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A B S T R A C T
Pramlintide, an amylin analog, has been coming up as an agent in type 1 diabetes dual-hormone
therapies (insulin/pramlintide). Since pramlintide slows down gastric emptying, it allows for easing
glucose control and reducing the burden of meal announcements. Pre-clinical in silico evaluations are
a key step in the development of any closed-loop strategy. However, mathematical models are needed,
and pramlintide models in the literature are scarce. This work proposes a proof-of-concept pramlintide
model, describing its subcutaneous pharmacokinetics (PK) and its effect on gastric emptying (PD).
The model is validated with published populational (clinical) data. The model development is divided
into three stages: intravenous PK, subcutaneous PK, and PD modeling. In each stage, a set of model
structures are proposed, and their performance is assessed using the Akaike Information Criterion
(AIC) and the Bayesian Information Criterion (BIC). In order to evaluate the modulation of the
rate of gastric emptying, a literature meal model was used. The final pramlintide model comprises
four compartments and a function that modulates gastric emptying depending on plasma pramlintide.
Results show an appropriate fit for the data. Some aspects are left as open questions due to the lack
of specific data (e.g., the influence of meal composition on the pramlintide effect). Moreover, further
validation with individual data is necessary to propose a virtual cohort of patients.

1. Introduction
Amylin is a hormone segregated by the 𝛽 cells in the

pancreas alongside insulin. Its functions include energy ex-
penditure management, inhibition of glucagon secretion,
inducing satiation, slowing down gastric emptying, and anti-
psychotic effects (Müller et al., 2017). Amylin works in
coordination with insulin to regulate glucose after a meal:
insulin reduces the amount of glucose in the blood, whereas
amylin slows down gastric emptying, delaying the appear-
ance of glucose in plasma. This prevents blood glucose from
rising above healthy levels for long periods of time (i.e.,
hyperglycemia) (Hay et al., 2015).

People with type 1 diabetes (T1D) suffer from the au-
toimmune destruction of their 𝛽 cells. The main consequence
is that their body fails to produce insulin on its own, so they
depend on its external administration through injections or
the use of an insulin pump. However, amylin secretion is lost
too. Without amylin, gastric emptying does not slow down,
aggravating hyperglycemia. This is one of the reasons why
managing glucose excursions after a meal remains one of the
biggest challenges in T1D therapy (Gingras et al., 2018).

To aid diabetes management, artificial pancreas (AP)
systems were developed. These systems consist of a con-
tinuous glucose monitor, an insulin pump, and a control
algorithm that generates an insulin infusion value depend-
ing on the glucose values provided by the monitor. AP’s
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classic configuration considers insulin as the sole control
action. Since insulin has a uni-directional effect, only de-
creasing glucose values, different configurations that include
additional control actions have been developed. In these
configurations, insulin is usually accompanied by rescue
carbohydrates or glucagon (Wilson et al., 2020; Laugesen
et al., 2022; Taleb et al., 2017) , which have an opposite
effect to insulin. However, pramlintide has been gaining
attention as a complement to diabetes therapy (Weinzimer
et al., 2012; Ilkowitz et al., 2016; Sherr et al., 2016; Tsoukas
et al., 2021a).

Pramlintide is an amylin analog developed around 1995
that has allowed administering amylin externally to counter
its absence in people with T1D (Lutz, 2022). Several clin-
ical trials have proved pramlintide’s efficacy in reducing
postprandial excursions, thus easing glucose control (Kong
et al., 1997; Kolterman et al., 1996; Hinshaw et al., 2016).
Pramlintide has also been tested in closed-loop trials ad-
ministered with a fixed ratio with respect to insulin, emu-
lating an insulin-pramlintide co-formulation (Haidar et al.,
2020; Tsoukas et al., 2021b). Its main advantage is that it
removes the need to provide the algorithm with accurate
estimations of the amount of ingested carbohydrates each
meal. Clinical trials have proved that using pramlintide,
announcing the start time of the meal suffices to provide
adequate glucose control (Tsoukas et al., 2021a), alleviat-
ing the patients’ burden. However, pramlintide dosing is
sometimes accompanied by adverse effects such as nausea
or vomiting, especially during the first weeks of treatment
(Edelman et al., 2007). Hence, new control algorithms need
to be investigated to minimize pramlintide infusion and
avoid potential side effects.
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Simulators describing pramlintide and its effect on glu-
cose are essential tools in validating control strategies in a
pre-clinical phase. However, there is a lack of simulators
that include pramlintide and provide a set of pharmacoki-
netic (PK) and pharmacodynamic (PD) relations. Pramlin-
tide models in the literature are scarce, the most relevant
being Ramkissoon et al. (2014) and Fang et al. (2013).
The first incorporates the pramlintide model into a com-
plete glucoregulatory model. However, deriving the effect
of pramlintide from plasma glucose measurements can be
misleading because there are many agents at play, such as
the endogenous glucose production or insulin effect. On the
other hand, Fang’s model uses data from a previous clinical
trial (Colburn et al., 1996) where pramlintide was admin-
istered intravenously. As an alternative to PK/PD models,
Micheletto et al. (2013) models the effect of pramlintide on
the meals by reidentifying the parameters of a meal absorp-
tion model. However, parameter sets will be dependent on
the pramlintide dose administered. On the other hand, the
authors of this work presented a preliminary approach to a
new pramlintide model in Miragall et al. (2023).

This work aims to propose a proof-of-concept PK/PD
pramlintide model, to be used as a base tool in develop-
ing closed-loop control strategies that combine insulin and
pramlintide. The model considers subcutaneous administra-
tion of pramlintide, as done in an AP system. Intravenous
PK data are used to help in the identification process of
components of this model. Contrary to Ramkissoon et al.
(2014), the PD model will be built from data on the effect
of pramlintide over glucose rate of appearance, which de-
scribes the changes in glucose only due to meal ingestion.
These will allow focusing on how meal effect is modified
by pramlintide, without the intervention of other factors
such as insulin effect or endogenous glucose production.
Amylin has other effects, such as inhibition of glucagon
secretion, which are not captured on this model. Hence, the
complete amylin PD are not described. However, PD will
be used to refer to pramlintide effect on gastric emptying
throughout this paper for simplicity. In order to analyze each
stage, a literature search was carried out to find suitable data
for identification and validation for each of them. A series
of model structure hypotheses are then tested using these
datasets, and an adequate structure is selected according
to the Bayesian Information Criterion (BIC) and Akaike
Information Criterion (AIC).

The rest of the paper is organized as follows: Section
2 describes the materials and methods used to develop
the model (e.g., datasets, identification procedure, and the
model structure selection criteria). Section 3 covers the
development of the PK and PD modeling stages. Section 4
presents the final proposed model, and Section 5 lays out the
discussion and conclusions of this work.

2. Methods
The development of the proposed pramlintide PK/PD

model is divided into three stages: (1) intravenous PK, (2)
subcutaneous PK, and (3) PD. The first stage describes

how pramlintide appears in plasma after an intravenous
input. The second stage does so from a subcutaneous input,
integrating intravenous PK as a submodel. The last stage
describes the effect of plasma concentration of pramlintide
on gastric emptying. As a result, a subcutaneous pramlintide
PK/PD model is produced. This model is integrated with a
meal model from literature to test and validate its capabili-
ties. The analysis of each stage is performed separately.

In order to validate the proposed model structures, pub-
lished clinical data have been gathered across the literature.
Parallel to the three stages that compose the model, three
kinds of data have been searched for:

• plasma pramlintide concentration after intravenous
pramlintide injections,

• plasma pramlintide concentration after subcutaneous
pramlintide administration, and

• rate of glucose appearance after a meal accompanied
by pramlintide administration.

Unlike other works in the literature (Ramkissoon et al.,
2014; Fang et al., 2013), this paper considers the meal rate
of glucose appearance rather than glucose values to validate
the PD model proposals. Manipulating the rate of glucose
appearance allows decoupling the PD pramlintide model
from other subsystems in the glucoregulatory model (e.g.,
insulin effect, endogenous glucose production). However,
obtaining the rate of glucose appearance values requires a
tracer study, meaning that it is neither trivial nor inexpensive,
so only a few works in the literature were found to report this
kind of data.

After a thorough literature revision, 17 datasets were
selected for this work, described in Table 1. Some other
works were discarded because of data undersampling in
some periods of interest or lack of data of interest (e.g., only
glucose values were reported, which is helpful to observe the
effect of pramlintide on glucose but did not provide enough
information for our modeling purposes) (Weyer et al., 2003,
2001; Thompson et al., 1996; Rodriguez et al., 2007; Huff-
man et al., 2009). In every case, mean values are used since
no individual curves were available, meaning that the final
result is a set of parameters describing pramlintide’s average
behavior. The same procedure was followed in Ramkissoon
et al. (2014). Table 1 provides a summary of the trial
protocol followed in each selected work (second column),
a description of the data of interest available (third column),
and a list of names used as keys to refer to each of the
datasets (fourth column). Data points were obtained using
the software WebPlotDigitizer (Rohatgi, 2022).

The evaluated model structures follow a compartmen-
tal model structure. They were implemented as differential
equations in Matlab and solved using the ode45 function.
This function uses Runge-Kutta methods to solve the dif-
ferential equations. The solver applies a variable simulation
step size over the total simulation time, which will vary
depending on the data.
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Table 1
Summary of datasets used for identi�cation and validation in this work.

Source Trial summary Data description Datasets ID

Colburn et al. (1996)
Study evaluating the e�ect of bolus and
infusion administration of pramlintide on 24
men with T1D.

Plasma pramlintide data for
2-minutes boluses (30 𝜇g, 100 𝜇g,
300 𝜇g) and 2-hour infusions
(30 𝜇g, 100 𝜇g, 300 𝜇g).

Col-B-30
Col-B-100
Col-B-300
Col-I-30
Col-I-100
Col-I-300

Kong et al. (1998)
Study aimed to observe the e�ect of single
doses of pramlintide on two separate meals.
11 men with T1D participated in the study.

Plasma pramlintide data for
boluses (30 𝜇g, 60 𝜇g, 90 𝜇g).

Kon-30
Kon-60
Kon-90

Kolterman et al. (1996)
E�ect of pramlintide after accompanying
meals with a pramlintide bolus for 14 days
on 84 people with T1D.

Plasma pramlintide concentrations
on the �rst study day (30 𝜇g,
100 𝜇g, 300 𝜇g).

Kol-30
Kol-100
Kol-300

Ahrén et al. (2002)
Study of pramlintide and GLP-1 relationship
on 9 people with T1D.

Plasma pramlintide concentrations
after a 30 𝜇g bolus.

Ahr-30

Chase et al. (2009)
Evaluation of pramlintide PK/PD in 12
adolescents with T1D.

Plasma pramlintide data after
pramlintide boluses (30 𝜇g and
15 𝜇g1).

Cha-30

Hassan and Heptulla
(2009)

Study of pramlintide e�ect on 8 adolescents
with T1D.

Plasma pramlintide data result of a
30 𝜇g pramlintide bolus.

Has-30

Woerle et al. (2008)
Evaluation of pramlintide e�ect on gastric
emptying on 15 people with T1D.

Glucose rate of appearance data
(after a meal of 53 g of
carbohydrates plus a 30 𝜇g
pramlintide bolus or placebo).

Woe-30
Woe-Placebo

Hinshaw et al. (2016)
Study on pramlintide e�ect on postprandial
glucose on 12 people with T1D.

Glucose rate of appearance data
(75 g of carbohydrates meal
accompanied by 30 𝜇g pramlintide
bolus or placebo).

Hin-30
Hin-Placebo

1The data corresponding to the 15 𝜇g bolus was not used because few data points were available.

The parameters of each proposed model structure were
identified to fit the data selected for identification. Param-
eter values were obtained through an optimization process
carried out with Matlab’s genetic algorithm (ga). This algo-
rithm is population-based and searches randomly across the
population, which may avoid providing a solution on a local
minimum and finding the global minimum instead.

In each identification, the optimization index was equal
to the root mean square error (RMSE) between the data
points and the simulation output. The RMSE for each dataset
was obtained as follows:

RMSE𝑑 =

√

√

√

√
1
𝑁𝑑

𝑁𝑑
∑

𝑖=1
(𝑦̂𝑑𝑖 − 𝑦𝑑𝑖 )2 (1)

Where 𝑑 refers to the specific dataset, 𝑦̂𝑑𝑖 are the simula-
tion points, 𝑦𝑑𝑖 are the data points, and𝑁𝑑 is the total number
of samples.

The optimization index (𝐽 ) was calculated as the sum of
RMSEs obtained for each set of data used in the optimization
process (total number denoted by 𝐷):

𝐽 =
𝐷
∑

𝑑=1
RMSE𝑑 (2)

When the data within an optimization presented relevant
magnitude differences, the normalized RMSE (NRMSE)
was used instead of the RMSE.

NRMSE𝑑 =
RMSE𝑑

𝑚𝑎𝑥(𝑦𝑑) − 𝑚𝑖𝑛(𝑦𝑑)
(3)

The assessment of the model structures was based on
the results obtained from the Akaike Information Criterion
(AIC) and the Bayesian Information Criterion (BIC). These
two metrics commonly serve as selection criteria when
proposing different biological models (e.g., van Sloun et al.
(2023); Faggionato et al. (2023)). Their formulae are defined
as follows:
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Table 2
Identi�cation and validation data summary. IV refers to the
intravenous pharmacokinetics stage, SC to the subcutaneous
pharmacokinetics, and PD, to the pharmacodynamics stage.
Datasets keys are de�ned in Table 1.

Stage Identi�cation data Validation data

STAGE-IV1
Col-B-30, Col-I-30,
Col-B-100, Col-I-100,
Col-B-300 Col-I-300

STAGE-IV2
Col-I-30, Col-B-30,
Col-I-100, Col-B-100,
Col-I-300 Col-B-300

STAGE-IV3
Col-I-30, Col-B-30,
Col-I-100, Col-B-100,
Col-I-300, Col-B-300

STAGE-SC
Kon-30, Kol-30, Kol-100,
Kon-60, Kol-300, Ahr-30,
Kon-90 Cha-30, Has-30

STAGE-PD0
Woe-Placebo
Hin-Placebo

STAGE-
PD1

Woe-30

STAGE-
PD2

Hin-30

𝐴𝐼𝐶 = 𝑁 ⋅ ln
(𝑆𝑆𝑅

𝑁

)

+ 2 ⋅𝐾 (4)

𝐵𝐼𝐶 = 𝑁 ⋅ ln
(𝑆𝑆𝑅

𝑁

)

+ ln (𝑁) ⋅𝐾 (5)
In both expressions, 𝑁 represents the number of data

samples, 𝐾 is the number of parameters in the model, and
𝑆𝑆𝑅 represents the sum of squared residuals.

𝑆𝑆𝑅 =
∑

(𝑦̂𝑖 − 𝑦𝑖)2 (6)
Table 2 provides an overview of the identifications and

validations performed for each stage and the selected data
for each purpose. Datasets are listed according to the iden-
tifiers defined in Table 1. The first group corresponds to
intravenous PK (IV), the second to subcutaneous PK (SC),
and the third to PD. More details about each of them will be
provided in the following sections.

An identifiability analysis was carried out for each pro-
posed model structure using the Matlab toolbox genSSI
(Chiş et al., 2011). This software applies the Generating
Series Approach (Walter and Lecourtier, 1982) to determine
whether a model is structurally globally identifiable (all the
parameters are uniquely determined with the given inputs
and output in the absence of noise), structurally locally
identifiable (some of the model parameters have a finite set of
values), or structurally unidentifiable (at least one parameter
has infinite solutions).

3. Model
This section describes the modeling process for each

stage, as described in the Methods section. First, the intra-
venous PK structure will be proposed; second, the subcuta-
neous PK one; and lastly, the PD model will be addressed.
3.1. Intravenous pharmacokinetics

Intravenous PK describes plasma pramlintide behavior
after a pramlintide input is administered directly into plasma.
Said input could either be an intravenous injection or the
amount of pramlintide coming from the subcutaneous com-
partments, as it will be later in our case (Section 3.2).

A relevant precedent in literature is the model presented
by Clodi et al. (1998). This model comprised a chain of three
compartments and was validated using plasma pramlintide
clinical data. The trial consisted of a 50 𝜇g pramlintide bolus
administration, and nine healthy people participated in the
study. Another proposal regarding intravenous PK can be
found in Colburn et al. (1996), where a more complex trial
was carried out: 24 people with insulin-dependent diabetes
mellitus (i.e., T1D) were divided into three groups and were
administered 30 𝜇g, 100 𝜇g, or 300 𝜇g, in bolus or infusion
form, depending on the study arm. Clodi’s model is used in
Ramkissoon et al. (2014), with the same parameters used in
the original work.

Plasma pramlintide data from Colburn et al. (1996) is
used to identify and validate the present proposal (see the
first three rows of Table 2). The same dataset was used
in Fang et al. (2013) to propose and validate a PK/PD
pramlintide model.

In order to best describe pramlintide kinetics, a series of
hypotheses have been made, as shown in Table 3. In every
row, 𝑈𝑃 (𝑡) represents the intravenous pramlintide input and
𝑃 (𝑡), the concentration of plasma pramlintide. The bottom
part of the table lists the evaluated structure combinations,
the number of parameters to be identified in each, and
whether the combination is structurally globally identifiable.

The first hypothesis (labeled 1) is based upon Clodi’s
model, following the same model structure. The transfer
rates between compartments are identified because the ones
in the original work were based on data from people with-
out T1D. Similarly, the second (2) and third (3) proposals
reduce the number of compartments needed. A different
aspect is also considered: having an extra delay before the
compartment where plasma pramlintide is measured (A).
Although a delay might not be necessary for intravenous
data, since the substance is administered directly to plasma,
it was included to account for possible administration delays.
Six possible models were considered combining the four
model structures as listed in the row “Model combinations”
in Table 3.

Since there were plasma pramlintide data for three doses
of intravenous boluses and three doses of intravenous infu-
sion, cross-validation was performed, using the bolus data
to identify first and validate second, and vice versa with
the infusion data (see rows STAGE-IV1 and STAGE-IV2 in
Table 2).
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Table 3
Evaluated model structures for pramlintide intravenous phar-
macokinetics.

ID Model structure

1

Parameters: 𝑘𝑒, 𝑘12, 𝑘21, 𝑘23, 𝑘32, 𝑉𝑝

2

Parameters: 𝑘𝑒, 𝑘12, 𝑘21, 𝑉𝑝

3

Parameters: 𝑘𝑒, 𝑉𝑝

A

Model 1,
model 2, 

or model 3

Parameters: 𝑘01

IV model
combinations

1 1A 2 2A 3 3A

Number of
parameters

6 7 4 5 2 3

Structurally
globally
identi�able

✓ 𝑉𝑝, 𝑘𝑝01 ∗ ✓ ✓ ✓ ✓

∗These two parameters were globally identi�able. The rest were all

locally identi�able.

The selection of the best model structures for intravenous
PK consisted of three steps. First, AIC and BIC values were
calculated for validation results in STAGE-IV1. Second,
AIC and BIC were calculated for validation in STAGE-IV2
(see row STAGE-IV1 and STAGE-IV2 in Table 8, Appendix
A for the results). Then, a combination metric was obtained
to integrate the results of both validations. This metric was
based on calculating the mean of the means (𝜇 ) and the
median of the medians (𝑀), as shown in Equation (7):

𝜇𝐶 = mean (𝜇𝐶
STAGE-IV1, 𝜇

𝐶
STAGE-IV2

) (7a)
𝑀𝐶 = median (𝑀𝐶

STAGE-IV1,𝑀
𝐶
STAGE-IV2

) (7b)

Variable 𝐶 represents the criterion considered (either
AIC or BIC); 𝜇𝐶 is the mean value of the criterion obtained
for STAGE-IV1 or STAGE-IV2; 𝑀𝐶 represents the median
AIC or BIC value for each stage. The results obtained with
these metrics are detailed in Table 8, under the “Com-
bination of STAGE-IV1 and STAGE-IV2” section. Based
on these results, the three structures with the lowest index
values were selected for the next stage. The selection was not
limited to one structure because some were more appropriate
to describe infusion behavior, whereas others worked better
for bolus data.

Model structures 2, 2A, and 3 consistently provided
the three lowest index values, making them the selected
structures for this stage. These selected structures are used as
the base for evaluating subcutaneous PK models. Since both
of the performed identifications (STAGE-IV1 and STAGE-
IV2) were focused on either infusion or boluses, we wanted
to move forward with a set of parameters for each IV struc-
ture that adequately described both behaviors (infusion and
boluses). Consequently, using both data collections, a third
identification was carried out (STAGE-IV3). The NRMSE
is used for calculating 𝐽 (Equation (2)) in this stage since
there is a significant magnitude difference between infusion
and bolus data. The resulting parameter values are used for
the intravenous PK models in the next stage.

The simulation outputs of the three models after identify-
ing STAGE-IV3 against Colburn data are shown in Figure 1.
Note that the models describe the smaller doses (30, 100 𝜇g)
better than the largest one, which indicates that the models
may not capture certain nonlinearities in the pharmacoki-
netics. However, the typical doses used in current therapy
are closer to 30 𝜇g (see Table 1); hence our interest was to
achieve a better description of those doses.
3.2. Subcutaneous pharmacokinetics

Subcutaneous kinetics describes how the drug behaves
from the subcutaneous infusion point until the compartment
where plasma concentration measurements are taken.

Subcutaneous pramlintide PK models are scarce in
the literature. The most relevant precedent is the work in
Ramkissoon et al. (2014). In that paper, the authors model
intravenous PK with the Clodi model and base the design
of subcutaneous PK on previous work focused on testing
insulin PK structures (Wilinska et al., 2005).

Similar to the approach followed in the previous section,
a series of hypotheses are laid out to test their capability of
describing the data. As shown in Table 4, the first assumption
(labeled 1) is that just one compartment needs to be added
to the intravenous PK model. The second one assumes a
chain of two compartments (2). The third also uses two
compartments but distributes the flow of pramlintide in a
triangular structure (3). The following hypothesis presents
two parallel chains (4), assuming a fast and a slow channel in
the subcutaneous absorption. Lastly, structure A introduces
a bioavailability coefficient to account for some hypothetical
loss of pramlintide at the infusion site. The structures are
combined to form eight different model candidates (see “SC
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Figure 1: Plasma pramlintide simulation results of identi�cation STAGE-IV3. The three selected intravenous pharmacokinetics
structures are identi�ed using data from the six datasets available from Colburn et al. (1996) (30, 100, and 300 𝜇g 2-hour
intravenous infusion doses, and 30, 100, and 300 𝜇g 2-min intravenous boluses). The depicted models are used as base models
in the subcutaneous pharmacokinetics modeling.
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Figure 2: Plasma pramlintide simulation results of the STAGE-SC validation. Validation was performed with a variety of datasets
(30, 100, and 300 𝜇g subcutaneous boluses from Kolterman et al. (1996) and 30 𝜇g boluses from Ahrén et al. (2002); Chase
et al. (2009); Hassan and Heptulla (2009)).

model combinations” row in Table 4). Each structure was
identified three times, using each selected IV structure as
the base. Information about the number of parameters for
each structure and their structural global identifiability is
also included.

Most literature works reporting plasma pramlintide clin-
ical data use subcutaneous boluses. The source works the
data was selected from are listed in the second section of
Table 1. As detailed in Table 2, the three datasets from Kong
et al. (1998) were used for identification, since they captured
the concentration peak better than Kolterman et al. (1996),
which is undersampled for the initial trial period.

The subcutaneous model combinations were identified
three times, using each selected intravenous structure as
the base. In order to evaluate these results, AIC and BIC
were used, with a modification to account for the number
of parameters in the base intravenous model. Parameter 𝐾
in equations (4) and (5) is substituted by 𝑘 + 𝑘𝐼𝑉 , where
𝑘 is the number of parameters in the subcutaneous PK
model and 𝑘𝐼𝑉 is the number of parameters introduced by
the intravenous PK model. AIC and BIC values for each
identification are included in Table 9, Appendix A.

The final model was selected, analyzing the best mean
and median AIC and BIC values. The lowest AIC and BIC
values were achieved when using intravenous model 3 as the
base (see Table 9). In turn, the best AIC and BIC results
were produced by subcutaneous models 3 and 3A. Figure 2
shows the output produced by both models. Their behavior
is quite similar, but the subcutaneous model 3A fits the tail
more accurately, making it the selected model.

The final equations for the PK model, comprised of
intravenous submodel 3 and subcutaneous submodel 3A, are
presented in Section 4.
3.3. Pharmacodynamics model

Pharmacodynamics describe the effects on the organ-
ism of a certain substance in plasma. As the introduction
mentions, amylin has many effects, mainly regulated by the
central nervous system since amylin receptors are located
in the brain (Lutz, 2022). This work focuses on one of
amylin’s effects, aiming to define a relationship between the
concentration of plasma pramlintide and its effect on the
gastric emptying process after a meal.
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Table 4
Evaluated model structures for pramlintide subcutaneous phar-
macokinetics.

ID Model structure

1
IV model

Parameters: 𝑘𝑞

2
IV model

Parameters: 𝑘𝑞1, 𝑘𝑞2

3

IV model+

Parameters: 𝑘𝑞1, 𝑘𝑞12, 𝑘𝑞2

4

IV model+

Parameters: 𝑘𝑓 , 𝑘𝑞1, 𝑘𝑞2, 𝑘𝑞3

A
𝑈 𝑎

𝑠𝑐 = 𝑎𝑠 ⋅ 𝑈𝑠𝑐

Parameters: 𝑎𝑠

SC model
combinations

1 1A 2 2A 3 3A 4 4A

Number of
parameters

1 2 2 3 3 4 4 5

Structurally
globally
identi�able

✓ ✓ ✓ ✓ ✓ L∗ ✓ ✓

∗Parameters were all locally identi�able. The analysis could not

conclude on structural global identi�ability.

Precedents in literature modeling pramlintide PD can
be found in Fang et al. (2013), Micheletto et al. (2013), or
Ramkissoon et al. (2014). However, the model proposed by
Fang et al. (2013) has a main limitation: the pramlintide
effect on gastric emptying is independent of the amount of
the pramlintide dose. The authors in Micheletto et al. (2013)
modify an existing meal model, reidentifying its parameters
to fit glucose rate of appearance clinical data (data from
Woerle et al. (2008)). However, no new PD model is pro-
posed, and the mechanics to emulate the effect of different
pramlintide doses are not described in the paper. The model
in Ramkissoon et al. (2014) is a complete PK/PD model
that describes the effect of pramlintide modifying the meal
action 𝑡max parameter. These modifications are incorporated
to the meal model proposed in Hovorka et al. (2004), but they
introduce a piecewise function that produces a discontinuity
and implementing the model requires an analytical solution
of the meal model used.

The pramlintide PD model proposed in this work mod-
ifies the glucose rate of appearance after a meal. The meal
model used in this work was presented in Dalla Man et al.
(2006), and three differential equations describe it (see Table
7 for the description of parameters and values):

d𝑄sto1(𝑡)
d𝑡

= 𝑈𝑔(𝑡) − 𝑘g21 ⋅𝑄sto1(𝑡) (8a)
d𝑄sto2(𝑡)

d𝑡
= 𝑘g21 ⋅𝑄sto1(𝑡) − 𝑘empt(𝑄𝑠𝑡𝑜) ⋅𝑄sto2 (8b)

d𝑄gut(𝑡)
d𝑡

= 𝑘empt(𝑄sto) ⋅𝑄sto2(𝑡) − 𝑘abs ⋅𝑄gut(𝑡)
(8c)

where 𝑄𝑠𝑡𝑜(𝑡), 𝑘𝑒𝑚𝑝𝑡(𝑄𝑠𝑡𝑜), and 𝛼 are defined as:

𝑄𝑠𝑡𝑜(𝑡) =𝑄𝑠𝑡𝑜1 +𝑄𝑠𝑡𝑜2 (8d)
𝑘empt(𝑄sto) =𝑘min +

𝑘max − 𝑘min
2

⋅
(

tanh
(

𝛼 ⋅ (𝑄sto(𝑡) − 𝑏 ⋅𝐷)
)

+ 1
) (8e)

𝛼 = 5
2 ⋅𝐷 ⋅ (1 − 𝑏)

(8f)

The system’s output is the meal rate of glucose appear-
ance (𝑅𝑎(𝑡)), defined as follows.

𝑅𝑎(𝑡) =
𝑓 ⋅ 𝑘abs ⋅𝑄gut(𝑡)

𝐵𝑊
(8g)

Of note, 𝑅𝑎(𝑡) in Dalla Man et al. (2006) is defined
in mg/kg/min. Hence, the appropriate transformations have
been applied to the datasets used in this section to express
them in said units.

The proposed model describes the effect of pramlintide
on gastric emptying by multiplying the gastric emptying rate,
𝑘empt(𝑄sto), by the following function:

𝜂() = 1
1 + ℎ()

(9)

where  is the input variable to the function, which will
be related to the pramlintide concentration, and ℎ() is a
monotonically increasing function, with ℎ(0) = 0, such that
the larger the pramlintide concentration is, the slower the
gastric emptying.

Similar to the previous sections, a series of structures
have been studied to describe pramlintide dynamics. Struc-
tures 1 to 3 in Table 5 refer to the definition of  , whereas
structures A to D refer to the form of ℎ.

Structure 1 assumes  is just equal to the amount of
pramlintide in the compartment where plasma pramlintide
is measured (𝑃1). The second structure (2) introduces a
delay in the form of an extra compartment. Structure 3 uses
a double-compartment chain. On the other hand, function
ℎ() could be just linear (structure B), be defined by a
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Table 5
Evaluated model structures for pramlintide pharmacodynam-
ics.

ID Model structure

1
 = 𝑃1

Parameters: −

2

 = 𝑃𝑒𝑓𝑓

PK model

Parameters: 𝑘𝑎

3

 = 𝑃𝑒𝑓𝑓2

PK model

Parameters: 𝑘𝑎, 𝑘𝑏

A
ℎ() = 

Parameters: −

B
ℎ() = 𝛼 ⋅ 
Parameters: 𝛼

C
ℎ() = 𝑛⋅

𝑑+

Parameters: 𝑛, 𝑑

D
ℎ() = 𝑛⋅𝑒

𝑑𝑒+𝑒

Parameters: 𝑛, 𝑑, 𝑒

PD model
combinations

1A 1B 1C 1D 2A 2B

Number of
parameters

− 1 2 3 1 2

Globally
identi�able

− ✓ ✓ ✓ ✓ ✓

PD model
combinations

2C 2D 3A 3B 3C 3D

Number of
parameters

3 4 2 3 4 5

Structurally
globally
identi�able

✓ L∗ ✓ ✓ ✓ ✓

∗Parameters were all locally identi�able. The analysis could

not conclude on structural global identi�ability.

Michaelis-Menten (C), or a Hill equation (D), which are
widely used structures to describe saturation in biological
processes (Goutelle et al., 2008).

Each of the possible inputs is paired up with each of
the possible function forms, as shown in the bottom area
of Table 5. Of note, combination 1A introduces no new
parameters to be identified, so no identifiability analysis was
performed for this structure.

Data on glucose rate of appearance is more scarce in the
literature than glucose data. This is due to the complexity
of the analysis and infrastructure involved (i.e., triple-tracer
study (Basu et al., 2003)). To our knowledge, the only works
in the literature that perform this kind of analysis including

Table 6
Meal composition reported in Woerle et al. (2008) and Hin-
shaw et al. (2016). �D� denotes the number of carbohydrates
used as input to the meal model for the simulations carried out
in this work.

Dataset kcal Carbohydrates Fat Protein D

Woerle 450 45% 30% 25% 53 g
Hinshaw 703.2 55% 30% 15% 75 g

pramlintide were the works by Woerle et al. (2008) and
Hinshaw et al. (2016). In both clinical trials, the protocol
follows two arms: administering a 30 𝜇g pramlintide dose
alongside a meal or a placebo dose. The glucose rate of ap-
pearance is reported for both experiments. Placebo datasets
were used to identify two distinct sets of parameters for the
meal model (identification STAGE-PD0, Table 2), before
introducing any pramlintide model. Parameter values are
reported in Table 7.

Two different meal model parameters were necessary to
describe each placebo dataset because the behavior of the
observed signals is noticeably different (see data in Figure
3, upper row). Woerle data reaches a peak value of around
4 mg/kg/min, whereas Hinshaw data doubles that amount.
In addition, Woerle data’s disappearance rate has a value
of around 160 minutes, whereas, for Hinshaw’s, its value
is 100 min, meaning the food leaves the stomach much
faster in the second dataset. These discrepancies could be
caused by differences in the meal composition (Table 6). For
instance, meals reported by Hinshaw et al. (2016) contain
more carbohydrate and less protein than those reported by
Woerle et al. (2008), which may explain the larger and rapid
peak observed in Hinshaw data (Paterson et al., 2015).

However, we also found that a single set of parameters
for the pramlintide model could not explain the transforma-
tion in both datasets. Some preliminary identifications were
carried out as a cross-validation, similar to STAGE-IV1 and
STAGE-IV2 (Section 3.1). Nevertheless, the identification
of one of the datasets had suboptimal results in the validation
performed with the other one. How the pramlintide effect
is affected by meal composition is out of the scope of
this work since no suitable data is available. Consequently,
independent identifications were carried out for each dataset
(STAGE-PD1 with Woerle data and STAGE-PD2 with Hin-
shaw data), aiming to find a common model structure.

All model structures from Table 5 were identified for
each dataset. AIC and BIC results are reported in Table 10,
Appendix A. Of note, these values refer to identification re-
sults as opposed to the previously presented results since no
validation data is available for this stage. Results for STAGE-
PD1 show that the best structure to fit Woerle data is model
2D. However, for STAGE-PD2, the decision is split between
2D and 1D. Simulation results in Figure 3 (bottom row) show
the responses obtained with both proposals. Although their
AIC and BIC values are similar, the fit of 2D for Woerle data
is closer to the data than model 1D. On the other hand, the
results for both structures in Hinshaw data are fairly similar.
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Figure 3: Glucose rate of appearance simulation results. Columns correspond to each dataset used (Woerle et al. (2008) data
on the left column, and Hinshaw et al. (2016) on the right column). Upper row shows the meal model identi�cation results for
the trial arm of meal + placebo (STAGE-PD0). Bottom row presents the �t of PD model structures 1D and 2D to the meal +
pramlintide data (STAGE-PD1 and STAGE-PD2, respectively).

Since our goal is to propose a structure that can adapt to
different types of data, our proposed solution will be model
2D.

The behavior difference at the beginning of the simu-
lation of the pramlintide models is mainly introduced by
the parameter 𝑘𝑎, which represents the delay introduced
by compartment 𝑃eff(𝑡). It symbolizes the time it takes for
pramlintide to be effective after its appearance in plasma.
In the Woerle dataset, it has a value of around 12 minutes,
whereas, for the Hinshaw data, the identified value is around
4 minutes. This allows observing the original glucose rate of
appearance in the first samples of the simulation before the
pramlintide takes effect and slows down the glucose rise.

4. Final model
Figure 4 presents an overview of the final proposed

PK/PD pramlintide model. The equations that conform it are
defined next:

d𝑄1(𝑡)
d𝑡

= 𝑎𝑠 ⋅ 𝑈sc(𝑡) − (𝑘q1 + 𝑘𝑞12) ⋅𝑄1(𝑡) (10a)
d𝑄2(𝑡)
d𝑡

= 𝑘q12 ⋅𝑄1(𝑡) − 𝑘q2 ⋅𝑄2(𝑡) (10b)
d𝑃1(𝑡)
d𝑡

=
(

𝑘q1 ⋅𝑄1(𝑡) + 𝑘q2 ⋅𝑄2(𝑡)
)

− 𝑘𝑒 ⋅ 𝑃1(𝑡)

(10c)
𝑃 (𝑡) =

𝑃1(𝑡)
𝑉𝑃

(10d)

Meal model

IV PK

PD

SC PK 

+

Figure 4: Pramlintide model proposal overview. The three main
stages are represented: subcutaneous PK (equations (10a),
(10b)), intravenous PK (equation (10c)) and PD (equations
(9), (10e), (10f)). The input to the system, 𝑈𝑠𝑐(𝑡), is the
subcutaneous pramlintide infusion. Pramlintide concentration
in plasma is measured as 𝑃 (𝑡). Pramlintide takes e�ect by
modulating the glucose rate of appearance obtained through a
meal model (equations (8)).

d𝑃eff(𝑡)
d𝑡

= 𝑘𝑎 ⋅
(

𝑃1(𝑡) − 𝑃eff(𝑡)
) (10e)

ℎ(𝑃eff) =
𝑛 ⋅ 𝑃 𝑒

eff
𝑑𝑒 + 𝑃 𝑒

eff
(10f)

C. Furió-Novejarque et al.: Preprint submitted to Elsevier Page 9 of 14



A model of subcutaneous pramlintide pharmacokinetics and its e�ect on gastric emptying

Table 7
Pramlintide PK/PD model and meal model signals and parameters' descriptions and values. Meal model and pramlintide PD
parameters have two values: the one on the left corresponds to values identi�ed for data from Woerle et al. (2008), and the ones
on the right, from Hinshaw et al. (2016).

Symbol Units Value Description

𝑈sq(𝑡) pmol/min − Pramlintide subcutaneous infusion
𝑄1(𝑡) pmol − First subcutaneous compartment
𝑄2(𝑡) pmol − Second subcutaneous compartment
𝑃1(𝑡) pmol − Plasma pramlintide compartment
𝑃 (𝑡) pmol/l − Plasma pramlintide volume
𝑃e�(𝑡) pmol − Pramlintide e�ect compartment

𝑎𝑠 - 0.4235 Pramlintide bioavailability
𝑘𝑞1 min−1 0.0974 Rate from �rst subcutaneous compartment to plasma
𝑘𝑞12 min−1 0.1667 Rate from �rst to second subcutaneous compartment
𝑘𝑞2 min−1 0.0109 Rate from second compartment to plasma
𝑘𝑒 min−1 0.0322 Output rate from plasma compartment
𝑉𝑃 l 31.549 Plasma distribution volume
𝑘𝑎 min−1 0.0798 | 0.2671 Rate in the pramlintide e�ect compartment
𝑛 - 76.662 | 15.156 Numerator coe�cient in Hill equation from ℎ(𝑃e�)
𝑑 pmol 960.87 | 908.01 Denominator in Hill equation from ℎ(𝑃e�)
𝑒 - 4.5363 | 3.2745 Exponent in Hill equation from ℎ(𝑃e�)

𝑈𝑔(𝑡) mg/min − Meal input rate
𝑄sto1(𝑡) mg − Solid phase of glucose in the stomach
𝑄sto2(𝑡) mg − Liquid phase of glucose in the stomach
𝑄gut(𝑡) mg − Glucose mass in the intestine

𝑘empt(𝑄sto) min−1 − Rate constant of gastric emptying
𝑅𝑎(𝑡) mg/kg/min − Glucose rate of appearance in plasma
𝐷 mg − Amount of ingested glucose

𝑓 - 0.9 Fraction of intestinal absorption that appears in plasma
𝐵𝑊 kg 76 | 86 Body weight
𝑏 % 0.8235 | 0.8355 Percentage of the dose for which 𝑘empt decreases to (𝑘max − 𝑘min)∕2

𝑘abs min−1 0.0547 | 0.2280 Rate constant of intestinal absorption
𝑘min min−1 0.0074 | 0.0196 𝑘empt minimum value
𝑘max min−1 0.0273 | 0.0350 𝑘empt maximum value
𝑘g21 min−1 𝑘max Grinding rate

Equations (10a) and (10b) correspond to the subcuta-
neous PK (subcutaneous model 3A). Equation (10c) de-
scribes the intravenous kinetics (intravenous model 3), and
Equation 10d the plasma pramlintide concentration. Finally,
equations (10e) and (10f) represent PD model 2D.

Then, applying function 𝜂 (Equation (9)) to the meal
model, the equations for the states 𝑄𝑠𝑡𝑜2(𝑡) and 𝑄𝑔𝑢𝑡(𝑡) are
modified so that the effect of pramlintide acts on the gastric
emptying parameter:

d𝑄sto2(𝑡)
d𝑡

= 𝑘g21 ⋅𝑄sto1(𝑡) − 𝜂(𝑃eff) ⋅ 𝑘empt(𝑄sto) ⋅𝑄sto2(𝑡)
(11a)

d𝑄gut(𝑡)
d𝑡

= 𝜂(𝑃eff) ⋅ 𝑘empt(𝑄sto) ⋅𝑄sto2(𝑡) − 𝑘abs ⋅𝑄gut(𝑡)
(11b)

Table 7 includes the pramlintide model parameter values
and descriptions.

5. Discussion
This paper presents a pramlintide model validated with

populational data. The following paragraphs present a series
of considerations over each of the model stages, a case study
validation integrating the model in a T1D simulator, and a
review of the limitations of this work.

The selected model for the intravenous PK stage simpli-
fies the model proposed by Clodi et al. (1998). The three-
compartment model has been reduced to a single compart-
ment, providing an adequate description of infusion and
bolus data from people with T1D. Of note, the fit for the
higher dose (300 𝜇g) is the least accurate. However, no other
works found in the literature use such big intravenous doses
for pramlintide therapy. Nevertheless, identified values for
physiological parameters are within literature-reported lim-
its: pramlintide distribution volume (𝑉𝑃 ) values in the liter-
ature range between 14 and 56 l (Colburn et al., 1996; Clodi
et al., 1998; Fang et al., 2013) and the identification result
provided a value of 31.55 l.
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Figure 5: Simulation results after integrating the proposed pramlintide model into the T1D UVA/Padova simulator. Upper
graph depicts plasma glucose, middle graph depicts insulin administration,and bottom graph depicts pramlintide administration.
Continuous lines represent the mean of the results obtained for the cohort of 10 virtual patients. Shaded areas enclose standard
deviation. Results in orange represent a simulation where only insulin was administered (basal infusion and prandial boluses).
Results in blue represent a simulation where a 30 𝜇g pramlintide bolus was administered alongside insulin prandial boluses. The
simulation scenario consisted of three meals, denoted by circles in the upper graph.

Subcutaneous PK is one of the most relevant stages
since most current therapies and clinical trials administer
pramlintide subcutaneously. The identified parameters are
in the range of the available parameters in the literature.
For instance, the bioavailability coefficient identified in this
work is around the 40% reported in the Symlin prescribing
information (Amylin Pharmaceuticals, 2005). The model’s
fit to the identification data is accurate (results not shown),
but some disparities exist in the fitting of the validation
data. Subcutaneous doses of 30 𝜇g were the primary data
of interest since the open loop use of pramlintide typically
administers a 30 𝜇g bolus alongside meals. In fact, all
works used in this paper include at least a 30 𝜇g dose.
However, plasma pramlintide data presents some differences
across the clinical trials. Most of them report peak plasma
pramlintide values between 30 and 40 pmol/l after a 30 𝜇g
dose. Conversely, the data from Chase et al. (2009) and
Hassan and Heptulla (2009) show plasma values up to 50-
60 pmol/l. This magnitude difference could be because the
study participants were adolescents instead of adults. The
proposed model was fitted with adult aggregated datasets.
Therefore, it is reasonable that the model describes the Cha-
30 and Has-30 responses more poorly than the other sets (see
Figure 2). Hence, to further develop the proposed model, a
variety of data from different cohorts would help define these
differences.

Regarding the PD stage, the behavior of the two se-
lected datasets (from Woerle et al. (2008) and Hinshaw

et al. (2016)) was rather different. However, even though a
single set of parameters could not describe both signals, it
was possible to find a single shared model structure. The
resulting structure (whose main components are an extra
compartment and a Hill equation) allows modulating the
shape of the glucose rate of appearance after a meal as a
function of the amount of plasma pramlintide. Validation of
the effect of pramlintide on gastric emptying using glucose
rate of appearance data has an upside and a downside. The
positive aspect is that it allows focusing on glucose evolution
caused solely by meal ingestion. On the other hand, the
glucose rate of appearance is reconstructed based on glucose
readings, meaning it is an approximation of the actual signal.

Different parameter sets had to be identified for each
dataset used based on the information provided by the
placebo arm of the clinical trials. An even more physio-
logically accurate meal model could have better captured
both datasets’ behavior. Goyal et al. (2019) stated that the
gastric emptying rate depends on the physical characteristics
and the caloric density of meals. Focusing on the caloric
content, one would expect gastric emptying in the dataset
from Hinshaw et al. (2016) to be slower. However, glucose
in Woerle et al. (2008) data takes almost 300 minutes to get
to half its peak values, whereas, in the former, that time is
around 175 minutes. Such a difference does not seem to
be explained by meal composition. It could be explained
by differences in caloric density (i.e., solids take longer to
digest, and liquids leave the stomach faster). Nevertheless,
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more data is needed to include this effect in the present
model.

The pramlintide proposed model was integrated into
an extended version of the UVA/Padova simulator, which
implements the glucoregulatory model proposed by Dalla
Man (Dalla Man et al., 2014). The objective of this test
was to observe whether the addition of the pramlintide
model would result in coherent glucose responses after its
integration into the T1D simulator. Figure 5 shows the
result of a 24-hour simulation for the ten virtual patients
available in the simulator. The pramlintide model parameters
were maintained the same for the cohort. Specifically, the
parameters identified for the Woerle dataset were used (see
Table 7). The simulation scenario included three meals (40,
80, and 60 g of carbohydrates). In order to observe the contri-
bution introduced by the pramlintide model, two simulations
were carried out with the same scenario: with and without
pramlintide (labeled “Insulin + Pramlintide” and “Insulin”
in Figure 5, respectively). In the simulation with pramlintide,
a 1-min 30 𝜇g pramlintide bolus was administered alongside
each meal, as well as an insulin bolus. The simulation
shows a delay of the glucose postprandial peak, as well as a
reduction of the maximum glucose concentration, similar to
the effects reported both in Woerle et al. (2008) and Hinshaw
et al. (2016).

Some known physiological effects of amylin were not
tested in the model proposed structures due to the data
limitations. These effects include the inhibition of glucagon
secretion (Lutz, 2022) and the “hypoglycemic override”
(Young, 2005). Whereby amylin has no effect in hypo-
glycemia conditions since hypoglycemia accelerates gastric
emptying to raise glucose levels as soon as possible. Another
limitation of this work is the use of RMSE as an assessment
metric for parameter identification. There was no a priori
knowledge about most of the model parameters, which can
be troublesome in the identification process.

This study contributes to the study of the pramlintide
effect on gastric emptying, building a structured comparison
of an incremental model construction based on clinical data
results. Despite using aggregated data, the proposed model
is simpler than other proposals in the literature, reducing the
risk of overfitting. A novel model is proposed that offers an
easy-to-implement modulation of the gastric emptying rate
as a function of plasma pramlintide concentration. The main
limitation is the scarcity of the data used. Without access to
complete individual datasets of patients’ data, identifications
and validations had to be carried out using aggregated values
(similar to Ramkissoon et al. (2014)). Hence, no virtual
cohort could be developed. Future work may also improve
the parameter identification process, basing the parameter
selection on previously defined distributions of the parame-
ters. Nevertheless, the proposed set of parameters describing
an average behavior is capable of producing appropriate
glucose responses when integrated into a glucoregulatory
T1D simulator. This work opens the door to enhancing
and improving the proposal with additional dynamics and
individual data validation.
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Table 8
Pramlintide intravenous pharmacokinetics AIC and BIC results for validation STAGE-IV1, validation STAGE-IV2, and identi�cation
results of STAGE-IV3. The section �Combination of STAGE-IV1 and STAGE-IV2� presents the metric results obtained to select
the model structures used in STAGE-IV3. The expressions of𝜇 and𝑀 are de�ned in Equation (7). The highlighted value in each
row represents the lowest value.

Intravenous PK model structures

STAGE-IV1 1 1A 2 2A 3 3A

Mean AIC 74.30 94.93 70.18 89.37 66.20 97.95
Median AIC 65.69 88.78 61.32 82.64 57.41 96.50
Mean BIC 75.21 96.32 70.12 89.80 65.17 97.41
Median BIC 66.60 90.17 61.26 83.06 56.38 95.96

STAGE-IV2 1 1A 2 2A 3 3A

Mean AIC 152.64 132.72 138.96 130.74 131.09 123.23
Median AIC 152.42 122.16 137.37 121.26 129.74 117.17
Mean BIC 153.55 134.12 138.90 131.16 130.06 122.69
Median BIC 153.33 123.55 137.31 121.69 128.71 116.62

Combination of STAGE-IV1
and STAGE-IV2

1 1A 2 2A 3 3A

𝜇AIC 113.47 113.83 104.57 110.06 98.65 110.59

𝑀AIC
109.06 105.47 99.35 101.95 93.57 106.84

𝜇BIC 114.38 115.22 104.51 110.48 97.62 110.05

𝑀BIC
109.97 106.86 99.28 102.37 92.54 106.29

STAGE-IV3 2 2A 3

Mean AIC 97.86 94.86 94.37
Median AIC 100.40 102.19 96.33
Mean BIC 97.80 95.29 93.34
Median BIC 100.34 102.61 95.30

Improved Metabolic Control. Current Pharmaceutical Design 7, 1353–
1373. doi:10.2174/1381612013397357.

Wilinska, M.E., Chassin, L.J., Schaller, H.C., Schaupp, L., Pieber, T.R.,
Hovorka, R., 2005. Insulin kinetics in type-1 diabetes: Continuous and
bolus delivery of rapid acting insulin. IEEE Transactions on Biomedical
Engineering 52, 3–12. doi:10.1109/TBME.2004.839639.

Wilson, L.M., Jacobs, P.G., Castle, J.R., 2020. Role of Glucagon in
Automated Insulin Delivery. Endocrinology and Metabolism Clinics
of North America 49, 179–202. doi:10.1016/j.ecl.2019.10.008.

Woerle, H.J., Albrecht, M., Linke, R., Zschau, S., Neumann, C., Nicolaus,
M., Gerich, J.E., Göke, B., Schirra, J., 2008. Impaired hyperglycemia-
induced delay in gastric emptying in patients with type 1 diabetes
deficient for islet amyloid polypeptide. Diabetes Care 31, 2325–2331.
doi:10.2337/dc07-2446.

Young, A., 2005. Inhibition of Gastric Emptying. Advances in Pharmacol-
ogy 52, 99–121. doi:10.1016/S1054-3589(05)52006-4.

A. AIC and BIC validation results
This section includes the AIC and BIC values of the val-

idation process for the intravenous pharmacokinetics stage
(Table 8), the subcutaneous pharmacokinetics stage (Table
9), and the identification results of the pharmacodynamics
stage (Table 10). For more information about each stage refer
to Table 2.

B. Data availability
The data that support the findings of this study are

available from the corresponding author, J.B., upon request.
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Table 9
Pramlintide subcutaneous pharmacokinetics AIC and BIC results for STAGE-SC validation, with each of the selected IV structures
(2, 2A, and 3). The highlighted value in each row represents the lowest value.

Subcutaneous PK model structures

STAGE-SC (IV model 2) 1 1A 2 2A 3 3A 4 4A

Mean AIC 53.47 50.50 55.56 47.58 43.91 43.33 45.91 48.00
Median AIC 50.58 49.42 52.78 46.71 46.46 48.50 48.43 50.42
Mean BIC 53.18 50.15 55.22 47.18 43.51 42.87 45.45 47.48
Median BIC 50.26 48.63 52.39 46.14 45.54 47.45 47.38 49.24

STAGE-SC (IV model 2A) 1 1A 2 2A 3 3A 4 4A

Mean AIC 55.37 52.21 57.48 46.99 43.84 45.28 45.82 47.03
Median AIC 52.07 51.17 54.19 48.40 48.34 50.40 50.35 52.66
Mean BIC 55.02 51.81 57.07 46.53 43.38 44.76 45.30 46.45
Median BIC 51.68 50.25 53.73 47.35 47.30 49.22 49.17 51.35

STAGE-SC (IV model 3) 1 1A 2 2A 3 3A 4 4A

Mean AIC 49.43 46.47 51.53 44.06 39.85 39.36 41.90 41.48
Median AIC 46.60 45.40 48.79 43.15 42.45 44.44 44.44 46.47
Mean BIC 49.25 46.24 51.30 43.77 39.56 39.01 41.56 41.08
Median BIC 46.41 44.88 48.54 42.88 41.80 43.65 43.66 45.55

Table 10
Pramlintide subcutaneous pharmacodynamics AIC and BIC results. The highlighted value in each row represents the lowest value.

PD model structures

STAGE-PD1 1A 1B 1C 1D 2A 2B 2C 2D 3A 3B 3C 3D

AIC 12.31 -13.70 -11.69 -36.18 10.20 -11.71 -9.70 -38.51 -11.70 -9.71 -7.69 -35.93
BIC 11.01 -14.99 -12.28 -36.06 8.91 -12.29 -9.57 -37.68 -12.29 -9.58 -6.86 -34.38

STAGE-PD2 1A 1B 1C 1D 2A 2B 2C 2D 3A 3B 3C 3D

AIC 46.49 17.72 7.45 -9.64 44.10 19.93 9.38 -8.05 7.32 9.32 11.33 -5.96
BIC 45.32 16.55 7.12 -9.14 42.93 19.59 9.88 -6.72 6.98 9.82 12.66 -3.79
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