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Abstract

This thesis explores the development and application of an autonomous navigation sys-
tem in dynamic environments. The primary focus is leveraging contact information to over-
come challenges such as GNSS-denied environments, sensor degradation, and other
common failures, enabling collision recovery.

The thesis begins by addressing the theoretical and technical challenges of autonomous
navigation in obstacle-dense environments and the existing approaches to contact detec-
tion techniques. After comprehensively evaluating various contact detection alternatives,
we propose a novel collision platform and contact detection algorithm integrated into an
existing drone frame. These enhancements enable contact-based autonomous naviga-
tion capabilities in challenging environments.

The designed collision system was evaluated independently and as part of an autonomous
contact-based mission. The findings demonstrate the system’s remarkable ability to ac-
curately predict contact events, even integrated within an autonomous mission. This
showcases the system’s versatility, performing well in static conditions and during real
navigation in flight.

Conclusively, this research highlights the potential of contact information to enhance au-
tonomous navigation significantly. The study suggests avenues for future research, par-
ticularly in improving collision platform robustness for more challenging environments and
integrating additional sensor modalities to further enhance reliability.
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1 Introduction

1.1 Context

Aerial robots are not constrained by the morphology of the ground, being able to navi-
gate over obstacles more efficiently than ground robots. That is why flying robots have
a unique advantage in various applications, such as exploring dangerous or inaccessi-
ble environments for humans, search and rescue, monitoring, and surveillance, among
others [1, 2].

1.1.1 The problem

Autonomous navigation in obstacle-dense environments poses significant challenges for
flying robots. The 3D scenario, while offering freedom of movement, also increases the
risk of collisions. A collision during a mission could lead to mechanical damage to the
platform or, even worse, the mission’s failure. These challenges underscore the need for
robust collision detection and avoidance systems.

Conventional approaches try to solve collision avoidance by discarding the collision events.
Most of these approaches are based on vision [3], IR range sensors [4], or lasers, cou-
pling the output of these sensors with localization and mapping algorithms. These ap-
proaches are mainly based on exteroceptive sensing, achieving reliable pose estimation
and mapping of the environment, and unlocking collision-free navigation solutions to ex-
ecute autonomous missions.

Collisions are also more probable in GNSS-denied environments, where localization relies
on perception sensors such as cameras or lidars. This difficulty level requires advanced
sensors, precise mapping, and powerful resources to execute everything in real-time.
These requirements sometimes are not available for aerial platforms because of weight
restrictions.

There are also strategies to mitigate challenges of degraded sensing [5]; however, reliable
solutions to localization and mapping problems under extreme conditions cannot always
be taken for granted.

1.1.2 Overview of autonomous robots

An autonomous flying robot is capable of navigating and operating without the help of any
external control, making decisions based on the hardware and software architecture. To
achieve this autonomy, the typical architecture can be described as follows.

Firstly, exteroceptive and proprioceptive sensors capture the environment and the robot
states. These measurements estimate and correct the robot states and represent the
environment through maps. That representation enables planning by linking points in
the space. Finally, the trajectory created is followed by using a control strategy. The
autonomous navigation stack described can be shown in Fig. 1.1.

Development of an autonomous navigation system in highly dynamic environment 1
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Figure 1.1: General Autonomous Navigation Stack

1.2 Structure of the thesis
The thesis presents the following structure:

» Theoretical Background analyzes the previous work related to the thesis topic. It
also explains the methodologies implemented in the Methods chapter.

» Problem Definition explains the problem solved in the thesis, the starting point,
and the contributions to solving the problem.

* Methods covers each method developed to achieve the thesis goal.

+ Experiments describes the experiments to evaluate the methods implemented.
* Results and Analysis shows the experiment results and their analysis.

» Discussion puts the results into perspective considering other studies.

» Conclusion with an overall analysis and proposes future work to improve the solu-
tion.

2 Development of an autonomous navigation system in highly dynamic environment



2 Theoretical background

This chapter will delve into several technologies that enable autonomous navigation in
challenging environments. It will provide a brief theoretical background and a literature
review on various topics relevant to the thesis’s contributions described in the following
Chapter 3, specifically in Section 3.3.

2.1 PX4 Offboard Control

The control strategy chosen for the Unmanned Aerial Vehicle (UAV) defines how it can
navigate. During this project, the main control over the UAV is given by the real-time
operating system (RTOS) PX4. The control diagram used by PX4 can be shown in Fig.
21.

I | | 1
. P PID - PID |
I ! i 1
e : :
Xsp | |Position V**‘IL Velocity Asy Qsp! | Angle $2ep Aﬁiliar OB,
| Control Control |1 |Acceleration | Control . I
! : and Yaw | Control |, "ep Iy fiyer |—»
| | : | 1
bep | | to Attitude | .
| 50 Hz ! | 250 Hz 1kHz !
Inertial Frame Body Frame

Figure 2.1: Control diagram used by PX4

This is a standard cascade control architecture combining P and PID controllers. Control
commands must be sent to the PX4 to control the UAV in offboard mode. These com-
mands will vary depending on the control mode desired, which can be setpoints in position,
velocity, acceleration, attitude, attitude rate, or thrust/torque denoted respectively as X,
Vips Asp, Qsps Qsps Tsp, @and 7, [6]. The estimation of the different robot states is performed
by the Extended Kalman Filter fusing onboard sensor measurements [7].

2.2 System Frames

In this section, the frames used in this project are described. Usually, for autonomous
navigation, the Robotic Operating System (ROS) is used as a middle framework to con-
nect all the subsystems. However, ROS and PX4 do not share the frame convention, so
frames presented in Table 2.1 must be considered.

World and Body frames can be visualized in Fig. 2.2

This project will use the following ROS frames:
* The World frame: X East, Y North, Z Up.
* The UAV Body frame: Attached to the center of the UAV. X Forward, Y Left, Z Up.
* The Lidar frame: Attached to the center of the lidar. X Forward, Y Left, Z Up

Development of an autonomous navigation system in highly dynamic environment 3



Frame PX4 ROS

Body FRD (X Forward, Y Right, Z Down) FLU (X Forward, Y Left, Z Up)
World FRD or NED (X North, Y East, Z Down) FLU or ENU (X East, Y North, Z Up)

Table 2.1: Frames conventions in PX4 and ROS

PX4 ROS

Gravity / B

Figure 2.2: World and UAV Body frames conventions in PX4 and ROS

2.3 Autonomous navigation in obstacle-dense environments

Autonomous navigation in obstacle-dense environments, such as forests, presents sig-
nificant challenges due to the complexity of maneuvering through numerous and often
unpredictable obstacles. Various algorithms have been developed to address these local-
ization, mapping, and path planning challenges. This section will cover some approaches,
highlighting their methodologies and common failures.

2.3.1 Localization

Localization involves determining a vehicle’s pose relative to a mapped environment based
on sensory inputs. Several approaches exist to address this problem.

Monte Carlo Localization [8], known as particle filtering, employs particles to represent
potential robot states, updating their likelihood based on sensor data. This method is
particularly effective in environments with non-linear characteristics and noisy sensors.
The Kalman Filter [9] continuously refines the system’s estimated state by integrating
new sensor information in an optimal statistical manner, making it ideal for scenarios with
well-modeled robot dynamics and Gaussian noise.

Scan Matching is essential for robots with LIiDAR or similar sensors, aligning scan data
with a map or previous scans to determine movement. Visual-inertial odometry (VIO) and
Simultaneous Localization and Mapping (SLAM) are commonly used in GNSS-denied en-
vironments. VIO combines camera visual data with inertial data from IMUs to estimate
the UAV’s position and orientation. SLAM algorithms build and update a map of the envi-
ronment while simultaneously keeping track of the UAV’s location within that map.

For example, the system proposed in [10] utilized VIO combined with a LiDAR-based
SLAM to correct for drift in VIO estimates during autonomous flights in North American
pine forests. This approach showed good localization accuracy but struggled with drift in
dense forest environments, which could lead to navigation errors.

4 Development of an autonomous navigation system in highly dynamic environment



2.3.2 Mapping

Mapping involves creating a representation of the environment that the UAV can use for
navigation. Standard mapping techniques include occupancy grid maps, voxel maps,
and point clouds. Stereo cameras and LIiDAR sensors are often used to generate these
maps. [11] used a point cloud from an active stereo depth camera to create a voxel map,
focusing on computational efficiency for real-time processing with a low-power CPU. While
effective in sparse environments, this method faced challenges in dense forests where
small obstacles like branches were often missed, leading to potential collisions.

OctoMap [12] is another powerful tool for mapping 3D environments. It represents the
environment with an efficient 3D occupancy grid, allowing for the detection and avoid-
ance of obstacles. OctoMap uses probabilistic occupancy estimation, which provides a
compact and flexible representation of the environment, making it suitable for dynamic
and cluttered environments like forests. It integrates well with various sensors, offering a
robust framework for autonomous navigation.

2.3.3 Path Planning

Path planning algorithms generate a collision-free trajectory for the UAV to follow. Sev-
eral approaches have been explored, including decomposition hierarchic methods, EGO-
Planner, and geometric planners.

In [10], the decomposition hierarchic method is used. It separates path planning and tra-
jectory generation. An A* search algorithm plans a collision-free path in a 3D grid map,
serving as the path planner. The maneuver automation method generates a feasible tra-
jectory for the UAV. This approach has been effective in environments like forests and
urban canyons but struggles with real-time implementation due to computational com-
plexity. It also faces challenges in dynamic environments where obstacles may move
unpredictably.

In [11], uses EGO-Planner-v2 [13] for path planning and VINS-Fusion [14] for localiza-
tion, integrating stereo-depth camera-based mapping. Initially tested in simulators, the
algorithms were later deployed on custom drone hardware for real-world testing, showing
promising results in boreal forests. However, the reliable detection of small and leafless
branches remained challenging, leading to collisions, and only about half of the test flights
succeeded.

Geometric planners, such as Rapidly-exploring Random Tree (RRT) [15] and its variants
like RRT*, are widely used for their ability to efficiently explore large spaces and find
feasible paths. RRT* improves upon RRT by optimizing the path to make it shorter and
smoother. These planners are popular due to their simplicity and effectiveness in vari-
ous environments. However, they can be computationally intensive and may not always
find the most optimal path in complex environments. Additionally, their performance can
degrade in real-time applications due to the high computational demands.

In [16], a dynamic path planning method is implemented using RRT*. As implemented
in the paper, it involves the robot detecting obstacles during path execution and trigger-
ing a replanning event when an obstruction is encountered. The robot invalidates the
obstructed nodes and identifies a new replan goal location. It then modifies the existing
RRT* tree by sampling new nodes and rewiring it to ensure a collision-free path around
the obstacle. This process allows the robot to dynamically adapt its path, maintaining
optimal navigation in environments with moving obstacles.

Development of an autonomous navigation system in highly dynamic environment 5



2.3.4 Common Failures
Despite advancements, several common failures still occur in autonomous navigation sys-
tems:

* Obstacle Detection: Small obstacles, such as thin branches, often go undetected,
especially by depth cameras. This can lead to collisions, as seen in [11], where only
nine out of nineteen test flights were successful due to poor detection of needleless
branches and leafless vegetation.

* Real-Time Processing: Many algorithms struggle with the computational demands
of real-time processing. The decomposition hierarchic method, for example, can be
too slow for dynamic environments, leading to delayed responses and collisions.

* Localization Drift: In GNSS-denied environments, drift in VIO can cause significant
localization errors over time, leading to navigation failures. This issue was noted
in several studies, where prolonged flights resulted in accumulating errors despite
SLAM corrections

2.4 Contact detection

Collision events, often unpredictable and undetectable when exteroceptive sensing is
compromised, pose a challenge to reliable localization and mapping. Some studies demon-
strate that collision-tolerant flying robots can encounter obstacles, react, and self-recover
after the collision. This approach, particularly appealing in complex environments, com-
plements other sensing modalities, such as perception, and reduces the complexity of
obstacle avoidance and control, among other applications.

The sense of touch is commonly used by ground robots for navigation [17] in several tasks
such as area coverage, for example, vacuum cleaning [18] or obstacle following [19].
Other strategies include detecting unpredictable or moving obstacles that other sensors
may not detect [20].

An approach to improving the robustness of flying platforms in cluttered environments is
introduced in [21]. This approach is inspired by insects, which cannot avoid all obstacles
but can recover after collisions [22]. Thanks to the platform’s robustness and ability to
crash, autonomous navigation can be performed without the caution and low speed re-
quired for sensing and mapping to avoid obstacles; these would not need to be ideally
detected, drastically reducing the sensing system’s complexity. In addition, this sensing
modality is helpful in dynamic environments.

241 Collision protection approaches

A comparison between insects and flying robots when discussing protection mechanisms
can be made. Flying animals have improved their robustness against collisions, providing
some inspiration for collision protection mechanisms. Due to their low mass, insects do
not achieve high-impact forces during free fall. That is why their rigid exoskeletons are
enough to absorb the forces. However, as animals grow, their mass increases cubically,
whereas their surface area only increases quadratically, so the air drag can no longer limit
the impact force. This mass increment led to heavier animals and humans protecting the
skeleton by soft tissue enhancing impact energy absorption.

Comparing animal’s endo- and exoskeletons, collision protection platforms for flying robots
can be categorized into two types of structures:

+ Stiff protection is commonly used in commercial drones and is enough to protect
propellers from low-energy contact

6 Development of an autonomous navigation system in highly dynamic environment



+ Soft protections are typically built with foam or deformable cages with thin compo-
nents like carbon fiber rods.

Different protection approaches can be seen in Fig. 2.3.

STIFF PROTECTION

Figure 2.3: Collision protection platforms used in drones

As shown in Fig. 2.3, we can find different protection levels. Fig. 2.3A shows propeller
protection of a DJI mini 3 Pro made of 3D printed PLA. On a higher protection level, Fig.
2.3B shows a 2D protection around the drone platform made of carbon fiber rods. Finally,
we can also find 3D protection cages that protect from impacts in all directions, as shown
in Fig. 2.3C. The highest drawback of stiff protection is the direct force transferred from
the impact point to the drone’s frame, decreasing the robot’s stability.

On the other hand, several solutions can be found for flexible protections. Fig. 2.3D
shows a drone frame protected with foam. This material distributes the force over a large
area. However, it presents a significant drawback because when absorbing the energy,
the foam is crushed, and repeated impacts can reduce the energy it can absorb. Another
option for flexible protection is using one or several flexible carbon rods, as seen in Fig.
2.3E. Carbon fiber is stiffer compared to foam, and it does not lose energy absorption
ability with repeated contact.

In [23], a method is presented for designing protective structures that transfer the lowest
possible amount of force to the platform’s frame while simultaneously minimizing weight
and thus their effect on flight performance. After designing collision-tolerant platforms, it
focuses on self-recovery, which means the UAV returns to flight without requiring external
intervention. However, in that study, the collision was not detected, and there was no
reaction during the collision event, just after the crash when the UAV fell. In the following
Section2.4.2, we will focus on collision detection approaches.

2.4.2 Contact detection approaches

Several approaches can solve this problem when discussing contact or collision detection.
In this section, an overview of these approaches, which have been of inspiration for this
project, is shown.

Development of an autonomous navigation system in highly dynamic environment 7



The sense of touch can be implemented with a variety of sensors. Basic contact sensing
has been implemented in the past using accelerometers. Accelerometers have a draw-
back because they can only detect high-impact forces. So, it could get stuck if the robot
collides at low speed or with a soft obstacle. It is also possible to detect contacts by com-
paring the expected motion of the system and the current motion [19] where collisions are
detected when odometry does not match the expectation. The main advantage of these
approaches is that these kinds of sensors are almost always implemented on an aerial
platform, so no new implementations are needed.

On the other hand, several sensors can be used to know if a platform is in contact with
an obstacle and where the obstacle is. The typical sensors found mainly in ground robots
are tactile sensors [24], whiskers [25], and proximity sensors [26].

Regarding whiskers, many solutions can be implemented to simulate these mammals’
hair to sense the environment. One option to simulate whiskers is Flex sensors [27]. The
working principle of a flex sensor is based on the concept of variable resistance due to
mechanical deformation. This kind of sensor has been used in [28] as whiskers integrated
perimetrically into the robot’s body as shown in Fig. 2.4a. Each robotic antennae, as
they call it, provides force feedback estimates through bending angles during physical
interaction. The interacting antennas are calibrated against force and bending angles.
Given the estimates of the interacting forces, they implement a reactive control strategy
to ensure collision-tolerant flight. In Fig. 2.4a, the reactive force 7. is calculated as the
resultant of F, ; and F, ». However, this approach of perimetrically distributed antennas
would only detect collisions with planar surfaces, so small or thinner objects could collide
with the robot platform between each antenna because there are blind areas.

(a) Haptic Feedback-based Reactive Navigation (b) Obstacle contact sensor [29]
(28]

Figure 2.4: Two different contact detection approaches using Flex sensors

Another interesting flex sensor approach is presented in [29]. Instead of detecting col-
lisions directly with the flex sensors colliding with the obstacles as done in the previous
approach, flex sensors are used to measure displacements between two platforms. As
shown in Fig. 2.4b, the sensors are placed around the mobile system’s perimeter, a slid-
ing platform on top of a second fixed platform. It is explained that only two sensors are
required to measure two orthogonal directions. Still, the rotation could disturb the mea-
surements, so two sets of the basic two-element system are installed to diminish the effect
through redundancy. A fuzzy inference system is implemented to predict the contact zone,

8 Development of an autonomous navigation system in highly dynamic environment



classifying the contacts into eight zones.

Another approach accounting for 3D collision detection is presented in [30]. This study
uses the AirBurr protective structure [23]. This structure is formed by 24 buckling springs
arranged in 8 tetrahedral configurations, as shown in Fig. 2.5a. The eight pivot joints
indicated in Fig. 2.5a have been replaced by the sensors pictured in Fig. 2.5b. These
sensors measure the deformation of low-stiffness springs thanks to hall sensors.

Magnet . -ow stiffness springs Buckling spring

Hall sensor

compression
<—

traction

(a) AirBurr tetrahedral platform (b) Force sensor based on hall sensor

Figure 2.5: Force sensors integrated in the AirBurr platform [30]

The force sensors implemented in Fig. 2.5b provide a force range of 1N, so it could
detect low impacts that accelerometers could not differentiate between an impact or a
normal flight maneuver.

Torque sensors have also been used to design contact detection platforms in [31]. They
equipped a quadrotor with a disc-shaped shell protecting the drone frame from collisions.
The shell surface is made of low-friction fiberglass, allowing obstacles to slide along its
surface. A six-axis load cell connects the quadrotor’s frame and the shell to enable force
feedback control. So, the haptic sensor measures the net wrench resulting from contacts
occurring across the entire shell surface. The mechanism integrating the shell, the load
cell, and the quadrotor frame is shown in Fig. 2.6.

Tracking camera

Battery '.ll On-board computer

Disc-shaped shell ) Force/Torque sensor

Figure 2.6: Shell disc integrated with torque sensor for contact detection [31]
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The disc-shaped shell protection and detection mechanism have been tested in push and
slide tasks.

2.5 Deep learning foundamentals

Artificial intelligence is a broad field of computer science aimed at creating systems ca-
pable of performing tasks that require human intelligence. These tasks include decision-
making,e.g., autonomous driving [32]; problem-solving,e.g., medical diagnosis [33]; and
learning, e.g., language translation [34], among others.

Deep learning is a Machine Learning subset that uses Deep Neural Networks to discover
patterns in large datasets. These datasets can be labeled so that the ground truth for
each data point is known, and it can be used for the neural network training or unlabeled
so patterns are recognized without sharing any label with the model. Based on labels in
the dataset, deep learning can be divided into the following categories:

» Supervised learning: This is defined by using labeled datasets to train algorithms
to classify data or predict outcomes accurately. As input data is fed into the model,
the model adjusts its weights until it has been fitted appropriately. It is typically
categorized into:

— Classification: Predicting a discrete label.
— Regression: Predicting a continuous value.

* Unsupervised learning: Involves training a model on data without labeled re-
sponses, aiming to find hidden patterns or intrinsic structures in the input data. Com-
mon techniques include:

— Clustering: Groups similar data points together

— Dimensionality reduction: Simplifies the data by reducing the number of fea-
tures while retaining important information.

» Semi-seupervised learning: During training, a smaller labeled data set guides
classification and feature extraction from a larger, unlabeled data set. Semi-supervised
learning can solve the problem of not having enough labeled data.

* Reinforcement Learning: Involves training an agent to make sequences of de-
cisions by rewarding desired behaviors and punishing undesired ones. This tech-
nique is particularly effective in dynamic environments where the agent must adapt
its strategy based on feedback.

This section will focus on the supervised learning category, in which the dataset is labeled
to learn patterns based on the existing data.

2.5.1 Feedforward Neural Network

A neuron, also known as an information processing unit, is the fundamental building block
of neural networks. A single neuron is the simplest form of a neural network model, which
can be described mathematically by the function f(z,w). This function takes a set of
inputs = and learning parameters called weights w and produces an output that can be
either positive or negative.

Each input z; is multiplied by its corresponding weight w;. These products are then
summed to produce a single value:

z= ww;+b (2.1)
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where b is the bias term, which allows the activation function to be shifted to the left or
right. The weighted sum z is typically passed through an activation function ¢(z).

A perceptron is an artificial neuron that includes an activation function, usually a step func-
tion, which converts the weighted sum of the inputs into a binary output. The perceptron
can classify input data into one of two classes. The operation of a perceptron can be

expressed as:
1 if ; Tiw; +b >0
fay =4t T i 2.2)
0 otherwise

The perceptron’s decision boundary is linear, meaning it can only solve problems where
the data is linearly separable.

To handle non-linearly separable data, a more complex structure called a Multilayer Per-
ceptron (MLP) is used, which is a type of Feedforward Neural Network (FFNN) [35]. An
MLP consists of multiple layers of neurons:

* Input Layer: This layer receives the input data. Each neuron in this layer represents
one feature of the input data.

* Hidden Layers: These layers are positioned between the input and output layers.
Each hidden layer consists of multiple neurons connected to every neuron in the pre-
vious and next layers. The purpose of hidden layers is to capture complex patterns
and interactions in the data. The more hidden layers a network has, the deeperit s,
allowing it to learn more abstract features. Including non-linear activation functions
in these layers allows the network to model non-linear relationships in the data.

» Output Layer: This layer produces the network’s final output. In a classification
problem, the output layer might use a softmax activation function to produce a prob-
ability distribution over the classes. In a regression problem, it might use a linear
activation function to produce a continuous output.

INPUT LAYER HIDDEN LAYER OUTPUT LAYER

Figure 2.7: Feed forward neural network explained in [36]

2.5.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of artificial neural networks proposed in
the 1980s [37] designed to recognize patterns in data sequences, such as time series,
speech, text, financial data, and more. Unlike FFNNs, RNNs have connections that form
directed cycles, creating an internal network state that allows them to exhibit temporal
dynamic behavior, i.e., the last output is influenced not only by the previous input but by
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all the inputs fed in the network. RNNs are particularly well-suited for tasks where context
and sequential information are crucial.

One of the key ideas behind RNNs is parameter sharing. This concept allows RNNs to
maintain consistent parameters across different time steps, enabling the network to gen-
eralize effectively across sequences of varying lengths. In contrast, ordinary FFNNs learn
separate parameters for each input position, which limits their ability to handle sequences
of different lengths. Parameter sharing in RNNs ensures that the same set of weights is
applied to each element in the sequence, which helps the model capture temporal depen-
dencies and patterns irrespective of the input sequence length. This property is crucial
for tasks involving sequential data, where generalizing across different sequence lengths
is essential [38].

v@ *—V-l hea —V-{ he J—V-[ hea | -

[u Ju Ju [u
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Figure 2.8: RNN architecture

Fig. 2.8 shows a typical RNN architecture. The variable x is the input of length t+1,
which could be easily decreased or increased thanks to parameter sharing. These shared
parameters are U, defining the weights connecting the input to the hidden units h; V,
defining the weights from the hidden layer h; and W, defining the weights from the hidden
layer to the output neurons.

However, simple RNN architectures, such as the one shown above, can lead to vanish-
ing/exploding gradient problems while training when the architectures become deeper.
The vanishing gradient problem occurs when the gradients of the loss function become
extremely small, making it difficult for the model to learn. On the other hand, the exploding
gradient problem occurs when the gradients become extremely large, leading to unstable
training and convergence issues.

Other RNN types, such as Long-Short Term Memory (LSTM) modules, are used to tackle
the gradient problem. In that case, the simple hidden units from RNN are replaced by
more complex units called LSTM blocks.

i ~N
L - ®
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Input X,

Figure 2.9: LSTM block explained in [39]
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An LSTM unit consists of a cell Memory C; and three gates: the input gate I;, the for-
get gate F3, and the output gate O;. These gates control the addition and removal of
information from the cell Memory, as depicted in Figure 2.9.

The forget gate determines what portion of the cell Memory from the previous time step
should be carried forward to the current time step. It uses a sigmoid function to generate
values between 0 and 1, where 0 means completely forgetting the information and 1
means keeping it entirely.

Fy = o(Wylhe1, 0] +by) (2.3)

The input gate I, controls how much of the new information from the current input z; and
the previous hidden state h; | should be added to the cell Memory. The Candidate mem-
ory cell C; is created using the tanh activation function, which produces values between -1
and 1. The input gate then scales this candidate cell Memory using the sigmoid function
before adding it to the current cell Memory.

Iy = o(Wilhe—1, 2] + b;) (2.4)

Cy = tanh(We[hi_1, ] + be) (2.5)

The cell Memory C} is updated by combining the information preserved by the forget gate
and the new information scaled by the input gate.

Ci=fi0C1+140 C, (2.6)

The output gate O, determines which parts of the cell Memory should be output as the
new hidden state h;. This hidden state is then used for predictions and input for the next
step.

O; = O'(Wo[htfl, l‘t] + bo) (27)

Hi =00 tanh(Ct) (28)

Where ¢ is the sigmoid activation function, ® represents element-wise multiplication,
Wy, W;, We, and W, are weight matrices, by, b;, bc, and b, are bias vectors.

2.5.3 Activation Functions

An activation function is an element-wise differentiable operation applied to the output of a
neuron, required to calculate hidden layer values, helping neural networks perform com-
plex tasks such as image recognition, natural language processing, and speech recog-
nition. The purpose of an activation function is to introduce non-linearity into the model,
allowing the network to learn and represent complex patterns in the data. Without non-
linearity, a neural network would behave like a linear regression model.

Non-linear activation functions are defined based on their range or curves. The following
activation functions are used in the project within the FFNN or the LSTM block:
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» Sigmoid Function: The sigmoid activation function is a continuously differentiable
and non-linearly separable function that squeezes the output values in the range
[0,1].

_ 1

Cl4e®

(2.9)

o(x)

It is especially used for models where the required output is a probability.

» Rectified Linear Unit (ReLU): One of the most popular non-linear squashing func-
tions, ReLU generates the maximum between 0 and input = as output.

xz, ifz>0

: (2.10)
0, otherwise

ReLU(z) = {

* Hyperbolic Tangent (tanh): The tanh activation function is another popular non-
linear function that outputs values in the range [-1, 1]. It is defined as:
ef — e T

€ e

2.5.4 Loss Functions

A loss function, a cost or objective function, is a crucial component in training neural net-
works. It quantifies how well the predicted outputs of the model match the true targets.
The ultimate goal of the training process is to minimize the loss function, thereby signifi-
cantly improving the model’s accuracy. This underlines the pivotal role of the loss function
in the field of machine learning.

Two of the main loss functions used for regression and classification tasks, respectively,
are described below:

* Mean Squared Error (MSE): Commonly used in regression tasks, MSE measures
the average of the squares of the errors between the predicted and actual values.
It is given by:

1 n
MSE = — i — 0i)? 2.12
; ;@ i) (2.12)
where y; is the actual value and g; is the predicted value.

» Binary Cross-Entropy Loss: Commonly used in binary classification tasks. It mea-
sures the difference between two probability distributions: the label’s true distribu-
tion and the model’s predicted distribution. For binary classification, it is given by:

n

Binary Cross-Entropy = —% Z[yi log(9:) + (1 — y;)log(1 — ;)] (2.13)
=1

where y; is the actual label and g; is the predicted probability.

However, there are also cases where custom loss functions need to be defined. This
is the case when predicting angles. Angles have a circular topology, so the MSE loss
function would not work properly when calculating the loss between 0 and 359 degrees;
breaking the continuity between 359 and 0 MSE would account for the maximum error.
One way to solve this issue is to encode angle values as pairs of sine and cosine. With
that representation, a custom loss function could be defined to minimize the Euclidean
distance between predicted and true sine/cosine pairs, as shown below:
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Sine Cosine Distance Loss = \/(sin(é) —sin())2 + (cos(f) — cos(h))? (2.14)
where sin(f) and cos(6) are the predicted sine and cosine values, and sin(#) and cos(#)
are the target sine and cosine values.

The loss function’s choice directly impacts gradient descent, as it influences the gradients
calculated during back-propagation, thereby affecting the direction and magnitude of pa-
rameter updates. The design of the loss function is task-specific. Therefore, selecting
the appropriate loss function is critical for effective model training, ensuring the neural
network is optimized correctly and performs better.

2.5.5 Gradient Descent Optimization

Gradient descent is a fundamental optimization algorithm that minimizes the error function
in machine learning tasks by iteratively updating learning parameters based on gradients
computed through partial derivatives. In each iteration, the parameters (weights and bi-
ases) are adjusted to reduce the loss, gradually converging towards a minimum of the
cost function. The algorithm is crucial for training deep neural networks due to the non-
convex nature of their cost functions. Non-convexity means that the cost function can
have multiple local minima, making it difficult to find the global minimum.

The basic gradient descent update rule is given by:
0=60—-aVJ(0) (2.15)

where 6 represents the model parameters, « is the learning rate, J(0) is the cost function,
and V.J(#) is the gradient of the cost function for the parameters.

The learning rate is a hyperparameter that determines the step size at each iteration while
moving toward a minimum of the cost function. The choice of learning rate is critical for
the convergence of gradient descent. If the learning rate is too high, the algorithm may
overshoot the minimum and fail to converge. The convergence can be very slow if the
learning rate is too low.

2.5.6 Metrics for Regression

In this section, we will delve into popular metrics for evaluating regression models and
how to calculate them.

Mean Squared Error (MSE)

It is a widely used error metric for regression problems. The MSE is calculated as the
mean of the squared differences between predicted and actual target values in a dataset:

N

_1 a2
MSE = N,Zl(% i) (2.16)

where y; is the i-th actual value and g; is the i-th predicted value. Squaring the differences
ensures that the error values are positive and penalizes larger errors more heavily, making
highlighting significant prediction errors useful.

Root Mean Squared Error (RMSE)

It is obtained by taking the square root of the MSE. This adjustment restores the units
of the RMSE to be the same as the original target values, making it more interpretable.
RMSE can be particularly useful for understanding the magnitude of prediction errors in
the same units as the target variable.

Development of an autonomous navigation system in highly dynamic environment 15



RMSE — VMSE — J =5 (i — 30)? (2.17)

Mean Absolute Error (MAE)
It is another common metric for regression. Unlike MSE and RMSE, which penalize larger

errors more, MAE treats all errors equally by averaging the absolute differences between
predicted and actual values:

N
1 N
MAE = N;m—m (2.18)

This linear error metric provides an intuitive measure of model accuracy, making it easier
to understand how the model performs across different prediction ranges.

2.5.7 Metrics for Binary Classification

This section will explore the commonly used metrics for evaluating binary classification
models and the methods to calculate them.

Accuracy

Accuracy is the most straightforward metric for classification problems. It is calculated as
the ratio of correctly predicted instances to the total instances in the dataset:

TP + TN
TP + TN+ FP + FN

Accuracy = (2.19)

where TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives, and FN is the number of false negatives. Accuracy provides a
general measure of how well the model is performing but can be misleading if the dataset
is imbalanced.

Precision
Precision, also known as the positive predictive value, measures the proportion of positive
predictions that are correct. It is calculated as:

TP

Precision = TP FP

(2.20)

Precision is particularly useful in scenarios where the cost of false positives is high. It
indicates the reliability of the model when it predicts the positive class.

Recall

Recall, or sensitivity, measures the proportion of actual positives that the model correctly
identifies. It is given by:

TP

(2.21)

Recall is crucial in applications where the cost of false negatives is high, as it captures
the model’s ability to detect all positive instances.
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F1-Score
The F1-Score is the harmonic mean of precision and recall, providing a balance between

the two metrics. It is calculated as:

Precision - Recall
F1-Score — 2 . - cosion - Reca (2.22)
Precision + Recall

The F1-Score is useful when you need to balance precision and recall, particularly in
situations where there is an uneven class distribution.

Area Under the Curve (AUC)

The Area Under the Receiver Operating Characteristic Curve (AUC-ROC) is a metric that
evaluates the ability of the model to distinguish between the positive and negative classes.
The ROC curve is plotted with the true positive rate (recall) against the false positive rate
(1 - specificity):

1
AUC = / ROC(z) dx (2.23)
0

AUC ranges from 0 to 1, with a value closer to 1 indicating better model performance. It
provides a single measure of overall model performance across all classification thresh-
olds.

2.6 Sensor pattern prediction

Pattern recognition is crucial in analyzing data from multiple sensors to predict various
outcomes. Various methods have been developed and applied successfully in different
domains, demonstrating their capabilities and limitations.

One commonly used pattern recognition method is decision trees and random forests.
These algorithms can handle non-linearities and interactions within the data, making them
suitable for complex sensor data analysis. For instance, in the study [40], random forests
were utilized to predict crop yields using multiple environmental and satellite data inputs.

Another method that has shown promise is fuzzy logic. Fuzzy logic systems use linguistic
variables and rules to manage non-linearity and ambiguity in sensor data. This approach
is beneficial in scenarios where the data is imprecise or noisy. In the paper [29], fuzzy
logic was employed to enhance the accuracy of flex sensor measurements. The study
demonstrated how fuzzy logic could handle the non-linear characteristics of flex sensors,
making it a viable approach for integrating contact angle prediction. The complexity of
integrating multiple outputs, such as displacement, angle, and contact prediction, can be
managed by defining new sets of rules for each additional output and sensor, leveraging
the flexibility and robustness of fuzzy logic systems.

Neural networks offer significant advantages for pattern recognition in sensor data. They
can model complex, non-linear relationships and handle multiple outputs by adding neu-
rons to the output layer. This scalability makes neural networks highly suitable for simul-
taneously predicting numerous variables. In the study [41], FFNN and CNN were applied
to classify arrhythmias in real time using Electrocardiography (ECG) data. Additionally, in
another study [42], an LSTM-based approach was used for tilt angle monitoring. The au-
thors proposed a Sparse Residual LSTM network combined with grid search to optimize
hyperparameters, demonstrating significantimprovements in accuracy and robustness for
dynamic tilt angle prediction. This shows the applicability of neural networks in processing
and predicting outcomes from complex sensor data.
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The k-nearest neighbors (KNN) algorithm is a simple yet effective method for pattern
recognition. KNN classifies data points based on their proximity to training data points.
This approach can be helpful for sensor data analysis, where similar patterns are expected
to yield similar outcomes. In the paper [43], KNN was applied to classify activities based
on data from wrist-worn inertial sensors.

These methods, each with their strengths and limitations, offer a range of tools for effective
pattern recognition in sensor data. By leveraging the appropriate algorithm based on the
specific characteristics and requirements of the data, it is possible to achieve accurate and
reliable collision event predictions. The literature demonstrates the successful application
of these methods across various domains, providing valuable insights and methodologies
that can be adapted to solve similar problems in sensor data analysis.
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3 Problem Definition

This chapter defines the problem that this thesis addresses and outlines the initial re-
sources and tools available for tackling this challenge. As stated in Section 1, aerial
robots offer significant advantages in performing complex tasks due to their 3D freedom
of movement. However, this increased maneuverability also raises the risk of collisions
in dense obstacle environments.

The primary objective of this thesis is to manage and mitigate the risk of collisions during
autonomous aerial missions. To achieve this, we will leverage the hardware and software
components that are specifically chosen to address this issue effectively.

This chapter will detail the elements used to develop the project, including the hardware
setup and the software tools that will facilitate the solution. Finally, the specific contribu-
tions of this thesis will be outlined.

3.1 Hardware
This section describes the hardware used to develop the thesis.

3.1.1 Holybro X500 v2

The UAV used for this project is the quadrotor X500 v2 from the PX4 Development Kit
[44]. This is the frame over which the different components (PX4, lidar, optitrack markers,
and collision platform) will be placed.

Figure 3.1: Holybro X500 v2 PX4 Development Kit

3.1.2 LattePanda 3 Delta

As the onboard computer, the LattePanda 3 Delta 864 is used. It is mounted in one of the
Holybro frame legs. The computer specifications are shown in Table 3.1

In addition, this computer also incorporates an Arduino pin interface, which is useful for
connecting sensors with analog outputs.
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Components Latte Panda 3 Delta

Processor Intel Celeron N5105

Core 2.0-2.9GHz Quad-Core, Four-Thread

Graphics Intel UHD Graphics (Frequency: 450 — 800MHz)
Memory LPDDR4 8GB 2933MHz

Storage 64GB eMMC

Table 3.1: LattePanda 3 Delta specifications

General Purpose 1/0 Adjustable Cooling Fan

Arduino Pinout
BIOS Pinout
5V & 3.3V Output

DisplayPort 1.4
RS232, USB2.0, Audio, USB 2.0
System Control and Indication

Figure 3.2: LattePanda 3 Delta

2 =
s : Audio + Mic
Intel Processor 2 e’ |
RAM USB Type C
General Purpose 1/0 Power Delivery

3.1.3 Livox Mid-360

For sensing the environment, the 3D lidar Livox Mid-360 has been chosen because of its
high resolution, as well as its low weight compared with other 3D lidars as shown in the
specifications in Table 3.2.

Specs Livox Mid-360
Detection Range (@ 100 kix) 40 m @ 10% reflectivity - 70 m @ 80% reflectivity
Close Proximity Blind Zone* 0.1 m

FOV Horizontal: 360°, Vertical: -7°52°
Range Precision® (10) <2cm (@ 10m)

Angular Precision 110 [ <0.15°

Point Rate 200,000 points/s (first return)
Frame Rate 10 Hz (typical)

Table 3.2: Livox Mid-360 specifications

(b) Livox MID 360 sensor

(a) Livox MID360 sensor FoV

Figure 3.3: Livox MID 360 sensor and its FoV
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3.1.4 Creality 3D Printer

To fabricate the necessary components for this project, a 3D printer is employed due to its
ability to rapidly and reliably bring 3D CAD models to life. The specific model used is the
Creality Ender-3 V3 KE. This printer offers the flexibility and precision to create custom
parts tailored to the project’s requirements.

Figure 3.4: Creality Ender-3 V3 KE 3D Printer

The maximum printing volume of the Ender-3 V3 KE is 220 x 220 x 240 mm, so all de-
signed pieces must fit within these dimensions.

3.2 Software

The experiments conducted in this study were executed on a system running Ubuntu
22.04 LTS. The following sections introduce the main software modules used for the
project development.

3.21 ROS2
The middleware used to interconnect all the subsystems is the Humble distribution of the
Robot Operating System 2 (ROS2). ROS 2 is a middleware based on a strongly typed,
anonymous publish/subscribe mechanism that allows message passing between different
processes [45].

Additionally, other ROS tools were employed. The ROS TF package is used to handle
transformations between different coordinate frames. For visualization purposes, RVIZ,
which allows the visualization of 3D environments with robot position and sensor data as
lidar, and plotjuggler for time series sensor data visualization, is used.

Finally, Gazebo is used as an integrated simulation environment within ROS 2. This tool
allows for implementing a drone configuration similar to the real-life setup, supports sensor
integration, and enables the testing of autonomous missions in a simulated environment
before deployment in the real world.

3.2.2 Onshape

To create computer-aided design (CAD) models for integration into the current drone
frame, we used the browser-based CAD software system Onshape. Onshape provides a
flexible and efficient platform for designing and modifying components, allowing seamless
integration with the existing hardware setup.

3.2.3 Optitrack setup
To record contact data and conduct autonomous navigation missions in a controlled envi-
ronment, we utilized DTU’s Autonomous Systems Test Arena (ASTA). ASTA is a confined
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space equipped with an OptiTrack motion capture system. The OptiTrack system records
information from the drone’s position, enabling the position loop for the PX4 to be closed.

o O

(a) ASTA OptiTrack structure (b) OptiTrack software

Figure 3.5: ASTA facilities and OptiTrack system

3.3 Goal

As detailed in Section 1.1, the autonomous navigation stack of an autonomous flying
robot is a complex system comprising various interconnected modules. However, these
modules are prone to failures, which can occur due to factors such as sensor degradation
or improperly fine-tuned algorithms, as demonstrated in Section 2.3.4. Such failures can
lead to severe consequences, including mission failure due to collisions. This underscores
the critical importance of addressing the problem outlined in this thesis.

The primary objective of this master’s thesis is to ensure collision-tolerant navigation for
flying robots. To achieve this, the thesis aims to analyze different contact detection meth-
ods and design and implement a novel contact detection system that can be integrated into
an autonomous robot system stack, ensuring reliability in highly dynamic and obstacle-
dense environments. The following contributions have been made to achieve this goal:

» Analysis of existing contact detection techniques.
* Mechanical design of a collision detection platform integrated into a flying robot.

» Design of a contact detection algorithm to detect collision events, including contact
events, orientation, and impact magnitude.

Integration of collision detection into a path planning and mapping algorithm.

» Design and implement a complete autonomous pipeline, incorporating the afore-
mentioned contributions to enable collision-tolerant autonomous navigation.

The development of these contributions is explained in the following Section 4.
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4 Methods

This section will explain the different methodologies developed to achieve the thesis goal
of performing collision-tolerant autonomous navigation in obstacle-dense environments.

First, a collision platform is completely designed from scratch to be integrated into the
drone frame, providing a platform to locate sensors that can help to detect collisions.

Then, the sensors integrated into the collision platform are used to develop an algorithm
that provides information from the contact/collision events.

Finally, an autonomous navigation stack comprised of a mapping, planning, contact de-
tection, and control module is defined to perform autonomous contact-based navigation.

4.1 Collision platform design

This section will explain the different approaches taken during the collision platform de-
sign. Initially, a test prototype of the platform is designed to validate the idea behind the
integration between the sensors to detect collisions and the platform itself. Once the con-
cept is validated and deemed feasible, the full-scale prototype is designed based on the
parameters established in the initial prototype.

Based on the literature review in Section 2.4, some requirements must be defined to have
a design guideline. The approach shown in Fig. 2.4a, where several antennas are located
around the robot, has the disadvantage of leaving blind spots between antennas, which
means that thin obstacles could cause the drone not to detect the collision. On the other
hand, the approaches shown in Fig. 2.5a, Fig. 2.6, and Fig. 2.4b can detect contacts
in the 3D and 2D space, respectively. So, regarding covered space, at least an entire
360-degree perimeter should be covered to detect all kinds of contacts in the 2D space.

As explained in Section 2.4.1, when talking about collision protection platforms, two kinds
of approaches can be considered: rigid or flexible protection. One of the thesis goals is to
integrate collision recovery into an autonomous navigation stack so that flexible protection
makes more sense due to impact absorption and time to react to the collision while the
impact is absorbed.

Considering the output variables that should be expected from the contact detection al-
gorithm is crucial. The primary variable is the presence or absence of contact. However,
this information alone may not be sufficient to recover from a collision. Therefore, un-
derstanding the contact orientation and the magnitude of impact absorption is equally
important. This underscores the significance of our work in designing a more reliable
collision recovery system.

From the previous discussion, a requirement list can be defined, to sum up the guidelines
for the concept design:

* The platform must cover a 360-degree perimeter to ensure no blind spots.

* The collision platform must incorporate an elastic structure to absorb impacts, pre-
venting direct force transfer to the drone frame.

» The platform must reliably detect contact/collision occurrences. Additionally, it should
provide the contact orientation and an impact magnitude.
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4.1.1 Collision platform concept

Based on the guidelines defined in the previous section, some concepts have been ana-
lyzed before the platform was designed. Regarding 360° perimeter coverage, a continu-
ous external platform would be necessary.

Several approaches can be implemented when talking about elasticity. One idea would
be to have an external elastic platform (e.g., a toroid) with sensors integrated around it
to measure the deformations, similarly to the approach shown in Fig. 4.1a simulating a
float.

Inner ring

. outer ring
elastic

joint

(a) External flexible toroid approach (b) Inner and outer ring platform concept

Figure 4.1: Collision platform possible concepts

Another idea analyzed is to have an inner ring attached to the drone frame and an outer
ring that can move radially freely over the inner ring so that some elastic joint could connect
the inner and outer rings as done by [29]. A concept of the last idea is shown in Fig. 4.1b.

On the one hand, the toroid concept has the advantage that a collision from one side
would not affect sensors located on the other side because the impact and surrounding
zones would absorb the impact. However, that concept seems much more complex to
integrate, and maintenance and repair might be challenging due to its continuous nature.

In contrast, the inner and outer ring concept would involve a collision causing a radial
displacement of the external ring, which refers to the movement of the ring away from the
point of impact. All the sensors would read the collision in different magnitudes based
on the sensor position and displacement. Those magnitudes could be mapped to know
the required contact, orientation, and displacement variables. The ring concept would
be easier to integrate and maintain because components can be individually replaced if
damaged. Additionally, regarding weight, the toroid would potentially be heavier than the
ring design due to the continuous surface.

Given the advantages of the inner and outer ring concept in terms of integration, mainte-
nance, and weight, this concept is chosen as a design guideline.

4.1.2 Collision platform sensors

Once the platform concept has been decided, knowing which sensor will measure the
outer ring displacements is important for the design phase. Some sensor options can be
used to measure displacements. Hall sensors, used in [23], are combined with a buckling
spring mechanism to measure the spring’s deformation. Another type of sensor used for
contact detection has been the flex sensor, whose bending indicates some kind of contact.
Another option would be to use optical sensors, which imply non-contact measurement,
but it would need a clear line of sight and careful alignment.
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After evaluating the available sensor options, flex sensors from Spectra Symbols [27]
have been selected as the optimal choice for measuring outer ring displacements in the
collision detection platform.

Flex sensors provide several key advantages:

» Simplicity and Cost-Effectiveness: Flex sensors are straightforward to integrate into
the platform design and are relatively inexpensive compared to other sensor types.

» Reliable Contact Detection: These sensors effectively measure bending and stretch-
ing caused by collisions, providing accurate and immediate data.

» Ease of Installation and Maintenance: Flex sensors are easier to install and replace
if needed.

» Compatibility with the Inner and Outer Ring Concept: The nature of flex sensors
aligns well with the radial displacement mechanism of the inner and outer ring de-
sign.
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(a) Spectra Symbol flex sensor [27]

Figure 4.2: Flex sensor and its resistance curve

Finally, it is essential to determine the minimum number of sensors required for the plat-
form design. One of the design objectives is to fulfill the requirements with a low-cost and
functional contact detection system, so there is a trade-off between mechanical, elec-
tronic, and software complexity.

Each sensor measures displacement along its longitudinal axis. Therefore, at least two
perpendicular sensors must capture displacement measurements in the 2D space. How-
ever, a configuration of four sensors is preferred to optimize platform dynamics and en-
sure symmetrical data collection. Given that the drone is a quad-rotor, four sensors evenly
spaced around the circumference, connecting the inner and outer rings, will be employed.

The flex sensor can only measure bending in a specific direction. So, the neutral position
of the flex sensors between the inner and outer rings should be bent. Then, the distance
between the inner and outer ring will be half the sensor length, allowing it, by bending or
stretching from that position, to measure within the whole operating range

4.1.3 Test prototype
To validate and enhance the inner and outer ring concepts explained in the previous sec-
tion, several tests have been performed by designing a test platform. Fig. 4.3 shows the
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test platform where the inner ring is assumed to be fixed to the drone frame while the
outer ring moves when receiving a contact.

Tip sensor placement

Sensor placement
= Elastic band pivots

Outer ring supports

(a) Small prototype CAD (b) Small prototype 3D printed

Figure 4.3: Small prototype design

As seen in Fig. 4.3, supports have been added to the outer ring to keep coplanarity with
the inner ring. In Fig. 4.3b, one flex sensor is implemented with plastic ties to test sensor
integration. However, the flex sensor and the plastic ties have different elasticities, so the
flex sensor pushes the platform toward its axis more strongly than the ties.

Each sensor is bent when placed between the inner and outer rings in the neutral position,
creating a force to restore them to their unbent state. Ideally, the resultant of these forces
should balance each other out, keeping the outer ring centered relative to the inner ring.
However, due to a slight misalignment in sensor placement, the resultant force might not
be perfectly balanced, leading to the outer ring not being centered with the inner ring.

Outerring Inner ring

Figure 4.4: Small prototype elastic band forces due to an external force

To address this misalignment problem, an additional elastic joint between the inner and
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outer rings must be implemented to ensure that the outer ring is always centered relative
to the inner ring when recovering from a collision. Elastic bands have been selected as
the elastic joint for several key reasons:

* Range of Displacement: Elastic bands can accommodate the necessary displace-
ment range of 3.5 cm between the inner and outer rings and neutralize the forces
generated by the flex sensors, maintaining the ring’s alignment.

» Ease of Integration: The simplicity makes them a practical choice.
» Cost-Effectiveness: Elastic bands are relatively inexpensive.

» Consistency in Force Application: Elastic bands provide a consistent force propor-
tional to their displacement, accurately maintaining the alignment of the outer ring.

The elastic bands are integrated using the pivots shown in Fig. 4.3 joining the inner and
the outer ring as shown in Fig. 4.4.

As seen in Fig. 4.4, when an external force is applied to the outer ring in the E1 direction,
and the inner ring is fixed, the elastic bands E2, E3, and E4 are stretched. This stretching
creates a resultant force that restores the outer ring to its centered position relative to the
inner ring once the external force is removed. At the same time, the elastic band EO is
not working.

With the test platform design performed in this section, there are some key features to
consider for the full-scale prototype:

» Coplanarity: Ensure that the outer ring remains coplanar with the inner ring when
suspended in the air. Use supports or additional structures as demonstrated in the
test prototype.

+ Sensor Alignment and Placement: Precisely align sensors to minimize misalign-
ment and resultant force imbalances.

+ Elastic Joint Implementation: Implement additional elastic joints (e.g., elastic bands)
to ensure the outer ring remains centered relative to the inner ring.

4.1.4 Real prototype

Once the test prototype concept has been designed, tested, and solved the issues, the full-
scale platform can be designed following the guidelines learned from the small platform
design.

Sensor location
It is important to define the sensors’ location before designing the inner ring attachment
to the UAV frame. Having decided to use 4 flex sensors, there are 2 options to consider:

* Flex sensors aligned with the frame arms and propellers.
* Flex sensors located between frame arms.

The first approach could have several drawbacks. Locating the flex sensor closer to the
propeller could cause measurement disturbances due to direct propeller airflow. In addi-
tion, a displacement of the sensor that is close to the propeller could cause damage to
the sensor. So, the flex sensor will be located between the frame arms, keeping them as
far as possible from the propellers.

Structure design
Once the sensor location has been decided, it is possible to design the ring platform.
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The larger UAV radius is measured to define the inner platform’s radius. This radius
corresponds to the one from the drone center until the end of the propeller. To use the
inner ring as propeller protection, the inner ring’s radius is defined as the larger radius
(from the center to the propeller end) plus one centimeter. The inner ring is divided into
two pieces as shown in Fig. 4.5:

* Inner ring arm: Attached to the drone arm frame and connected through a screw
union to the outer ring support.

» Outer ring support: Extension of the inner ring arm containing the sensor place-
ment and a sliding slot to let the outer ring move radially in the 2D space.

Two inner ring arms are joined to the outer ring support by using two screws, as shown in
Fig. 4.6.

Sensor placement

Inner ring arm

Inner ring joint

Outer ring support

Figure 4.5: Collision platform inner ring

Outer ring support
Sensor placement

Inner ring joint

Figure 4.6: Collision platform inner ring joint
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The outer ring is divided mainly into three pieces:
» Outer ring sensor part: Contains the sensor tip and the sliding support.

» Outer ring no sensor part: Joins the outer ring sensor parts by completing the full
ring.

» Outer ring joint: Joins all the parts explained above.

Outer ring joint x12

Sensor tip
placement

.

/ Outer ring no sensor part x8

Figure 4.7: Collision platform outer ring

Sensor tip Sliding suppoﬁr_tﬁf___f,
placement —

Quter ring
4 sensor part

Outer ring joint

Outer ring no
¥ sensor part

(a) Outer ring sensor part

(b) Outer ring joint
Figure 4.8: Outer ring parts detailed
Fig. 4.7 shows the different parts that create the outer ring. Fig. 4.8 illustrates a detailed

view of the outer ring sensor part where the tip sensor is placed, the outer ring sliding
support, and the outer ring joint.

The outer ring has a free 2d space movement over the inner ring with the current con-
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figuration. To enable the outer ring to maintain a centered position when no contact is
present, the elastic bands have to connect both rings so that a force is applied to keep
the outer ring centered relative to the inner ring. An elastic band attachment has to be
defined in both rings as shown in Fig. 4.9. The attachments are connected to the inner
and outer ring, creating an elastic joint.

Outer ring
elastic band
attachment

Innerring
elastic band
attachment

elastic band

Figure 4.9: Elastic band joint between inner and outer ring

Once all the collision platform parts have been explained, it can be shown in Fig. 4.10 the
final full-scale prototype assembly on the Holybro X500 frame.

Forward
direction

e e e

Sensor 0/ 270°
T

i
Sensor3/180° -

Figure 4.10: Collision platform integrated on the Holybro X500 frame

Sensor and platform integration
As explained in the previous section, the inner and outer rings contain slots to place the

flex sensor joining both rings. Silicone has been used to keep the flex sensor fixed at
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the slots. Heat-shrinkable shields are placed at the beginning and at the sensor’s tip to
protect the sensors from silicone.

Figure 4.11: Flex sensor integrated into the collision platform

As can be seen in Fig. 4.11, the neutral sensor position is bent so that any outer ring radial
displacement would bend or stretch the sensor, producing different sensor measurements

Sensor calibrator
As defined in Section 4.1, the output expected from the contact detection algorithm is the

presence of contact, the orientation, and the outer ring displacement to account for the
impact magnitude. A calibrator tool was designed to get data from different orientations
and displacements, and it is shown in Fig. 4.12.

Displacement
calibration holes

Calibrator tool

Figure 4.12: Angle and displacement calibrator tool

Data acquisition
The implementation for data acquisition consists primarily of an Arduino microcontroller

integrated into the LattePanda platform. This microcontroller is responsible for capturing
and processing the analog signals from the flex sensors.

Each flex sensor is connected in a voltage-divider configuration, as shown in Fig. 4.13a.
In this setup, each flex sensor is paired with a resistor in series, forming a voltage divider.
One end of the flex sensor is connected to the positive voltage supply, and the other is
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connected to the ground. The point between the flex sensor and the resistor serves as
the output of the voltage divider, which is fed into the Arduino’s analog inputs.

1 5at%e AXUCCID” |
(b) Voltage divider imple-
mented

(a) Flex sensor voltage divider schematic

Figure 4.13: Flex sensor data acquisition system

The electronic implementation is shown in Fig. 4.13b. Under software control, the Ar-
duino’s built-in Analog-to-Digital Converter (ADC) reads these analog inputs sequentially.
The ADC converts the analog voltage levels from the flex sensors into digital values.

A developed Python script on the LattePanda reads these digital values from the Arduino
via a serial connection. The script is responsible for further processing and analyzing
the data collected from the flex sensors. This setup ensures that the flex sensor data is
captured accurately and efficiently for subsequent processing tasks.

4.2 Contact detection

In this section, the platform and data acquisition system described previously are utilized
to derive insights from the data and to implement a contact detection technique for the col-
lision platform. The main goal of the contact detection algorithm is to provide the following
information from a contact or collision event:

» Contact detected: Boolean indicating if the platform is or is not in contact with an
obstacle.

» Contact angle: Contact point orientation in the collision platform.
» Contact displacement: Displacement produced by the contact in the outer ring.

Data recording methods have been implemented to get the previous information. Then,
the recordings have been organized into different datasets that will be used to train the
contact detection algorithms.

421 Recordings

To ensure proper data processing and usage, it is crucial to define the methods for record-
ing and saving data. This section outlines two primary data recording methods: using
a calibrator tool to obtain ground truth contact events, orientations, and displacements
within a static environment and employing an OptiTrack system to record flight collisions.
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In both cases, recordings are saved within a CSV file containing the columns shown below:

sensorl sensor2 sensor3 sensor4d collision_pred angle_gt displacement_ gt

672.5 726.29 829.90 709.70 1 87.42 1.07

Table 4.1: Contact data recordings data structure from one sample

Each column is defined as:
» sensorx (x: sensor number): ADC sensor measurements.
* collision_pred: 1 when a contact event occurs and 0 when there is no contact.
» angle_gt: collision orientation in degrees.

* displacement_gt. outer ring displacement during the collision in centimeters.
Calibrator tool recordings
The calibrator tool generates the initial dataset in a static environment required to fit the
first approach of the contact detection algorithm. Specifically, it is used to record data
at various sensor orientations, including angles of 0°, 45°, 90°, 135°, 180°, 225°, 270°,
and 315°. This comprehensive coverage ensures the algorithm can detect contacts from
multiple directions.

For displacement measurements, the calibrator tool is designed to measure displace-
ments ranging from 0 to 3.5 centimeters. However, due to the specific placement of the
sensors, the effective displacement range is between 0 and 2.5 centimeters. Conse-
quently, the recorded displacements are at intervals of 0.5 cm, 1 cm, 1.5 cm, 2 cm, and
2.5cm.

So, by combining angle and displacement measurements, 40 combinations are recorded.
In Fig. 4.14 is shown the methodology to record data for each position and each orienta-
tion.

Figure 4.14: Collision platform calibration method: 180° orientation / 2.5cm displacement.

Fig. 4.15 shows the plots of the recorded data corresponding to each of the orientations
and displacements with the calibrator tool. For each plot, the vertical red dashed line
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divides the sections for each displacement (0.5, 1.0, 1.5, 2.0, 2.5 centimeters).
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Figure 4.15: Calibration tool data recorded

OptiTrack System Recordings
The data obtained with the calibrator tool provides valuable initial insights and facilitates

the development of an initial version of the contact detection algorithm. However, since
this data is recorded in a static environment, it does not accurately represent real flight
conditions. The OptiTrack system has been configured to capture orientations and dis-
placements during manual flight collisions to address this limitation.

A planar surface is the collision target for the drone equipped with the collision platform.
Both the drone’s position and orientation, as well as the planar surface’s position, are
tracked using the OptiTrack system.

Since there is no direct implementation to capture ground truth contact events using the
OptiTrack system, we utilize predicted contact events derived from the initial contact de-
tection algorithm. This algorithm, fitted with calibration data, performs satisfactorily de-
tecting contact events under flight conditions. The results of this algorithm and its per-
formance are described in Section 5.2. However, as the calibration displacements start
at 0.5 cm, there is a slight delay in detecting contacts during flight collisions. Therefore,
manual fine-tuning of the contact predictions was performed on the dataset to align the
predicted contact events as accurately as possible with the actual events.

To calculate the contact orientation, the following steps are performed:
1. Calculate planar surface normal: Using the positions of 2 OptiTrack points.
2. Calculate UAV Yaw: Extracted from the orientation quaternion.

3. Determine Contact Angle: The angle difference between the UAV’s yaw vector and
the planar surface’s normal vector is calculated to represent the orientation of the
contact.
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To calculate the displacement during a collision, the following steps are performed:

1. Initial Contact Detection: When a contact event is predicted, the initial distance
between the drone and the planar surface is calculated and stored.

2. Continuous Displacement Calculation: The displacement is the difference between
the initial distance (from the first contact event) and the current distance. It is calcu-
lated until there is no contact prediction.

Fig. 4.16 shows the data recorded from a manual flight colliding the drone against the
test wall. The first plot shows the ADC measurements from the sensors; the second plot
shows the contact (1) and no contact (0) events; the third plot shows the drone orientation
relative to the wall over the flight; and the last plot shows the outer ring displacement during
contact events.

4.2.2 Dataset creation
Once the flight data have been recorded by using the calibrator tool or the OptiTrack, as
explained in the previous sections, three different datasets have been created.

Calibration dataset
The calibration dataset is the one created with the recordings using the calibrator tools

as explained in Section 4.2.1. The platform’s static and flight data without collisions is
also recorded and added to this calibration dataset to contain contact (with angle and
displacement) and no contact events.

The data structure used in this dataset is shown in table 4.1.

This dataset was created to train the first contact detection model and to label contact
events for the flight dataset. The calibration dataset will also compare models trained
with calibration data versus models trained with real flight data.

Flight Discrete Dataset
This dataset was created from recordings using the OptiTrack system, as explained in

Section 4.2.1. All flight recordings were merged into a single dataset comprising 11 man-
ual flights. Each flight includes several collisions distributed around the drone, as illus-
trated in Fig. 4.16.

The data was split to train and evaluate the models to ensure that the evaluation used
unseen data. Of the 11 flights, 9 were used for training the model, while the remaining 2
were reserved for evaluation.

Due to the predominance of non-contact data in the training set, the dataset was balanced
to ensure an equal number of contact and non-contact data points. The training dataset
and the ground truth labels are depicted in Fig. 4.17.

The data structure used in this dataset is shown in table 4.1.

Flight Time-Series Windows Dataset
In addition to the discrete dataset, another dataset was created specifically for training

models with time-series information. Each training sample in this new dataset consists of
a time-series window containing the last x sensor measurements (where x represents the
window size). The label for each time-series sample corresponds to the last data point
within the series. As well as for the Flight Discrete Dataset 4.2.2, the same 9 flights were
used for training and the remaining 2 for evaluation.

The data structure used in this dataset is the same as the one described in Table 4.1, but
each sensor consists of an array with the last sensor measurements of the length of the
window size.
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Figure 4.16: OptiTrack data recording

4.2.3 Inside the data

Fig. 4.15 shows data obtained in a controlled environment using the calibrator tool. As
observed in the left column plots, when a collision occurs in the orientation where the sen-
sor is placed (0, 90, 180, or 270 degrees), the sensor increases its ADC value (indicating
bending) as the collision displacement increases. Simultaneously, the other sensors re-
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Figure 4.17: Training dataset recorded with OptiTrack from 9 manual flights

duce their ADC values because they are being stretched. This indicates that the torsion
movement experienced by sensors placed perpendicularly to the collision orientation acts
as if they are being stretched. A clear pattern emerges from these plots, allowing the def-
inition of a simple logic to detect contacts based on sensor orientations during collisions.

However, the right column plots in Fig. 4.15 show collisions in the diagonal orientations
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between sensors. In this case, all sensors experience torsion movements (because the
force is not aligned with their longitudinal axes), reducing their ADC values as the collision
displacement increases. This torsion movement increases the non-linearity characteristic
of the flex sensor.

In contrast, Fig. 4.16 presents recordings from a manual control flight captured by the
OptiTrack system. The most significant difference between the recordings from OptiTrack
and the calibration tool is the time-series nature of the contact data. In the OptiTrack
recordings, contacts can be visually identified as peaks in the sensor data. Notably, larger
peaks correspond to greater displacements.

4.2.4 Modeling

Flex sensors inherently exhibit non-linear behavior due to the variability in their temper-
ature resistance coefficient with changing operating temperatures. Additionally, the plat-
form’s design induces torsional movements, further contributing to the non-linearity.

Given the unprecedented nature of this particular problem—predicting contacts, angles,
and displacements from four evenly spaced flex sensors, an approach using Feed For-
ward Neural Networks has been chosen. The selection of FFNNs is driven by their sim-
plicity and effectiveness in handling various data types, including sensor inputs. By lever-
aging the simplicity and adaptability of FFNNs, this approach aims to establish a baseline
solution for predicting contacts, angles, and displacements from flex sensor data. In ad-
dition, as FFNN does not leverage time-series information, a simple RRN consisting of an
LSTM block has also been implemented for the angle and displacement model.

Due to the nature of the different variables to predict (contact event, angle, and displace-
ment), two separate networks will be designed.

» Contact detection model: It will predict contact events using a binary classifier
trained with contact and no-contact data

» Angle and Displacement model: It will focus on predicting angles and displace-
ments, but only when a contact event is detected. This specialized network will be
trained on contact event data.

By separating these tasks, the models can be more specialized and potentially more ac-
curate in their predictions.

Contact detection model

For contact detection, a simple Feed Forward Neural Network has been implemented.
The size of the input layer is determined by the data used to train the model, ensuring
it appropriately captures the features from the flex sensors. Subsequently, one or more
hidden layers with a specified number of units are selected, each followed by a ReLU
activation function (as described in Eq. 2.10). ReLU helps introduce non-linearity into the
model, allowing it to learn complex patterns in the data.

Given that the task is a binary classification problem (contact vs. no contact), the output
layer uses a sigmoid activation function (as described in Eq. 2.9). This function maps
input values to a range between 0 and 1, representing the probability that the prediction
belongs to one class or the other.

The Binary Cross Entropy Loss function (as described in Eq. 2.13) is employed to train the
model. This loss function is commonly used in binary classification tasks, as it effectively
measures the difference between the predicted probabilities and the actual binary labels,
guiding the optimization process to improve model accuracy.
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Angle and displacement model
For angle and displacement modeling, the first approach is the implementation of a simple

Feed Forward Neural Network, shown in Fig. 4.18. The input layer size is determined by
the data used to train the model, ensuring it effectively captures the features from the flex
sensors. The network architecture comprises a series of hidden layers divided into two
modules.

The first module contains a hidden layer that extracts general features relevant to angle
and displacement predictions. Subsequently, three sets of hidden layers are defined to
specialize in predicting angles (sine and cosine) and displacements, respectively. Each
hidden layer is followed by a ReLU activation function, introducing non-linearity and en-
abling the model to learn complex patterns.

For the angle and displacement predictions, the output layer is linear and does not use
any activation functions. This allows the network to produce continuous output values
directly corresponding to the predicted angles and displacements.

In contrast, a more sophisticated architecture leverages time-series information using
Long Short-Term Memory networks. This second approach maintains a structure simi-
lar to the FFNN, with the primary modification replacing the general hidden layer with an
LSTM block. The input to the LSTM block will be a time series from each sensor instead of
discrete data points for the FFNN. The output of the LSTM block is then fed into the three
sets of specialized hidden layers, as described in the first approach, to predict angles
(sine and cosine) and displacements.
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Figure 4.18: FFNN architecture for angle and displacement prediction

The training process employs a combined loss function to optimize the model. The dis-
placement loss is calculated using the Mean Squared Error (MSE), as described in Eq.
2.12. The angle loss is determined using a custom Sine Cosine Distance loss, as detailed
in Eq. 2.14. The final loss function is the sum of these two components:
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Angle Displacement Loss = MSE (displacement) + Sine Cosine Distance (angle) (4.1)

This combined loss function ensures that the model accurately predicts both angles and
displacements by minimizing the respective errors in a balanced manner.

4.3 Autonomous navigation

This section presents the modules involved in the autonomous navigation mission. The
mission consists of sending a goal waypoint to the autonomous system, and it has to
reach it. Along the path to the goal, there will be some obstacles.

For the autonomous mission, the collision platform designed in Section 4.1 is integrated
into the drone frame as shown in Fig.4.10. The contact detection algorithm implemented
in Section 4.1 outputs contact variables such as contact detection, contact angle, and
contact displacement. These variables are fed into the autonomous navigation stack to
enable contact-based navigation.

Two main missions are implemented in this project. On the one hand, blind contact-
based navigation does not use any perception sensor; it uses information from the collision
platform to react to obstacles colliding. On the other hand, lidar and contact information
are combined to navigate through lidar visible and not visible obstacles.
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Figure 4.19: Autonomous pipeline proposed to solve contact-based navigation

To perform the autonomous mission, the following ROS2 nodes are involved:

» Contact detection node: Takes the sensor raw values, runs the model designed
in Section 4.2.4, and publishes the contact information: contact detected, contact
angle, and contact displacement.

» Mapping node: Takes the point cloud from the lidar and generates a 3D grid map
containing occupied cells.

* Planning node: Takes the map and contact information to plan a path to the goal
waypoint.
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» Offboard control node: Takes the waypoint from the planning node and sends it to
the PX4 controller to control the drone in position mode.

A summary of the autonomous pipeline implemented is shown in Fig. 4.19.

4.3.1 Mapping

As the mapping subsystem is not the focus of this project, the existing ROS2 package
Octomap Server [12] has been used to create the 3D grid map based on the point cloud
generated by the lidar sensor.

From the tunable parameters, the map resolution has been set to 0.88 m as the collision
platform diameter. A lower value would involve a higher resolution map, leading to higher
computation time. A higher value would involve losing resolution from obstacles.

4.3.2 Planning

This subsystem has been created to provide insights about the collision platform per-
formance when integrated into a real autonomous mission. The reason for the simple
solution taken is to evaluate the collision platform integration with the simplest planning
setup.

The planning algorithm used is the RRT* geometric path planning algorithm, which is
supported by environment information provided by the Mapping subsystem (explained in
Section 4.3.1) in the form of a 3D grid map. This 3D map is stored internally in the plan-
ning node using a search space algorithm. This algorithm enables the integration of the
lidar-generated grid map with information from the contact detection algorithm, forming
a comprehensive search space. The search space facilitates the RRT* algorithm finding
obstacle-free paths and ensures that calculated paths are continually evaluated and up-
dated as new lidar or contact data is received. This dynamic updating mechanism allows
for efficient and safe navigation through changing environments.

The parameters from the planning algorithm are the explained in Table 4.2

Parameters Explanation

Contact Map Resolution Square box side length map contact obstacle [m]
Octomap resolution Square box side length map lidar obstacle [m]
RRT Search Space Range 3D volume to search for planning solutions [m]
RRT q Distance between RRT waypoints [m]

RRT Goal Mission goal waypoint coordinates [m]

Step Back Waypoints number to recover from collision [m]

Table 4.2: Path Planning parameters

Fig. 4.20 shows the logic to plan paths to a goal waypoint.

HANDLE COLLISION DECIDE TARGET
[ SOLVE INITIAL RRT* ]—>[ HANDLE OCTOMAP H DETECTION H WAYPOINT ]

Figure 4.20: Path planning submodules proposed combining lidar 3D grid map and con-
tact information for obstacle avoidance.

First, we will go through the ROS2 subscriber functions, which receive the input variables
to the planning node:
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» The octomap_pc2_callback function receives the grid maps created by the map-
ping subsystem. Every time a new grid map is received, this function updates the
search space with the new obstacles detected by the lidar sensor. The flag oc-
tomap_received is set to True every time a new map is received.

» The contact_callback function receives information from the contact detection node.
This information contains information about whether there is a collision, the collision
angle, and the collision displacement. Whenever a collision is received, the initial
predicted angle includes the contact in the map. The contact obstacle world frame
position is calculated as follows:

cos(f.) - rq
0" = | sin(f.) - rq (4.2)
0
o’ =R}, 0" +d¥ (4.3)

where 6. is the collision angle in degrees, r4 is the radius of the drone, 0“4 is the
position of the obstacle in the drone frame, d* is the position of the drone in the world
frame, R}, is the rotation matrix from the drone frame to the world frame, and o
is the position of the obstacle in the world frame. Once the contact is detected, the
collision_platform flag is set to True to activate the collision recovery method from

the planning logic.

» The ekf_px4_pose_callback function receives the drone position and orientation
from the Extended Kalman Filter implemented in the PX4 controller.

These input variables are used in the main loop shown in Fig. 4.20, which runs at a fixed
rate. The logic implemented in the main loop is sequential, meaning several conditional
statements decide which target waypoint should be sent to the offboard control node.

The following sections will explain each submodule’s functionality:

SOLVE INITIAL RRT*

Every time the path planning node is launched, it is initialized by calculating the initial path
from the starting point to the goal coordinates. If the lidar grid map is available, it will be
used to plan a free-obstacle trajectory; if no grid map is available, it will find a solution in
an empty search space.

HANDLE OCTOMAP

When a new lidar obstacle grid map is received from the Mapping node, this submodule
verifies if any obstacles intersect with the previously calculated path. If such collisions
are detected, the submodule recalculates an obstacle-free path using the RRT* algorithm
from the current drone position, incorporating the latest obstacle information

HANDLE COLLISION DETECTION

When a contact detection message is received, this module handles the collision, guides
the drone to a collision-free state, and recalculates a new path. The collision response
logic involves returning to previous waypoints within a no-contact state.

Here’s how the collision handling process works:

1. Collision Detection: Upon detecting a collision, the target waypoint is immediately
decremented by the Step Back parameter, directing the drone to move backward
to the previous waypoints. At this point, the collision_recovering variable is set to
True, indicating that the drone is in a collision recovery state.
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2. Collision Recovery: In the collision recovery state, there are two possible scenar-
ios:

* Persistent Contact: If the drone continues to detect contact while moving
backward, the target waypoint will keep decreasing, sending the drone further
back to previous waypoints until a no-contact state is reached.

* No-contact State: Once the drone moves to a waypoint where no contact is
detected, the collision_recovering variable is set to False.

3. Post-Collision Handling: After resolving the contact event, which involves detect-
ing the collision, recovering from it, and reaching a no-contact state, the detected
contact is saved on the map. Subsequently, a new path is calculated to avoid the
obstacle that caused the collision.

DECIDE TARGET WAYPOINT
Once the lidar grid map and contact detection information have been processed, this

submodule determines the appropriate target waypoint to send to the offboard control
node.

* Normal Operation: When no collision events are detected, the submodule incre-
ments the target waypoint once the current waypoint is reached, ensuring continu-
ous progression toward the goal.

 Collision event handling: If a collision event is detected, the submodule selects the
target waypoint based on the output from the HANDLE COLLISION DETECTION
submodule, which manages the drone’s recovery from collisions.

» Mission Completion: Upon reaching the goal waypoint, the submodule recognizes
that the mission is complete and ceases further waypoint updates.

4.3.3 Offboard control

The control strategy selected for the experiments is position control mode from PX4, ex-
plained in Section 2.1. This can be achieved by using the drone state given by the Opti-
Track system. This simple control approach has been selected because the focus of the
thesis has been the design of the collision platform and its integration into an autonomous
mission.

To control the drone, a ROS2 node has been written to receive the target trajectory way-
point in the ROS2 world frame from the path planning algorithm, explained in Section
4.3.2, converted to the PX4 world frame, and sent to the PX4 controller at a fixed rate.

Development of an autonomous navigation system in highly dynamic environment 43



44

Development of an autonomous navigation system in highly dynamic environment



5 Experiments

In this section, various experiments and metrics are explained to evaluate the methods
implemented in the previous Chapter 4.

First, we evaluate the collision platform and the contact detection models developed to
predict contact events, contact orientation, and contact displacement.

Next, we implement the collision platform and contact detection algorithm into an au-
tonomous navigation stack to perform contact-based navigation. This implementation is
done in two stages: initially without any perception sensor and subsequently by combining
contact data with lidar mapping.

5.1 Durability Assessment of the Collision Platform

In this experiment, we evaluate the durability of the collision platform through a series of
rigorous tests. The primary objectives are to determine how well the platform withstands
repeated impacts and to identify any components needing replacement after extensive
testing. This experiment includes all contact flight recordings and autonomous mission
contact-based experiments.

5.1.1 Assessment Criteria
The criteria for evaluating platform durability are as follows:

» Structural Integrity: After each set of tests, the collision platform was inspected for
any signs of damage or wear.

+ Component Replacement: The experiment tracked whether any components of
the collision platform required replacement or repair throughout the testing phase
due to fatigue or fracture.

5.2 Contact detection

In this experiment, we evaluate the performance of different contact detection models
in predicting contact events, contact orientation, and contact displacement. The table
summarizing the experiments uses abbreviations to define the parameters for better fit
within the page. These abbreviations are explained below.

Regarding the datasets used in the training, the following abbreviations are used:
* Calibration Dataset (C)
* Flight Discrete Dataset (FD)
* Flight Time-Series Windows Dataset (FW)
Two different types of architectures are evaluated:
* Feed-Forward Neural Network (F)
* Long Short Term Memory + Feed-Forward Neural Network (L+F)
Three input vectors have been used along the experiments:

* Raw values (R): Sensor raw values stack in a vector of size [4 x 1].
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« Differences (D): Differences between the raw values of each sensor are calculated
and stacked into a vector of size [6 x 1].

+ Time-series windows (W): Sensor raw values stacked in a vector of size [4 x windows
size].

The following sections explain the experiments done for both the Contact detection model
and the Angle and Displacement model. In both cases, the following training parameters
are used:

* Learning Rate = 0.001
» Batch Size = 32

5.2.1 Contact model
The model used to predict contact events is detailed in section 4.2.4. The architecture
includes only one hidden layer, with the number of hidden units being a parameter for
experimentation (H units).

Initial contact detection models are trained using the calibration dataset (C) obtained in
a static environment, as described in Section 4.2.2. Subsequently, additional contact
detection models are trained using the flight discrete dataset (FD) described in Section
422.

For training the model, given that these datasets do not include time-series information,
the raw values (R) and differences (D) inputs are used.

The table below summarizes the experiments conducted for the contact detection model:

Model 1 2 3 4 5 6
Dataset C C FD FD FD FD
Architecture F F F F F F
Input R D R R D D
H units 16 16 16 32 16 32

Table 5.1: Contact model experiments

5.2.2 Angle and Displacement model

Two models are evaluated to predict angles and displacements. The first model, de-
scribed in section 4.2.4, is a Feed-Forward Neural Network with several adjustable pa-
rameters. For these experiments, the network will have a single general hidden layer, with
the number of units in this hidden layer varied as an experimental parameter (G Units).
Additionally, specific modules for predicting cosine, sine, and displacement values will
each have one hidden layer. The number of hidden units in these specific modules will
also be varied as an experimental parameter and consistent across all branches (S Units).

The FFNN model will be trained using both the calibration dataset (C) 4.2.2 and the flight
discrete dataset (FD) 4.2.2. This model does not utilize time-series information, so the
raw values (R) and differences (D) inputs will be used for training.

The second model, described in section 4.2.4, comprises an LSTM module and an FFNN
to output the cosine, sine, and displacement predictions. For the LSTM module, one
hidden layer will be used in all experiments, with the hidden size varied as an experimental
parameter (G Units). In the FFNN part, the specific modules for predicting cosine, sine,
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and displacement values will each have one hidden layer, with the number of hidden units
set to match those of the LSTM module and consistent across all branches (S Units).

The LSTM plus FFNN model will be trained exclusively using flight data, as it requires
time-series information. The input to this model will be the time-series data (FW) from
each sensor, with the last measurements defined by the window size (W size), which will
be varied as an experimental parameter.

The following table summarizes the angle and displacement model experiments:

Model 1 2 3 4 5 6 7 8 9 10 11 12
Dataset ¢c ¢ FD FD FD FD FW FW FW FW FW FW
Architecture F F F FF F L+F L+F L+F L+F L+F L+F
Input R bR R D D W W W W W W
W size 10 10 20 20 30 30
G Units 16 16 16 32 16 32 16 32 16 32 16 32
S Units 32 32 32 64 32 64 16 32 16 32 16 32

Table 5.2: Angle and Displacement model experiments

5.2.3 Evaluation metrics

All models will be evaluated using the two flight test sets not included in the training data.
This approach ensures that the model’s performance is assessed on unseen data. Also,
models trained with calibration data will be evaluated using a separate calibration test set.
This dual evaluation allows us to analyze the impact of the training dataset on the model’s
generalization capabilities.

Regarding contact events predictions, as a binary classification task, the metrics ex-
plained in section 2.5.6 will be used (Accuracy, Precision, Recall, F1-Score, and Area
Under the Curve).

In contrast, angle and displacement predictions are regression tasks, so the metrics ex-
plained in section 2.5.6 are used (MSE, MAE, RMSE). In addition, other metrics such as
standard deviation, maximum error, median, and interquartile range are included.

5.3 Autonomous Contact-based Navigation

In this experiment, we integrate the collision platform and contact detection algorithm,
previously tested flying in manual mode as described in Section 5.3, into an autonomous
mission. There will be two different missions. The first mission relies solely on contact
information for navigation, while the second mission integrates LIiDAR data and contact
information to enhance obstacle detection and avoidance.

The autonomous navigation stack is tasked with reaching a designated waypoint in both
missions. An obstacle is deliberately placed midway along this path, undetectable in ad-
vance by the drone. The primary objective is to assess the collision platform’s ability to
detect and recover from unexpected collisions, incorporate the detected contact informa-
tion into its map, and replan its trajectory to avoid obstacles.

From the collision detection algorithm, the planning and mapping module will utilize only
the contact prediction and the predicted contact angle. Although displacement data is
not used in these experiments, it holds potential value for fine-tuning the collision recov-
ery logic. By leveraging displacement information, the system could adjust its recovery
behavior to be smoother or more aggressive, depending on the collision event.
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For both missions, planning parameters are configured as follows:

» Contact Map and Octomap Resolution: Both are set to 0.88. This resolution
matches the collision platform diameter, ensuring the minimum collision area is ac-
curately represented in the 3D grid map. This prevents the drone from colliding
again with the same point.

* RRT q: Set to 0.1 to ensure slow and controlled navigation.

» Step Back: Set to 3, meaning that after a collision, the drone is sent back to three
waypoints. This ensures the drone moves at least 30 centimeters away from the
obstacle to reach a non-collision state.

» Search Space Range and RRT Goal: These parameters are adjusted for each
experiment scenario.

5.3.1 Blind Contact-based Navigation

(a) Real scenario
(b) Visualization scenario

Figure 5.1: Blind Contact-based Navigation experiment scenario

As explained, this experiment will show the ability to perform blind navigation (no percep-
tion sensors available) based on contact information from the collision platform.

The object used in the experiment is a pipe with a diameter of 0.35 centimeters and a
height of 1.5 meters. It will be located in the middle of the initial path, causing a collision.

Fig. 5.1a shows the scenario used to test blind contact-based navigation. The drone is at
the starting point (right in the image) and it is sent to go forward to the left in the image.
The brown pipe is placed in the middle of the path to cause the collision. Fig. 5.1b shows
the mission visualization. The drone is defined by the red arrow describing the drone
position and orientation, and the white circle defines the collision platform diameter. The
red cylinder is the pipe obstacle. Then, the green line is the RRT* calculated path, the
blue line is the drone’s real path, and the orange line is the target waypoint.

The path planning parameters used for the experiment are shown in Table 5.3.

Planning parameters Values
RRT search space range [x, ¥, z] [[-1, 5], [-2, 2], [0.5, 1.0]]
RRT goal [x, vy, Z] [3, 0, 1]

Table 5.3: Planning parameters for the Blind contact-based navigation experiment
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5.3.2 Lidar and Contact-based Navigation

In this experiment, we integrate the collision platform and contact detection algorithm into
an autonomous mission that utilizes a lidar sensor. The lidar sensor, a key component
in many autonomous navigation systems, provides the drone with a detailed map of its
surroundings. Still, it has limitations in detecting thin obstacles, such as thin wires.

The collision obstacle is a goal-shaped object with a height of 2 meters and a width of
3 meters. This goal’s left half is obstructed by thin tensioned vertical wires, which the
lidar sensor cannot detect. The objective is to demonstrate how the collision platform can
compensate for the lidar’s lack of resolution. For that purpose, the initial trajectory will be
defined to send the drone against the wires while the lidar maps the environment.

(a) Real scenario (b) Visualization scenario

Figure 5.2: Lidar and Contact-based Navigation experiment scenario

Fig. 5.2a shows the real scenario used to test the lidar and contact-based navigation. The
tensioned wires in the left part of the goal-shaped obstacle can be seen highlighted in red.
Fig. 5.2b shows the mission visualization. The drone is defined by the red arrow describ-
ing the drone position and orientation, and the white circle defines the collision platform
diameter. In this case, the white boxes are the grid map created with the lidar sensor. For
visualization purposes, the thin wires are shown by thin red cylinders occupying the left
of the goal-shaped obstacle. Then, the green line is the RRT* calculated path, the blue
line is the drone’s real path, and the orange line is the target waypoint.

The path planning parameters used for the experiment are shown in Table 5.4.

Planning parameters Values
RRT search space range [x, y, z] [[-1, 5], [-3, 0.5], [0.5, 1.0]]
RRT goal [, Y, Z] [5, 0, 1]

Table 5.4: Planning parameters for the Lidar and Contact-based navigation experiment

5.3.3 Evaluation metrics
The metrics to evaluate the collision platform integration into an autonomous mission will
be the following:

» Mission completed: Whether the mission is completed.
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Number of collisions: Number of collisions needed to complete the mission.

Contact event duration: Time the collision platform predicts to be in contact with the
obstacle.

Reaction time: Time to react since the collision has been detected.

Angle error: Error between predicted and true collision angle used to include the
contact box in the 3D grid map.
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6 Results and Analysis

6.1 Durability Assessment of the Collision Platform

The collision platform has demonstrated robust structural integrity throughout all flights,
recordings, and autonomous missions, enduring over 200 collisions without damaging its
parts. The platform remained intact even during severe collisions or when the drone hit
the floor due to position control loss. Occasionally, such impacts might slightly displace
the platform but can be easily realigned manually.

In terms of replacements, no components were broken during the tests. The only mainte-
nance required involved the elastic bands, which were replaced after one month of use.
The elastic bands, responsible for keeping the outer ring centered relative to the inner
ring, lost their elasticity due to constant stretching. Replacing the worn elastic bands with
new ones effectively resolved this issue.

6.2 Contact detection

This section shows the results obtained from the different experiments done for the contact
models and the angle and displacement models.

The results are presented with a color gradient to make the result analysis easier. For the
contact model, the metrics used will be green when values are higher and red when values
are lower. In contrast, the metrics are errors for the angle and displacement models, so
the lower errors will be greener, while the highest errors will be red.

6.2.1 Contact model
First, the contact models trained with calibration data (models 1 and 2 from table 5.1) are
evaluated against the calibration test set. The results are shown in Fig. 6.1.

Model
Dataset
Architecture
Input

H units
Accuracy
Precision
Recall

F1 Score
AUC

Figure 6.1: Contact detection models trained and evaluated with calibration test dataset

As can be seen in Fig. 6.1, all the metrics have the highest score for both models 1 and
2. This means that, within a static environment (no flight), the models trained can detect
whether or not the platform is receiving a collision. These results could be expected as
the training and test data were recorded with the calibrator tool so the model could learn
patterns in a controlled environment.

The results from all the models evaluated with the flight datasets are shown in Fig. 6.2

Fig. 6.2 presents the results of contact prediction during various flights. It's crucial to
note that, as detailed in Section 4.2.1, Model 1, trained with calibration data, was used to
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Model 1 2 3 4 5 6
Dataset C © FD FD FD FD
Architecture F F F F F F
Input R D R R D D
H units 16 16 16 32 16 32
Accuracy 0.99 0.69 0.99 0.98 0.95 0.97
Precision 0.98 0.11 0.82 0.74 0.47 0.58
Recall 0.71 0.93 0.93 0.94 0.92 0.91
F1 Score 0.82 0.19 0.87 0.82 0.62 0.71
AUC 0.85 0.8 0.96 0.96 0.94 0.94

Figure 6.2: Contact detection models evaluated with the flight test dataset

label the contact events in the flight dataset. This led to Model 1 exhibiting high Accuracy
and Precision values. However, it also showed a lower Recall, indicating that the model
predicted too many False Negatives and missed many contact-labeled events.

Models trained using the differences in sensor values (Models 2, 5, and 6) as input fea-
tures generally perform poorly.

Conversely, Model 3, trained with raw sensor values as inputs and contacts from the
flight dataset, outperformed all metrics. This indicates its ability to predict contact events
accurately and avoid mispredictions.

These results underscore the critical importance of training models with data resembling
real-world scenarios. This approach enables the model to effectively generalize, a key
factor in its performance.

6.2.2 Angle and Displacement model

First, the Angle and Displacement models trained with calibration data (models 1 and 2
from Table 5.2) are evaluated against the calibration test set. The results are shown in
Fig. 6.3.

The calibration test dataset experiment shows that using sensor differences as input to
train the model (Model 2) does not perform well compared with the other model. In con-
trast, the model trained using raw sensor values (Model 1) has lower errors, indicating
that the model can learn patterns to detect contact angles and displacements in static
conditions.

Then, all the models described in the table 5.2 are evaluated with the flight test dataset.
The results are shown in Fig. 6.4

The same pattern analyzed previously for the calibration dataset is present for the flight
dataset; models trained with sensor differences as inputs (Models 2, 5, and 6) tend to
perform worse than the ones trained with discrete raw values or raw values within time
series.

It's clear that models trained solely with calibration data (Models 1 and 2), without flight
information, struggle to generalize when evaluated with flight datasets. This underscores
the crucial importance of training with data closely resembling real conditions.

A clear trend regarding angle predictions has been discovered in how they perform better
by increasing the model complexity. For the FFNN Models 3 and 4, increasing the gen-
eral/specific hidden units (G Units/S Units) from 16/32 to 32/64 improves slightly in terms
of MAE, MSE, and RMSE.
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Figure 6.3: Angle and displacement models trained and evaluated with the calibration test
dataset.
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Figure 6.4: Angle and displacement models evaluated with the flight test dataset.

Remarkably, models that incorporate time-series information, such as the LSTM module
in the second approach (Models 7 to 12), show a substantial improvement regarding angle
prediction. These models achieve a near 50% reduction in the predicted angle errors such
as MAE, MSE, and RMSE. Between the time-series trained models, windows size 20 and
30 seem to perform better than windows size 10, with which not enough information could
be captured.

However, angle and displacement predictions have demonstrated that they do not follow
the same trend for model design. As seen in Fig. 6.4, the best displacement prediction
model is Model 3, the simplest one trained with flight data. This contradicts the trend
in angle prediction, where increasing model complexity led to better results. These un-
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expected findings challenge our assumptions of creating a combined neural network to
predict angles and displacements leveraging shared features.

Model 9 stands out in correctly predicting both angles and displacements. Figures 6.5 and
6.6 illustrate the comparison between the true and predicted angles and displacements
derived from the flight test dataset by using Model 9.
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Figure 6.5: True versus predicted angles from the flight test dataset by Model 9.
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Figure 6.6: True versus predicted displacements from the flight test dataset by Model 9

Fig. 6.5 shows how the model can almost fit the predicted versus true collision angles into
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a line along the entire UAV perimeter, with just a few visible outliers. This means that no
significant errors are present. It can also be noticed that for angles 0 and 360, predictions
of 360 and 0, respectively, are done, not being a problem because of the circular nature
of the angles.

Fig. 6.6 demonstrates that displacement prediction is not working as well as the angle
prediction. A trend can be seen in the predicted versus true displacements that fit the red
dashed line (representing the best model performance). However, the values are more
dispersed than the angle predictions.

Regarding the prediction during the contact events, from the initial contact to the contact
release, Figures 6.7 and 6.8 leverage the time-series nature of a contact event. During
the contact event, the first plot shows the flex sensor output, the second plot compares
true versus predicted angle or displacements, respectively, and the third plot shows the
prediction error.

3 3
Sample idx Sample idx
True vs. Predicted Angle Over Samples True vs. Predicted Angle Over Samples

angle (degrees)

4 4
sample Index Sample Index

Angle Error Over Samples Angle Error Over Samples

(a) 250 deg contact event (b) 200 deg contact event

Figure 6.7: Different contact events showing flex sensor values, true vs predicted angle,
and angle error

Fig. 6.7 shows how the angle prediction evolves during the contact event. Fig. 6.7a
shows how the predicted angle oscillates around the true angle due to the sensor values’
abrupt changes from one sample to another, leading to abrupt predictions but still around
the true label with an error around 5 degrees. In contrast, 6.7b shows a more significant
angle prediction error of 50 degrees at the beginning, decreasing until 30 degrees at the
end of the contact event.

Fig. 6.8 shows how the displacement prediction evolves during the contact event. Fig.
6.8a shows how the predicted displacement almost imitates the displacement pattern from
the true label, demonstrating its potential to predict continuous displacements. However,
Fig. 6.8b show the correct predicted displacement pattern, increasing and then decreas-
ing but with a clear offset to the true displacement.
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(a) Contact event 1 (b) Contact event 2

Figure 6.8: Different contact events showing flex sensor values, true vs predicted dis-
placement, and displacement error

This offset in the displacement prediction could be caused by the method defined to label
displacements using OptiTrack in the training dataset explained in Section 4.2.1. This is
due to using a prediction from another model to label the duration of the contact event,
which is crucial to label the displacement over the contact. A delay in the initial contact
prediction causes a minor total displacement along the contact event in the displacement
labels.

6.3 Autonomous Contact-based Navigation

In this section, the results related to the different autonomous missions performed are
described.

6.3.1 Blind Contact-based Navigation

Fig 6.9 shows the different mission stages. Fig. 6.9a shows the initial RRT* path (green
line) calculated to collide the drone against the pipe. Fig. 6.9b captures the collision event
between the drone and the pipe, showing how the contact is recorded in the 3D grid map
(green box). Fig. 6.9c illustrates the collision recovery stage, where the drone moves
backward by the waypoints defined by the step back parameter (three waypoints in this
case) until it reaches a non-contact state. The figure also shows the recalculated RRT*
path that avoids the newly marked contact box in the grid map. Finally, Fig. 6.9d shows
the drone successfully avoiding the previously collided obstacle and proceeding towards
the goal waypoint.

As seen in Fig. 6.9, the mission has been successfully completed by incorporating con-
tact information into the navigation. Table ?? shows the mission metrics to evaluate the
behavior. Due to the obstacle not being too wide, only one collision was enough to avoid
after replanning a new trajectory.
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(a) Initial path (b) Collision and contact map updated

(c) Collision recovering (d) Recalculated path

Figure 6.9: Blind Contact-based Navigation experiment showing planning and mapping
stages

Metrics Results
Mission Completed Yes
Number of collisions 1
Contact event duration (s) 0.271
Reaction time (s) 0.037
Angle predicted (deg) 358.21
Angle ground truth (deg) 10.97
Angle error (deg) 12.76

Table 6.1: Blind contact-based navigation real experiment results

The contact event has been predicted within 0.271 seconds, which can be shown in Fig.
6.10. This time reflects how many time the navigation stack was aware of the collision.
Since the collision has been received, the collision recovering logic has been triggered
after 0.037 seconds, which means that the system can react fast to the collision.
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Finally, the error in predicting the collision angle was 12.76 degrees, sufficient to accu-
rately include the collision in the map and avoid the obstacle after a single collision.

Figure 6.10: Collision event during the Blind Contact-based Navigation experiment.

6.3.2 Lidar and Contact-based Navigation

Fig. 6.11 shows the different mission stages. Fig. 6.11a shows the initial RRT* path
(green line) calculated to collide the drone against the wires. The 3D grid map (white
boxes) created by the LIDAR sensor is also shown, in which the wires are not included
because the LiDAR did not detect them. Fig. 6.12b captures the collision event between
the drone and the wires, showing how the contact is recorded in the 3D grid map (green
box). Fig. 6.11c illustrates the collision recovery stage, where the drone moves backward
by the waypoints defined by the step back parameter (three waypoints in this case) until
it reaches a non-contact state. Finally, Fig. 6.11d shows the recalculated RRT* path that
avoids the newly marked contact box in the grid map, as well as the drone successfully
avoiding the previously collided obstacle and proceeding towards the goal waypoint.

This experiment demonstrates how the path-planning process integrates LiDAR and con-
tact information to enhance obstacle detection and avoidance. The LiDAR sensor pro-
vides a 3D map of the environment it can detect, while the contact detection system re-
fines this map by adding obstacles not detected by the LIDAR. This combination results
in a more comprehensive environmental model.

Metrics Results
Mission Completed Yes
Number of collisions 1
Contact event duration (s) 1.053
Reaction time (s) 0.538
Angle predicted 3.74
Angle ground truth 0.23
Angle error 3.54

Table 6.2: Lidar and contact-based navigation real experiment results

Regarding the mission metrics, the lidar and contact-based navigation mission have been
completed with only 1 collision. The duration of the contact event was 1.053 seconds,
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(b) Collision and contact map updated

(c) Collision recovering (d) Recalculated path

Figure 6.11: Lidar and Contact-based Navigation experiment showing planning and map-
ping stages

which is significantly longer than in the previous experiment. This extended duration is
likely due to the flexible wires, resulting in a smoother and less abrupt collision as the
drone pushes against them. This highlights the platform’s ability to detect rigid and flexible
collisions effectively.

The reaction time was 0.538 seconds, slower than the previous experiment. This slower
reaction may be attributed to integrating LiDAR data into the planning algorithm, which
can introduce additional computational delays.

The prediction angle error was 3.54 degrees, critical in accurately mapping the collision.
This low error margin ensured that the collision was precisely included in the map, allowing
the drone to replan its path effectively and avoid the obstacle with just one collision.

Fig. 6.12 shows the collision interaction between the platform and the thin wires (high-
lighted in red) not detected by the lidar sensor. As seen before the collision, the difference
between the collision platform’s outer and inner ring is d1. In contrast, during the collision,
that distance is decreased to d2 because of the outer ring movement.
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(b) UAV colliding

(a) UAV before collision
Figure 6.12: Lidar and Contact-based Navigation experiment collision platform interaction

with thin flexible wires

60 Development of an autonomous navigation system in highly dynamic environment



7 Discussion

In this thesis, the primary focus was on developing a collision-tolerant system to enable
UAV autonomous navigation in obstacle-dense environments. The system consists of
the mechanical design of the collision platform and the algorithm to predict the collision
information.

The exploration began with assessing the most common autonomous collisions as shown
in the studies [11] and [10], where thin obstacles are undetected, and localization drift
appears, respectively. Based on this issue, existing collision platforms and contact de-
tection approaches were explored in [28] and [29]. This research led to the development
of a novel collision platform and a contact detection algorithm to detect collision events,
orientation, and displacement to leverage contact information to recover from collisions.

Further, the research delved into integrating the previously designed collision system into
a real autonomous mission, showing the collision system performance within a real sce-
nario, also done in [28] and [31].

The testing phases, conducted in a controlled environment, facilitated a thorough valida-
tion of the proposed system. First, tests related to the collision platform’s durability showed
the platform did not break. However, as for maintenance, an elastic band replacement
was needed after one month to keep the platform stable.

Then, some interesting insights from the contact detection models can be analyzed. Re-
garding contact detection, the results shown in Fig. 6.1 confirm that contacts are always
correctly predicted in a static environment, as also achieved in [29]. However, the evalua-
tion of contact detection shown in Fig. 6.2 demonstrates the ability of the collision system
to work under flight conditions as well.

Regarding the collision angle predictions, successful results have been achieved. In con-
trast with the proposed method in this study [29], where contact orientation predictions are
discretized into eight bins with a 45-degree resolution, the solution proposed can predict a
continuous collision orientation, ranging from 0 to 360. The best results reported an MAE
of 9.31° and a standard deviation of 10.84 ° by leveraging collision time-series informa-
tion (Model 12 in Fig. 6.4), meaning around a 35-degree resolution improvement. This
increase in resolution is crucial when increasing the robot’s dimensions, making angular
errors more impactful as the size of the platform grows.

Additionally, collision displacement information has been added to the contact detection
output. No other study has reported this inclusion in a 360° continuous platform. The
most similar approaches are in [31], which outputs the force and torque from the collision,
and in [28], which outputs the angle bent by a collision antenna as an impact magnitude.
Regarding displacement predictions, results are not as accurate as the angles, but results
show potential improvement. The best displacement prediction model (Model 3 from Fig.
6.4) reports an MAE of 0.58 cm and a standard deviation of 0.79 cm. However, when
looking into the displacement during the contact events in Fig. 6.8, it can be seen how the
displacement pattern is well predicted (increasing when colliding and decreasing when
recovering). Still, some bias can be present, as shown in Fig. 6.8b, which causes the
large error metrics. This bias could be caused by the labels used to train the displacement,
which relies on the contact prediction, and it also does not consider the UAV pitch angle
when recording displacement, assuming that a horizontal collision is produced.
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The contact detection model results described above demonstrate that using neural net-
works fed by flex sensor information can provide accurate information about collision
events.

Finally, the autonomous missions performed, integrating the collision information, demon-
strate successful contact-based navigation with the simplest mapping and planning setup.
The experiments showed the platform’s ability to navigate without perception sensors and
compensate for the lidar’s lack of resolution.

Overall, the findings from this research provide compelling evidence that the innovative
collision platform and contact detection algorithm allow for accurate prediction of collision
events, orientations, and displacements, thereby improving the UAV’s ability to recover
from collisions and maintain its mission. The successful integration of this system into
autonomous missions demonstrates its practical applicability and potential to operate ef-
fectively without relying on traditional perception sensors. These contributions address
the key research goal and lay the groundwork for future studies to further optimize the
system and explore application-specific enhancements.
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8 Conclusion

This thesis has effectively demonstrated and validated the development of an autonomous
navigation system tailored for obstacle-dense environments, confirming its practical ap-
plicability in real-world scenarios. By integrating a novel collision detection platform with
a contact-based sensing system, the research has significantly enhanced autonomous
aerial vehicles, enabling them to detect and recover from collisions in challenging condi-
tions.

Extensive testing in static and flight scenarios corroborated the proposed solution and
underscored the system’s collision detection accuracy. The collision detection platform
successfully performed contact-based autonomous missions, showcasing its potential to
excel in real use cases. These accomplishments mark a substantial advancement in the
field of contact-based navigation, showing promising potential for broader applications.

Future research could focus on optimizing the collision platform by enhancing its robust-
ness and reducing its weight through improved designs and materials, which is crucial
given the limited battery capacity of aerial vehicles. Additionally, the volume covered by
the platform could be expanded from 2D to 3D protection, providing more comprehensive
coverage and further improving the system’s ability to detect and respond to collisions
from all directions.

Furthermore, integrating additional sensors, such as IMUs, into the collision detection
system by employing data fusion techniques could leverage the strengths of multiple in-
formation sources, thereby enhancing the overall system performance.

Another area of exploration could be force analysis based on platform displacements.
By adjusting elastic joint strengths and predicting platform displacement, it is possible to
determine the current force applied to the platform, which could be valuable for contact-
based missions.

These future research directions will extend the current system’s capabilities and con-
tribute significantly to the broader field of autonomous vehicle technology, addressing
key challenges and expanding the operational domain.

Development of an autonomous navigation system in highly dynamic environment 63



64

Development of an autonomous navigation system in highly dynamic environment



Bibliography

[1]

[2]
[3]
[4]

[3]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[13]

[16]

[17]

Christos Papachristos et al. “Distributed infrastructure inspection path planning for
aerial robotics subject to time constraints”. In: 2016 international conference on un-
manned aircraft systems (ICUAS). IEEE. 2016, pp. 406—412.

Sezal Jain et al. “Autonomous river exploration”. In: Field and Service Robotics:
Results of the 9th International Conference. Springer. 2015, pp. 93-106.
Jean-Christophe Zufferey, Antoine Beyeler, and Dario Floreano. “Optic flow to steer
and avoid collisions in 3D”. In: Flying Insects and Robots (2010), pp. 73-86.
James F Roberts et al. “Quadrotor using minimal sensing for autonomous indoor
flight”. In: European Micro Air Vehicle Conference and Flight Competition (EMAV2007).
2007.

Christos Papachristos, Shehryar Khattak, and Kostas Alexis. “Autonomous explo-
ration of visually-degraded environments using aerial robots”. In: 2017 International
Conference on Unmanned Aircraft Systems (ICUAS). IEEE. 2017, pp. 775-780.
PX4 Offboard Control. https:/ /docs.px4.io/v1.12 /en /flight__stack / controller _
diagrams.html.

Keisuke Fuijii. “Extended kalman filter”. In: Refernce Manual 14 (2013), p. 41.
Frank Dellaert et al. “Monte carlo localization for mobile robots”. In: Proceedings
1999 IEEE international conference on robotics and automation (Cat. No. 99CH36288C).
Vol. 2. IEEE. 1999, pp. 1322-1328.

Greg Welch, Gary Bishop, et al. “An introduction to the Kalman filter”. In: (1995).
Fang Liao et al. “3D motion planning for UAVs in GPS-denied unknown forest envi-
ronment”. In: 2016 IEEE Intelligent Vehicles Symposium (IV). IEEE. 2016, pp. 246—
251.

V Karjalainen et al. “ADRONE SYSTEM FOR AUTONOMOUS MAPPING FLIGHTS
INSIDE A FOREST—-A FEASIBILITY STUDY AND FIRST RESULTS”. In: The Inter-
national Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences 48 (2023), pp. 597-603.

Armin Hornung et al. “OctoMap: An efficient probabilistic 3D mapping framework
based on octrees”. In: Autonomous robots 34 (2013), pp. 189-206.

Xin Zhou et al. “Swarm of micro flying robots in the wild”. In: Science Robotics 7.66
(2022), eabm5954.

Tong Qin, Peiliang Li, and Shaojie Shen. “VINS-Mono: A Robust and Versatile
Monocular Visual-Inertial State Estimator”. In: IEEE Transactions on Robotics 34.4
(2018), pp. 1004-1020.

Steven M LaValle and James J Kuffner. “Rapidly-exploring random trees: Progress
and prospects: Steven m. lavalle, iowa state university, a james j. kuffner, jr., uni-
versity of tokyo, tokyo, japan”. In: Algorithmic and computational robotics (2001),
pp. 303-307.

Devin Connell and Hung Manh La. “Dynamic path planning and replanning for mo-
bile robots using RRT”. In: 2017 IEEE International Conference on Systems, Man,
and Cybernetics (SMC). IEEE. 2017, pp. 1429-1434.

N SV Rao et al. Robot navigation in unknown terrains: Introductory survey of non-
heuristic algorithms. Tech. rep. Oak Ridge National Lab.(ORNL), Oak Ridge, TN
(United States), 1993.

Development of an autonomous navigation system in highly dynamic environment 65


https://docs.px4.io/v1.12/en/flight_stack/controller_diagrams.html
https://docs.px4.io/v1.12/en/flight_stack/controller_diagrams.html

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
(28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]

[36]

66

Tomas Palleja et al. “Modeling floor-cleaning coverage performances of some do-
mestic mobile robots in a reduced scenario”. In: Robotics and Autonomous Systems
58.1 (2010), pp. 37-45.

Markus Rude. “A flexible, shock-absorbing bumper system with touch-sensing ca-
pability for autonomous vehicles”. In: Proceedings of IEEE/RSJ International Con-
ference on Intelligent Robots and Systems. IROS’96. Vol. 2. IEEE. 1996, pp. 410—-
417.

Holly A Yanco. “Wheelesley: A robotic wheelchair system: Indoor navigation and
user interface”. In: Assistive technology and artificial intelligence: applications in
robotics, user interfaces and natural language processing (2006), pp. 256—268.
Adrien Briod et al. “The AirBurr: A flying robot that can exploit collisions”. In: 20712
ICME International Conference on Complex Medical Engineering (CME). IEEE.
2012, pp. 569-574.

Adrien Briod. “Observation of insect collisions”. In: (2008).

Switzerland Lausanne. “Design of Flying Robots for Collision Absorption and Self-
Recovery.[Google Scholar]”. In: (2012).

Pedro Silva Girao et al. “Tactile sensors for robotic applications”. In: Measurement
46.3 (2013), pp. 1257-1271.

Miriam Fend, Hiroshi Yokoi, and Rolf Pfeifer. “Optimal morphology of a biologically-
inspired whisker array on an obstacle-avoiding robot”. In: Advances in Artificial Life:
7th European Conference, ECAL 2003, Dortmund, Germany, September 14-17,
2003. Proceedings 7. Springer. 2003, pp. 771-780.

Francesco Mondada et al. “The e-puck, a robot designed for education in engi-
neering”. In: Proceedings of the 9th conference on autonomous robot systems and
competitions. Vol. 1. 1. IPCB: Instituto Politécnico de Castelo Branco. 2009, pp. 59—
65.

Spectra Symbol, "Flex Sensor”. http:/ /www.spectrasymbol.com/.

Christos Papachristos, Shehryar Khattak, and Kostas Alexis. “Haptic feedback-
based reactive navigation for aerial robots subject to localization failure”. In: 2079
IEEE Aerospace Conference. IEEE. 2019, pp. 1-7.

Roberto Ponticelli and P Gonzalez de Santos. “Full perimeter obstacle contact sen-
sor based on flex sensors”. In: Sensors and Actuators A: Physical 147.2 (2008),
pp. 441-448.

Adrien Briod et al. “Contact-based navigation for an autonomous flying robot”. In:
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. |EEE.
2013, pp. 3987-3992.

Emanuele Aucone et al. “Synergistic morphology and feedback control for traver-
sal of unknown compliant obstacles with aerial robots”. In: Nature Communications
15.1 (2024), p. 2646.

Sorin Grigorescu et al. “A survey of deep learning techniques for autonomous driv-
ing”. In: Journal of field robotics 37.3 (2020), pp. 362-386.

Mihalj Bakator and Dragica Radosav. “Deep learning and medical diagnosis: A re-
view of literature”. In: Multimodal Technologies and Interaction 2.3 (2018), p. 47.
Shashi Pal Singh et al. “Machine translation using deep learning: An overview”.
In: 2017 international conference on computer, communications and electronics
(comptelix). IEEE. 2017, pp. 162—167.

Marius-Constantin Popescu et al. “Multilayer perceptron and neural networks”. In:
WSEAS Transactions on Circuits and Systems 8.7 (2009), pp. 579-588.
Aleksandra Vuckovic et al. EEG Drowsiness 2002 MedEngPhy. Mar. 2015.

Development of an autonomous navigation system in highly dynamic environment


http://www.spectrasymbol.com/

[37]
[38]
[39]
[40]

[41]

[42]

[43]

[44]

[45]

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning represen-
tations by back-propagating errors”. In: nature 323.6088 (1986), pp. 533-536.

lan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

Medium, "An Intuitive Explanation of LSTM”. https://medium.com /@ottaviocalzone/
an-intuitive-explanation-of-Istm-a035eb6ab42c.

Jig Han Jeong et al. “Random forests for global and regional crop yield predictions”.
In: PloS one 11.6 (2016), e0156571.

Jing Cai et al. “Real-Time Arrhythmia Classification Algorithm Using Time-Domain
ECG Feature Based on FFNN and CNN”. In: Mathematical problems in engineering
2021.1 (2021), p. 6648432.

Lugiang Shi et al. “Tilt angle monitoring by using sparse residual LSTM network and
grid search”. In: IEEE Sensors Journal 19.19 (2019), pp. 8803-8812.

Heli Koskimaki et al. “Activity recognition using a wrist-worn inertial measurement
unit: A case study for industrial assembly lines”. In: 2009 (June 2009). DOI: 10.1109/
MED.2009.5164574.

Holybro, "Holybro X500 v2 PX4 Development Kit”. https:/ /holybro.com /products/
px4-development-kit-x500-v2.

ROS2, "ROS2 Basic Concepts”. https://docs.ros.org/en/iron /Concepts/Basic.html.

Development of an autonomous navigation system in highly dynamic environment 67


https://medium.com/@ottaviocalzone/an-intuitive-explanation-of-lstm-a035eb6ab42c
https://medium.com/@ottaviocalzone/an-intuitive-explanation-of-lstm-a035eb6ab42c
https://doi.org/10.1109/MED.2009.5164574
https://doi.org/10.1109/MED.2009.5164574
https://holybro.com/products/px4-development-kit-x500-v2
https://holybro.com/products/px4-development-kit-x500-v2
https://docs.ros.org/en/iron/Concepts/Basic.html

68

Development of an autonomous navigation system in highly dynamic environment



Development of an autonomous navigation system in highly dynamic environment

69



Technical
University of
Denmark

Elektrovej, Building 326
2800 Kgs. Lyngby
TIf. 4525 1700

www.electro.dtu.dk


www.electro.dtu.dk

	Preface
	Abstract
	Acknowledgements
	1 Introduction
	1.1 Context
	1.1.1 The problem
	1.1.2 Overview of autonomous robots

	1.2 Structure of the thesis

	2 Theoretical background
	2.1 PX4 Offboard Control
	2.2 System Frames
	2.3 Autonomous navigation in obstacle-dense environments
	2.3.1 Localization
	2.3.2 Mapping
	2.3.3 Path Planning
	2.3.4 Common Failures

	2.4 Contact detection
	2.4.1 Collision protection approaches
	2.4.2 Contact detection approaches

	2.5 Deep learning foundamentals
	2.5.1 Feedforward Neural Network
	2.5.2 Recurrent Neural Networks
	2.5.3 Activation Functions
	2.5.4 Loss Functions
	2.5.5 Gradient Descent Optimization
	2.5.6 Metrics for Regression
	2.5.7 Metrics for Binary Classification

	2.6 Sensor pattern prediction

	3 Problem Definition
	3.1 Hardware
	3.1.1 Holybro X500 v2
	3.1.2 LattePanda 3 Delta
	3.1.3 Livox Mid-360
	3.1.4 Creality 3D Printer

	3.2 Software
	3.2.1 ROS2
	3.2.2 Onshape
	3.2.3 Optitrack setup

	3.3 Goal

	4 Methods
	4.1 Collision platform design
	4.1.1 Collision platform concept
	4.1.2 Collision platform sensors
	4.1.3 Test prototype
	4.1.4 Real prototype

	4.2 Contact detection
	4.2.1 Recordings
	4.2.2 Dataset creation
	4.2.3 Inside the data
	4.2.4 Modeling

	4.3 Autonomous navigation
	4.3.1 Mapping
	4.3.2 Planning
	4.3.3 Offboard control


	5 Experiments
	5.1 Durability Assessment of the Collision Platform
	5.1.1 Assessment Criteria

	5.2 Contact detection
	5.2.1 Contact model
	5.2.2 Angle and Displacement model
	5.2.3 Evaluation metrics

	5.3 Autonomous Contact-based Navigation
	5.3.1 Blind Contact-based Navigation
	5.3.2 Lidar and Contact-based Navigation
	5.3.3 Evaluation metrics


	6 Results and Analysis
	6.1 Durability Assessment of the Collision Platform
	6.2 Contact detection
	6.2.1 Contact model
	6.2.2 Angle and Displacement model

	6.3 Autonomous Contact-based Navigation
	6.3.1 Blind Contact-based Navigation
	6.3.2 Lidar and Contact-based Navigation


	7 Discussion
	8 Conclusion
	Bibliography

