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Breast Mass Regions Classification from Mammograms using 

Convolutional Neural Networks and Transfer Learning. 

 

Abstract:  Breast cancer constitutes a prominent public health concern, with the early 

detection being of paramount importance for successful treatment outcomes. Digital 

mammography has solidified its position as a standard diagnostic tool, with the accuracy 

of detection closely tied to the quality of the images it produces. In this study, we 

introduce a novel approach aimed at enhancing the quality of digital mammography 

images through pre-processing techniques, with the goal of improving breast cancer 

detection accuracy. The primary objective of this research is to enhance image resolution, 

thus leading to more precise breast tissue segmentation and subsequent classification 

utilizing convolutional neural networks (CNNs).Our focus was directed towards three 

widely recognized public mammography databases: CBIS-DDSM, Mini-MIAS, and 

Inbreast for pre-processing data. This step is a pivotal part of the clinical decision-making 

process, intended to refine breast diagnosis. Our statistical findings revealed that the 

EDSR method (PSNR=39.05 dB /SSIM=0.90) consistently outperformed the visual 

quality of images when compared to SR-RDN (PSNR=32.68 dB/SSIM=0.82). Similarly, 

UNet demonstrated superior performance over SegNet, boasting an average Intersection 

over Union (IoU) of 0.862, an average Dice coefficient of 0.991, and an accuracy rate of 

0.947 in Region of Interest (RoI) segmentation results. In conclusion, the ResNet model 

contributed to enhanced accuracy when compared to conventional machine learning 

algorithms, particularly when utilizing improved RoI data augmentation through affine 

transformation. However, it did not surpass state-of-the-art deep CNN-based classifiers, 

achieving an accuracy rate of 75%. 

 



Key words: Breast cancer, classification, convolutional neural network, mammography 

images, segmentation, super resolution. 

1. Introduction 

 
The early detection of breast lesions remains a significant challenge in the field of medical 

research [1]. Various screening methods [2,3] and less invasive approaches to breast 

cancer detection [4-8], including x-ray radiographic techniques, have been developed to 

address this issue. However, digital mammography (DM) stands out as a superior 

diagnostic modality for the early detection of breast lesions [9]. DM offers precise control 

and data acquisition while minimizing radiation exposure to patients, making it a critical 

tool in the fight against breast cancer [10]. 

 

Deep learning-based computer-assisted diagnostic (CAD) systems have emerged as a 

promising technology for medical image processing [11-13], playing a significant role in 

aiding radiologists in both screening and acting as a second reader to improve diagnostic 

accuracy. One significant challenge with deep learning (DL) training models is their 

reliance on extensive datasets for training. However, the limited dataset sizes are often 

due to privacy and data protection concerns, among other reasons [14-16]. 

 

Another critical aspect is that the accuracy of lesion detection heavily depends on image 

quality. DM images frequently exhibit various types of noise, including Salt and Pepper, 

Gaussian, Speckle, and Poisson noise [17]. These issues often stem from factors like 

image transfer, blurring, compression, or general image degradation, which lead to the 

production of low-resolution (LR) images. As a result, image super-resolution becomes 

a pivotal element in computer vision. 

 



Multiple super-resolution techniques have been proposed to enhance the quality of 

medical images, thus improving the accuracy of segmentation and classification 

processes. These processes are crucial in the accurate diagnosis of cancer. Convolutional 

neural networks (CNNs) have been adapted for enhancing image resolution, 

segmentation, and classification tasks [17-22]. These techniques have consistently 

demonstrated exceptional performance in image reconstruction, employing single image 

super-resolution (SISR) [23,24] and Multi-Image Super-Resolution (MISR) algorithms, 

with SISR being widely adopted due to its remarkable efficiency [25,26]. 

 

1.1 Related work-state of the art 
 

1.1.1 Data Augmentation 

Original image data augmentation based on basic transformations including: spatial 

translation, rotation, horizontal flipping, random cropping [11] and oversampling. Other 

augmentation methods are also available and include [27]: geometric transformations, 

colour space transformations, kernel filters, image blending, random erasure, feature 

space augmentation, adversarial training, GAN-based augmentation [28-30], neural style 

transfer, and meta-learning schemes. These include spatial translation, rotation, 

horizontal flipping, random cropping [11] and oversampling.  

Other augmentation strategies extend to more advanced methods [27], including 

geometric transformations, colour space transformations, kernel filters, image blending, 

random erasure, feature space augmentation, adversarial training, GAN-based A 

noteworthy observation comes from Yu et al. [15], who have substantiated that deep 

convolutional neural networks (CNNs) can experience substantial enhancements in 

performance when trained on augmented data as opposed to non-augmented data.  



However, it is essential to bear in mind the insights provided by Yadav et al. [31], who 

have explored the impacts of both simple and complex data augmentation techniques. 

Their findings suggest that highly intricate transformations may not consistently 

outperform simpler ones, and in some cases, overly complex augmentations may 

introduce additional noise into the feature set, potentially detrimental to the learning 

process. augmentation [28-30], neural style transfer, and meta-learning schemes. 

Hence, a judicious balance between diversity and noise in training data is recommended 

when selecting data augmentation methods. 

1.1.2 Single Image Super Resolution 
 

The root causes of this degradation are multifaceted, originating from the real-world 

clinical settings where medical imaging data is acquired. Factors like equipment 

conditions, patient movements, and technical constraints influence to compromise image 

quality. Therefore, the necessity arises to bolster the resolution of these images before 

they undergo the rigors of segmentation and classification. 

 

Image SR emerges as the pivotal technique, elevating images from a low-resolution (LR) 

state to high resolution (HR) [32,33]. This process takes center stage in ameliorating the 

screening process, especially when addressing challenges like macrocalcifications or 

dense breast tissue. The enhancement profoundly impacts the precision of subsequent 

classification and segmentation processes. 

 

SISR algorithms are categorize into four distinct types: 1) prediction models, 2) edge-

based methods, 3) image statistics and 4) example-based or patch-based [18,33].  



Traditional SR techniques encompass nearest-neighbor interpolation, such as bilinear 

interpolation, bicubic interpolation, and learning-based methods. Despite their simplicity 

and efficiency, they often grapple with reduced accuracy [36]. 

 

To surmount these limitations, Convolutional Neural Networks (CNNs) have been 

harnessed to generate HR images, using techniques like Convolutional SR-CNN [37-40] 

and Generative Adversarial Networks (GAN) SR-GAN [41-44]. A case in point is the 

model introduced by Jiang et al. [41], known as "TSGAN," which combines texture loss 

and encourages local information matching with a gradient penalty. This model achieved 

commendable metrics with an average PSNR of 27.99 dB and an SSIM of 0.778, metrics 

used to assess image quality and signal reconstruction. 

 

An array of CNN and GAN-based methods has been devised, encompassing Multi-scale 

deep super-resolution systems (MDSR), Enhanced Super-Resolution Generative 

Adversarial Networks (ESRGAN)[45], Residual Dense Block (RDB) [46], Efficient sub-

pixel convolutional neural network (ESPCN) [47], Very Deep Network for SR 

(VDSR)[48], SR-ResNet, Sparse Coding-based Network (SCN)[49], Deep Recursive 

Convolutional Network (DRCN)[50], and Deep Recursive Residual Network (DRRN) 

[51]. Nevertheless, these methods at times fail to exploit the full spectrum of information 

residing in each convolutional layer and the hierarchical features crucial for 

reconstruction, thereby limiting their architectural optimality [45]. 

 

Current research endeavors revolve around the adaptation of additional CNN techniques 

for super-resolution and segmentation [38,52-58]. For instance, Tong et al. [59] devised 

a dense skip connection to circumvent the vanishing gradient problem plaguing very deep 



networks. Abbass et al. [46] and Zhang et al. [37] introduced a Residual Dense Network 

(RDN) grounded in the DenseNet architecture, characterized by a higher growth rate and 

the adept utilization of all hierarchical features from the LR image, yielding a marked 

enhancement in overall performance. 

 

Worth noting is the application of SRCNN to mammography images, showcasing its 

superiority over conventional interpolation methods when enhancing digital 

mammography images of dense breasts. Dong et al. [38,39] propounded an SRCNN 

image reconstruction technique based on end-to-end (E2E) mapping, eclipsing traditional 

methods like sparse coding, kernel regression, and random forest [60,61]. Evidently, 

conventional SR methods, reliant on mapping functions from dictionaries, pale in 

comparison to modern Dense Neural Networks (DNN) employing E2E mapping 

approaches [62]. 

 

Additionally, the deployment of the Enhanced Deep Residual Network (EDSR), 

predicated on multiple ResNet architectures, has garnered attention [32]. While 

experimentation involving different scaling factors and optimizers yielded no single 

superior optimization technique [62], the caveat is that an increased number of layers may 

engender a surge in parameters, potentially bottlenecking image detail. Lim et al. [45] 

introduced single and multi-scale SR networks premised on SRResNet with a deeper 

residual design [48]. Residual learning techniques have manifestly led to improved 

performance by eliminating superfluous modules compared to antecedent methods. Their 

results showcase the achievement of higher PSNR values, specifically 1.57 dB for 

SRResNet and 2.14 dB for EDSR, respectively. 

 



1.1.2.1 Image Quality Assessment 

When it comes to evaluating the quality of super-resolution images, a range of established 

metrics is commonly employed. These metrics include the Peak Signal-to-Noise Ratio 

(PSNR), Structural Similarity Index Metric (SSIM), Mean Square Error (MSE), Root 

Mean Square Error (RMSE), Mean Absolute Error (MAE), Signal-to-Noise Ratio (SNR), 

Multi-Scale Structural Similarity (MS-SSIM), Task-Specific Similarity Assessment 

(TSSA), and Mean Opinion Score (MOS) [63]. 

 

However, within the domain of medical imaging super-resolution, the predominant 

metrics of choice are PSNR and SSIM. These metrics take center stage when quantifying 

the quality of the generated image in comparison to the original image [64]. Figure 1 

illustrates the scale values for PSNR and SSIM. 

 

Fig. 1. Super resolution quality metrics, divided into (i) Math based methods and (ii) 

Human visual system-based methods [65-66]. 



For medical applications, the significance of PSNR and SSIM cannot be overstated. These 

metrics provide a valuable quantitative means of assessing the degree to which the 

enhanced images faithfully represent the original data. In the context of medical 

diagnostics, this fidelity is of utmost importance. 

 

1.1.3 Segmentation 

Segmentation is a critical task in medical image analysis, involving the separation of the 

region of interest (ROI) from the background in an image. Accurate tumour segmentation 

in medical images is particularly challenging due to the presence of various image 

artefacts and complexities. To address these challenges, researchers [67-70] have 

increasingly turned to deep learning (DL) methods, with a particular focus on CNNs. 

Various network architectures such as Visual geometric group (VGG-16) [71], ResNet 

[72], UNet [9,73-74], SegNet [75], ERFNet [76], have been applied to image 

segmentation. 

 

1.1.4 Feature extraction and classification 

Deep learning has established itself as a dominant approach for medical image 

classification. DL models have the capability to automatically extract relevant image 

features based on the shape of the ROI. Once these features are extracted and selected, 

they are utilized as input for a classifier, enabling the categorization of ROI samples into 

malignant or benign classes. 

Several pre-trained networks have demonstrated high accuracy in medical image 

classification, including VGGNet, ResNet, DenseNet, and Inception [78-81]. Each of 

these CNN architectures has made significant contributions to the field of deep learning 

for computer vision tasks. The choice of architecture depends on the specific problem and 



involves trade-offs between factors such as model size, computational efficiency, and 

accuracy. 

For example, DenseNet incorporates shorter skip connections between layers in a feed-

forward architecture, resulting in enhanced accuracy, reduced susceptibility to 

overfitting, and efficient training through a cross-layer connection structure. VGGNet 

follows the classic CNN network structure, comprising a stack of convolutional, max-

pooling, activation layers, and fully connected classification layers. ResNet offers 

flexibility with its fundamental shortcut connections that are task-dependent. In contrast, 

Inception networks employ convolution kernels of various sizes and pooling operations 

within a single layer [81]. 

Taking these factors into account, the proposed method aims to enhance the resolution of 

breast images, ultimately improving the accuracy of segmentation and classification. This 

approach leverages convolutional neural networks and transfer learning models.  

Specifically, two novel CNN-based algorithms, EDSR (Enhanced Deep Residual 

Network) and RDN (Residual Dense Network), are introduced to address super-

resolution challenges. For image segmentation, two primary pre-trained models, UNet 

and SegNet, are employed, while a CNN model (ResNet50) is used for image 

classification. The work is organized into four main sections: "Related Work," "Materials 

and Methods," "Results and Discussion," and "Conclusion and Future Work." 

2.Methodology  

2.1 Datasets 

When evaluating computer-aided diagnosis (CAD) systems for breast cancer in 

mammography, several challenges arise. These include the absence of a standardized 

evaluation dataset and the necessity to adhere to ethical, regulatory, patient privacy, and 



data security considerations. Consequently, many CAD systems are assessed using 

private datasets or unspecified subsets of public databases. For this study, we harnessed 

three open-access datasets: 

(i) CBIS-DDSM (Curated Breast Imaging Subset –Digital Database for Screening 

Mammography) [82]. This database consists of 2620 cases, each containing two 

different views: mediolateral oblique (MLO) and craniocaudal (CC). The images 

are stored in DICOM format and dimensions of approximately 3784 x 5912 pixels.  

(ii) mini-MIAS (Mammographic Image Analysis Society) [83,84].  This dataset offers 

322 MLO mammograms from 161 patients. The images have a resolution of 

1024x1024 pixels and are categorized into 208 normal, 63 benign, and 51 

malignant images. 

(iii)  Inbreast [85], this dataset comprises a total of 115 cases, with 90 of them having 

two views (MLO and CC). The image matrix size varies, featuring dimensions of 

3328 x 4084 or 256 x 3328 pixels. Images in this dataset are stored in the DICOM 

format, see table 1.  

The datasets were selected based on predefined inclusion criteria that encompass 

demographic characteristics (age ≥ 40 years and female gender) and clinical 

characteristics. The selected datasets adhere to specific criteria, including 

normal/cancer/benign cases with verified pathology information, breast density, and 

abnormality descriptions. Additionally, the datasets include images with two different 

views, MLO and CC, while excluding normal cases. 

 

The research methodology for breast lesion classification using deep networks is 

structured into five key steps, as visualized in Figure 2: 1) Manual mask RoIs extraction, 

2) RoIs cropping and data augmentation. 3) Super-resolution using EDSR and SR-RDSN 



algorithms. 4) RoIs segmentation using UNet and SegNet algorithms. 5) RoIs 

classification using ResNet-50 and finally, 6) Image quality evaluation using statistical 

metrics. 

 

Fig. 2. The diagram describes the flowchart to breast lesion classification. 

This comprehensive methodology encompasses data sources, image processing steps, and 

deep learning techniques employed for breast lesion classification and image quality 

enhancement. It provides a systematic approach to address the complexities of breast 

cancer diagnosis in mammography. 

 

2.1.1 Manual Selection of RoI masks 

The initial phase of our methodology involved the meticulous manual selection of a total 

of 784 binary Regions of Interest (RoIs) and their corresponding binary masks. This 

selection process is visually demonstrated in Figures 3a and 3b. The manual selection was 

carried out with the assistance of ImageJ software, which is accessible at 

[https://imagej.net/ij/docs/intro.html](see table 1). 

Table 1. The distribution of benign and malignant cases per dataset. 



Database Benignant Malignant Total 

CBIS-DDSM 

[82] 

305 318 623 

Mini-MIAS 

[83,84] 

17 25 42 

Inbreast] 70 49 119 

Total 392 392 784 

 

Our dataset encompasses 392 benign and 392 malignant images. To streamline the 

computational performance and facilitate the subsequent training of network models, all 

images were consistently resized to a dimension of 128 x 128 pixels. 

This methodical data preparation is of paramount importance, as it forms the foundation 

for the subsequent phases in our methodology. It ensures that the network models can 

effectively learn and extract features from the RoIs, thereby contributing to the overall 

efficiency of the breast lesion classification system. 

 

Fig. 3. (a)Manually RoI selection and (b) Binary mask. 

Figures 3a and 3b provide a visual representation of the diligently selected RoIs and their 

corresponding binary masks, underscoring the crucial role of this data curation process in 

our methodology. 

2.2 Data augmentation 



Traditional data augmentation techniques are widely adopted in medical image analysis 

to mitigate the issue of limited data for training deep learning models. These techniques 

involve applying various transformations to the existing data, enhancing the model's 

generalization capabilities, and reducing the risk of overfitting. 

  

In our study, the original dataset images underwent expansion through the application of 

basic geometric transformation operations, including: Blurring (Blur_1.5); Flipped (fliph, 

flipv); Translation (trans_20_20), rotation (rot_90, rot_180) and scaling [26] to generate 

new RoIs images from the selected databases. This data augmentation process yielded an 

additional 4704 RoI images. When combined with the original set of 784 RoIs, the 

dataset's size was extended to a total of 5486 RoIs. 

2.3 Cross-validation 

Cross-validation is a statistical technique employed to effectively partition the augmented 

dataset into subsets for model evaluation. In our case, the dataset was divided into three 

subsets: a training set, a validation set, and a testing set. The proportions for this division 

were determined as follows: Training Set: 4380 images (80%), Testing Set: 546 images 

(10%) and Validation Set: 560 images (10%). 

 

This random yet systematic division of the dataset, as outlined in Table 2, ensures robust 

evaluation of the CNN models. Cross-validation is a key component in validating the 

performance and reliability of the breast lesion classification system. 

  Table 2. Data split into three sets: training, validation, and test.  

Datasets Benignant Malignant Total 

Training 2190 2190 4380 



Validation 280 280 560 

Testing 273 273 546 

Total 2743 2743 5486 

 

Table 2 offers a concise summary of the dataset division based on the cross-validation 

technique, underscoring its integral role in our methodology. 

 

2.4 Image Quality Assessment Using PSNR and SSIM 

To assess the quality of our processed images, we employed well-known metrics such as 

Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Metric (SSIM). 

These metrics require a reference image (ground truth) for comparison. In our case, we 

calculated these indexes by comparing the images generated by our model with high-

resolution images (ground truth) from the CBIS-DDSM breast images. Importantly, the 

CBIS-DDSM dataset used for this evaluation was distinct from the data used for training 

the model, ensuring that the assessment was conducted on unseen data. The results of 

PSNR and SSIM are presented in Table 4. 

 

2.5 Image Super Resolution Using Transfer Learning 

In our study, we employed transfer learning to tackle the challenge of image Super-

Resolution. We utilized two distinct models for this task: EDSR (Enhanced Deep Super-

Resolution) based on the ResNet architecture and SR-RDN (Super-Resolution Residual 

Dense Network) based on the DenseNet architecture.  

 

The training process involved the careful selection and optimization of hyperparameters, 

which play a vital role in enhancing the accuracy of the Convolutional Neural Networks 



(CNNs) [86]. The optimization was conducted through a systematic exploration of 

different hyperparameter combinations, with Python's GridSearchCV (ParameterGrid) 

using scikit-learn. This approach enabled us to identify the combination of 

hyperparameters that minimized the margin of error, resulting in the most effective 

models. 

Key hyperparameters details are described below: 

EDSR hyperparameters: Scaling factor: 0.1, number of epochs: 20, Loss function:L1, 

number of blocks:50, optimization algorithm: ADAM/SGD/RMsProp, ResBlocks: 32, 

Number of filters:256, Upsampling factor x3. 

 

RDN hyperparameters: Convolutional layer size: 3 × 3, Kernel size for local and global 

feature fusion: 1 × 1. Kernel size for convolutional layer: 3 × 3 with zero-padding, Local 

and global feature fusion layers: 64 filters with a Kernel size of 1x1, Upsampling factor: 

x4, Number of epochs: 30, Number of blocks: 16, Number of layers: 8, Batch size: 50, 

Patch size: 10, Activation function: ReLU. 

 

2.6 Segmentation 

2.6.1 UNet architecture 

The UNet architecture is a fundamental component of our segmentation process. This 

model involves applying a series of convolutional operations to the input image, 

effectively compressing information, and detecting essential features. Subsequently, a 

new image is generated using the learned features acquired during the contraction 

process. 

The hyperparameter details of the UNet architecture are outlined in Table 3, and you can 

also refer to Figure 4 for a visual representation of this architecture. 



 

Tabla 3. Hyperparameters for U-net and SegNet training architecture. 

Hiperparameter Unet/ Segnet 

Number of epochs 40 

Batch size 4 

Steps 125 

Optimizer Adadelta 

Learning rate 0.001 

Loss function Binary-crossentropy 

Activation function  ReLu, Sigmoid 

  

Table 3 presents a comprehensive overview of the hyperparameters associated with the 

UNet model, while Figure 4 provides a graphical representation of the architecture's 

structure. This UNet architecture plays a crucial role in the segmentation of breast lesions, 

contributing to the accuracy of our analysis. 

 

 

 



Fig. 4. The U-net architecture consists of an expansive path on the right side (upsampling) 

and a contracting path on the left side (downsampling). The contracting path follows the 

typical CNN architecture, which each yellow box corresponds to a multi-channel feature 

map. The number of channels is denoted on top of the box. The grey boxes represent 

duplicated feature maps. The arrows denote the different operations. 

 

2.5.2 SegNet architecture 
 
SegNet consists of an encoder-decoder network (see Figure 5) followed by a pixel-wise 

classification layer. It lacks fully connected layers, relying solely on convolutional layers.  

The decoder upsamples its input using pooling indices, while the encoder produces a 

feature map, and subsequently performs convolution to densify the feature map. The final 

decoder output feature maps are then fed to a Softmax classifier for pixel-wise 

classification.  

 

Fig. 5. SegNet architecture flowchart, adapted from Badrinarayanan, V. [75] 

We used the same hyperparameters values for training U-net and SegNet networks (see 

Table 3). 

2.6 Classification 

The Deep Residual Network (ResNet) is one of the pre-trained models used in transfer 

learning, particularly in computer vision. It has been introduced for automatic feature 

extraction and classification, to address the problem of vanishing gradients providing 
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good performance with less training time and fewer data samples compared to training a 

deep network from scratch. 

In this research, we chose to train the ResNet-50 model, which is widely used in medical 

image classification. The model skips one or more layers and manages the gradient 

vanishing problem, in addition to its ease optimization. Model accuracy can be improved 

by increasing its depth. Therefore, two or three layers of the ResNet-50 model are directly 

connected to each layer (not to the adjacent layer), employing the ReLu non-linear 

activation function (Figure 6). The hyperparameters details are described below: 

 

Fig. 6. The ResNet-50 architecture consists of 5 blocks, each containing 3 convolutional 

identity blocks and 3 convolutional blocks with skip connections.  

 

Resnet hyperparameters: We trained the model with data augmentation and without 

data augmentation using standard benchmark data sets with the next hyperparameter 

values: Adadelta optimizer e=1e-07, d= 0.95, a learning rate = 0.001, batch size = 2, 

number of epochs = 60 with 2190 steps, categorical-cross entropy loss function over 

2,190 iterations. We experimented with two activation functions: ReLU was used during 
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the training of convolutional layers, while the Sigmoid function was used for binary 

class prediction. 

All CNN models were training using a cloud service based on Jupyter Notebooks on 

Google Colab Pro GPU (model V100) and python libraries such as Keras, Matplolib and 

TensorFlow. 

2.7 Statistical Measures 

Likewise, the most frequently used statistical metrics for assessing image restoration and 

HR image quality are PSNR and SSIM index. A higher PSNR value indicates higher 

image quality, while a small value implies high numerical differences between images 

[87]. Typical PSNR values range from 30 dB to 50 dB, and SSIM values between -1 and 

1, where 1 indicates perfect similarity, 0 indicates no similarity, and -1 indicates perfect 

anti-correlation (see Figure 1). For segmentation performance evaluation, we use Dice 

(F1 score) and Intersection over union (IoU or Jaccard index). Finally, for classification 

performance evaluation, we consider accuracy (Acc), precision (Prec), sensitivity (Sen), 

specificity (Spec) and Area Under the Curve (AUC) [11]. 

3. Results  

This section discusses the most important results, assessment metrics, and graphs 

obtained from the network training. 

3.1 Image Quality comparison 

Table 4 presents the average PSNR and SSIM values after the image quality evaluation. 

These metrics offer valuable insights into the quality of the processed images when 

compared to high-resolution ground truth images from the CBIS-DDSM dataset. The 

EDSR model showed a significant improvement compared to the other model.  

 



Tabla 4. The most relevant PSNR/SSIM values for x3 and x4 factor scaling. 

ID SR-RDN ID              EDSR 

PSNR 

(dB) 

SSIM PSNR (dB) SSIM 

DDSM_043__blur1 40.76 0.97 DDSM_043__blur1 46.41 0.97 

DDSM_0607 40.46 0.95 DDSM_0381__blur1 46.23 0.97 

DDSM_0120 40.33 0.95 DDSM_0275__blur1 45.95 0.97 

DDSM_0468 40.22 0.94 DDSM_0228__blur1 45.76 0.97 

DDSM_0466 40.20 0.96 DDSM_0120 45.63 0.91 

DDSM_0168__blur1 40.18 0.94 DDSM_0467 45.57 0.97 

DDSM_0188 40.14 0.94 DDSM_0466 45.51 0.97 

DDSM_0275__blur1 40.14 0.97 DDSM_0212__blur1 45.38 0.97 

DDSM_0369 40.05 0.95 DDSM_079__blur1 45.35 0.95 

DDSM_0538 39.98 0.90 DDSM_0368 45.2 0.92 

DDSM_0212__blur1 35.87 0.98 DDSM_021__blur1        39.5 1 

DDSM_0228__blur1 37.00  0.97 DDSM_0295__blur1 38.17 1 

DDSM_0275__blur1 40.14 0.97 DDSM_0106__blur1 41.14 0.97 

DDSM_043__blur1 40.76  0.97 DDSM_0212__blur1 45.38 0.97 

DDSM_0189__blur1 35.12  0.96 DDSM_0228__blur1 45.76 0.97 

DDSM_0256__blur1 37.91  0.96 DDSM_0275__blur1 45.95 0.97 

DDSM_0381__blur1 39.11  0.96 DDSM_0381__blur1 46.23  0.97 

DDSM_0466 40.20  0.96 DDSM_043__blur1 46.41  0.97 

DDSM_0467 39.95  0.96 DDSM_0466 45.51  0.97 

DDSM_0549 38.83  0.96 DDSM_0467 45.57  0.97 

 
 

3.2 Data dispersion 

Figures 7a-d present the statistical results, where a and b are the dispersion data obtained 

from SR-RDN. The blue data in Figure 7a represent the PSNR metric, ranging from 30 

to 40 dB, while the red points in Figure 7b represent the SSIM metric, ranging from -1 to 



1. PSNR is used to measure the quality of the restored image when it is affected by noise 

and blur. Similarly, SSIM is defined as a function of luminance comparison. 

The linear dependence factor is computed using the correlation coefficient in SSIM index 

and can be find broad applications in mammographic diagnosis and cancer detection 

fields [63].  

 In figure 7c, the blue data show more signal with a higher quality rate and better-quality 

image using EDSR algorithm. Figure 7d presents better SSIM statistical results using 

EDSR in comparison to 7b using SR-RDN algorithm. It indicates better luminance 

(ranging from 0.90 to 0.95), contrast, and structural information in restructured EDSR 

images. 

 

 

 

 

 

 

 

a.                                                                          b. 

 

 

 

 

                    

 

                                              

               c.                                                              d. 



Fig. 7. Dispersion values in both super-resolution algorithms SRRDN and EDSR. (a) 

PSNR vs. observations in RDN algorithm. (b) SSIM vs. observations in RDN algorithm. 

(c) PSNR vs. observations in EDSR algorithm. (d) SSIM vs. observations in EDSR 

algorithm. 

 

3.3 SegNet and Unet comparison 

The experiments (see table 6) demonstrate that UNet achieved better RoI segmentation 

performance (IoU=0.862, Dice=0.991 and Acc=0.947) than the SegNet model, across all 

mammogram datasets used in this study.  

     Tabla 6. Average values compared from segmentation models results. 

 

         

 

 

 

 

Table 7 displays the RoI input image with their manual segmentation and automatic 

segmentation using U-net and SegNet models.  

Table 7. Comparison between manual segmentation and automatic RoI segmentation 

(Unet/Segnet) from original RoI images: a) DDSM_0504), b) DDSM_0526. 

 

Method Segmentation metrics 

Acc Prec Sen Spec Dice IoU 

Unet  0.947 0.930 0.925 0.956 0.991 0.862 

SegNet  0.889 0.848 0.836 0.950 0.810 0.709 

Original RoI Manual 

Segmentation 

Unet/Segnet 



 

 

Therefore, it is important to monitor their evolution and performance of the models 

during training and validation. Figure 8 presents plots of the indices obtained for each 

epoch during the testing of different models. Figures 8a and 8b display the loss value 

and accuracy by each epoch in the Unet, while Figures 8c and 8d show the loss value 

and accuracy by each epoch in Segnet. The results indicate that the Unet model is more 

stable, with a consistent learning rate, and does not exhibit overfitting.

 

 a. b. 

  

a. 

  

 

b. 

  

 



 

c.  d. 

Fig. 8. Accuracy and loss values in a.  Unet training dataset, b. Unet validation dataset 

c. Segnet training dataset and d. Segnet validation dataset. 

 

3.4 Classification using ResNet-50 

The results of the classification experiments are described in Table 8, where the values 

show a high accuracy using the hyperparameters with data augmentation. 

Tabla 8. ResNet-50 evaluation metrics on two datasets. 

 

 

 

 

 

 

 

 

 

 

ResNet-50 

model 

Average classification metrics  

Image number Acc Prec Sen Spec F1 score 

Data 

augmentation  5486 0.75 0.68 0.55 0.82 0.64 

 Without Data 

augmentation  784 0.68 0.65 0.77 0.59 0.71 



The ResNet model improved the accuracy to 75%, surpassing other traditional machine 

learning algorithms when using enhanced RoI data augmentation images by affine 

transformation. 

 

The ResNet model utilizes a loss function to indicate it proximity to making correct 

predictions. The risk during the training process is the potential for the model to overfit 

to the training set, meaning it might learn an overly specific function that performs well 

on the training data but fails to generalize to unseen images. 

Figures 9a and 9b illustrate that the model learns effectively from the training and 

validation data sets.  

 

a. 

 

b. 

Fig. 9. (a) Line plots of model accuracy on the training (blue) and validation (orange) 
datasets. (b) Loss values on the training (blue) and validation (orange) datasets for each 
epoch. 



This indicates that the model is likely to perform well on new images. However, it's 

important to note that while these factors can contribute to a model's ability to perform 

well on new images, there are no guarantees. The real-world performance of a machine 

learning model often requires ongoing monitoring, refinement, and adaptation to 

changing data distributions and conditions. 

 

4.Discussion 

DM images are often acquired at lower resolutions to minimise radiation exposure while 

maintaining adequate diagnostic quality. However, low-resolution images can 

compromise the ability to detect subtle features or abnormalities, such as 

microcalcifications in breast cancer lesions. The use of CNNs for SR image enhancement 

and segmentation can indeed be valuable and significantly improve the visibility of fine 

details, making it easier for radiologists to identify and classify breast cancer lesions, 

especially in low-resource settings where DM images may have poor resolution. 

 

After enhancing the image resolution, the next step is to locate and delineate regions of 

interest, such as potential breast cancer lesions, within the mammogram. Once the image 

is enhanced and the lesions are segmented, CNNs can be used for the actual classification 

of breast cancer lesions into benign and malignant. 

In our work, to test the proposed method, three public mammography databases were 

selected: CBIS-DDSM, Mini-MIAS and Inbreast. In the SR task the EDSR results 

provide high enhancement in image quality, with the PSNR and SSIM index (39.05 dB 

and 0.90) exceeding those of SR-RDN (32.68 dB and 0.82). 

The average EDSR index values indicated that successfully reconstructed of detailed 

textures and edges in the RoIs and exhibited better quality output, in comparison with 



other results in the literature [45-47].  Lim et al. [45] proposed the EDSR CNN-based 

algorithm to improve super resolution in natural image (DIV2K), by removing the batch 

normalization layer, accelerating the training process, and achieving better performance 

(PSNR of 32.62 dB and SSIM of 0.8984) compared to other methods such as ESPCN 

(30.90 dB/-), VDSR (31.35 dB/0.8838), DRCN (31.53 dB/0.8838), SRResNet (32.05 

dB/0.9019), RDN (32.61 dB/0.9003), MDSR (32.60 dB/0.8982), and DBPN (32.47 

dB/0.898). 

Additionally, another custom CNN (Unet) was used to perform image segmentation on 

the high-resolution RoIs generated by EDSR, achieving an average Intersection over 

Union (IoU) of 0.862, an average Dice similarity coefficient of 0.991, and an accuracy of 

0.947 in segmentation results, surpassing the results of the SegNet model. 

Similar research has proposed UNet as a segmentation network. Almajalid et al. [73] used 

UNet for breast tumour segmentation using ultrasound images and achieved a F1 score 

of 0.994 with the training set and 0.8252 with the testing set. Likewise, Zhou et al. [88] 

improved UNet by using skip connections and achieved an average IoU gain of 3.9 over 

the standard U-Net. 

Our results align with Vianna et al. [88], who compared U-Net and SegNet for the breast 

lesions segmentation in ultrasonography, were U-Net demonstrated better Dice results 

(86.35%) compared to Segnet-Dice of 81.1%. 

By analysing the segmented regions, ResNet50 provides a classification or likelihood 

score for the presence of breast lesions. Table 8 shows enhanced model results for breast 

lesion image classification using transfer learning with data augmentation through affine 

transformation, in comparison with training model without data augmentation.  

However, the average classification results show that synthetic data cannot fully 

substitute real images for training CNN classifiers. The absence of real images in the 



training set can lead to overfitting and lower model accuracy (75%) compared to other 

state-of-the-art deep CNN-based classifiers, such as Dense Convolutional Network 

(Densenet) [80,90-91], VGGNet [92], and Inception [93]. Chen et al. [94] introduced data 

augmentation and ResNet transfer learning for the automatic extraction of features and 

classification of mammography images, achieving good performance metrics (Acc= 

93.15%, Spe=92.17%, Sen=93.83%, AUC=0.95, and loss=0.15). Similarly, Wu et al. [79] 

presented a deep CNN-ResNet method for breast cancer classification, achieving an AUC 

of 0.895 in predicting the presence of breast cancer. 

 

These results may be attributed to the theory explained by Lan et al. [95] regarding 

generated images by traditional augmentation methods. Such images tend to share a 

similar distribution with the original ones and may not be suitable for processing medical 

images. Guan et al. [96] demonstrated that RoIs generated by GANs are more similar to 

real RoIs than affine-transformed RoIs in terms of mean, standard deviation, skewness, 

and entropy. 

However, we acknowledge that breast tumour classification using DM has limitations 

when using traditional data augmentation, as the model did not significantly improve 

accuracy (75%) compared to other state-of-the-art deep CNN-based classifiers. This 

limitation could potentially be overcome by incorporating GAN models for the generation 

of synthetic data. 

One major limitation of our work is the limited number of SR studies based on CNN 

models using 2D breast images such as mammography and ultrasound, as most of the 

literature primarily focuses on urban and natural images. In our study, we developed a 

deep CNN approach for mammography SR, segmentation, and classification of RoIs, 

resulting in good indices and quality values. 



In summary, employing CNNs for SR image enhancement, segmentation, and breast 

cancer lesion classification can significantly enhance diagnostic capabilities in DM, 

particularly in settings where resource constraints may limit traditional diagnostic 

approaches. This approach has the potential to improve early detection and enhance 

patient outcomes in breast cancer diagnosis. 

Conclusions 

This article has presented a novel Computer-Aided Diagnosis (CAD) system framework 

based on deep learning for breast mammography super-resolution, segmentation, and 

classification, utilizing the concept of transfer learning. We implemented data 

augmentation with affine transformations for RoIs to enhance the performance of CNN 

networks. The synthetic RoIs data served as input to two different SR-CNN algorithms, 

EDSR and SR-RDN, resulting in improved image quality with enhanced resolution and 

precision for the subsequent segmentation and classification tasks. 

 

We found that EDSR outperformed SR-RDN in the super-resolution task, as evidenced 

by higher PSNR and SSIM indices. Additionally, the U-Net model was selected as the 

preferred RoI segmentation technique due to its more reliable results, as demonstrated by 

Dice, Intersection over Union (IoU), and accuracy metrics. 

 

However, while the ResNet-50 architecture improved accuracy over traditional machine 

learning algorithms when using generated images with affine transformations, it could 

not achieve the same accuracy (75%) as other state-of-the-art deep classifiers. This 

limitation can be attributed to the inability of traditional data augmentation to accurately 

simulate the real distribution of medical images, as opposed to generative models. 

 



In summary, the importance of SR in lesion segmentation depends on the specific context 

and characteristics of the medical images in question. Clinical validation and evaluation 

should guide the selection of image enhancement methods to ensure they enhance 

diagnostic accuracy without introducing unintended effects. 

 

Future research may involve comparative studies to assess the impact of SR on 

segmentation accuracy. Additionally, data augmentation techniques based on Generative 

Adversarial Network (GAN) models will be explored for the generation of synthetic 

mammography data. This synthetic data could be used as a training dataset for alternative 

breast mass classifiers based on convolutional networks (e.g., DenseNet, NasNet, 

VGGNet) with the aim of improving breast lesion classification accuracy and reducing 

overfitting. 
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Abbreviations: 

AUC   Area under curve 
CAD   Computer aided system 
CC  Cranio caudal 
CNN                Convolutional neural network 
DNN  Deep neural network 
DDSM            Digital Database for Screening Mammography 
DM   Digital mammography  
DL   Deep learning  
EDSR  Enhanced Deep Residual Network  
E2E   End to End   
ESRGAN Enhanced Super-Resolution Generative Adversarial Networks  
ESPCN  Efficient sub-pixel convolutional neural network 
GAN   Generative adversarial network 
HR   High resolution 
IoU   Intersection over Union 
LR   Low resolution 
MDSR             Multi-scale deep super-resolution  
MLO               Mediolateral Oblique 
PSNR   Peak signal to Noise Ratio  
RoI   Region of interest  
RDN  Residua Dense Network 
RDB   Residual Dense Block  
RNN  Recurrent Neural Network 
ReLU   Rectified Linear Unit 
SR-GAN Super-Resolution Using a Generative Adversarial Network  
SSIM  Structural Similarity Index Metric 
SISR   Single image super resolution 
SegNet             Segmentation Network 
TP  True positive  
TN   True negative  
FP                    False positive 
FN  False negative 
VGG       Visual geometric group  
VDSR  Very Deep Network for SR  
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