg/dl).
In no case can be higher than 250 (mg/dl) or lower than
54 (mg/dl) as it may lead to severe hyperglycemia or hypo-
glycemia, respectively. After a meal, optimal values should
range between 70 (mg/dl) < x4(t) < 180 (mg/dl).

The main limitations for the controller are: i) u(t) ≥ 0,
i.e. insulin can be injected but not subtracted; ii) d(t)
is unknown for the controller, i.e. the controller does not
have information about when and how much the patient
eats; iii) there are only discrete measures of x4(t) with
period T = 5 min.

Comparative simulations

Fig. 1 contains a comparative simulation of a 24h-day in
closed-loop glucose control. Concretely, a scenario where
the patient consumes 50g of Carbohydrates (CHO) at 8h,
70g CHO at 13h, 100g CHO at 19h, and 30g CHO at
22h; has been simulated –which are standard values for
consumed CHO [28].

The continous line represents the simulation result with
the proposed predictive ESOBC (7)-(8). It has been de-
signed with a linearized version of (17) around the nominal
operating point u∗ = 22750µU/min, x∗1 = x∗2 = 13.670,
x∗3 = 0.011, x∗4 = 100; which is given by:

˙̃x(t) = Ax̃(t) +Buũ(t) +Bff(x̃, d(t)),

y(tk) = Cx̃(tk),

where f(x̃, d(t)) , Ol(x̃) + d(t), being Ol(x̃) the lineariza-
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Figure 1: Comparative simulation results.

tion residues; x̃(t) , x(t)− x∗, ũ(t) , u(t)− u∗ and

A =


−1/τ1 0 0 0
1/τ2 −1/τ2 0 0

0 p2SI −p2 0
0 0 −x∗4 −x∗3 − kgezi

 ,
Bu =

[
1/(τ1Cl) 0 0 0

]T
,

Bf =
[
0 0 0 1

]T
,

C =
[
0 0 0 1

]
.

The rest of the controller parameters are: ũmin = −u∗;
ūmax = +∞; N = 18 (prediction-horizon of 90 min);

Q =

[
I3 0
0 100

]
; R = 1; and observer gains Lx =

[0.0003, 0.0032, 0.0001, 0.3518]T , Lf = 0.0167.
The dashed line represents the simulation result with a

standard Model Predictive Control (MPC) strategy. For
fair comparison, the same cost-index (6) and observer (4)
have been employed. The main difference is that the ma-
trix Γ2, in (5)-(6) has been set to zero. In this sense,
the disturbance estimate is not employed in the computed
predictions. This is the main difference between predictive
ESOBC and conventional MPC strategies.

The dotted line represents the system performance with
the GESOBC approach [17]. For fair comparison, the gains
have been computed according to (16). The main differ-
ence in this case is that the GESOBC does not consider
the actuator saturations in the computed control signal.

From the simulation results, it can be seen that the
predictive ESOBC produces a relatively natural control-
behavior: it injects an insulin bolus at the same time that
the meal-disturbance appears. This is because the meal-
disturbance is detected by (4) and its effect in the GC is

predicted in (5). It closely resembles to the control that
manually carries out a diabetic person; who manually in-
jects an insulin bolus into his body before each meal.

However, this performance is not achieved by the other
two strategies. The MPC approach does not injects the
peak of insulin at the beginning of each meal and, as a
consequence, the GC significantly augments afterwards.
This happens because the effect of the meal-disturbance
in the GC is not considered in the computed predictions;
consequently, the controller is not evaluating if the person
has eaten something and the effects that it may have in
the GC.

On the other hand, GESOBC detects the meal and au-
tomatically injects insulin. However, as it is not consider-
ing that the insulin cannot be latterly extracted from the
body –i.e. the actuator limitations– it injects an excessive
amount of insulin; driving the patient to hypoglycemia.

Simulation details and computation time

The simulations have been performed with MATLAB®
R2019a in a computer running Windows 10 with a proces-
sor Intel(R) Core(TM) i7-6700HQ 2.6GHz. The optimiza-
tion (8) has been performed with the quadprog() function
of the Optimization toolbox.

The required computation time for solving (8) is of the
order of milliseconds. In particular, for 360 control it-
erations, the computation time has had a mean value of
4.9 ms, with a standard deviation of 1.9 ms, a maximum
value of 9.8 ms and a minimum value of 2.2 ms.

7. Conclusions

This paper has developed a predictive ESO-based dis-
crete controller with guaranteed stability for complex un-
certain constrained systems.

The controller is constructed with a discrete ESO and a
quadratic-cost predictive controller that includes two fixed
elements –i.e. a fixed terminal cost and a disturbance
compensation term. With this formulation, it is proved
the resulting closed-loop is input-to-state stable, with the
same qualitative properties that conventional ESO-based
controllers and the advantage of constraints handling.

Some relationships of this predictive ESOBC with re-
spect to the Generalized ESOBC has been highlighted. A
simulation study of closed-loop glucose control has been in-
cluded in order to compare this control approach against
conventional predictive controllers and non-predictive ES-
OBC; showing that it offers better performance and main-
tains the process and control variables in the desired
ranges.
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Appendix A. Proof of Proposition 1

Integration of (1) leads to:

x(tk+1) = eAhx(tk) +

∫ tk+1

tk

eA(tk+1−s)Buu(s)ds +

+

∫ tk+1

tk

eA(tk+1−s)Bff(x(s), ω(s))ds,

where, by applying Assumption 3 and noting that∫ tk+1

tk
eA(tk+1−s)ds =

∑∞
i=1

Ai−1hi

i! , φ(h), results in:

x(tk+1) = eAhx(tk) + φ(h)Buuk +

+

∫ tk+1

tk

eA(tk+1−s)Bff(x(s), ω(s))ds.
(A.1)

On the other hand, by Taylor theorem, the uncertainty
at tk+1 is given by:

f(x(tk+1), ω(tk+1)) =

= f(x(tk), ω(tk)) +

∫ tk+1

tk

d

ds

(
f(x(s), ω(s))

)
ds.

(A.2)

Now, integrating by parts the integral in (A.1) leads to:∫ tk+1

tk

eA(tk+1−s)Bff(x(s), ω(s))ds =

−A−1Bff(x(tk+1), ω(tk+1)) +A−1eAhBff(x(tk), ω(tk))+

+

∫ tk+1

tk

A−1eA(tk+1−s)Bf
d

ds

(
f(x(s), ω(s))

)
ds,
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where, by substituting (A.2), gives:∫ tk+1

tk

eA(tk+1−s)Bff(x(s), ω(s))ds =

φ(h)Bff(x(tk), ω(tk))+

+

∫ tk+1

tk

A−1
(
eA(tk+1−s) − In

)
︸ ︷︷ ︸

=φ(tk+1−s)

Bf
d

ds

(
f(x(s), ω(s))

)
ds.

The proof follows by substituting the above expression
into (A.1).

Appendix B. Proof of Theorem 1

Appendix B.1. Proof of inequality (11)

The lower bound follows by the definition of VN (·):

VN (x̂k, f̂k,uk) = ||x̂k||2Q+||x̂k+1|k||2Q+. . .+||x̂k+N−1|k||2Q

+

N−1∑
j=0

[
||uk+j|k + αf̂k||2R

]
+ ||x̂k+N |k||2P ; (B.1)

which, clearly, satisfies ||x̂k||2Q ≤ VN (·, ·,uk) for any uk.
In order to prove de upper bound, consider the con-

trol sequence uck = [−αf̂Tk , −αf̂Tk , ...,−αf̂Tk ]T . Then, the
cost (B.1) becomes:

VN (x̂k, f̂k,u
c
k) = ||x̂k||2Q+||x̂k+1|k||2Q+. . .+||x̂k+N−1|k||2Q

+ ||x̂k+N |k||2P ; (B.2)

and, by (5), it holds that x̂k+j|k = Φj x̂k –where the
matched condition, Γ1 = αΓ2, and the control sequence,
uk+j|k = uck+j|k = −αf̂k have been substituted. Hence:

VN (x̂k, f̂k,u
c
k) = x̂Tk ΠTQΠx̂k;

where Π and Q are defined after Eq. (14).

Now, by optimality, VN (x̂k, f̂k,u
∗
k) ≤ VN (x̂k, f̂k,uk) for

any control sequence uk. Therefore:

VN (x̂k, f̂k,u
∗
k) ≤ VN (x̂k, f̂k,u

c
k) = x̂Tk ΠTQΠx̂k ≤ c‖x̂k‖2;

being c the square of the maximum eigenvalue of ΠTQΠ.

Appendix B.2. Proof of inequality (12)

At t = tk, the optimal control sequence,

u∗k = [u∗Tk|k, u
∗T
k+1|k, ..., u

∗T
k+N−1|k]T ,

is obtained by solving (8).
This control sequence has the associated state-

predictions x∗k , [x̂∗ Tk|k , x̂
∗ T
k+1|k, ..., x̂

∗ T
k+N |k]T ; which, by

Eq. (5), satisfy:

x̂∗k+j+1|k = Φx̂∗k+j|k + Γ1(u∗k+j|k + αf̂k); (B.3)

being x̂∗k|k , x̂k and 0 ≤ j ≤ N − 1.
For the next period, i.e. t = tk+1, let us consider the

following control sequence:

uck+1 , [uc Tk+1|k+1, u
c T
k+2|k+1, ..., u

c T
k+N |k+1]T ,

= [u∗Tk+1|k, ..., u
∗T
k+N−1|k, −(αf̂Tk+1)]T ; (B.4)

which, similarly, will have the associated state-predictions
xck+1 , [x̂c Tk+1|k+1, x̂

c T
k+2|k+1, ..., x̂

c T
k+N+1|k+1]T ; satisfy-

ing:

x̂ck+2+j|k+1 = Φx̂ck+1+j|k+1 + Γ1(u∗k+j+1|k + αf̂k+1),

for 0 ≤ j ≤ N − 2, (B.5a)

x̂ck+N+1|k+1 = x̂ck+N |k+1; (B.5b)

with x̂ck+1|k+1 , x̂k+1.

Now, with u∗k –and its associated predictions (B.3)– and
with the next-period control sequence uck+1 –and its asso-
ciated predictions (B.5)– let us show that:

VN (x̂k+1, f̂k+1,u
c
k+1)− VN (x̂k, f̂k,u

∗
k) ≤

− ||x̂k||2Q + Ψ(||ỹk||). (B.6)

If (B.6) holds, then, by optimality, we have that

VN (x̂k+1, f̂k+1,u
∗
k+1) ≤ VN (x̂k+1, f̂k+1,u

c
k+1); being u∗k+1

the optimal control sequence that will be computed at the
next period. This completes the proof.

In order to demonstrate (B.6), let us relate

VN (x̂k+1, f̂k+1,u
c
k+1) ,

N−1∑
j=0

[
||x̂ck+1+j|k+1||

2
Q

]

+

N−1∑
j=0

[
||uck+1+j|k+1 + αf̂k+1||2R

]
+ ||x̂ck+N+1|k+1||

2
P ,

(B.7)

with

VN (x̂k, f̂k,u
∗
k) ,

N−1∑
j=0

[
||x̂∗k+j|k||

2
Q

]

+

N−1∑
j=0

[
||u∗k+j|k + αf̂k||2R

]
+ ||x̂∗k+N |k||

2
P , (B.8)

To this end, it may be noted that Eqs. (B.3) and (B.5)
can be related if one considers the observer equation (4),
and that the control action introduced to the system is
uk = u∗k|k –i.e. Eq. (7). This permits to prove that:

x̂ck+1+j|k+1 = x̂∗k+1+j|k + Ψj ỹk; 0 ≤ j ≤ N − 1, (B.9a)

x̂ck+N+1|k+1 = Φx̂∗k+N |k + ΦΨN−1ỹk (B.9b)

being Ψj , ΦjLx +
∑j−1
i=0 ΦiΓ2Lf and ỹk = y(tk)− Cx̂k.
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By substituting (B.4) and (B.9) into (B.7), it results:

VN (x̂k+1, f̂k+1,u
c
k+1) =

N−1∑
j=0

[
||x̂∗k+1+j|k + Ψj ỹk||2Q

]
+

N−2∑
j=0

[
||u∗k+1+j|k + αf̂k+1||2R

]
+ ||Φx̂∗k+N|k + ΦΨN−1ỹk||2P .

(B.10)

Due to the triangular inequality, there exist class K∞-
functions, αj(||ỹk||), Υj(||ỹk||) and γ(||ỹk||); such that:

||x̂∗k+1+j|k + Ψj ỹk||2Q ≤ ||x̂∗k+1+j|k||
2
Q + αj(||ỹk||),

||u∗k+1+j|k + αf̂k+1||2R ≤ ||u∗k+1+j|k + αf̂k||2R + Υj(||ỹk||),

||Φx̂∗k+N |k + ΨN−1ỹk||2P ≤ ||Φx̂∗k+N |k||
2
P + γ(||ỹk||);

(B.11)

where ||u∗k+1+j|k + αf̂k+1||2R = ||(u∗k+1+j|k + αf̂k) +

αLf ỹk||2R has been employed in the second one.
By (B.8), (B.10), and (B.11), it holds that:

VN (x̂k+1, f̂k+1,u
c
k+1)− VN (x̂k, f̂k,u

∗
k) ≤ −||x̂k||2Q

− ||u∗k|k + αf̂k||2R + ||Φx̂∗k+N |k||
2
P − ||x̂∗N+k|k||

2
P

+ ||x̂∗N+k|k||
2
Q + Ψ(||ỹk||);

where

Ψ(||ỹk||) ,
N−1∑
j=0

[
αj(||ỹk||)

]
+

N−2∑
j=0

[
Υj(||ỹk||)

]
+γ(||ỹk||).

Finally, as R ≥ 0 and the terminal-cost weighting
matrix P has been restricted to be the solution to the
Ricatti equation ΦTPΦ − P + Q = 0; we have that
||u∗k|k + αf̂k||2R ≥ 0 and that ||Φx̂∗k+N |k||

2
P − ||x̂∗k+N |k||

2
P +

||x̂∗N+k|k||
2
Q = 0. This proves (B.6).
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