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Resumen
Las ecuaciones diferenciales son herramientas fundamentales para modelizar y
analizar sistemas dinámicos en Ingeniería. Las ecuaciones diferenciales permiten a
los ingenieros describir cómo cambian en el tiempo y/o en el espacio las magnitudes
físicas como, por ejemplo, la posición de un sistema vibratorio (como puede
ser un muelle), la deflexión de un estructura mecánica (como puede ser una
viga), etc. Por otra parte, muchos sistemas del mundo real están afectados por
incertidumbres. Por ejemplo, los errores de medición, la comprensión incompleta
de fenómenos físicos complejos, el ruido termal en los circuitos electrónicos o las
variaciones en las propiedades de los materiales debido a su heterogeneidad son
factores que involucran cierto nivel de aleatoriedad que debe tenerse en cuenta
en la modelización. Esta modelización suele realizarse en muchos casos mediante
ecuaciones diferenciales que, por tanto, contienen en su formulación magnitudes
con incertidumbre, dando lugar a ecuaciones diferenciales aleatorias/estocásticas.
Proporcionar métodos rigurosos para estudiar dichas ecuaciones es fundamental
para desarrollar soluciones robustas y fiables de problemas de Ingeniería.

Esta tesis presenta un análisis probabilístico de tres clases de problemas de Inge-
niería Mecánica, como son los sistemas vibratorios (osciladores), las estructuras
mecánicas (deflexión de vigas) y un problema mecánico modelado por una ecua-
ción diferencial fraccionaria aleatoria. A lo largo del trabajo se han aplicado
diferentes técnicas probabilísticas para lograr una comprensión más profunda del
comportamiento de estos sistemas bajo excitaciones aleatorias. Además, en esta
tesis nos hemos centrado en construir aproximaciones, no sólo de los momentos
estadísticos principales (media, varianza, etc.), sino también la función de densidad
de probabilidad de la respuesta (solución) de los distintos modelos estudiados.
Proporcionar una descripción probabilística completa de este tipo de modelos
mecánicos es un tema que ha atraído un notable interés tanto de matemáticos
como de ingenieros durante las últimas décadas.

En primer lugar, se estudian dos osciladores aleatorios no lineales en los que el
término de restauración depende de la posición, en el primer caso, y de la posición
y la velocidad, en el segundo. El término no lineal está afectado por un pequeño
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parámetro de perturbación. Como en ambos casos no podemos obtener la solución
explícitamente, utilizaremos el método de perturbación estocástica para construir
aproximaciones de la solución estocástica y sus primeros momentos estadísticos.
Esto, en combinación con el principio de máxima entropía, nos permitirá obtener
aproximaciones de la función de densidad de probabilidad estacionaria de la
solución. En segundo lugar, se aborda el estudio de dos modelos estáticos aleatorios
que describen la deflexión de una viga en voladizo. Se distinguen dos escenarios
con respecto al tipo de procesos estocásticos que modelan la distribución de la
carga que soporta la viga, y suponiendo que algunos parámetros del modelo,
como el módulo de Young o el parámetro de rigidez flexural, pueden ser aleatorios.
Adaptamos convenientemente distintas técnicas estocásticas para calcular de forma
exacta o aproximada la función de densidad de probabilidad de la deflexión de la
viga en voladizo en cada uno de los dos modelos antes mencionados.

Por último, se revisita un modelo sencillo propuesto recientemente para estudiar
una clase de osciladores aleatorios formulados mediante la derivada fraccionaria de
Caputo. Concretamente se construyen aproximaciones de la función de densidad de
probabilidad de la respuesta estocástica aprovechando el método de transformación
de variables aleatorias adaptado a procesos estocásticos. En este estudio se dan
condiciones suficientes sobre los parámetros (que son variables aleatorias) del
modelo para garantizar la convergencia de estas aproximaciones. Los resultados
de este estudio pueden ser de utilidad para acometer en el futuro el estudio de
osciladores aleatorios más complejos formulados mediante ecuaciones diferenciales
fraccionarias.
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Resum
Les equacions diferencials són ferramentes fonamentals per a modelitzar i analitzar
sistemes dinàmics en Enginyeria. Les equacions diferencials permeten als enginyers
descriure com canvien en el temps i/o l’espai les magnituds físiques com, per
exemple, la posició d’un sistema vibratori (com pot ser un moll), la deflexió d’una
estructura mecànica (com pot ser una viga), etc. Per altra banda, molts sistemes
del món real estan afectats per incerteses. Per exemple, els errors de mesurament,
la comprensió incompleta de fenòmens físics complexos, el soroll termal en els
circuits electrònics i les variacions en les propietats dels materials a causa de la
seua heterogeneïtat són factors que involucren cert nivell d’aleatorietat que ha
de tindre’s en compte en la modelització. Esta modelització sol realitzar-se en
molts casos mitjançant equacions diferencials que, per tant, contindrà en la seua
formulació incertesa, donant lloc a equacions diferencials aleatòries/estocàstiques.
Proporcionar mètodes rigorosos per a estudiar estes equacions és fonamental per a
desenvolupar solucions robustes i fiables de problemes d’Enginyeria.

Esta tesi presenta una anàlisi probabilística de tres classes de problemes d’Enginye-
ria Mecànica, com són els sistemes vibratoris (oscil·ladors), les estructures mecàni-
ques (deflexió de bigues) i un problema mecànic modelat per una equació diferencial
fraccionària aleatòria. Al llarg del nostre treball, hem aplicat diferents tècniques
matemàtiques per a aconseguir una comprensió més profunda del comportament
d’estos sistemes sota excitacions aleatòries. A més a més, en esta tesi ens hem
centrat en construir aproximacions, no sols dels moments estadístics principals
(mitjana, variància, etc.), sinó també la funció de densitat de probabilitat de la
resposta (solució) dels diferents models estudiats. Proporcionar una descripció
probabilística completa d’esta mena de models mecànics és un tema que ha atret
l’interés tant de matemàtics com d’enginyers durant les últimes dècades.

En primer lloc, estudiem dos oscil·ladors aleatoris no lineals en els quals el terme
de restauració depén de la posició, en el primer cas, i de la posició i la velocitat, en
el segon. El terme no lineal està afectat per un xicotet paràmetre de pertorbació.
Com en tots dos casos no podem obtindre la solució explícitament, utilitzarem
el mètode de pertorbació estocàstica per a construir aproximacions de la solució
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estocàstica i els seus primers moments estadístics. Això, en combinació amb el
principi de màxima entropia, ens permetrà obtindre aproximacions fiables de la
funció de densitat de probabilitat estacionària de la solució. En segon lloc, s’aborda
l’estudi de dos models estàtics aleatoris que descriuen la deflexió d’una biga en
volada. Distingim dos escenaris diferents respecte al tipus de processos estocàstics
que modelen la distribució de la càrrega que suporta la biga i suposant aleatorietat
per a alguns paràmetres del model, com el mòdul de Young o el paràmetre de
rigidesa flexural. Adaptem convenientment diferents tècniques estocàstiques per a
calcular de manera exacta o aproximada la funció de densitat de probabilitat de
la deflexió de la biga en volada en cadascun dels dos models abans esmentats.

Finalment, es revisita un model senzill proposat recentment per a estudiar una
classe d’oscil·ladors aleatoris formulats mitjançant la derivada fraccionària de
Caputo. Concretament, es construïxen aproximacions de la funció de densitat
de probabilitat de la resposta estocàstica aprofitant el mètode de transformació
de variables aleatòries adaptat a processos estocàstics. En este estudi es donen
condicions suficients sobre els paràmetres (que són variables aleatòries) del model
per a garantir la convergència d’estes aproximacions. Els resultats d’este estudi
poden ser d’utilitat per emprendre en el futur l’estudi d’oscil·ladors aleatoris més
complexos formulats mitjançant equacions diferencials fraccionàries.
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Abstract
Differential equations in Engineering are fundamental tools for modelling and
analysing dynamical systems. Differential equations allow engineers to describe
how physical quantities change over time and/or space, such as vibratory systems,
mechanical structures, etc. However, many real-world systems are influenced by
uncertainties. For instance, measurement errors, incomplete understanding of
complex physical phenomena, random fluctuations like electronic circuit noise, and
unpredictable material properties variations are aleatoric factors. Understanding
both deterministic and random/stochastic differential equations is, therefore, vital
for developing robust and reliable engineering solutions in a random world.

This thesis presents a comprehensive probabilistic analysis of three mechanical
engineering problems: vibratory systems (oscillators), mechanical structures (de-
flection of beams), and a foundational mechanical problem modelled by a random
fractional differential equation. Throughout our work, we have applied different
mathematical techniques to better understand these system’s behavior under ran-
dom excitations. A significant focus has been on accurately approximating not
only the main statistical moments but also the probability density function of the
model’s response (solution) of the models studied throughout this dissertation.
Providing a complete probabilistic description of such types of mechanical models
is a topic that has attracted the interest of mathematicians and engineers during
the last decades.

In the first place, we will study two nonlinear random oscillators where the
restoring term depends on the position, in the first case, and on the position and
velocity, in the second one. The nonlinear term is affected by a small perturbative
parameter. As in both cases, we cannot obtain the solution explicitly, we will use
the stochastic perturbation method to construct approximations of the stochastic
solution and its first statistical moments. This, in combination with the principle of
maximum entropy, will result in obtaining reliable approximations of the stationary
probability density function of the response. Second, we will study two models
describing the deflection of a random static cantilever beam. We distinguish two
different scenarios with respect to the type of stochastic processes modelling the
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distribution of the load spanned the beam and assuming randomness for some
model parameters such as the Young’s modulus or the flexural rigidity parameter.
We then conveniently adapt different stochastic techniques to calculate exactly or
approximately the probability density function of the deflection of the cantilever.

Finally, we will revisit a simple model recently proposed to study a class of random
oscillators formulated via the Caputo fractional derivative. We will construct
approximations of the probability density function of the stochastic response,
taking advantage of the random variable transformation method. We rigorously
prove the convergence of these approximations under mild conditions of the model’s
parameters. This approach can inspire the study of more complex oscillators
formulated via fractional differential equations.
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Chapter 1
General Introduction

In modern engineering, the modelling of complex systems often involves uncertain-
ties that cannot be ignored. Many problems arising in Physics and Engineering
lead to differential equations whose data (initial/boundary conditions, forcing term
and/or coefficients) must be set from experimental information that involves what
is usually termed, epistemic (or reducible) randomness [74]. Despite this type of
uncertainty can possibly be reduced by using accurate measurements or improve-
ments in the modelling process, there is another uncertainty source often met in
mathematical modelling of real-world problems called aleatory (or irreducible)
randomness, which comes from the intrinsic variability of the phenomenon to be
modelled. This approach leads to the formulation of random/stochastic differen-
tial equations [89, 54]. Apart from answering fundamental questions about the
existence, uniqueness, and continuous dependence of the solution with respect to
the model parameter or stability, solving a random differential equation means not
only calculating, exact or approximately, its solution, which is a stochastic process
but also to determine its main statistical information like the expectation or the
variance. However, a more ambitious goal is to calculate the finite distribution
functions (usually termed the fidis) of the solution, being the first probability
density function (1-PDF), the main fidis since by integration, one can calculate
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Chapter 1. General Introduction

any one-dimensional moment (so including the mean and the variance), and also
the probability that the solution lies within an interval of specific interest [89]. In
real-world applications of Physics or Engineering, this fact is a key point since it
allows us to calculate relevant information such as, for example, the probability
that the position and velocity of an oscillator subject to stochastic inputs lie on a
specific interval or the probability of collapsing a cantilever beam whose loads are
randomly distributed, etc.

This thesis applies differential equations with uncertainties to study three classes
of mechanical engineering problems: vibratory systems (oscillators), mechanical
structures (deflection of beams), and a foundational mechanical problem modelled
by a random fractional differential equation. To face these probabilistic models, we
first construct, exactly or approximately, the solution of the corresponding model
using different analytical methods, such as the Laplace transform and the stochastic
perturbation technique. Afterward, we apply some probabilistic techniques, such
as the Random Variable Transformation (RVT) method and the Principle of
Maximum Entropy (PME), to obtain the probability density function (PDF) to
the solutions of those models. This approach is crucial for better describing the
dynamics of the engineering systems under study.

Before studying the aforementioned probabilistic models from Chapter 3 to Chap-
ter 7, we first include, in Chapter 2 the main definitions and results that will be
required throughout the thesis.

In Chapter 3 and Chapter 4, we analyze two families of nonlinear oscillators
subject to random external forces utilizing the stochastic perturbation method
as a unifying technique. These types of oscillators can be formulated through
differential equations of the form

Ẍ(t) + f(Ẋ(t), X(t))) = Y (t), t > 0, (1.1)

where f(·) is a nonlinear function and Y (t) is a stochastic external source, which
acts upon the system producing random vibrations.

The study of this type of vibratory system is encountered, for example, in Physics
(in the analysis of different types of oscillators) and in Engineering (in the analysis
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of road vehicles and the response of structures to earthquakes’ excitations or to sea
waves). For example, the model (1.1) where f(Ẋ(t), X(t))) := 2βẊ(t)+ω2

0X(t), has
been used, from the original contribution [11], to describe the effect on earthbound
structures of earthquake-type disturbances being X(t) the relative horizontal
displacement of, for example, the roof of a building with respect to the ground
[98]. The nature of vibrations in this type of system is usually random because
they are spawned by complex factors that are not known deterministically but
are statistically characterized via measurements that often contain errors and
uncertainties. While oscillators in Physics and Engineering systems have been
extensively studied in deterministic settings [2, 28], particularly in nonlinear cases
[106, 52, 53], stochastic analysis is more appropriate as it provides a deeper
understanding of their dynamics under real-world conditions. As previously said,
this will be the focus of our study in Chapter 3 and Chapter 4. Specifically, in
Chapter 3, the restoring term depends only on the position, while, in Chapter 4,
it depends on both position and velocity. This apparently small change in the
restoring term entails the study of the above-mentioned oscillators, which must
be performed separately. In both chapters, assuming that Y (t) satisfies certain
hypotheses that will be specified later, we compute reliable approximations, not
only of the mean, the variance, and the covariance (as is usually done) but of higher
moments of the steady-state nonlinear oscillator. We then combine the foregoing
information related to higher moments and the PME method to construct reliable
approximations of the PDF of the steady-state solution. To show the versatility of
the theoretical results obtained in these two chapters, different types of external
stochastic inputs, such as the white noise, Ornstein-Uhlenbeck, or trigonometric
process, are considered in the numerical examples.

The aim of Chapter 5 and Chapter 6 is to contribute to the development and
application of stochastic methods to study foundational problems in the realm of
civil engineering structures. In particular, we will address the stochastic analysis
of the deflection experienced by a load-carrying beam and, more specifically, a
cantilever beam.

Beams are considered one of the most important structural elements in civil
engineering. They are key elements to support the floor of a building, as structural
components of bridges, or to build balconies, just to cite a few. If we apply loads
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to these above-mentioned beams, for example, the weight of building materials
or furniture, the flow of cars on a bridge, or people on the balcony, we have to
ensure that the structure can support these loads so as not to collapse. To properly
design a beam, it is necessary to know some key engineering characteristics, such
as the static deflection, the bending moment, or the shear force. To mathematically
describe these characteristics, as a first simplified approach, we can use Euler-
Bernoulli’s beam theory, also called shear rigid-beam or classical beam theory,
[75]. In the context of this theory, the equation governing the deflection, Y (x),
of a beam under a distributed load Q(x) is given by the following fourth-order
differential equation

d2

dx2

(
EI

d2Y (x)
dx2

)
= Q(x), (1.2)

where E represents Young’s modulus of the material, and I is the moment of
inertia of the beam’s cross-section. This model is a simplification of the theory
of elasticity that allows us to model the deflection of a static straight-axis beam
as a function of the applied load, provided it undergoes small deflections. The
deflection of a beam using Euler-Bernoulli’s beam model has been widely studied
from a deterministic point of view [84, 9, 18]. However, it is more realistic to
approach the corresponding study from a stochastic standpoint since uncertainties
are often present due to, for example, the heterogeneity of the beam materials
or the lack of knowledge of the physical phenomenon because of its own inherent
complexity. More accurately, the heterogeneity of the beam materials makes it
more realistic to assume that both the values of the beam’s moment of inertia
and Young’s modulus are random variables rather than deterministic constants.
In addition, the loads applied on a beam may vary randomly at each of its spatial
points due to environmental factors (such as the wind pressure or the snow load
on the ground) or to the use for which it has been built (such as the flow of people
on balconies, or vehicles on bridges), for instance. This latter motivates modeling
the load on a beam by a spatial stochastic process rather than via a deterministic
function. These reasons have motivated numerous probability-based methods over
the last few decades to better design and analyze civil engineering structures.
For instance, in [65], it is obtained the mean and covariance of the deflection of
a simply supported beam with stochastic bending flexibility, assuming that the
load is deterministic. In [43], authors assume that elastic modulus is a random
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variable, and then the stochastic finite element method is applied to calculate the
mean, standard deviation, and coefficient of displacements. In [76], the authors
combine polynomial chaos with Neumann expansion method to obtain closed-form
expressions for the first two response moments and, then they apply the results
to a cantilever beam, where the bending rigidity of the beam is assumed to be a
stationary Gaussian random field.

Assuming that the beam is fixed at the origin, i.e., Y (0) = Y ′(0) = 0, and adding
adequate endpoint values, model (1.2) allows us to study the deflection of beams
with different supports: simply supported (Y (l) = Y ′′(l) = 0), built-in or fixed end
(Y (l) = Y ′(l) = 0) and free end (Y ′′(l) = Y ′′′(l) = 0), for example. As previously
indicated, in this thesis, we focus on the stochastic analysis of the cantilever case,
where the beam is firmly fastened at the origin, x = 0, but with no support at the
end, x = l. The boundary conditions for this configuration are:

Y (0) = 0, (null deflection at the embedment),

Y ′(0) = 0, (null slope at the embedment),

Y ′′(l) = 0, (null moment at the free end),

Y ′′′(l) = 0, (null shear at the free end).

(1.3)

While this thesis deals primarily with the stochastic analysis of the cantilever case,
the same probabilistic techniques presented throughout Chapters 5 and 6 can also
be applied to beams with simply supported or fixed ends.

Specifically, in Chapter 5, we study model (1.2) in the case that Young’s modulus,
E, is a random variable with an arbitrary PDF while the loads are randomly
distributed according to different stochastic processes describing punctual and
continuous loads. In Chapter 6, we face the most challenging scenario where the
flexural rigidity, EI, is random, and the loads are applied on the beam according
to a Poisson delta-correlated process. This latter scenario describes the complex
case of cars crossing a bridge or the loads on a balcony occupied by people in
movement. In both chapters, we focus on the computation of the 1-PDF of the
deflection and the PDF of other mechanical quantities of interest, such as the
shear force or the bending moment. The main stochastic tools to conduct the
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study are the RVT method in Chapter 5 and the PME method in Chapter 6. In
both chapters, all the theoretical findings are illustrated by different numerical
experiments.

Over the last few decades, many contributions have proposed reformulations of
classical models in Mechanics using generalized derivatives. More specifically,
fractional derivatives have been utilized to model memory effects, aging in de-
vices and/or structures, viscoelasticity in materials, etc., [80, 5, 57]. On the other
hand, we have already pointed out the importance of including uncertainties
when modelling physical processes. On account of these two inspiring approaches,
several stochastic/random mechanical models using fractional derivatives have
been proposed in recent publications, [80, 86, 29]. The aim of Chapter 7 is to
extend the random analysis of a foundational mechanical model recently studied
in [12], taking advantage of the RVT method. Specifically, in this chapter, we
compute approximations of the PDF of the solution stochastic process of a random
fractional differential equation having a power-law generalized coefficient that
includes, as a particular case, the harmonic oscillator, so extending the classical
deterministic theory. The theoretical results are illustrated with different examples.
These instances are validated against the non-fractional model by imposing the
order of the fractional derivative approaches to 2, which corresponds to the random
harmonic oscillator.

The main conclusions of the thesis are presented in Chapter 8.

Finally, we want to point out that this thesis, heavily related to Probabilistic
Mechanical Engineering, has been developed within some of the goals of the two
following competitive research projects, whose principal investigators have been,
respectively, the advisors:

- Ecuaciones Diferenciales Aleatorias. Cuantificación de la Incertidumbre y
Aplicaciones. PID2020-115270GB-I00. IPs: Juan Carlos Cortés López and
Rafael Villanueva Micó. Agencia Estatal de Investigación.

- Métodos Computacionales para Ecuaciones Diferenciales Aleatorias. Apli-
cación a Sistemas Vibratorios. AICO/2021/302. IPs: María Dolores Roselló
Ferragud and Julia Irene Real Herráiz. Generalitat Valenciana.
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Chapter 2
Stochastic Preliminaries

For the sake of completeness, in this chapter, we will briefly summarise some
important definitions, properties, and results for random variables and stochastic

processes that will be required throughout the thesis.

2.1 Probability, random variables and stochastic processes

To properly approach the study of random and stochastic differential equations, it
is essential to first establish a solid background in the fundamental concepts of
probability theory. Hereinafter, we will follow the definitions and notations given
in [63], [17], and [89]. We briefly start by defining what a probability space, a
random variable, and a stochastic process are.

A probability space, (Ω, F ,P), is a triplet made up of a sample space Ω, which
includes all possible outcomes of a random experiment, a σ-algebra, F , that is a
family of subsets of Ω, usually call events, that includes all the sets resulting from
operations such as union, intersection, etc., of a numerable collection of themselves,
and a probability measure, P, which assigns a probability to each event in F .
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A random variable is a measurable function from a probability space to the real
numbers. Formally, given a probability space (Ω, F , P ), a random variable X maps
outcomes in Ω to real numbers such that for every Borel set B in R, the preimage
X−1(B) belongs to F . Recall that intervals are typical examples of Borel sets in
the real line. Random variables enable the quantification and analysis of random
phenomena by translating abstract outcomes into numerical values.

A stochastic process is a collection of random variables indexed by time (or space),
{X(t), t ∈ T}, where T is the index set. For each t ∈ T , X(t) is a random variable
defined on a common probability space (Ω, F , P ). Stochastic processes model
dynamic systems where states evolve randomly over time (or space), allowing the
analysis and prediction of complex systems under uncertainty.

Next, we will define second-order variables and processes and explore their proper-
ties, including mean square convergence, continuity, differentiability, and integra-
bility.

A real random variable, X, that satisfies E
[
X2] < ∞ is termed a second-order ran-

dom variable. Here E[·] denotes the expectation operator. The space (L2(Ω), ⟨·, ·⟩)
is the set of all second-order random variables endowed of the following inner
product ⟨X, Y ⟩ =

√
E [XY ]. From this inner product, one derives the following

norm, usually called 2-norm, ∥X∥2 =
√
E [X2] < +∞. It can be proved that

(L2(Ω), ⟨·, ·⟩) is a Hilbert space.

In this space, a key inequality, usually referred to as Schwarz’s inequality, is the
following:

E [XY ] ≤ ∥X∥2∥Y ∥2, X, Y ∈ L2(Ω). (2.1)

A stochastic process {X(t), t ∈ T}, where T is a closed interval in R, is called a
second-order stochastic process if, for each t ∈ T , X(t) is a second-order random
variable.

A sequence {Xn : n ≥ 0} defined in L2(Ω) is said to converge in mean square
(m.s.) to a random variable X ∈ L2(Ω) if the following condition holds:

lim
n→∞

∥Xn − X∥2 = 0.
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When this condition is met, we denote this convergence as Xn
m.s.−−−−→

n→∞
X.

A second-order stochastic process {X(t), t ∈ T} is m.s. continuous at t ∈ T if

X(t + ∆t) m.s.−−−−→
∆t→0

X(t).

The m.s. derivative of the second-order stochastic process {X(t), t ∈ T}, denoted
as {dX(t)

dt , t ∈ T}, if the following m.s. convergence

X(t + ∆t) − X(t)
∆t

m.s.−−−−→
∆t→0

dX(t)
dt

,

holds.

Consider a partition P = {a = tn,0 < tn,1 < · · · < tn,n = b} of the interval
[a, b] ⊂ R, such that ∆n = max{tn,k − tn,k−1 : k = 1, . . . , n} → 0 as n → +∞. Let
t′
n,k be an arbitrary point in [tn,k−1, tn,k). Suppose f(t, u) is a deterministic function

defined on the interval [a, b] and Riemann integrable for every u ∈ U , where U is a
subset of R. We say that the second-order stochastic process {f(t, u)X(t) : t ∈ T}
is m.s. Riemann integrable over [a, b] if for each u ∈ U , the following m.s. limit
exists for some sequence of partitions of [a, b]

n∑
k=1

f(t′
n,k, u)X(t′

n,k)(tn,k − tn,k−1) m.s.−−−−−→
n→+∞

Y (u),

where Y (u) =
∫ b

a f(t, u)X(t)dt.

One function whose calculation will be a main objective throughout this thesis is
the PDF of the solution of a random differential equation.

Let X = X(t), t ∈ T ⊂ R be a stochastic process, being T an interval of the real
line. The probability distribution of X is characterized by its finite-dimensional
distributions. These describe the distributions of the random vectors

(Xt1 , . . . , Xtn), t1, . . . , tn ∈ T, n ≥ 1.
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For every finite set {t1, t2, . . . , tn} of T, there exist corresponding random variables
X1 = X(t1), X2 = X(t2), . . . , Xn = X(tn) with a well-defined joint distribution
function

FX1,X2,...,Xn(x1, t1; x2, t2; . . . ; xn, tn)

= P [{ω ∈ Ω : X1(t1)(ω) ≤ x1, X2(t2)(ω) ≤ x2, . . . , Xn(tn)(ω) ≤ xn}] , n ≥ 1.

This joint distribution function is often denoted as Fn(x1, t1; x2, t2; . . . ; xn, tn),
and referred to it as n–th distribution function. Its associated n–th PDF is defined
by

fn(x1, t1; x2, t2; . . . ; xn, tn) = ∂nFn(x1, t1; x2, t2, . . . ; xn, tn)
∂x1∂x2 . . . ∂xn

,

provided the previous partial derivatives exist.

For fixed n ≥ 1, the collections {F1, . . . , Fn} or {f1, . . . , fn} are known as the fidis.
When n = 1, we call it the 1-PDF, which we will work with throughout the thesis.
We will denote it as fX(t)(x), where X(t) is a stochastic process with t ∈ T .

The calculation of the 1-PDF is of great usefulness from a practical standpoint
since it permits determining the mean, µX(t), and the variance, σ2

X(t), at each
point t ∈ T ,

µX(t) = E[X(t)] =
∫ ∞

−∞
xfX(t)(x) dx, (2.2)

and
σ2

X(t) = E[(X(t) − µX(t))2] = E[(X(t))2] − (µX(t))2, (2.3)

respectively. Additionally, further one-dimensional higher moments with respect
to (w.r.t.) the origin and centered at the mean can also be calculated by means of
the 1-PDF,

E[(X(t))m] =
∫ ∞

−∞
xmfX(t)(x) dx, m = 1, 2, . . . ,

and

E[(X(t) − µX(t))m] =
∫ ∞

−∞
(x − µX(t))mfX(t)(x) dx, m = 1, 2, . . . ,
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respectively, provided the above integrals exist and are finite. Fixed an arbitrary
point t ∈ T , the 1-PDF is also particularly relevant to calculate the probability
that X(t) lies on a certain interval of specific interest, say [x1, x2],

P[x1 ≤ X(t) ≤ x2] =
∫ x2

x1

fX(t)(x)dx.

Let {X(t) : t ∈ T} be a stochastic process. Its n–th characteristic function is
defined by

φn,X(u1, t1; . . . ; un, tn) = E
[
ei
∑n

j=1
ujX(tj)

]
=
∫ ∞

−∞
· · ·
∫ ∞

−∞
ei
∑n

j=1
ujxj fn(x1, t1; . . . ; xn, tn)dx1 · · · dxn,

where i =
√

−1 is the imaginary unit. An important property of this function is
that always exists.

In addition to the one-dimensional functions µX(t) (mean) and σ2
X(t) (variance),

which have been previously defined via the 1-PDF, one can also introduce the
following two-dimensional associated with a second-order stochastic process,

ΓX(t1, t2) = E[X(t1)X(t2)], t1, t2 ∈ T,

CovX(t1, t2) = Cov [Xt1 , Xt2 ] = E[(X(t1) − µX(t1))(X(t2) − µX(t2))]
= ΓX(t1, t2) − µX(t1)µX(t2), t1, t2 ∈ T,

called correlation function and covariance function, respectively.

The correlation function has the following properties that will be utilized in some
chapters of this thesis,

- Symmetry: ΓX(t1, t2) = ΓX(t2, t1). This means that the correlation between
X(t1) and X(t2) does not depend on the order of t1 and t2.

- Boundedness: ΓX(t1, t2) ≤ ΓX(t1, t1)ΓX(t2, t2).
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- Positive-definite:
n∑

i=1

n∑
j=1

ΓX(ti, tj)f(ti)f(tj) ≥ 0, ∀t1, . . . , tn ∈ T and an

arbitrary function f(t).

When considering two different stochastic processes, say X(t) and Y (t), the so
called cross-correlation function is defined as

ΓXY (t1, t2) = E[X(t1)Y (t2)], t1, t2 ∈ T.

Notice that when X(t) = Y (t), the cross-correlation function becomes the cor-
relation function. It motivates the following notation ΓXX(t1, t2) = ΓX(t1, t2) is
used in interchangeably throughout this thesis. The cross-correlation function has
similar properties as the correlation function, namely

- Symmetry: ΓXY (t1, t2) = ΓY X(t2, t1).

- Boundedness: Γ2
XY (t1, t2) ≤ ΓXX(t1, t1)ΓY Y (t2, t2).

This thesis uses tools from analyzing stationary stochastic processes and processes
with independent increments to model and analyse different problems. Next, we
introduce the main definitions and results related to these stochastic processes.

In certain situations, the original data may not exhibit useful mathematical proper-
ties, but its increments (differences) do. In such a case, modelling may be performed
using a stochastic process, say X(t), whose increments satisfy some properties.
Two important cases are:

1. Independent increment stochastic process are random functions such that the
following time-increments, X(t1, t2) := X(t2) − X(t1), . . ., X(tn−1, tn) :=
X(tn) − X(tn−1), which are random variables, are mutually independent, for
t1 ≤ t2 ≤ · · · ≤ tn−1 ≤ tn;

2. When, in addition, the probability distributions of these independent incre-
ments depend only on the differences between the time parameters, such as
t2 − t1, . . . , tn − tn−1, respectively, the stochastic process is called stationary.
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The statistical distributions of stationary stochastic processes do not significantly
change w.r.t. their parameters. This type of process is particularly useful in contexts
where the statistical behaviour of the system is assumed not to change over time,
allowing for a more consistent and predictable analysis of the data. However,
checking that a stochastic process is stationary is very difficult in practice. This
motivates using a weaker definition called wide-sense or weak stationary stochastic
process.

We say that a second-order stochastic process, {X(t) : t ∈ T}, is wide-sense
stationary if:

µX(t) = µX is constant, CovX(t, s) = CovX(τ) only depends on τ = |t − s|.

For wide-sense stationary stochastic processes, the correlation function only de-
pends on a single variable, ΓX(τ) = E[X(t)X(t + τ)] and has the following
properties that we will be used in Chapters 3 and 4:

- ΓX(τ) is an even function, i.e., ΓX(τ) = ΓX(−τ), τ > 0.

- If ΓX(0) exists, then ΓX(τ) always exists and is finite. In fact, |ΓX(τ)| ≤
ΓX(0).

- ΓX(τ) is nonnegative definite in τ .

2.2 Some relevant stochastic processes

In this section, we will briefly define some of the stochastic processes that we will
utilize throughout the numerical examples of the thesis. Their properties will be
listed as they are necessary to carry out the corresponding computations.

Gaussian stochastic process. We say that {X(t) : t ∈ T} is a Gaussian
stochastic process if its fidis are multidimensional Gaussian. It is important to
note that a Gaussian distribution is characterized by its mean vector, µµµ, and
covariance matrix, Σ. Consequently, a Gaussian stochastic process is determined
by the values of µµµ and Σ for every fidis.

13
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This definition can also be expressed in terms of the joint characteristic function.
Specifically, {X(t) : t ∈ T} is a Gaussian stochastic process if, for every finite set
t1, . . . , tn, the joint characteristic function of the random variables X(t1), . . . , X(tn)
is given by:

φn(u1, t1; . . . ; un, tn) = ei(µµµ(ti))Tu− 1
2 uTΣΣΣ(ti,tj)u,

where uT = (u1, . . . , un), (µµµ(ti))T = (E[X(t1)], . . . ,E[X(tn)]) is the mean vector
and ΣΣΣ(ti, tj) = (µµµi,j)n×n is the covariance matrix associated to X(t1), . . . , X(tn):

µµµi,j = E[(X(ti) − µµµ(ti))(X(tj) − µµµ(tj))], 1 ≤ i, j ≤ n.

In some texts, this definition is also provided in terms of the joint probability
density function. However, such a definition is more restrictive and less general,
as the joint probability density function may not always exist and requires the
covariance matrix to be invertible, which is not always the case.

Gaussian trigonometric stochastic process. This stochastic process is defined
by a linear combination of independent Gaussian variables where the coefficients
are trigonometric functions, typically sine and cosine. An example of this kind of
process will be used in Chapter 4 in the following form

Y (t) = ξ1 cos(t) + ξ2 sin(t),

where ξ1, ξ2 ∼ N(0, 1) independent and identically distributed (i.i.d.) random
variables. This process is used to model phenomena where the underlying dynamics
have cyclical patterns or oscillations, exhibiting periodic behaviour.

Let us see that this stochastic process fulfills some of the properties we will need
later,

- Zero-mean, i.e., µY (t) = E [Y (t)] = 0:

E [Y (t)] = E [ξ1 cos(t) + ξ2 sin(t)] = cos(t)E [ξ1] + sin(t)E [ξ2] = 0.

- Wide-sense stationary. In the previous item, we have already seen that the
mean is constant. So, let us see now if the covariance function only depends

14
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on τ = |t − s|:

CovY (t, s) = E [(Y (t) − µY (t))(Y (s) − µY (s))]
= E [(ξ1 cos(t) + ξ2 sin(t)) (ξ1 cos(s) + ξ2 sin(s))]
= E

[
ξ2

1
]

cos(t) cos(s) + E
[
ξ2

2
]

sin(t) sin(s)
= cos(t − s) = cos(τ).

In this case, the covariance function coincides with the correlation function,
ΓY Y (t, s) = cos(t − s).

Standard Wiener process. This stochastic process, {W (t) : t ≥ 0} ≡ {B(t) :
t ≥ 0}, also called Brownian motion, is a continuous-time stochastic process that
models random motion. It satisfies the following conditions:

- It starts at zero with probability 1 (w.p. 1): P [{ω ∈ Ω : W (0)(ω) = 0}] =
P [W (0) = 0] = 1.

- It has independent increments: W (t2) − W (t1), . . . , W (tn) − W (tn−1) are
independent, ∀ {ti : 1 ≤ i ≤ n} : 0 ≤ t1 < t2 < · · · < tn−1 < tn < ∞, n ≥ 1.

- It has stationary increments and Gaussian with zero-mean and variance
|t − s|: W (t) − W (s) ∼ N(0; |t − s|), for all t, s ≥ 0.

From this definition, some important properties can be deduced (see [17, p. 216]):

- W (t) is Gaussian.

- It has zero-mean, µW (t) = 0.

- The covariance function is CovW (t, s) = min(t, s). In particular, its variance
function is σ2

W (t) = t.

As throughout this thesis, we will work mainly with static mechanical problems,
the independent variable of this process will be denoted by x (denoting space)
instead of t (time). This motivates the Brownian motion will be denoted by
B(x) (or W (x)). The Brownian motion will be used in Chapter 3 and Chapter 5.
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For the latter, to perform the stochastic analysis, we will take advantage of the
Karhunen–Loève expansion of the Brownian motion [64, Ch. 5]

B(x) = µB(x) +
∞∑

j=1

√
νjϕj(x)ξj(ω), ω ∈ Ω, 0 < x ≤ l, (2.4)

where the mean is null: µB(x) = 0; ξj(ω) ∼ N(0, 1), j = 1, 2, . . . are i.i.d. stan-
dard Gaussian random variables, and {νj , ϕj(x)} are the eigenpairs (eigenvalues
and eigenfunctions) obtained when solving the following homogeneous Fredholm
integral equation of second kind∫ l

0
cB(x1, x2) ϕj(x2) dx2 = νj ϕj(x1).

Here, cB(x1, x2) = CovB(x1, x2) = min(x1, x2), (x1, x2) ∈ [0, l] × [0, l] is the
covariance function of the Brownian motion, B(x). It can be seen that [64, p. 216]

νj = 4l2

π2(2j − 1)2 , ϕj(x) =
√

2
l

sin
((2j − 1)π

2l
x

)
, j = 1, 2, . . .

White Gaussian noise stochastic process. Although the Brownian motion is
neither m.s. differentiable nor pathwise differentiable, it can be differentiated in a
generalized sense (using the theory of distributions), and the resulting process is
called white noise

dB(t)
dt

= ξ(t), t ≥ 0.

It can be shown that the white noise is a stationary zero-mean Gaussian stochastic
process, whose correlation function is given by Γξξ(τ) = 1

2Wδ(τ), where δ(·) is the
Dirac delta function and W is the noise power [88].

Ornstein–Uhlenbeck stochastic process. This stochastic process is a continuous-
time process that describes the velocity of a particle undergoing Brownian motion
with friction. Mathematically, the Ornstein-Uhlenbeck stochastic process, X(t) is
defined as the stationary solution of the Langevin equation

dX(t)
dt

+ αX(t) = σ
dW (t)

dt
, α > 0,
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where W (t) is the standard Wiener process.

This stochastic process will be used in Chapter 3. It can be shown that is a
stationary zero-mean Gaussian stochastic process, and whose correlation function
is given by ΓXX(τ) = σ2 e−α|τ |, [103].

Random pulses. The following stochastic process will be extensively utilized in
Chapter 6. Let

Z(x) =
N(l)∑
i=1

Uiv(x, xi) (2.5)

be a stochastic process constructed by the superposition of pulses at the spatial
points xi whose shape is defined by a deterministic function v = v(x, xi) and
having pulse intensities given by a family of i.i.d. random variables Ui, and N(l) is
a counting process, [58]. This stochastic process, Z(x), will be defined in the time
domain (position) (0, l]. In Chapter 6, specifically, we will handle this stochastic
process by taking the deterministic function, v(x, xi), as the Dirac delta function,
δ(x − xi) (to represent pulses). Then, briefly, it will be a superposition of random
delta pulses correlated at random instants according to a Poisson-type counting
process.

2.3 Some important properties of Gaussian random variables and
stochastic processes

In this section, we will introduce some technical stochastic results of Gaussian
random variables and stochastic processes.

The following properties will be applied to calculate some higher-order moments
of the solution stochastic process, X(t), in Chapter 3 and in Chapter 4, since as it
shall be seen later, X(t) depends on a product of the stochastic excitation, Y (t),
evaluated at a finite number of instants, say t1, t2, . . . , tn, Y (ti) = Yi, 1 ≤ i ≤ n.

Proposition 2.1 [89, p. 28]. Let the random variables Y1, Y2, . . . , Yn be jointly
Gaussian with zero-mean, E [Yi] = 0, 1 ≤ i ≤ n. Then, all odd-order moments of
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these random variables vanish, and for n even,

E [Y1Y2 · · · Yn] =
∑

m1,m2,...,mn

E [Ym1Ym2 ]E [Ym3Ym4 ] · · ·E
[
Ymn−1Ymn

]
.

The sum above is taken over all possible combinations of n/2 pairs of n random
variables. The number of terms in the summation is 1 · 3 · 5 · · · (n − 3) · (n − 1).

Sometimes, we will use this property reformulated in the following way, and in
this form, it is often called the Isserlis or Wick theorem [70, 48].

Proposition 2.2 Consider a zero-mean multivariate normal vector, say (Y1, . . . , Yn).
Then the expected value of their product can be expressed as a sum over all possible
pairings of the variables in terms of its correlation matrix

E [Y1 · · · Yn] =
∑

p∈P 2
n

∏
{i,j}∈p

E [YiYj ] =
∑

p∈P 2
n

∏
{i,j}∈p

Γ(Yi, Yj),

where Γ(Yi, Yj) stands for the correlation of vector (Yi, Yj). The sum is over all
distinct ways of partitioning the set of indexes {1, 2, . . . , n} into pairs {i, j} (the
set of these pairs is denoted by P 2

n), and the product is over these pairs.

The following results permit interchanging the expectation operator with the mean
square derivative and the mean square integral. In [89, Eq. (4.130) in Sec. 4.4.2],
the first result is established for n = 2, and then it follows straightforwardly by
induction.

Proposition 2.3 Let {Y (t) : t ≥ 0} be a mean square differentiable stochastic
process. Then,

E{Y (t1) · · · Y (tn−1)Ẏ (tn)} = ∂

∂tn
(E{Y (t1) · · · Y (tn)}), t1, . . . , tn ≥ 0,

provided the above expectations exist.

Proposition 2.4 [89, p. 104]. Let {Y (t) : −∞ ≤ a ≤ t ≤ b ≤ +∞} be a second-
order stochastic process integrable in the mean square sense and h(t) a Riemann
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integrable deterministic function on t ∈ (a, b). Then,

E
{∫ b

a
h(t)Y (t) dt

}
=
∫ b

a
h(t)E{Y (t)} dt .

The following is a distinctive property of Gaussian processes since they preserve
Gaussianity under mean square integration:

Proposition 2.5 [89, p. 112]. Let {Y (t) : a ≤ t ≤ ∞} be a Gaussian process
and let h(t) be a Riemann integrable deterministic function on (a, t) such that the
following mean square integral,

X(t) =
∫ t

a
h(t, τ)Y (τ)dτ,

exists, then {X(t) : t ≥ a}, is a Gaussian process.

We close this section by stating the mean square Leibniz rule for differentiating a
mean square integral stochastic process:

Proposition 2.6 [89, p. 104]. Let Y (t) ≡ {Y (t) : a ≤ t ≤ b} be a mean square
integrable stochastic process. Let f(t, s) be a continuous deterministic function on
t, s ∈ (a, b), −∞ ≤ a < b ≤ ∞ with finite first partial derivative ∂f(t,s)

∂t . Then, the
mean square derivative of

Z(t) =
∫ t

a
f(t, s)Y (s)ds, a ≤ t ≤ b, (2.6)

exists for all t ∈ (a, b) and is given by

Ż(t) = f(t, t)Y (t) +
∫ t

a

∂f(t, s)
∂t

Y (s)ds, a ≤ t ≤ b. (2.7)
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2.4 Perturbation technique

The perturbation technique is a powerful mathematical method used to find
approximate solutions to complex problems by introducing a small parameter
into the system. This technique is well established in the analysis of deterministic
nonlinear problems but can also be used for nonlinear random differential equations
with random inputs under specific conditions, as discussed, among others, in [89],
[72] and [45]. We will use this technique in Chapter 3 and 4.

Let’s look at a simple example of how this method works. Consider a second-order
system governed by the differential equation

aẌ(t) + bẊ(t) + ϵg(X(t)) = Y (t) (2.8)

where Y (t) is a random input and the nonlinear function, g(X(t)), is considered
differentiable w.r.t. X until an appropriate order.

The perturbation method relies on the premise that the solution process X(t) can
be expressed as a series expansion in powers of the parameter ϵ, that is

X(t) = X0(t) + ϵX1(t) + ϵ2X2(t) + · · · (2.9)

Now, if we replace Eq. (2.9) in Eq.(2.8) and group the terms of the same order of
ϵ, we obtain the following system of random differential equations which can be
solved in cascade

ϵ0 : aẌ0(t) + bẊ0(t) = Y (t),
ϵ1 : aẌ1(t) + bẊ1(t) = −g(X0(t)),
ϵ2 : aẌ2(t) + bẊ2(t) = −X1(t)g′(X0(t)),
...

...
...

...
...

(2.10)

This technique is usually applied by truncating the expansion (2.9) to the first-order
approximation

X̂(t) = X0(t) + ϵX1(t), (2.11)
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since as ϵ is small, the terms associated to higher powers (Xn(t)ϵn, n = 2, 3, . . .) in
the series expansion can usually be neglected. This fact determines the legitimacy
of the approximation only for a small range for the values of parameter ϵ, which
is consistent with the initial assumption that ϵ is a small parameter [50]. It is
important to point out that, as already reported in [89, Ch. 7], no proof is available
to show that the stochastic process X(t) given in (2.9) converges in the mean square
sense (or other probabilistic convergences), while some restrictive convergence
conditions have been established in the deterministic framework [92]. Therefore,
the convergence of X(t) can be formulated in terms of strong hypotheses about
its sample behaviour, which, in practice, results in very restrictive assumptions.

2.5 Random Variable Transformation method

When we have a random initial value problem (RIVP), for which it is possible to
obtain an explicit expression of the solution (which will depend on the random
variables that define the initial condition, source term and/or coefficients), it is
sometimes possible to define a transformation that allows us to obtain the PDF
of the RIVP solution. For this purpose, the following result, which allows us to
determine the PDF of a random vector V resulting from the transformation of
another random vector U whose PDF is known, will be very useful, as will be
shown in Chapters 5 and 7.

Theorem 2.1 (RVT method) [89, page 25]. Let us consider U = (U1, . . . , Un)
and V = (V1, . . . , Vn) two n-dimensional continuous random vectors defined
on a complete probability space (Ω, F ,P). Let r : Rn → Rn be a one-to-one
deterministic transformation of U into V, i.e., V = r(U). Assume that r is
continuous in U and has continuous partial derivatives w.r.t. each Ui, 1 ≤
i ≤ n. Then, if fU(u) denotes the joint PDF of random vector U, and s =
r−1 = (s1(v1, . . . , vn), . . . , sn(v1, . . . , vn)) represents the inverse mapping of r =
(r1(u1, . . . , un), . . . , rn(u1, . . . , un)), the joint PDF of random vector V is given by

fV(v) = fU (s(v)) |J | ,
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where |J |, which is assumed to be different from zero, is the absolute value of the
Jacobian, that is defined by the determinant

J = det
(

∂s
∂v

)
= det


∂s1(v1,...,vn)

∂v1
· · · ∂sn(v1,...,vn)

∂v1... . . . ...
∂s1(v1,...,vn)

∂vn
· · · ∂sn(v1,...,vn)

∂vn

 .

2.6 Principle of Maximum Entropy

Sometimes, it is not possible to use the RVT method, either because it is not
possible to obtain an explicit solution or because, even having such an expression,
it is impossible to define a transformation fulfilling the conditions of the theorem.
In this case, an alternative to constructing the PDF of the RIVP is based on the
application of the PME method described below. This technique will be used in
Chapters 3, 4, and 6 to obtain an approximation of the PDF of the stochastic
solution.

As detailed in [69], the PME is an efficient method to determine the PDF, fX(x),
of a random variable, say X, constrained by the statistical information avail-
able (domain, expectation, variance, symmetry, kurtosis, etc.) on X. The method
consists of determining fX(x) such that it maximizes the so-called Shannon’s
entropy (also referred to as differential entropy), which is given by S {fX} =
−
∫ x2

x1
fX(x) log(fX(x)) dx, subject to several constraints, which are usually defined

by the N first moments, say an, n = 1, 2, . . . , N , of the random variable X together
with the normalization condition,

∫ x2
x1

fX(x) dx = 1. In this context, the admissible
set of solutions is then defined by A = {fX : [x1, x2] −→ R :

∫ x2
x1

xnfX(x) dx =
an, n = 0, 1, . . . , N}. Notice that n = 0 corresponds to the normalization condi-
tion (i.e., the integral of the PDF is one), and that the rest of the restrictions are
defined by the statistical moments, E [Xn] = an, n = 1, 2, . . . , N . It can be seen,
by applying the functional version of Lagrange multipliers associated with A, that

fX(x) = 1[x1,x2](x) e−
∑N

i=0
λixi

, 1[x1,x2](x) =
{

1, x ∈ [x1, x2],
0, x /∈ [x1, x2].

(2.12)

22



2.7 Monte Carlo simulations

In practice, the Lagrange multipliers, λi, i = 0, 1, . . . , N , are determined by nu-
merically solving the following system of N + 1 nonlinear equations defined by the
constraints∫ x2

x1

xn
1[x1,x2](x) e−

∑N

i=0
λixi

dx = an, n = 0, 1, . . . , N. (2.13)

In other words, the PME method selects the one that maximizes the Shannon or
differential entropy as a measure of randomness among all the PDFs that satisfy
the constraints given by the available statistical information. This can be naively
interpreted as looking for the PDF, which maximizes the uncertainty from the
minimal quantity of information [69].

2.7 Monte Carlo simulations

The Monte Carlo method is a popular, intuitive, and flexible approach to uncertainty
quantification in virtually any class of mathematical problems whose data is affected
by randomness. It is based on performing simulations of the random data according
to their corresponding associated probabilistic laws. So, the method heavily relies
on good random number generators. In its crude form, the error convergence rate
is inversely proportional to the square root of the number of realizations of the
random inputs. The Monte Carlo has been demonstrated to be a powerful tool
to deal with stochastic/random engineering problems [66, 105]. The Monte Carlo
simulations will be used to compare and validate the numerical results obtained
by the different stochastic methods developed in this thesis.
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Chapter 3
Probabilistic analysis of random nonlinear

oscillators subject to small perturbations in the
restoring term depending on the position

In this chapter, we study a class of single-degree-of-freedom oscillators whose
restoring function, which depends only on the position, is affected by small

nonlinearities and excited by stationary Gaussian stochastic processes. We obtain,
via the stochastic perturbation technique, approximations of the main statistics of
the steady-state, which is a random variable, including the first moments, and the

correlation and power spectral functions. Additionally, we combine this key
information with the Principle of Maximum Entropy to construct approximations
of the probability density function of the steady-state. We include two numerical

examples where the advantages and limitations of the stochastic perturbation
method are discussed with regard to certain general properties that must be

preserved.
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Chapter 3. Probabilistic analysis of random nonlinear oscillators subject to small
perturbations in the restoring term depending on the position

3.1 Introduction

Many vibratory systems are governed by differential equations with small nonlinear
terms of the following form

Ẍ(t) + 2βẊ(t) + ω2
0(X(t) + ϵg(X(t))) = Y (t), t > 0. (3.1)

Here, X(t) denotes the position (usually of the angle w.r.t. an origin) of the
oscillatory system at the time instant t, the parameter 2β > 0 is the damping
coefficient, ω0 > 0 the undamped angular frequency and, finally, ϵ is a small
perturbation (|ϵ| << 1) affecting the restoring term via a nonlinear function
of the position, g(X(t)). The expression X(t) + ϵg(X(t)) is referred to as the
nonlinear restoring term. The right-hand side term, Y (t), represents an external
source/forcing term (vibration) acting upon the system. In the setting of random
vibration systems, Y (t) is assumed to be a stochastic process, termed stochastic
excitation, having certain characteristics that will be specified later in the present
study. This equation corresponds to the one seen in the Introduction Chapter,
Eq. (1.1), by taking f(Ẋ(t), X(t))) = 2βẊ(t) + ω2

0(X(t) + ϵg(X(t))).

Notice that the nonlinear restoring term in Eq. (3.1) involves the parameter ϵ, which
determines the magnitude of the nonlinear perturbation, whose shape is given by
g(X(t)). When ϵ = 0, Eq. (3.1) describes a random linear oscillator. In [15], authors
analyse this class of oscillators considering two cases for the stochastic source term
Y (t), first, when it is Gaussian and, secondly, when it can be represented via a
Karhunen-Loève expansion. In the case that ϵ ̸= 0, the inclusion of the nonlinear
term makes it more difficult (even simply impossible) to exactly solve Eq. (3.1). An
effective method to construct reliable approximations of Eq. (3.1) in the case that
ϵ represents a small parameter is the perturbation technique [45, 72, 8, 85, 40]. In
the stochastic setting, this method has been successfully applied to study different
types of oscillators subject to random vibrations. After pioneer contributions by
Crandall [27, 26], the analysis of random vibration systems has attracted many
researchers (see, for instance, [46, 73, 40] for a full overview of this topic). In [32],
approximations of quadratic and cubic nonlinear oscillators subject to white noise
excitations are constructed by combining the Wiener-Hermite expansion and the
homotopy perturbation technique. The aforementioned approximations correspond
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to the first statistical moments (mean and variance) since, as the authors indicate
in the introduction section, the computation of the PDF is usually very difficult
to obtain. In [30] authors extend the previous analysis to compute higher-order
statistical moments of the oscillator response in the case the nonlinearity is only
quadratic. The previous methodology is extended and algorithmically-automated in
[31]. In [39], the author considers the interesting scenario of a harmonic oscillator
with a random mass and analyses important dynamic characteristics such as
stochastic stability and resonance phenomena. A new type of Brownian motion
was introduced to conduct that study. The perturbation technique has also been
used to approximate the first moments, mainly the mean and the variance, of some
oscillators subject to small nonlinearities. The computational procedures of this
method often require amendments to the existing solution codes, so it is classified
as an intrusive method. A spectral technique that allows overcoming this drawback
is non-intrusive PCE (polynomial chaos expansion), in which simulations are used
as black boxes, and the calculation of chaos expansion coefficients for response
metrics of interest is based on a set of simulation response evaluations. In the
recent paper [37], authors design an interesting hybrid non-intrusive procedure
that combines PCE with the Chebyshev Surrogate Method to analyse a number
of uncertain physical parameters and the corresponding transient responses of a
rotating system.

Besides computing the first statistical moments of the response or performing a
stability analysis of systems under stochastic vibrations, we must emphasize that
the computation of the fidis associated with the stationary solution, and particularly
of the stationary PDF, is also a major goal in the realm of vibratory systems with
uncertainties. Some interesting contributions in this regard include [109, 20]. In
[109], authors first present a complete overview of methods and techniques available
to determine the stationary PDF of nonlinear oscillators excited by random
functions. Secondly, nonlinear stochastic oscillators excited by a combination of
Gaussian and Poisson white noises are fully analysed. The study is based on solving
the forward generalized Kolmogorov partial differential equation (PDE) using the
exponential-polynomial closure method. The theoretical analysis is accompanied
by several illustrative examples. In the recent contribution [20], authors propose
a new method to compute a closed-form solution of stationary PDF of single-
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degree-of-freedom vibro-impact systems under Gaussian white noise excitation.
The density is obtained by solving the Fokker-Planck-Kolmogorov PDE using the
iterative method of weighted residue combined with the concepts of circulatory
and potential probability flows. Apart from obtaining the density of the solutions,
it is worth pointing out that some recent contributions deal with the calculation
of the densities of quantities of interest, that belong to Reliability Theory, like the
first-passage time for vibro-impact systems with randomly fluctuating restoring
and damping terms (see [77] and references therein).

The goal of this chapter is to tackle the stochastic study of oscillators of the form
(3.1) in the case that the nonlinear term g is a transcendental function using a
polynomial approximation, based on Taylor’s expansions, and then to apply the
stochastic perturbation method to approximate the main statistical functions
of the steady-state. Afterward, we take advantage of the PME to determine
approximations of the PDF of the stationary solution. To conduct our study we
have chosen a general form of the pendulum equation

Ẍ(t) + 2βẊ + ω2
0(X(t) + ϵ sin(X(t))) = Y (t), t > 0, (3.2)

where we will assume that β and ω0 are positive parameters, and the external
source, Y (t), is defined via zero-mean Gaussian stationary stochastic process,
which corresponds to an important case in the analysis of vibratory systems [59,
100]. Assuming that Y (t) is a stationary and Gaussian stochastic process is a
rather intuitive concept, which has been extensively used in both theoretical and
practical studies [60, 61]. Stationarity means that the statistical properties of
the process do not vary significantly over time/space. This feature is usually met
in a number of modeling problems as the surface of the sea in both spatial and
time coordinates, noise in time in electric circuits under steady-state operations,
homogeneous impurities in engineering materials and media, for example, [89,
Ch. 3].

This chapter is organized as follows: In Section 3.2 we will obtain the main
theoretical results for the stochastic model (3.2). Afterward, in Section 3.3, we
perform a numerical analysis through two examples, with criticism about the
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validity of the results obtained via the stochastic perturbation method. Conclusions
are drawn in Section 3.4.

Finally, we want to point out that the nonlinear term, sin(X(t)), that we have
chosen in our subsequent analysis, could be represented by other transcendental
functions, admitting polynomial approximations. With this observation, we want
to highlight the generality of the study presented in this chapter.

3.2 Probabilistic model study

This section is devoted to studying, from a probabilistic standpoint, the steady-state
of model (3.2). It is important to point out that the non-perturbated associated
model

Ẍ(t) + 2βẊ(t) + ω2
0X(t) = Y (t), t > 0, (3.3)

has a steady-state solution provided β > 0 and regardless the value of ω2
0. For

the sake of completeness, we discuss this issue in the general setting that Y (t) is
a causal stationary Gaussian process and also in connection with the examples
presented later.

Using the classical change of variable X = (X1(t), X2(t))⊤ = (X(t), Ẋ(t))⊤,
Eq. (3.3) can be written (using for convenience the differential notation) as

dX(t)
dt

=
(

0 1
−ω2

0 −2β

)
X(t) +

(
0
1

)
Y (t), (3.4)

i.e.,

dX(t) =
(

0 1
−ω2

0 −2β

)
X(t)dt +

(
0
1

)
Y (t)dt. (3.5)

In the case that Y (t) = ξ(t) is the white noise (a zero-mean, Gaussian and
stationary process), i.e., ξ(t) = Ẇ (t) (W (t) is the standard Wiener process),
Eq. (3.5) writes

dX(t) =
(

0 1
−ω2

0 −2β

)
X(t)dt +

(
0
1

)
Ẇ (t)dt,
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or

dX(t) =
(

0 1
−ω2

0 −2β

)
X(t)dt +

(
0
1

)
dW (t).

It is well known that this last equation has a stationary or steady-state solution if
the real parts of the eigenvalues of the matrix

F =
(

0 1
−ω2

0 −2β

)

are negative (in other words, F is a Hurwitz matrix). Assuming β > 0, it is easy
to check that this condition fulfills since the spectrum of F is given by

σ(F) =
{

λ1 = −β +
√

β2 − ω2
0 , λ2 = −β −

√
β2 − ω2

0

}
,

and Re(λ1) = Re(λ2) = −β < 0 (Re(·) denotes the real part). Observe that
in the underdamped case (β2/ω2

0 < 1), λ1 and λ2 are complex conjugate. This
fact is used in Example 3.1 where β = 1

20 > 0 to guarantee the existence of the
steady-state solution. In the more general case that Y (t) in (3.4) is such that
satisfies a state-space SDE of the form

dY (t) = r1Y (t)dt + r2dW (t), (3.6)

model (3.4) together with (3.6) can be written as
dX1(t) = X2(t)dt,

dX2(t) = −ω2
0X1(t)dt − 2βX2(t)dt + Y (t)dt,

dY (t) = r1Y (t)dt + r2dW (t).
(3.7)

This system is of the form

dX̃(t) = F̃X̃(t)dt + G̃dW (t), (3.8)
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where

X̃(t) =

 X1(t)
X2(t)
Y (t)

 , F̃ =

 0 1 0
−ω2

0 −2β 1
0 0 r1

 , G̃ =

 0
0
r2

 . (3.9)

The well-known results about the existence of a steady-state solution of Itô SDEs
then apply to study the larger dimensional system (3.7) (or equivalently (3.8) and
(3.9)). Consequently, it is enough to check that the real parts of all the eigenvalues
of matrix F̃ are negative. In this case,

σ(F̃) =
{

λ1 = r1, λ2 = −β +
√

β2 − ω2
0 , λ3 = −β −

√
β2 − ω2

0

}
.

Hence, since β > 0, it is sufficient that r1 < 0. Notice that in Example 3.2, which
we will present later, Y (t) is the Ornstein-Uhlenbeck process and r1 = −α < 0
(since α > 0), so the existence of the steady-state will also be guaranteed. Finally, it
is interesting to point out that in the general case Y (t) is a (zero-mean) stationary
Gaussian process (like the white noise and Ornstein-Uhlenbeck processes in the
Examples 3.1 and 3.2, respectively), it is possible to use state-space representations
of the form (3.8) to reduce a (stationary) Gaussian process driven ordinary
differential equation of the form

dX(t)
dt

= FX(t) + GY (t),

as (3.4) into a larger dimensional ordinary differential equation driven by white
noise, i.e., a linear Itô SDE. This can be done when the spectral density of the
covariance function of Y (t) is a rational function.

In the following subsections, we will apply the stochastic perturbation method to
approximate its stationary solution, which is a random variable. After that, we will
perform a stochastic analysis addressed to obtain the main statistical functions
of the stationary solution. In particular, we will obtain the first one-dimensional
moments and the correlation function.
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3.2.1 Stochastic perturbation expansion

In the case of model (3.2), the method of perturbation consists, as we have seen
in Chapter 2, in expanding the unknown, X(t), in terms of a formal power series
of the perturbative parameter ϵ, which is assumed to have a small value (|ϵ| ≪ 1),

X(t) = X0(t) + ϵX1(t) + ϵ2X2(t) + · · · , (3.10)

where the coefficients Xn(t), n ≥ 0 need to be determined.

As we have mentioned before, this technique is usually applied by truncating the
expansion (3.10) to the first-order approximation

X̂(t) = X0(t) + ϵX1(t), (3.11)

since |ϵ| ≪ 1, higher-order terms may not provide significant additional insights.

On the other hand, to derive a solvable family of differential equations after applying
the perturbation method to model (3.2), we will also use a double approximation
for the nonlinear term sin(X(t)). Specifically, we first apply a truncation of its
Taylor’s series

sin(X(t)) ≈
M∑

m=0

(−1)m

(2m + 1)!(X(t))2m+1, (3.12)

and secondly, we approximate X(t) using (3.11), i.e.

sin(X(t)) ≈ sin(X̂(t)) ≈
M∑

m=0

(−1)m

(2m + 1)!(X0(t) + ϵX1(t))2m+1. (3.13)

Substituting the expansions (3.13) and (3.11) into (3.2), and equating terms with
the same power of ϵ, leads to the two following linear differential equations

ϵ0 : Ẍ0(t) + 2βẊ0(t) + ω2
0X0(t) = Y (t),

ϵ1 : Ẍ1(t) + 2βẊ1(t) + ω2
0X1(t) = ω2

0

(
M∑

m=0

(−1)m+1

(2m + 1)!(X0(t))2m+1

)
,
(3.14)

that can be solved in cascade. Although the method can be applied for any order
of truncation associated with Taylor’s expansion (3.12), in practice, the value of
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M is set when the approximations obtained with M and M + 1 are very closed
with reference to a prefixed error or tolerance. In our subsequent analysis, we
will consider M = 2 (that corresponds to Taylor’s approximation of order 5,
sin(X(t)) ≈ X(t) − 1/3!(X(t))3 + 1/5!(X(t))5), since, as we shall show later, the
approximations of the main statistics of the solution stochastic process do not
significantly change w.r.t. M = 1 (that corresponds to Taylor’s approximation
of order 3, sin(X(t)) ≈ X(t) − 1/3!(X(t))3). To summarize, we have performed
a double truncation. The first one, based on Taylor expansion for the nonlinear
term (sin(X(t))), and the second one, when applying the stochastic perturbation
expansion given in expression (3.11) (this latter approximation is fixed in our
analysis at order 1 in ϵ, as it is usually done in the literature). Notice that the
order M of the Taylor truncation is independent of the order of truncation applied
for the perturbation method.

As previously indicated, we are interested in the stochastic analysis of the stationary
solution or steady-state. Based upon the linear theory of Laplace transformation
[68], the solutions X0(t) and X1(t) are given by

X0(t) =
∫ ∞

0
h(s)Y (t − s) ds, (3.15)

and

X1(t) = ω2
0

M∑
m=0

∫ ∞

0
h(s) (−1)m+1

(2m + 1)!(X0(t − s))2m+1 ds, (3.16)

where, for the underdamped case ( β2

ω2
0

< 1),

h(t) =


(
ω2

0 − β2)− 1
2 e−βt sin

((
ω2

0 − β2) 1
2 t
)

, if t > 0,

0, if t ≤ 0.
(3.17)

Physically this situation corresponds to the case that the oscillator approaches zero
oscillating about this value [91]. Finally, we point out that the integrals defining
X0(t) and X1(t) in (3.15) and (3.16) must be probabilistically interpreted in the
mean square sense [89, Ch. 4].
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3.2.2 Constructing approximations of the main statistical moments of the
stationary solution

It is important to point out that the solution of model (3.2) is not Gaussian, so in
order to probabilistically describe the stationary solution, the approximations of
the mean and the variance (or more generally, the correlation) functions are not
enough. This fact motivates that this subsection is addressed to construct reliable
approximations of higher moments of the stationary solution (represented by the
first-order approximation (3.11)). This key information will be used in the next
section to obtain approximations of the stationary PDF, which in turn permits
the obtaining of any one-dimensional moment of the stationary solution.

Specifically, in the subsequent development we will compute any statistical moments
of odd order, E

[
(X̂(t))2i+1

]
, i = 0, 1, 2, . . ., the second order moment, E

[
(X̂(t))2

]
,

the correlation function, Γ
X̂X̂

(τ), the variance, V
[
X̂(t)

]
, and the spectral density

function, S
X̂(t)(f).

As indicated in Section 3.1, we shall assume that the stochastic external source, Y (t),
is a stationary Gaussian stochastic process centered at the origin, i.e. E [Y (t)] = 0,
being ΓY Y (τ), its correlation function. Notice that the hypothesis E [Y (t)] = 0 is
not restrictive since otherwise we can work, without loss of generality, with the
process Ỹ (t) = Y (t) − E [Y (t)], whose mean is null.

The mean of the first-order approximation is calculated taking the expectation
operator in (3.11) and using its linearity,

E
[
X̂(t)

]
= E [X0(t)] + ϵE [X1(t)] . (3.18)

To compute E [X0(t)], we take the expectation operator in (3.15), then we first
apply the commutation of the expectation and the mean square integral by applying
Proposition 2.4, and, secondly, we use that E [Y (t)] = 0,

E [X0(t)] = E
[∫ ∞

0
h(s)Y (t − s) ds

]
=
∫ ∞

0
h(s)E [Y (t − s)] ds = 0. (3.19)

To compute E [X1(t)], we take the expectation operator in (3.16) (recall that we
take M = 2) and we again apply the commutation between the expectation and
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the mean square integral as well as the integral representation of X0(t) given
in (3.15),

E [X1(t)]

= E
[
−ω2

0

∫ ∞

0
h(s)X0(t − s) ds +ω2

0
3!

∫ ∞

0
h(s)(X0(t − s))3 ds

−ω2
0

5!

∫ ∞

0
h(s)(X0(t − s))5 ds

]
= −ω2

0

∫ ∞

0
h(s)

∫ ∞

0
h(s1)E [Y (t − s − s1)] ds1 ds

+ ω2
0

3!

∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)E [Y (t − s − s1)

· Y (t − s − s2)Y (t − s − s3)] ds3 ds2 ds1 ds

− ω2
0

5!

∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

∫ ∞

0
h(s5)E [Y (t − s − s1)

· Y (t − s − s2)Y (t − s − s3)Y (t − s − s4)Y (t − s − s5)] ds5 ds4 ds3 ds2 ds1 ds .

(3.20)

Now, observe that

E [Y (t − s − s1)Y (t − s − s2)Y (t − s − s3)Y (t − s − s4)(t − s − s5)] = 0,

since Y (t) is a zero-mean Gaussian process, see Proposition 2.1. Then, from (3.20)
one gets

E [Y1(t)] = 0. (3.21)

Substituting (3.21) and (3.19) into (3.18), one obtains

E
[
X̂(t)

]
= E [X0(t)] + ϵE [X1(t)] = 0. (3.22)

To obtain the second-order moment, E
[
(X̂(t))2

]
, we square the expression (3.11),

but retaining up to the first-order approximation in the parameter ϵ,

E
[
(X̂(t))2

]
= E

[
(X0(t))2]+ 2ϵE [X0(t)X1(t)] . (3.23)
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To calculate E
[
(X0(t))2], we substitute expression (3.15) and apply Fubini’s

theorem,

E
[
(X0(t))2] = E

[(∫ ∞

0
h(s)Y (t − s) ds

)(∫ ∞

0
h(s1)Y (t − s1) ds1

)]
=

∫ ∞

0
h(s)

∫ ∞

0
h(s1)E [Y (t − s)Y (t − s1)] ds1 ds .

(3.24)
Now, E [Y (t − s)Y (t − s1)] can be expressed in terms of the correlation function,
ΓY Y (·), E [Y (t − s)Y (t − s1)] = ΓY Y (t − s1 − (t − s)) = ΓY Y (s − s1). Then, (3.24)
writes

E
[
(X0(t))2] =

∫ ∞

0
h(s)

∫ ∞

0
h(s1)ΓY Y (s − s1) ds1 ds . (3.25)

Observe that the correlation function is a deterministic function of a single variable
since Y (t) is a stationary process. To calculate the term E [X0(t)X1(t)] in (3.23),
we substitute the expressions of X0(t) and X1(t) given in (3.15) and (3.16) (recall
that we take M = 2), and apply Fubini’s theorem,

E [ X0(t) X1(t)]

= E
[
X0(t)

(
−ω2

0

∫ ∞

0
h(s)X0(t − s) ds +ω2

0
3!

∫ ∞

0
h(s)(X0(t − s))3 ds

−ω2
0

5!

∫ ∞

0
h(s)(X0(t − s))5 ds

)]
=
∫ ∞

0
h(s)E

[
X0(t)

(
−ω2

0X0(t − s) + ω2
0

3! (X0(t − s))3 − ω2
0

5! (X0(t − s))5
)]

ds

= −ω2
0

∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)E [Y (t − s1)Y (t − s − s2)] ds2 ds1 ds

+ ω2
0

3!

∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

· E [Y (t − s1)Y (t − s − s2)Y (t − s − s3)Y (t − s − s4)] ds4 ds3 ds2 ds1 ds

− ω2
0

5!

∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

∫ ∞

0
h(s5)

∫ ∞

0
h(s6)

· E [Y (t − s1)Y (t − s − s2)Y (t − s − s3)Y (t − s − s4)Y (t − s − s5)
·Y (t − s − s6)] ds6 ds5 ds4 ds3 ds2 ds1 ds .

(3.26)
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Now, we express the expectations that appear in the above integrals in terms of
the correlation function, ΓY Y (·), taking into account that Y (t) is stationary. For
the first expectation, one gets

E [Y (t − s1)Y (t − s − s2)] = ΓY Y (s1 − s − s2). (3.27)

To calculate the other two expectations, we will apply the symmetry in the
subindexes and the Proposition 2.2, taking into account that Y (t) is a zero-mean
stationary Gaussian process. To determine the second expectation in (3.26), we
will denote u1 = t − s1, u2 = t − s − s2, u3 = t − s − s3 and u4 = t − s − s4 to
facilitate the presentation of our computations

E
[
Y (t − s1)Y (t − s − s2)Y (t − s − s3)Y (t − s − s4)

]
= E [Y (u1)Y (u2)]E [Y (u3)Y (u4)] + E [Y (u1)Y (u3)]E [Y (u2)Y (u4)]

+ E [Y (u1)Y (u4)]E [Y (u2)Y (u3)]
= ΓY Y (u2 − u1)ΓY Y (u4 − u3) + ΓY Y (u3 − u1)ΓY Y (u4 − u2)

+ ΓY Y (u4 − u1)ΓY Y (u3 − u2)
= ΓY Y (s1 − s − s2)ΓY Y (s3 − s4) + ΓY Y (s1 − s − s3)ΓY Y (s2 − s4)

+ ΓY Y (s1 − s − s4)ΓY Y (s2 − s3).

Then, the second integral in (3.26) can be computed as∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

· E [Y (t − s1)Y (t − s − s2)Y (t − s − s3)Y (t − s − s4)] ds4 ds3 ds2 ds1 ds

=
∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4) (ΓY Y (s1 − s − s2)ΓY Y (s3 − s4)

+ΓY Y (s1 − s − s3)ΓY Y (s2 − s4)
+ΓY Y (s1 − s − s4)ΓY Y (s2 − s3)) ds4 ds3 ds2 ds1 ds

= 3
∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

· ΓY Y (s1−s−s2)ΓY Y (s3−s4) ds4 ds3 ds2 ds1 ds .

(3.28)
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Notice that we have taken advantage of the symmetry of the correlation function,
ΓY Y (·), to express the last multidimensional integral. The third expectation
in (3.26) can be analogously calculated

E
[
Y (t − s1)Y (t − s − s2)Y (t − s − s3)Y (t − s − s4)Y (t − s − s5)Y (t − s − s6)

]
=ΓY Y (s1 − s − s2)ΓY Y (s3 − s4)ΓY Y (s5 − s6)

+ ΓY Y (s1 − s − s2)ΓY Y (s3 − s5)ΓY Y (s4 − s6)
+ ΓY Y (s1 − s − s2)ΓY Y (s3 − s6)ΓY Y (s4 − s5)
+ ΓY Y (s1 − s − s3)ΓY Y (s2 − s4)ΓY Y (s5 − s6)
+ ΓY Y (s1 − s − s3)ΓY Y (s2 − s5)ΓY Y (s4 − s6)
+ ΓY Y (s1 − s − s3)ΓY Y (s2 − s6)ΓY Y (s4 − s5)
+ ΓY Y (s1 − s − s4)ΓY Y (s2 − s3)ΓY Y (s5 − s6)
+ ΓY Y (s1 − s − s4)ΓY Y (s2 − s5)ΓY Y (s3 − s6)
+ ΓY Y (s1 − s − s4)ΓY Y (s2 − s6)ΓY Y (s3 − s5)
+ ΓY Y (s1 − s − s5)ΓY Y (s2 − s3)ΓY Y (s4 − s6)
+ ΓY Y (s1 − s − s5)ΓY Y (s2 − s4)ΓY Y (s3 − s6)
+ ΓY Y (s1 − s − s5)ΓY Y (s2 − s6)ΓY Y (s3 − s4)
+ ΓY Y (s1 − s − s6)ΓY Y (s2 − s3)ΓY Y (s4 − s5)
+ ΓY Y (s1 − s − s6)ΓY Y (s2 − s4)ΓY Y (s3 − s5)
+ ΓY Y (s1 − s − s6)ΓY Y (s2 − s5)ΓY Y (s3 − s4).

(3.29)

Then, substituting (3.28) and (3.29) into (3.26), and taking again advantage of
the symmetry of the correlation function, ΓY Y (·), to simplify the representation
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of the last multidimensional integral, one obtains

E [X0(t) X1(t)] = −ω2
0

∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)ΓY Y (s1 − s − s2) ds2 ds1 ds

+ ω2
0

2

∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)ΓY Y (s1 − s − s2)

· ΓY Y (s3 − s4) ds4 ds3 ds2 ds1 ds

− ω2
0

8

∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

∫ ∞

0
h(s5)

∫ ∞

0
h(s6)

· ΓY Y (s1 − s − s2)ΓY Y (s3 − s4)ΓY Y (s5 − s6) ds6 ds5 ds4 ds3 ds2 ds1 ds .

(3.30)

So, substituting expressions (3.25) and (3.30) into (3.23), we obtain an explicit
approximation of the second-order moment for the approximation X̂(t),

E [ (X̂(t))2
]

=
∫ ∞

0
h(s)

∫ ∞

0
h(s1)ΓY Y (s − s1) ds1 ds

+ 2ϵ

(
− ω2

0

∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)ΓY Y (s1 − s − s2) ds2 ds1 ds

+ ω2
0

2

∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

· ΓY Y (s1 − s − s2)ΓY Y (s3 − s4) ds4 ds3 ds2 ds1 ds

− ω2
0

8

∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

∫ ∞

0
h(s5)

∫ ∞

0
h(s6)

· ΓY Y (s1 − s − s2)ΓY Y (s3 − s4)ΓY Y (s5 − s6) ds6 ds5 ds4 ds3 ds2 ds1 ds
)

.

(3.31)

Now, we compute the third-order moment of X̂(t), using the first-order approxi-
mation w.r.t. the perturbative parameter ϵ,

E
[
(X̂(t))3

]
= E

[
(X0(t))3]+ 3ϵE

[
(X0(t))2X1(t)

]
. (3.32)
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By reasoning analogously as in the calculation of the foregoing statistical moments,
we obtain

E [ (X0(t))3]
=
∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)E [Y (t − s)Y (t − s1)Y (t − s2)] ds2 ds1 ds

= 0,

(3.33)

and

E [ (X0(t))2X1(t)
]

=
∫ ∞

0
h(s)E

[
X2

0 (t)
(

−ω2
0X0(t − s) + ω2

0
3! (X0(t − s))3 − ω2

0
5! (X0(t − s))5

)]
ds

= 0.

(3.34)

We here omit the details of these calculations since they are somewhat cumbersome
and they can easily inferred from our previous developments. Then, substituting
(3.33) and (3.34) into (3.32), we obtain

E
[
(X̂(t))3

]
= E

[
(X0(t))3]+ 3ϵE

[
(X0(t))2X1(t)

]
= 0.

In general, it can be straightforwardly shown that the statistical moments of odd
order are null,

E
[
(X̂(t))2n+1

]
= 0, n = 0, 1, 2, . . . (3.35)

The correlation function of X̂(t), using the approximation of first-order w.r.t. the
perturbative parameter ϵ, is given by

Γ
X̂X̂

(τ) = E
[
X̂(t)X̂(t + τ)

]
= E [X0(t)X0(t + τ)] + ϵ (E [X0(t)X1(t + τ)] + E [X1(t)X0(t + τ)]) .

(3.36)

The first term of (3.36) corresponds to the correlation function of X0(t). It is
determined, in terms of the correlation function ΓY Y (·), by applying the Fubini’s
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theorem and the stationarity of Y (t),

E [X0(t)X0(t + τ)] =
∫ ∞

0
h(s)

∫ ∞

0
h(s1)E [Y (t − s)Y (t + τ − s1)] ds1 ds

=
∫ ∞

0
h(s)

∫ ∞

0
h(s1)ΓY Y (τ − s1 + s) ds1 ds .

(3.37)

The two last expectations on the right-hand side of (3.36), correspond to the
cross-correlation function of X0(t) and X1(t). They can be expressed explicitly in
terms of the correlation function ΓY Y (·),

E [ X0(t)X1(t + τ)]

=
∫ ∞

0
h(s)E

[
X0(t)

(
−ω2

0X0(t + τ − s) + ω2
0

3! (X0(t + τ − s))3 − ω2
0

5! (X0(t + τ − s))5
)]

ds

= −ω2
0

∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)ΓY Y (s1 + τ − s − s2) ds2 ds1 ds

+ ω2
0

2

∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

· ΓY Y (s1 + τ − s − s2)ΓY Y (s3 − s4) ds4 ds3 ds2 ds1 ds

− ω2
0

8

∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

∫ ∞

0
h(s5)

∫ ∞

0
h(s6)

· ΓY Y (s1 + τ − s − s2)ΓY Y (s3 − s4)ΓY Y (s5 − s6) ds6 ds5 ds4 ds3 ds2 ds1 ds
(3.38)

and

E [ X1(t)X0(t + τ)]

=
∫ ∞

0
h(s)E

[
X0(t + τ)

(
−ω2

0X0(t − s) + ω2
0

3! (X0(t − s))3 − ω2
0

5! (X0(t − s))5
)]

ds

= −ω2
0

∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)ΓY Y (s1 − τ − s − s2) ds2 ds1 ds

+ ω2
0

2

∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

· ΓY Y (s1 − τ − s − s2)ΓY Y (s3 − s4) ds4 ds3 ds2 ds1 ds

− ω2
0

8

∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

∫ ∞

0
h(s5)

∫ ∞

0
h(s6)

· ΓY Y (s1 − τ − s − s2)ΓY Y (s3 − s4)ΓY Y (s5 − s6) ds6 ds5 ds4 ds3 ds2 ds1 ds .

(3.39)
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From expressions (3.37)–(3.39), we observe that the correlation function, Γ
X̂X̂

(τ),
given by (3.36), only depends on the difference τ between two different instants, t

and t + τ (as it has been anticipated in the notation in (3.36)). This fact together
with E

[
X̂(t)

]
= 0 (see (3.22)), allows us to say that the first-order approximation,

X̂(t), given in (3.11) and obtained via the perturbation technique, is a stationary
stochastic process. Additionally, it is clear that the covariance function of the steady-
state coincides with the correlation function, i.e. Cov

[
X̂(t1), X̂(t2)

]
= Γ

X̂X̂
(τ),

where τ = |t1 − t2| and, also the variance matches the second-order moment, which
in turn can be calculated evaluating the correlation function at the origin,

V
[
X̂(t)

]
= E

[
X̂(t)2

]
= Γ

X̂X̂
(0). (3.40)

From the correlation function, Γ
X̂X̂

(τ), it is straightforward to also determine the
power spectral density function (or simply, the power spectrum) of X̂(t)

S
X̂(t)(f) =

∫ ∞

−∞
e−ifτ Γ

X̂X̂
(τ)dτ, (3.41)

here, i =
√

−1 is the imaginary unit and f is the angular frequency. Observe that,
S

X̂(t)(f) is the Fourier transform of the correlation function of X̂(t). This function
plays a key role in describing the distribution of power into frequency components
composing a signal represented via stationary stochastic process [93].

3.3 Numerical examples

In the previous section, we have obtained approximations of the main statistical
moments of the steady-state of problem (3.2). In this section, we combine this key
information, together with the PME technique, to construct approximations of
the PDF of the stationary solution. We will show two examples where important
stochastic processes play the role of the external source, Y (t), in problem (3.2).
In the first example, we will take the white Gaussian noise as Y (t), while in the
second one, the Ornstein-Uhlenbeck stochastic process will be considered. Since the
validity of the perturbation method is restricted to small values of the perturbative
parameter ϵ, the numerical experiments are carried out with criticism to this key
point taking into account that the numerical approximations must retain certain
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universal properties such as the positivity of even order statistical moments (for any
stochastic process); the symmetry of the correlation and power spectral functions;
the correlation function reaches its maximum value at the origin and the positivity
of the spectral function, in the case of stationary stochastic processes.

For the sake of completeness, down below we revise the main definition and results
about the power spectral function, S

X̂(t)(f) defined in (3.41), that will be used
throughout the two numerical examples.

Using the Euler identity eix = cos(x) + i sin(x), it is easy to check that, for any
stationary process, the power spectral density is an even function,

S
X̂(t)(f) =

∫ ∞

−∞
cos(fτ)Γ

X̂X̂
(τ)dτ = 2

∫ ∞

0
cos(fτ)Γ

X̂X̂
(τ)dτ = S

X̂(t)(−f).

(3.42)
This property is also fulfilled by the correlation function, Γ

X̂X̂
(τ) = Γ

X̂X̂
(−τ) [89,

Ch. 3]. Moreover, the correlation function reaches its maximum at the origin, i.e.
|Γ

X̂X̂
(τ)| ≤ Γ

X̂X̂
(0) [89, Ch. 3], while it can be proved that the power spectral

function is non-negative, S
X̂(t)(f) ≥ 0 [93]. To reject the possible spurious approx-

imations obtained via the stochastic perturbation method, we will check in our
numerical experiments whether all these properties are preserved. We will also
take advantage of the approximations of the power spectral density and of the
correlation function to obtain the two following important parameters associated
with a stationary stochastic process, the noise intensity (D) and the correlation
time (τ̂), respectively defined by

D =
∫ ∞

0
Γ

X̂X̂
(τ)dτ = 1

2S
X̂(t)(0), τ̂ =

∫∞
0 Γ

X̂X̂
(τ)dτ

Γ
X̂X̂

(0) = D
Γ

X̂X̂
(0) . (3.43)

Notice that the value of D comes from evaluating S
X̂(t)(f) at f = 0 in (3.42). So,

the noise intensity is defined as the area beneath the correlation function Γ
X̂X̂

(τ),
while the correlation time is a standardized noise intensity [7]. The parameters D
and τ̂ indicate how strongly the stochastic process is correlated over time.

In both examples, the numerical results that we shall show correspond to 3rd-
order Taylor’s approximations of the nonlinear term sin(X(t)) in (3.13), since we
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have checked that no significant differences are obtained using 5th order Taylor’s
approximations.

Example 3.1 Let us consider as external source the stochastic process Y (t) = ξ(t),
where ξ(t) is a white Gaussian noise, i.e. is a stationary Gaussian stochastic process
with zero-mean, E [Y (t)] = 0, and flat power spectral density, SY (t)(f) = N0

2 , for
all f . Then, its correlation function is given by ΓY Y (τ) = N0

2 δ(τ), where δ(τ)
is the Dirac delta function. We will take the following data for the parameters
involved in model (3.2), ω0 = 1, β = 5

100 and N0 = 1
100 (that satisfy the conditions

explained in Section 3.2, so ensuring the existence of the steady-state solution), so
the nonlinear random oscillator is formulated by

d2X(t)
dt2 + 1

10
dX(t)

dt
+ X(t) + ϵ sin(X(t)) = ξ(t), t > 0. (3.44)

We will now take advantage of the results derived in Subsection 3.2.2, to calculate
the following statistical information of the first-order approximation, X̂(t), obtained
via the perturbation method and given in (3.11): (1) the moments up to order 3,
i.e. E

[
(X̂(t))i

]
, i = 1, 2, 3; (2) the variance, V

[
X̂(t)

]
, and (3) the correlation

function, Γ
X̂X̂

(τ). We will use this information to compute approximations, first of
the stationary PDF of X̂(t), using the PME, and, secondly, of the spectral density
function of X̂(t).

From expression (3.35), in particular, we know that E
[
X̂(t)

]
and E

[
(X̂(t))3

]
are

null. For the second-order moment, E
[
(X̂(t))2

]
, using the expression (3.31) we

obtain
E
[
(X̂(t))2

]
= 1

40 − 12641
512000ϵ.

This value is also the variance since E
[
X̂(t)

]
= 0. On the other hand, as

E
[
(X̂(t))2

]
is always positive, we can obtain the following bound for the per-

turbative parameter, ϵ < 1.01258. Although this value provides a bound for the
validity of the perturbation method, we show that it is a conservative bound down
below.
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To this end, we will compare the mean and standard deviation of X̂(t) obtained
via the perturbation method and the ones computed by Kloeden-Platen-Schurz
algorithm [54]. The results are shown in Table 3.1. We can observe that both
approximations are accurate for ϵ = 0 (which corresponds to the linearization of
model (3.2)), ϵ = 0.01 and ϵ = 0.1. But significant differences in the standard
deviation are revealed for ϵ = 0.5 and ϵ = 1.

Perturbation
method

Kloeden-Platen-Schurz
(1000 simulations)

Kloeden-Platen-Schurz
(10000 simulations)

ϵ = 0 Mean 0 0.00135 0.00027
sd 0.15811 0.16031 0.15873

ϵ = 0.01 Mean 0 0.00009 -0.00028
sd 0.15733 0.15419 0.15732

ϵ = 0.1 Mean 0 0.00022 −1.806 · 10−6

sd 0.15010 0.14933 0.14992

ϵ = 0.5 Mean 0 −3.124 · 10−7 0.00006
sd 0.11249 0.12931 0.12954

ϵ = 1 Mean 0 0.00028 0.00010
sd 0.01762 0.11646 0.11267

Table 3.1: Comparison between stochastic perturbation method and Kloeden-Platen-Schurz
algorithm for different values of ϵ with regard to the approximations of the mean and the
standard deviation (sd) of the steady-state. Example 3.1.

According to expressions (3.36)–(3.39), the approximation of the correlation func-
tion is given by

Γ
X̂X̂

(τ) =


f1(τ), if τ > 0,

f2(τ), if τ < 0,
1
40 − 12641

512000ϵ, if τ = 0.

(3.45)

where,

f1(τ) = e−τ/20

81510912000

(
399 (5107200 + 12641ϵ(−399 + 10τ)) cos

(√
399τ

20

)

+
√

399(5107200 − 12641ϵ(599 + 3990τ)) sin
(√

399τ

20

))
,
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and,

f2(τ) = − eτ/20

81510912000

(
399(−5107200 + 12641ϵ(399 + 10τ)) cos

(√
399τ

20

)

+
√

399(5107200 + 12641ϵ(−599 + 3990τ)) sin
(√

399τ

20

))
.

Notice that, in full agreement with expression (3.40), it is satisfied that

E
[
(X̂(t))2

]
= V

[
X̂(t)

]
= Γ

X̂X̂
(0) = 1

40 − 12641
512000ϵ.

In Figure 3.1, we show the graphical representation of the correlation function,
Γ

X̂X̂
(τ), plotted from the expression (3.45) and using different values of the pertur-

bative parameter ϵ. To emphasize this dependence on the parameter ϵ, hereinafter
we will denote this function by Γ

X̂X̂
(τ, ϵ). In Figure 3.1a, we observe that the ap-

proximations of the Γ
X̂X̂

(τ, ϵ) deteriorate as ϵ increases in full agreement with the
results obtained in Table 3.1. The deterioration of the approximations as ϵ increases
can also be confirmed by checking that the general property |Γ

X̂X̂
(τ)| ≤ Γ

X̂X̂
(0) for

the correlation function [38], does not fulfill for ϵ = 0.5 and ϵ = 1 (see Figure 3.1a).
In contrast, for smaller values of ϵ ∈ {0, 0.01, 0.1} this property holds. Notice that
the correlation functions for ϵ = 0 and ϵ = 0.01 are quite similar, as expected.
For the sake of clarity, we have plotted these results in Figure 3.1b. Finally, in
Figure 3.1c we show Γ

X̂X̂
(τ, ϵ) as a surface varying (τ, ϵ) ∈ [−20, 20] × [0, 0.1].

Now, we compute the approximation of the PDF, f
X̂(t)(x), of the steady-state,

using the PME, taking N = 3 (see Section 2.6). Therefore, according to the PME,
the PDF is sought in the form

f
X̂(t)(x) = e−1−λ0−λ1x−λ2x2−λ3x3

,

where, in our case, λ0, λ1, λ2 and λ3 are determined numerically solving the
system (2.13) with a0 = 1, a1 = 0, a2 = 1

40 − 12641
512000ϵ and a3 = 0. In Table 3.2, we

show the values of λ0, λ1, λ2 and λ3 and the corresponding domain [x1, x2] for
the following values of the perturbative parameter ϵ ∈ {0, 0.01, 0.1}. The domain
has been determined using the Bienaymé–Chebyshev inequality [µ − kσ, µ + kσ] (in
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Figure 3.1: Correlation function Γ
X̂X̂

(τ, ϵ) of X̂(t). (3.1a) and (3.1b): 2D-representation
of Γ

X̂X̂
(τ, ϵ) for fixed values of ϵ. (3.1c): 3D-representation of Γ

X̂X̂
(τ, ϵ) for ϵ ∈ [0, 0.1].

Example 3.1.

our case µ = 0) with k = 10, see [19]. This guarantees the 99% of the probability
is contained in the above interval [µ − kσ, µ + kσ] regardless of the distribution of
the corresponding random variable [19]. In Figure 3.2, we compare the graphical
representations of the PDF, f

X̂(t)(y). From them, we can observe that the plots
are quite similar.

To complete our numerical analysis, in Figure 3.3 we show a graphical represen-
tation of the power spectral density for ϵ ∈ {0, 0.01, 0.1}. We observe that the
approximation obtained via the stochastic perturbation method is able to retain the
properties of symmetry and positivity of the power spectral density for ϵ ∈ {0, 0.01},
however, positivity begins to slightly fail for ϵ = 0.1, therefore restricting the validity
of the results provided by the stochastic perturbation method. In Table 3.3, the noise
intensity (D) and the correlation time (τ̂) have been calculated for ϵ ∈ {0, 0.01}.
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ϵ = 0 ϵ = 0.01 ϵ = 0.1

λ0 -1.92550119 -1.93046362 -1.977491823
λ1 1.16917582 · 10−8 2.28178507 · 10−8 1.72829555 · 10−10

λ2 19.9999999 20.19948570 22.19159320
λ3 −8.23925883 · 10−8 −3.07272453 · 10−7 −5.17949495 · 10−9

[x1, x2] [−1.581138, 1.581138] [−1.573311, 1.573311] [−1.501034, 1.501034]

Table 3.2: Values for λi, i ∈ {0, 1, 2, 3} and the domain [x1, x2] obtained via the PME
method, for ϵ ∈ {0, 0.01, 0.1}. Example 3.1.

-1.5 -1.0 -0.5 0.5 1.0 1.5

0.5

1.0

1.5

2.0

2.5

ϵ=0.1

ϵ=0.01

ϵ=0

Figure 3.2: Approximate PDF, f
X̂(t)(y), of steady-state, X̂(t), for ϵ ∈ {0, 0.01, 0.1}. Exam-

ple 3.1.

Example 3.2 In this second example, let us consider the Ornstein-Uhlenbeck
stochastic process to play the role of the external source, Y (t). As we have seen in
Section 2.2, it is defined as the stationary solution of the Langevin equation

dY (t)
dt

+ αY (t) = σ
dW (t)

dt
, α > 0,

where W (t) is the standard Wiener process [54]. Notice that α > 0 is a necessary
and sufficient condition for a stationary solution. Y (t) satisfies the hypotheses
so that the stochastic perturbation method can be applied, i.e., is a zero-mean
stationary Gaussian stochastic process, being ΓY Y (τ) = σ2 e−α|τ | its correlation
function. We take the following values for the parameters in equation (3.2), ω0 = 1,
β = 1/100, σ = 1/100 and α = 1/2 (thus, it ensures the existence of the steady-state
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-3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ϵ=0.1

ϵ=0.01

ϵ=0

Figure 3.3: Power spectral density of the approximation solution X̂(t), S
X̂(t)(f), for ϵ ∈

{0, 0.01, 0.1}. Example 3.1.

ϵ = 0 ϵ = 0.01
D 0.0025 0.00245062
τ̂ 0.1 0.0990026

Table 3.3: Values for D and τ̂ , defined in (3.43), for ϵ ∈ {0, 0.01}. Example 3.1.

solution). So, in this case, the nonlinear random oscillator is given by

Ẍ(t) + 1
50Ẋ(t) + X(t) + ϵ sin(X(t)) = Y (t), t > 0. (3.46)

We will now apply the same steps as in Example 3.1 to obtain approximations of
the main statistical functions of the approximate stochastic solution X̂(t). First,
we will determine the three first statistical moments. From expression (3.35),
E
[
X̂(t)

]
and E

[
X̂3(t)

]
are null. For the second-order moment, E

[
X̂2(t)

]
, using

the expression (3.23) we obtain

E
[
X̂2(t)

]
= 13

6300 − 465955883861
126023688000000ϵ. (3.47)

From this expression, we can obtain a rough bound for ϵ, since E
[
X̂2(t)

]
> 0. In

this case, ϵ < 0.558098. To check that our second-order moment approximation
is consistent, we will compare it with the random linear oscillator obtained when
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ϵ → 0 [89, Example 7.2],

Ẍ(t) + 1
50Ẋ(t) + X(t) = Y (t), t > 0.

Notice that, according to (3.40), expression (3.47) is also the variance of X̂(t),
V
[
X̂(t)

]
.

In Figure 3.4, we can observe that for t large enough (corresponding in the limit
as t → ∞ to the steady-state), the second-order moment of the random linear
equation approaches to our approximation for ϵ = 0. Observe in the plot that the
E
[
X2(t)

]
→ 0.00206349 ≈ 13

6300 as t → ∞, in accordance with (3.47).

ϵ = 0.5

ϵ = 0.1

ϵ = 0.01

ϵ = 0

ϵ = -0.01

E{Ŷ²(t)} linear equation
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t
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0.00208

0.00210

E{Ŷ²(t)}

50 100 150 200 250 300 350
t

0.0005

0.0010

0.0015

0.0020

E{Ŷ²(t)}

Figure 3.4: Comparison of second-order moments between linear and nonlinear random
oscillator for small values of ϵ and t large (corresponding to the steady-state). Example 3.2.

Once we have obtained the mean, E
[
X̂(t)

]
and the standard deviation,

√
V
[
X̂(t)

]
,

of X̂(t) via the perturbation method, we compare them with the ones computed
by Kloeden-Platen-Schurz algorithm. The results are shown in Table 3.4. We
can observe that both approximations are accurate for ϵ ∈ {0, 0.01, 0.1}, however,
significant differences in the standard deviation are shown for ϵ = 0.5, thus showing
the perturbation method does not provide acceptable approximations.
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Perturbation
method

Kloeden-Platen-Schurz
(1000 simulations)

Kloeden-Platen-Schurz
(10000 simulations)

ϵ = 0 Mean 0 -0.01267 -0.01283
sd 0.04542 0.04422 0.04447

ϵ = 0.01 Mean 0 0.00737 0.00725
sd 0.04501 0.04437 0.04394

ϵ = 0.1 Mean 0 -0.00265 -0.00222
sd 0.04115 0.04081 0.04083

ϵ = 0.5 Mean 0 -0.00626 -0.00643
sd 0.01465 0.03234 0.03246

Table 3.4: Comparison of the mean and the standard deviation (sd) between the stochastic
perturbation method and the Kloeden-Platen-Schurz algorithm for different values of ϵ.
Example 3.2.

The approximation of the correlation function, Γ
X̂X̂

(τ), using (3.36) together with
expressions (3.37)–(3.39) is given by

Γ
X̂X̂

(τ) =


f1(τ), if τ < 0,

f2(τ), if τ > 0,
13

6300 − 465955883861
126023688000000ϵ, if τ = 0,

(3.48)

where,

f1(τ) = − eτ/100

298974181793219856000000

(
19286265625 e 49τ

100 (1585962845ϵ

−992186496) +
√

1111 sin
(

3
√

1111τ

100

)
(317192569(28243342050τ

−3197833091)ϵ + 466418810254320000)

+1111 cos
(

3
√

1111τ

100

)
(317192569(22036350τ + 3050020523)ϵ

−538069558062960000)) ,
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and

f2(τ) = e− τ
2

298974181793219856000000

(
1111 cos

(
3
√

1111τ

100

)
(317192569

·(22036350τ − 3050020523)ϵ + 538069558062960000)

+ e 49τ
100

(
√

1111 sin
(

3
√

1111τ

100

)
(466418810254320000

−317192569(28243342050τ + 3197833091)ϵ))
−19286265625(1585962845ϵ − 992186496)) .

Then, we can check that property (3.40) holds.

In Figure 3.5, we show the graphical representations of the correlation function,
given by the expression (3.48), for different values of the perturbative parameter
ϵ. First, in Figure 3.5a, we can observe that for ϵ = 0.1 and 0.2 the property
|Γ

X̂X̂
(τ)| ≤ Γ

X̂X̂
(0) is not fulfilled, so showing the perturbations method does

not provide reliable approximations for such values of ϵ. For the other values of
ϵ, we have represented the correlation function (see Figure 3.5b). One observes
that Γ

X̂X̂
(τ, ϵ) for ϵ ∈ {0, 0.01} are quite similar. Finally, in Figure 3.5c we show

Γ
X̂X̂

(τ, ϵ) as a surface varying (τ, ϵ) ∈ [−20, 20] × [−0.01, 0.01].

Now, we will obtain the approximation of the stationary PDF in the form f
X̂(t)(x) =

e−1−λ0−λ1x−λ2x2−λ3x3 using the PME, taking N = 3 (see Section 2.6). The values
of λ0, λ1, λ2 and λ3 are shown in Table 3.5 together with the domain [x1, x2] for the
following values of the perturbative parameter ϵ ∈ {0, 0.01, 0.1}. As in Example 3.1,
the intervals [x1, x2] have been computed using the Bienaymé–Chebyshev inequality.

In Figure 3.6, we compare the graphical representations of the PDF, f
X̂(t)(x).

From them, we can observe that the approximations are very similar.

To complete our numerical example, we have calculated graphical representations
of the power spectral density, S

X̂(t)(f), of the X̂(t). In Figure 3.7, we show two
plots. Panel left corresponds to ϵ ∈ {0, 0.01}, and panel right to ϵ ∈ {0, 0.001}. We
observe that the property of symmetry breaks down when ϵ increases while positivity
is retained. In Table 3.6, D and τ̂ have been calculated for ϵ ∈ {0, 0.001}.
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Figure 3.5: Correlation function Γ
X̂X̂

(τ, ϵ) of X̂(t). (3.5a) and (3.5b): 2D-representation of
Γ

X̂X̂
(τ, ϵ) for fixed values of ϵ. (3.5c): 3D-representation of Γ

X̂X̂
(τ, ϵ) for ϵ ∈ [−0.01, 0.01].

Example 3.2.

3.4 Conclusions

In this chapter, we have studied a class of stochastic nonlinear oscillators whose
restoring term is a transcendental function that depends only on the position. We
have assumed that the oscillator is excited by a zero-mean stationary Gaussian
process. Since the nonlinear term is affected by a small parameter, to conduct our
probabilistic analysis, we have approximated the nonlinear term using Taylor’s
polynomial, and then we applied the stochastic perturbation method to obtain the
main statistical moments of the stationary solution. After this theoretical analysis,
we have carried out numerical examples where the stochastic excitation is driven
by two important stochastic processes, the Gaussian white noise and the Ornstein-
Uhlenbeck processes. Since a key point when applying the perturbation method
is the accuracy of the approximations in terms of the size of the perturbative
parameter, from the numerical results obtained in the two examples, we have
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ϵ = 0 ϵ = 0.01

λ0 -3.17273924 -3.181779485
λ1 −1.282642481 · 10−11 2.017945566 · 10−10

λ2 2.423076923 · 102 246.7285778
λ3 1.474799603 · 10−9 −2.2037993478 · 10−8

[x1, x2] [−0.454256, 0.454256] [−0.450168, 0.450168]

Table 3.5: Values of λi, i = {0, 1, 2, 3} and the domain [x1, x2] obtained via PME, for ϵ = 0
and 0.01. Example 3.2.

-0.4 -0.2 0.2 0.4

2

4

6

8

ϵ=0.01

ϵ=0

Figure 3.6: PDF of X̂(t), f
X̂(t)(x), for ϵ = 0 and 0.01. Example 3.2.

performed a critical analysis checking whether some important general properties
of the statistics associated to the stationary solution are correctly preserved. To
better check the accuracy of the approximations of the mean and the standard
deviation via the perturbation method, we have compared them with the ones
calculated by means of an accurate numerical scheme, showing good agreement
for certain sizes of the perturbative parameter. This comparative analysis includes
the linear case obtained when the perturbative parameter is null. In this limit
case, the results are also fully consistent. In summary, our study shows that, by
means of a class of stochastic nonlinear oscillators, the double approximation
Taylor-perturbation method is able to approximate the statistics of the stationary
solution. Additionally, we have taken advantage of the above-computed statistics,
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Figure 3.7: Power spectral density, S
X̂(t)(f), of X̂(t). Panel left: ϵ ∈ {0, 0.01}. Panel right:

ϵ ∈ {0, 0.001}. Example 3.2.

ϵ = 0 ϵ = 0.001

D 0.0002 0.0001996
τ̂ 0.0969231 0.0969031

Table 3.6: Values for D and τ̂ , defined in (3.43), for ϵ ∈ {0, 0.001}. Example 3.2.

in combination with the Principle of Maximum Entropy, to construct reliable
approximations of the density of the steady-state. Our analysis has been performed
with criticism with regard to the size of the perturbative parameter, as required
when applying the stochastic perturbation method. Our approach can be useful
to study other stochastic nonlinear oscillators whose small perturbations affect
transcendental functions with the additional advantage of computing the density
of the stationary solution.

Publications associated with this chapter

The results of this chapter have been presented at the International Symposium
& International Student Workshop on Interdisciplinary Mathematics in the CiTi
areas (ISIM & ISWIM) in Budapest (Romania) from June 27-30, 2023. The
talk, titled Probabilistic analysis of a random nonlinear oscillator via the random
perturbation technique, was published in the conference proceedings with ISSN-L
2821–8779. Additionally, a complete version of the chapter’s findings has been
published in the paper [25].
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Chapter 4
Probabilistic analysis of random nonlinear

oscillators subject to small perturbations in the
restoring term depending on the position and

velocity

In this chapter, we combine the stochastic perturbation method with the Principle
of Maximum Entropy to construct approximations of the first probability density

function of the steady-state solution of a class of nonlinear oscillators, whose
restoring function, which depends on the position and velocity, is affected by small
perturbations and driven by a stochastic excitation. The excitation is given by a

stationary Gaussian stochastic process with certain additional properties.
Furthermore, we approximate higher-order moments, the variance, and the

correlation functions of the solution. The theoretical findings are illustrated via
some numerical experiments that confirm that our approximations are reliable.
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4.1 Introduction

When dealing with oscillators, the term g(X(t)) that appears in Eq. (3.1) may not
only depend on position but may also depend on velocity. In this chapter, we address
the study of random cross-nonlinear oscillators subject to small perturbations
affecting the nonlinear term, g, which depend on both the position, X(t), and the
velocity, Ẋ(t),

Ẍ(t) + 2ζω0Ẋ(t) + ϵg(X(t), Ẋ(t)) + ω2
0X(t) = Y (t), (4.1)

where X(t) denotes the position of the oscillatory system at the time instant t, ζ

is the damping constant, ω0 > 0 is the undamped angular frequency, and finally, ϵ

is the small perturbation parameter.

Here, the stochastic derivatives are understood in the mean square sense [89,
Ch. 4]. In our subsequent analysis, we will consider the case that g(X(t), Ẋ(t)) =
X2(t)Ẋ(t), which corresponds to the most complicated scenario, sometimes called
cross-nonlinearity [26, 23], and the excitation Y (t) is a causal mean square differ-
entiable and stationary zero-mean Gaussian stochastic process whose correlation
function, ΓY Y (τ), is known. The intuitive and physical interpretations of these
hypotheses have been explained in Section 3.1.

To the best of our knowledge, this is the first time that stochastic nonlinear
oscillators with the above-described type of cross-nonlinearities is studied using
our approach, i.e., combining mean square calculus and the stochastic perturbation
method. In this sense, we think that our approach may be useful to extend our
study to stochastic nonlinear oscillators having more general cross-nonlinearities,
in particular of the form g(X(t), Ẋ(t)) =

∑N
n=1

∑M
m=1 Xn(t)Ẋm(t). This in turn,

can be utilized for the case that the expression of g(X(t), Ẋ(t)) is given by an
analytic function of X(t) and Ẋ(t), such that g(0, 0) = 0, by representing it by
means of the truncation of its Taylor expansion of order (N, M). For instance, this
happens when g(X(t), Ẋ(t)) = sin(X(t)Ẋ(t)).

The chapter is organized as follows. Section 4.2 is divided into two parts. In
Subsection 4.2.1, we apply the perturbation technique to construct a first-order
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approximation of the stationary solution stochastic process of model (4.1) with
g(X(t), Ẋ(t)) = X2(t)Ẋ(t). In Subsection 4.2.2, we determine expressions for the
first higher-order moments, the variance, the covariance and the correlation of the
aforementioned first-order approximation. These expressions will be given in terms
of certain integrals of the correlation function of the Gaussian noise, Y (t), and
of the classical impulse response function to the linearized oscillator associated
with Eq. (4.1). In Section 4.3 we illustrate all theoretical findings by means of
several illustrative examples. Our numerical results are compared with Monte
Carlo simulations and with the application of the Euler-Maruyama numerical
scheme, showing full agreement. Conclusions are drawn in Section 4.4.

4.2 Probabilistic model study

As it has been indicated in Section 4.1, in this chapter, we will study, from a
probabilistic standpoint, the random cross-nonlinear oscillator

Ẍ(t) + 2ζω0Ẋ(t) + ϵX2(t)Ẋ(t) + ω2
0X(t) = Y (t). (4.2)

The analysis will be divided into two steps. First, in Subsection 4.2.1, we will apply
the perturbation technique to obtain an approximation, X̂(t), of the stationary
solution stochastic process, X(t). Then, in Subsection 4.2.2 we will take advantage
of X̂(t) to determine reliable approximations of the main statistical functions of
X(t), namely, the first higher-order moments, E [Xn(t)] , n = 1, . . . , 5, the variance,
V [X(t)], the covariance, Cov [X(t1), X(t2)], and the correlation, ΓXX(τ).

4.2.1 Stochastic perturbation expansion

Let us consider the Eq. (4.2). The main idea of the stochastic perturbation
technique, as we have seen in Chapter 2, is to consider that the solution X(t) can
be expanded in the powers of the small parameter ϵ (|ϵ| ≪ 1),

X(t) = X0(t) + ϵX1(t) + ϵ2X2(t) + · · · (4.3)
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Replacing expression (4.3) into Eq. (4.2), yields the following sequence of linear
differential equations with random inputs

ϵ0 : Ẍ0(t) + 2ζω0Ẋ0(t) + ω2
0X0(t) = Y (t),

ϵ1 : Ẍ1(t) + 2ζω0Ẋ1(t) + ω2
0X1(t) = −X2

0 (t)Ẋ0(t),
ϵ2 : Ẍ2(t) + 2ζω0Ẋ2(t) + ω2

0X2(t) = −2X0(t)X1(t)Ẋ0(t) − X2
0 (t)Ẋ1,

...
...

...
...

...

(4.4)

Notice that each equation can be solved in cascade. As usual, when applying the
perturbation technique, we take the first-order approximation

X̂(t) = X0(t) + ϵX1(t). (4.5)

This entails that in our subsequent development we will only need the two first
equations listed in (4.4).

As indicated in Section 4.1, now we will focus on the analysis of the steady-state
solution. Using the linear theory, the two first equations in (4.4) can be solved
using the convolution integral [68]:

X0(t) =
∫ ∞

0
h(s)Y (t − s) ds, (4.6)

and
X1(t) =

∫ ∞

0
h(s)

(
−X2

0 (t − s)Ẋ0(t − s)
)

ds, (4.7)

where

h(t) =


(
ω2

0 − ζ2ω2
0
)− 1

2 e−ζω0t sin
((

ω2
0 − ζ2ω2

0
) 1

2 t
)

, if t > 0,

0, if t ≤ 0,
(4.8)

is the impulse response function for the underdamped case ζ2 < 1. This situation
corresponds to the condition in which damping of an oscillator causes it to return
to equilibrium with the amplitude gradually decreasing to zero (in our random
setting, it means that the expectation of the amplitude is null); the system returns
to equilibrium faster but overshoots and crosses the equilibrium position one or
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more times. Although they are not treated hereinafter, two more situations are
also possible, namely, critical damping and overdamping. The former corresponds
to ζ2 = 1 and in that case the damping of an oscillator causes it to return as
quickly as possible to its equilibrium position without oscillating back and forth
about this position, while the latter corresponds to ζ2 > 1, and in this situation
damping of an oscillator causes it to return to equilibrium without oscillating;
oscillator moves more slowly toward equilibrium than in the critically damped
system [91].

4.2.2 Constructing approximations of the main statistical moments of the
stationary solution

This subsection is devoted to calculating the main probabilistic information of the
stationary solution stochastic process, X(t), of model (4.2). As it has been previ-
ously pointed out, to this end, we assume that the input term Y (t) is a stationary
zero-mean (E [Y (t)] = 0) Gaussian stochastic process whose correlation function,
ΓY Y (τ), is given. We will further assume that Y (t) is mean square differentiable.
This additional hypothesis will be apparent later. At this point, it is convenient
to recall that for any stationary stochastic process, its correlation function is
even, so ΓY Y (τ) = ΓY Y (−τ), [89, p. 47]. This property will be extensively applied
throughout our subsequent developments.

To compute the mean of the approximation, we first take the expectation operator
in (4.5),

E
[
X̂(t)

]
= E [X0(t)] + ϵE [X1(t)] . (4.9)

So, we now need to determine both E [X0(t)] and E [X1(t)]. To compute the
E [X0(t)], we again use the expectation operator in (4.6),

E [X0(t)] = E
[∫ ∞

0
h(s)Y (t − s) ds

]
=
∫ ∞

0
h(s)E [Y (t − s)] ds = 0, (4.10)

where we have applied Prop. 2.4 and that E [Y (t)] = 0.
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Now, we deal with the computation of E [X1(t)] in an analogous manner but using
the representation of X1(t) given in (4.7),

E [X1(t)] = E
[∫ ∞

0
h(s)

(
−X2

0 (t − s)Ẋ0(t − s)
)

ds
]

=
∫ ∞

0
h(s)E

[
−X2

0 (t − s)Ẋ0(t − s)
]

ds

= −
∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)E [Y (t − s − s1)

·Y (t − s − s2)Ẏ (t − s − s3)
]

ds3 ds2 ds1 ds
= 0.

(4.11)

Notice that the assumption of mean square differentiability of the input process
Y (t) appears naturally at this stage.

Let us justify the last step in expression (4.11). Let us denote u1 = t − s − s1,
u2 = t − s − s2 and u3 = t − s − s3, then applying Prop. 2.3 and Prop. 2.1, both
with n = 3, one gets

E
[
Y (t − s − s1)Y (t − s − s2)Ẏ (t − s − s3)

]
= E

[
Y (u1)Y (u2)Ẏ (u3)

]
= ∂

∂u3
E [Y (u1)Y (u2)Y (u3)] = 0.

So, substituting (4.10) and (4.11) into (4.9), we obtain the expectation of the
approximation is null,

E
[
X̂(t)

]
= E [X0(t)] + ϵE [X1(t)] = 0. (4.12)

From the approximation (4.5) and neglecting the term ϵ2, the second-order moment
for X̂(t) is given by

E
[
X̂2(t)

]
= E

[
X2

0 (t)
]

+ 2ϵE [X0(t)X1(t)] . (4.13)
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The first addend can be calculated using expression (4.6) and Fubini’s theorem,

E
[
X2

0 (t)
]

=
∫ ∞

0
h(s)

∫ ∞

0
h(s1)E [Y (t − s)Y (t − s1)] ds1 ds

=
∫ ∞

0
h(s)

∫ ∞

0
h(s1)ΓY Y (s − s1) ds1 ds .

(4.14)

Notice that we have used that Y (t) is a stationary process, so

E [Y (t − s)Y (t − s1)] = ΓY Y (t − s1 − (t − s)) = ΓY Y (s − s1).

Now, we calculate the second addend in (4.13). To this end, we substitute the
expressions of X0(t) and X1(t) given in (4.6) and (4.7), respectively,

E [ X0(t)X1(t)] =
∫ ∞

0
h(s)E

[
X0(t)

(
−X2

0 (t − s)Ẋ0(t − s)
)]

ds

=
∫ ∞

0
h(s)E

[
−
∫ ∞

0
h(s1)Y (t − s1) ds1

∫ ∞

0
h(s2)Y (t − s − s2) ds2

·
∫ ∞

0
h(s3)Y (t − s − s3) ds3

∫ ∞

0
h(s4)Ẏ (t − s − s4) ds4

]
ds

= −
∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)E [Y (t − s1)Y (t − s − s2)

·Y (t − s − s3)Ẏ (t − s − s4)
]

ds4 ds3 ds2 ds1 ds
(I)= −

∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

(
ΓY Y (s1 − s − s2)Γ′

Y Y (s3 − s4)

+ ΓY Y (s1 − s − s3)Γ′
Y Y (s2 − s4) + Γ′

Y Y (s1 − s − s4)ΓY Y (s2 − s3)
)

ds4 ds3 ds2 ds1 ds

(II)= −
∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

(
2ΓY Y (s1 − s − s2)Γ′

Y Y (s3 − s4)

+ Γ′
Y Y (s1 − s − s4)ΓY Y (s2 − s3)

)
ds4 ds3 ds2 ds1 ds .

(4.15)

Observe that in step (I) of the above expression, we have first applied Prop. 2.3
and secondly Prop. 2.1–2.2. Indeed, let us denote by u1 = t − s1, u2 = t − s − s2,
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u3 = t − s − s3 and u4 = t − s − s4, then by Prop. 2.3, with n = 4, one gets

E [Y (t − s1)Y (t − s − s2) Y (t − s − s3)Ẏ (t − s − s4)
]

= ∂

∂u4
E [Y (u1)Y (u2)Y (u3)Y (u4)] ,

and now we apply Prop. 2.1–2.2, with n = 4, to the right-hand side. This yields,

E [ Y (t − s1)Y (t − s − s2)Y (t − s − s3)Ẏ (t − s − s4)
]

=

= ∂

∂u4
(E [Y (u1)Y (u2)]E [Y (u3)Y (u4)] + E [Y (u1)Y (u3)]E [Y (u2)Y (u4)]

+E [Y (u1)Y (u4)]E [Y (u2)Y (u3)])

= ∂

∂u4
(ΓY Y (u2 − u1)ΓY Y (u4 − u3) + ΓY Y (u3 − u1)ΓY Y (u4 − u2)

+ΓY Y (u4 − u1)ΓY Y (u3 − u2))
= ΓY Y (u)|u=s1−s−s2Γ′

Y Y (u)|u=s3−s4 + ΓY Y (u)|u=s1−s−s3Γ′
Y Y (u)|u=s2−s4

+ Γ′
Y Y (u)|u=s1−s−s4ΓY Y (u)|u=s2−s3 .

In step (II) of expression (4.15), we have taken advantage of the symmetry of the
indexes.

Then, substituing (4.14) and (4.15) in (4.13) one gets,

E
[
X̂2(t)

]
=
∫ ∞

0
h(s)

∫ ∞

0
h(s1)ΓY Y (s − s1) ds1 ds

− 2ϵ

(∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

·
(

2ΓY Y (s1 − s − s2)Γ′
Y Y (s3 − s4)

+ Γ′
Y Y (s1 − s − s4)ΓY Y (s2 − s3)

)
ds4 ds3 ds2 ds1 ds

)
.

(4.16)

Notice that E
[
X̂2(t)

]
does not depend on t. This is consistent with the fact that

we are dealing with the stochastic analysis of the stationary solution. The same
feature will hold when computing higher-order moments, E

[
X̂n(t)

]
, n > 2, later.
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Since E
[
X̂(t)

]
is null (see (4.12)), then the variance of the solution coincides with

E
[
X̂2(t)

]
.

Now, we calculate the third-order moment of X̂(t) keeping up to the first-order
term of perturbation ϵ. Therefore,

E
[
X̂3(t)

]
= E

[
X3

0 (t)
]

+ 3ϵE
[
X2

0 (t)X1(t)
]

. (4.17)

Reasoning analogously as we have shown before, we obtain

E
[
X3

0 (t)
]

=
∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)E [Y (t − s)Y (t − s1)Y (t − s2)] ds2 ds1 ds

= 0,

(4.18)

where we have applied Prop. 2.1 in the last step.
The second addend in (4.17) is calculated using Prop. 2.3 and Prop. 2.1,

E [X2
0 (t)X1(t)

]
=
∫ ∞

0
h(s)E

[
X2

0 (t)
(
−X2

0 (t − s)Ẋ0(t − s)
)]

ds

= −
∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

∫ ∞

0
h(s5)E [Y (t − s)

·Y (t − s1)Y (t − s − s3)Y (t − s − s4)Ẏ (t − s − s5)
]

ds5ds4ds3ds2ds1ds
= 0.

(4.19)

From (4.18) and (4.19), we obtain

E
[
X̂3(t)

]
= E

[
X3

0 (t)
]

+ 3ϵE
[
X2

0 (t)X1(t)
]

= 0.

Using again the first-order approximation of the perturbation ϵ, in general, it can
be straightforwardly seen that

E
[
X̂n(t)

]
= 0, n = 1, 3, 5, . . . . (4.20)
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Indeed, we know that,

E
[
X̂n(t)

]
= E [Xn

0 (t)] + n ϵE
[
Xn−1

0 (t)X1(t)
]

. (4.21)

On the one hand, let us observe that applying first Fubini’s theorem and Prop. 2.4,
and secondly Prop. 2.1 for n odd, one gets,

E [Xn
0 (t)] = E

[(∫ ∞

0
h(s)Y (t − s) ds

)n]
=
∫ ∞

0
h(s1) · · ·

∫ ∞

0
h(sn)E [Y (t − s1) · · · Y (t − sn)] dsn · · · ds1 = 0.

On the other hand, using the same reasoning as in (4.19),

E
[
Xn−1

0 (t)X1(t)
]

=
∫ ∞

0
h(s)E

[
Xn−1

0 (t)
(
−X2

0 (t − s)Ẋ0(t − s)
)]

ds = 0,

where first we have applied Prop. 2.3, to put the first derivative out of the ex-
pectation, and secondly, we have utilized that Xn−1

0 (t), X2
0 (t − s) and Ẋ0(t − s)

depend upon n − 1, 2 and 1 terms of Y (·), respectively, together with Prop. 2.1
(notice that n + 2 is odd since n is odd).

To complete the information of statistical moments of the approximation, we also
determine E

[
X̂4(t)

]
.

The fourth-order moment of X̂(t), based on the first-order approximation via the
perturbation method, is given by

E
[
X̂4(t)

]
= E

[
X4

0 (t)
]

+ 4ϵE
[
X3

0 (t)X1(t)
]

. (4.22)

Reasoning analogously as we have shown in previous sections, we obtain for the
first addend,

E
[
X4

0 (t)
]

= 3
∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)ΓY Y (s − s1)ΓY Y (s2 − s3) ds ds1 ds2 ds3,

(4.23)
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and for the second addend,

E [X3
0 (t)X1(t)

]
= −

∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

∫ ∞

0
h(s5)

∫ ∞

0
h(s6)E [Y (t − s1)

·Y (t − s2)Y (t − s3)Y (t − s − s4)Y (t − s − s5)Ẏ (t − s − s6)
]

ds ds1 ds2 ds3 ds4 ds5 ds6

= −
∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

∫ ∞

0
h(s5)

∫ ∞

0
h(s6)

(
6 Γ′

Y Y (s5 − s6)

· ΓY Y (s1 − s2)ΓY Y (s3 − s − s4) + 3 Γ′
Y Y (s1 − s − s6)

(
2 ΓY Y (s2 − s − s4)ΓY Y (s3 − s − s5)

+ ΓY Y (s2 − s3)ΓY Y (s4 − s5)
))

ds ds1 ds2 ds3 ds4 ds5 ds6 .

(4.24)

In the last step of the above expression, we first used Prop. 2.3, and secondly,
Prop. 2.1–2.2. From this last proposition, we know that exist 15 combinations, but
we can reduce the expression by the symmetry of involved indexes.

Now we deal with the approximation of the correlation function of X(t) via (4.5),
i.e., taking the first-order approximation of the perturbation expansion,

Γ
X̂X̂

(τ) = E
[
X̂(t)X̂(t + τ)

]
= E [X0(t)X0(t + τ)] + ϵ (E [X0(t)X1(t + τ)] + E [X1(t)X0(t + τ)]) .

(4.25)

The first addend in (4.25) corresponds to the correlation function of X0(t). It can
be expressed as

E [X0(t)X0(t + τ)] =
∫ ∞

0

∫ ∞

0
h(s)h(s1)E [Y (t − s)Y (t + τ − s1)] ds ds1

=
∫ ∞

0

∫ ∞

0
h(s)h(s1)ΓY Y (τ − s1 + s) ds1 ds .
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The two last addends in (4.25) represent the cross-correlation of X0(t) and X1(t).
They are given, respectively, by

E [X0(t) X1(t + τ)] =
∫ ∞

0
h(s)E

[
X0(t)

(
−X2

0 (t + τ − s)Ẋ0(t + τ − s)
)]

ds

= −
∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

(
2 ΓY Y (τ − s − s2 + s1)Γ′

Y Y (s3 − s4)

+Γ′
Y Y (τ − s − s4 + s1)ΓY Y (s2 − s3)

)
ds4 ds3 ds2 ds1 ds,

and

E [X1(t) X0(t + τ)] = E
[∫ ∞

0
−h(s)X2

0 (t − s)Ẋ0(t − s)X0(t + τ)
]

ds

= −
∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)

· (ΓY Y (s1 − s2)Γ′
Y Y (τ − s4 + s + s3)

+2 Γ′
Y Y (s1 − s3)ΓY Y (τ − s4 + s + s2)) ds4 ds3 ds2 ds1 ds .

Summarizing,

Γ
X̂X̂

(τ) =
∫ ∞

0

∫ ∞

0
h(s)h(s1)ΓY Y (τ − s1 + s) ds ds1

− ϵ

∫ ∞

0
h(s)

∫ ∞

0
h(s1)

∫ ∞

0
h(s2)

∫ ∞

0
h(s3)

∫ ∞

0
h(s4)(2 ΓY Y (τ − s − s2 + s1)Γ′

Y Y (s3 − s4)

+Γ′
Y Y (τ − s − s4 + s1)ΓY Y (s2 − s3) + ΓY Y (s1 − s2)Γ′

Y Y (τ − s4 + s + s3)
+2 Γ′

Y Y (s1 − s3)ΓY Y (τ − s4 + s + s2)) ds4 ds3 ds2 ds1 ds .

(4.26)

Since E
[
X̂(t)

]
= 0, we observe that the covariance and correlation functions of

X̂(t) coincide,

Cov
[
X̂(t1), X̂(t2)

]
= Γ

X̂X̂
(τ), τ = |t1 − t2|.

68



4.3 Numerical examples

Remark 4.1 The hypothesis that Y (t) is mean square differentiable can be re-
moved, rewriting the Eq. (4.6) in the following way

X(t) =
∫ ∞

0
h(s)Y (t − s)ds =

∫ t

−∞
h(t − s)Y (s)ds, (4.27)

where h(·) is defined in Eq. (4.8). Indeed, applying Leibniz’s rule (see Prop. 2.6),
which is also valid when the partial derivative exists almost everywhere and does
not require that it be continuous [99], one gets

Ẋ(t) = h(0)Y (t) +
∫ t

−∞
h′(t − s)Y (s)ds =

∫ t

−∞
h′(t − s)Y (s)ds, (4.28)

since h(0) = 0 (see (4.8)). In this way, we do not require assuming the mean
square differentiability of Y (t). This fact shall be illustrated in the Example 4.2
exhibited in the next section, where Y (t) is chosen as a Gaussian white noise.

4.3 Numerical examples

This section is devoted to illustrating the theoretical findings obtained in previous
sections. We take the following data for the parameters of the random nonlinear
oscillator (4.2), ζ = 0.05 (ζ2 < 1) and ω0 = 1.

Example 4.1 Let us consider as input excitation the causal trigonometric stochas-
tic process defined by Y (t) = ξ1 cos(t) + ξ2 sin(t), t ≥ 0, where ξ1, ξ2 ∼ N(0, 1) are
independent. Observe that Y (t) satisfies the hypotheses, i.e., E [Y (t)] = 0, Y (t) is
Gaussian, mean square differentiable w.r.t. t and stationary, being its correlation
ΓY Y (t1, t2) = cos(t1 −t2) or ΓY Y (τ) = cos(τ). Substituting this data into Eq. (4.2),
we obtain,

Ẍ(t)+0.1Ẋ(t)+ϵX2(t)Ẋ(t)+X(t) = ξ1 cos(t)+ξ2 sin(t), ξ1, ξ2 ∼ N(0, 1). (4.29)

Now we shall obtain approximations to the first moments, E
[
X̂i(t)

]
, i = 1, . . . , 5,

the correlation function and the variance, V
[
X̂(t)

]
, of the approximate solution

X̂(t) of random nonlinear oscillator (4.29).
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As we have seen in the expression (4.20), the moments of odd order are null, so,
in this case, E

[
X̂(t)

]
= E

[
X̂3(t)

]
= E

[
X̂5(t)

]
= 0. Now, we sequentially deduce

some bounds for the perturbation parameter ϵ using the positiveness of even order
moments, i.e., E

[
X̂2(t)

]
> 0 and E

[
X̂4(t)

]
> 0. First, it is easy to check that,

using expression (4.16), the second-order moment is given by

E
[
X̂2(t)

]
= 100 − 200000ϵ, (4.30)

so we obtain the bound ϵ < 0.0005. Since E
[
X̂(t)

]
= 0, observe that the variance

of the first-order approximation is given by (4.30). Secondly, using expressions
(4.22)–(4.24),

E
[
X̂4(t)

]
= 30000 − 1153800000000

6409 ϵ. (4.31)

This provides a stronger bound, ϵ < 0.000166641.
Now, applying (4.26), we obtain the following approximation of the correlation
function

Γ
X̂X̂

(τ) = 100(1 − 2000ϵ) cos(τ). (4.32)

In Figure 4.1 we show the graphical representation of the correlation function,
Γ

X̂X̂
(τ), given in the expression (4.32) for different values of ϵ. The higher the

perturbation ϵ, the lower the variability. This graphical behavior fully agrees with
the physical interpretation of the oscillator dynamics. Indeed, let us rewrite Eq.
(4.29) as follows

Ẍ(t) + (0.1 + ϵX2(t))Ẋ(t) + X(t) = ξ1 cos(t) + ξ2 sin(t).

As ϵ > 0 increases, the damped coefficient 0.1 + ϵX2(t) does, so the mechanical
system reduces its oscillations. It should be noted that ϵ = 0.0004 only satisfies
the first bound (ϵ < 0.0005); however, we can observe that the corresponding
approximation preserves the symmetry of the correlation function. This might be
due to the sample regularity of the random excitation, Y (t), which is differentiable.

For the approximation of the stationary PDF, f
X̂(t)(x), we apply the results exhib-

ited in Section 2.6 based on PME by taking N = 5 and ϵ = 0.00005, which satisfies
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Figure 4.1: Correlation function Γ
X̂X̂

(τ) of X(t) for different values of ϵ. Example 4.1.

the stronger bound previously determined (ϵ < 0.000166641). We first compute the
approximation based on the three first moments

f
X̂(t)(x) = e−1−2.181+1.045·10−5x−0.005x2−4.9217·10−8x3

,

and, secondly, the approximation based on the five first moments

f
X̂(t)(x) = e−1−2.243+2.552·10−8x−0.004x2−2.177·10−9x3−3.789·10−6x4+6.754·10−13x5

.

In Figure 4.2, we compare both graphical representations. From them, we can
observe that both plots are quite similar, proving that computations are consistent.

Finally, to check that our approximations are reliable, we compare the mean and
standard deviation of the approximate solution obtained via the perturbation method
against the ones calculated by Monte Carlo. The results are collected in Table 4.1.
We can observe that both approximations agree.

Example 4.2 To previously perform our theoretical analysis, we have required the
stationary Gaussian stochastic excitation Y (t) be differentiable in the mean square
sense (or equivalently, its correlation function, ΓY (τ), be twice differentiable in the
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Figure 4.2: Approximation of PDF, f
X̂(t)(x), using until the third and the fifth order moment

for ϵ = 0.00005 via the PME. Example 4.1.

Perturbation
method

Monte Carlo
(1000 simulations)

Monte Carlo
(10000 simulations)

Mean 0 0.188808 -0.114379
Standard deviation 9.48714 9.31356 9.49534

Table 4.1: Comparison between perturbation method and Monte Carlo simulations using
ϵ = 0.00005. Example 4.1.

ordinary sense at τ = 0 [89, Ch. 4]), so having differentiable sample trajectories
[94]. If we carefully revise our previous development, we can notice this is a
hypothesis coming from the fact the nonlinearity cross-term depends upon Ẋ(t).
However, as it has been explained in Remark 4.1, the hypothesis of mean square
differentiability of Y (t) can be removed. This example is devised to illustrate this
fact by choosing Y (t) = ξ(t), a Gaussian white noise process with zero-mean and
correlation function ΓY Y (τ) = 1

2Wδ(τ), where δ(τ) is the Dirac delta function
and W is the noise power. In this example, we take W = 1

100 . This type of random
noise has been extensively used in the literature since earliest contributions [26].
Observe that Y (t) = ξ(t) is a stationary zero-mean Gaussian process but is not
mean square differentiable (since its correlation function, given by the Dirac delta
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function, is not differentiable) and, consequently, its sample trajectories are not
differentiable either. In this case, Eq. (4.2) becomes

Ẍ(t) + 0.1Ẋ(t) + ϵX2(t)Ẋ(t) + X(t) = ξ(t). (4.33)

As in the previous example, we are going to obtain approximations to the five
first moments, E

[
X̂i(t)

]
, i = 1, . . . , 5, the correlation function and the variance,

V
[
X̂(t)

]
, of the approximate solution X̂(t) of Eq. (4.33). To implement the corre-

sponding formulas derived throughout Subsection 4.2.2 saving computational time
in Mathematica®, we have taken into account the following properties of the Dirac
delta function,∫ ∞

−∞
h(t)δ(t − s) dt = h(s),

∫ ∞

−∞
h(t)δ′(t − s) dt = −h′(s).

As mentioned in Example 4.1, the moments of odd order are null, and using the
positiveness of even order moments, we can obtain some bounds for the perturbation
parameter ϵ. First, using expression (4.16), the second-order moment is determined
by

E
[
X̂2(t)

]
= 1

40 − ϵ

160 , (4.34)

so we obtain the bound ϵ < 4. Since E{X̂(t)} = 0, expression (4.34) is also the
variance of the first-order approximation. Secondly, using expression (4.22)–(4.24),

E
[
X̂4(t)

]
= 3

1600 − 759
644800ϵ. (4.35)

This provides a stronger bound, ϵ < 1.59289.

Now, applying (4.26), we obtain the following approximation of the correlation
function,

Γ
X̂X̂

(τ) =


f1(τ), if τ ≥ 0,

f2(τ), if τ < 0,

(4.36)
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where

f1(τ) =
e−τ/20

(
−399 (−399 + 5ϵτ) cos

(√
399τ
20

)
+

√
399(399 + 100ϵ) sin

(√
399τ
20

))
6368040 ,

and

f2(τ) =
eτ/20

(
−399(−399 + 5ϵτ) cos

(√
399τ
20

)
+

√
399(−399 + 100ϵ) sin

(√
399τ
20

))
6368040 .

In Figure 4.3, we show the plot of the correlation function, Γ
X̂X̂

(τ), given in the
expression (4.36), for different values of ϵ satisfying the weaker and the stronger
bounds previously determined. We can observe that for smaller values of ϵ the
obtained approximation of the correlation function better preserves the symmetry
as expected.

-10 -5 5 10
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-0.01

0.01

0.02

ϵ=3

ϵ=1

ϵ=0.5

ϵ=0.01

Figure 4.3: Correlation function Γ
X̂X̂

(τ) of X(t) for different values of ϵ. Example 4.2.

Applying the results presented in Section 2.6 taking N = 5, we obtain the ap-
proximation of the PDF, f

X̂(t)(x), for ϵ = 0.5, which satisfies the stronger bound
1.59289. We first compute the approximation based on the three first moments

f
X̂(t)(x) = e−1+1.992+1.438·10−8x−22.857x2−2.197·10−7x3

,

74



4.4 Conclusions

and, secondly, the approximation based on the five first moments

f
X̂(t)(x) = e−1+1.940−5.226·10−11x−17.837x2+1.580·10−9x3−42.679x4−7.904·10−9x5

.

In Figure 4.4, we compare both graphical representations. We can observe, again, the
similarity between them, thus showing full agreement in our numerical computations.

-1.5 -1.0 -0.5 0.5 1.0 1.5

0.5

1.0

1.5

2.0

2.5

third order

fifth order

Figure 4.4: Approximation of PDF, f
X̂(t)(x), using until the third and the fifth order moment

for ϵ = 0.5 via the PME. Example 4.2.

Finally, to check that our approximations are accurate, we compare the mean and
standard deviation of X̂(t) obtained via the perturbation method against the ones
computed by Kloeden-Platen-Schurz numerical scheme [54]. The results are shown
in Table 4.2. We can observe that both approximations are similar.

4.4 Conclusions

In this chapter, we have studied, from a probabilistic standpoint, a family of
oscillators subject to small perturbations on the nonlinear term that depends both
upon the position and the velocity (cross-nonlinearity) and whose forcing source
is driven by a mean square differentiable stationary zero-mean Gaussian process.
Nevertheless, we have seen that the hypothesis of mean square differentiability
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Perturbation
method

Euler-
Maruyama

(1000 simulations)

Euler-
Maruyama

(10000 simulations)

Mean 0 0.000281162 -0.0000170694
Standard deviation 0.147902 0.149143 0.149929

Table 4.2: Comparison between perturbation method and Kloeden-Platen-Schurz simulations
using ϵ = 0.5. Example 4.2.

of the forcing term can be removed. This latter result has been illustrated by
taking the white noise process playing the role of external excitation. On the
other hand, we must point out that most contributions dealing with this type
of stochastic oscillator focus on the computation of the mean, the variance, and
the correlation function. Our main contribution is the computation of reliable
approximations of the probability density function of the stationary solution by
combining the stochastic perturbation method and the principle of maximum
entropy. In this manner, we provide a fuller probabilistic description of the solution
since, from the density, one can determine any one-dimensional moment and further
probabilistic information of the steady-state. As explained at the end of Section
4.1, the proposed approach can be very useful to open new avenues in the analysis
to other kinds of nonlinear oscillators subject to small fluctuations and whose
forcing term is a polynomial stochastic process in the position and the velocity or,
more generally, an analytical stochastic process that satisfies certain hypotheses.

Publications associated with this chapter

The results of this chapter have been presented at the Mathematical Modelling in
Engineering & Human Behaviour 2020 Conference in Valencia (Spain) from July
8-10, 2020. The talk, titled Analysing nonlinear oscillators subject to Gaussian
inputs via the random perturbation technique, was published in the conference
proceedings with ISBN 978-84-09-25132-2. Additionally, a complete version of the
chapter’s findings has been published in the paper [23].
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Chapter 5
Probabilistic analysis of the Euler-Bernoulli

model for a static cantilever beam subjected to
random loads via probability density functions

This chapter addresses the probabilistic analysis of the deflection of a static
cantilever beam by randomizing the classical governing fourth-order differential

equation (Euler-Bernoulli model) with null boundary conditions. The probabilistic
study is based on the calculation of the first probability density function of the

solution, which is a stochastic process, as well as the density function of further
quantities of interest associated with this engineering problem such as the

maximum slope and deflection at the free end of the cantilever beam, that are
treated as random variables. In addition, the probability density function of the

bending moment and the shear force will also be computed. The study takes
extensive advantage of the so-called random variable transformation method, which
allows us to fully unify the probabilistic analysis in three relevant cases commonly
studied in the deterministic setting. All the theoretical findings are illustrated via

detailed numerical examples corresponding to each one of the three scenarios.
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Chapter 5. Probabilistic analysis of the Euler-Bernoulli model for a static cantilever beam
subjected to random loads via probability density functions

5.1 Introduction

As it has been indicated in Chapter 1, the deflection of a beam subject to different
loads can be described by means of the general model given in Eq. 1.2. More
specifically, for the case of a static deflection cantilever beam with the flexural
rigidity (Ei) constant, the aforementioned model writes [75, Entry 3 of Table 2.4]

d4Y (x)
dx4 = 1

Ei
Q(x), 0 < x < l, (5.1)

with boundary conditions

Y (0) = 0, Y ′(0) = 0, Y ′′(l) = 0, Y ′′′(l) = 0. (5.2)

Recall that, here, Y (x) represents the deflection curve of the beam, E is the
Young’s modulus of elasticity of the material of the beam, i denotes the moment
of inertia of the cross-section of the beam around a horizontal line through the
centroid of the cross-section, l is the length of the beam and Q(x) represents the
density of downward force acting vertically on the beam at the spatial point x,
which can be interpreted as load per unit length acting on the beam.

Despite model (5.1)–(5.2) is usually applied to assume a deterministic (nominal)
value for the Young’s modulus, E, it depends on the physical material properties
with which the beam has been built. Due to the heterogeneity of the material, the
mathematical nature of the Young’s modulus is random rather than deterministic
as it has been reported in different investigations [51, 90, 44, 36]. On the other
hand, the nature of Q(x) is also stochastic since, as it has been previously indicated,
represents the density of downward force acting perpendicularly on the beam.
At every spatial point x, the value of Q(x) will depend on the heterogeneity of
the material carried on the beam. Additionally, in practice, the value of Q(x)
on the whole spatial domain is approximated via measurements, so it contains
epistemic errors. All these considerations lead to rigorously treating (5.1) as a
random differential equation, where E is a random variable and Q(x) is a stochastic
process defined in a common complete probability space (Ω, F ,P). As it shall be
seen later, we will assume that E is an absolutely continuous random variable, so
having a PDF, while for Q(x) we will consider both the case that is a parametric
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stochastic process, which depends on absolutely continuous random variables, and
when it is a non-parametric process.

We point out that throughout the chapter, and following the standard notation in
Probability Theory, we will distinguish random variables and their realizations
(which are deterministic quantities) by using capital and lowercase letters in the
notation, respectively.

Under our approach, the solution of the randomized boundary problem (5.1)–(5.2)
is a stochastic process, Y (x), and our goal will be to determine, under very general
assumptions on the model parameters, E and Q(x), the so-called 1-PDF of the
solution, fY (x)(y) [89, Ch. 3]. As we have seen in Chapter 2, obtaining the 1-PDF
permits determining all the one-dimensional moments, provided they exist, and
the probability that the solution lies within a certain interval of specific interest.
In the stochastic analysis of civil engineering structures, this information is of
paramount importance since it permits the evaluation of the probability of breaking
a structure (like a bridge, a balcony, a crane, etc.) that is carrying on distributed
or uniform forces. Indeed, this is done by calculating the probability that the
deflection of a beam lies within a certain safety interval.

Throughout this chapter, we will obtain an explicit expression of the 1-PDF,
fY (x)(y), of the random boundary problem (5.1)–(5.2) by considering different
forms of the density downward force, Q(x). The key tool that will be applied to
conduct our probabilistic analysis is the RVT method, see Theorem 2.1.

As it shall be seen later, to apply this useful probabilistic result, first, we will take
advantage of the Laplace transform to explicitly obtain a solution of model (5.1)–
(5.2) for three different forms of Q(x), hereinafter identified with Cases I-III, that
are often considered in the analysis of beams in civil engineering.

The analysis of a cantilever beam has been extensively faced, mainly in the
deterministic context (see, for example, [79, 108, 56]). In the stochastic setting,
the number of contributions is still limited with regard to the specific study of
a cantilever beam, although many other types of engineering structures have
been studied taking into account uncertainties. Next, we will concentrate on
commenting on the three main approaches, namely, polynomial chaos expansions,
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Monte Carlo simulation, and stochastic finite elements method, that have been
applied to analyse a cantilever beam subject to randomness. The next discussion is
presented in connection with the study performed throughout this chapter. In [76],
one combines polynomial chaos with the Neumann expansion method to obtain
closed-form expressions for the first two response moments in different engineering
problems. The authors apply the theoretical results obtained to analyze a cantilever
beam, where the bending rigidity of the beam, EI, is assumed to be a stationary
Gaussian random field with an exponential-type autocovariance kernel. In [78], it
is assumed that all parameters of the classical Euler-Bernoulli cantilever beam are
random variables. The study is performed in the case of a single load with constant
(deterministic) value W . In that paper, one also studies the case that the Young’s
modulus is a discrete random field modelled first via simple random walk with
stationary independent increments and, secondly, via an adapted autoregressive
model with Gaussian distributed random variables. In both cases, authors use
Monte Carlo simulations to numerically compute the distribution of the maximum
deflection of a cantilever beam. In [55], authors compare stochastic and data-
driven finite element methods to study a cantilever by assuming that the Young’s
modulus is modelled via the fluctuation of a nominal (mean) value using a standard
Gaussian random variable. In [10], the multilevel Monte Carlo is combined with a
finite element solver to compute the statistical quantities of the static deflection
and frequency response function for a cantilever beam with uncertainty in Young’s
modulus under a static and a dynamic load. The authors show that the multilevel
Monte Carlo method provides a significant computational cost reduction compared
to the standard (crude) Monte Carlo method. We also mention the use of Bayesian
techniques to better account for the deflection of a cantilever in the case that the
spatially variable flexibility is described via a random field represented by means
of a Karhunen-Loève expansion [101, 64]. It is worth mentioning that, in some
contributions, the cantilever beams subject to randomness factors have not been
directly analysed, but as specific examples to test new stochastic techniques. In
this spirit, we here point out [104], where authors propose a stochastic dynamic
load identification algorithm to analyse uncertain dynamic systems with correlated
random system parameters. The adopted method is based on the approximation
the Green’s function by the second-order perturbation method and orthogonal
polynomial chaos bases. The authors then apply the theoretical results to perform
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numerical simulations and experimental studies with a cantilever beam under
a concentrated stochastic force to estimate the statistical characteristics of the
stochastic load from the stochastic structural response samples. To the best of our
knowledge, there is still an important lack of information regarding the complete
stochastic analysis of a cantilever beam that is subject to uncertainties. This
extended study should include the computation of the 1-PDF of the deflection in
the case that the most important parameters of the Euler-Bernoulli model (5.1) are
random variables with arbitrary probability distributions and also when the density
of the downward force Q(x) may randomly vary according to different realistic
situations. This chapter aims to face these aspects from a very general standpoint,
including the computation of the PDF of relevant quantities associated with the
analysis of the cantilever beam as the maximum deflection and the maximum
slope at the free end of the beam.

The chapter is organized as follows. In Section 5.2, we deal with the Case I,
corresponding to the scenario that Q(x) represents two uniform loads characterized
by two independent random variables covering the same span on the beam. In
Section 5.3, we study the Case II, where multiple independent concentrated loads
along the span of the beam are analysed. In this case, Q(x) will be represented by
a train of Dirac delta functions whose intensities (loads) are independent random
variables. In Section 5.4, we study the third scenario, Case III, where Q(x) models
a distributed load with an uncertain value characterized by a constant (nominal)
value affected by fluctuating changes due to the heterogeneity of the material at
every spatial point. Spatial fluctuations are modelled via a stochastic process. In
these three above-mentioned sections, we will extensively apply the RVT technique
to obtain an explicit expression of the 1-PDF of the solution stochastic process
of model (5.1)–(5.2), and the PDF of other quantities of interest, such as the
maximum slope, the maximum deflection, the shear force and the bending moment.
The theoretical results obtained in Sections 5.2–5.4, will be fully illustrated with
examples in Section 5.5. Conclusions will be drawn in Section 5.6.

Finally, we point out that the results in the three aforementioned Cases I–III will
be intentionally presented in an analogous manner for ease of reading but also to
show the generality of the RVT method despite each scenario being completely
different from a mathematical standpoint.
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5.2 Case I: Two loads modelled via random variables

This section is addressed to compute the 1-PDF, fY (x)(y), of the stochastic solution
of the random model (5.1)–(5.2), where

Q(x) =
{

Q0, 0 < x ≤ l/2,

Q1, l/2 < x ≤ l.
(5.3)

This model represents the deflection of a cantilever beam with two different loads,
represented by Q0 and Q1, that occupy the same space on the beam, which is fully
loaded. As discussed in the previous section, due to uncertainties associated with
data, we will assume that model parameters E, Q0, and Q1 are random variables.
Hereinafter, fE,Q0,Q1(e, q0, q1) will denote the joint PDF of the random vector
(E, Q0, Q1), that can be factorized as the product of the corresponding marginal
PDF, i.e. fE(e)fQ0(q0)fQ1(q1), in the particular, but the important case that E,
Q0 and Q1 are mutually independent. In Fig. 5.1 we show a graphical scheme of
the model.

Figure 5.1: Case I: Cantilever beam with two loads modelled via random variables.

At this point, it is interesting to note that in our analysis, arbitrary distributions
have been assumed for model parameters, which will provide more generality to
our study.
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In order to obtain the 1-PDF, fY (x)(y), taking advantage of the RVT technique
(see Th. 2.1), we first need to explicitly calculate the stochastic solution of Eq. (5.1)–
(5.2). To this end, several techniques can be utilized. Here, we shall apply the
Laplace transform because of the well-known advantages of this integral transform
to compactly obtain the solution Y (x) when Q(x) is defined via a piecewise
function representing the loads spanned on the beam [47]. Furthermore, the
resulting expression of the solution is particularly useful for applying the RVT
technique, as it will be apparent throughout our subsequent development. To apply
the Laplace transform, we first need to extend the definition of (5.3) as

Q(x) =


Q0, 0 < x ≤ l/2,

Q1, l/2 < x ≤ l,

0, x > l.

The above expression can be written in terms of a unitary Heaviside function,
U(x),

Q(x) = Q0 (U(x) − U(x − l/2)) + Q1 (U(x − l/2) − U(x − l)) . (5.4)

Now, applying the Laplace transform, y(s) = L{Y (x)}(s) =
∫∞

0 e−sxY (x) dx,
to (5.1)–(5.2) with Q(x) given by (5.4), using the well-known properties of this
integral transform [83, Ch. 2] and isolating y(s), one obtains

y(s) = 1
s4

(
sc1 + c2 + 1

Ei

(
Q0

s
− Q0

s
e− ls

2 + Q1

s
e− ls

2 − Q1

s
e−ls

))
, (5.5)

where c1 = Y ′′(0) and c2 = Y ′′′(0). The next step is to apply the inverse Laplace
transform to (5.5)

L−1{y(s)} = L−1
{ 1

s3 c1 + 1
s4 c2 + 1

Ei

(
Q0

1
s5 + (Q1 − Q0) 1

s5 e− ls
2 − Q1

1
s5 e−ls

)}
.

Then, using the inverse Laplace properties [83], and applying the boundary
conditions Y ′′(l) = 0 and Y ′′′(l) = 0 in order to obtain the values of c1 and c2, we
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obtain the solution stochastic process of model (5.1)–(5.2)

Y (x) =


Y I(x; E, Q0, Q1), 0 < x ≤ l/2,

Y I(x; E, Q0, Q1) + Q1 − Q0

384Ei
(l − 2x)4, l/2 < x ≤ l,

(5.6)

where
Y I(x; E, Q0, Q1) = Q0 + 3Q1

16Ei
l2x2 − Q0 + Q1

12Ei
lx3 + Q0

24Ei
x4. (5.7)

Observe that the solution Y (x) is differentiable and, therefore continuous at
x = l/2, which is interesting from an engineering point of view since it informs us
that the deflection varies smoothly at the spatial point, x = l/2, where the load
changes.

Since Y (x) is a piecewise function, the calculation of the 1-PDF of Y (x) will be
done separately in the two subdomains 0 < x ≤ l/2 and l/2 < x ≤ l.

In the first case, we fix 0 < x ≤ l/2 and then we apply the RVT method, i.e. Th. 2.1,
to U = (E, Q0, Q1) to obtain the PDF of the random vector V = (V1, V2, V3),
defined by the transformation r : R3 → R3, whose components are conveniently
defined as

v1 = r1(e, q0, q1) = Y I(x; e, q0, q1),
v2 = r2(e, q0, q1) = q0,

v3 = r3(e, q0, q1) = q1.

The inverse transformation of r, denoted by s : R3 → R3, is given by

e = s1(v1, v2, v3) = ZI(x; v1, v2, v3),
q0 = s2(v1, v2, v3) = v2,

q1 = s3(v1, v2, v3) = v3,

where

ZI(x; v1, v2, v3) = 1
48v1i

(
3l2v2x2 + 9l2v3x2 − 4lv2x3 − 4lv3x3 + 2v2x4) . (5.8)
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To compute the PDF of the random vector V, it is necessary to obtain the absolute
value of the Jacobian of s,

|J | =
∣∣∣∣∂s1(v1, v2, v3)

∂v1

∣∣∣∣ =
∣∣∣∣ 1
v1

ZI(x; v1, v2, v3)
∣∣∣∣ ,

which is well-defined and different from zero w.p. 1 since Q0, Q1 and E (hence V1,
V2 and V3) are continuous random variables and i ̸= 0. Applying the RVT method,
stated in Th. 2.1, we obtain the PDF of the random vector V = (V1, V2, V3),

fV1,V2,V3(v1, v2, v3) = fE,Q0,Q1(ZI(x; v1, v2, v3), v2, v3)
∣∣∣∣ 1
v1

ZI(x; v1, v2, v3)
∣∣∣∣ .

In the particular and important case that E, Q0 and Q1 are independent random
variables, the above expression writes

fV1,V2,V3(v1, v2, v3) = fE(ZI(x; v1, v2, v3))fQ0(v2)fQ1(v3)
∣∣∣∣ 1
v1

ZI(x; v1, v2, v3)
∣∣∣∣ .

Notice that, according to the previous transformation r : R3 → R3, the solution
of model (5.1)–(5.2) corresponds to its first component v1, so marginalizing w.r.t.
V2 = Q0 and V3 = Q1, one obtains the 1-PDF of Y (x),

fY (x)(y) =
∫
R2

fE

(
1

48yi

(
3l2q0x2 + 9l2q1x2 − 4lq0x3 − 4lq1x3 + 2q0x4)) fQ0 (q0)

·fQ1 (q1) 1
48y2i

∣∣(3l2q0x2 + 9l2q1x2 − 4lq0x3 − 4lq1x3 + 2q0x4)∣∣ dq0 dq1.

(5.9)

Remark 5.1 In the latter expression, it can be difficult to calculate the improper
multi-integral using quadrature rules. For this reason and from a computational
standpoint, it is interesting to express the above integral expression for the 1-PDF
in terms of the expectation operator w.r.t. random variables (Q0, Q1) as follows

fY (x)(y) = EQ0,Q1

[
fE

(
1

48yi

(
3l2Q0x2 + 9l2Q1x2 − 4lQ0x3 − 4lQ1x3 + 2Q0x4))

· 1
48y2i

∣∣(3l2Q0x2 + 9l2Q1x2 − 4lQ0x3 − 4lQ1x3 + 2Q0x4)∣∣] , 0 < x ≤ l/2,

(5.10)
since it permits applying Monte Carlo simulations to approximate the 1-PDF. We
will use this remark throughout the chapter.
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The computation of the 1-PDF on the second piece of the domain l/2 < x ≤ l, can
be calculated using a similar development as the one we have previously detailed
step by step. We omit the technical details that lead to the following explicit
expression in terms of the expectation operator

fY (x)(y) = EQ0,Q1

[
fE

(
1

384yi

(
−l4Q0 + l4Q1 + 8l3Q0x − 8l3Q1x + 96l2Q1x2

−64lQ1x3 + 16Q1x4)) · 1
384y2i

∣∣(−l4Q0 + l4Q1 + 8l3Q0x − 8l3Q1x

+96l2Q1x2 − 64lQ1x3 + 16Q1x4)∣∣] , l/2 < x ≤ l.

(5.11)

The maximum slope, S, and the maximum deflection, D, in a cantilever beam
represent key information to account for safety and control measures [75, 96, 71].
In the case of a cantilever beam, it is clear they are calculated at the free end
of the beam, i.e., x = l. It is easy to check that they are given by the following
expressions

S = Y ′(l) = l3

48Ei
(Q0 + 7Q1) , (5.12)

and,

D = Y (l) = l4

384Ei
(7Q0 + 41Q1) . (5.13)

In our context, S and D are random variables whose respective PDFs, fS(s) and
fD(d), provide important information about its probabilistic behaviour.

Similar to the above, to obtain the PDF of S, we apply the RVT method stated
in Th. 2.1 taking U = (E, Q0, Q1) to obtain the PDF of the random vector
V = (V1, V2, V3), defined by the transformation r : R3 → R3, whose components
are given by

v1 = r1(e, q0, q1) = l3

48ei
(q0 + 7q1) ,

v2 = r2(e, q0, q1) = q0,

v3 = r3(e, q0, q1) = q1.
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The inverse transformation of r, s : R3 → R3, writes

e = s1(v1, v2, v3) = l3

48v1i
(v2 + 7v3) ,

q0 = s2(v1, v2, v3) = v2,

q1 = s3(v1, v2, v3) = v3.

The absolute value of the Jacobian of the inverse transformation is

|J | =
∣∣∣∣∂s1(v1, v2, v3)

∂v1

∣∣∣∣ = l3

48v2
1i

(v2 + 7v3) ̸= 0, w.p. 1.

So, the PDF of V is given by

fV1,V2,V3(v1, v2, v3) = fE

(
l3

48v1i
(v2 + 7v3)

)
fQ0(v2)fQ1(v3) l3

48v2
1i

(v2 + 7v3) .

To obtain the PDF of (5.12), which is given by V1, we marginalize w.r.t. V2 = Q0

and V3 = Q1, turning out

fS(s) = l3

48s2i

∫
R2

fE

(
l3

48si
(q0 + 7q1)

)
fQ0(q0)fQ1(q1) (q0 + 7q1) dq0 dq1.

This PDF can be expressed by the expectation of the random vector (Q0, Q1) as

fS(s) = l3

48s2i
EQ0,Q1

[
fE

(
l3

48si
(Q0 + 7Q1)

)
(Q0 + 7Q1)

]
. (5.14)

In a similar way, we can obtain the PDF of the maximum deflection (5.13),

fD(d) = l4

384d2i
EQ0,Q1

[
fE

(
l4

384di
(7Q0 + 41Q1)

)
(7Q0 + 41Q1)

]
. (5.15)

From an engineering point of view, it is useful to represent the response of the
cantilever beam at each spatial point x in terms of static quantities as the bending
moment, M(x), and the shear force, V (x). These relevant quantities can be obtained,
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respectively, in terms of the second and third-order derivatives of the deflection [97]

M(x) = −EiY ′′(x), (5.16)

and
V (x) = −EiY ′′′(x). (5.17)

In our setting problem, the following expressions for the bending moment and the
shear force are, respectively, obtained

M(x)=


−1

8(Q0 + 3Q1)l2 + 1
2(Q0 + Q1)lx − 1

2Q0x2, 0 ≤ x ≤ l/2,

(
−1

2 l2 + lx − 1
2x2)Q1, l/2 < x ≤ l,

(5.18)

V (x) =


1
2(Q0 + Q1)l − Q0x, 0 ≤ x ≤ l/2,

(l − x) Q1, l/2 < x ≤ l.

(5.19)

We can observe that for x = l both the bending moment and the shear force are
null (M(l) = 0 and V (l) = 0). In addition, at x = 0 they reach their maximum
value (positive or negative).

In order to obtain the PDF of (5.18), and taking into account that it is a piecewise
function, we need to calculate the PDF separately in the two subdomains.

To this end, we first fix x : 0 ≤ x ≤ l/2. Now we apply Theorem 2.1 taking
U = (Q1, Q0) to obtain the PDF of the random vector V = (V1, V2), defined by
the transformation r : R2 → R2, whose components are given by

v1 = r1(q1, q0) = −1
8(q0 + 3q1)l2 + 1

2(q0 + q1)lx − 1
2q0x2,

v2 = r2(q1, q0) = q0.
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The inverse transformation s : R2 → R2 of r is given by

q1 = s1(v1, v2) =
v1 − v2

(
−1

8 l2 + 1
2 lx − 1

2x2)
1
2 lx − 3

8 l2 ,

q0 = s2(v1, v2) = v2.

Now, we need to calculate the absolute value of the Jacobian of the previous
inverse transformation,

|J | =
∣∣∣∣∂s1(v1, v2)

∂v1

∣∣∣∣ = 1∣∣1
2 lx − 3

8 l2
∣∣ ̸= 0.

Then, applying the RVT method and taking advantage of the expectation operator,
we obtain the PDF on the first subdomain 0 ≤ x ≤ l/2,

fM(x)(m) = EQ0

[
fQ1

(
m −

(
− 1

8 l2 + 1
2 lx − 1

2 x2)Q0
1
2 lx − 3

8 l2

)
1∣∣ 1

2 lx − 3
8 l2
∣∣
]

.

To complete the analysis on the whole domain, we fix now x : l/2 < x < l. In
this subdomain, only one random variable appears, so in this case we use the
one-dimensional version of the RVT method. Using the same notation as above,
we take U = Q1 to obtain the PDF of the random variable V = V1, defined by
the transformation r : R → R such that

v1 = r(q1) =
(

−1
2 l2 + lx − 1

2x2
)

q1.

The inverse transformation of r is determined by

s(v1) := r−1(v1) = v1

−1
2 l2 + lx − 1

2x2 .

Finally, we need to calculate the derivative of r−1 that is given by

ds

dv1
= 1

−1
2 l2 + lx − 1

2x2 .
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Then applying RVT method, the PDF on l/2 < x < l is

fM(x)(m) = fQ1

(
m

−1
2 l2 + lx − 1

2x2

)
1∣∣−1

2 l2 + lx − 1
2x2

∣∣ .
In summary, the PDF of the bending moment is given by

fM(x)(m) =


EQ0

[
fQ1

(
m −

(
− 1

8 l2 + 1
2 lx − 1

2 x2)Q0
1
2 lx − 3

8 l2

)
1∣∣ 1

2 lx − 3
8 l2
∣∣
]

, 0 ≤ x ≤ l/2,

fQ1

(
m

− 1
2 l2 + lx − 1

2 x2

)
1∣∣− 1

2 l2 + lx − 1
2 x2
∣∣ , l/2 < x < l.

(5.20)

The PDF of the shear force, Eq. (5.19), is obtained in a similar way:

fV (x)(v) =


EQ0

[
fQ1

(
v −

(1
2 l − x

)
Q0

1
2 l

)
2
l

]
, 0 ≤ x ≤ l/2,

fQ1

(
v

l − x

) 1
l − x

, l/2 < x < l.

(5.21)

Finally, we point out that the results derived throughout this section can be
extended, using the same reasoning, to a finite number of loads, including the case
that the loads occupy different lengths on the beam.

5.3 Case II: Concentrated random loads Pj spanned on the beam

In this section, we obtain the 1-PDF of the solution stochastic process of model
(5.1)–(5.2) in the important case that loads are applied at n different spatial points,
xj , j = 1, . . . , n, along the span of the beam. This case can be modelled by taking

Q(x) =
n∑

j=1
Pjδ (x − xj) , (5.22)

where δ(·) denotes the Dirac delta distribution.

Let us assume that E and Pj , j = 1, . . . , n, are mutually independent random
variables, being fE(e) and fPj (pj), j = 1, . . . , n, their respective PDFs. In Fig. 5.2,
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we show a graphical scheme of the model. In a similar way that in the previous
section, using the Laplace transform and its properties when computing the Laplace
transform of the Dirac delta distribution, we can obtain the stochastic solution of
model (5.1)–(5.2), via the following piecewise function

Y (x) =



Y II(x; E, P1, . . . , Pn), 0 < x ≤ x1,

Y II(x; E, P1, . . . , Pn) + 1
6Ei

j∑
k=1

Pk (x − xk)3 , xj < x ≤ xj+1,

j = 1, . . . , n − 1,

Y II(x; E, P1, . . . , Pn) + 1
6Ei

n∑
k=1

Pk (x − xk)3 , xn < x ≤ l,

(5.23)

where

Y II(x; E, P1, . . . , Pn) = 1
2Ei

x2
n∑

j=1

xjPj − 1
6Ei

x3
n∑

j=1

Pj . (5.24)

Figure 5.2: Case II: Cantilever beam with concentrated random variables loads at different
spatial points.

Once we have obtained the stochastic solution, we will obtain the 1-PDF of (5.23)–
(5.24) taking advantage of the RVT method. As the solution is given by means of
a piecewise function, the 1-PDF will be determined by applying this method to
each piece.
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To this end, we first fix 0 < x ≤ x1. Let us to define a mapping r : Rn+1 → Rn+1

that transforms the random vector U = (E, P1, . . . , Pn) into V = (V1, . . . , Vn+1)
being

v1 = r1(e, p1, . . . , pn) = Y II(x; e, p1, . . . , pn),
v2 = r2(e, p1, . . . , pn) = p1,
...

...
...

...
...

vn+1 = rn+1(e, p1, . . . , pn) = pn.

The inverse mapping of r is given by the mapping s : Rn+1 → Rn+1 whose
components are

e = s1(v1, v2, . . . , vn+1) = ZII(x; v1, v2, . . . , vn+1),
p1 = s2(v1, v2, . . . , vn+1) = v2,
...

...
...

...
...

pn = sn+1(v1, v2, . . . , vn+1) = vn+1,

where

ZII(x; v1, v2, . . . , vn+1) = − 1
6v1i

−3x2
n∑

j=1
xjvj+1 + x3

n∑
j=1

vj+1

 .

Note that the absolute value of the Jacobian of s is

|J | =
∣∣∣∣∂s1(v1, v2, . . . , vn+1)

∂v1

∣∣∣∣ =
∣∣∣∣ 1
v1

ZII(x; v1, v2, . . . , vn+1)
∣∣∣∣ ̸= 0, w.p. 1.

Then, according to Th. 2.1, the PDF of V is given by

fV1,...,Vn+1(v1, . . . , vn+1) = fE

(
ZII(x; v1, v2, . . . , vn+1)

)
fP1 (v2) · · · fPn (vn+1)

·
∣∣∣∣ 1
v1

ZII(x; v1, v2, . . . , vn+1)
∣∣∣∣ .
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Finally, the 1-PDF of the stochastic solution (5.23)–(5.24), which is given by V1,
is obtained by marginalizing w.r.t. V2 = P1, . . . , Vn+1 = Pn,

fY (x)(y) =
∫
Rn

fE

− 1
6yi

−3x2
n∑

j=1
xjpj + x3

n∑
j=1

pj

 fP1 (p1) · · · fPn (pn)

· 1
6y2i

∣∣∣∣∣∣−3x2
n∑

j=1
xjpj + x3

n∑
j=1

pj

∣∣∣∣∣∣ dp1 · · · dpn, 0 < x ≤ x1.

(5.25)
The above expression involves a multidimensional integral that may be computa-
tionally unaffordable in practice. To overcome this drawback, it is interesting to
notice that this expression can be rewritten using the operator expectation

fY (x)(y) = EP1,...,Pn

fE

− 1
6yi

−3x2
n∑

j=1
xjPj + x3

n∑
j=1

Pj


· 1

6y2i

∣∣∣∣∣∣−3x2
n∑

j=1
xjPj + x3

n∑
j=1

Pj

∣∣∣∣∣∣
 , 0 < x ≤ x1.

(5.26)

This expression is particularly useful when applying Monte Carlo simulations to
calculate the 1-PDF.

The computation of the 1-PDF on the other subdomains of the stochastic solution
(see (5.23)) can be calculated similarly. For simplicity in the presentation, we skip
the technical details here. Calculations lead to

fY (x)(y) = EP1,...,Pn

[
fE

(
1

6yi

(
3x2

n∑
k=1

xkPk − x3
n∑

k=1

Pk +
j∑

k=1

(x − xk)3 pk

))

· 1
6y2i

∣∣∣∣∣3x2
n∑

k=1

xkPk − x3
n∑

k=1

Pk +
j∑

k=1

(x − xk)3 pk

∣∣∣∣∣
]

, xj < x ≤ xj+1, j = 1, . . . , n − 1,

(5.27)
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and

fY (x)(y) = EP1,...,Pn

[
fE

(
1

6yi

(
3x2

n∑
k=1

xkPk − x3
n∑

k=1
Pk +

n∑
k=1

(x − xk)3
Pj

))

· 1
6y2i

∣∣∣∣∣3x2
n∑

k=1
xkPk − x3

n∑
k=1

Pk +
n∑

k=1
(x − xk)3

Pk

∣∣∣∣∣
]

, xn < x ≤ l.

(5.28)
Now, we will compute the PDF of the slope, S = Y ′(l), and the maximum deflection,
D = Y (l), at the free end as we did in the previous section. From (5.23)–(5.24), it
is easy to see that

S = 1
2Ei

n∑
j=1

x2
jPj , D = 1

6Ei

3l
n∑

j=1
x2

jPj −
n∑

j=1
x3

jPj

 , (5.29)

and applying the RVT technique with appropriate mappings, we can obtain the
PDFs of S and D in terms of the expectation operator

fS(s) = EP1,...,Pn

fE

 1
2si

 n∑
j=1

x2
jPj

 1
2s2i

∣∣∣∣∣∣−
n∑

j=1
x2

jPj

∣∣∣∣∣∣
 , (5.30)

and

fD(d) = EP1,...,Pn

[
fE

(
1

6di

(
3l

n∑
j=1

x2
j Pj −

n∑
j=1

x3
j Pj

))
1

6d2i

∣∣∣∣∣3l

n∑
j=1

x2
j Pj −

n∑
j=1

x3
j Pj

∣∣∣∣∣
]

.

(5.31)

For the sake of completeness, we finish this section by calculating the PDF of the
bending moment and the shear force of the cantilever beam. Applying equations
(5.16) and (5.17) to (5.23)–(5.24), we obtain the expressions of the bending moment

M(x) =



∑n
k=1 Pk(x − xk), 0 ≤ x ≤ x1,

∑n
k=j+1 Pk(x − xk), xj < x ≤ xj+1,

j = 1, . . . , n − 1,

0, xn < x ≤ l.

(5.32)
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and the shear force

V (x) =



∑n
k=1 Pk, 0 ≤ x ≤ x1,

∑n
k=j+1 Pk, xj < x ≤ xj+1,

j = 1, . . . , n − 1,

0, xn < x ≤ l.

(5.33)

Then, applying RVT technique to expressions (5.32) and (5.33) in a similar way
to the previous section, we can obtain the PDF of the bending moment

fM(x)(m)=



EP1,...,Pn−1

[
fPn

(
m−
∑n−1

k=1
Pk(x−xk)

x−xn

) 1
|x − xn|

]
, 0 ≤ x ≤ x1,

EPj+1,...,Pn−1

[
fPn

(
m−
∑n−1

k=j+1
Pk(x−xk)

x−xn

) 1
|x − xn|

]
, xj ≤ x ≤ xj+1,

j = 1, . . . , n − 2,

fPn

(
m

x − xn

) 1
|x − xn|

, xn−1 < x ≤ xn,

0, xn < x ≤ l,

(5.34)
and the PDF of the shear force

fV (x)(v) =



EP2,...,Pn[fP1 (v −
∑n

k=2 Pk)] , 0 ≤ x ≤ x1,

EPj+1,...,Pn−1

[
fPn

(
v−
∑n−1

k=j+1 Pk

)]
, xj < x ≤ xj+1,

j = 1, . . . , n − 2,

fPn (v) , xn−1 < x ≤ xn,

0, xn < x ≤ l.

(5.35)
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5.4 Case III: A load modelled via Brownian motion

In this section, we assume that the density downward force, Q(x), is given by the
sum of a deterministic value, q0 (nominal value), and a certain random quantity
that depends on the spatial point x on the beam. This latter quantity models the
uncertainties due to the heterogeneity of the beam. As for cantilever beams, the
key point is clearly located at the free end (in our case, on the right end); then to
mathematically analyze the problem, we have chosen a stochastic process whose
variance increases with its independent parameter (in our case, the space x) and
whose distribution is Gaussian. Specifically, we have selected a standard Wiener
process (also termed Brownian motion), B(x), to perform our mathematical anal-
ysis, although our subsequent approach also permits considering other stochastic
processes to play the role of B(x). Therefore, we shall assume that

Q(x) = q0 + B(x), 0 < x ≤ l, (5.36)

being B(x) = B(x, ω) the standard Wiener process. Recall that, µB(x) = E[B(x)] =
0 and V[B(x)] = x, ∀x > 0, [54]. Fig. 5.3 shows a graphical representation of the
problem.

q 
O

+ Brownian motion

X 

Figure 5.3: Case III: Cantilever beam with q0 + B(x) as varying load, being B(x) the
Brownian motion.
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In order to obtain an approximation of the 1-PDF of the solution stochastic process
of model (5.1)–(5.2) with Q(x) given by (5.36), we will consider the approximation
of B(x) obtained by truncating its Karhunen–Loève expansion, see Section 2.2, at
a finite order, say N . Then, the model is approximated via the differential equation

d4Y (x)
dx4 = 1

Ei

q0 +
N∑

j=1

√
νjϕj(x)ξj(ω)

 , 0 < x < l, (5.37)

where

νj = 4l2

π2(2j − 1)2 , ϕj(x) =
√

2
l

sin
((2j − 1)π

2l
x

)
, j = 1, 2, . . . , N,

and ξj(ω) ∼ N(0, 1), j = 1, 2, . . . , N .

The solution stochastic process of model (5.37) together with the boundary condi-
tions (5.2), can be obtained using the Laplace transform. After somewhat technical
computations, we obtain

Y (x) = 1
Ei

x2

2

q0

2 l2 + l

√
2
l

N∑
j=1

ξj
1 − cos (bjl)

b2
j

−
√

2
l

N∑
j=1

ξj
bjl − sin (bjl)

b3
j


+x3

6

−q0l −
√

2
l

N∑
j=1

ξj
1 − cos (bjl)

b2
j

+ q0

24x4

+
√

2
l

N∑
j=1

ξj

−6bjx + b3
jx3 + 6 sin (bjx)

6b5
j

 , 0 < x ≤ l,

(5.38)

where bj = (2j − 1)π
2l

.

We fix 0 < x < l and we assume that E and ξj , j = 1, . . . , N are independent
continuous random variables with PDFs given by fE(e) and fξj

(ξj), j = 1, . . . , N ,
respectively. Now, we will apply the RVT method taking in Th. 2.1 as U =
(E, ξ1, . . . , ξN ) to obtain the PDF of the random vector V = (V1, V2, . . . , VN+1),
defined by the transformation r : RN+1 → RN+1, whose components are defined
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by

v1 = r1(e, ξ1, . . . , ξN ) = 1
ei

(
x2

2

(
q0

2 l2 + l

√
2
l

N∑
j=1

ξj
1 − cos (bj l)

b2
j

−
√

2
l

N∑
j=1

ξj
bj l − sin (bj l)

b3
j

)
+ x3

6

(
−q0l −

√
2
l

N∑
j=1

ξj
1 − cos (bj l)

b2
j

)

+ q0

24x4 +
√

2
l

N∑
j=1

ξj

−6bjx + b3
j x3 + 6 sin (bjx)

6b5
j

)
,

v2 = r2(e, ξ1, . . . , ξN ) = ξ1,

...

vN+1 = rN+1(e, ξ1, . . . , ξN ) = ξN+1.

The inverse transformation of r, s : RN+1 → RN+1, is given by

e = s1(v1, v2, . . . , vN+1) = 1
v1i

(
x2

2

(
q0

2 l2 + l

√
2
l

N∑
j=1

vj+1
1 − cos (bj l)

b2
j

−
√

2
l

N∑
j=1

vj+1
bj l − sin (bj l)

b3
j

)
+ x3

6

(
−q0l −

√
2
l

N∑
j=1

vj+1
1 − cos (bj l)

b2
j

)

+ q0

24x4 +
√

2
l

N∑
j=1

vj+1
−6bjx + b3

j x3 + 6 sin (bjx)
6b5

j

)
,

ξ1 = s2(v1, v2, . . . , vN+1) = v2,

...

ξN = sN+1(v1, v2, . . . , vN+1) = vN+1.

The absolute value of the Jacobian of the inverse mapping s writes

|J | =
∣∣∣∣∂s1(v1, v2, . . . , vN+1)

∂v1

∣∣∣∣ =

∣∣∣∣∣− 1
v2

1i

(
x2

2

(
q0

2 l2 + l

√
2
l

N∑
j=1

vj+1
1 − cos (bj l)

b2
j

−
√

2
l

N∑
j=1

vj+1
bj l − sin (bj l)

b3
j

)
+ x3

6

(
−q0l −

√
2
l

N∑
j=1

vj+1
1 − cos (bj l)

b2
j

)

+ q0

24x4 +
√

2
l

N∑
j=1

vj+1
−6bjx + b3

j x3 + 6 sin (bjx)
6b5

j

)∣∣∣∣∣ ̸= 0, w.p. 1.
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Similarly as developed in Cases I and II, the following expression for the 1-PDF
of the solution stochastic process is obtained

fY (x)(y) =Eξ1,...,ξN

[
fE

(
1

Ei

(
x2

2

(
q0

2 l2 + l

√
2
l

N∑
j=1

ξj
1 − cos (bj l)

b2
j

−
√

2
l

N∑
j=1

ξj
bj l − sin (bj l)

b3
j

)
+ x3

6

(
−q0l −

√
2
l

N∑
j=1

ξj
1 − cos (bj l)

b2
j

)

+ q0

24x4 +
√

2
l

N∑
j=1

ξj

−6bjx + b3
j x3 + 6 sin (bjx)

6b5
j

))

·

∣∣∣∣∣− 1
E2i

(
x2

2

(
q0

2 l2 + l

√
2
l

N∑
j=1

ξj
1 − cos (bj l)

b2
j

−
√

2
l

N∑
j=1

ξj
bj l − sin (bj l)

b3
j

)

+x3

6

(
−q0l −

√
2
l

N∑
j=1

ξj
1 − cos (bj l)

b2
j

)
+ q0

24x4

+
√

2
l

N∑
j=1

ξj

−6bjx + b3
j x3 + 6 sin (bjx)

6b5
j

)∣∣∣∣∣
]

, 0 < x ≤ l.

(5.39)

To complete Case III with the same information as the one presented in Cases I
and II, we now compute the PDFs of the maximum slope and deflection at the
free end of the beam and the PDFs of the bending moment and the shear force.
For the sake of simplicity, we directly present the results we obtained. For the
maximum slope

S = Y ′(l) = 1
Ei

q0

8 l3 + 1
2 l2
√

2
l

N∑
j=1

ξj
1 − cos (bjl)

b2
j

− l

√
2
l

N∑
j=1

ξj
bjl − sin (bjl)

b3
j

+
√

2
l

N∑
j=1

ξj

−2 + b2
j l2 + 2 cos (bjl)

2b4
j

 ,

(5.40)
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its PDF is given by

fS(s) =Eξ1,...,ξN

[
fE

(
1
si

(
q0

8 l3 + 1
2 l2

√
2
l

N∑
j=1

ξj
1 − cos (bj l)

b2
j

− l

√
2
l

N∑
j=1

ξj
bj l − sin (bj l)

b3
j

+
√

2
l

N∑
j=1

ξj

−2 + b2
j l2 + 2 cos (bj l)

2b4
j

))∣∣∣∣∣− 1
θ2i

(
q0

8 l3 + 1
2 l2

√
2
l

N∑
j=1

ξj
1 − cos (bj l)

b2
j

−l

√
2
l

N∑
j=1

ξj
bj l − sin (bj l)

b3
j

+
√

2
l

N∑
j=1

ξj

−2 + b2
j l2 + 2 cos (bj l)

2b4
j

)∣∣∣∣∣
]

,

(5.41)
and, for the maximum deflection

D = Y (l) = 1
Ei

q0

8 l4 + 1
3 l3
√

2
l

N∑
j=1

ξj
1 − cos (bjl)

b2
j

− 1
2 l2
√

2
l

N∑
j=1

ξj
bjl − sin (bjl)

b3
j

+
√

2
l

N∑
j=1

ξj

−6bjl + b3
j l3 + 6 sin (bjl)
6b5

j

 ,

(5.42)
its PDF is given by

fD(d) =Eξ1,...,ξN

[
fE

(
1
di

(
q0

8 l4 + 1
3 l3

√
2
l

N∑
j=1

ξj
1 − cos (bj l)

b2
j

− 1
2 l2

√
2
l

N∑
j=1

ξj
bj l − sin (bj l)

b3
j

+
√

2
l

N∑
j=1

ξj

−6bj l + b3
j l3 + 6 sin (bj l)
6b5

j

))∣∣∣∣∣− 1
δ2i

(
q0

8 l4 + 1
3 l3

√
2
l

N∑
j=1

ξj
1 − cos (bj l)

b2
j

−1
2 l2

√
2
l

N∑
j=1

ξj
bj l − sin (bj l)

b3
j

+
√

2
l

N∑
j=1

ξj

−6bj l + b3
j l3 + 6 sin (bj l)
6b5

j

)∣∣∣∣∣
]

.

(5.43)

Applying equations (5.16) and (5.17) to (5.38), the following expressions are,
respectively, obtained for the bending moment

M(x) = − q0

2
(
l2 + x2 − 2xl

)
−
√

2
l

N∑
j=1

ξj
1 − cos (bjl)

b2
j

(l − x)

−
√

2
l

N∑
j=1

ξj
bj(x − l) + sin (bjl) − sin (bjx)

b3
j

,

(5.44)
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and the shear force

V (x) = − q0(x − l) −
√

2
l

N∑
j=1

ξj
cos (bjl) − cos (bjx)

b2
j

. (5.45)

Its PDFs are given by

fM(x)(m) = Eξ2,...,ξN

[
fξ1

((
m + q0

2
(
l2 + x2 − 2xl

)
+
√

2
l

N∑
j=2

ξj

(
1 − cos(bjl)

b2
j

(l − x) + bj(x − l) + sin(bjl) − sin(bjx)
b3

j

)
·
(

−
√

2
l

(1 − cos(b1l)
b2

1
(l − x) + b1(x − l) + sin(b1l) − sin(b1x)

b3
1

))−1


·
∣∣∣∣∣−
√

2
l

(1 − cos(b1l)
b2

1
(l − x) + b1(x − l) + sin(b1l) − sin(b1x)

b3
1

)∣∣∣∣∣
−1
 ,

(5.46)
and

fV (x)(v) = Eξ2,...,ξN

fξ1

v + q0(x − l) +
√

2
l

N∑
j=2

ξj
cos(bjl) − cos(bjx)

b2
j


·
(

−
√

2
l

(cos(b1l) − cos(b1x)
b2

1

))−1
∣∣∣∣∣−

√
2
l

(cos(b1l) − cos(b1x)
b2

1

)∣∣∣∣∣
−1
 ,

(5.47)
respectively.

Remark 5.2 In the previous analysis, we calculated the PDF of several quantities
of interest (deflection, shear force, and bending moment) of the beam thanks to the
application of the RVT method. It is worthwhile to point out that this technique
could also be applied to determine the second probability density function (2-PDF)
of the above-mentioned quantities [89]. This would allow us to quantify further
statistical properties, such as the correlation of the deflection at two different spatial
points. Here, we omit this analysis since it is very similar but involves cumbersome
mathematical expressions.
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5.5 Numerical examples

This section is devoted to illustrating the above theoretical findings. We show
three different examples corresponding to the theoretical results obtained in Cases
I–III developed in each one of the previous Sections 5.2–5.4, respectively. We take
the following data for the deterministic parameters of the model (5.1): l = 10 m
and i = 722 cm4, while for the random parameters, we will assume that the
Young’s modulus of elasticity, E, has a truncated Gaussian distribution with mean
µE = 210 · 109 Pa (Pascals) and variance σ2

E = 420 · 107 Pa2, i.e. E ∼ NT (µE ; σ2
E)

where T = [µE − kσE , µE + kσE ] = [209.9993 · 109, 210.0006 · 109], taking k = 10.
The particular form of the stochastic process Q(x) will be specified below in each
example.

Example 5.1 (Case I) This example corresponds to Section 5.2, where the can-
tilever beam supports two different loads. We assume that the loads are defined by
random variables whose distributions are Gaussian, Q0 ∼ N

(
µQ0 = 40; σ2

Q0
= 0.4

)
and Q1 ∼ N

(
µQ1 = 20; σ2

Q1
= 0.2

)
.

Fig. 5.4 shows the graphical representation of the 1-PDF given by expressions
(5.10) and (5.11) at different spatial points x ∈ {1, . . . , 10}. As it is expected, we
can observe that the variance increases as x does.

Figure 5.4: 1-PDF, fY (x)(y), of the solution stochastic process (5.6), computed by (5.10)
and (5.11), at different spatial points x ∈ {1, . . . , 10}. Example 5.1.
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5.5 Numerical examples

In Fig. 5.5, we show the plots of the PDFs of the maximum slope, fS(s), and the
maximum deflection, fD(d), at the free end of the cantilever beam. Computations
have been carried out by expressions (5.14) and (5.15), respectively. In Table 5.1,
we include the numerical results for the mean and the standard deviation of random
variables S and D.

0.0022 0.0023 0.0024 0.0025 0.0026 0.0027 0.0028
s

2000

4000

6000

fS(s)

0.017 0.018 0.019 0.020 0.021
d

200

400

600

800

1000

fD(d)

Figure 5.5: Left: PDF of the maximum slope, fS(s), at free end using expression (5.14).
Right: PDF of the maximum deflection, fD(d), at the free end using (5.15). Example 5.1.

Mean Standard deviation
Slope at free end 0.0024742 0.00005343
Max. deflection 0.0189006 0.00040673

Table 5.1: Mean and standard deviation of the maximum slope and the maximum deflection
of Y (x) at the free end of the beam. Example 5.1.

In Fig. 5.6 and Fig. 5.7, we show a graphical representation of the PDFs of the
bending moment, fM(x)(m) and the shear force, fV (x)(v), respectively, at different
spatial points x ∈ {0, . . . , 9}. Recall that at the end of the beam (l = 10), M(l) = 0
and V (l) = 0. We can observe in both figures that the variance decreases as the
position increases.

Finally, in Fig. 5.8, we show a graphical representation of the mean and stan-
dard deviation functions of the solution stochastic process, Y (x). They have been
calculated by expressions (2.2) and (2.3), where fY (x)(y) is given by (5.10)–(5.11).

Example 5.2 (Case II) Here we illustrate the theoretical results for a cantilever
beam subject to concentrated loads at specific spatial points. More specifically,
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Figure 5.6: PDF of the bending moment, fM(x)(m), using expression (5.20) at different
spatial points x ∈ {0, . . . , 9}. Example 5.1.

we assume that four random loads are located at xj = 2, 5, 7, 9, j = 1, 2, 3, 4,
respectively. We will assume that all the loads are characterized by a common
Gaussian distribution, Pj ∼ N(µPj

= 20; σ2
Pj

= 0.02), j = 1, . . . , 4.

In Fig. 5.9, we have graphically represented the 1-PDF, fY (x)(y), computed by
(5.26)–(5.28), at the spatial positions x = j, j = 1, . . . , 10.

In Fig. 5.10, we have plotted the PDF of the maximum slope, fS(s), and of the
maximum deflection, fD(d), at the end of the cantilever beam. These two densities
are given by (5.30) and (5.31), respectively. In Table 5.2, we present the numerical
results of the mean and standard deviation of these two random variables.

Mean Standard deviation
Slope at free end 0.00104897 0.000022371
Max. deflection 0.00783446 0.000163552

Table 5.2: Mean and standard deviation of the maximum slope and the maximum deflection
of Y (x). They have been obtained via the PDFs (5.30) and (5.31), respectively. Example 5.2.

In Fig. 5.11, we show a graphical representation of the PDF of the bending moment,
fM(x)(m) at different spatial points x ∈ {0, . . . , 8}. Due to expression (5.32) at
instants x ∈ {9, 10}, the value of the PDF computed by (5.34) is zero. Fig. 5.12
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Figure 5.7: PDF of the shear force, fV (x)(v), using expression (5.21) at different spatial
points x ∈ {0, . . . , 9}. Example 5.1.

shows the plot of the PDFs of the shear force, fV (x)(v). Notice in this graphical
representation that several PDFs match, namely, fV (0)(v) = fV (1)(v) = fV (2)(v),
fV (3)(v) = fV (4)(v) = fV (5)(v), fV (6)(v) = fV (7)(v) and fV (8)(v) = fV (9)(v). This
is a consequence of the definition of the shear force (see Eq. (5.33)) and the spatial
points, xj = 2, 5, 7, 9 (meters), j = 1, 2, 3, 4, where the loads have been placed. We
can observe in Fig. 5.11 and Fig. 5.12 that the variance decreases as the position
increases.

Finally, in Fig. 5.13, we show the mean plus/minus 2 standard deviations of the
solution stochastic process, Y (x).

Example 5.3 (Case III) To illustrate the findings obtained in Section 5.4, we
will consider that the density of downward force acting perpendicularly on the beam
of length l = 10 m is given by Q(x) = q0 + B(x), 0 < x < l, q0 = 20, and we will
consider a Karhunen-Loève expansion truncated at order N to approximate the
Brownian motion, B(x).

In Fig. 5.14, we show a graphical representation of the 1-PDF, fY (x)(x), given
by (5.39) for different spatial points x ∈ {1, . . . , 10} considering as truncating order
N = 1 (later we justify this approximation is enough to achieve reliable results).
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Figure 5.8: Mean (µ) plus/minus 2 standard deviations (σ) of the solution stochastic process,
Y (x). Example 5.1.

We can notice that the higher the position, the higher the variability, as expected,
since the variability of the Brownian motion, B(x), increases with x.

In Fig. 5.15, we show the PDF of the maximum slope and maximum deflection at
the end of the cantilever beam. From both PDFs, we have calculated, in Table 5.3,
approximations of the mean and standard deviation of these two random variables.

Mean Standard deviation
Slope at free end 0.0016496 0.00027951
Max. deflection 0.0164908 0.0020746

Table 5.3: Mean and standard deviation of the maximum slope and deflection at the free
end of the cantilever beam, obtained via the PDF (5.41) and (5.43), respectively. Example
5.3.

In Fig. 5.16 and Fig. 5.17, we show, respectively, a graphical representation of
the PDFs of the bending moment, fM(x)(m), and the PDFs of the shear force,
fV (x)(v), at different spatial points x ∈ {0, . . . , 9}. Recall that x = 0 reaches their
maximum value (positive or negative) and at x = l = 10, M(l) = 0 and V (l) = 0.
To compute these PDFs we have considered again the truncating order N = 1.
This causes expressions (5.46) and (5.47) to change their structure slightly. So,
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5.5 Numerical examples

Figure 5.9: 1-PDF, fY (x)(y), of the solution stochastic process (5.23), computed by (5.26)–
(5.28), at the different spatial points x = j, j = 1, 2, . . . , 10. Example 5.2.
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Figure 5.10: Left: PDF, fS(s), of the maximum slope at free end. Right: PDF, fD(d), of
the maximum deflection at the free end. Example 5.2.

the PDF of the bending moment for N = 1 is given by

fM(x)(m) = fξ1

((
m + q0

2
(
l2 + x2 − 2xl

))(
−
√

2
l

(
1 − cos(b1l)

b2
1

(l − x)
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b3

1

))−1
)

·
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√

2
l

(
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1
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1

)∣∣∣∣∣
−1

,

(5.48)
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Figure 5.11: PDF of the bending moment, fM(x)(m), using expression (5.34) at different
spatial points x ∈ {0, . . . , 8}. Example 5.2.

and the PDF of the shear force is given by

fV (x)(v) = fξ1

(
(v + q0(x − l))

(
−
√

2
l

(
cos(b1l) − cos(b1x)

b2
1

))−1)

·

∣∣∣∣∣−
√

2
l

(
cos(b1l) − cos(b1x)

b2
1

)∣∣∣∣∣
−1

.

(5.49)

Again, we can observe in both figures that the variance decreases as the position
increases.

In Fig. 5.18, we show the mean (µ) plus/minus 2 standard deviations of the solution
stochastic process, Y (x), on the whole spatial domain.

Finally, in Table 5.4, we show a comparison of the values of the mean and standard
deviation of the maximum deflection of the cantilever beam, D, considering different
orders of truncation, N ∈ {1, 2, 3, 10, 50}, of B(x) via a Karhunen-Loève expansion.
We can observe that approximations are very similar with N = 1. This justifies
that our previous calculations have been carried out computations with this order.
Similar conclusions are derived from the PDFs, as we can observe from Fig. 5.19.
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Figure 5.12: PDF of the shear force, fV (x)(v), using expression (5.35) at different spatial
points x ∈ {0, . . . , 9}. Example 5.2.

N = 1 N = 2 N = 3 N = 10 N = 50

Mean 0.0164908 0.0164886 0.0164946 0.0164893 0.016493
Standard deviation 0.0020746 0.0020860 0.0020821 0.0020854 0.0020879

Table 5.4: Mean and standard deviation of the maximum deflection, D, at free end, obtained
via the PDF (5.43) for different values of the truncation order, N , to approximate the Brownian
motion by its Karhunen-Loève expansion, N ∈ {1, 2, 3, 10, 50}. Example 5.3.

5.6 Conclusions

Throughout the chapter, we have studied, from a probabilistic standpoint, a
foundational model to describe the deflection of a static cantilever beam subject
to different loads, which is relevant in the civil engineering literature. Our analysis
has several advantages. First, it permits computing not only the mean and the
standard deviation of deflection but also its probability density function that
provides a fuller description. Secondly, our theoretical findings have been obtained
under very general hypotheses since we have considered a complete randomization
of model parameters (the density of downward force acting perpendicularly on
the beam and the Young’s modulus, denoted by Q(x) and E, respectively). Even
more, the results obtained in every one of the three cases analysed in the chapter
have been established, assuming arbitrary probability density functions for the
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Figure 5.13: Mean (µ) plus/minus 2 standard deviations (σ) of the solution stochastic
process, Y (x). Example 5.2.

random parameters involved in the model. This gives a great generality to our
results. Besides, we have probabilistically characterized, via the corresponding
densities, essential quantities of interest such as the slope, maximum deflection,
bending moment, and shear force of the cantilever beam under mild hypotheses.
Furthermore, we have shown that the Random Variable Transformation technique
provides a comprehensive, systematic, and unifying tool to obtain mathematical
results in a variety of scenarios, allowing us to obtain general formulas that are
very useful for carrying out computations, as shown in the examples.

Publications associated with this chapter

The results of this chapter have been presented at the International Confer-
ence on Mathematical Analysis and Applications in Science and Engineering
(ICMAS2SC’22) in Porto (Portugal) from June 27-29, 2022. The talk, titled Proba-
bilistic analysis of a cantilever beam with random parameters via probability density
functions, was published in the conference proceedings with ISBN 978-989-53496-
3-0. Additionally, a complete version of the chapter’s findings has been published
in the paper [24].
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Figure 5.14: 1-PDF, fY (x)(y), of the solution stochastic process (5.38), computed by (5.39), at
different spatial position x ∈ {1, . . . , 10} of the cantilever beam considering an approximation
of the Brownian motion, B(x), via a Karhunen-Loève expansion truncated at order N = 1.
Example 5.3.
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Figure 5.15: Left: PDF, fS(s), of the maximum slope at free end. Right: PDF, fD(d), of
the maximum deflection at the free end. Example 5.3.
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Figure 5.16: PDF of the bending moment, fM(x)(m), using expression (5.46) at different
spatial points x ∈ {0, . . . , 8}. Example 5.3.

Figure 5.17: PDF of the shear force, fV (x)(v), using expression (5.47) at different spatial
points x ∈ {0, . . . , 9}. Example 5.3.
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Figure 5.18: Mean (µ) plus/minus 2 standard deviations of the solution stochastic process,
Y (x). Example 5.3.
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Figure 5.19: PDF of the maximum deflection at free end, fD(d), for different values of the
truncation order, N , to approximate the Brownian motion by its Karhunen-Loève expansion
N ∈ {1, 2, 3, 10, 50}. Example 5.3.
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Chapter 6
Extending the probabilistic analysis of the

Euler-Bernoulli model for a stochastic static
cantilever beam

In this chapter, we present a comprehensive probabilistic analysis of the deflection
of a static cantilever beam based on Euler-Bernoulli’s theory. For the sake of
generality in our stochastic study, we will assume that all model parameters

(Young’s modulus and the beam moment of inertia) are random variables with
arbitrary probability densities, while the loads applied on the beam are described

via a Poisson delta-correlated process. The probabilistic study is based on the
calculation of the first probability density function of the solution and the

probability density of other key quantities of interest, such as the shear force and
the bending moment, which are treated as random variables too. To conduct our

study, we will first calculate the first moments of the solution, which is a stochastic
process, and we then will take advantage of the Principle of Maximum Entropy.
Furthermore, we will present an algorithm, based on Monte Carlo simulations,

that allows us to simulate our analytical development computationally. The
theoretical findings will be illustrated with numerical examples where different

realistic probability distributions are assumed for each model random parameter.
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6.1 Introduction

In this chapter, we perform a full probabilistic study of the deflection of a static
cantilever beam using the Euler-Bernoulli’s model, see Eq. (1.2), with the main
novelty, w.r.t. the study performed in Chapter 5, that all its parameters (Young’s
modulus and the beam moment of inertia) are treated as random variables and
that the load applied on the beam is assumed to be described by a Poisson
delta-correlated process. Notice that in the previous chapter, we assumed the
moment of inertia as a deterministic parameter. We will calculate the solution’s
1-PDF via the PME. To achieve this goal, we first calculate the first statistical
moments of the solution. To complete the study, we also determine the PDF of
the shear force, and the bending moment, which are treated as random variables.
We also introduce an algorithm, based on the Monte Carlo method, to carry out
simulations from our theoretical findings. It is important to point out that the
calculation of the first moments of the solution is based on the so-called generalized
functions. This technique is introduced in [35], where authors elegantly analyze
other types of beams, different from a cantilever, assuming partial randomization of
the models under study. Particularly, they assume the flexural rigidity parameter
is deterministic. In the present chapter, apart from studying another type of beam,
namely the cantilever, dealing with the full randomization of the corresponding
Euler-Bernoulli’s model, we also obtain the 1-PDF of the solution, which, as it
was pointed out in Chapter 2, is the most important information associated with a
stochastic process. Indeed, from the 1-PDF one can determine any one-dimensional
statistical moment as well as the probability that the deflection varies on a specific
interval of interest. This is key information to, for example, analyze and quantify
the main risks that may affect civil structures. As it has been said, the calculation
of the 1-PDF will be done utilizing the PME. It is instructive to point out that the
PME method has been widely applied in civil engineering. In [107], the authors
obtain the PDF of the shear capacity of the reinforced concrete beam using
PME and compare it with brute force Monte Carlo simulation, obtaining good
approximations. In [21], the PME is modified to estimate the PDF of the material’s
fiber-reinforced concrete properties using their different order moments. In [42],
authors combine polynomial chaos expansions with a variation of the classical PME
to approximate the PDF of the response to several structural engineering problems.

116



6.2 Problem setting and preliminaries

In [62], one proposes a new method for constructing the so-called probability box
(p-box) model based on the PME. The results are applied to perform a reliability
analysis for uncertain engineering structures.

The chapter is organized as follows. Section 6.2 introduces some deterministic and
stochastic preliminaries required to conduct the aforementioned probabilistic study
of the deflection of a cantilever beam subject to loads and assuming that the model
parameters, namely, the material Young’s modulus of elasticity and the beam
moment of inertia are random variables. In Section 6.3, we carry out the analysis
of the stochastic model by first computing, under very general conditions of the
model parameters, the mean and variance of the deflection. These two statistical
moments will be required later to approximate its 1-PDF taking advantage of the
PME method. Apart from the deflection, we will also calculate approximations
of the mean, the variance, and the PDF of other relevant physical quantities
associated with the beam, such as the bending moment and the shear force. In
Section 6.4, we present an algorithm, based on Monte Carlo simulations, that
allows us to simulate all the abovementioned physical quantities effectively. The
theoretical results obtained in Section 6.3 are compared with the ones obtained
via simulations using the algorithm presented in Section 6.4. Finally, conclusions
are drawn in Section 6.6.

6.2 Problem setting and preliminaries

As we have seen in the previous chapter, when EI is constant, the Eq. (1.2) can
be expressed as follows:

d4Y (x)
dx4 = 1

EI
Q(x), 0 < x < l. (6.1)

This equation, together with the boundary conditions Y (0) = 0, Y ′(0) = 0,
Y ′′(l) = 0, and Y ′′′(l) = 0 represent the deflection of a static cantilever beam, see
expressions (1.3). The meaning of each quantity in the previous model can be seen
in the previous chapter, see model (5.1).

Based on the reasons explained in Section 6.1, we will consider that the distribution
of the load supported on the beam, Q(x), is described by a stochastic process.
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Specifically, we will assume that Q(x) is determined by concentrated loads, Pi,
acting vertically on the beam and randomly spanned according to the following
expression,

Q(x) =
N(l)∑
i=1

PiR−1(x − xi), (6.2)

where Pi are assumed to be i.i.d. random variables, representing concentrated
loads acting at the abscissas xi ∈ (0, l). N(l) denotes a Poisson counting process
with rate λ > 0. This parameter can be interpreted as the expected number of
random loads, Pi, that randomly apply per unit of space on the beam. Following
the notation used in [34], we use the term R−1(x − xi) := δ(x − xi) to indicate
that Pi, 1 ≤ i ≤ n, represent concentrated loads at the spatial points xi. Here, δ(·)
denotes the Dirac delta function. Furthermore, hereinafter we will assume that E

and I are independent random variables, so notice that they do not depend on x.
Fig. 6.1 shows a graphical representation of the model.

Figure 6.1: Graphical representation of model (6.1), where the distribution of the random
concentrated loads, Pi, on the spatial points xi of the beam is described by the stochastic
process given in (6.2).
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Remark 6.1 Throughout this chapter, we will use the most well-known generalized
function in Q(x), i.e., the Dirac delta function. We will use this function to
represent a concentrated load at an arbitrary spatial point, say x0. Defining

R−1(x − x0) := δ(x − x0), (6.3)

by integration, we obtain R0(x − x0), which is the unit step or Heaviside function.
If we continue integrating up to order n ∈ N, we arrive at the following piecewise
polynomial function

Rn(x − x0) =
{

0, if x < x0,
1
n!(x − x0)n, if x ≥ x0,

(6.4)

that, for n = 1, 2, 3, corresponds to the linear, quadratic, and cubic ramp functions,
respectively. Notice that, (6.4) also works for n = 0. As it shall be seen later, these
functions R0(·), R1(·), R2(·) and R3(·) will be extensively used in our subsequent
calculations.

The stochastic process given by (6.2) is known as the delta-correlated process [95]
(also termed Poisson white noise process [41, p.186]). The process Q(x) can be
regarded as the formal derivative of its corresponding associated compound Poisson
process, C(x) =

∑N(l)
i=1 Pi, 0 < x < l, i.e. dC(x)

dx = Q(x). As we have seen before,
this process consists of a Poisson counting process, N(l), and random intensities,
Pi, acting at the spatial points on the beam, xi, i = 1, . . . , N(l) (this action is
mathematically represented by PiR−1(x − xi)). The loads Pi are distributed along
the beam according to a Poisson distribution. This process is widely used to model
concentrated loads simulating, for example, cars traveling on a bridge, which has
motivated its consideration in our analysis.

We now introduce several statistical properties that will play a key role later for a
class of random processes that include, as a particular case, the foregoing random
processes Q(x) and

Gj(x) :=
N(l)∑
i=1

PiRj(x − xi), j = 0, . . . , 3, (6.5)
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are filtered Poisson processes [58], which depend on the loads, Pi, which are
randomly spanned on the beam according to a Poisson counting process N(l). Let

Z(x) =
N(l)∑
i=1

Uiv(x, xi) (6.6)

be a stochastic process constructed by superposition of pulses at the spatial points
xi whose shape is defined by a deterministic function v = v(x, xi) and having
pulse intensities given by a family of i.i.d. random variables Ui. As shown in [58],
the probabilistic structure of Z = Z(x) can be revealed via the characteristic
functional. Indeed, it can be shown that the cumulant function of order m of Z is
given by

C
(m)
Z (x1, . . . , xm) = λE [Um]

∫ min(x1,...,xm)

0
v(ρ, x1) · · · v(ρ, xm)dρ. (6.7)

Note that we here have used x1, . . . , xm to denote the variables of function CZ for
the sake of consistency with the independent variable x of Z, although any other
letter could be used too. As a consequence of the properties of cumulants [58], the
mean and the covariance can be obtained as particular cases of C

(m)
Z(x)(x1, . . . , xm):

µZ(x) = E [Z(x)] = λE [U ]
∫ x

0
v(ρ, x)dρ = C

(1)
Z(x)(x), (6.8)

and

CovZ(x1, x2) = E [Z(x1)Z(x2)] − E [Z(x1)]E [Z(x2)]

= λE
[
U2] ∫ min(x1,x2)

0
v(ρ, x1)v(ρ, x2)dρ

= C
(2)
Z (x1, x2). (6.9)

Hence, the variance is given by

σ2
Z(x) = C

(2)
Z (x, x). (6.10)
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Later we will also need to handle the cross-covariance of two stochastic processes,
say Zv=Zv(x) and Zw=Zw(x), of the form of (6.6) with different shapes, v and w,

Zv(x) =
N(l)∑
i=1

Uiv(x, xi), Zw(x) =
N(l)∑
i=1

Uiw(x, xi). (6.11)

In this case, the cross-cumulant function of order m = 2, which is just the cross-
covariance of Zv and Zw, writes

C
(2)
Zv,Zw

(x1, x2) = λE
[
U2] ∫ min(x1,x2)

0
v(ρ, x1)w(ρ, x2)dρ. (6.12)

As it shall be seen in the next section, these properties will be essential to obtain, in
the first step, the mean and the variance of Y (x), i.e., the deflection of the cantilever
beam. Afterward, from these two statistics, we will approximate the 1-PDF of
the solution taking advantage of the PME. Furthermore, we will determine other
engineering probabilistic quantities of interest associated with the beam, such as
the bending moment and the shear force.

6.3 Concentrated random loads Pi spanned randomly on the beam

In this section, we will carry out a probabilistic study of model (6.1). For the sake
of clarity, we substitute expression (6.2) into Eq. (6.1) and we then obtain

d4Y (x)
dx4 = 1

EI

N(l)∑
i=1

PiR−1(x − xi), 0 < x < l,

Y (0) = 0, Y ′(0) = 0, Y ′′(l) = 0, Y ′′′(l) = 0.

(6.13)

To conduct the probabilistic study of model (6.13), we first need to obtain its
solution. For this purpose, we take advantage of the one obtained in [35]. The
difference between the two of them lies in the type of beam and, therefore, in the
boundary conditions of the model. Based on the solution

Y (x) = 1
EI

N(l)∑
i=1

PiR3(x − xi) + 1
6C1x3 + 1

2C2x2 + C3x + C4, (6.14)
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we use the boundary conditions of model (6.13) in order to compute the integration
constants C1, C2, C3, and C4.

First, we calculate C4

Y (0) = 0 → C4 = 0, (6.15)

and C3

Y ′(0) = 0 → C3 = 0. (6.16)

Second, we calculate C1 using the third derivative

Y ′′′(l) = 0 → 1
EI

N(l)∑
i=1

PiR0(l − xi) + C1 = 0 → C1 = − 1
EI

N(l)∑
i=1

PiR0(l − xi),

(6.17)

and finally, we calculate C2

Y ′′(l) = 0 → 1
EI

N(l)∑
i=1

PiR1(l − xi) − 1
EI

N(l)∑
i=1

PiR0(l − xi)l + C2 = 0, (6.18)

C2 = − 1
EI

N(l)∑
i=1

PiR1(l − xi) −
N(l)∑
i=1

PiR0(l − xi)l

 . (6.19)

Now, replacing the obtained integration constants into (6.14) and reorganizing the
solution, one obtains

Y (x) = 1
EI

(
G3(x) − 1

6G0(l)x3 − 1
2 (G1(l) − lG0(l)) x2

)
, (6.20)

where Gj(x) has been defined in (6.5).

The function Gj(x) represents the load function, which is independent of the
beam characteristics. However, for the sake of convenience in our subsequent
computations, we introduce the following relabeling of the previous stochastic
process Gj(x),

Ĝj(x) =
N(l)∑
i=1

FiRj(x − xi), j = 0, 1, 2, 3, Fi = Pi

EI
, (6.21)
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where Ĝj(x) is now also dependent on the beam characteristics. This allows us to
rewrite Y (x) given in (6.20) in terms of the stochastic processes Ĝj(x):

Y (x) = Ĝ3(x) − 1
6Ĝ0(l)x3 − 1

2

(
Ĝ1(l) − lĜ0(l)

)
x2. (6.22)

As has been indicated in Section 6.2, we are interested in approximating the 1-PDF
of the deflection of the beam, and for this goal, we shall apply the PME method. So
we will first calculate the mean of the deflection, taking the expectation operator
in expression (6.20)

E[Y (x)] = E[Ĝ3(x)] − 1
6E[Ĝ0(l)]x3 − 1

2

(
E[Ĝ1(l)] − lE[Ĝ0(l)]

)
x2. (6.23)

In order to provide an explicit representation of E[Y (x)], we shall compute E[Ĝj(x)],
j = 0, . . . , 3. Notice that E[Ĝ2(x)] is not specifically required for computing E[Y (x)],
but it will also be calculated because it will be needed later. To this end, we will
take advantage of expectation E[Z(x)], given in (6.8), of the stochastic process Z(x)
defined in (6.6) with the following identification in terms of Ĝj(x) defined in (6.21):
the impulse shapes and pulse intensities are given by v(x, xi) := Rj(x − xi),
j = 0, . . . , 3, and Ui := Fi, respectively. Then, taking into account the definition
of functions Rj(x − xj), given in (6.4), one obtains:

E[Ĝ0(x)] = C
(1)
Ĝ0

(x) = λE [Fi]
∫ x

0
R0(x − ρ)dρ

= λE [Fi]
∫ x

0
dρ = λE [Fi] x,

(6.24)

E
[
Ĝ1(x)

]
= C

(1)
Ĝ1

(x) = λE [Fi]
∫ x

0
R1(x − ρ)dρ

= λE [Fi]
∫ x

0
(x − ρ)dρ = λ

2E [Fi] x2,

(6.25)
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E[Ĝ2(x)] = C
(1)
Ĝ2

(x) = λE [Fi]
∫ x

0
R2(x − ρ)dρ

= λE [Fi]
∫ x

0

1
2(x − ρ)2dρ = λ

6E [Fi] x3,

(6.26)

and

E[Ĝ3(x)] = C
(1)
Ĝ3

(x) = λE [Fi]
∫ x

0
R3(x − ρ)dρ

= λE [Fi]
∫ x

0

1
6(x − ρ)3dρ = λ

24E [Fi] x4.

(6.27)

Then, substituting the above expressions in (6.23), one gets the following expression
for the expectation of Y (x):

E[Y (x)] = λ

2E [Fi]
( 1

12x4 − 1
3 lx3 + 1

2 l2x2
)

. (6.28)

Now, we compute the covariance of Y (x) using the representation (6.20) and its
properties as a positive semidefinite function:

CovY (x1, x2) = E [Y (x1)Y (x2)] − E [Y (x1)]E [Y (x2)]

= C
(2)
Ĝ3

(x1, x2) − 1
2C

(2)
Ĝ3Ĝ1

(x1, l)x2
2 − 1

2C
(2)
Ĝ3Ĝ1

(x2, l)x2
1

+ 1
4C

(2)
Ĝ1

(l, l)x2
1x2

2 + 1
2C

(2)
Ĝ3Ĝ0

(x1, l)
(

lx2
2 − 1

3x3
2

)
+ 1

2C
(2)
Ĝ3Ĝ0

(x2, l)
(

lx2
1 − 1

3x3
1

)
+ 1

4C
(2)
Ĝ0

(l, l)
(1

9x3
1x3

2 − l

3x3
1x2

2 − l

3x2
1x3

2 + l2x2
1x2

2

)
+ 1

2C
(2)
Ĝ0Ĝ1

(l, l)
(1

6x3
1x2

2 + 1
6x2

1x3
2 − lx2

1x2
2

)
.

(6.29)
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Taking x1 = x2 = x in the above expression, using that C
(2)
Ĝj

(x, x) = σ2
Ĝj

(x), and
after some algebraic manipulations, one can obtain the variance of Y (x),

σ2
Y (x) = C

(2)
Y (x, x) = E

[
Y (x)2]− E [Y (x)]2

= σ2
Ĝ3

(x) − C
(2)
Ĝ3Ĝ1

(x, l)x2 + 1
4σ2

Ĝ1
(l)x4 + C

(2)
Ĝ3Ĝ0

(x, l)
(

lx2 − 1
3x3

)
+ 1

4σ2
Ĝ0

(l)
(1

9x6 − 2
3 lx5 + l2x4

)
+ 1

2C
(2)
Ĝ0Ĝ1

(l, l)
(1

3x5 − lx4
)

.

(6.30)

In this expression, we now compute the terms of the form σ2
Ĝj

and C
(2)
ĜiĜj

, using
(6.10) and (6.12), respectively,

σ2
Ĝ3

(x) = λE[F 2
i ]
∫ x

0
R3(x − ρ)R3(x − ρ)dρ = λ

252E
[
F 2

i

]
x7, (6.31)

C
(2)
Ĝ3Ĝ1

(x, l) = λE[F 2
i ]
∫ x

0
R3(x − ρ)R1(l − ρ)dρ = λ

24E
[
F 2

i

]
x4
(

l − 1
5x

)
,

(6.32)

σ2
Ĝ1

(l) = λE[F 2
i ]
∫ l

0
R1(l − ρ)R1(l − ρ)dρ = λ

3E
[
F 2

i

]
l3, (6.33)

C
(2)
Ĝ3Ĝ0

(x, l) = λE[F 2
i ]
∫ x

0
R3(x − ρ)R0(l − ρ)dρ = λ

24E
[
F 2

i

]
x4, (6.34)

σ2
Ĝ0

(l) = λE[F 2
i ]
∫ l

0
R0(l − ρ)R0(l − ρ)dρ = λE

[
F 2

i

]
l, (6.35)

C
(2)
Ĝ0Ĝ1

(l, l) = λE[F 2
i ]
∫ l

0
R0(l − ρ)R1(l − ρ)dρ = λ

2E
[
F 2

i

]
l2. (6.36)

Substituting these expressions into (6.30) and after simplifying, one gets the
following expression of the variance

σ2
Y (x) = λ

12E[F 2
i ]
(

− 2
105x7 + 1

3 lx6 − l2x5 + l3x4
)

. (6.37)
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Consequently, the second-order moment of the deflection is

E
[
Y 2(x)

]
= σ2

Y (x) + E[Y (x)]2 = λ

12E[F 2
i ]
(

− 2
105x7 + 1

3 lx6 − l2x5 + l3x4
)

+ λ2

12E[Fi]2
( 1

48x8 − 1
6 lx7 + 7

12 l2x6 − l3x5 + 3
4 l4x4

)
.

(6.38)
This expression will be used later when applying the PME to approximate the
1-PDF of the deflection Y (x).

As we have seen in the previous chapter, two characteristics that are very important
when studying beams in engineering are the bending moment, M(x), and the
shear force, T (x), defined as

M(x) := −EIY ′′(x), and T (x) := −EIY ′′′(x),

respectively [97]. These physical quantities can be calculated differentiating (6.20)
and (6.5), and taking into account that, by (6.4), R′′

3(x) = R1(x) and R′′′
3 (x) =

R0(x), so G′′
3(x) = G1(x) and G′′′

3 (x) = G0(x). Consequently,

M(x) = −G1(x) + G1(l) − G0(l)(l − x), (6.39)

and
T (x) = −G0(x) + G0(l). (6.40)

Applying the expectation operator in (6.39) and (6.40), and using the expressions
obtained in (6.24) and (6.25), one calculates the value of the mean of the bending
moment

E [M(x)] = −1
2λE [Pi]

(
x2 + l2 − 2lx

)
, (6.41)

and the shear force
E [T (x)] = −λE [Pi] (x − l). (6.42)
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Now, we compute the variance of the bending moment of the beam

σ2
M (x) = C

(2)
M (x, x) = E

[
M(x)2]− E [M(x)]2

= σ2
G1

(x) − 2C
(2)
G1

(x, l) + 2C
(2)
G1G0

(x, l)(l − x) + σ2
G1

(l)

− 2C
(2)
G1G0

(x, l)(l − x) + σ2
G0

(l)(l − x)2.

(6.43)

In the above expression, note that σ2
G1

(x) can be calculated by (6.33) changing l

by x and Fi by Pi, the term σ2
G0

(l) can be determined similarly to (6.35) changing
Fi by Pi, and the rest of the terms can be expressed in an analogous manner using,
respectively, (6.9) and (6.12),

C
(2)
G1

(x, l) = λE[P 2
i ]
∫ x

0
R1(x − ρ)R1(l − ρ)dρ = λE

[
P 2

i

] (x2l

2 − x3

6

)
, (6.44)

C
(2)
G1G0

(x, l) = λE[P 2
i ]
∫ x

0
R1(x − ρ)R0(l − ρ)dρ = λ

2E
[
P 2

i

]
x2. (6.45)

Substituting these expressions in (6.43) and simplifying, one gets

σ2
M (x) = λE

[
P 2

i

] (
x2l − l2x + 1

3 l3 − 1
3x3

)
. (6.46)

Consequently, the second-order statistic of the bending moment, which will be
required later to approximate its PDF via the PME, is given by

E
[
M2(x)

]
= λE

[
P 2

i

] (
x2l − l2x + 1

3 l3 − 1
3x3

)
+ 1

4λ2E [Pi]2
(
x2 + l2 − 2lx

)2
.

(6.47)

Now, we complete similar calculations for the shear force. Its variance is given by

σ2
T (x) = C

(2)
T (x, x) = E

[
T (x)2]−E [T (x)]2 = σ2

G0
(x)−2C

(2)
G0

(x, l)+σ2
G0

(l). (6.48)

Carrying out computations in a similar fashion as before, one obtains

σ2
T (x) = −λE

[
P 2

i

]
(x − l). (6.49)
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The second-order moment is given by

E
[
T 2(x)

]
= λ(x − l)

(
−E

[
P 2

i

]
+ λE [Pi]2 (x − l)

)
. (6.50)

6.4 Computational implementation

This section presents an algorithm that allows us to simulate the analytical devel-
opment shown in the previous section computationally. The proposed algorithm is
based on Monte Carlo technique, see Section 2.7. The method consists of a random
and repeated sampling of the stochastic process of the load function, Q(x), and of
the random variables of the moment of inertia, I, and Young’s modulus, E. The
objective is to obtain a number of simulations that together provide statistical
information on the PDF of the deflection, slope, bending moment, and shear
parameters of the beam.

The procedure has been divided into the following steps: (1) first, the beam is
discretized (2) then the stochastic process of the load function is simulated for each
of the discretized points of the beam, (3) in a third step, the random variables of
the moment of inertia and Young’s modulus are sampled and (4) with the values
obtained, the functions describing the behavior of the beam are evaluated, and
(5) finally, the process is repeated until it is obtained a set of simulations which
adequately represents the uncertainty of the behavior of the beam.

After the general description, we now give a detailed step-by-step description of
the procedure.

Step 1: Beam discretization Given the discrete nature of computer science, it
is necessary to deal with the stochastic model in a discrete manner. The Poisson
counting process has λx as expected value, where x represents the position in the
axis of the beam. Although it is a discrete-continuous process, its simulation is
discrete as long as, computationally, you can only evaluate it in a finite set of
x. The discretization of the beam is important because the simulation involves
assuming that there can only be charge points at the discretized positions and
hence an adequate discretization plays a key role to obtain accurate results.
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The approximate solution of the model (in our case, the deflection of the beam)
between spatial points can be linearly interpolated by knowing the approximations
at the adjacent points. Since the solution is not necessarily linear, the distance
between points must be small enough so that the error of the approximation is
acceptable for the application of the numerical results. Ideally, the beam should
be discretized at as many points as possible. However, the computational cost
increases proportionally to the number of points used in the discretization. An
appropriate strategy to optimize the trade-off between accuracy and computational
cost is to generate more points where the greatest uncertainty in the solution is
sensed, which generally coincides with the points of greatest structural weakness. If
this intuition is not predisposed, the ideal is to consider evenly distributed points.

Step 2: Simulation of the stochastic process

1. ∀ i ∈ {0, 1, . . . , Db} determining a spatial position xi on beam b (where Db

is the total number of discretized points):

1.1. ∀ m ∈ {0, 1, . . . , Cb}, determining the number of load functions cm to
be applied in beam b (where Cb is the total number of loads functions)
with intensity Qc and frequency fc,

1.1.1. The number of charge points sm
i , generated by the charge function

cm at point xi is obtained sampling from a Poisson distribution
with parameter λ := fc/Db > 0, representing the expected value of
sm

i .
1.1.2. ∀k ∈ {0, 1, . . . , sm

i }, the value of the point charge Pi is:

P k
i = P k−1

i + Qc, (6.51)

where P k−1
i = 0 if k = 0 and where in the case that is a random

variable, it is necessary to sample a value of its PDF. The distribution
of Qc can be any positive/negative and continuous/discrete random
variable. It can even be a nonparametric distribution constructed
from field data.

129



Chapter 6. Extending the probabilistic analysis of the Euler-Bernoulli model for a stochastic
static cantilever beam

At the end of the different loops, a value of P
sm

i
i (hereafter Pi) will have been

obtained for each xi.

2. The next step is to obtain the value of the net charge function Gj(x), j =
0, 1, 2, 3.

2.1. ∀ i ∈ {0, 1, . . . , Db}:

2.1.1. ∀ z ∈ {0, 1, . . . , Db}:
If xi < xz:

G0(xi) = G0(xi) + 0, (6.52)

G1(xi) = G1(xi) + 0, (6.53)

G2(xi) = G2(xi) + 0, (6.54)

G3(xi) = G3(xi) + 0. (6.55)

If xi > xz:

G0(xi) = G0(xi) + Pi, (6.56)

G1(xi) = G1(xi) + Pi(xi − xz), (6.57)

G2(xi) = G2(xi) + 1
2Pi(xi − xz)2, (6.58)

G3(xi) = G3(xi) + 1
3!Pi(xi − xz)3. (6.59)

Step 3: Simulation of the random variables The values of the inertial
moment, Ib, and Young’s modulus, Eb, are obtained by sampling from their corre-
sponding PDFs. The distribution of these random variables can be any positive
parametric one. It can even be a nonparametric distribution constructed from field
data.
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Step 4: Evaluation of beam performance functions. Once the deterministic
values of all the variables have been obtained by simulation, we take advantage of
the analytical development introduced in the previous section to determine the
behavior of the beam w.r.t. its deflection (Eq. (6.20)) and, therefore, its moment
of inertia (Eq. (6.39)) and shear force (Eq. (6.40)).

1. ∀ i ∈ {0, 1, . . . , Db}:

Yb(xi) = 1
EbIb

[
G3(xi) − 1

6G0(l)x3
i − 1

2 (G1(l) − lG0(l)) x2
i

]
, (6.60)

Mb(xi) = −G1(xi) + G1(l) − G0(l)(l − xi), (6.61)

Tb(xi) = −G0(xi) + G0(l). (6.62)

Step 5: Repeat Steps 1-4 until it is obtained a set of simulations Once
all the Steps 1-4 have been simulated, the result of one simulation is obtained. To
determine the distribution of deflection, bending moment, and shear force of the
beam, it is necessary to perform multiple simulations by repeating Steps 1-4. The
greater the number of simulations, N , the better results will be obtained from the
statistical analysis.

Once a large set of simulations has been generated, it is possible to construct the
95%PI (probabilistic intervals):

∀ i ∈ {0, 1, . . . , Db}:

95%PI of Yb(xi) =
(
P2.5([Y 0

b , Y 1
b , . . . , Y n

b ]), P97.5([Y 0
b , Y 1

b , . . . , Y n
b ])
)

,

(6.63)
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95%PI of Mb(xi) =
(
P2.5([M0

b , M1
b , . . . , Mn

b ]), P97.5([M0
b , M1

b , . . . , Mn
b ])
)

,

(6.64)

95%PI of Tb(xi) =
(
P2.5([T 0

b , T 1
b , . . . , T n

b ]), P97.5([T 0
b , T 1

b , . . . , T n
b ])
)

,

(6.65)

where n ∈ {0, 1, . . . , N} and P represents the percentile function.

6.5 Numerical example

This section is addressed to apply the theoretical findings established in the
previous sections by means of a full illustrative example.

Let us consider a 10m long overhanging beam (cantilever) in form of a balcony or
lookout made up of an IPE 450 steel profile whose moment of inertia, I, is 33740cm4

±2%, and whose Young’s modulus, E, is 210Mpa [4]. Due to the heterogeneous
properties of the steel, we will assume Young’s modulus of the profile has some
variability according to a Gaussian distribution with a mean of 210Mpa and a
standard deviation of 5%. Just for illustrative purposes, let us assume the maximum
capacity allowed in the lookout is 20 people. We will assume that each person
weighs, on average, 700N (71.36kg) with a standard deviation of 5%. The above
description corresponds with the following deterministic data of our modeling
problem: l = 10, and λ = 20. While for the random parameters, and according to
the foregoing description, we will assume that the Young’s modulus of elasticity,
E, has a truncated Gaussian distribution, E ∼ NT (210 · 109; 0.05 · 210 · 109)N/m2,
where T = [209.9993 ·109, 210.0006 ·109]. The moment of inertia, I, has a Gaussian
distribution, I ∼ N(33740 · 10−8; 0.02 · 33740 · 10−8)m4. And, finally, let us assume
that the intensity of the concentrated loads Pi follows a Gaussian distribution,
Pi ∼ N(700; 35)N. We consider that E, I and Pi are independent random variables.

In Table 6.1, we show a comparison of the mean and the variance of the static
deflection, Y (x), given by expression (6.28) and (6.37), respectively, and the mean
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and variance obtained by Monte Carlo simulation following the procedure described
in Section 6.4. We can observe that the values are in full agreement.

x E[Y (x)] (Eq. (6.28)) E[Y (x)] (simulation) σ2
Y (x) (Eq. (6.37)) σ2

Y (x) (simulation)

0 0 0 0 0

1 0.000463 0.000463 1.486249 · 10−8 1.563205 · 10−8

2 0.001730 0.001731 2.140720 · 10−7 2.248590 · 10−7

3 0.003633 0.003634 9.721975 · 10−7 1.019968 · 10−6

4 0.006023 0.006025 2.746732 · 10−6 2.878598 · 10−6

5 0.008772 0.008773 5.974110 · 10−6 6.254897 · 10−6

6 0.011770 0.011770 1.100046 · 10−5 1.150769 · 10−5

7 0.014928 0.014928 1.804558 · 10−5 1.886364 · 10−5

8 0.018177 0.018175 2.719839 · 10−5 2.841349 · 10−5

9 0.021467 0.021464 3.844254 · 10−5 4.013907 · 10−5

10 0.024769 0.024730 5.171033 · 10−5 5.382120 · 10−5

Table 6.1: Comparison of the mean, E[Y (x)], and the variance, σ2
Y (x), of the static deflection

of the cantilever beam at different spatial points x ∈ {0, 1, 2, . . . , 10} using the theoretical
approach (Eq. (6.28) and Eq. (6.37) for computing E[Y (x)] and σ2

Y (x), respectively), and
100000 simulations via Monte Carlo.

Once we have obtained the mean, E[Y (x)], and the variance, σ2
Y (x), we use the

PME to compute the 1-PDF of the static deflection, fY (x)(y). As we have seen in
Section 2.6, for each x, we first solve the system (2.13) for λi = λi(x), i = 0, 1, 2.
Notice that, in our present framework, the x variable in Section 2.6 (the variable
of the PDF defined by the PME method), here is denoted by y. For example, for
the free-end, x = 10, where the mean and variance of the deflection are maxima,
the 1-PDF is given by

fY (10)(y) = 1D(Y (10))e
−1+0.893356−477.134605y+9633.765685y2

, (6.66)

where we have taken as domain the interval D(Y (10)) = [0, 0.096694] is con-
structed using the Chebyshev-Bienaymé’s inequality [19] with 10 standard devi-
ations around the mean (and truncating the left-end of the interval to 0 value
in order to keep consistent with the physical meaning of the deflection) so that∫

D(Y (10)) fY (10)(y)dy ≈ 1. To better compare the results obtained using the PME
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against the ones calculated by Monte Carlo, in Fig. 6.2, we show the corresponding
using Monte Carlo with simulations 1000, 10000, and 100000 simulations at the
spatial point, x = 10. Although we can observe a good agreement between them,
it is worth to point out that this little discrepancy can be explained because when
applying the PME we retain the information provided by the two first moments,
then being Gaussian the approximation while the response could be non-Gaussian.

0.01 0.02 0.03 0.04 0.05
y

10

20

30

40

50

fY (10)(y)

PME

MCS 1000

MCS 10000

MCS 100000

Figure 6.2: 1-PDF of the static deflection of the cantilever beam, fY (x)(y), at the spatial
point x = 10 obtained via PME and Monte Carlo using 1000, 10000 and 100000 simulations.

Now, we study the bending moment, M(x). In Table 6.2, we compare the mean
and the variance of M(x), given by expression (6.41) and (6.46), respectively, and
the ones computed by Monte Carlo using 100000 simulations. We can observe,
again, that the values show good agreement.

The 1-PDF of the bending moment, fM(x)(m), can also be computed by the PME.
Its approximation at the spatial point x = 0, where its mean (in absolute value)
and variance are maxima, is given by

fM(0)(m) = 1D(M(0))e
−1−17.197008−0.000213m−1.524656m2

, (6.67)

where, similarly as it was done for the deflection, the domain of the bending moment
at x = 0 is given by D(M(0)) = [−250931.572337, 0]. It has been calculated using
the Chebyshev-Bienaymé’s inequality with 10 standard deviations and taking into
account that the bending moment is non-positive.
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x E[M(x)] (Exp. (6.41)) E[M(x)] (simulation) σ2
M (x) (Eq. (6.46)) σ2

M (x) (simulation)

0 -69993.699374 -69878.898675 3.274244 · 108 3.291509 · 108

1 -56694.896493 -56586.404173 2.386924 · 108 2.399465 · 108

2 -44795.967599 -44696.961390 1.676413 · 108 1.685314 · 108

3 -34296.912693 -34206.526813 1.123065 · 108 1.128808 · 108

4 -25197.731774 -25118.063711 7.072368 · 107 7.103806 · 107

5 -17498.424843 -17432.235020 4.092805 · 107 4.104798 · 107

6 -11198.991899 -11145.801799 2.095516 · 107 2.096393 · 107

7 -6299.432943 -6258.001079 8.840460 · 106 8.808880 · 106

8 -2799.747974 -2768.248438 2.619395 · 106 2.586399 · 106

9 -699.936993 -681.106878 3.274244 · 105 3.145759 · 105

10 0 0 0 0

Table 6.2: Comparison of the mean,E[M(x)], and the variance, σ2
M (x), of the bending moment

of the cantilever beam at different spatial points x ∈ {0, 1, 2, . . . , 10} using the theoretical
approach (Eq. (6.41) and Eq. (6.46) for computing E[M(x)] and σ2

M (x), respectively), and
100000 simulations via Monte Carlo.

In Fig. 6.3, we show a graphical representation of the 1-PDF given by (6.67) and
the ones obtained by Monte Carlo using 1000, 10000, and 100000 simulations. We
can observe the results are fully consistent.

In Table 6.3, we compare the values obtained of the mean, E[T (x)], and the
variance, σ2

T (x), of the shear force, T (x), given by expression (6.42) and (6.49),
respectively, and the ones computed by Monte Carlo using 100000 simulations.
Note that the results show good agreement.

As before, to complete the probabilistic analysis, we approximate the 1-PDF of
the shear force, fT (x)(t), using the PME. It results

fT (0)(t) = 1D(T (0))e
−1−17.943337+0.001424t−5.088214·10−8t2

, (6.68)

where D(T (0)) = [0, 45347.054670].

Finally, in Figure 6.4 we compare the three approximations of 1-PDF obtained by
Monte Carlo with 1000, 10000 and 100000 simulations against the one obtained
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Figure 6.3: 1-PDF of the bending moment of the cantilever beam, fM(x)(y), obtained via
PME and Monte Carlo using 1000, 10000, and 100000 simulations at the spatial point x = 0.

by Eq. (6.68) at the spatial point x = 0. The results show a full agreement as the
number of simulation increase.

Now, we are going to compare the theoretical and Monte Carlo approximations of
the expectation of all the physical quantities studied for the cantilever, namely, the
deflection, the bending moment and the shear force, using as goodness-of-fit the
symmetric mean absolute percentage error (SMAPE). Let us recall that for a set
of n theoretical values of the previous quantities, say Zi and their corresponding
approximations obtained by Monte Carlo, ẑi, the SMAPE is given by

SMAPE = 100%
n

n∑
i=1

|Zi − ẑi|
(|Zi| + |ẑi|) /2 . (6.69)

In Table 6.4, we show the SMAPE corresponding to the expectation of the
deflection, Y (x), the bending moment, M(x), and the shear force, T (x), at the
spatial points x = 0, 1, . . . , 10, considering the approximations obtained via Monte
Carlo simulations (MCS) with a different number of samples (1000, 10000 and
100000). It must be noticed that we apply the SMAPE with n = 10 since we must
exclude the term x = 10, in the case of the deflection, and x = 0, in the case
of the bending moment and the shear force, since their values are zero. We can
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x E[T (x)] (Eq. (6.40)) E[T (x)] (simulation) σ2
T (x) (Eq. (6.49)) σ2

T (x) (simulation)

0 13998.739874 13989.984660 9.822734 · 106 9.868522 · 106

1 12598.865887 12584.463060 8.840460 · 106 8.871837 · 106

2 11198.991899 11184.844909 7.858187 · 106 7.891253 · 106

3 9799.117912 9787.433546 6.875913 · 106 6.893854 · 106

4 8399.243924 8387.069932 5.893640 · 106 5.922317 · 106

5 6999.369937 6985.927374 4.911367 · 106 4.941940 · 106

6 5599.495949 5588.894615 3.929093 · 106 3.946902 · 106

7 4199.621962 4191.937526 2.946820 · 106 2.953221 · 106

8 2799.747974 2792.303398 1.964546 · 106 1.971305 · 106

9 1399.873987 1391.025322 9.822734 · 105 9.818576 · 105

10 0 0 0 0

Table 6.3: Comparison of the mean, E[T (x)], and the variance, σ2
T (x), of the shear force

of the cantilever beam, at different spatial points x ∈ {0, 1, 2, . . . , 10} using the theoretical
approach (Eq. (6.40) for E[T (x)] and Eq. (6.49) for σ2

T (x), respectively,), 100000 simulations
via Monte Carlo.

observe that the SMAPE is significantly reduced when using 100000 simulations,
as expected.

SMAPE (%) 1000 MCS 10000 MCS MCS 100000

Y (x) 0.288816 0.245558 0.032886

M(x) 0.824381 1.004208 0.653084

T (x) 0.726415 0.442595 0.203296

Table 6.4: Computation of the SMAPE calculated by (6.69) of the theoretical expectation
and the mean calculated via Monte Carlo simulations (MCS) with different samples (1000,
10000 and 100000) the deflection, bending moment, and shear force of the cantilever.

We finish this section by comparing the mean and probabilistic intervals of the
deflection, bending moment, and shear force, which we have obtained theoretically
and by simulations. First, we take advantage of the 1-PDF computed through
PME to construct 95% PI. To do this for the deflection Y (x) (similarly is done for
the bending moment, M(x), and the shear force, T (x)), we need to obtain k(x)
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Figure 6.4: 1-PDF of the shear force of the cantilever beam, fT (x)(t), at the spatial point
x = 0 obtained via PME and Monte Carlo using 1000, 10000 and 100000 simulations.

satisfying ∫ E[Y (x)]+k(x)σY (x)

E[Y (x)]−k(x)σY (x)

fY (x)(y) = 0.95, (6.70)

where fY (x)(y) is the 1-PDF of the deflection. Second, from the Monte Carlo
simulations, we obtain the probabilistic intervals using the algorithm based on the
percentile function explained in Step 5 in Section 6.4.

In Fig. 6.5, we show the mean and probabilistic intervals of the deflection, Y (x).
We can observe that the results provided using both approaches are very close,
showing better agreement in the case of the approximation of the mean E[Y (x)], as
expected. Although the value of k(x) := kY (x) obtained from (6.70) may change
with the spatial position x, in this case, we have obtained kY (x) ≈ 1.96 for all
x = 1, . . . , 10.

Analogously, in Fig. 6.6 and 6.7, we show the corresponding plots for the bending
moment, M(x), and the shear force, T (x). Here, it is worth pointing out that the
value of k changes as x does. In the case of the bending moment, k(x) := kM (x) ≈
1.96 for x ∈ {0, . . . , 6}, kM (7) ≈ 1.9, kM (8) ≈ 1.75, and kM (9) ≈ 1.32. While for
the share force , kT (x) ≈ 1.96 for x ∈ {0, . . . , 6}, kT (7) ≈ 1.95, kT (8) ≈ 1.87, and
kT (9) ≈ 1.51.
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To better understand the behavior indicated for k = k(x) in each of the three
cases, let us observe that we have approximated the corresponding 1-PDFs by
applying the PME imposing three constraints (first, the one corresponding to
the normalization condition and the others two corresponding to the two first
statistical moments). In this manner, we determine a (truncated) Gaussian-like
approximation. As can be seen in Fig. 6.8, the approximations for fY (x)(y) are
roughly symmetric for every spatial position x (in Fig. 6.8a we show the results
including all values of x, and in Fig. 6.8b we zoom-up a few values so that the
symmetry can be better graphically assessed). So, the classical Gaussian 2σ rule-
of-thumb [19], corresponding to k ≈ 1.96, is fulfilled. For the case of fM(x)(m), it
can be seen that symmetry is roughly preserved for x ∈ {0, . . . , 6} and deteriorates
thereafter (see Fig. 6.8c-6.8d). Consequently, the approximation of fM(x)(m) is no
longer Gaussian, and the value of k departs from 1.96. An analogous explanation
can be given for the case of fT (x)(t) (see Fig. 6.8e-6.8f). In this latter case, it is
worth pointing out that we can also observe that in the case of the calculation
of the percentiles of fT (x)(t), there are steps in the functions. This is because
the shear force is defined by a linear function of G0(x), see Eq. (6.62), which
corresponds to the step function. The differences in the smoothness of the steps are
due to the influence of the random intense load, Pi, in extreme cases. Simulating
this parameter as a deterministic one, it has been observed that both functions
reduce the smoothness of their steps. This verification has also been done with
the parameters corresponding to the structural characteristics, E and I, observing
that their variability has no impact on the smoothness of the steps.

6.6 Conclusions

In this chapter, we have performed a full probabilistic analysis of a cantilever beam
using the Euler-Bernoulli’s theory. For the sake of generality, in our study, we have
assumed that all the model parameters (the moment of inertia, I, and Young’s
modulus, E) are independent random variables with arbitrary density functions,
and the load acting on the beam is described by means of the delta-correlated
process. The adopted approach has made it possible to compute the mean and
the variance of the static deflection, the bending moment, and the shear force,
with the purpose of later obtaining the first probability density function, taking
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Figure 6.5: Comparison of the mean and probabilistic intervals of the static deflection, Y (x),
using the PME and Monte Carlo simulations (MC).
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Figure 6.6: Comparison of the mean and probabilistic intervals of the bending moment,
M(x), using the PME and Monte Carlo simulations (MC).

advantage of the Principle of Maximum Entropy. In the numerical example, we
have compared these results with simulations obtained using a Monte Carlo-based
algorithm, with good results.
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Figure 6.7: Comparison of the mean and probabilistic intervals of the shear force, T (x),
using the PME and Monte Carlo simulations (MC).

Publications associated with this chapter

The results of this chapter have been presented at the 6th International Sym-
posium on Uncertainty Quantification and Stochastic Modeling (Uncertainties
2023) in Fortaleza (Brazil) from July 30 to August 4, 2023 with the talk titled
Uncertainty-Based Analysis of a Cantilever Beam with Random Parameters Subject
to Correlated Noise. Additionally, a complete version of the chapter’s findings has
been published in the paper [22].

141



Chapter 6. Extending the probabilistic analysis of the Euler-Bernoulli model for a stochastic
static cantilever beam

0.02 0.04 0.06 0.08
y

200

400

600

800

fY (x )(y)

(a) 1-PDF of the deflection at the spatial points
x ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}.

0.02 0.04 0.06 0.08
y

50

100

150

200

250

fY (x )(y)

(b) 1-PDF of the deflection at the spatial points
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Figure 6.8: 1-PDF of the different studied characteristics of the cantilever beam.
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Chapter 7
Probabilistic analysis of a foundational class of

generalized second-order linear differential
equations in Classic Mechanics

A number of relevant models in Classical Mechanics are formulated by means of
the differential equation y′′(t) + Atβy(t) = 0. In this chapter, we improve the
results recently established for a randomized reformulation of this model that

includes a generalized derivative. The stochastic analysis permits solving that
generalized model by computing reliable approximations of the probability density

function of the solution, which is a stochastic process. The approximations are
built by the Random Variable Transformation method. We prove that these

approximations converge to the exact density under mild conditions on the data.
Finally, several numerical examples illustrate our theoretical findings.
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7.1 Introduction

The homogeneous linear second-order differential equation

y′′(t) + f(t)y(t) = 0, (7.1)

plays a key role in a number of problems mainly appearing in Physics and Engi-
neering. It describes simple harmonic motion or free undamped motion of a spring
of mass m and constant k > 0. In this case, one obtains the simplest formulation of
(7.1), where f(t) is the spring constant, f(t) = ϖ2 := k

m (ϖ is called the circular
frequency of the spring) [81]. On the other hand, there are real-world situations
where it is more realistic to assume that the spring constant changes over time.
For example, if the spring/mass system is in motion for a long period, the spring
will weaken due to wear and tear; if the temperature of the environment is rapidly
decreasing, this will affect the spring material. In these two scenarios, that fall
within the so called aging spring theory, possible choices for f(t) are k

me−at, α > 0
and k

m t, respectively [110, p. 197]. This latter choice, in a more general form,
f(t) = At, leads to the so-called Airy’s differential equation,

y′′(t) + Aty(t) = 0, (7.2)

that is encountered in the study of radiowave propagation (diffraction of radio
waves around the surface of the Earth) and in physical optics (the diffraction of
the light) [1, p. 89]. The differential equation (7.1) also appears in the theory of
elasticity to model the problem of determining when a uniform vertical column
will buckle under its own weight. In this context, the independent variable t is
better denoted by x representing the deflection w.r.t. the stable (vertical) position
and f(x) = gρ

EI x, where g denotes the gravitational acceleration, E is the Young’s
modulus of the material of the column, I is its cross-sectional moment of inertia
and ρ is the linear density of the column [6]. Many other applications of model
(7.2) can be found in [102].

On the one hand, over the last decades classical ordinary differential equations, as
(7.1), have been reformulated in terms of generalized or fractional derivatives aimed
at better modelling complex phenomena such as acoustic attenuations in Acoustics
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[49], anomalous diffusion processes in complex media in Fluids [33] or memory
effects in materials (viscoelasticity, aging, etc.) in Structural Mechanics [80]. On the
other hand, when ordinary or fractional differential equations are applied to real-
world problems, one requires setting their parameters (initial/boundary conditions,
forcing term and/or coefficients) using the available information, which is usually
collected from measurements and metadata that often contain epistemic and/or
aleatoric uncertainties coming from measurement errors and/or lack of knowledge,
respectively. One can delineate two main different forms of this type of equation
depending on the way that uncertainty is considered in the equation, namely,
Stochastic Fractional Differential Equations (SFDEs) and Random Fractional
Differential Equations (RFDEs). In the former case, uncertainties are driven by
one (or more) prefixed types of stochastic processes such as the fractional Brownian
motion [67, Ch. 6] and/or the fractional Lèvy process [82]. In the framework of
RFDEs, uncertainties are directly assigned to every parameter of the equation
via specific probability distributions that must be previously chosen so that they
properly represent the physical meaning of the corresponding model parameter
and the solution captures the uncertainties in the model response [87].

In this chapter, we are concerned with studying a generalization of (7.2), that
takes into account the previous considerations, namely, a fractional derivative and
a full randomization of model parameters. Additionally, a power-law generalized
coefficient is also included. Specifically, in this contribution, we deal with the
following Random Fractional Initial Value Problem (RFIVP){

(CDα
0 Y )(t) − B tβY (t) = 0, t > 0, n = −⌊−α⌋, n − 1 ≤ α ≤ n,

Y (j)(0) = Aj , j = 0, . . . , n − 1,
(7.3)

where ⌊·⌋ stands for the floor function, (CDα
0 Y )(t) denotes the Caputo derivative

of order α > 0, interpreted in the random mean square sense [14], of the stochastic
process Y (t). The initial conditions A0, A1, . . . , An−1 and the coefficient B are
assumed random variables belonging to the space L2(Ω) (see Section 2.1).

To study the RFIVP (7.3), from a probabilistic standpoint, entails computing its
solution, Y (t), which is a stochastic process, but also determining its main statistical
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information. It includes the computation of the first moments of Y (t), such as the
mean and the variance functions, and its fidis, particularly the 1-PDF [89].

Under the following hypotheses:

H1: A0, A1, . . . , An−1 and B are (mutually) independent random variables,

H2: There exist positive constants η, H and p, such that

||Bm||2 ≤ ηHm−1((m − 1)!)p, ∀m ≥ m0 ≥ 1, integers,

in [12], the authors have recently studied the RFIVP (7.3). Specifically, in that
article, one constructs the solution stochastic process by means of the following
finite sum of n random generalized power series

Y (t) =
n−1∑
j=0

Yj(t), (7.4)

where

Yj(t) =
∞∑

m=0
Xm,jtγm+j , Xm,j = BmAjgm,j ,

gm,j =
m∏

k=1

Γ(kγ + j + 1 − α)
Γ(kγ + j + 1) , γ = α + β.

(7.5)

Besides constructing the foregoing solution and studying its convergence, in the
mean square sense, in [12], one also constructs approximations for the mean and
for the variance functions of the solution by truncating Yj(t) at certain order, say
M . Then, taking advantage of this punctual statistical information, the PME [69]
was applied to construct reliable approximations of the 1-PDF of the solution.
The accuracy in the approximations of the 1-PDF, via this approach, heavily
depends on controlling two main sources of errors, first, the ones associated with
the approximations of the mean and the variance, and secondly, the associated
with the application of the PME with only these two (approximate) statistical
moments. The aforementioned errors involved in the calculation of the mean and
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the variance could, theoretically, be reduced at the expense of increasing the order of
truncation, M , of the random generalized power series solution (7.4)–(7.5) and/or
by constructing approximations for higher statistical moments. However, both
strategies might be unaffordable in many cases. Motivated by these drawbacks,
in this chapter, we propose a direct method to approximate the 1-PDF of the
solution stochastic process of the RFIVP (7.3), that avoids approximating the first
statistical moments of the solution and the application of the PME.

Our subsequent study will be based on the representation of the solution given
in (7.4)–(7.5), hence the foregoing hypotheses H1 and H2 must be fulfilled.
Specifically, hereinafter, we will assume the following assumptions:

A1: A0, A1, . . . , An−1 and B are (mutually) independent random variables whose
respective domains will be denoted by D(Aj), j = 0, 1, . . . , n − 1 and D(B).

A2: B is a bounded random variable that takes values away from the origin, i.e.,
there exist positive lower and upper bounds, bl and bu, such that

0 < bl ≤ |B(ω)| ≤ bu < ∞, ∀ω ∈ Ω.

Now, we give two key remarks. The first one justifies that assumption A2 guarantees
that hypothesis H2 fulfills, while in the second one shows that the random variables
Aj , j = 0, 1, . . . , n − 1, defining the initial conditions, have finite expectation. This
latter fact will be used later.

Remark 7.1 In [16, Subsect. 3.3], one proves that the boundedness of random
variable B is equivalent to the following condition about the exponential growth of
its absolute moments

∃ ρ, H > 0 : ||Bm||2 ≤ ρHm, ∀m ≥ m0 ≥ 1, integers,

Notice that, this condition can be obtained from the inequality stated in assump-
tion A2 just taking p = 0 and relabeling the constant η as ρ = ηH. Furthermore,
as it is proved in [12], the random generalized power series solution (7.4)–(7.5)
is mean square convergent on the whole real line. Almost surely convergence on
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the whole real line is also guaranteed since, by assumption A2, B is a bounded
random variable.

Remark 7.2 As A0, A1, . . . , An−1 ∈ L2(Ω), then E[A2
j ] < ∞, and by the Schwarz’s

inequality, E[|Aj |]) < (E[A2
j ])1/2 < ∞. This fact will used later.

The key tool to conduct our subsequent analysis is the RVT method. As we have
seen in Section 2.5, this result permits determining the PDF, say fY(y), of a
random vector, Y, that results from mapping another random vector, Z, whose
PDF, fZ(z), is known. Notice that, for convenience, we have changed the notation
in this chapter with respect to the theorem.

7.2 Computing the 1-PDF of the solution stochastic process by
applying the RVT method

To compute the 1-PDF of the solution of the RFIVP (7.4), by means of the
application of Theorem 2.1, we will first consider the truncation of (7.4),

Y M (t) =
n−1∑
j=0

Y M
j (t), (7.6)

where

Y M
j (t) =

M∑
m=0

Xm,jtγm+j = Aj

M∑
m=0

Bmgm,jtγm+j . (7.7)

For fixed t, expression (7.6)–(7.7) can be interpreted as a continuous mapping of
the random variables, A0, A1, . . . An−1 and B, whose joint PDF can be expressed
as fA0,A1,...,An−1,B = fA0fA1 · · · fAn−1fB, by assumption A1. Then, in order to
apply Theorem 2.1 with k = n + 1, we identify Z = (Z1, Z2, . . . , Zn, Zn+1) =
(A0, A1, . . . , An−1, B), and define Y via the following transformation r : Rn+1 −→
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Rn+1 of Z whose components are

y1 = r1(z1, z2, . . . , zn, zn+1) = z1

M∑
m=0

zm
n+1gm,0tγm

+
n−1∑
j=1

M∑
m=0

zj+1zm
n+1gm,jtγm+j ,

y2 = r2(z1, z2, . . . , zn, zn+1) = z2,

...
...

...
...

...

yn = rn(z1, z2, . . . , zn, zn+1) = zn,

yn+1 = rn+1(z1, z2, . . . , zn, zn+1) = zn+1.

(7.8)

The inverse mapping of r, s = r−1, is given by

z1 = s1(y1, y2, y3, . . . , yn, yn+1) =
y1 −

n−1∑
j=1

M∑
m=0

yj+1ym
n+1gm,jtγm+j

M∑
m=0

ym
n+1gm,0tγm

,

z2 = s2(y1, y2, y3, . . . , yn, yn+1) = y2,

...
...

...
...

...

zn = sn(y1, y2, y3, . . . , yn, yn+1) = yn,

zn+1 = sn+1(y1, y2, y3, . . . , yn, yn+1) = yn+1,

(7.9)
being its Jacobian

J =
∣∣∣∣∂s1

∂y1
(y1, y2, y3, . . . yn, yn+1)

∣∣∣∣ = 1∣∣∣∑M
m=0 ym

n+1gm,0tγm
∣∣∣ ̸= 0.

The expression in the denominator of the Jacobian depends on the random variable
B, which is absolutely continuous, so the denominator is distinct from zero w.p. 1.
Hence, it is well-defined.
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Applying Theorem 2.1, one gets

fY1,Y2,...,Yn,Yn+1(y1, y2, . . . , yn, yn+1)

= fZ1

(
y1 −

∑n−1
j=1

∑M
m=0 yj+1ym

n+1gm,jtγm+j∑M
m=0 ym

n+1gm,0tγm

)
fZ2(y2) · · · fZn(yn)fZn+1(yn+1)

· 1∣∣∣∑M
m=0 ym

n+1gm,0tγm
∣∣∣ .

(7.10)

For fixed t, Y1 = Y M (t), and marginalizing w.r.t. Y2 = A1, . . . , Yn = An−1, Yn+1 =
B, the 1-PDF of the truncated solution (7.6)–(7.7) is given by

fY M (t)(y) =
∫

D(A1)
· · ·
∫

D(An−1)

∫
D(B)

fA0

(
y −

∑n−1
j=1

∑M
m=0 ajbmgm,jtγm+j∑M

m=0 bmgm,0tγm

)

· fA1(a1) · · · fAn−1(an−1)fB(b) 1∣∣∣∑M
m=0 bmgm,0tγm

∣∣∣ da1 · · · dan−1db.

(7.11)

So far, the 1-PDF, fY M (t)(y), of the truncated solution, Y M (t), has been obtained
via a semi-explicit expression (in terms of a multidimensional integral). Now, we
will impose mild conditions on the data so that fY M (t)(y) converges to fY (t)(y),
where

fY (t)(y) =
∫

D(A1)
· · ·
∫

D(An−1)

∫
D(B)

fA0

(
y −

∑n−1
j=1

∑∞
m=0 ajbmgm,jtγm+j∑∞

m=0 bmgm,0tγm

)

· fA1(a1) · · · fAn−1(an−1)fB(b) 1
|
∑∞

m=0 bmgm,0tγm|
da1 · · · dan−1db.

(7.12)

For the sake of clarity in the presentation of the forthcoming development, we
introduce the following notation

sM
j (t) =

M∑
m=0

bmgm,jtγm+j , sj(t) =
∞∑

m=0
bmgm,jtγm+j , j = 0, 1, . . . n − 1.

(7.13)
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Then, expressions (7.11) and (7.12), can be written, respectively, as

fY M (t)(y) =
∫

D(A1)
· · ·
∫

D(An−1)

∫
D(B)

fA0

(
y −

∑n−1
j=1 ajsM

j (t)
sM

0 (t)

)

· fA1(a1) · · · fAn−1(an−1)fB(b) 1∣∣sM
0 (t)

∣∣ da1 · · · dan−1db,

(7.14)

and

fY (t)(y) =
∫

D(A1)
· · ·
∫

D(An−1)

∫
D(B)

fA0

(
y −

∑n−1
j=1 ajsj(t)
s0(t)

)

· fA1(a1) · · · fAn−1(an−1)fB(b) 1
|s0(t)| da1 · · · dan−1db.

(7.15)

Now, let us derive a lower bound for S0(t) and SM
0 (t), and an upper bound for

Sj(t) and SM
j (t), j = 1, . . . n − 1, in a certain neighborhood, that will be required

later when studying the convergence fY M (t)(y) −→ fY (t)(y) as M → ∞. Let us
first observe that, from the initial condition and the form of the solution, one gets

A0 = Y (0) = Y0(0) =
∞∑

m=0
Xm,0tγm

∣∣∣
t=0

=
∞∑

m=0
BmA0gm,0tγm

∣∣∣
t=0

= A0

∞∑
m=0

Bmgm,0tγm
∣∣∣
t=0

= A0S0(0).
(7.16)

Observe that in the above expression, we have used capital letters to denote the
series S0(t) evaluated at t = 0 because, in this setting, it represents a random power
series. Later, when this series as well as Sj(t), j = 1, . . . , n − 1 are considered via
its samples or trajectories, for consistency with the notation, hereinafter they will
be denoted using lower-case letters, i.e. sj(t), j = 0, 1, . . . , n − 1. Since the random
variable A0 is different from zero w.p. 1 (because it is absolutely continuous),
then by the last expression, one deduces S0(0) = 1 w.p. 1. From this fact and
taking into account that S0(t) is a random power series evaluated at t := tγ , so
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continuous w.p. 1, it is guaranteed that

∃ δ0 > 0 : 0 < ms,0 ≤ min{|sM
0 (t)|, |s0(t)|}, ∀t : |t| ≤ δ0, ∀M ≥ 0 integer.

(7.17)
On the other hand, by Remark 7.1 and the definition of SM

j (t), j = 1, . . . , n − 1,
which are random power series evaluated at t := tγm+j and convergent on the
whole real line, it is known that each SM

j (t) is almost surely uniformly convergent
in every compact set of R. This guarantees that

∃ Ms,j > 0 : max{|sM
j (t)|, |sj(t)|} ≤ Ms,j , ∀t : |t| ≤ T, T > 0, ∀M > 0,

integer j = 1, . . . , n − 1.

(7.18)

Finally, as SM
j (t) converges uniformly to Sj(t), for each j = 0, 1, . . . , n − 1 and

given ϵj > 0, then

∃ M0 > 0 integer : |sM
j (t) − sj(t)| < ϵj , ∀M ≥ M0 integer and

∀t : |t| ≤ T, T > 0.
(7.19)

Hereinafter, and according to (7.17), we will work in a neighborhood of t = 0
(possibly small), where the RFIVP (7.3) is formulated, and where the bounds
(7.17)–(7.19) are guaranteed. We will prove the convergence fY M (t)(y) −→ fY (t)(y)
as M → ∞ for each t in that neighborhood. To this end, besides assumptions A1
and A2, we will suppose that

A3: The PDF of the first random initial condition A0, fA0 , is Lipschitz in R, i.e.
exists L0 > 0 such that

|fA0(a2) − fA0(a1)| ≤ L0|a2 − a1|, ∀a2, a1 ∈ R.

Let us observe that

| fY (t)(y) − fY M (t)(y)
∣∣ ≤

∫
D(A1)

· · ·
∫

D(An−1)

∫
D(B)

∣∣∣∣∣fA0

(
y −

∑n−1
j=1 ajsj(t)
s0(t)

)
1

|s0(t)|
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− fA0

(
y −

∑n−1
j=1 ajsM

j (t)
sM

0 (t)

)
1∣∣sM

0 (t)
∣∣
∣∣∣∣∣ fA1(a1) · · · fAn−1(an−1)fB(b) da1 · · · dan−1db.

(7.20)

Now, we first add and subtract fA0

(
y−
∑n−1

j=1
ajSM

j (t)
SM

0 (t)

)
1

|S0(t)| inside the absolute
value. We then arrange the terms and we apply the triangular inequality. Finally,
we take into account that any PDF is a non-negative function to remove the
unnecessary absolute values. The last expression then writes

| fY (t)(y) − fY M (t)(y)
∣∣ ≤

∫
D(A1)

· · ·
∫

D(An−1)

∫
D(B)

fA0

(
y −

∑n−1
j=1 ajsM

j (t)
sM

0 (t)

)
︸ ︷︷ ︸

(I)

·
∣∣∣∣∣ 1
|s0(t)| − 1∣∣sM

0 (t)
∣∣
∣∣∣∣∣︸ ︷︷ ︸

(II)

+
∣∣∣∣∣fA0

(
y −

∑n−1
j=1 ajsj(t)
s0(t)

)
− fA0

(
y −

∑n−1
j=1 ajsM

j (t)
sM

0 (t)

)∣∣∣∣∣︸ ︷︷ ︸
(III)

· 1
|s0(t)|︸ ︷︷ ︸

(IV)

 fA1(a1)) · · · fAn−1(an−1)fB(b) da1 · · · dan−1db. (7.21)

We are going to bound the terms (I)–(IV). For the term (I), let us denote by
F0 = fA0(0) (remember that by assumption A3 this value exists), then first
applying A3, secondly the triangular inequality together with bounds (7.17) and
(7.18), one gets

fA0

(
y −

∑n−1
j=1 ajsM

j (t)
sM

0 (t)

)
≤
∣∣∣∣∣fA0

(
y −

∑n−1
j=1 ajsM

j (t)
sM

0 (t)

)
− fA0(0)

∣∣∣∣∣+ F0

≤ L0

∣∣∣∣∣y −
∑n−1

j=1 ajsM
j (t)

sM
0 (t)

∣∣∣∣∣+ F0

≤ L0

ms,0

|y| +
n−1∑
j=1

|aj |Ms,j

+ F0.
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Let us now bound the term (II) by applying (7.17) and (7.19) for j = 0,∣∣∣∣ 1
|s0(t)| − 1

|sM
0 (t)|

∣∣∣∣ =
∣∣|sM

0 (t)| − |s0(t)|
∣∣

|s0(t)||sM
0 (t)|

≤ |sM
0 (t) − s0(t)|

|s0(t)||sM
0 (t)|

≤ ϵ0

m2
s,0

.

The term (IV) can be similarly bounded applying (7.17)

1
|s0(t)| ≤ 1

ms,0
.

Finally, let us bound the term (III). To this end, we first apply assumption A3,
and secondly, the triangular inequality together with bounds (7.17)–(7.19),

| fA0

(
y −

∑n−1
j=1 ajsj(t)
s0(t)

)
− fA0

(
y −

∑n−1
j=1 ajsM

j (t)
sM

0 (t)

)∣∣∣∣∣
≤ L0

∣∣∣∣∣y −
∑n−1

j=1 ajsj(t)
s0(t) −

y −
∑n−1

j=1 ajsM
j (t)

sM
0 (t)

∣∣∣∣∣
= L0

∣∣∣∣∣ysM
0 (t) − sM

0 (t)
∑n−1

j=1 ajsj(t) − ys0(t) + s0(t)
∑n−1

j=1 ajsM
j (t)

s0(t)sM
0 (t)

∣∣∣∣∣
= L0

∣∣∣∣∣y
(
sM

0 (t) − s0(t)
)

+
∑n−1

j=1 aj

(
s0(t)sM

j (t) − sM
0 (t)sj(t)

)
s0(t)sM

0 (t)

∣∣∣∣∣
≤ L0

|y||sM
0 (t) − sM

0 (t)| +
∑n−1

j=1 |aj |
∣∣s0(t)sM

j (t) − sM
0 (t)sj(t)

∣∣
|s0(t)||sM

0 (t)|

= L0
|y||sM

0 (t) − sM
0 (t)| +

∑n−1
j=1 |aj |

∣∣s0(t)sM
j (t) − sj(t)s0(t) + sj(t)s0(t) − sM

0 (t)sj(t)
∣∣

|s0(t)||sM
0 (t)|

≤ L0
|y||sM

0 (t) − sM
0 (t)| +

∑n−1
j=1 |aj |

(
|s0(t)||sM

j (t) − sj(t)| + |sj(t)||s0(t) − sM
0 (t)|

)
|s0(t)||sM

0 (t)|

≤ L0
|y|ϵ0 +

∑n−1
j=1 |aj | (Ms,0ϵj + Ms,jϵ0)

m2
s,0

.

Substituting the previous bounds in (7.21), one gets∣∣fY (t)(y) −fY M (t)(y)
∣∣
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≤
∫

D(A1)
· · ·
∫

D(An−1)

∫
D(B)


 L0

ms,0

|y| +
n−1∑
j=1

|aj |Ms,j

+ F0

 ϵ0

m2
s,0

+
(

L0
|y|ε0 +

∑n−1
j=1 |aj | (Ms,0ϵj + Ms,jϵ0)

m2
s,0

)
1

ms,0

}
· fA1(a1) · · · fAn−1(an−1)fB(b) da1 · · · dan−1db.

If we denote ϵ := max ϵj , and M := max Ms,j , j = 0, 1, . . . , n − 1, one gets

| fY (t)(y) − fY M (t)(y)
∣∣

≤
∫

D(A1)
· · ·
∫

D(An−1)

∫
D(B)

{(
L0

ms,0

(
|y| + M

n−1∑
j=1

|aj |

)
+ F0

)
ϵ

m2
s,0

+L0
|y|ϵ + 2Mϵ

∑n−1
j=1 |aj |

m3
s,0

}
fA1 (a1) · · · fAn−1 (an−1)fB(b) da1 · · · dan−1db

=
∫

D(A1)
· · ·
∫

D(An−1)

∫
D(B)

(
L0|y|ϵ
m3

s,0
+ L0Mϵ

m3
s,0

n−1∑
j=1

|aj | + F0ϵ

m2
s,0

+L0|y|ϵ
m3

s,0
+ 2L0Mϵ

m3
s,0

n−1∑
j=1

|aj |

)
fA1 (a1) · · · fAn−1 (an−1)fB(b) da1 · · · dan−1db

= ϵ

(
2L0|y|
m3

s,0
+ F0

m2
s,0

)∫
D(A1)

· · ·
∫

D(An−1)

∫
D(B)

fA1 (a1) · · · fAn−1 (an−1)fB(b) da1 · · · dan−1db

+ 3L0Mϵ

m3
s,0

n−1∑
j=1

∫
D(A1)

· · ·
∫

D(An−1)

∫
D(B)

|aj |fA1 (a1) · · · fAn−1 (an−1)fB(b) da1 · · · dan−1db

= ϵ

(
2L0|y|
m3

s,0
+ F0

m2
s,0

)(∫
D(A1)

fA1 (a1) da1

)
︸ ︷︷ ︸

=1

· · ·

(∫
D(An−1)

fAn−1 (an−1) dan−1

)
︸ ︷︷ ︸

=1

·
(∫

D(B)
fB(b) db

)
︸ ︷︷ ︸

=1

+3L0Mϵ

m3
s,0

n−1∑
j=1

(∫
D(A1)

fA1 (a1) da1

)
︸ ︷︷ ︸

=1

· · ·

(∫
D(Aj−1)

fAj−1 (aj−1) daj−1

)
︸ ︷︷ ︸

=1

· · ·

(∫
D(Aj )

|aj |fAj (aj) daj

)
︸ ︷︷ ︸

=E[|Aj |]

· · ·

(∫
D(An−1)

fAn−1 (an−1) dan−1

)
︸ ︷︷ ︸

=1

(∫
D(B)

fB(b) db

)
︸ ︷︷ ︸

=1

· fA1 (a1) · · · fAn−1 (an−1)fB(b) da1 · · · dan−1db
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= ϵ

(
2L0|y|
m3

s,0
+ F0

m2
s,0

)
+ ϵ

3L0M
m3

s,0

n−1∑
j=1

E[|Aj |]

= ϵ

(
2L0|y|
m3

s,0
+ F0

m2
s,0

+ 3L0M
m3

s,0

n−1∑
j=1

E[|Aj |]

)
.

Taking into account Remark 7.2, the above sum of the expectations is finite. So,
the following result has been established:

Theorem 7.1 Consider the random fractional initial value problem (7.3), where
its data satisfies the assumptions A1–A3. Then, the probability density function,
fY M (t)(y), defined by (7.11), corresponding to the approximate solution of order M

given in (7.6)–(7.7), converges to the probability density function, fY (t)(y), given
by (7.12) of the exact solution (7.4)–(7.5) as M → ∞ for each (t, y).

7.3 Numerical examples

This section is devoted to illustrating the previous theoretical findings with two
numerical examples, where we graphically show the convergence of the sequence
of PDFs, fY M (t)(y), to fY (t)(y), as M increases. Additionally, as assumptions A1
and A2 guarantee hypotheses H1 and H2 fulfill, then Y M (t), given by (7.6)–(7.7),
is mean square convergent to Y (t), given by (7.4)–(7.5). As a consequence, the
mean and the variance of the solution exist, and then they can be approximated
by

E[Y M (t)] =
∫ ∞

−∞
yfY M (t)(y) dy (7.27)

and

V[Y M (t)] = E[(Y M (t))2] − (E[Y M (t)])2

=
∫ ∞

−∞
y2fY M (t)(y) dy −

(∫ ∞

−∞
yfY M (t)(y) dy

)2
,

(7.28)

respectively, (see [89, Th. 4.2.1] and [89, Th. 4.3.1], respectively).

Example 7.1 The first example aims to show that the results obtained with the
approach presented in this chapter are in full agreement with the ones obtained
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in [12]. To check that the results given in [12, Example 1] agree with the ones in
the present example, let us assume that the values of A0 and A1 and B are close
to that example, so ensuring assumptions A1–A3 fulfill. Firstly, let us consider
β = 1 and α = 1.9. In [12] the random variable B is considered as a negative
beta distribution of parameters 2 and 3. According to Assumption A2 the random
variable B must be bounded and away from 0. To guarantee this assumption
is satisfied while the spirit of [12, Example 1] holds true, we here take B as a
negative Beta distribution of parameters 2 and 3 truncated at the interval [0.05, 1],
i.e. B ∼ −Be[0.05,1](2, 3). The initial conditions A0 and A1 are taken as in [12,
Example 1]. So A0 is a Normal distribution with mean 1 and standard deviation 1,
i.e. A0 ∼ N(1; 1), hence E[A0] = 1 E[A2

0] = 2. It is important to remark that the
PDF of a Gaussian distribution has bounded derivative on the whole real line, so
applying the Mean Value theorem, it is straightforward to check that it is globally
Lipschitz continuous [3]. As a consequence, assumption A3 fulfills. The random
variable A1 is assumed to have a uniform distribution of mean 2 and standard
deviation 1, i.e. A1 ∼ U(2 −

√
3, 2 +

√
3). Additionally, we will assume that A0,

A1 and B are independent, so assumption A1 holds.

In Figure 7.1, we graphically show the approximations, fY M (t), of the 1-PDF
(7.11) at the time instants t ∈ {0.5, 1, 1.5, 2} for different orders of truncation,
M ∈ {1, 5, 10}. In each panel, we have performed a zoom to better illustrate the
convergence as M increases.

In Table 7.1, we collect the approximations of the mean and the variance of the
solution using (7.27) and (7.28), respectively. We point out these figures agree with
the ones obtained in [12, Example 1]. To numerically verify the convergence of the
1-PDFs as M increases, Table 7.2 collects the L1-norm of the difference between
consecutive approximations of the 1-PDF w.r.t. the order of truncation, i.e.

eM (t) := ∥fYM+1(t)(y) − fYM (t)(y)∥1 =
∫

Dt

|fYM+1(t)(y) − fYM (t)(y)| dy. (7.29)

Here, we have taken the same domain of integration, Dt, as the one used for
plotting the PDF for t fixed. As we can observe, the error decreases with M , so
correctly illustrating convergence as expected.
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Figure 7.1: Approximations of fY M (t), given in (7.11), of 1-PDF of the solution stochastic
process at the time instants t ∈ {0.5, 1, 1.5, 2} for different orders of truncation M ∈ {1, 5, 10}.
Example 7.1 with α = 1.9.

We complete this example showing the corresponding approximations when α = 1.2
at the same foregoing time instants and using the same orders of truncation. The
approximations of the 1-PDF of the solution are shown in Figure 7.2, while Table 7.3
collects the figures for the mean and the variance. In Table 7.4, we collect the
L1-norm for the difference for consecutive approximations. We can graphically and
numerically observe convergence as the order of truncation increases, respectively.

Example 7.2 In this second example, we deal with the case that α = 2.5, so
n = −⌊−2.5⌋ = 3, and three initial conditions, A0, A1 and A2 are then required.
We take A0 ∼ N(2; 32), hence A3 is fulfilled. The random variables A1 and A2 are
assumed A1 ∼ Be(1, 1) and A2 ∼ U(2, 4). In order to guarantee assumption A2
holds true, we will assume that B has a Gamma distribution of parameters (2, 2)
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E[Y M (t)] |V[Y M (t)] t = 0.5 t = 1 t = 1.5 t = 2

M = 1 1.9841 | 1.22372 2.84533 | 1.7836 3.37137 | 2.39698 3.26288 | 3.04415
M = 5 1.9842 | 1.22378 2.84807 | 1.7872 3.40555 | 2.42417 3.46492 | 2.99021
M = 10 1.9842 | 1.22378 2.84807 | 1.7872 3.40555 | 2.42417 3.46492 | 2.99021

Table 7.1: Approximations of the mean and variance at time instants t ∈ {0.5, 1, 1.5, 2}
using different orders of truncation M ∈ {1, 5, 10}. These values have been calculated using
(7.27) and (7.28), respectively. Example 7.1 with α = 1.9.

eM (t); α = 1.9 t = 0.5 t = 1 t = 1.5 t = 2

M = 1 0.00003521008 0.00184215438 0.01988455842 0.11839990407
M = 5 2.5804011 · 10−17 1.4576956 · 10−12 1.6507047 · 10−9 4.0953768 · 10−7

M = 10 0. 0. 0. 3.4694469 · 10−17

Table 7.2: Values of the L1-norm defined in (7.29) for different orders of truncation, M ∈
{1, 5, 10}, at the time instants t ∈ {0.5, 1, 1.5, 2}. The order of the fractional derivative is
α = 1.9. Example 7.1.

truncated at the interval [0.05, 15], i.e. A2 ∼ Ga[0.05,15](2, 2). In Figure 7.3, we
show the approximations fY M (t) for the PDF of the solution at the time instants
t ∈ {0.5, 1, 1.5, 2} for different orders of truncation. In each panel of Figure 7.3 is
graphically observed convergence as M increases. From the plots, and particularly
looking at the magnified plots, we can observe that, for t fixed, the approximations
improve when M increases, while for M fixed, the approximations deteriorate as t

increases, as expected.

7.4 Conclusions

In this chapter, we have provided an alternative approach to approximate the first
probability density function of the solution stochastic process of a generalized model
formulated via a differential equation that appears in a number of relevant problems
of Classical Mechanics. The proposed approach avoids double approximations,
and hence their associated errors, based on first approximating the moments of
the solution and secondly applying the Principle of Maximum Entropy. The mild
conditions assumed to conduct our study permit applying our theoretical results
to a wide variety of real-world scenarios where probability distributions must be
inferred from all the model data.
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Figure 7.2: Approximations of fY M (t), given in (7.11), of 1-PDF of the solution stochastic
process at the time instants t ∈ {0.5, 1, 1.5, 2} for different orders of truncation M ∈ {1, 5, 10}.
Example 7.1 with α = 1.2.

Publications associated with this chapter

A complete version of the chapter’s findings has been published in the paper [13].
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E[Y M (t)] |V[Y M (t)] t = 0.5 t = 1 t = 1.5 t = 2

M = 1 1.94084 | 1.16605 2.62433 | 1.53783 2.82825 | 1.99607 2.3131 | 3.18559
M = 5 1.94185 | 1.16743 2.65148 | 1.56298 3.01537 | 2.03536 3.03015 | 2.53089
M = 10 1.94185 | 1.16743 2.65148 | 1.56298 3.01539 | 2.03536 3.03099 | 2.52984

Table 7.3: Approximations of the mean and variance at time instants t ∈ {0.5, 1, 1.5, 2}
using different orders of truncation M ∈ {1, 5, 10}. These values have been calculated using
(7.27) and (7.28), respectively. Example 7.1 with α = 1.2.

eM (t); α = 1.2 t = 0.5 t = 1 t = 1.5 t = 2

M = 1 0.00093398498 0.02108848639 0.13985203151 0.48984846327
M = 5 6.5739242 · 10−12 6.1373116 · 10−8 0.00001457034 0.00091111341
M = 10 0. 3.1576341 · 10−16 5.6654917 · 10−12 8.4097494 · 10−9

Table 7.4: Values of the L1-norm defined in (7.29) for different orders of truncation, M ∈
{1, 5, 10}, at the time instants t ∈ {0.5, 1, 1.5, 2}. The order of the fractional derivative is
α = 1.2. Example 7.1.
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Figure 7.3: Approximations of fY M (t), given in (7.11), of 1-PDF of the solution stochastic
process at the time instants t ∈ {0.5, 1, 1.5, 2} for different orders of truncation M ∈ {1, 5, 10}.
Example 7.2 with α = 2.5.
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Chapter 8
General Conclusions

In the development of this thesis, the importance of the calculation of the so-called
first probability density function of the response of some mechanical engineering
models has been highlighted, since obtaining it has been our main objective in all
the chapters. Indeed, the computation of the first probability density function is
very advantageous since from it one can calculate any one-dimensional moment
of the response, such as the mean (or expectation) and the variance functions
but also higher-order moments, such as kurtosis and skewness, provided they
exist. In this manner, the probabilistic system’s response can be completely
characterised (as it happens in the Gaussian case) or better approximated in many
scenarios. Furthermore, the first probability density function permits computing
key information about the mechanical system such as the probability that the
response (e.g., the position and/or velocity of an oscillator; the deflection of a
beam; etc.) lies within an interval of specific interest.

In Chapters 3 and 4, it has been shown that the combination of the classical
stochastic perturbation method and the Principle of Maximum Entropy allows to
obtain approximations of the stationary probability density function of nonlinear
oscillators in scenarios where the restoring term depends on both position and
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velocity. Although the study is limited to the case where the external force is a
stationary Gaussian process (with zero-mean), which permits taking advantage
of the so-called random mean square calculus, it can be also useful to approxi-
mate the response of nonlinear oscillators when the external input can locally be
approximated via a stationary Gaussian process using the central limit theorem.
Nevertheless, we want to point out that our approach has several limitations that
need to be further explored in forthcoming studies. First, and as it also happens
when utilizing the deterministic perturbation technique, in the stochastic setting we
have been restricted to obtain reliable approximations to the stationary probability
density function of the system’s response only for small values of the perturbative
parameter. This fact stems from the need to truncate the expansion of the solution,
represented via the perturbation method, to first order. In this manner, we have
been able to take advantage of the rich properties that linear Gaussian processes
have. Furthermore, when the Principle of Maximum Entropy has been applied, we
have worked with a few statistical moments due to the aforementioned application
of the stochastic perturbation technique. In future works, it may be interesting to
explore two possible ways of improvement the above-mentioned limitations. On the
one hand, and maintaining the order of perturbation to the linear term, one can
explore the possibility of approximating more statistical moments. Nevertheless, we
guess that, due to its complexity, this must be only carried out by means of purely
computational development. On the other hand, it could be interesting to extend
the study exhibited in Chapters 3 and 4 by working with truncations of second
order when applying the stochastic perturbation method. However, the nonlinear
nature of such an approximation can be very challenging in combination with the
properties of Gaussian stochastic processes. The study could be extended, in the
case of Chapter 3, to a restoring term in the form of an arbitrary polynomial whose
variable is the oscillator position and, in the case of Chapter 4, to a polynomial
of two variables, position and velocity. This would allow us to approximate, in
both cases, the more general scenario in which the restoring term is defined by
an analytical function (in one or two variables) by its Taylor truncation to an
appropriate order.

In Chapters 5 and 6, a static deflection model has been studied using the Euler-
Bernoulli beam theory. In both chapters, an explicit solution of the model has
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been obtained, but we have had to adopt different approaches to determine its
probability density function. On the one hand, in Chapter 5, it has been feasible to
calculate it using the Random Variable Transformation method. This approach has
allowed for a detailed and accurate probabilistic analysis of the structural system
under study. On the other hand, in Chapter 6, it has not been possible to apply the
Random Variable Transformation method because of the load spanned in the beam
is described by a correlated delta process involving a random number of pulses.
In this case, first we have obtained the first statistical moments of the response
and then we have applied the Principle of Maximum Entropy to address the
approximation of the probability density function of the solution. An interesting
point that has not been widely documented in the literature is the possibility
of extending the Random Variable Transformation method when we are dealing
with a process defining via a random number of addends, such as those found in
Chapter 6. In future works, we aim to explore this generalization of the Random
Variable Transformation method, with the objective of effectively applying this
approach in situations where complex stochastic processes are involved, such as
the one presented in this case.

In Chapter 7, we have shown that the Random Variable Transformation method
is a powerful tool to obtain the first probability density function of oscillators
described by differential equations with Caputo fractional derivatives and with
data (initial position and velocity, and the oscillator’s constant) that depend on
random variables with arbitrary distributions. The study we have carried out is a
first step on a simple type of oscillators, but from the analysis, we can conclude that
it can be extended to oscillators with greater complexity both in its formulation
through other differential equations with generalised derivatives and involving
uncertainty via not only random variables but also stochastic processes. In this
sense, we believe that the ideas developed in this chapter have great potential
in the emerging field of fractional differential equations and their applications in
Probabilistic Mechanics Engineering.
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