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Abstract: Deep learning semantic segmentation techniques applied to 2D facade images hold a great promise in 
several domains that go far beyond model generation, mainly if the data used are front-parallel or orthonormal 
photographs. However, effective applications in the field of built heritage have not been adequately explored, 
largely due to the absence of multidisciplinary teams that include architecture professionals as early as the 
dataset creation stage. The aim of this research is to introduce a holistic view in order to demonstrate the 
practical usefulness of state-of-the-art segmentation models to automate high-level cost estimates of urban-
scale residential building facade rehabilitations when combined with a connected component analysis. To 
achieve this, a scalable bottom-up approach is formulated in five simple phases, encompassing both data 
science and architecture expertise. This strategy seeks to improve the accuracy of analyses at early stages 
when limited information on constructions is available and there is a significant cost uncertainty, and 
therefore to optimise the strategies used by construction stakeholders involved in economic feasibility studies 
and decision-making processes.
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1. Introduction 

For the past decades, 2D facade parsing formulated as 
an image segmentation problem has been an important 
and challenging task in computer vision where the aim 
is to decompose an urban photograph into meaningful 
parts, after assigning a category label to each of the pixels. 
However, as Shapiro (1992: 1743) hints, it is not a trivial 
exercise but a process that must be guided by specific 
goals so as to be relevant in terms of application.

Thus, to grasp the untapped potential of segmenta-
tion techniques applied to facade images analysis and to 
propose useful implementations, it is essential to have a 
thorough understanding of both algorithms and datasets 
from the data science and the application domain point 
of view.

2. Literature review

2.1 Datasets 

In architecture, publicly available benchmark databases 
of 2D exterior images include three main types of scenes, 
each associated with a distinct field of study:

•	 Aerial urban views, usually coming from large-scale 
orthophotographs collected by airborne sensors. 

•	 Street scenes in foreshortened views, where buildings, 
outlined by their silhouette, are just another compo-
nent of the complex urban environment.

•	 Street facades, which are broken down into the main 
constructive elements that contribute to their overall 
composition.

This last category includes both rectified and unrecti-
fied images, but as front-parallel views can be treated 
as simplified elevations, they are of greater utility for 
experimentation. In this regard, ECP (Teboul, 2011), ICG 
Graz50 (Riemenschneider et al., 2012), CMP (Tylecek, 
2013) and ENPC2014 Paris Art-deco Dataset (Gadde et al., 
2016) can be noted as examples of benchmark datasets 
(Figure 1). Both ECP and ENPC2014 are prepared to recog-
nize and segment seven classes (door, shop, balcony, 
window, wall, sky and roof), Graz50 just four (door, 
window, wall and sky) and CMP eleven (facade, molding, 
cornice, pillar, window, door, sill, blind, balcony, shop, 
deco and background). 

Databases are commonly linked to the early stages of 
3D city modeling or virtual reconstructions as reported in 
the work of Teboul (2011), Riemenschneider et al. (2012), 
Musialski et al. (2013), Martinovic and Van Gool (2013), 
Mathias et al. (2016) and Varcity ETHZ (2017) project. 

Nevertheless, a mere glance is enough to reveal that 
the limited number of classes and the improper use of 
semantics fail to capture the full range of facade complex-
ities, evidencing a shallow understanding of the selected 
architecture. This undoubtedly limits data usefulness in 
virtual urban modeling and other domains that remain 
unexplored.

2.2 Segmentation techniques

In order to tackle segmentation in the three above-men-
tioned scenarios, a range of strategies has been applied 
over time, often combined. Awareness of the full range 
of procedures is essential, but due to their abundance, 
this paper will focus on highlighting only a representative 
subset. 

On the one hand, traditional methods that rely 
on manual feature extraction and rule-based systems 
(Zhuo et al., 2023) and machine learning approaches 
where classifiers are trained on labeled data to extract 
building features are common.

Many researchers explore the potentials of grammars 
for image-based urban 3D reconstruction using sets of 
rules that are mostly hand-crafted. Attention should be 
drawn to the early work of Ripperda and Brenner (2006), 
Müller et al. (2007) and Simon et al. (2011). Teboul (2011) 
for his part performs single-view image-based proce-
dural modeling for haussmannian buildings, using 
Reinforcement Learning; Riemenschneider et al. (2012) 
show an example of a parse tree transformed into 3D 
model; Martinovic and Van Gool (2013) use a technique 
that learns 2D Attributed Stochastic Context-Free 
Grammars from labeled images in order to automate the 
creation of new instances of the same building styles and 
end up showing examples of new 3D building designs 
generated from a learned shape grammar after rendering 
them in CityEngine.

Different strategies within the broader framework of 
random forests are employed by Fröhlich et al. (2010) and 
Rahmani et al. (2017). Berg et al. (2007) present a process 
in stages, guided by a Conditional Random Field (CRF). 
Čech and Radim (2009) and Koziński et al. (2015) use 
Markov Random Field (MRF) strategies.

Mathias et al. (2016) use a combination of several 
classifiers in three layers including segmentation and 
classification techniques, a CRF framework, architectural 
principles for facade parsing and procedural modeling 
following CityEngine CGA rules. In the final step, they 
talk about the possibility of using the output for 3D 
reconstructions.
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On the other hand, Deep Learning based techniques can 
be found, which have outperformed traditional vision 
approaches (Liu, et al. 2017). Hierarchical attributes 
are captured directly from the raw image data without 
needing explicit feature engineering. 

In this context, Schmitz and Mayer (2016) present the 
first fully-convolutional approach for semantic interpre-
tation of facade images based on a convolutional neural 
network inspired by Alexnet, in which they use parts of 
already-trained networks and fine-tune them.

Liu et al. (2017) develop a method called DeepFacade 
where they train deep convolutional neural networks 
with the constraints under man-made rules including 
a new symmetric regularizer applied to window, door 
and balcony classes. Their loss function penalizes 
segmentation regions that are not horizontally and 
vertically symmetric. The bounding boxes generated by 
object detection help locate and refine the shape of the 
predicted regions. At a later stage, they also apply region 
refinement.

Iglovikov and Shvets (2018) create TernausNet, a network 
that inherits classical U-Net architecture using VGG11 as 
the encoder, with 3 different ways of weight initializa-
tion. They defend that pre-trained networks substantially 
reduce training time that also helps to prevent overfitting.

Kelly et al. (2017) focus on the problem of proce-
durally creating structured models by leveraging data 
from multiple sources. They use segmentation for many 
purposes. On the one hand, to recognize those parts 
of the images that are unlikely or likely to have facade 
features using a Bayesian SEGNET CNN. On the other 
hand, to identify facade features and its boundaries. As 
for Femiani et al. (2018), they create four different refined 
models based on the SEGNET algorithm.

Pantoja et al. (2020) face the facade segmentation 
problem from two different approaches. In the first one, the 
output of the model is a facade mask. In the second one, 
the model detects the corners of the building facade and 
connects them to constitute a polygon. Both of the proce-
dures take into account Iglovikov and Shvets (2018) work.

Figure 1 | Examples of ECP (row 1), CMP (row 2) and ENPC2014 Paris Art-deco datasets (row 3).
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Dai et al. (2021) present FacMagNet for semantic 
segmentation of building facade components using a 
symmetric structure, dilated convolution and Faster 
R-CNN to handle class imbalance. Last but not least, they 
also include an ensemble learning strategy that integrates 
two models derived from the U-Net architecture adopting 
Inception ResNet-V2.

In recent years, a series of techniques such as the 
attention module and the vision transformer (ViTs) have 
been proposed to complement the CNNs. An example of it 
is the work of Zhang et al. (2022). They design a hieratical 
deep learning framework called DAN-PSPNet-Lsym where 
they include two types of attention modules (spatial 
and channel) and a novel loss function to integrate prior 
knowledge in order to force the algorithm to detect facade 
elements with a highly proportionate shape. This last idea 
was inspired by the work of (Liu et al., 2017).

2.3 General gap identification

It can be easily appreciated that research on segmenta-
tion techniques applied to facade images overempha-
sizes technical improvements that are highly special-
ized for architects and hard to follow because the field 
is self-contained. This issue can be explained by the 
absence of multidisciplinary teams that could reflect on 
the societal impact of the work and is evidenced by the 
fact that publications frequently proudly conclude by 
presenting metrics that demonstrate how state-of-the-art 
performance is surpassed. Consequently, the practical 
utility of these computer vision approaches in the field 
of built heritage is either disregarded, timidly reported 
(lacking clear demonstrations) or too narrowly focused 
on improving 3D model creation processes.

Therefore, efforts should be channeled into reflection 
on how to reverse the current situation and into show-
casing the relevance of this technologies for building 
conservation purposes. 

3. Research aim

The aim of this research is to demonstrate the practical 
usefulness of state-of-the-art segmentation models when 
combined with a connected component analysis, to auto-
mate high-level cost estimates of urban-scale residential 
building facade interventions.

The work developed is intended to be a modest step 
towards the creation of advanced tools that can genu-
inely assist urban stakeholders in their decision-making 
processes for an optimized allocation of resources in the 
case of retrofit projects (Figure 2). Owing to the limitations 

in human, material, and economic resources, as well as 
those inherent to the data used, the key contribution 
of this article is not the end product or result itself, but 
rather the reflective process and the bottom-up approach 
that encompasses both data science and architecture 
expertise. 

4. Methodological approach

In architecture, facade retrofit projects go through a long 
lifecycle where cost calculation is not done in the same 
way. Before conceptual and detailed design projects start, 
there is a high level of ambiguity and uncertainty with 
respect to the expected budget because limited technical 
information is available, so often a rough order of magni-
tude is searched.

However, deep learning segmentation techniques 
can be of great help. Instead of making estimates based 
on broad simplifications such as cost per square meter 
(founded on reference projects), rectified facade photo 
analysis can be used to suggest a reasonable cost value.

Automated 2D parsing of its elements can replace 
manual measurement work, which is a labor-intensive 
task and it is usually not done at this early stage due to 
the lack of plans. Therefore, the implementation of AI 
techniques appears to be well-suited to perform urban-
scale estimations.

Although the methodology is scalable and can be 
adapted for any segmentation algorithm, personal dataset 
or intervention scenario depending on the resources 
available (see future research possibilities of Figure 3), 
DeepLabv3+ trained on ECP benchmark database will be 
implemented due to its widespread use in state-of-the-art 
publications.

4.1 Phase 1: Dataset understanding from an 
architectural and computer vision point of view

In this case, the initial step involves reviewing an existing 
dataset to assess the opportunities it provides for experi-
mentation within facade intervention projects. Analyzing 
the selected architecture and the annotations will provide 
insight into the tool’s capabilities, specifically regarding 
the types of image information retrieval that could be 
performed.

4.1.1 Images and masks

As it was mentioned before, the ECP database was created 
by Teboul (2011). The benchmark from 2011 contains 
104 manually rectified photographs of Monge street 
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buildings and their corresponding masks, where 7 classes 
are defined. For this experiment, the images were 
obtained from Jampani et al. (2015) and the improved 
annotations presented by Martinovic et al. (2012) were 
used.  The provided multiclass semantic segmentation 
masks (Martinovic, n.d.) are in a RGB format, so in order to 
operate easily with regions, those values are transformed 
into integers: (0, 0, 255): 1 (Roof), (0, 255, 0): 2 (Shop), (128, 
0, 255): 3 (Balcony), (128, 128, 128): 4 (Chimney), (128, 255, 
255): 5 (Sky), (255, 0, 0): 6 (Window), (255, 128, 0): 7 (Door) 
and (255, 255, 0): 8 (Wall).

4.1.2 Construction period

Monge street is located in the Jardin des Plantes and Saint-
Victor districts of Paris and it was opened by Decree on 
July 30 (Paris, n.d.). Although construction dates are not 
specified in any data science publication, it can be inferred 
that Teboul views the selected buildings as post-1860 and 
in compliance with Haussmann’s regulations. In order to 
promptly verify this question without resorting to archival 
work, inventories based on topographical files and official 
records have been consulted (Dugast et al., 1990). The list 
of heritage protections of the 5th district (Mairie de Paris, 
2023) and the inscriptions on the buildings have also been 
examined. As a result of all this brief analysis, the following 
data have been obtained: No. 3 (1865), No. 12 (1867-1868), 
No. 21 (1885), No. 56 (1878), No. 60 (1893), No. 63 (1872-
1873), No. 68 (1882), No. 84 (1883-1888), No. 102 (1886), 
No. 111 (1878), No. 113 (1875), No. 115 (1878-1879), No. 
117 (1880) and No. 119 (1878-1979).

It is therefore reductive to categorize all buildings from 
this ECP dataset as Haussmannian, since many were also 
raised in the later period, which theoretically started once 
the Prefect dimissioned in 1870. The above means that 
several regulations must be taken into account in order to 
deepen the insight into the selected facades.

4.1.3 Building individualization

The urban fabric in which Monge street is located consists 
of residential blocks (in many cases triangular) arranged 
in continuous alignment, featuring buildings with shared 
party walls and chamfered corners. When talking specif-
ically about the dataset, parcel division is intended to 
coincide with the individualization of the built volume 
in the image. The vertical cuts are made without much 
precision near party walls and always end before the 
change of plane of the chamfer. Therefore, these issues 
must be taken into account when making any measure-
ment or scaling the architectural elements.

4.1.4 Regulations

For the period under review, permitted building 
profiles were defined in three regulations: the Decree 
of July 27, 1859 (Laisney and Koltirine, 1988) during 
the 3rd Empire; and those of July 22, 1882 and July 23, 
1884 during the Third Republic.

The first one set the maximum height of facades at 
20 meters for streets over 20 m, with the proviso that in 
no case should more than 5 floors be built above the 

Figure 2 | A complex tool for Decision-Making.
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ground floor. Roofs had to be pitched at 45º and their 
height could not exceed half the depth of the building 
(around 25 m). For streets between 9.75 m and 20 m, the 
height was 22.40 m to 22.50 m. Emerging elements from 
the facade could have a maximum dimension of 10 cm, 
small balconies 22 cm and large ones 80 cm (Laisney 
et Koltirine, 1988: 77). The placement of continuous 
balconies was also standardized to align horizontally with 
neighboring buildings in the second and fifth floors.

For its part, the Decree of July 23, 1884 set the height 
at 28.50 m (20 m facade + 8.50 m attic space within an 
arc of a circle with a radius of 8.50 m). The dimensions of 
small balconies and large ones do not vary, except in the 
case that the latter could be situated at a height of less 
than 4 meters, being then limited to a depth of 50 cm. 
The cornices could have a 10 cm overhang if they were 
below 2.60 m and 50 cm if they were above (Laisney et 
Koltirine, 1988: 78).

Building peculiarities can therefore be mainly appreci-
ated in the ornamental details and in the materiality of the 
facade rather than in the silhouette, as the result is normally 
as follows: Ground Floor + Intermediate floor + 3 + Attique 
(it can be set back or flush with the facade) + Mansard 
Roof with dormer windows.

Had all the aforementioned features been reflected 
in the masks, systematizing the calculations would have 
been straightforward, but this is not the case. To illustrate 
the above, calculating the total length of the railings of the 
balconies with the highest overhang would simply involve 
adding 1.60 m (0.80 cm x 2) meters to the true dimension 
estimate provided by the segmentation model.

4.1.5 Conclusions

One must be aware that Martinovic’s masks present clear 
limitations for the stated purpose. There is an inconsistent 
region categorization and delimitation due to: 

•	 Poorly rectified orthophotos that cause misalignment 
of building elements (windows and balconies). The 
primary structure of the facades, which is in fact a 
network of voids governed by level and plumb under-
lined by the enframements, the encompassing orders 
and the imposts lines, cannot always be respected 
due to the distortions.

•	 The inadequate choice of annotation shapes (rectan-
gular instead of polygonal or freeform) that cannot be 
precisely adapted to the geometry of the constructive 
elements.

•	 Broad simplifications in the use of semantics and 
geometries, not encompassing the complete spectrum 
of facade complexities. On the one hand, no finishing 

is discernible no matter what constructive element is 
selected but the facade panel is the most obvious case. 
The architecture of ashlar and render facades is part 
of Paris’ historic heritage for residential buildings and 
examples of both cases using a traditional load-bearing 
masonry system can be found in Monge street (eg. No. 
1 uses large blocks of limestone, No. 28 and 29 have 
parts where a coating simulates stone by representing 
the joints, No. 8 has a smooth continuous render finish 
on upper floors…). On the other hand, isolated, linear 
or superficial ornamentation is ignored. 

To sum up, the ECP dataset provides a useful framework for 
experimenting with the extraction of geometric properties 
of various constructive elements (quantitative and shape 
analysis). However, it is hindered by a significant limitation: 
masks lack information regarding the state of conservation 
of the facade and the stratigraphy of the walls, which will 
restrict the segmentation tool’s potential. This highlights 
the future need to create new appropriate datasets.

4.2 Phase 2: Facade intervention goal definition, 
including budget lines (task description and unit 
prices)

The initial decision involves determining the type of 
project to be undertaken (restoration, energetic refur-
bishment…), followed by defining the specific tasks 
to be executed, from both a descriptive and economic 
standpoint. 

In this sense, ECP dataset masks do not offer many 
options for consistent experimentation, but given that 
the primary aim is solely to demonstrate the applicability 
and effectiveness of computer vision techniques in the 
automated measurement extraction process, three 
budget items that could be congruent with a restoration 
of Monge street facades are listed as an example. For their 
correct drafting, cost estimation software and historical 
data should  be taken into consideration and local market 
research should be conducted.

•	 Windows: Restoration of wooden balcony door 
by means of general consolidation, including the 
replacement of deteriorated elements, the covering of 
cracks and holes with epoxy resin and the removal of 
debris. Cost: 54,39 €/m2

•	 Wall: Cleaning treatment of contaminants with water, 
ethyl alcohol and ammonia applied with soft bristle 
brushes. Cost: 17,45 €/m2

•	 Balcony railings: Restoration of wrought iron metal 
balcony including mechanical repairs, review and 
change of deteriorated decorations of the railing, 
general cleaning, removal of oxides with metal brushes 
and painting. Cost: 99,93 €/m2
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Figure 3 | Input scaling for impact.
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4.3 Phase 3: Available resources and environment 
preparation

For this project, an MSI Pulse 15 B13VGK workstation 
equipped with an Intel® Core™ i7 processor, 32 GB of RAM, 
and an NVIDIA® GPU GeForce RTX™ 4070 Laptop GPU with 
12.1 CUDA support was used. A dedicated virtual environ-
ment was set up with Python 3.11.8 and Pytorch 2.2.1. 
Moreover, the configuration included a set of essential 
libraries in order to facilitate data preprocessing, analysis, 
and visualization.

To enhance workflow during the training process, 
additional packages were also installed such as SMP 
(Iakubovskii, 2019) for accessing pretrained models, 
torchmetrics (Detlefsen et al., 2022) for evaluating 
models performance and torchvision for transformations 
(TorchVision maintainers and contributors, 2016).

4.4 Phase 4: Semantic segmentation with deep 
learning

Although deep learning segmentation algorithms have 
demonstrated outstanding performance, in order to 
reduce overfitting problems due to the lack of labeled 
data, basic image augmentation techniques are imple-
mented to artificially increase the train set. In this 
regard, torchvision.transforms.v2 module is used to 
apply color (gaussian blur, sharpening, autocontrast and 
jitter adjustment) and geometric (horizontal flipping) 
manipulations.

In this supervised experiment, a random splitting 
approach in 2 steps is proposed using Scikit learn 
train_test_split function to avoid contamination 
among subsets, hence over-optimistic model metrics. 
83 samples are retained for training, 12 for validation 
and 9 for test.

After creating Pytorch datasets and dataloaders 
with their corresponding custom transformations, SMP 
library (Iakubovskii, 2019) is used, as it provides access to 
a wide range of encoder-decoder options to experiment 
with. DeepLabV3Plus (Chen et al., 2018) architecture 
with Resnet-34 as network backbone is implemented, 
including encoder pretrained weights on ImageNet.

The training procedure is carried out for 250 epochs 
with a learning rate of 0.0001, the Adam optimizer with 
β1 = 0.5 and β2, = 0.999 and the Diceloss function as the 
criterion. The performance is measured using the Dice 
coefficient averaged across the 9 classes. The resulting 
loss and dice curves are shown in Figure 4.

As stated at the beginning of the article, the objective 
is not to create a highly competitive model in this field 
that rivals the state-of-the-art technical publications, so 
the improvement of the dice score obtained should not 
be the main concern until the utility of this segmentation 
techniques is demonstrated. Furthermore, in the context 
of high-level cost estimates made in the early stages of 
any architectural project, there is a considerable toler-
ance for error. Nor should it be overlooked that the final 
budget will depend to a large extent on the price per unit 
fixed for each task. Therefore, the average dice value of 
0.887 reached for validation is considered sufficient 
to continue with research, despite being lower than 
the one achieved by Liu et al. (2017) and others using 
different techniques.

The model is finally evaluated on 9 unseen images 
to assess its generalization ability, achieving an average 
Dice score of 0.865 on the test data. In qualitative terms, 
predicted masks do not show accurately delineated 

Figure 4 | Training and validation loss and dice curves after 250 epochs.



Leveraging deep learning segmentation techniques and connected component analysis to automate high-level cost 
estimates of facade retrofits using 2D images  
Escalada

VITRUVIO  9 | 2 (2024)   
International Journal of Architecture 

Technology and Sustainability

10V

regions of interest. Nevertheless, although being noisy or 
blooby, they are sufficiently good when the annotations 
have been made with greater precision, the facades are 
not heavily sun-exposed and there is no vegetation on 
the balconies (Figure 5).

4.5 Phase 5: Feature measurement and facade 
intervention cost calculation

In order to operate with visually recognizable predicted 
segmentations, regions must be mathematically 
identified in the multi-class masks. For this purpose, 
cv2.connectedComponentsWithStats() from OpenCV 
(n.d.) is used, which performs a connected compo-
nent analysis (CCA) on binary images. This technique 
assigns a unique label to each connected component 
and provides information about the number of regions 
identified, the class they belong to and some additional 
statistics (stats parameter) about the bounding box, 
such as x and y coordinates, width, height, area (number 
of pixels) and centroids.

Before proceeding with the calculation, two key 
considerations must be addressed:

•	 The classes of interest are Balcony (3), Window (6) 
and Wall (8).

•	 Balconies are in the foreground and cover part of the 
windows and the facade wall. Consequently, only 
measurements for the first elements can be extracted 
using Martinovic’s masks, which are later automati-
cally modified to exclude class 3 in order to enable 
calculations for numbers 6 and 8 (Figure 5).

After converting multi-class problems into binary ones, 
the number of pixels per class is calculated using both 
ground truth and predicted masks. The percentage of 
the image occupied by each class is then derived.

Subsequently, the images are scaled using the plot 
width value (obtained from the Paris cadastre) consid-
ering that theoretically, the party walls constitute the 
vertical limits of the photographs. It is acknowledged 
that this procedure lacks full automation and requires 
further consideration.

Next, percentages are applied to real measurements 
to obtain the number of square meters of each type of 
constructive element that seeks to be analyzed. 

Lastly, it simply comes down to relating the consider-
ations shared in phase 2 with the results of the previous 
section.

5. Results

After performing comparisons across different masks 
for each test example, the resulting deviations from the 
ground truth serve to verify the procedure’s relevance. 
Results for building No. 31 are presented in Table 1; 
however, this process is fully automated for all cases. As a 
remark, all decimal places were considered in the calcu-
lations for the values in euros. 

Figure 5 | Building No. 31 image and ground truth (GT) mask over image 
(first row), GT mask and prediction (PR) mask with balconies (second 
row), GT mask and PR mask without balconies (last row).
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The result of the total budget for the 9 examples of 
the test set is shown in Table 2. Errors are derived from 
a different metric -price-, easily understandable for stake-
holders that seek to avoid budget overruns right from the 
planning phase and to streamline resource allocation. 
Values vary from 2.67 to 8.99% and are tolerable in the 
early stages of any architecture project that inherently 
involves uncertainty due to incomplete data and evolving 
conditions. 

6. Conclusions

In summary, this paper provides a holistic approach 
to semantic segmentation techniques and connected 
component analysis through an architectural project 
example that seeks to automate the calculation of 
high-level budgets for residential facade interventions. 
Regardless of CMP mask inconsistencies and limitations, 
the results obtained in section 5 validate the hypothesis 
that SOTA algorithms can retrieve useful information from 
facade images. 

Nevertheless, despite showing promise, the proposed 
method is not yet mature enough to serve as a stand-
alone solution for efficient resource allocation and aid 
management in the architectural heritage conservation 
field. It needs to be complemented with other diagnostic 
tools such as condition assessments, degradation 
monitoring, etc.

Additionally, for these particular tools to be integrated 
into the urban planning workflow (Figure 2) and thus 
achieve a real societal impact (Figure 6), the collaborative 
work of multiple professionals is required, who must 
attend to the following aspects:

•	 The creation of bigger and architecturally rigorous 
datasets tailored to the possible interventions (reac-
tive, proactive or preventive) on buildings with good 
image quality and no distortions. To avoid leading to 
a superficial understanding of their condition, masks 
should capture both geometric and conservation 
state or damage data.

•	 The implementation of models that offer better 
performance in segmentation tasks and the use of 
mask refinement strategies.

•	 The consideration of a greater number of construction 
tasks.

•	 The synchronization with an up-to-date cost database 
that reflects market variations in the different loca-
tions where construction works should be executed.

•	 The design of user-friendly end-tools.
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Table 2 | Results across all examples of the test set.

Class GT € PR €
3 38172,49 € 39190,24 €

6 29298,28 € 27802,36 €

8 27315,59 € 24859,91 €

Total 94786,36 € 91852,51 €

Class Absolute Error (AE) € Relative Error (RE) %
3 1017,75 € 2,66618 %

6 1495,92 € 5,10582 %

8 2455,68 € 8,99003 %

Total 2933,85 € 3.09523 %

Table 1 | Building No. 31: results for ground truth and predicted masks with and without balconies.

C No. of pixels % m2 €

Ground truth masks (GT)

3 32343 14,79 57,62 5757,82 €

6 41405 18,93 73,76 3957,50 €

8 116144 53,11 206,91 3528,84 €

Predicted masks (PR)

3 29642 13,56 52,81 5277,03 €

6 40842 18,68 72,76 3957,50 €

8 113515 51,91 202,23 3528,84 €
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Figure 6 | Dream horizon: impact journey.
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