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a b s t r a c t

The glucagon effect is understudied in type 1 diabetes (T1D) simulators, without a clear consensus
on the pharmacodynamics of glucagon over glucose. Glucagon receptors dynamics could present a
significant contribution to T1D simulators, making them more physiologically accurate without an
excessive increase in complexity. This work analyzes the receptors model contributions to glucose
dynamics using a model proposed in previous work. Then, the model is assessed from two different
perspectives: (1) A clinical dataset of the influence of diet (high or low carbohydrate content) on two
consecutive glucagon doses (100 and 500 µg) is used to identify the model parameters and (2) three
other glucagon action models from the literature are also identified to serve as comparators. Different
identification methods are used to adapt to the distinctive features of the dataset. The root mean
square error (RMSE) and the Akaike Information Criterion (AIC) were the discerning metrics used to
compare the models fittings. Results show that the receptors model offers the lowest RMSE and AIC
in contrast to the comparators. This model will hence be helpful in the development of accurate T1D
simulators.

© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Mathematical models of biological processes facilitate experi-
entation when the real processes are unavailable, or the experi-
ents are too complex or expensive (Balsa-Canto et al., 2010). In

he context of human clinical experiments, mathematical mod-
ls are usually employed to reproduce the effect of a particu-
ar substance or drug on the body. The models approximating
hese effects include the substance’s pharmacokinetics (PK) and
harmacodynamics (PD). PK describes how the substance be-
aves from the administration point (e.g., oral ingestion, subcu-
aneous or intravenous administration) until its appearance in
lasma, whereas PD represents its effect over a certain magnitude
e.g. effect on blood glucose levels) (Rimmington, 2020).

Normal blood glucose regulation relies on the coordinated
ecretion of several pancreatic hormones that keep glucose levels
ithin a tight range. The main actors in glucose homeostasis are

∗ Corresponding author at: Instituto Universitario de Automática e Infor-
ática Industrial, Universitat Politècnica de València, C/Camí de Vera, s/n,
alència, 46022, Spain.
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https://doi.org/10.1016/j.ifacsc.2024.100272
2468-6018/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a
nc-nd/4.0/).
pancreatic hormones insulin and glucagon. Insulin, produced by
β-cells, lowers blood glucose levels, and glucagon, produced in
the α-cells, raises glucose levels (Woods et al., 2006). Glucose
egulation can be affected by metabolic disorders, such as Type
Diabetes (T1D), characterized by the autoimmune destruction
f β-cells. The consequent deficiency in endogenous insulin pro-

duction makes patients dependent on the external administration
of insulin. Additionally, sometimes other drugs are used to aid in
the therapy management, such as glucagon, pramlintide, GLP-1
receptor agonists, or SGTL inhibitors (Avgerinos et al., 2021).

In order to ease insulin administration management, Auto-
matic Insulin Delivery (AID) systems (also known as Artificial
Pancreas, AP) were developed. These systems consist of a glucose
sensor, an insulin pump, and a control algorithm that regulates
insulin administration based on the sensor information (Laksh-
man et al., 2023). Multi-hormonal systems incorporate additional
control actions, such as glucagon (Blauw et al., 2021).

Mathematical models are often used in diabetes-related re-
search to test and validate control algorithms in silico prior to
carrying out clinical trials (Ajmera et al., 2013). Simulators and
models in the literature focused on T1D typically describe glucose
changes as a response to insulin administration (Bergman, 2005).
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Also, they may include the description of meal ingestion (Wil-
inska et al., 2010) or the PK/PD of other substances such as
glucagon (Visentin et al., 2018) or pramlintide (Furió-Novejarque
et al., 2024; Ramkissoon et al., 2014).

The glucagon effect is usually expressed as a contribution to
ndogenous glucose production (EGP) from the liver, being inde-
endent of the insulin effect (Dalla Man et al., 2014; Herrero et al.,
013; Kelly et al., 2019; Resalat et al., 2019). On the other hand,
ther EGP definitions consider a potential interference between
nsulin and glucagon (Emami et al., 2017; Smaoui et al., 2020;
endt et al., 2017). However, the glucagon effect involves diverse
echanisms that are difficult to replicate. The study by El Youssef
t al. (2014) observed that the glucagon effect was blunted in
yperinsulinemia conditions (a phenomenon approximated in the
odels by Wendt et al. (2017) and Emami et al. (2017)). Another
oncern surrounding glucagon is the potential loss of effective-
ess in case of glycogen reserves depletion and whether repeated
lucagon doses would contribute to their depletion (Blauw et al.,
016; Castle et al., 2015). Glycogen store levels are considered in
he model by Benam et al. (2023), but it has only been validated
ith non-diabetic swine data. Additionally, the model presented
y Hinshaw et al. (2015) accounted for the evanescence effect of
lucagon (i.e., a decrease in the hormone effect over time). Some
f these phenomena are still understudied. However, developing
ontrol algorithms for AP systems requires accurate simulators of
he hormone effects.

As a conclusion, most models in the literature describe
lucagon contribution to EGP as a magnitude proportional to the
lucagon concentration (Dalla Man et al., 2014; Herrero et al.,
013; Kelly et al., 2019), which might be insufficient to properly
escribe glucagon behavior accurately. On the other hand, more
omplex models opt for functional approaches, sometimes adding
tates that do not have a physiological translation. For instance,
he EGP models in Emami et al. (2017) and Resalat et al. (2019)
onsider an extra compartment that depends on the glucagon
oncentration’s rate of change.
Aiming at providing a more physiological interpretation of the

GP process, the authors proposed in a previous work an EGP
odel based on glucagon receptors, which are primary mediators
f the glucagon effect on EGP (Furió-Novejarque, Sanz et al.,
023). The model was validated against a dataset of clinical data
here single doses of glucagon (100, 200, and 300 µg) were ad-
inistered in mild-hypoglycemia conditions (Ranjan et al., 2016).
This work presents an extensive structural evaluation of the

GP model using a different clinical data set, extending the work
resented in the IFAC WC (Furió-Novejarque, Sala-Mira et al.,
023). The proposal’s performance is compared against three
ther EGP models from the literature based on their ability to
it the dynamics observed in the data. The dataset used in this
ork is particularly challenging since the trial evaluated the

nfluence the carbohydrate content in the patients’ diet had on
lucagon effectiveness (i.e., the behavior of glucagon in both arms
f the trial is different). This data will allow further testing of the
apabilities of the proposed model.
The rest of the paper is divided as follows: Section 2 describes

he Materials and Methods, presenting the models simulated in
his work, the clinical dataset, the identification procedures, the
K identification methods, and the PD identification methods.
ection 3 presents the results, including details on the parameter
alues, the models’ execution, and the overall errors measured
ith each of them. Section 4 lays out a discussion of the presented

esults, and Section 5 summarizes the conclusions of the work.

2

. Materials and methods

The proposed EGP is evaluated by comparing the root mean
quared error (RMSE) and the value of the Akaike Information
riterion (AIC) obtained with the proposal against three other EGP
efinitions from the literature. The parameters of each EGP model
re identified to fit a set of clinical data.
This section describes the model and the EGP comparators

or the evaluation (Section 2.1). Next, the clinical dataset used
o identify the models is described (Section 2.2), and Section 2.3
resents the identification materials used in the subsequent sec-
ions. Sections 2.4 and 2.5 describe the identification methods
sed for PK and PD, respectively.

.1. EGP proposal and comparators

In order to adequately describe glucose dynamics, a complete
K/PD model is needed. Our analysis focuses on the definition of
GP, which is one of the contributors to the glucose regulation
ystem.
The work in Furió-Novejarque, Sanz et al. (2023) proposed

n EGP model based on glucagon receptor dynamics, following
he work in Masroor et al. (2019). Plasma glucagon becomes
ffective when it binds to its receptors in the liver (Böhm et al.,
997), which triggers a chain of protein reactions that promote
lycogenolysis (breakdown of glycogen to be translated into glu-
ose) and gluconeogenesis (obtaining glucose from other sources
uch as lactate) (Müller et al., 2017). Glucagon receptors un-
ergo a distinctive lifecycle, where the most representative states
re available, bounded, and internalized (Koenig, 2004). The work

by Masroor et al. (2019) simplified this three-state system into
two differential equations, assuming the total number of recep-
tors remains constant:

ṙc(t) =kon · Vh · C(t) · r(t) − koff · rc(t) − kin · rc(t) (1)

ṙ(t) = − kon · Vh · C(t) · r(t) + koff · rc(t) (2)
+ krec(1 − r(t) − rc(t))

The state rc(t) represents the relative amount of active recep-
ors, and r(t) represents the available (unbound) receptors. The
ransfer rates kon, koff , krec , and kin represent the transition of
eceptors from one state to another (available to active, active
o available, internalized to available, and active to internalized.)
he work in Furió-Novejarque, Sanz et al. (2023) modified the
riginal proposal for the effect of glucagon on the hepatic glucose
roduction proposed in Masroor et al. (2019), as well as the final
xpression of EGP, resulting in:

GP(t) =
Vr · rc(t)
Kr + rc(t)

+ EGP0(1 − SI · x3(t)) (3)

This definition considers glucagon dependent on the amount
f active receptors through a Michaelis–Menten expression and
ncludes a term to account for insulin effect (x3(t)) on hepatic
lucose production. Eqs. (1)–(3) were then integrated into a glu-
oregulatory model , which served as a baseline model. The
odel proposed in Wendt et al. (2017), based on the Hovorka
odel (Wilinska et al., 2010), was selected since it included
escriptions of both insulin and glucagon PK. Table 1 includes
he equations of the baseline model in Baseline model row. The
ollowing rows in the table present the equations of the proposed
GP as well as the definitions of the EGP models selected as
omparators.
The criterion used to include EGP definitions as comparators

as based on: (1) models that included glucagon dynamics, and
2) models whose underlying dynamics were based on Hovorka’s
K/PD model. This criterion aimed to select models whose un-
erlying structure was similar to the baseline model used in this
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Table 1
Model equations for the complete system. The upper row describes the baseline model, which includes a PD subsystem and insulin and glucagon PK subsystems.
This structure remains the same in every validation regardless of the EGP definition. The following rows describe the proposed EGP based on glucagon receptors,
and the three EGP definitions selected as comparators, labeled EGP 1 (Wendt et al., 2017), EGP 2 (Emami et al., 2017), and EGP 3 (Jacobs et al., 2015). The function
H in EGP 2 represents the Heaviside function, used to keep the expression positive. A detailed description of the state variables and parameters is included in the
Appendix (Tables A.7 and A.8).
Structure Equations

Baseline PK/PD model

Insulin PK:

Ṡ1(t) = uI (t) −
S1(t)
tmax

, S1(0) = 0

Ṡ2(t) =
S1(t)
tmax

−
S2(t)
tmax

, S2(0) = 0

I(t) =
1

tmax

S2(t)
W · ClF ,I

· 106
+ Ib

Glucagon PK:

Ż1(t) = uC (t) − k1 · Z1(t), Z1(0) = 0

Ż2(t) = k1 · Z1(t) − k2 · Z2(t), Z2(0) = 0

C(t) =
k2 · Z2(t)
W · ClF ,C

+ Cb

PD:

ẋ1(t) = −ka1 [x1(t) − I(t)] , x1(0) = Ib
ẋ2(t) = −ka2 [x2(t) − I(t)] , x2(0) = Ib
ẋ3(t) = −ka3 [x3(t) − I(t)] , x3(0) = Ib
Q̇1(t) = −F c

01(t) − FR(t) − ST · x1(t) · Q1(t) + k12 · Q2(t) + EGP(t)

Q̇2(t) = ST · x1(t) · Q1(t) − [k12 + SD · x2(t)]Q2(t)

Q1(0) = G0, Q2(0) = Q2(t)|Q1(t)=Q1(0),x2(t)=x2(0)

G(t) =
Q1(t)
V

F c
01(t) =

{
F01 if G(t) ≥ 4.5 mmol/L
F01 · G(t)/4.5 otherwise

FR(t) =

{
0.003(G(t) − 9)VG if G(t) ≥ 9 mmol/L
0 otherwise

Proposed EGP

EGP(t) =
Vr · rc (t)
Kr + rc (t)

+ EGP0(1 − SI · x3(t))

ṙc (t) = kon · Vh · C(t) · r(t) − koff · rc (t) − kin · rc (t)

ṙ(t) = −kon · Vh · C(t) · r(t) + koff · rc (t) + krec (1 − r(t) − rc (t))

rc (0) = rc (t)|C(t)=Cb , r(0) = r(t)|C(t)=Cb

EGP 1
EGP(t) = GGG(t) + GGNG

GGG(t) =
1 − Se · x3(t)
1 − SE · Ib

(
(Emax − GGNG) ·

C(t)
CE50 + C(t)

)
EGP 2

EGP(t) = H (1 − S · x3(t)) · H (EGPG(t) + T · C(t)) + Gng

˙EGPG(t) = −kGd · EGPG(t) − kGd · TGd · Ċ(t), EGPG(0) = 0

EGP 3
EGP(t) = EGP0

(
1 − Sf · x3(t) + Y (t) + kg3 · Ẏ(t)

)
Ẏ(t) = kc · C(t) − kd · Y (t), Y (0) = Y (t)|C(t)=Cb
P
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work. Thus, the chances of negatively affecting the EGP model
performance due to the change in the glucoregulatory model
would be minimized.

The selected EGP expressions to serve as comparators have
een labeled as EGP 1, EGP 2, and EGP 3. The first one was
resented in Wendt et al. (2017) alongside the base model used in
his work (see Table 1, EGP 1 row). It relates glucagon and insulin
oncentrations in such a way that insulin limits the glucagon
ffect in an effort to replicate the phenomena observed in El
oussef et al. (2014). EGP 2 was proposed in Emami et al. (2017)
s the result of fitting nine model structure candidates to the data
n El Youssef et al. (2014). The models in Emami et al. (2017)
ange from two-parameter expressions to systems with five pa-
ameters and additional differential equations. Model-fitting re-
ults in that work showed how the simpler models were not able
o explain the glucagon effects observed in the data (Emami et al.,
017). Hence, the final selection corresponds to their proposal
umber 8 (Table 1, EGP 2 row). The definition of EGP 3 was first
resented in Jacobs et al. (2015), where the baseline model was
lso based on the Hovorka model. Their proposal incorporates an
pproximation of the glucagon effect using a remote compart-
ent (Y (t)) and is also dependent on the glucagon rate of change,

˙ (t) (Table 1, EGP 3 row).
For a complete description of the model parameters, as well

s the EGP comparators, see Tables A.7 and A.8 in the Appendix.

.2. Identification data

Models were fit with the datasets of the clinical trial by Ranjan
t al. (2017), provided by the Steno Diabetes Center in Copen-
agen. This clinical trial consisted of two arms that assessed the
3

impact of the diet’s carbohydrate content on glucagon effective-
ness on glucose in ten people with T1D.

Each arm consisted of an outpatient week and a clinical visit.
During the outpatient week, patients were required to follow
a diet with different carbohydrate content depending on the
study arm: a high carbohydrate content diet (HCD) of 250 g/day
and a low carbohydrate content diet (LCD) of 50 g/day. During
the in-clinic visit, patients were administered an insulin bolus
on arrival to lower their glucose values. When plasma glucose
levels dropped below 70 mg/dL, they were administered a 100-
µg glucagon bolus, followed by a dose of 500 µg two hours later.
atients were monitored for two more hours after the second
lucagon dose. Fig. 1 summarizes the available data, including
lasma glucose, insulin, and glucagon. The results are grouped by
isit: after the LCD (labeled Visit L) or the HCD (labeled Visit H).
Ranjan et al. (2017) reported that glucose response to glucagon

fter LCD was lower than after HCD, suggesting that LCD reduces
epatic glycogen stores, a primary mediator of glucagon effect
uring glycogenolysis (Shrayyef & Gerich, 2010). Glycogen de-
iciency is one of the concerns regarding the use of glucagon
n closed-loop systems since some studies suggest that a re-
eated administration of glucagon may deplete glycogen reserves,
ausing a reduction in glucagon effectiveness (Bélanger et al.,
000; Blauw et al., 2016). On the other hand, another study ob-
erved no depletion of glycogen reserves after repeated glucagon
dministration (Castle et al., 2015).
Table 2 summarizes the differences in the maximum glucose

ncrease achieved with both glucagon doses in the two experi-
ental settings. The most affected dose due to the diet difference

s the 100 µg dose, which has its average value reduced to half
n the LCD arm (∆G ), compared to the HCD. This reduction is
100
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Fig. 1. Mean values and standard deviations of the data from the clinical trial
in Ranjan et al. (2017). Available data included plasma glucose (upper graph),
plasma glucagon (middle graph), and plasma insulin (bottom graph). Data in
blue represent Visit L (low carbohydrate content diet arm), and data in orange
represent Visit H (high carbohydrate content diet arm). An insulin bolus was
administered on arrival at the clinic, and when reaching 70 mg/dL, the first
glucagon dose (100 µg) was administered (time t = 0). The second dose
500 µg) was given 2 h later. (For interpretation of the references to color
n this figure legend, the reader is referred to the web version of this article.)

Table 2
Mean ± standard deviation of glucose values and increments depending on
the dose, expressed in mg/dL. G100 represents the glucose value at the time
f the 100 µg administration. ∆G100 is the maximum increment observed after

the 100 µg dose. G500 and ∆G500 represent the same concepts for the 500 µg
ounterpart.
Trial arm G100 ∆G100

LCD 65.02 ± 4.47 22.87 ± 19.90
HCD 62.64 ± 6.49 47.28 ± 23.25

G500 ∆G500

LCD 55.36 ± 11.62 73.23 ± 11.15
HCD 73.76 ± 16.80 100.66 ± 25.63

not so abrupt in the 500 µg dose, where there is an approximate
eduction of 27% (∆G500). Also note that, although several trials
ave demonstrated that small glucagon doses (i.e., 100 µg) are
ufficient to help recover from hypoglycemia (Haymond et al.,
016; Laugesen et al., 2023; Ranjan et al., 2016), said dose was
neffective in the LCD setting since 2 h later to the administration
4

of the dose (glucose value at G500, Table 2) glucose values are
below the hypoglycemia range (average of 55.36 mg/dL).

Nonetheless, the results from this clinical trial provide a very
interesting dataset for evaluating different glucagon effect de-
scriptions. The validation in Furió-Novejarque, Sanz et al. (2023)
used a dataset that included the administration of glucagon doses
of 100, 200, and 300 µg. This new dataset provides a broader
range of doses (100 µg and 500 µg) under different settings (LCD
and HCD). Testing consecutive administration is important since
internalization of glucagon receptors could affect the dynamics of
newly administered doses of glucagon.

2.3. Identification materials

In order to identify the parameters of each EGP model, an opti-
mization process assessed the difference between the simulation
output and the data points. This difference was evaluated using
the RMSE, which is defined as follows:

RMSEv
P,m =

√ 1
nv

nv∑
i=1

(ev
P,m)2 (4)

where ev
P,m = ŷv

i,P,m − yv
i,P,m

In the datasets available, a given patient would participate in
both arms of the clinical trial. Hence, multiple visits to the clinic
ensued. The subscript P in Eq. (4) denotes a specific patient, v

denotes a visit (L or H), and m refers to the model used. The
number of data points in the specific experiment is indicated by
nv , the model output is ŷi,P , and yv

i,P represents the set of data
points.

The optimization aimed to find the parameter combination
that minimized the index JP per patient. The definition of the
index was dependent on the evaluated method, but in every case,
it was a function of the RMSE obtained in the simulation.

JP = f (RMSEv
P,m) (5)

The optimization was carried out in Matlab using a local
optimization solver (fmincon). In order to avoid local minima,
the optimizations were run ten times and the one with the
lowest index was selected as the solution. The initial points were
different each time the optimizer was executed, being drawn
from a Latin hypercube sampling (McKay et al., 2000). Models
were simulated with Matlab’s ode45 function. Initial conditions
for the simulations are included in Table 1. These were derived
from steady state relations (derivatives set to 0), considering that
the glucose, plasma glucagon, and plasma insulin measured at the
trial start, i.e., G(0) = G0, C(0) = Cb, and I(0) = Ib correspond to
equilibrium conditions.

The latter assessment of the identification results was based
on the comparison of the RMSE and AIC obtained with the pro-
posal, against the three EGP comparators. AIC is a common selec-
tion criteria in the context of biological models (Faggionato et al.,
2023; van Sloun et al., 2023), defined as:

AIC = N · ln
(
SSR
N

)
+ 2 · K , (6)

where N represents the number of data samples, K is the number
of parameters in the model, an SSR stands for ‘‘sum of squared
residuals’’, defined in Eq. (7).

SSR =

∑
(ŷ − y )2 (7)
i i
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2.4. PK identification

The parameters in the baseline model were unknown for this
ohort. However, having plasma insulin and glucagon data, it was
ossible to perform separate identifications for the respective
K subsystems, measuring the error with respect to the insulin
nd plasma glucagon concentrations, respectively, and focusing
fterward on glucose dynamics in the glucose data.
The insulin PK parameters (see Table 1) to be identified were:

I−PK =
{
tmax, ClF ,I

}
The value of basal insulin (Ib) was taken from the end values

f plasma insulin data. On the other hand, parameters in the
lucagon PK subsystem (Table 1) were:

G−PK =
{
k1, k2, ClF ,C

}
The parameter corresponding to the patient’s weight (W ) ap-

eared in both subsystems. Since the individual value of W for
ach patient was not available, it was assumed constant, equal
o the median weight of the patients participating in the trial
75.2 kg, see Table 3).

Regarding the identification of plasma insulin, the data was
ndersampled in the first part (before t = 0), corresponding with
he initial insulin bolus administration. This makes the pharma-
okinetics of insulin difficult to infer since only the ‘‘tail’’ of the
olus is captured (see Plasma insulin plot in Fig. 1).
A collection of identification strategies was carried out to find

he most appropriate parameter values for PK. The final values of
he parameters for each patient were selected from two of those
dentification sets based on an assessment of the error observed
n the second part of the data (from t = 0 onward), where a
igher amount of data points were registered.
On the other hand, the identification of glucagon PK presented
similar issue in the sampling corresponding to the second

lucagon dose (t between 120 and 240 min). Moreover, individual
nalysis of the data and the preliminary identification results
howed that (1) there were slight but noticeable differences in
he glucagon plasma response from one visit to another (visit
versus visit H) and (2) the behavior of the plasma glucagon

ncrease was nonlinear, meaning that fitting the first smaller dose
id not provide an adequate fit in the second dose (based on the
pare data points available), and vice-versa.
Hence, in order to achieve the most accurate description of the

lasma glucagon signal, an individual adjustment of the glucagon
K identified values was performed so that for some patients,
alues for k2 were different from one visit to the other, but also
or each of the glucagon doses. The value of ClF ,C also had to be
djusted for the bigger dose from one visit to the other.
The parameter values identified for θI−PK and θG−PK remained

he same for all the subsequent identifications.

.5. PD identification

A set of parameters had to be identified for the baseline model,
egardless of the EGP definition. A global sensitivity analysis
as carried out in order to assess the practical identifiability
f the system and help determine which parameters should be
onsidered for the identification process. The analysis was carried
ut using Matlab toolbox AMIGO2 (Balsa-Canto et al., 2016).
constraint was introduced in the simulations to discard the

xperiment if glucose reached values under 32.5 mg/dL or above
50 mg/dL. This way, the software discarded the parameter com-
inations that resulted in non-physiological behaviors for the
iven inputs: 100 and 500 µg of glucagon.
The toolbox quantifies the influence of each parameter on

he output by the mean squared sensitivity (MSQRT) proposed
5

Table 3
Baseline model parameters set to constant values in the simulations.
Parameter ka2 ka3 V W
Units (min−1) (min−1) (mL/kg) (kg)
Value 489 · 10−4 118 · 10−4 160 75.2

Table 4
Glucagon receptors model parameters set to constant values in the
simulations.
Parameter koff krec kin Vh
Units (min−1) (min−1) (min−1) (L)
Value 0.24 0.003 0.358 4.65

by Brun et al. (2001). The higher the value, the greater influence
on the observed variable. To simplify the interpretation of the
results, the relative MSQRT, obtained by dividing the MSQRT of
the parameter by the sum of all MSQRTs, was also computed.
The relative MSQRT can be used to classify the parameters in
three sensitivity clusters (Garcia-Tirado et al., 2018): (1) sensitive
parameters are the first parameters in order of MSQRT summing
more than the 80% of the total MSQRT (i.e, the sum of the
relative MSQRT is larger than 0.8); (2) insensitive parameters are
the parameter subsets which accumulates less than the 1% of the
total MSQRT; and (3) mildly sensitive parameters are remaining
ones.

The analysis results for PD parameters of the baseline model
are presented in Fig. 3. Based on the observations, parameters
F01 and St are sensitive parameters, whereas ka2 and ka3 can
be considered insensitive. Following Garcia-Tirado et al. (2018),
the insensitive parameters ka2 and ka3 were discarded for being
identified and were set to constant values, based on previous
identifications of this system (Furió-Novejarque, Sala-Mira et al.,
2023). Table 3 includes their values, as well as the value for
glucose distribution volume, V , that was set following Wendt
et al. (2017).

Due to the often observed variability in the patients’ insulin
sensitivity, one of the related parameters (ST and SD) was identi-
fied for each visit to the clinic (L or H). Based on the sensitivity
analysis, ST was selected. Hence, the list of parameters to be
identified from the baseline model becomes:

θ1P =
{
Sv
T , SD, F01, k12, ka1

}
P = 1, 2, . . . , 10; v = L, H

where v and P correspond to the visit and subject index the
parameters have been individualized to.

Then, a set of parameters was identified for each EGP defini-
tion. Starting with the receptors proposal, the parameter vector
included:

θ2P = {EGP0, SI , kon, Kr , Vr} , P = 1, 2, . . . , 10

Among the transfer rates comprising the system (koff , krec ,
kon, kin), only the activation rate of glucagon receptors, kon was
identified to avoid identifiability issues (Masroor et al., 2019). The
remaining rates were set to constant values based on transfer rate
values from the literature, as reported in Masroor et al. (2019).
The value for koff was taken from Ronald Kahn (1976), and the
recycling constant for glucagon receptors, krec , is assumed to be
equal to insulin receptors, taking the value reported in Sedaghat
et al. (2002). Lastly, kin was set based on the identification in Mas-
roor et al. (2019), where the value of Vh was also taken. Ta-
ble 4 includes the values set for each of the aforementioned
parameters.

Regarding the EGP comparators, the EGP 1 model only re-
quired four parameters:

θ = {G , S , E , C } , P = 1, 2, . . . , 10
3P GNG E max E50
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On the other hand, EGP 2 and EGP 3 consisted of five param-
ters, similar to the EGP proposal.

4P =
{
Gng , S, T , KGd, TGd

}
, P = 1, 2, . . . , 10

5P =
{
EGP0, Sf , kg3, kd, kc

}
, P = 1, 2, . . . , 10

The resulting parameter vector to be identified per patient
ontained a total of 25 parameters:

P =
{
θv
1P , θ2P , θ3P , θ4P , θ5P

}
Having defined the set of parameters to identify, the combi-

ation of the baseline model plus each EGP model was used to
imulate both visits. All the parameters for each EGP definition
lus the baseline PD model were identified in the same optimiza-
ion process, and the total optimization index was defined as a
unction of the RMSE obtained with each of them. However, a
rogressive refinement of the identification method was carried
ut, which led to three sets of results, one for each method. The
ollowing subsections describe said methods and the justification
hat led from one to another.

Of note, moving forward, the name of each EGP model will
efer to the combination of that EGP definition plus the baseline
odel.

.5.1. Method A
The optimization cost index JP (5) was computed as the aver-

ge of the sum of the total RMSE of each simulation (L and H)
ith each of the four models (m):

P =
1
nm

nm∑
m=1

nv∑
v=1

RMSEv
P,m (8)

The parameters nv and nm represent the number of visits and the
number of models, respectively. RMSEv

P,m (4) represents the total
MSE obtained in a simulation with a particular model (m) in
determinate visit v (L or H). The average of the sum of these

wo magnitudes, per each of the four models, constituted the
ptimization index JP .
The results obtained with this method are labeled Method
in the Results section. One of the criteria to perform a fair

omparison between the execution of each model was that they
ehaved the same (or as similarly as possible) during the first part
f the data, prior to the first glucagon dose when only the effect
f insulin was active. The focus of the analysis is to study how
he model structures differ in the glucagon description. If part of
hat difference was already accounted for in the basal value of
GP, then it may yield a misleading interpretation. The results
btained in this stage showed that using the same parameters
n the baseline model was insufficient to eliminate the errors
etween models in the first part of the data (before the first
lucagon dose). See Fig. 4, upper row plots, for a sample of the
esults obtained for Patient 3 with this method.

.5.2. Method B
A second approach to the identification was followed. The

rror in the first period was penalized more than the others to
educe the differences between models observed with Method
. With this, the error calculation, ev

P,m in Eq. (4), was redefined
s:

v
P,m =

{
ω · (ŷv

i,P,m − yv
i,P,m), if t ≤ t100

(ŷv
i,P,m − yv

i,P,m) if t > t100
(9)

The value of ω was set to 10, and t100 refers to the time of the
irst glucagon dose. The results for this identification are labeled
s Method B. JP was obtained following the same formula as in
ethod A (see Eq. (8)). This helped to significantly improve the

it in the first part of the data and the main differences between
he models were displaced to the periods where glucagon was
dministered.
6

.5.3. Method C
The main characteristic of this dataset is the difference in

lucose response to glucagon caused by the diet. Methods A and
aimed to fit every situation (LCD and HCD) with the same

lucagon model. However, the results show that the RMSE values
or the visit H were consistently higher than for the visit L. The
ifference in diets is not accounted for in any of the models, so
ne of the visits is favored to the detriment of the other in the
dentifications. The last optimization carried out in this work tries
o describe this difference in diet, optimizing a variable gain in
ach of the EGP models per visit.
The parameters were selected based on the global parameter

ensitivity analysis results of each EGP definition (see Fig. 3).
The selected parameters were Vr for the receptors model, Emax

or the EGP 1 model, T for the EGP 2 model, and EGP0 for the
EGP 3 model. Notice that the parameter selected for EGP 2 is
not the most sensitive (Gng ), but the second (T ). Focusing on the
equations of EGP 2 (Table 1), Gng represents an offset in the EGP
expression, whereas T is a factor that directly affects glucagon
concentration, a feature shared by the other parameters selected
to be individualized. Consequently, given that the values of rel-
ative MSQRT of both parameters were similar, T was selected
as the variable gain. The identification results obtained with this
modification are labeled as Method C.

3. Results

3.1. PK results

The average parameters obtained in the identification of in-
sulin and glucagon PK are described in Table A.9. Results are
expressed as mean ± standard deviation. The table shows the
parameters identified from the plasma glucagon signal, with an
individualized parameter of k2 per visit (L and H) and per dose
(100 and 500 µg). The values of ClF ,C were the same regardless
of the visit for the smaller dose, but they had to be adjusted for
the second dose (ClF ,CL−500 and ClF ,CH−500).

Fig. 2 shows the aggregated results obtained in the simulations
of plasma insulin and plasma glucagon for the ten patients.

3.2. PD results

Table A.10 shows the average values obtained for the pa-
rameters of each EGP definition and the PD subsystem of the
baseline model. The parameters in Method C fitted for each visit
are marked with a label L or H to the right of the parameter.
The reported values aggregate the results obtained with the ten
patients in the cohort.

Fig. 4 details the execution results obtained for patient 3 for
each of the employed identification methods. The top row plots
show visit L and H responses obtained for Method A. The middle
row plots show the results obtained for Method B. As exposed
in the previous section, this method was designed to correct the
differences between models, and indeed, there is a reduction of
the output differences during the time before the first glucagon
dose. The bottom row plots show the results obtained for Method
C. An improvement of the fit can be observed for some models,
especially for visit H.

The upper row in Fig. 5 shows the RMSE results separated per
model and method. It presents the RMSE progression from one
method to another and the overall performance of each model
structure. There is an overall RMSE increase after introducing
the restriction to fit the first period of the data in Method B.
Nevertheless, the RMSE obtained with the receptors proposal is
consistently the lowest. The lower row in Fig. 5 presents the
AIC results also separated per model and identification method.
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c

Fig. 2. Plasma insulin (top row) and glucagon (bottom row) simulation results. Gray error bars correspond to the mean and standard deviation of the data, and
ontinuous/colored lines encase the mean and standard deviation of the simulation results. Graphs show the response from t = 0 min to 240 min, which is the
main period of interest of the study. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Sensitivity analysis results for the baseline PD model parameters and each of the parameter sets in the EGP definitions (Proposed EGP, EGP 1, EGP 2,
and EGP 3). The magnitude relative MSQRT represents the importance the parameter has on the system output. Color bars represent sensitivity clusters, based
on Garcia-Tirado et al. (2018): green bars represent sensitive parameters, and blue bars, mildly sensitive parameters. The analysis was conducted using AMIGO2 Matlab
toolbox (Balsa-Canto et al., 2016). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
This metric evaluates the ability of the model to fit the data
and includes a penalization on the number of parameters in the
model. Similar to the results obtained for the RMSE, the proposed
EGP achieves the lowest average AIC.

A statistical analysis was carried out in R (version 4.1.3) to ana-
lyze the differences between the results obtained with the recep-
tors model and the comparators. Once ensured data distributions
followed a normal distribution through the Kolmogorov–Smirnov
test, a paired t-test was calculated between the receptors model
7

and each EGP comparator to determine if any statistically sig-
nificant difference existed at level 0.05. Table 5 presents the
results of these analyses, separated by method and grouped by
visits and the overall RMSE of the two visits. Of note, the RMSE
difference in the overall results of each method is statistically
significant in every case according to the p-value results. Besides
the significance test, Cohen’s d size effect measurement was
also included to complement these results. This metric quantifies
the size of the difference between two sets. The conventional
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Fig. 4. Patient 3 results for identification Method A (top row), Method B (middle row), and Method C (bottom row). Gray circles represent the glucose data points.
ontinuous lines represent the simulations of the baseline model plus the EGP 1 (blue line), EGP 2 (orange line), the EGP 3 (yellow line), and the proposed EGP
purple line); for visit L (left column), and visit H (right column). (For interpretation of the references to color in this figure legend, the reader is referred to the
eb version of this article.)
Table 5
Comparison of RMSE (mg/dL) for each model and identification method, considering the average RMSE for the ten patients
in the dataset in visits L and H, separated by visits. Values are expressed as mean ± standard deviation. The t-statistic
and the p-value correspond to independent paired t-tests comparing every model against the proposed model. Cohen’s d
measures the effect size, with values over 0.8 considered a large difference (McGough & Faraone, 2009). These conditions
have been highlighted with green-tinted cells.

Identification method Visit Model Comparators RMSE Proposal RMSE t p Cohen’s d

A

EGP 1 7.9 ± 2.3 2.20 0.056 0.70
L EGP 2 9.2 ± 3.6 7.0 ± 1.8 1.87 0.094 0.59

EGP 3 9.4 ± 4.3 1.65 0.133 0.52

EGP 1 10.2 ± 2.0 2.49 0.035* 0.79
H EGP 2 13.7 ± 4.2 9.3 ± 2.0 3.13 0.012* 0.99

EGP 3 14.1 ± 4.2 3.62 0.006* 1.14

EGP 1 9.0 ± 1.4 2.88 0.018* 0.91
Overall EGP 2 11.4 ± 3.1 8.1 ± 1.1 2.87 0.019* 0.91

EGP 3 11.7 ± 3.5 2.84 0.019* 0.90

B

EGP 1 14.3 ± 7.6 0.90 0.392 0.28
L EGP 2 15.9 ± 9.0 13.1 ± 7.9 1.07 0.313 0.34

EGP 3 15.7 ± 9.2 0.92 0.380 0.29

EGP 1 18.7 ± 5.8 2.01 0.075 0.64
H EGP 2 22.6 ± 6.5 15.5 ± 7.8 2.43 0.038* 0.77

EGP 3 23.8 ± 6.1 3.47 0.007* 1.10

EGP 1 16.5 ± 6.0 2.64 0.027* 0.83
Overall EGP 2 19.3 ± 6.4 14.3 ± 7.3 2.22 0.053 0.70

EGP 3 19.7 ± 6.6 2.62 0.028* 0.83

C

EGP 1 12.3 ± 4.3 2.07 0.069 0.65
L EGP 2 13.1 ± 7.5 10.1 ± 4.5 1.11 0.295 0.35

EGP 3 16.3 ± 9.6 2.02 0.074 0.64

EGP 1 13.1 ± 3.5 0.86 0.412 0.27
H EGP 2 20.5 ± 6.5 11.4 ± 5.0 3.36 0.008* 1.06

EGP 3 23.7 ± 5.5 4.72 0.001* 1.49

EGP 1 12.7 ± 2.0 1.66 0.132 0.52
Overall EGP 2 16.8 ± 5.5 10.8 ± 4.2 2.69 0.025* 0.85

EGP 3 20.0 ± 6.3 3.89 0.004* 1.23

* Indicates a statistically significant difference at 0.05.
8
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Fig. 5. Boxplots of overall RMSE (mg/dL) (upper row) and AIC (lower row) obtained for each identification method, separated per model. The displayed results
aggregate the outcomes obtained with the ten patients in the dataset in both visits (L and H).
Table 6
Comparison of overall AIC for each model and identification method, considering the average AIC across
visits (L and H) for the ten patients in the dataset. Values are expressed as mean ± standard deviation.
The t-statistic and the p-value correspond to independent paired t-tests comparing every model against
the proposed model. Cohen’s d measures the effect size, with values over 0.8 considered a large difference
(McGough & Faraone, 2009). These conditions have been highlighted with green-tinted cells.

Identification method Model Comparators AIC Proposal AIC t p Cohen’s d

A
EGP 1 176.5 ± 13.1 2.48 0.035* 0.78
EGP 2 193.7 ± 24.0 170.3 ± 11.3 3.02 0.015* 0.95
EGP 3 195.3 ± 23.7 3.17 0.011* 1.00

B
EGP 1 217.9 ± 22.5 2.28 0.049* 0.72
EGP 2 230.0 ± 30.2 205.7 ± 31.2 2.38 0.041* 0.75
EGP 3 231.6 ± 28.6 2.81 0.020* 0.89

C
EGP 1 201.5 ± 11.7 1.92 0.087 0.61
EGP 2 219.0 ± 28.3 186.4 ± 20.9 3.05 0.014* 0.96
EGP 3 233.4 ± 26.5 4.58 0.001* 1.45

* Indicates a statistically significant difference at 0.05.
nterpretation of Cohen’s d values considers a 0.2 value represents
small difference, 0.5 is a medium effect, and 0.8 or a higher
alue indicates a large difference (McGough & Faraone, 2009).
he significance of the difference between the results obtained
ith the receptors proposal and the EGP comparators is further
einforced by Cohen’s d values greater than 0.8 in the overall
esults obtained with the three methods, as highlighted with
9

green-tinted cells in Table 5. The same analysis was conducted
for the average AIC values (Table 6).

The analysis is extended in Fig. 6, which differentiates the
results per visit but also considers the three time periods given
by the data:

• Period 1: from the start of the trial to the administration
of the first glucagon dose (100 µg), where only the insulin
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Fig. 6. General RMSE (mg/dL) comparison between Method A (blue boxes), Method B (orange boxes), and Method C (green boxes). Rows represent the considered
period times (Period 1 to 3, or overall experiment time). The ‘‘Overall’’ row considers the total time of the experiment. Columns represent the visits (L or H). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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effect is significant, and EGP contribution is limited to its
basal value.

• Period 2: from the administration of the first glucagon dose
to the second (500 µg).

• Period 3: from the second glucagon dose to the end of the
trial.

Some general conclusions can be drawn from Fig. 6: (a) The
ean RMSE values are lower in the visit L identification than in

he visit H; (b) In visit L, the error values for the smaller dose
Period 2) are similar to those for the second dose (Period 3),
ut in visit H, the difference between errors in periods 2 and 3 is
arger; (c) The receptors model provides the lowest mean values
n each studied situation, regardless of the identification method
sed.

. Discussion

The results presented in Section 3 support the conclusions
n Furió-Novejarque, Sanz et al. (2023) that an EGP model based
n glucagon receptors dynamics may provide a more accurate de-
cription of the glucose response to glucagon. Compared to Furió-
ovejarque, Sanz et al. (2023), the receptors model was evaluated
ith a larger glucagon maximum dose (500 µg vs. 300 µg),
aking the potential improvement of the receptors model over

he remaining comparators more noticeable. In this evaluation,
he RMSE and AIC results favor the proposal results, regardless of
he identification method used.

Method A. Fig. 5 shows that, in Method A, the receptors
odel achieved a lower overall error compared to the rest of the
GP models. Note, however, that differences exists across periods
Fig. 6): while on periods 2 and 3, all models have close average
MSE values (Fig. 6, Period 2 and 3 rows, blue boxes), the most
10
onsiderable difference was observed on Period 1, whose absolute
rror values are higher than in the other periods. These results
how that, in general, the optimization tried to reduce possible
rrors in these periods by sacrificing the fit in the first part,
hich justifies weighting the first part of the data as proposed

n Methods B and C.
Method B. Overall, the RMSE has augmented regarding the

esults with Method A, but the receptors model still yields a
ore accurate fit. Penalizing the error in Period 1 results in a

emarkable reduction of the RMSE in this period compared to
ethod A but to the detriment of Periods 2 and 3 (see Fig. 6,
eriod 2 and 3 rows, yellow boxes). However, the loss of accuracy
n periods 2 and 3 is not equal for all models. The EGP 3 and EGP
models lead to the most significant errors in the second part

when glucagon is acting) when they are forced to fit the first
art, suggesting that their structure cannot adequately describe
he observed glucagon behavior.

Method C. This method aimed to reduce the differences in error
etween visits L and H by incorporating a variable parameter in
ach EGP model. All models reduced the overall RMSE achieved
n Method B, except for the EGP 3 model (see Method C in Fig. 5).
ence, associating a gain change to describe differences in car-
ohydrate content is only effective for some models, such as the
eceptors or EGP 1 approach. However, a better representation of
he dynamics might involve some nonlinear relationships (i.e., the
ehavior of glucose response is relatively similar in Period 2 both
n visit L and H but presents a more acute response in the case of
isit H).
Fig. 7 illustrates how the parameters changed depending on

he diet. More than two-thirds of parameters (29 out of 40)
ncreased their value to fit the greater glucagon doses. This in-
rease was expected since the selected values would directly
ffect glucose values, which were higher in the HCD setting.
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Fig. 7. Parameter variation between the identification of visit L and visit H in Method C. These parameters represent an approximation of the effect of the diet
carbohydrate content on glucagon effectivity. Vertical axes represent the parameter value. Each line represents a virtual patient. The changing parameters are: Vr for
the proposed EGP model (left graph), Emax for EGP 1 (center-left graph), T for EGP 2 (center-right graph), and EGP0 for EGP 3 (right graph).
Fig. 7 also shows that EGP 3 experiences the most minor changes
in its corresponding varying parameter, which would explain
why its fit did not improve after adding the parameter change,
resulting in the lowest performance in the results of Method C.
Nevertheless, neither of the identification processes used favored
one model over the others.

Remark that explaining diet variations with a single parameter
change in the EGP definition is just an approximation to test
whether this approach would improve the fit. To properly capture
this kind of influence on physiology, a meal model would be
needed, as well as defining a relationship between meal con-
tent and the glucagon effect model parameters. However, this
proof-of-concept may serve as a baseline in future works.

Beyond the fitting accuracy, an advantage of the receptors
model over the comparators is that the EGP is modeled by in-
ternal states with a physiological interpretation. Fig. 8 shows
the evolution of the relative amount of receptors in each state:
available (r(t)), active (rc(t)), and internalized (1− r(t)− rc(t)). It
an be observed that receptors become rapidly active the moment
he glucagon is administered and then internalized, progressively
ecovering afterward. Since glucagon doses in this trial are suffi-
iently separated in time, there are sufficient available receptors
hen the second dose is administered. However, doses closer

n time could cause a saturation in the amount of available
eceptors, impacting the glucagon effect on glucose, which could
xplain the loss of glucagon effectivity under repeated doses
s observed in Blauw et al. (2016) and Bélanger et al. (2000).
owever, further data on glucagon receptors would be needed
o research these phenomena.

Overall, both RMSE and AIC results show that the model based
n glucagon dynamics achieves a better performance. The model
omplexity is similar to the comparators since previous studies
ave shown that much simpler EGP models are not able to fit
lucagon dynamics (Emami et al., 2017). EGP 1 is the simplest
odel in this comparison and performs similarly to the proposal

n some scenarios. However, the proposal still achieves a lower
verage AIC, with a statistically significant difference compared
o EGP 1 in two of the three identification scenarios.

The authors also addressed the consideration of the model
omplexity, performing an additional identification. The proce-
ure described in identification method A was replicated, includ-
ng an additional simpler EGP model. The purpose was to evaluate
he capacity of a simpler approach, assessing whether it could
rovide a similar description of the glucagon effect compared to
ore complex models (such as the comparators and the proposal

n this work). The simpler selected model was initially presented
y Smaoui et al. (2020):

GP = Cp(t)SgH (1 − x3(t)Se) (10)

here Cp(t) and x3(t) represent the concentration of plasma
lucagon and the effect of insulin on EGP, and S and S represent
g e

11
Fig. 8. Representation of the receptors states for the simulation of patient 3,
for the scenario in visit L (blue lines), and visit H (orange lines). The top plot
represents the relative amount of available receptors r(t), middle plot shows
the active receptors (rc (t)), and bottom plot shows the internalized receptors
(1 − r(t) − rc (t)). Colored triangles represent the administration of glucagon
doses (100 and 500 µg). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

glucagon and insulin sensitivity, respectively. This definition was
selected because it constituted the simplest consideration that
included both insulin and glucagon effect into EGP, with just two
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Fig. 9. RMSE (left) and AIC (right) boxplot results obtained in an identification process (following identification method A), including an additional, simpler EGP
model (Smaoui et al., 2020). The outcomes were measured by simulating each model in the scenario of visits L and H, and the results aggregate the ten patients in
the cohort. See more details in text.
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parameters to describe their sensitivities, that also conformed to
the model selection criteria established in this work, mentioned
in Section 2.1, that is, that the underlying model had a similar
structure to Hovorka’s model (Wilinska et al., 2010).

This simpler model was implemented alongside the proposal
nd the comparators in this work, and their parameters were
dentified using identification method A (see Section 2.5.1). Fig. 9
ummarizes the results obtained regarding RMSE and AIC. Even
ith the reduced number of parameters, which is accounted

or in the calculation of the AIC, the simpler model presents
ignificantly worse results than the other options. Moreover, the
tatistical analysis showed that the difference between the pro-
osal and the simpler EGP model was statistically significant both
or the RMSE and AIC (p-value of 0.002 and <0.001, respectively,
nd Cohen’s d values were 1.38 and 1.79).
Lastly, although the presented methodology provides an eval-

ation of the receptors-based glucagon model, some limitations
xists. First, the reduced number of patients in the dataset
N = 10) allows for drawing some conclusions, but a more
xtended cohort would allow for a more complete validation.
lso, data on different settings with glucagon would be needed
o validate further the model capabilities (e.g., administration of
lucagon doses closer in time).
Future work may include the exploration of nonlinearities in

lucagon PK observed with bigger doses. The models describing
he kinetics of the small doses typically administered in AP sys-
ems may not capture the kinetics of bigger doses such as the
nes used in emergency hypoglycemia rescues (typically 1 mg
lucagon), leading to a misestimation of the dose effect in the
imulation. Also, other datasets will be needed to assess glucagon
nteractions with insulin and other drugs potentially used in
djunctive therapies.

. Conclusions

This work complements the results in Furió-Novejarque, Sanz
t al. (2023) by validating an EGP definition based on glucagon re-
eptors with a dataset with consecutive glucagon doses (100 and
00 µg) in two different diet settings (LCD and HCD). Three iden-
ification methods are presented to identify the proposed model
arameters. In addition, the proposed model performance is com-
ared to three EGP models from the literature. The proposed
GP and the comparators share the parameters of the PK/PD
odel used as the baseline. Results show how the proposed EGP
odel outperforms the comparators, providing a lower RMSE,
ence performing an appropriate description of glycogenolysis
nd gluconeogenesis since the model describes glucose dynamics
bserved in clinical data.
The proposed model allows for incorporating a not-too-

omplex, more physiologically accurate description of glucagon
 a

12
nto the current T1D simulators. It is, however, more complex
han other proposals from the literature that achieve a similar
erformance level (e.g., the EGP 1 model) and could present some
ssues if used in model-based control algorithms. Nevertheless,
ocusing on using the model for simulation, the proposed EGP
ntroduces new dynamics that have shown significant improve-
ents in describing clinical data, paving the way to improve in

silico validations of AP systems.
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ppendix. Parameter results and models description

This appendix includes two tables listing the units and de-
criptions of the base model (Table A.7) and the EGP definitions
Table A.8).

Table A.9 summarizes the identified parameters for the insulin
nd glucagon PK submodels. Table A.10 presents the average pa-
ameters identified with each of the methods for the PD submodel

nd each of the EGP definitions.
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Table A.7
Baseline model states and parameters’ units and description.

Magnitude Units Description

uI (t) U/min Insulin infusion (as a deviation from basal)
X1(t) U Insulin mass due to exogenous dosing in subcutaneous tissue
X2(t) U Insulin mass due to exogenous dosing in plasma
I(t) mU/L Insulin plasma concentration
tmax min Time from dose to maximum plasma concentration
W kg Weight
ClF ,I mL/kg/min Apparent insulin clearance

Insulin PK

Ib mU/L Basal insulin concentration

uC (t) pg/min Glucagon infusion (as a deviation from basal)
Z1(t) pg Glucagon mass due to exogenous dosing in subcutaneous tissue
Z2(t) pg Glucagon mass due to exogenous dosing in plasma
C(t) pg/mL Glucagon concentration in plasma
k1, k2 min−1 Absorption elimination rate constants
ClF ,C mL/kg/min Apparent glucagon clearance

Glucagon PK

Cb pg/mL Basal glucagon concentration

x1(t) mU/L Effect of insulin on glucose distribution
x2(t) mU/L Effect of insulin on glucose disposal
x3(t) mU/L Effect of insulin on endogenous glucose production
EGP(t) µmol/kg/min Endogenous glucose production
Q1(t) µmol/kg Glucose mass in the accessible compartment
Q2(t) µmol/kg Glucose mass in the non-accessible compartment
G(t) mmol/L Blood glucose
ka1, ka2, ka3 min−1 Deactivation rate constants
F01 µmol/kg/min Insulin-independent glucose flux
FR µmol/kg/min Renal glucose clearance
ST min−1/(mU/L) Insulin sensitivity to glucose transport
SD min−1/(mU/L) Insulin sensitivity to glucose disposal
k12 min−1 Transfer rate constant from the nonaccessible to the accessible compartment

PD

V mL/kg Glucose distribution volume
Table A.8
EGP models states and parameters’ units and description.

Magnitude Units Description

r(t), rC (t) unitless Normalized amount of free and bonded receptors
F hgp(t) µmol/kg/min Hepatic glucose production
koff min−1 Dissociation rate
krec min−1 Recycling rate
kin min−1 Internalization rate of the glucagon-bonded receptor
kon (pg/min)−1 Association rate of glucagon to the receptor
Vh mL Volume of the hepatic interstitial space
Kr unitless Apparent dissociation constant
Vr µmol/kg/min Maximal glucagon-dependent hepatic glucose production rate
EGP0 µmol/kg/min EGP extrapolated to zero insulin concentration

Proposed EGP

SI (mU/L)−1 Hepatic insulin sensitivity

Ggg (t) µmol/kg/min Glucose production due to glycogenolysis
SE (mU/L)−1 Hepatic insulin sensitivity
Emax µmol/kg/min Maximum EGP at basal insulin concentration
CE50 pg/mL Glucagon concentration yielding half of maximum EGP

EGP 1

GGNG µmol/kg/min Glucose production by gluconeogenesis

EGPG(t) µmol/kg/min Contribution to EGP from the rate of change of glucagon
TGd µmol/kg Glucagon rate of change sensitivity
S (mU/L)−1 Insulin sensitivity
T (pg/mL)−1 Glucagon sensitivity
Gng µmol/kg/min Effect due to gluconeogenesis

EGP 2

KGd (µmol/kg)−1 Fractional deactivation rate constant

Y (t) unitless Effect of glucagon on EGP
EGP0 µmol/kg/min Basal endogenous glucose production at zero insulin concentration
Sf (mU/L)−1

kg3 min Glucagon rate of change sensitivity
kc (ng/L)−1/min Glucagon sensitivity

EGP 3

kd min−1 Clearance rate of glucagon from the remote compartment
13
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Table A.9
Insulin and glucagon PK parameters summary for the ten patients in the cohort for the three identification methods
(A, B, C). Values are expressed as mean ± standard deviation. The values of k2 were adjusted per visit (L or H) and
per dose (100 or 500 µg). ClF ,C was kept the same for the first dose regardless of the visit, but it was also adjusted
for the 500 µg dose. The value of k1 was just identified per patient.
Parameter Units Value (mean ± SD)

tmax min 73.5 ± 17.1
ClF ,I mL/kg/min 17.2 ± 7.8

k1 ·10−4 min−1 483 ± 140
k2L-100 ·10−2 min−1 17.39 ± 13.55
k2L-500 ·10−2 min−1 11.04 ± 7.77
k2H-100 ·10−2 min−1 19.06 ± 17.09
k2H-500 ·10−2 min−1 8.73 ± 5.27
ClF,C-100 mL/kg/min 91.11 ± 22.96
ClF,C L-500 mL/kg/min 57.37 ± 13.34

ClF,C H-500 mL/kg/min 66.32 ± 18.02
Table A.10
EGP models’ and baseline PD parameter values summary for the ten patients in the cohort for the three identification methods (A,
B, C). Values are expressed as mean ± standard deviation. Parameters Vr , Emax , T , and EGP0 were adjusted per visit (L, H) in method
C. Parameters ST and SD were adjusted per visit in every method.
Model Parameters Units Method A Method B Method C

Baseline PD

F01 µmol/kg/min 8.9 ± 5.2 9.3 ± 4.5 9.1 ± 4.2
k12 ·10−4 min−1 255 ± 181 446 ± 216 464 ± 212
ka1 ·10−4 min−1 17.8 ± 13.1 49.6 ± 27.3 54.5 ± 21.8

ST ·10−4 min−1/(mU/L) 64.5 ± 51.2 30.3 ± 12.2 28.6 ± 11.8 L
20.8 ± 19.2 18.3 ± 19.9 19.9 ± 15.3 H

SD ·10−4 min−1/(mU/L) 519.9 ± 1582.3 24.0 ± 21.4 24.7 ± 25.6

Receptors

kon ·10−6 (pg/min)−1 9.5 ± 12.0 23.9 ± 18.6 24.7 ± 11.5

Vr µmol/kg/min 71.1 ± 40.1 122.5 ± 99.4 54.9 ± 20.5 L
99.5 ± 80.7 H

Kr ·10−3 unitless 16.2 ± 14.2 100.6 ± 120.5 64.8 ± 65.2
SI ·10−3 (mU/L)−1 23.4 ± 25.7 12.4 ± 10.2 19.3 ± 19.0
EGP0 µmol/kg/min 10.8 ± 4.4 12.9 ± 2.8 12.0 ± 3.0

EGP 1

Emax µmol/kg/min 60.8 ± 23.2 46.4 ± 14.5 40.1 ± 5.2 L
64.7 ± 37.9 H

CE50 pg/mL 1104.0 ± 516.5 819.7 ± 569.1 605.2 ± 504.4
Se ·10−4 (mU/L)−1 16.7 ± 32.3 89.8 ± 129.8 174.9 ± 146.1
GGNG µmol/kg/min 8.3 ± 4.7 10.7 ± 2.2 9.9 ± 2.4

EGP 2

T ·10−2 (pg/mL)−1 2.2 ± 0.8 2.0 ± 1.1 1.9 ± 0.8 L
6.3 ± 9.0 H

KGd ·10−2 (µmol/kg)−1 3.5 ± 4.3 81.0 ± 246.1 74.2 ± 232.2
TGd ·10−2 µmol/kg 52.3 ± 31.5 72.5 ± 22.8 69.2 ± 23.6
S ·10−3 (mU/L)−1 10.6 ± 11.3 11.7 ± 10.6 21.9 ± 16.6
Gng µmol/kg/min 10.5 ± 4.3 11.6 ± 2.6 11.4 ± 2.8

EGP 3

kg3 ·10−6 min 9.1 ± 0.5 9.0 ± 0.1 9.1 ± 0.0
kd min−1 0.7 ± 0.5 1.1 ± 0.6 1.0 ± 0.6
kc ·10−3 (ng/L)−1/min 1.0 ± 0.8 1.2 ± 0.5 1.2 ± 0.6
Sf ·10−6 (mU/L)−1 20.1 ± 12.1 113.6 ± 51.1 97.4 ± 58.7

EGP0 µmol/kg/min 10.6 ± 4.3 11.7 ± 2.6 11.3 ± 2.8 L
11.8 ± 2.8 H
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