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Abstract
Mobile health apps are widely used for breast cancer detection using artificial intelligence algorithms, providing radiologists 
with second opinions and reducing false diagnoses. This study aims to develop an open-source mobile app named “BraNet” 
for 2D breast imaging segmentation and classification using deep learning algorithms. During the phase off-line, an SNGAN 
model was previously trained for synthetic image generation, and subsequently, these images were used to pre-trained SAM 
and ResNet18 segmentation and classification models. During phase online, the BraNet app was developed using the react 
native framework, offering a modular deep-learning pipeline for mammography (DM) and ultrasound (US) breast imaging 
classification. This application operates on a client–server architecture and was implemented in Python for iOS and Android 
devices. Then, two diagnostic radiologists were given a reading test of 290 total original RoI images to assign the perceived 
breast tissue type. The reader’s agreement was assessed using the kappa coefficient. The BraNet App Mobil exhibited 
the highest accuracy in benign and malignant US images (94.7%/93.6%) classification compared to DM during training I 
(80.9%/76.9%) and training II (73.7/72.3%). The information contrasts with radiological experts’ accuracy, with DM clas-
sification being 29%, concerning US 70% for both readers, because they achieved a higher accuracy in US ROI classification 
than DM images. The kappa value indicates a fair agreement (0.3) for DM images and moderate agreement (0.4) for US 
images in both readers. It means that not only the amount of data is essential in training deep learning algorithms. Also, it is 
vital to consider the variety of abnormalities, especially in the mammography data, where several BI-RADS categories are 
present (microcalcifications, nodules, mass, asymmetry, and dense breasts) and can affect the API accuracy model.

Keywords Breast cancer · Mobil app · Deep learning · Ultrasound · Mammography

1 Introduction

Today, in the healthcare landscape, artificial intelligence 
tools hold great promise for clinicians by enhancing breast 
cancer diagnostics and tailoring treatment strategies to 

match the disease’s characteristics [1–3]. However, in the 
same line, there are some alternatives, such as command-
line tools with shell scripts [4] and manual, semi-automated, 
and fully automated methods for image processing [5]; these 
options are not user-friendly for specialists and researchers 

 * Yuliana Jiménez-Gaona 
 ydjimenez@utpl.edu.ec

 Diana Carrión-Figueroa 
 diana.carrionf@iess.gob.ec

 Patricio Corral-Domínguez 
 patriciocorral@hotmail.com

1 Departamento de Química y Ciencias Exactas, Universidad 
Técnica Particular de Loja, San Cayetano Alto s/n 
CP1101608, Loja, Ecuador

2 Instituto de Instrumentación para la Imagen Molecular I3M, 
Universitat Politécnica de Valencia, 46022 Valencia, Spain

3 Theoretical and Experimental Epistemology Lab, School 
of Opto ΩN2L3G1, Waterloo, Canada

4 Hospital-IESS del Sur de Quito, Av. 18 de Septiembre, 
Quito, Ecuador

5 Corporación Médica Monte Sinaí-CIPAM (Centro Integral 
de Patología Mamaria) Cuenca-Ecuador, Facultad de 
Ciencias Médicas, Universidad de Cuenca, Cuenca 010203, 
Ecuador

6 Department of Systems Design Engineering, Physics, 
and Electrical and Computer Engineering, University 
of Waterloo, Waterloo, ON N2L3G1, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s11517-024-03084-1&domain=pdf


2738 Medical & Biological Engineering & Computing (2024) 62:2737–2756

without a background in computer science. Furthermore, 
the available graphical interface tools are often task-specific 
[6, 7], focusing on contour delineation, segmentation, or 
classification.

In this context, radiomics constitutes an emerging field in 
medical imaging and offers the potential to extract diagnos-
tic and prognostic information from 2D grayscale images by 
analyzing lesion features [1, 2]. Hence, graphical and mobile 
tools are elevating the role of radiomics in biomedical 
research, potentially serving as a second opinion for radiolo-
gists in breast lesion detection. Specifically, computer-aided 
diagnosis (CAD) systems based on deep/machine learning 
(DL/ML) play a crucial role in addressing various computer 
vision challenges, such as medical image pre-processing 
with super-resolution [8–11] and denoising, data augmen-
tation [12–15], medical image segmentation [16–18] (e.g., 
NiftyNet [6], MIScnn [16], and NiftySeg [17]), image clas-
sification [19], computer-assisted interventions [5], image 
recognition [20], and annotation [5].

In the context of detecting cancer, there are several radi-
omic projects, CAD based on deep/machine learning (DL/
ML) systems, and studies that propose different artificial 
intelligence techniques that help to provide decision support 
for many applications in the patient care processes, such as 
lesion detection, characterization, cancer staging, and treat-
ment planning. The major challenge in this field of research 
is to build a fully automatic CAD system that can analyze 
large quantities of images to provide an accurate diagnosis 
and, at the same time, robust enough to handle the biological 
variations in humans [21].

The most successful DL algorithms used in the process-
ing of medical images are convolutional neural networks 
(CNNs), generative adversarial networks (GANs), and recur-
rent neural networks (RNNs), which play a crucial role in 
improving healthcare outcomes by providing accurate and 
efficient analysis in processing medical images, each offer-
ing unique capabilities in data augmentation, pattern recog-
nition, and feature extraction [22]. In the early detection of 
breast cancer, CAD systems have several stages: (i) image 
collection, (ii) annotation and detection of tumors based on 
the region of interest (ROI), (iii) segmentation, (iv) classifi-
cation based on the ROI shape using deep learning models, 
and (v) performance evaluation of the models [23, 24].

Image collection and annotation are the main challenges 
in performing large-scale medical image analysis using DL 
algorithms. Some CNNs-based options to consider as mask 
segmentation for detected tumors in medical images are you 
only look once (YOLO) [25], region-based convolutional 
neural network (R-CNN) [26, 27] and their variants (Mask 
R-CNN [26] and Faster R-CNN [27]), deep neural networks 
such as natural language process (NLP), which can help us 
to automatically identify and extract relevant information 
from radiology clinical reports and images [28].

Although there is a variety of CAD systems developed 
concerning breast cancer, it is also important to mention 
that there are systems deployed in mobile applications for 
use in the smartphone, e.g., in [29], an automated breast 
cancer diagnosis system on mobile phones for taking pho-
tos of ultrasound reports was implemented. The authors 
include the automatic extraction of intricate image features 
by convolutional neural networks (CNNs) and the precise 
classification of breast masses. It eliminates the need for 
manual feature engineering and reduces human error. These 
applications streamline the diagnostic process, increase effi-
ciency, and, most importantly, enhance patient outcomes by 
providing reliable, consistent, and accessible early breast 
cancer detection and treatment tools.

2  Related work

In this section, we will briefly introduce NLP and CNN 
modeling as more recent approaches using neural networks 
and discuss how several authors have used these models in 
radiomics and biomedical applications.

One of the main fundamentals of NLP is extracting image 
information using patterns such as the accession number, 
series number, and image number. Information about the 
imaging modality, magnetic resonance imaging (MRI), CT 
(computed tomography), positron emission tomography 
(PET), ultrasound (US), and mammography imaging can be 
relevant, too. It can be extracted from the accession number 
and image number, where the patient identification number 
(ID) can be appropriate if the patient’s history is of interest.

Linna et al. [30] indicate that NLP tools in radiology 
and other medical settings have been used for information 
retrieval and classification. NLP-based algorithms have 
opened more possibilities for medical image processing, 
detecting findings, and giving possible diagnoses [31]. Wang 
et al. [32] suggested that cancers are the most common sub-
ject area in NLP-assisted medical research on diseases, with 
breast cancers (23.30%) and lung cancers (14.56%) with the 
highest proportion of studies. Also, Luo et al. [33] speci-
fied that NLP is useful for creating new automated tools 
that could improve clinical workflows and unlock unstruc-
tured textual information contained in radiology and clini-
cal reports for the development of radiology and clinical 
artificial intelligence applications.

Prabadevi et al. [34] proposed a machine learning system 
using WEKA algorithms to detect cancer staging classifica-
tion. Buckley et al. [35] used NLP to extract clinical infor-
mation from > 76,000 breast pathology reports, the model 
of which demonstrated a sensitivity and specificity of 99.1% 
and 96.5% compared to expert humans. Chen et al. [36] 
proposed an NLP extraction pipeline system that accepts 
scanned images of operative and pathology reports. The 
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system achieved 91.9% (operative) and 95.4% (pathology) 
accuracy. The pipeline accurately extracted outcomes data 
pertinent to breast cancer tumor characteristics, prognostic 
factors, and treatment-related variables. Liu et al. [37] imple-
mented an NLP program to extract index lesions and their 
corresponding imaging features accurately from the text of 
breast MRI reports.

The NLP system demonstrated 91% recall and 99.6% 
precision in correctly identifying and extracting image fea-
tures from the index lesions. The recall and precision for 
correctly identifying the BI-RADS categories were 96.6% 
and 94.8%, respectively. Kirillov et al. [38] created the NLP-
based segment anything model (SAM) as a mask extrac-
tion and promptable segmentation task. Thus, it can transfer 
zero-shot [39] to new image distributions.

The NLP system demonstrated 91% recall and 99.6% 
precision in correctly identifying and extracting image fea-
tures from the index lesions. The recall and precision for 
correctly identifying the BI-RADS categories were 96.6% 
and 94.8%, respectively. Kirillov et al. [38] created the NLP-
based segment anything model (SAM) as a mask extrac-
tion and promptable segmentation task. Thus, it can transfer 
zero-shot [39] to new image distributions.

Likewise, in a CAD system, the classification task is an 
important step after the segmentation process. The most 
widely used deep learning-based algorithms for image clas-
sification are CNN models (ResNet [40], DenseNet [41], 
NasNet [42, 43], VGG-16 [44], GoogLeNet [45], and Incep-
tion-V3 [46]).

Several authors [47–51] have used models for benign 
and malignant breast mass classification. The CNN used 
for breast classification is divided into two main catego-
ries: (i) novo-trained model (e.g., Scratch) and (ii) transfer 
learning-based models that exploited previously trained net-
works (e.g., AlexNet, VGG-Net, GoogLeNet, and ResNet) 
[47]. In [48], the ResNet model was used as a classification 
training model using an original and synthetic mammogra-
phy (DDSM) dataset, obtaining a performance of 67.6 and 
72.5%, respectively.

In [49], several CNN models were proposed (GoogLeNet, 
Visual Geometry Group Network (VGGNet), and ResNet), 
to classify malignant and benign cells using average pooling 
classification. The results overcome all the other deep learn-
ing architectures in terms of accuracy (97.67%). However, 
the choice of architecture depends on the specific problem 
and involves commitments between factors such as model 
size, computational efficiency, and accuracy.

Despite the extensive availability of medical radiomic 
tool research and CAD-based deep learning systems [52, 
53], this technology has limited support within mobile app 
infrastructure for 2D breast medical image analysis. Conse-
quently, the BraNet’s workflow has two main phases off-line 
and on-line, to achieve the following aims: (i) to develop a 

mobile app based on deep learning models for segmenting 
and classifying 2D breast images into benign and malignant 
lesions and (ii) to implement statistical metrics as a predic-
tion performance evaluation tool.

3  Methods

3.1  Data collection

We collected seven open-access breast image databases, 
including three datasets of breast ultrasound (US) images 
and four datasets of mammography images.

 (i) Breast Ultrasound Images Dataset (BUSI): this data-
set, gathered by [43], comprises 780 images (133 
normal, 437 benign, and 210 malignant).

 (ii) Dataset A: collected by Rodrigues et al. [54] avail-
able at (https:// data. mende ley. com/ datas ets/ wmy84 
gzngw/1), Dataset A contains 250 breast US images 
(100 benign and 150 malignant).

 (iii) Dataset B: Comprising 163 US images, these data 
were acquired from the UDIAT Diagnostic Centre 
of the Parc Tauli Corporation, Sabadell, Spain [55].

 (iv) CBIS-DDSM: Curated Breast Imaging Subset–Digi-
tal Database for Screening Mammography, accessi-
ble at (https:// n9. cl/ qtl48), this database comprises 
2620 cases [56].

 (v) mini-MIAS (Mammographic Image Analysis Soci-
ety): available at http:// peipa. essex. ac. uk/ info/ mias. 
html), includes 322 (208 normal, 63 benign and 51 
malignant images) Medio Lateral Oblique (MLO) 
mammograms from 161 patients [57, 58].

 (vi) Inbreast: this dataset comprises a total of 115 images 
and can be found at (https:// bioke anos. com/ source/ 
INBre ast) [59].

 (vii) VinDr-Mammo: introduces a large-scale full-
field digital mammography dataset of 5,000 four-
view exams (https:// physi onet. org/ conte nt/ vindr- 
mammo/1. 0.0/) [60].

3.2  Pretraining models in phase off‑line

3.2.1  Data normalization and automatic ROI annotation

An ROI annotation is needed from a large dataset of US and 
mammography images from the above public database to 
improve the previously trained GAN and ResNet models and 
their computational performance. The breast images vary in 
size, see Table 1.

Thus, it is necessary to perform transformations and 
standardize the images taken at different sizes to a single 
dimension (128 × 128 × 1 pixel). It was also necessary to 

https://data.mendeley.com/datasets/wmy84gzngw/1
https://data.mendeley.com/datasets/wmy84gzngw/1
https://n9.cl/qtl48
http://peipa.essex.ac.uk/info/mias.html
http://peipa.essex.ac.uk/info/mias.html
https://biokeanos.com/source/INBreast
https://biokeanos.com/source/INBreast
https://physionet.org/content/vindr-mammo/1.0.0/
https://physionet.org/content/vindr-mammo/1.0.0/
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transform it to a single channel (grayscale pixel) and normal-
ize it in the range [− 1,1] with a mean of 0.5 and a standard 
deviation of 0.5. The torch-vision (pytorch) library and Jupy-
ter notebook algorithm (crop_vindr_images.ipynb) were 
used as the image annotation region processes to identify 
ROIs that may contain lesions.

Figure 1 details the overall process followed in this study.

3.2.2  User ROI extraction and segmentation

As other studies have pointed out [61], to improve the detec-
tion accuracy, smaller patches (i.e., RoIs) where all breast 
masses and micros (e.g., cysts and calcification) are included 
inside this extracted area are generated from the original 
mammogram. In most mammogram images, 32 to 56% are 
background pixels, which do not contribute to breast cancer 
diagnosis.

In this research, the segment anything model (SAM) 
[38] (an encoder-decoder architecture based on NLP 
prompt-based learning) [35] was trained as automatic ROI 

segmentation before being implemented in the Module 
5 (BraNet application phase on-line). SAM is an open-
source software, and the quality of the segmentation masks 
was rigorously previously evaluated, with automatic masks 
deemed high quality and effective for training models, 
leading to the decision to include automatically generated 
masks.

NLP tasks include sentence boundary detection, tokeniza-
tion, and problem-specific segmentations, and the SamAuto-
maticMaskGenerato function was used for automatic mask 
extraction [28]. SAM model is available under a permissive 
open license (Apache 2.0) at https:// segme nt- anyth ing. com.

The SAM predefined hyperparameters used are as fol-
lows: points_per_side (32), points_per_batch (64), pred_
iou_thresh (0.88), stability_score_thresh (0.95), stability_
score_offset (1.0), box_nms_thresh (0.7), crop_n_layers 
(0), crop_nms_thresh (0.7), crop_overlap_ratio (512/1500), 
crop_n_points_downscale_factor (1), point_grids (Null), 
min_mask_region_area (0), and output_mode (‘binary_
mask’). Also, SAM accuracy ROI segmentation is evaluated 

Table 1  US and mammography 
ROIs

Type Training Database Image size (pixels) Benignant Malignant

US I BUSI 500 × 500 427 201
Dataset B - 100 150
BUS (UDIAT) 760 × 570 109 54
Total 1041 636 415

DM I Mini-MIAS 1024 × 1024 118 91
INbreast 3328 × 4084 2106 144

256 × 3328
CBIS-DDSM 3784 × 5912 1225 779

II VinDr-Mammo 3518 × 2800 893 1236
Total 5892 4342 1550

Fig. 1  The BraNet’s workflow has two main phases off-line: (i) breast 
data collection from public databases and (ii) data preparation and 
app testing and evaluation. On-line: (iii) system architecture design 

and (iv) statistical metrics comparison between the mobile applica-
tion and human experts

https://segment-anything.com
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by the intersection-over-union (Jaccard index) metric [18] 
using calculate_stability_score function.

The model was trained on a large and diverse set of masks 
of mammography and US images. These ROIs were previ-
ously extracted from the Mini-MIAS, Inbreast, and VinDr-
Mammo databases (corresponding annotated bounding 
boxes are available in a.csv file). However, it is worth not-
ing that its authors had already classified the ROIs from the 
CBIS-DDSM dataset; thus, no additional ROI extraction was 
required. Regarding US images, RoIs were extracted from 
the BUSI and Dataset B (UDIAT), excluding Dataset A, 
because it already contained RoIs.

A total of 6592 breast ROI images were used for pre-
trained SAM and GAN models, with 4463 mammography 
images (benign and malignant) and 1041 US images, as 
shown in Table 1.

3.2.3  Data augmentation

This technique was previously employed in the phase off-line 
to mitigate the risk of overfitting effectively. To generate new 
realistic images and improve BraNet’s classification task perfor-
mance, all ROIs were previously augmented by a GAN using the 
spectral normalization technique (SNGAN). SNGAN introduces 
a novel weight normalization technique known as spectral nor-
malization to enhance the training stability of the discriminator 
network [62, 63], serving as the foundation for synthetic image 
generation, which use Hinge loss function (see Eq. 1).

where Pdata is the real data distribution, P(z) is a prior distri-
bution on noise vector z, D(x) denotes the probability that x 
comes from the real data rather than generated data, Ex∼Pdata

 
represents the expectation of x from real data distribution 
Pdata , and Ez∼P(z)

 is the expectation of z sampled from noise.
The clean-fid library was used to obtain the FID value, using 

the Tensorflow and PyTorch libraries, some original implemen-
tations of the metric were taken from Parmar et al. [64]. The 
GAN model was trained using a cross-validation technique 
in Google Colab Pro 1 GPU model V100 with CUDA cores 
execution; with the hyperparameters detailed in Table 2.

3.2.4  Cross‑validation analysis

The technique divides the dataset into multiple folds and 
trains (DM: training I (4463) and training II (6592) and US: 
training I (1041)) the model on different subsets while vali-
dating the remaining fold can provide a more robust estimate 
of the model's performance, effectively mitigating the risk 

(1)

L
D
= −E(x,y)∼Pdata

[

min(0,−1 + D(x, y))
]

− Ez∼Pz,yPdata

[

min(0,−1 + D(G(z), y))
]

LG

= −Ez∼Pz,yPdata
D(G(z), y)

of overfitting. It helps detect overfitting early and tune the 
model accordingly. A total of 6933 benign and malignant 
ROIs were split into 80% training and 20% validation, using 
the Sklearn library from Pytorch, see Table 3.

3.2.5  ROI classification process

Before implementing Module 6 (ROI image classification) 
in the BraNet mobil interface, the ResNet model was pre-
trained on a large set of generated mammography and US 
ROIs using also cross-validation technique.

ResNet18 training model The ResNet18 CNN-deep learn-
ing-based classification model has been widely used in 
medical image classification, especially in breast lesion 
diagnosis and detection, and was chosen for its effec-
tiveness in transfer learning, offering reduced training 
time and the automatic extraction of features [40]. This 
approach effectively mitigates the issues of vanishing or 
exploding gradients that can arise from increasing neural 
network depth, ultimately leading to improved accuracy 
[65–68].

Thus, to train the ResNet model and distinguish between 
malignant and benign breast lesions, the datasets were 
divided in two categories: (i) dataset A (original + synthetic 

Table 2  Hyperparameter tunning of deep learning models

Hyperparameter SNGAN ResNet
DM/US DM/US

Batch size 64/32 32/16
Image size 128 × 128 128 × 128
Nro epochs 100 100
Learning rate 2 ×  10–4/1.5 ×  10–4 2 ×  10–5

Optimizer Adam Adam
Activation function LeakyReLU ReLu
β1 0.3 0.1
β2 0.999/0.75 0.9
Latent vector 100 -
Loss function Hinge/BCE 2.190
Optimization function (discriminator) LeakyReLU -
Optimization function (generator) ReLU -

Table 3  Training and validation datasets of DM 80% (5273) and 20% 
(1319) and US 80% (832) and 20% (209) breast images

Classes Training datasets Validation dataset

Image type US DM US DM

Bening 505 3471 131 871
Malignant 327 1802 78 448
Total 832 5273 209 1319
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ROIs) and (ii) dataset B (synthetic ROIs). The model con-
sists of three convolutional layers and two fully connected 
layers. The kernel size for the first convolutional layer is 
5 × 5, and, for the rest, 3 × 3. The size of the first and the 
second fully connected layers are 128 and 2 (the number of 
classes), with a dropout of 0.5. After the flattening and the 
first fully connected layers, the ReLU activation function 
for all layers except the output layer, where softmax was 
used. The model was pre-trained with the PyTorch library 
using a Google Colab Pro 1 GPU model V100 with CUDA 
cores execution; the training hyperparameters are outlined 
in Table 2.

3.3  System architecture in phase on‑line

The system architecture consists of two primary compo-
nents facilitating scalability and system maintenance: (i) 

the mobile application and (ii) the backend server, follow-
ing a client–server architecture.

The mobile application is a client that communicates with 
the backend server to request services and image analysis. 
The backend server processes these requests and returns the 
results to the client for display (see Fig. 2). The backend server 
was developed using react native and was implemented in the 
Python programming language.

The mobile application comprises several interrelated 
components:

• Module 1: Registration, Login Synchronization, and User 
Profile Information. Data generated by the application, 
such as images and metadata, is stored in Firebase (a 
mobile and web application development platform). Fire-
base is also used for user authentication, mobile applica-
tion registration, and log in.

Fig. 2  Client–server architec-
ture to BraNet App
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• Module 2: Image Import allows users to upload breast 
ultrasound and mammography images in PNG, JPG, and 
JPEG formats, with a maximum file size of 10 MB.

• Module 3: Visualization Area (a history of image analy-
sis results, image analysis capabilities, and user assis-
tance).

• Module 4: User ROI extraction.
• Module 5: ROI segmentation (see Section 2.2.2).
• Module 6: ROI Image Classification (see Section 2.2.4).

3.4  Evaluation metrics in phase off‑line and on‑line

3.4.1  Quality of synthetic image

The FID and KID quantitative feature-based metrics have 
been applied to evaluate the quality of real and synthesized 
ROIs generated by GANs models and to compute the dis-
tance between the vector representation of the synthesized 
and authentic images.

Fréchet inception distance (FID): FID compares the 
distributions of the original and synthetic images to assess 
how well the generated images represent the training dataset. 
Lower FID scores indicate better quality images [69], and it 
is calculated as shown in Eq. 2:

Here, µr represents the mean of the feature vector cal-
culated from the real images, µg is the mean of the feature 
vector calculated from the fake images, Σr is the covariance 
of the feature vector from the real images, and Σg is the 
covariance of the feature vector from the fake images.

Kernel inception distance (KID) KID employs the cubic ker-
nel to compare the skewness, mean, and variance [69]. A 
lower KID value signifies a higher visual similarity between 
the actual and generated images. The cubic polynomial ker-
nel is defined as shown in Eq. 3):

where d represents the dimension of the feature space for 
vectors x and y.

(2)FID = ‖�r − �g‖
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3.4.2  BraNet’s classification performance evaluation

For assessing the BraNet’s classifier’s performance, we 
employed a confusion matrix, F1 score (Dice), accuracy 
(Acc), precision (Prec), sensitivity (Sen), recall, and speci-
ficity (Spec) [24] metrics (see Tables 4 and 5). The accuracy 
of the model was calculated using statistical score libraries 
such as the classification report and confusion matrix from 
the Python sci-kit-learn module.

3.4.3  Human expert evaluation

Two senior radiologists were asked to assess, annotate, and 
classify images independently to ensure that BI-RADS catego-
ries are correctly assigned. Representative original ROI images 
for each breast type is available in https:// drive. google. com/ 
drive/ folde rs/ 1HMeq PfI8q L58hA qwVpZ upH6u q4W_ kHrI.

A comparison between the images tested by human 
experts and those annotated in public databases was con-
ducted using an independent test set of 212 mammography 
images (47 malignant and 165 non-malignant) and 78 US 
images (24 malignant and 54 non-malignant).

Two diagnostic radiologists (reader 1 with 20 years of 
experience and reader 2 with 13 years of experience) were 
given a reading test consisting of 290 total original RoI 
images to assign the perceived breast tissue type. The read-
ers rated each image as (1) benign or (0) malignant.

Kappa coefficient and overall accuracy Furthermore, the 
agreement between the two readers’ answers (considering 
all elements of error matrix) was assessed by determining 

Table 4  Confusion matrix to 
distinguish between two classes 
(benign, and malignant)

Actual classes Classes Predicted classes Measures
Positive Negative
C1 (benign) C2 (malignant)

C1 (benign) TP FP PPV
C2 (malignant) FN TN NPV
Measures Sen Spec Acc

Table 5  Validation assessment metrics

Model Equation

Accuracy Acc =
(

TP+TN

TP+TN+FP+FN

)

Sensitivity Sen =
(

TP

TP+FN

)

Specificity Spec =
(

TN

TN+FP

)

Precision Prec =
(

TP

TP+FP

)

F1 score
F1 score = 2 ×

(

Prec × recall

prec +recall

)

https://drive.google.com/drive/folders/1HMeqPfI8qL58hAqwVpZupH6uq4W_kHrI
https://drive.google.com/drive/folders/1HMeqPfI8qL58hAqwVpZupH6uq4W_kHrI
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the kappa coefficient (K), using the ranges between 0 (when 
there is no agreement) and 1 (when there is substantial 
agreement), and is calculated using the Eq. 4. The error 
matrix was calculated by comparing the two readers’ choices 
from five possibilities and was interpreted as follows: < 0.2 
slight; 0.21–0.40 fair; 0.41–0.60 moderate; 0.61–0.80 high; 
and 0.81–1.0 almost perfect [70].

Po is the correctly allocated samples (agreement cases), 
and Pe is the hypothetical random agreement.

The overall accuracy (Eq. 5) allows the description of 
model performance and is calculated by dividing the total 
number of correctly classified samples by the total number 
of samples.

Cs is the number of correct samples classified, and Ns is 
the total number of samples.

4  Results

The main results are categorized into two phases, off-line 
and on-line. First, we introduced the preprocessing and pre-
training models’ section with data augmentation (GAN), 
segmentation (SAM), and classification (ResNet) algo-
rithms. Then, we presented the on-line phase with a practical 
utility of BraNet’s user interface and its modules.

4.1  Preprocessing and pretrained models

4.1.1  Synthetic data to feed the classification network

A significantly number of synthetic RoIs (10,000 (training I) 
and 2000 (training II) mammography RoIs and 4000 US RoIs 

(4)k =
P0 − Pe

1 − Pe

(5)Acc =
Cs

Ns

(training I)) were generated by SNGAN to feed the classifier. 
The loss function and accuracy of the generator and discrimi-
nator play a crucial role in assessing the training stability and 
performance of GANs. A stable GAN is characterized by a 
discriminator loss around 0.5 or higher than 0.7, while the 
generator loss typically ranges from 1.0 to higher values like 
1.5, 2.0, or even more. The accuracy of the discriminator, both 
on real and synthetic images, is expected to hover around 70 to 
80%. Appendix Table 9 presents the accuracy plot to SNGAN.

The average FID and KID values in SNGAN are 
58.80/0.052 and 52.34/0.051 for mammography training I 
and training II, respectively, and 116.85/0.06 for the training 
I in US (see Appendix Fig. 6). The lowest values indicate 
that SNGAN-generated synthetic images closely resemble 
to the original mammography and US images in clinical 
characteristics, suggesting their potential utility in clinical 
data augmentation and training, particularly for enhancing 
diagnostic skills in breast imaging.

4.1.2  ResNet training model

The model shows the highest accuracy in US image classification 
(see Table 6) concerning the mammography dataset. Although 
the network received more mammography images (6592) as 
input (Mini-MIAS, Inbreast, CBIS-DDSM, and VinDr-Mammo) 
with respect to the small number (1041) of US data (BUSI, 
UDIAT, and DATASET A). It means that not only the amount 
of the data is important to train deep learning algorithms. Also, it 
is important to considerer the variety of abnormalities especially 
in the mammography data, such as microcalcifications, nodules, 
mass, asymmetry, and dense breasts, because it can improve the 
accuracy of the ResNet training model.

Therefore, it is essential to monitor the evolution and 
performance of the models using training and validation 
datasets, see Fig. 3a–d. Figure 3a, c displays the loss and 
accuracy values concerning each epoch during the ResNet 
training and validation model using mammography and 
US images, while Fig. 3b, d shows the accuracy, F1 score, 
recall, and precision by each epoch in both image types. 
Appendix Table 10 shows the details of the network training 
and validation dataset.

Table 6  ResNet statistical performance evaluation in US and DM image classification

RESNET18 Image modality

Training I (1041) Training I (4463) Training II (6592)
Image type US (%) DM (%) DMb(%)
Classes Benignant Malignant Benignant Malignant Benignant Malignant
Accuracy 94.7 93.6 80.9 76.9 73.7 72.3
Precision 97 89 92 56 84 59
Recall 93 95 81 77 74 72
F1 score 95 92 86 65 78 65
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The BraNet App Mobil exhibited the highest accuracy in 
benign and malignant US images (94.7%/93.6%) classification 
compared to DM during training I (80.9%/76.9%) and training 
II (73.7/72.3%). And the ResNet model does not improve the 
accuracy of benign and malignant ROI lesion classification 
during training II compared to the previous training I.

4.2  The BraNet and its graphical user interface (GUI)

The mobile app’s user interface was developed using Python 
v3.11 and React Native as a JavaScript framework for cre-
ating native mobile applications compatible with iOS and 
Android platforms. The interface is composed of several 
modules, each serving distinct purposes:

• Module 1: Registration, Login Synchronization, and User 
Profile Information: This module handles user registra-
tion and login functionalities, synchronizing user data 
and providing access to user profile information.

• Module 2: Image Import: Users can import images in 
standard picture formats, such as JPG, JPEG, and PNG, 
with a maximum size limit of 10 MB.

• Module 3: Visualization Area: This area displays loaded 
images. The selected image is displayed in grayscale, 
preserving the original image's aspect ratio (see Fig. 4a).

• Module 4: Manual ROIs Extraction: This module allows 
users to manually or semi-automatically create masks 

and define ROIs within the selected image. Masks are 
represented as binary matrices with the same dimensions 
as the loaded mammography image, where true values 
indicate the ROIs. Users can customize the size and sam-
pling method for RoIs.

• Module 5: ROI Segmentation: Users can segment a sub-
set or the entire set of features from the segmentation 
section (as shown in Fig. 4b). Before performing calcula-
tions on the image, the user must add at least one ROI in 
the “Regions and Masks.”

• Module 6: ROI Image Classification: This module 
employs the ResNet18 model to classify ROI images into 
benign and malignant classes. Example output classes are 
provided in Fig. 4b.

The BraNet’s graphical user interface enhances the user 
experience by providing intuitive image analysis and clas-
sification tools, making it a valuable resource for medical 
professionals and researchers. The practical usage of the tool 
can be accessed via the following link: https:// drive. google. 
com/ file/d/ 1d1vn jQ6Lq Od0fd z65ea Vg791 d7cFR PWO/ view

4.2.1  Comparison of the BraNet with human experts’ 
evaluation

The accuracy percentages of correct rates between benign 
and malign images classification for readers 1 and 2 were 

Fig. 3  Training II and testing plots for mammography images: a loss vs. acc (real ROI data), b loss vs. acc (real + data augmentation), c evalua-
tion metrics (real ROI data), and d evaluation metrics (real + data augmentation)

https://drive.google.com/file/d/1d1vnjQ6LqOd0fdz65eaVg791d7cFRPWO/view
https://drive.google.com/file/d/1d1vnjQ6LqOd0fdz65eaVg791d7cFRPWO/view


2746 Medical & Biological Engineering & Computing (2024) 62:2737–2756

29% and 42%, respectively. The reader agreement was 
assessed using the kappa coefficient, which values are 
70% and 71% in mammography and US classification, 
respectively. Table 7 indicates a fair agreement (0.3) for 
mammography images and moderate agreement (0.4) for 
ultrasound images in both readers, with a change in preva-
lence from the lowest in US images to the highest value 
in mammography images, resulting in a corresponding 
change in sensitivity (19.2/60) to specificity (51/84.4) 
percentage points. This effect was statistically signifi-
cant (p < 0.05) for either sensitivity or specificity in both 
image types.

5  Discussion

The pressing need to transition automatic medical image 
classification by CAD systems from research laboratories 
into practical clinical applications is evident. BraNet’s aims 
to provide an API for setting up a breast image classification 
pipeline with ROI mask extraction and segmentation capa-
bilities. The tool offers an open-source solution for process-
ing US and mammography images, complete with statistical 
metrics for evaluating model performance.

There have been many published examples of AI algo-
rithms that demonstrate excellent performance in cancer 

Fig. 4  BraNet user interface within the toolbox. a Upload the breast image type. b US breast ROI selection and classification as benign class
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detection for screening mammography. These include sev-
eral algorithms trained and evaluated on private and pub-
lic data sets. Table  8 compares BraNet’s performance 
against other state-of-the-art medical image classification 
applications.

However, there is a significant gap in understanding how 
these AI applications will perform with multimodal images 
in the real world when radiologists use them in clinical prac-
tice [75, 76].

The BraNet Mobile App is an open interface for clas-
sifying specific 2D breast image types using deep learning 
models. It is believed that this is the first system for breast 
cancer diagnosis deployed on mobile phones to both types of 
images. The API’s development comprises two main phases: 
(i) off-line to pre-train the deep algorithms and (ii) on-line 
to release the app, which includes several modules, includ-
ing model selection, model extraction (by a human expert), 
segmentation (SAM model), model classification (ResNet18 
model), and model evaluation.

During the off-line phase, the pre-trained GAN algo-
rithm was implemented as synthetic image generation, 
and the image quality was evaluated by two feature-based 
metrics FID and KID. It is widely acknowledged that the 
preprocessing images, quality, and diversity of the training 
dataset greatly impact the training of GAN and CNN deep 
learning models [77–79]. The lower FID and KID values 
mean a higher visual similarity between the real and gen-
erated images. The results (Appendix Fig. 6) indicate that 
the SNGAN model is suitable for mammography and US 
synthetic data generation with average values of FID = 52.4/ 
KID = 0.051 for mammography and FID = 116.85/ 
KID = 0.06 for US.

With these datasets Dataset A (original + synthetic 
ROIs) and Dataset B (real ROIs), the classification model 
was trained. Table 6 and Fig. 3 show the accuracy results 
averaged in BraNet ROI classification are as follows: (i) 
training I in US (94.7 (B)/93.6 (M)) and DM (80.9 (B)/76.9 
(M)) and (ii) training II in DM (73.7 (B)/72.3 (M)). The 
result demonstrated that ResNet model during training II 

with original + synthetic images (where the VirDrMammo 
database was added) did not improve the accuracy (73.7 / 
72.3%) concerning Training I (80.9/76.9). In comparison, 
with radiological experts, accuracy in DM was 29% concern-
ing with 70% in DM for both readers. These results show 
that both API and Readers obtained a better percentage of 
accuracy in classifying the ROIs of mammography images 
than US images.

A final comparison between BraNet and radiological 
experts’ evaluation demonstrates that for the all-breast image 
types, reader accuracy was higher with US images (75%) 
than with original ROI images from public databases. The 
reader agreement was 70% and 71% in mammography and 
US classification, respectively. The kappa value indicates a 
fair agreement (0.3) for mammography images and moder-
ate agreement (0.4) for ultrasound images in both readers 
(Table 7). This can be contrasted with BraNet classification 
accuracy (Table 8), where the API shows the highest accu-
racy in US image classification (Table 6) concerning the 
mammography dataset. Although the network received more 
mammography images (5892) with respect to US (1041). 
It means that not only the amount of the data is important 
to train deep learning algorithms. Also, it is important to 
considerer the variety of abnormalities especially in the 
mammography data, where several BI-RADS categories are 
present (microcalcifications, nodules, mass, asymmetry, and 
dense breasts), and can be affect the accuracy in the ResNet 
training model.

According to the previous results, some limitations in 
implementing BraNet must be addressed in future work. 
One is the need to classify and characterize images based 
on different abnormalities, such as architectural distortion, 
asymmetry, mass, and microcalcification. BraNet no was 
trained using different breast tissue types and variations in 
mammography and US imaging techniques; the ROI clas-
sification process was performed only using two classes 1 
(benignant according to BI-RADS 1–3) and 0 (malignant 
according to BI-RADS 4–6) categories. Oyelade et al. [80] 
indicate that is better to focus on previously classified and 
characterizing abnormalities into architectural distortion, 
asymmetry, mass, and microcalcification so that training 
distinctively learns the features of each abnormality. It gen-
erates sufficient images for each category before training a 
GAN model.

Thus, in future work, we plan to annotate the datasets 
with more fine-grained classes to get more targeted train-
ing in GAN and CNN models. Moving forward, we should 
consider pre-processing with denoising, super-resolution, 
improving the overall image quality and reducing blur and 
artifacts. Also, previous breast tissue types of classifica-
tion are needed to obtain a diverse range of synthetic data, 
resulting in a more accurate image generation and classifi-
cation process using GAN and convolutional algorithms. 

Table 7  Interrater reliability, 
Cohen’s kappa, and statistical 
values for 2 raters in both 
classes

Method DM US

Subjects 212 78
Agreement % 70 71
Kappa 0.294 0.426
p-value  < .001  < .001
Sensitivity 19.2% 60.0%
Specificity 51.6% 84.8%
Prevalence 69.5% 57.7%
Accuracy 29.0% 70.5%
PPV 47.5% 84.4%
NPV 21.9% 60.9%
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We must also compare our image classification with other 
TL models, such as Nasnet and DenseNet, to ensure we 
use the most effective techniques.

An updated version of the BraNet application and pro-
spectively explore the real AI/human interaction could be 
implemented, which can recognize full 2D images and not 
only resized images of 128 × 128 pixels. The app could be 
used for performance and load testing to assess how the 
application processes many images simultaneously. It simu-
lates an increasing number of users or requests to see how 
the application performs under progressively higher loads.

We implement the app as a web server and realize scalability 
testing; incrementally increase resources (like CPU, GPU, and 
memory) available to the application and measure performance 
improvement to determine how efficiently the application scales; 
make full use of available CPU/GPU cores to process images in 
parallel, enhancing throughput; and utilize image compression 
techniques to reduce the size of high-resolution breast images 
without losing critical details necessary for analysis.

Finally, the use of IA in medical diagnosis brings about a 
range of ethical considerations that must be carefully navi-
gated to ensure that the integration of these technologies 

Table 8  Comparison of the BraNet’s performance against other deep learning applications

Author Application name Description Acc/Sen/Spec/Prec /AUC (%)

Gibson et al. [6] NiftyNet A DL open-source platform used in three medical image 
analysis applications (MRI, CT and US), including a condi-
tional GAN model as ultrasound image generation

88/7.5/9.1/-/-

Pang et al. [71] TripleGAN Method to perform data augmentation in breast US images 
and feed a CNN mode to classify breast masses

90.41/87.94/ 85.86/-

Al-Dhabyani et al. [43] AlexNet + GAN (CNN) US breast classification with data augmentation. The model 
examines two different methods: a CNN approach and 
a transfer learning (TL). The results confirm an overall 
enhancement using augmentation methods with TL clas-
sification methods

-BUSI 78/-/-/-/-
-Dataset B 80/-/-/-/-
-BUSI + DatasetB 84/-/-/-/-
TL 94/-/-/-/-
-BUSI 92/-/-/-/-
-Dataset B 99/-/-/-/-
-BUSI + DatasetB

Jiménez et al. [72] Radiomic tool Colposcopy image classification combining UNET + SVM as 
segmentation and classification cervix abnormalities

80/70/48.8/-

Dihge et al. [73] NILS A web-based tool for noninvasive lymph node staging in 
breast cancer

-/90/34/-/71

To T. et al. [74] DUV-WSI DUV-WSI Deep ultraviolet (DUV) fluorescence scanning 
microscopy provides rapid whole-surface imaging (WSI) 
of breast tissues. Images are split into small patches 
(512 × 512), and features are extracted using a pre-trained 
ResNet 50 as patch classification

81.7/91.7/66.7/-/-

Qi et al. [29] Deep-CAD system The breast cancer system is deployed on mobile phones, 
takes a photo of the US as input, and performs diagnosis 
on each image. Then, the system to classify images into 
malignant and non-malignant using CNNs

89.34/87.31/87.49

Ours BraNet A deep learning tool for breast regions classification using 
mammography and US images DM (TRAINING I) Acc 94.7/93.6

Prec 97/89
Recall 93/95
F1 score 95/92

DM (training II) Acc 93.7/ 72.3
Prec 84/ 59
Recall 74/72
F1 score 78/65

US (training I) Acc 80.9/76.9
Prec 92/56
Recall 81/77
F1 score 86/ 65
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benefits patients, healthcare providers, and the broader 
healthcare system responsibly and equitably. It is essential 
to highlight ethical considerations regarding using artificial 
intelligence in developing CAD systems in healthcare.

The patient’s well-being is paramount, necessitating a 
comprehensive approach to protecting their data privacy 
and confidentiality [81, 82]. This project ensures patient 
privacy through the anonymization and coding of training 
image databases during the application’s first and second 
modules, which are also publicly available.

Another ethical consideration is the fairness of AI mod-
els [83], which requires providing equitable healthcare 
outcomes across various patient demographics. Thus, the 
developed application aims to contribute to medical service 
equity, particularly by facilitating pathology diagnosis in 
rural groups and sectors typically deprioritized in healthcare, 
especially in developing countries.

Finally, transparency regarding the capabilities and limi-
tations of CAD systems is fundamental [84],ensuring that 
medical staff and patients know that decisions and outcomes 
adhere to ethical standards. In this context, the developed 
application is merely a test prototype that aspires to achieve 
the necessary maturity for use in a real healthcare setting, 
ensuring the requisite medical reliability.

6  Conclusions

In this paper, we have introduced BraNet, a mobile app for breast 
image classification based on deep learning algorithms. The API 
enables the rapid construction of breast image classification 
workflows, encompassing data input/output, ROI mask extrac-
tion, segmentation, and evaluation metrics. The client–server 
architecture, coupled with its open interface, empowers users 
to customize the pipeline and swiftly establish comprehensive 
medical image classification setups using Python libraries and 
the react native framework for creating native mobile applica-
tions on iOS and Android. We have demonstrated the functional-
ity of the BraNet app by conducting automatic cross-validation 
on data augmentation, ROI segmentation, and classification 
using public ultrasound and mammography datasets, resulting in 
a preclinical tool. After implementing some improvements and 
future updates, BraNet will facilitate the migration of medical 
image segmentation and classification from research laborato-
ries to practical applications. Also, ensuring that the App com-
plies with all regulations and standards governing data privacy 
and security in healthcare is essential. It is only a preclinical test-
ing phase; thus, there is still work to be done in this area. BraNet 
currently offers a pipeline for breast image segmentation and 
classification, and it will continue to receive regular updates and 
extensions in the future. This data must be rigorously analyzed, 
reported, and often published in scientific journals to ensure its 
accuracy and reliability.
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Fig. 5  ResNet 18 classification model
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Appendix 2

Table 9  The GAN discriminator’s accuracy on real (green) and fake (red) images during training. Figures illustrate the loss and accuracy trends 
for SNGAN

GAN 
Model

Image 
Type

Generator and Discriminator GAN performance

SN
GAN

DM

Training 

I

DM 

Training 

II

US
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Appendix 3

Training Image 

Type

FID/KID

I DM

II

I US

Fig. 6  The FID and KID values a. SNGAN-FID values using mammography images during training I and II. b. SNGAN-FID values taken from 
US images
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