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Abstract

This work lays the groundwork for experimental control algorithm implementations
in the PX4 stack, focusing on the design and integration of an LQR (Linear Quadratic
Regulator) control algorithm tailored for the H200 aircraft dynamic model, developed
by the HORUS UPV project.

The LQR algorithm is selected due to its lower implementation complexity with
the objective to compare it with the default PID controller. LQR demonstrated
smoother trajectory rejection and better error-based indices for pitch control, al-
though it requires further refinement in roll error rejection. Regarding trajectory
error rejection, the performance is similar to PID implementation. The PX4 stack
is modified using C++ to integrate the experimental control, enabling a calibration
process via empirical methods to achieve optimal performance.

Software-in-the-loop (SIL) simulations are conducted, combining the dynamic
model with a ground control station software, to evaluate the algorithm’s effective-
ness. For autonomous flight, the control mode allows switching between the standard
PID controller of the commercial flight control unit and the experimental LQR im-
plementation.



Resumen

Este trabajo sienta las bases para la implementación experimental de algoritmos
de control en la plataforma PX4, centrándose en el diseño e integración de un algo-
ritmo de control LQR (Regulador Cuadrático Lineal) adaptado al modelo dinámico
del avión H200, desarrollado por el proyecto HORUS UPV.

El algoritmo LQR se selecciona debido a su menor complejidad de implementación
con el objetivo de comparar el rendimiento con el controlador PID predeterminado.
El LQR demostró un rechazo de trayectorias más suave y mejores ı́ndices basados en
el error para el control de pitch, aunque requiere más refinamiento en el rechazo de
error de alabeo. En cuanto al seguimiento de trayectorias, el rendimiento es similar
a la implementación de PID. La plataforma PX4 se modifica en lenguaje C++ para
integrar el control experimental, lo que permite un proceso de calibración mediante
métodos emṕıricos para lograr un rendimiento óptimo.

Se realizan simulaciones software-in-the-loop (SIL) que combinan el modelo dinámico
con un software de estación de control en tierra para evaluar la eficacia del algoritmo.
Para el vuelo autónomo, el modo de control permite alternar entre el controlador
PID estándar de la unidad de control comercial y la implementación experimental de
LQR.



Resum

Aquest treball estableix les bases per a la implementació experimental d’algorismes
de control en la plataforma PX4, centrant-se en el disseny i integració d’un algorisme
de control LQR (Regulador Quadràtic Lineal) adaptat al model dinàmic de l’avió
H200, desenvolupat pel projecte HORUS UPV.

L’algorisme LQR es selecciona per la seua menor complexitat d’implementació
amb l’objectiu de comparar-lo amb el controlador PID predeterminat. El LQR va
demostrar una rejeció de trajectòries més suau i millors ı́ndexs basats en l’error per
al control de l’elevació, tot i que requereix més refinament en la rejeció de l’error
de gir. En quant a l’error del seguiment de trajectòries, el rendiment es similar a
la implementació de PID. La plataforma PX4 es modifica en llenguatge C++ per a
integrar el control experimental, cosa que permet un procés de calibratge mitjançant
mètodes emṕırics per a aconseguir un rendiment òptim.

Es realitzen simulacions software-in-the-loop (SIL) que combinen el model dinàmic
amb un programari d’estació de control en terra per a avaluar l’eficàcia de l’algorisme.
Per al vol autònom, el mode de control permet alternar entre el controlador PID
estàndard de la unitat de control comercial i la implementació experimental de LQR.
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Chapter 1

Introduction

1.1 Project definition

This project is based on H200 prototype, developed by HORUS UPV from Univer-
sitat Politècnica de València (UPV). This is a university project group that involves
students and professors from different disciplines and is related to designing and man-
ufacturing unmanned aircaft prototypes. In addition, the Instituto Universitario de
Automática e Informática Industrial (ai2), and Clean Mobility and Transport (CMT),
both also from UPV, are responsible for the project.

The motivation of it is to create a test bench for the research of hybrid propulsion
systems. In this case, by using LiPo batteries and hydrogen propulsion. The objec-
tive is to exceed the current endurance of alternative propulsed aircraft in typical
operations, which is around 45 minutes.

1.1.1 H200 platform

Conceptually, [1][2] this aircraft is based on a semimonocoque structure with CFRP
frames and foam nucleus, with CFRP skin. Its main wing is suited with SD7062
profile, with a wingspan of 2.95 meters and a wing surface of around 1 m2. For the
tail wing, a V style wing is selected to increase surface. The maneuvers are possible
with two ailerons and two flaps in the main wing, and two elevators-rudders in the
tail wing. All of this yields a mass of 15 kg, thanks to the use of CFRP. A picture of
the aircraft can be seen in Figure 1.1
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Figure 1.1: H200 aircraft. Source: [3]

It incorporates a commercial module that includes the PX4 stack to control it.
The predetermined control technique is based on PID control. There is the need to
experiment with more advanced control techniques inside this stack. The project is
oriented to address this necessity.

1.2 Unmanned Aircraft

In this section a description of UA (Unmanned Aircraft) is given. In addition, its
history is revised to justify the different applications that emerged thanks to the
historic context of each era. Finally, an enumeration of the different applications of
this technology is presented.

1.2.1 Description

The Global Air Traffic Management Operational Concept from ICAO (International
Civil Aviation Organization) states: “An unmanned aerial vehicle is a pilotless air-
craft, in the sense of Article 8 of the Convention on International Civil Aviation,
which is flown without a pilot-in-command on-board and is either remotely and fully
controlled from another place (ground, another aircraft, space) or programmed and
fully autonomous”[4]. Moreover, FAA (Federal Aviation Administration) defines it
as the following: “It is defined by statute as an aircraft that is operated without the
possibility of direct human intervention from within or on the aircraft.”[5]. ICAO
also defines in its regulations some terms regarding unmanned aircraft:

� Remotely-piloted aircraft: An aircraft where the flying pilot is not on board the
aircraft. This is a subcategory of unmanned aircraft.

� Remotely-piloted aircraft system: A set of configurable elements consisting of
a remotely-piloted aircraft, its associated remote pilot station(s), the required
command and control links and any other system elements as may be required,
at any point during flight operation.

� Unmanned aircraft system: An aircraft and its associated elements which are
operated with no pilot on board. It is the term that substitutes the obsolete
Unmanned Aerial Vehicles (UAV).
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1.2.2 History

UAS (Unmanned Aircraft Systems), commonly known as drones, have a history that
spans over a century. They evolved from simple, rudimentary designs to sophisticated,
high-tech machines capable of various tasks. These range from military operations
to commercial applications. The concept of UASs dates back to the early 20th century.

The first recorded instance of an unmanned vehicle was the Kettering Bug as seen
in Figure 1.2, developed during World War I (1918) by Charles Kettering. It was an
aerial torpedo meant to target enemy positions by using pre-set coordinates. It had
a wingspan of 15 feet and a range of 75 miles. Powered by a simple four-cylinder
engine, it could carry 180 pounds of explosives. Launched from a track, it used an
on board guidance system to reach its target. Once the engine stopped, the wings
detached, causing the Bug to fall onto the target.

Figure 1.2: Kettering Bug. Source: [6]

Later, between the World Wars, UASs saw significant advancements. However,
it was during World War II that the development of this technology accelerated. As
seen in Figure 1.3, the OQ-2 Radioplane was developed by Reginald Denny in 1939
to be mass-produced. It served as a tool for training anti-aircraft gunners. With 12
foot wingspan, it had a two-stroke engine capable of propelling the aircraft up to 85
mph.
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Figure 1.3: OQ-2A Radiocontrol. Source: [7]

During the Second World War, specifically in 1944, the Nazi Germany developed
the V-1 Flying Bomb, seen in Figure 1.4. It was a jet-powered cruise missile with
a range of 150 miles that can carry a 1,870 pound warhead. Once launched from
a ground-based ramp or aircraft, a simple autopilot system was the responsible for
guidance. It targeted London and other strategic locations, becoming one of the first
UASs used for offensive purposes.

Figure 1.4: V-1 Flying Bomb. Source: [8]

Fast-forwarding to the Cold War era, the development of more sophisticated UASs
was driven by the need for reconnaissance and surveillance without risking human
lives. Ryan Aeronautical Company developed in 1951 the Ryan Firebee, seen in Fig-
ure 1.5. This was a drone with 1,400 miles range and speed of 700 mph. It was
launched from ground or air and recovered via parachute and inspired the reconnais-
sance drones during this era.

4



Figure 1.5: Ryan Firebee. Source: [9]

During the 60s, CIA developed Project AQUILINE, a strategic reconnaissance
UAS that resembled to a bird for covert operations. It can be seen in Figure 1.6 [10].
Designed to be stealthy, they were equipped with advanced guidance systems and
provided long endurance. Although this project was eventually cancelled, it proved
the potential of UASs for intelligence missions.

Figure 1.6: McDonnell Douglas Aquiline. Source: [11]

The latter part of the 20th century and the early 21st century saw a rapid expan-
sion in UAV technology, driven by advancements in electronics, GPS, and materials
science. An example of these advancements is the Northrop Grumman RQ-4 Global
Hawk, seen in Figure 1.7. This is a high-altitude, long-endurance reconnaissance UAS,
capable of flying at altitudes of 18,000 m for over 30 hours. Due to its advanced radar
and imaging equipment it was extensively used in conflict areas to provide invaluable
intelligence and battlefield awareness.
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Figure 1.7: Northrop Grumman RQ-4 Global Hawk. Source: [12]

Finally, UASs have found applications beyond the military, including commercial,
scientific, and recreational use. With the latter purpose, it can be seen in Figure 1.8
[13] the DJI Phantom, a consumer-grade aerial photography and videography drone.
It uses technology such as GPS stabilization to provide intuitive controls. Its beginner
friendly design philosophy sprang its popularity among hobbyists and professionals,
and contributed with other commercial drones to make the UAS concept widespread
among society. It proved useful for applications different from their initial intention,
such as search and rescue.

Figure 1.8: DJI Phantom series. Source: [13]

The history of UASs is a testament to the relentless pursuit of technological ad-
vancement. From the early prototypes like the Kettering Bug to the sophisticated
drones of today, they have become essential tools in modern society. As technology
continues to evolve, the future of UASs promises greater capabilities and applications.
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1.2.3 Applications

As seen in the previous section, this technology has many applications derived from
the context when they were developed. In this section some examples are presented.

� Military and Defense: They can be used for Reconnaissance and Surveillance,
monitoring enemy movements without risking human lives. In addition,armed
ones are deployed for precise attacks on enemy targets, reducing collateral dam-
age and minimizing risks to human soldiers. They also are utilized to transport
supplies, ammunition, and medical equipment to troops in remote or hostile
areas.

� Agriculture: Equipped with sensors and cameras they can monitor crop health,
detect diseases, assess soil conditions. In summary they collect useful data to
make informed decisions. They can also take action by applying fertilizers,
pesticides or planting seeds.

� Rescue Operations: They provide real-time information during natural disasters
such as floods, hurricanes, and earthquakes. They also help coordinate rescue
operations and deliver supplies to affected areas.

� Law Enforcement and Public Safety: Responsible for the aerial surveillance for
large public events, protests, or emergency situations. They help law enforce-
ment monitor crowds, detect threats, and ensure public safety.

� Media and Entertainment: Used for film production, news coverage, and com-
mercial photography due to their unique image perspectives. Also, drone light
shows are becoming popular.

� Commercial and Industrial Applications: They are attractive for delivery in-
dustry, especially in urban areas. They can also be used for detailed map
generation.
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Chapter 2

Objectives and project scope

2.1 Project objective

The main goal of this project is to develop an experimental control implementa-
tion that can coexist with the regular autopilot implementation of the PX4 open-
source software. This implementation should allow for switching between both con-
trol modes. In this case, the experimental controller will be based on an LQR (Linear
Quadratic Regulator) algorithm. This setup should function during Software in the
Loop (SITL) simulations using the H200 aircraft model.

2.2 Project scope

Different milestones will be set to assess the accomplishment of the project’s main
objective:

1. Adaptation of PX4 code to be suited for control mode switchability.

2. Comprobation of correct behaviour of the regular implementation and of control
mode switchability.

3. Development of experimental LQR code.

4. Linearization of Bryan equations with aircraft dynamic model around an oper-
ating point.

5. Q and R matrices assignment.

6. Riccati’s equation calculation.

7. LQR parameters insertion and simulation with H200 model.

8. Validation of experimental controller performance.

9. Comparison with original PID implementation.

Once the performance of the LQR controller implementation is assessed and com-
pared with the original implementation, the project will be considered to be complete.
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Chapter 3

Process description

HORUS project confronts different topics around the flight of an autonomous vehicle
propelled by hydrogen. A general scheme of the system elements and examples of the
knowledge areas they involve can be seen in Figure 3.1.

Figure 3.1: Scheme of the HORUS project. Source: own

Many of these lie outside project’s scope. It will focus on the equation mod-
elling of the airframe and the modification of the PX4 software to include different
experimental control versions. These will be introduced along this chapter.

3.1 Fixed-Wing aircraft model

Designing the controller for a fixed-wing aircraft requires to mathematically model
it. The model used for the representation in this case is the one created by George
Hartley Bryan in 1911, known as Bryan’s equations.

To understand these equations, an introduction is given into the different concepts
that are needed.
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3.1.1 Reference system

A reference system is needed to define aircraft position, velocities and accelerations.
It consists of an orthogonal trihedral that has its origin set differently depending on
the application. In the case of this work, by considering the assumption of little
perturbations, the equations will be described by using Body Axes. However, as
it will be seen in the following section, other reference systems are needed to fully
represent an aircraft. It is assumed that the aircraft has a symmetry plane that goes
from the nose to the back of the aircraft.

� Body Axes reference system: The origin of this system is in the center of gravity
of the aircraft, and moves and rotates as the aircraft does.

– XB axis: Represents the longitudinal axis of the aircraft. It is directed
towards the nose and is included in the symmetry plane.

– ZB axis: Perpendicular to theXB axis and included in the symmetry plane.
It points towards the bottom.

– YB axis: Perpendicular to the symmetry plane of the aircraft and directed
towards the right of the pilot. It is perpendicular to the aforementioned
axes.

� Wind Axes reference system: This system is related to the aerodynamic veloc-
ity, with its origin at the center of gravity.

– XW axis: Identical to the aerodynamic velocity vector.

– ZW axis: Included in the symmetry plane and is perpendicular to XW ,
pointed at the bottom of the aircraft.

– YW axis: Perpendicular to the aforementioned axes.

� Earth Axes reference system: It is an inertial reference system respect to which
the center of gravity will be represented. Its origin is settled in the Earth
surface.

– XE axis: Directed to the North.

– ZE axis: Directed to the Earth’s center.

– YE axis: Directed to the East.

� Local Horizon Axes reference system: It is parallel to the Earth Axes reference
system, but with the origin at the aircraft’s center of gravity.

3.1.2 Aircraft attitude

To represent the aircraft the position of its center of gravity and its attitude is needed.
There are different methods of obtaining the attitude, but in this case the Euler an-
gles will be used.

Euler angles define the attitude of a non-inertial reference system with respect to
an inertial one via rotations around the different axes. In this case, the inertial one is
Earth Axes reference system, and the non-inertial the Body Axes reference system.
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� Roll angle ϕ: Rotation angle around XB axis.

� Pitch angle θ: Rotation angle around YB axis.

� Yaw angle (heading) ψ: Rotation angle around ZB axis.

The transformation from one system to another has an specific sequence which is
typically known as 3-2-1, which means that first the system is rotated around ZB,
then YB and finally XB, represented as following: (ψ → θ → ϕ). This yields the
rotation matrix that if is multiplied by the Earth reference system, the Body reference
system is obtained.

3.1.3 Bryan equations

Bryan equations is a set of twelve non-lineal coupled differential equations. They
describe the behaviour of an aircraft considering it has six degrees of freedom: three
rotations and three translations.

There is a list of assumptions that are considered to reduce the complexity of the
model:

1. Aircraft is modelled as a rigid solid. This means it cannot be deformed, or two
points of it always maintain their relative distance.

2. The aircraft has a symmetry plane that makes Ixy and Iyx become zero.

3. The rotation of the aircraft engine or propeller has no effect.

4. Mass change during a manoeuvre is neglected.

5. Translation equations are dependant on rotational equations.

The nomenclature used for the different variables of Bryan equations is represented
in Figure 3.2 and collected in Table 3.1.

Figure 3.2: Representation of axes with used nomenclature. Source: [14]
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Angular and linear Forces and Angles and
velocities moments distances

Forward (x axis) u X x
Side (y axis) v Y y

Vertical (z axis) w Z z
Roll p L ϕ
Pitch q M θ
Yaw r N ψ

Table 3.1: Nomenclature used in Bryan equations

Translational dynamics

From Newton’s Second Law:

∑
F⃗ =

XY
Z

 =
d(m · V⃗ABS)

dt
= m · ˙⃗

VABS (3.1)

Absolute acceleration has contributions from translational velocities and rota-
tional velocities.

˙⃗
VABS =

 u̇v̇
ẇ

+

∣∣∣∣∣∣
i⃗ j⃗ k⃗
p q r
u v w

∣∣∣∣∣∣ =
 u̇v̇
ẇ

+

q · w − r · v
r · u− p · w
p · v − q · u

 (3.2)

Then, dividing the forces of each axis into thrust, aerodynamic and gravitational
forces the following set of equations is obtained. To obtain gravitational forces a
transformation from Local Horizon Axes reference system to Body Axes reference
system is performed.

m · (u̇+ q · w − r · v) = FTX + FAX − FGX (3.3)

m · (v̇ + r · u− p · w) = FTY + FAY − FGY (3.4)

m · (ẇ + p · v − q · u) = FTZ + FAZ − FGZ (3.5)

Now, decomposing forces into their different terms the three first Bryan equations
are obtained.

m · (u̇+ q · w − r · v) = TX +
1

2
· ρ · V 2 · SW · CX −m · g · sin(θ) (3.6)

m · (v̇ + r · u− p · w) = TY +
1

2
· ρ · V 2 · SW · CY −m · g · cos(θ) · sin(ϕ) (3.7)

m · (ẇ + p · v − q · u) = TZ +
1

2
· ρ · V 2 · SW · CZ −m · g · cos(θ) · cos(ϕ) (3.8)
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Rotational dynamics

For the moments: ∑
M⃗ =

LM
N

 =
˙⃗
HABS (3.9)

Where H is the angular momentum.

LM
N

 =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

ṗq̇
ṙ

+

0 −r 0
r 0 −p
0 p 0

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

pq
r

 (3.10)

This gives the following set of equations.

L = Ixx · ṗ− Ixz · ṙ − Ixz · p · q + (Izz − Iyy) · q · r − Iyz · (q2 − r2)− Ixy · (q̇ − r · p)
(3.11)

M = Iyy · q̇ − Ixz · (p2 − r2) + (Ixx − Izz) · p · r + Ixz · (ṗ+ q · r)− Iyz · (ṙ − p · q)
(3.12)

N = Izz · ṙ − Ixz · ṗ+ Ixz · r · q + (Iyy − Ixx) · p · q − Ixy · (p2 − q2)− Iyz · (q̇ + r · p)
(3.13)

Due to the symmetry assumption mentioned above, Ixy = Izy = 0. Rearranging
the equation considering A = Ixx · Izz − I2xz the next three Bryan equations are
obtained.

ṗ =
Ixx
A

· L+
Ixz
A

·N +

(
Ixz · (Ixx − Iyy + Izz)

A

)
· p · q +

(
Izz · (Iyy − Izz)− I2xz

A

)
· r · q

(3.14)

q̇ =
M

Iyy
+
Izz − Ixx
Iyy

· p · r + Ixz
Iyy

· (r2 − p2) (3.15)

ṙ =
Ixx
A

·N +
Ixz
A

· L+

(
Ixx · (Ixx − Iyy) + I2xz

A

)
· p · q +

(
Ixz · (Iyy − Ixx − Izz)

A

)
· r · q

(3.16)

Euler relations

The Euler relations are given as following.

pq
r

 =

ϕ̇0
0

+
1 0 0
0 cos(ϕ) sin(ϕ)
0 −sin(ϕ) cos(ϕ)

0θ̇
0

+
1 0 0
0 cos(ϕ) sin(ϕ)
0 −sin(ϕ) cos(ϕ)

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

00
ψ̇


(3.17)

The resulting equations are the next three Bryan Equations.
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p = ϕ̇− ψ̇ · sin(θ) (3.18)

q = θ̇ · cos(ϕ) + ψ̇ · cos(θ) · sin(θ) (3.19)

r = ψ̇ · cos(θ) · cos(ϕ)− θ̇ · sin(ϕ) (3.20)

Kinematics

Kinematic relations are obtained transforming the velocities in Body Axes reference
system to Local Horizon Axes reference system, being the last three Bryan Equations.

ẋ = u · cos(ψ) · cos(θ) + v · (cos(ψ) · sin(θ) · sin(ϕ)− cos(ϕ) · sin(ψ))−
− w · (sin(θ) · cos(ϕ) · cos(ψ) + sin(ϕ) · sin(ψ)) (3.21)

ẏ = u · cos(θ) · sin(ψ) + v · (cos(ϕ) · cos(ψ) + sin(θ) · sin(ϕ) · sin(ψ))+
+ w · (−cos(ψ) · sin(ϕ) + cos(ϕ) · sin(θ) · sin(ψ)) (3.22)

ż = −u · sin(θ) + v · cos(θ) · sin(ϕ) + w · cos(θ) · cos(ϕ) (3.23)

Summary

The twelve equations being used for the model are the following.
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m · (u̇+ q · w − r · v) = TX +
1

2
· ρ · V 2 · SW · CX −m · g · sin(θ) (3.6)

m · (v̇ + r · u− p · w) = TY +
1

2
· ρ · V 2 · SW · CY −m · g · cos(θ) · sin(ϕ) (3.7)

m · (ẇ + p · v − q · u) = TZ +
1

2
· ρ · V 2 · SW · CZ −m · g · cos(θ) · cos(ϕ) (3.8)

ṗ =
Ixx
A

· L+
Ixz
A

·N +

(
Ixz · (Ixx − Iyy + Izz)

A

)
· p · q +

(
Izz · (Iyy − Izz)− I2xz

A

)
· r · q

(3.14)

q̇ =
M

Iyy
+
Izz − Ixx
Iyy

· p · r + Ixz
Iyy

· (r2 − p2) (3.15)

ṙ =
Ixx
A

·N +
Ixz
A

· L+

(
Ixx · (Ixx − Iyy) + I2xz

A

)
· p · q +

(
Ixz · (Iyy − Ixx − Izz)

A

)
· r · q

(3.16)

p = ϕ̇− ψ̇ · sin(θ) (3.18)

q = θ̇ · cos(ϕ) + ψ̇ · cos(θ) · sin(θ) (3.19)

r = ψ̇ · cos(θ) · cos(ϕ)− θ̇ · sin(ϕ) (3.20)

ẋ = u · cos(ψ) · cos(θ) + v · (cos(ψ) · sin(θ) · sin(ϕ)− cos(ϕ) · sin(ψ))−
− w · (sin(θ) · cos(ϕ) · cos(ψ) + sin(ϕ) · sin(ψ)) (3.21)

ẏ = u · cos(θ) · sin(ψ) + v · (cos(ϕ) · cos(ψ) + sin(θ) · sin(ϕ) · sin(ψ))+
+ w · (−cos(ψ) · sin(ϕ) + cos(ϕ) · sin(θ) · sin(ψ)) (3.22)

ż = −u · sin(θ) + v · cos(θ) · sin(ϕ) + w · cos(θ) · cos(ϕ) (3.23)

3.2 PX4 stack

The PX4 stack is an open-source flight control software platform designed primarily
for Unmanned Aircraft Systems (UAS), including drones, multicopters, and fixed-
wing aircraft. It provides the necessary software components and tools for controlling
and managing various aspects of UAS flight, from basic stabilization to complex
mission planning and execution. Its different sections will be explained to comprehend
what will be modified in this project.

3.2.1 System overview

As seen in the PX4 user guide [15], the general structure of the PX4 system architec-
ture is shown in Figure 3.3.
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Figure 3.3: PX4 system architecture general scheme. Source: [15]

� Ground Control Station (GCS): It is software based on communication between
a ground station and an aircraft. It allows users to design and monitor missions,
visualize real-time telemetry data and send commands to the aircraft during
flight. The communication between the ground station and the flight controller
is handled via MAVLink, a lightweight communication protocol widely used in
UAs.

� Flight Controller: The aircraft’s flight controller, running the PX4 firmware,
receives commands via telemetry and RC radios. It processes sensor data and
computes the necessary control outputs to achieve the desired flight behaviour.
This involves translating the mission goals or manual inputs into specific actions
sent to the aircraft’s actuators. Moreover, there is the possibility of manually
controlling the aircraft through the RC Controller.

� uORB Middleware: A crucial part of the PX4 architecture is uORB (micro
Object Request Broker). It is a middleware that handles communication be-
tween different software components. Its main feature is to act as a publish-
subscribe messaging system, allowing various modules (e.g., sensors, estimators,
controllers) to exchange data asynchronously. Therefore, modules subscribe to
relevant topics (e.g., sensor data) and publish updated outputs (e.g., position
estimates, control setpoints) that other components can use. This modular
approach allows for better scalability, flexibility, and separation in the system.

� Sensors and Actuators: The sensors (IMU, GPS, barometer) provide real-time
data about the aircraft’s position, speed, and orientation. The actuators (mo-
tors, servos) execute the physical commands calculated by the flight controller
based on the sensor inputs.
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3.2.2 Flight Stack

The PX4 flight stack is a group of algorithms responsible for the guidance, navigation,
and control of UAS, including estimators for attitude and position determination.

The diagram shown in Figure 3.4 illustrates the components and flow of the PX4
flight stack. beginning with inputs from the UAS’s sensors, RC controller, and the
Navigator. These inputs are processed to control the aircraft’s actuators (e.g., motors
or servos) through a series of computational blocks.

Figure 3.4: PX4 flight stack scheme. Source: [15]

� Position and Attitude Estimator: This block collects data from various sensors
to determine the drone’s current state, such as its attitude and position. For
example, it uses IMU (Inertial Measurement Unit) data to estimate attitude.

� Controllers: After that, there are different controllers in the stack, each respon-
sible for ensuring the aircraft’s stability and trajectory:

– Position Controller: This controller adjusts the drone’s position by com-
paring the desired position (setpoint) with the current estimated position.
It outputs commands to reach the target location.

– Attitude and Rate Controller: It manages the drone’s orientation and an-
gular velocity by adjusting its pitch, roll, and yaw, based on the position
controller’s output.

� Mixer: The outputs of the controllers is delivered to the mixer and translates
them into individual motor outputs, ensuring that the aircraft’s physical con-
straints, such as torque and force limits, are respected. This is dependent on
the aircraft’s configuration, including its motor layout.

� Actuators: The final component of the control loop, the actuators (typically
motors or servos), respond to the mixer’s commands to control the UAS as
intended, performing the actual flight maneuvers.

3.2.3 Fixed-Wing Controllers

The controllers that have been previously stated will be explained for a Fixed-Wing
configuration, focusing more on the Attitude Controller as it will be the one modified
in the project.
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Position Controller

The Fixed-Wing Position Controller focuses on controlling the aircraft’s position by
managing its airspeed and altitude, primarily through the Total Energy Control Sys-
tem (TECS), which optimizes energy management during flight.

The diagram seen in Figure 3.5 highlights the two main control elements in this
system.

Figure 3.5: Total Energy Control System scheme. Source: [15]

� L1 Controller: This component generates roll setpoints by managing the air-
craft’s lateral navigation. It ensures that the aircraft follows the desired flight
path by controlling its horizontal trajectory.

� TECS: The TECS algorithm regulates both airspeed and altitude simultane-
ously by converting these parameters into control outputs for throttle and pitch.
The output of TECS feeds into the attitude controller, which then executes pre-
cise adjustments in the aircraft’s pitch and thrust.

Regarding TECS, it uses an energy-based approach to manage aircraft’s position.
Thrust is responsible for managing the total energy of the aircraft, whereas pitch
controls the distribution of energy between kinetic energy (airspeed) and potential
energy (altitude). A higher pitch angle transfers kinetic energy into altitude, while a
lower pitch reduces altitude and increases airspeed.

The simultaneous control of airspeed and altitude can be complex because both
the pitch angle and throttle affect these variables. Increasing the throttle generally
increases airspeed and altitude, while increasing the pitch will raise altitude but
reduce airspeed. TECS decouples this problem by converting the original airspeed
and altitude setpoints into energy terms.

Attitude Controller

The PX4 attitude controller uses a cascaded loop method to manage the aircraft’s
orientation shown in Figure 3.6.
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Figure 3.6: Attitude Controller scheme. Source: [15]

� Outer Loop (Attitude Control): This section first computes the error between
the attitude setpoint (desired orientation) and the estimated attitude (current
orientation). Afterwards, a proportional controller (P) multiplies the error by
a gain to generate a rate setpoint (desired rate of change in orientation).

� Inner Loop (Rate Control): Similarly, the error between the rate setpoint and
the current rates is computed. Then, a Proportional-Integral (PI) controller
generates the desired angular acceleration.

� Mixer (Control Allocation): Computes the angular position of control effectors
(ailerons, elevators, rudders) using the desired angular acceleration. After that,
the output is scaled for adjusting control surface effectiveness based on airspeed
measurements. If no airspeed sensor is used, gain scheduling is disabled.

� Feedforward Gain: Compensates for aerodynamic damping to maintain a con-
stant rate by using feedforward in the rate loop.

� Turn Coordination: This algorithm is used to obtain yaw rate setpoint knowing
the velocity of the aircraft. It aims to minimize lateral acceleration during
slipping turns. Then, adds a yaw rate controller that helps counteract adverse
yaw effects and dampen the Dutch roll mode by providing extra directional
damping.

Attitude Controller Folder Structure

This section explains the code structure of the attitude controller as it is the one that
will be modified to suit an experimental version.
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As explained in the previous section, there are two main control loops. These
are reflected in two folders, fw att control and fw rate control, seen in Figure 3.7.
The fw refers to fixed-wing, and attitude and rate to the different loops. They are
encompassed in the src folder, which contains all the source code folders, and the
different modules folder.

Figure 3.7: Attitude Controller general folder scheme. Source: own

Regarding the Attitude loop, the folder contains a file that includes all the main
code of the loop. Inside it, different functions are called, which are defined in the
remaining files. These are controllers for roll, pitch, yaw and the wheel. Finally,
a file contains all the constant parameters needed for the algorithm. They are all
represented in Figure 3.8.

Figure 3.8: Attitude Controller loop folder scheme. Source: own

The Rates loop only includes the general script and the parameters one, repre-
sented in Figure 3.9.
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Figure 3.9: Rates Controller loop folder scheme. Source: own
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Chapter 4

Requirements study and factors to
be considered: limitations and
conditioning aspects

4.1 Regulations

Due to the project’s nature, regulations regarding autonomous aircraft flights do not
affect it. However, as the project will evolve to real flights, European regulations
will be considered. Precisely, “Reglamento de Ejecución (UE) 2019/947” and its
modification “Reglamento de Ejecución (UE) 2024/1110”; and “Reglamento Delegado
(UE) 2019/945” and its modification “Reglamento Delegado (UE) 2024/1108”. These
regulate the procedures for UAS.

4.2 Design and operational requirements

The aircraft type is fixed wing, so PX4 algorithm will run the required scripts of
this type of behaviour. This project will modify these scripts to accommodate the
experimental control.

Considering the aircraft design and its operational limits, the desired operation
point is selected for cruise phase. The aircraft model will be linearized around this
point, conditioning the operations that the experimental control can handle. This
operational point is at a velocity of 18 meters per second and a height of 100 meters.

4.3 Miscellaneous requirements

The project involves modifying an already implemented PX4 solution to suit a differ-
ent desired behaviour while maintaining previous capabilities. Therefore, a gradual
approach has been preferred, in which the focus is the accommodation of two work-
ing solutions instead of the development of a highly complex control algorithm. This
also contributes to comply to hardware limitations. The adopted strategy is to start
with a simpler algorithm and expand to more complex ones and check if hardware is
proving to be a limitation.
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Chapter 5

Alternative solution proposal and
adopted solution justification

Different solutions for the project elements will be proposed and their feasibility will
be assessed considering different factors such as performance, computational cost or
implementation complexity.

5.1 Ground control station

Ground control station is the software of the computer that stays on the ground,
which enables visualization of the mission and communication with the UA to send
commands, design a mission or change the current mission. Different solutions are
proposed:

1. Mission Planner: An open-source ground station software designed for use with
ArduPilot-based vehicles. It offers comprehensive mission planning, configura-
tion, real-time telemetry, data logging and analysis.

2. APM Planner 2: Again, an open-source ground control software designed for
ArduPilot-based systems. It offers a user-friendly interface for mission planning,
parameter tuning, real-time telemetry, and data analysis.

3. UGCS (Universal Ground Control Software): A commercial ground control soft-
ware that supports a wide range of drones and autopilots. It offers advanced
mission planning and control features for professional and enterprise use, in-
cluding 3D mission planning, terrain following, photogrammetry tools, real-time
telemetry, and video streaming. It is compatible with many different options,
including project’s hardware.

4. FlytBase: Another commercial drone management platform. It offers cloud-
based ground control capabilities, fleet management, real-time telemetry, and
video streaming. It supports multiple drone platforms and provides extensive
automation features.

5. QGroundControl: An open-source ground control station software that provides
mission planning, flight monitoring, video streaming, parameter configuration,
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and real-time telemetry for autonomous vehicles. It supports multiple vehicle
types, including multicopters, fixed-wing aircraft, and VTOL, as well as it is
compatible with different hardware such as PX4, ArduPilot or MAVLink pro-
tocol.

The first solutions are incompatible with project’s hardware as they are developed
for ArduPilot-based systems. The next ones are commercial software and exceed
project’s budget. The chosen solution will be QGroundControl, as it is open-source
and recommended by PX4, which provides installation and connection tutorials to
their hardware. Moreover, it is compatible with MAVLink protocol, which is used in
PX4 stack to communicate with the aircraft during a mission.

5.2 Dynamic model simulation

No alternatives are proposed for the dynamic model simulation of H200 aircraft as it
has been granted by HORUS project. It is implemented in MATLAB and Simulink
due to its connectivity with QGroundControl. Therefore it offers the required simu-
lation environment which enables visualization and manipulation through the chosen
ground control station software.

5.3 Control strategies

Different control strategies are considered to be the first experimental control added
to the project. The selection will be determined by the algorithm performance and
its implementation complexity into the PX4 environment.

5.3.1 PID

PID control adjusts the control inputs based on the error between a desired setpoint
and the current state of a linearised model. The Proportional (P) term adjusts the
control output proportionally to the current error, the Integral (I) term accounts for
past errors to eliminate steady-state offsets, and the Derivative term (D) predicts
future errors to dampen oscillations and improve response times. These can be seen
in the schematics of Figure 5.1

Figure 5.1: PID scheme. Source: [16]
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5.3.2 Pole Placement

It is a control strategy based on full state feedback, where the desired closed-loop
pole locations are specified, and the feedback gain is designed to achieve these poles.
It works with a linearised model. In full state feedback, all the states of the system
are fed back into the controller to determine the control input. Its schematics are
shown in Figure 5.2.

Figure 5.2: Pole Placement scheme. Source: [17]

5.3.3 Linear Quadratic Regulator (LQR)

LQR is an optimal control strategy based on full state feedback. It minimizes a cost
function representing the trade-off between state deviations and control effort. It uses
a linearized model of the aircraft around an operating point. LQR determines the
optimal control inputs to achieve desired performance while balancing the costs of
control actions. Without the integral part, LQR will not achieve zero steady state
error. Its schematics are the same as Pole Placement strategy, as the only difference
is the pole location selection.

5.3.4 LQR with Integral Action

LQRI enhances the basic LQR by including integral action to eliminate steady-state
errors. This involves augmenting the system state with the integral of the error,
allowing the controller to account for accumulated discrepancies between the desired
and actual states. It is represented in Figure 5.3

Figure 5.3: Linear Quadratic Regulator with integral action scheme. Source: [18]
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5.3.5 Model Predictive Control (MPC)

MPC uses a linearised model of the aircraft to predict its future states over a finite
time horizon and optimizes control inputs by solving a constrained optimization prob-
lem at each time step. It can handle multi-variable control tasks, accommodate con-
straints (such as actuator limits and collision avoidance), and optimize performance
by anticipating future disturbances and reference trajectory changes. Its schematics
can be seen in Figure 5.4.

Figure 5.4: Model Predictive Control scheme. Source: [19]

5.3.6 Fuzzy based

Uses fuzzy logic to handle uncertainty and imprecision, making it especially useful
for complex or nonlinear systems where traditional control methods struggle. Unlike
classical logic that works with binary values (true or false, 0 or 1), fuzzy logic allows
for varying degrees of truth, enabling the controller to process inputs that are vague
or approximate, as human understanding of problems is. Inputs are mapped to fuzzy
sets using membership functions, and decisions are made based on fuzzy ”IF-THEN”
rules that mimic human reasoning. The controller then converts the fuzzy outputs
back into precise control actions through defuzzification. A general scheme is shown
in Figure 5.5.

Figure 5.5: Model Predictive Control scheme. Source: [20]
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5.3.7 Neural Network-Based

This method uses neural networks to model and control the dynamics of the aircraft.
Neural networks can learn complex, nonlinear relationships from data, making them
suitable for adaptive and robust control in highly dynamic and uncertain environ-
ments. Moreover, it can improve performance over time through learning from data.
They can be used standalone or in combination with traditional control methods like
MPC or LQR to enhance performance. Figure 5.6 shows an example of its structure.

Figure 5.6: Neural Network-Based scheme. Source: [21]

5.3.8 Controller decision

Between the different controllers, some are discarded because of their implementa-
tion complexity. These are MPC, Fuzzy Based and Neural Network-Based. Although
they have a lot of potential to obtain performance, the project needs a controller that
offers good performance with little implementation complexity.

On the other hand, PID control is already implemented in PX4 with a solution
that includes a cascade control. Any PID implementation would be simpler and have
worse capabilities, and therefore is not considered.

The remaining solution is between Pole Placement, LQR and LQR with Integral
Action. They are all based on state space representation of the dynamics, the differ-
ence lies on pole location policy. LQR with Integral Action is preferred due to
being an optimal control, and having capability to mitigate steady state error, which
enables maintaining desired altitude, heading or other critical parameters. This is
accomplished with little added implementation effort.
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5.4 PX4 implementation

5.4.1 Module Policy

As the folder structure has been presented in the previous chapter, two main imple-
mentation philosophies are proposed.

1. Use existing module: By modifying an existing code of a control module, the
required experimental control code is included. An if-else statement is employed
to access the different codes, and the selection is triggered by a parameter that
can be modified at run-time via MAVLink communication protocol.

2. Create a new module: This solution involves creating a module that is compat-
ible with uORB hierarchy. The module to use is defined through the mission
launch script or via a parameter provided to the pre-flight configuration. This
selection is made before the drone takes off, and no dynamic switching (such as
an if-else structure) is needed within the code during flight.

The preferred solution is to use an existing module due to little experience with
modifying PX4 architecture.

5.4.2 Substituted Fixed-Wing Controllers

Two possibilities regarding the selection of substituted controllers are proposed:

1. Attitude Controller: This option would imply that the Position controller is the
TECS algorithm (3.2.3), which delivers attitude setpoints to the experimental
Attitude Controller.

2. Position and Attitude Controller: Both controllers are developed with the LQR
with integral action.

Although the second option is potentially more powerful, the decision is that
simplicity at the first experimental implementation is preferred. Therefore, the option
selected is number one, where Attitude Controller is the substituted one.
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Chapter 6

Detailed description of adopted
solution

The exact solution theoretical background and its implementation, as well as the
extra elements considered will be explained along this chapter.

6.1 Theoretical background

6.1.1 State Space

State-space representation is a mathematical model used to describe the dynamic
behavior of systems. It encapsulates a system’s dynamics using state variables, pro-
viding a compact way to represent complex systems, especially the ones with multiple
inputs and outputs (MIMO).

States

The state of a system is defined by a set of variables, known as state variables, that
capture all the necessary information to describe the system’s behavior over time.
These variables form the state vector and allow the prediction of future states based
on the current state and input.

In a system with n state variables, the state vector x(t) is expressed as the fol-
lowing:

x(t) =


x1(t)
x2(t)
...

xn(t)

 (6.1)

where each element represents a state variable of the system at time t.

Representation

A linear time-invariant (LTI) system can be represented in state-space form as:
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ẋ(t) = A · x(t) +B · u(t) (6.2)

y(t) = C · x(t) +D · u(t) (6.3)

– x(t) is the state vector with n elements. Contains all the state variables.

– u(t) is the input vector with m elements. Represents external influences or
controls applied to the system.

– y(t) is the output vector containing p elements and representing the measurable
response of the system.

– A is the state matrix, with size (n × n). It describes the internal dynamics
between state variables.

– B is the input matrix, with size (n × m). Maps the different inputs to state
variables.

– C is the output matrix, whose size is (p×n). Relates state variables to outputs.

– D is the feedthrough matrix, whose size is (p×m). It maps inputs directly to
outputs (often zero in many practical cases).

It can be divided into two parts:

1. State Equation: This equation (6.2) describes how the state evolves over time
based on the current state and input. The matrix A encapsulates how each state
variable affects the others, while B represents how the input u(t) influences the
states.

2. Output Equation: On the other hand, this equation (6.3) shows how the states
map to the system’s outputs. Here, C determines the relationship between the
states and the outputs, and D describes any direct influence of the input on the
output.

Figure 5.2 gives a scheme of a state space based feedback controller.

Properties

� Controllability: Defines the possibility to drive the state x(t) from any initial
state to any desired state in finite time using an appropriate input u(t).

� Observability: A system is observable if the state vector x(t) can be recon-
structed based on measurements of the output y(t) over time.

6.1.2 Full State Feedback

Full-state feedback [22] is a control method where the entire state vector of a system
is used to compute the control input. By using all state variables, the controller has
a complete picture of the system, allowing precise adjustments.
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Formulation

Going back to the LTI system representation (6.2)(6.3):

ẋ(t) = A · x(t) +B · u(t) (6.2)

y(t) = C · x(t) +D · u(t) (6.3)

In this solution output matrix is typically C = I, and feedthrough matrix is
D = 0. This implies that the output y(t) directly reflects the state variables with no
direct influence from the input u(t), which simplifies the control design by focusing
only on state dynamics.

Moreover, the control input u(t) is designed as a linear combination of all the
state variables. The control law is the following:

u(t) = −K · x(t) (6.4)

Here, K is the state feedback gain matrix. The negative sign indicates feedback
to counteract the states, so the controller will drive the state equation (6.2) to 0.

Substituting the control law (6.4) into the state equation (6.2), the closed-loop
system becomes:

ẋ(t) = (A−B ·K) · x(t) (6.5)

Here, (A − B · K) is the closed-loop system matrix, which governs the dynam-
ics under state feedback. By appropriately selecting K, the position of the system
eigenvalues -or poles- is manipulated, thus ensuring stability and the desired dynamic
behaviour.

Required properties

This method implies that all states are controllable and can be measured. In practice,
this may require state estimators like observers (and therefore observability) if certain
states are not directly measurable.

For a system to be controllable, the controllability matrix C is defined as:

C =
[
B AB A2B . . . An−1B

]
(6.6)

This must have full rank (rank n). If this condition is met, any pole configuration
can be achieved by appropriately selecting K.

Limitations

Some limitations of this method are found:

– Although theoretically the poles can be placed anywhere with K, in reality the
dynamic behaviour is influenced by the capabilities of the system, so certain
responses may not be achieved.
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– The more states a system has, the larger K becomes, potentially increasing
implementation complexity.

– While this technique stabilizes the system, it may not handle steady-state errors
well. In such cases, integral action can be added, as it will be the case.

6.1.3 LQR

As mentioned before, LQR [23] is an optimal control based on full state feedback
which minimizes a defined cost function.

Cost function

This function penalizes deviations of the states from desired values and penalizes
high control efforts, thus balancing performance and energy usage. The standard
cost function for LQR in continuous-time is:

J =

∫ ∞

0

(
xT ·Q · x+ uT ·R · u

)
· dt

– x with size (n× 1) is the state vector of the system.

– u with size (m× 1) is the control input.

– Q with size (n× n) is the weighting matrix that penalizes the state deviations.

– R with size (m×m) is the weighting matrix that penalizes the control effort.

The product
(
xT ·Q · x

)
≥ 0, which means is positive semidefinite. On the other

hand,
(
uT ·R · u

)
> 0 is positive definite. This means that as the cost function follows

a quadratic trend, it always has a minimum, as depicted in Figure 6.1

Figure 6.1: Arbitrary quadratic function plot. Source: own
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This yields the optimal control, as it can find the best candidate for state feedback
gain matrix given the weighting matrices.

Riccati equation

The objective of LQR is to determine the feedback gain matrix K that minimizes
the cost function J , resulting in the control law (6.4) defined in Subsection 6.1.2. To
minimize J , the Algebraic Riccati Equation (ARE) is solved:

AT · P + P · A− P ·B ·R−1 ·BT · P +Q = 0 (6.7)

Here P is the symmetric, positive definite solution to the Riccati equation.

Finding P generally involves solving this nonlinear matrix equation, typically us-
ing numerical algorithms (such as the ‘care‘ solver in MATLAB, which stands for
Continuous-time Algebraic Riccati Equation). This will be the choice to calculate it
for the project.

With P found, the optimal feedback gain matrix K is given by the following
equation:

K = R−1 ·BT · P (6.8)

6.1.4 Integral Action addition

LQR solution lacks reference tracking and steady state error rejection. Adding inte-
gral action addresses this by accumulating the error over time and incorporating it
into the control law. What is more, the system can better handle constant distur-
bances and model inaccuracies, as the integral term forces the system to adapt and
compensate for them.

Augmented state vector

The state space model is augmented by including an additional integral state. There-
fore it includes both the original states and the integral of the output error.

The error terms are defined in the following equations:

e(t) = r(t)− y(t) (6.9)

z(t) =

∫
e(t) · dt (6.10)

Where e(t) is the error between output and reference, and z(t) is the integral of
the error over time.

The augmented state vector is then:

xa =

[
x
z

]
(6.11)
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The augmented system dynamics can be represented as:[
ẋ
ż

]
=

[
A 0
−C 0

]
·
[
x
z

]
+

[
B
0

]
· u+

[
0
1

]
· r (6.12)

Augmented cost function

The cost function is modified to include the augmented states:

J =

∫ ∞

0

(
xTa ·Qa · xa + uT ·R · u

)
· dt (6.13)

Where a new weighting matrix is defined:

Qa =

[
Q 0
0 Qz

]
(6.14)

Here, Qz represents the weight on the integral of the error z.

Control law

With the augmented system and cost function, the LQR procedure is applied to find
the optimal feedback gain Ka that minimizes J . This gain is used in the new control
law:

u = −Ka · xa = −
[
Kx Ki

]
·
[
x
z

]
(6.15)

Here, Kx is the gain for the original states and Ki is the gain for the integral state.
Ka is derived from the solution of the Riccati equation for the augmented system.

Now, choosing the matrices Qa and R enables balancing the trade-off between
tracking accuracy, transient performance, and control effort, so a new third effect is
to be taken into account.

6.1.5 Antiwindup

This technique is essential for systems that rely on integral action in their controllers,
especially when the actuators have physical limitations that can lead to saturation.
In such cases, the integral term can ”wind up” or accumulate a large error that
continues to drive the control signal even when the actuator is already saturated. This
phenomenon, known as integral windup, can result in significant overshoot, instability,
and prolonged settling times once the system desaturates, as the controller struggles
to counteract the effects of the accumulated integral error. Anti-windup mechanisms
are therefore designed to prevent or correct for this integral accumulation.

Techniques

Common anti-windup techniques include:

1. Clamping: Limits the growth of the integral term during saturation.
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2. Integral Reset: Resets or adjusts the integral term when saturation is detected.

3. Back Calculation: Introduces a corrective feedback term to reduce the accumu-
lated integral error when the actuator is saturated.

Integral State resets the integral term entirely so it can lead to sudden control
changes when the saturation condition is resolved. On the other hand, Back Calcu-
lation is more complex to implement and requires a gain to be tuned, for which poor
tuning can lead to oscillations or instability. Therefore, Clamping is chosen.

Clamping

Saturation limits are defined:

u(t) = max(umin,min(u(t), umax)) (6.16)

As well as for integral accumulation:

– If u(t) = umax or u(t) = umin, stop updating the integral term.

6.1.6 Linearization of equations

As LQR is a technique that needs a linearized model, the Bryan equations seen in
Subsection 3.1.3 are linearized.

Sources of non-linerarity

The Bryan equations are expressed as a set of nonlinear ordinary differential equations
(ODEs) due to the presence of trigonometric functions of the orientation angles and
product terms involving velocities and angular velocities.

Objective and limitations

Linearizing Bryan equations simplifies them into a linear form around a chosen op-
erating point, typically defined by a steady flight condition (such as level flight at a
constant velocity).

The linearized model is only accurate for small perturbations around the operating
point. As the aircraft deviates further from this point (e.g., in aggressive maneuvers),
the nonlinear effects become more significant, and the linear approximation loses
accuracy. For scenarios with large deviations, more advanced techniques may be re-
quired to maintain control.

Figure 6.2 shows an example in which an arbitrary quadratic function is linearized
around an operating point. Only the terms inside a deviation bound (in this case the
black rectangle) would be considered as properly approximated.
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Figure 6.2: Linearized arbitrary quadratic function. Source: own

Procedure

The linealization process is based on a Taylor series expansion around a fixed oper-
ating point in which only the first-order terms are retained.

The process [24] [25] is divided into these steps, which will be exemplified for the
first Bryan equation (3.6):

– Step 1: Trim Condition definition.

A steady-state flight condition is chosen as the operating point. In this case,
cruise condition is considered, which implies steady and horizontal levelled flight
conditions. Moreover, mass is assumed to be constant.

These conditions are reflected in the following variables:
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Euler angles:


θ0 ̸= 0

ϕ0 = 0

ψ0 = 0

Linear velocities:



u0 = V0

v0 = 0

w0 = 0

α0 = 0

β0 = 0

Angular velocities:


p0 = 0

q0 = 0

r0 = 0

Moreover, steady flight conditions imply that all derivatives are null.

Therefore, first Bryan equation (3.3):

m · (u̇+ q · w − r · v) = FTX + FAX − FGX (3.3)

turns into the first Bryan equation in Trim conditions:

0 = Tx,0 +XA,0 −m · g · sin(θ0) (6.17)

– Step 2: Perturbation around Trim Condition.

Small perturbations are defined around each state variable to represent devia-
tions from the steady state.

Perturbation examples:


u = u0 +∆u

v = v0 +∆v

w = w0 +∆w

The perturbation terms (∆u, ∆v, etc.) represent small deviations from the
operating point and are assumed to be linear in this approach.

Applying perturbations to the first Bryan equation (3.6), the perturbed version
is obtained:

m ·
[
d (u0 +∆u)

dt
+ (q0 +∆q) · (w0 +∆w)− (r0 +∆r) · (v0 +∆v)

]
=

= (Tx,0 +∆Tx) + (XA,0 +∆XA)−m · g · sin(θ0 +∆θ) (6.18)
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– Step 3: Expand terms.

Each term in the Bryan equation is expanded around the operating point and
only the first-order (linear) terms are retained. Some properties for trigonomet-
ric relations are taken:

sin(∆θ) ≈ ∆θ

cos(∆θ) ≈ 1

sin(θ0+∆θ) = sinθ0 · cos∆θ + cosθ0 · sin∆θ
sin(θ0+∆θ) = sinθ0 + cosθ0 ·∆θ0
cos(θ0+∆θ) = cosθ0 · cos∆θ − sinθ0 · sin∆θ
cos(θ0+∆θ) = cosθ0 − sinθ0 ·∆θ

Expanding the perturbed equation (6.18):

m · [u̇0 +∆u̇+ (q0 +∆q) · (w0 +∆w)− (r0 +∆r) · (v0 +∆v)] =

= (Tx,0 +∆Tx) + (XA,0 +∆XA)−m · g · (sinθ0 + cosθ0 ·∆θ)

Considerations from Step 1 are included.

m · (∆u̇+∆q ·∆w −∆r ·∆v) =
= (Tx,0 +∆Tx) + (XA,0 +∆XA)−m · g · sinθ0 −m · g · cosθ0 ·∆θ

The product terms given by ∆x2 are discarded as they are considered to have
little magnitude:

m ·∆u̇ = (Tx,0 +∆Tx) + (XA,0 +∆XA)−m · g · sinθ0 −m · g · cosθ0 ·∆θ

Considerations from Trim equation (6.17) are included, so the linearized first
Bryan equation is obtained:

m ·∆u̇ = −m · g · cosθ0 ·∆θ +∆Tx +∆XA (6.19)

The twelve linearized Bryan Equations are the following:
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m ·∆u̇ = −m · g · cosθ0 ·∆θ +∆Tx +∆XA (6.19)

m ·∆v̇ = −m · V0 ·∆r +m · g · cos θ0 ·∆ϕ ·∆YA (6.20)

m ·∆ẇ = m · V0 ·∆q −m · g · sin θ0 ·∆θ +∆ZA (6.21)

∆ṗ =
Izz
A

·∆L+
Ixz
A

·∆N (6.22)

∆q̇ =
∆M

Iyy
(6.23)

∆ṙ =
Ixz
A

·∆L+
Ixx
A

·∆N (6.24)

∆ϕ̇ ≈ ∆p+ tan θ0 ·∆r (6.25)

∆θ̇ ≈ ∆q (6.26)

∆ψ̇ ≈ ∆r

cos θ0
(6.27)

ẋ = V0 ·
(
cos θ0 + cos θ0 ·

∆u

V0
+ sin θ0 ·∆α− sin θ0 ·∆θ

)
(6.28)

ẏ = V0 · (∆β +∆ψ · cos θ0) (6.29)

ż = −V0 ·
(
sin θ0 + sin θ0 ·

∆u

V0
+ cos θ0 ·∆θ − cos θ0 ·∆α

)
(6.30)

Next, a Taylor series expansion is applied to forces and moment equations to
obtain a model for the forces and moments that will be included to the linearized
equations.

Considering as state variables the linear and angular velocities and as control
variables thrust lever position (δP ) and aileron (δA), rudder (δR) and elevator (δE)
deflection:

State variables



u ≈ V

v ≈ α · V
w ≈ β · V
p

q

r

Controls:


δA

δE

δR

δP

This is the Taylor expansion for one and two variable functions:
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One variable: f(x0 +∆x) = f(x0) +
1

1!

df

dx

∣∣∣∣
x0

·∆x+ 1

2!

d2f

dx2

∣∣∣∣
x0

· (∆x)2

+
1

3!

d3f

dx3

∣∣∣∣
x0

· (∆x)3 + · · ·+ 1

n!

dnf

dxn

∣∣∣∣
x0

· (∆x)n

Two variables: f(x0 +∆x, y0 +∆y) = f(x0, y0) +
1

1!

(
∂f

∂x

∣∣∣∣
x0,y0

·∆x+ ∂f

∂y

∣∣∣∣
x0,y0

·∆y

)

+
1

2!

[
∂2f

∂x2

∣∣∣∣
x0,y0

· (∆x)2 + ∂2f

∂x∂y

∣∣∣∣
x0,y0

·∆x ·∆y + ∂2f

∂y2

∣∣∣∣
x0,y0

· (∆y)2
]
+ · · ·

By using this nomenclature:

Xu =

(
∂X

∂u

)
0

Finally, after applying simplifications based on geometry, symmetry and physical
sense, and adding to Z and M equations effects related to acceleration in Z axis ẇ, a
model of forces and moments is obtained:

∆X +∆TX = Xu ·∆u+Xw ·∆w +Xq ·∆q + TX,δP ·∆δP (6.31)

∆Y = Yv ·∆v + Yp ·∆p+ Yr ·∆r + YδA ·∆δA + YδR ·∆δR (6.32)

∆Z = Zu ·∆u+ Zw ·∆w + Zq ·∆q + Zẇ ·∆ẇ + ZδE ·∆δE (6.33)

∆L = Lv ·∆v + Lp ·∆p+ Lr ·∆r + LδA ·∆δA + LδR ·∆δR (6.34)

∆M =Mu ·∆u+Mw ·∆w +Mq ·∆q +Mẇ ·∆ẇ +MδE ·∆δE (6.35)

∆N = Nv ·∆v +Np ·∆p+Nr ·∆r +NδA ·∆δA +NδR ·∆δR (6.36)

Note that the subscript of aerodynamic forces has been removed for convenience
XA → X.

From this set it can be derived that longitudinal and lateral-directional dynamics
are uncoupled.

Linearized equations (6.19 to 6.30) are manipulated to include the model previ-
ously defined (6.31 to 6.36). Thus, they can be divided into the longitudinal system
and the lateral-directional system.
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Longitudinal system (variables ∆u, ∆w, ∆q, ∆θ):

∆u̇ =
Xu

m
·∆u+ Xw

m
·∆w +

Xq

m
·∆q − g · cos θ0 ·∆θ +

TX,δP

m
·∆δP (6.37)

∆ẇ =
Zu

m− Zẇ

·∆u+ Zw

m− Zẇ

·∆w +
Zq +m · V0
m− Zẇ

·∆q−

m · g · sin θ0
m− Zẇ

·∆θ + ZδE

m− Zẇ

·∆δE (6.38)

∆q̇ − Mẇ

Iyy
·∆ẇ =

Mu

Iyy
·∆u+ Mw

Iyy
·∆w +

Mq

Iyy
·∆q + MδE

Iyy
·∆δE (6.39)

∆θ̇ ≈ ∆q (6.40)

Lateral-directional system (variables ∆v, ∆p, ∆r, ∆ϕ):

∆v̇ = g · cos θ0 ·∆ϕ+
Yv
m

·∆v + Yp
m

·∆p (6.41)

+ (
Yr
m

− V0) ·∆r +
YδA
m

·∆δA +
YδR
m

·∆δR (6.42)

∆ṗ =
Izz
A

(Lv ·∆v + Lp ·∆p+ Lr ·∆r + LδA ·∆δA + LδR ·∆δR) (6.43)

+
Ixz
A

(Nv ·∆v +Np ·∆p+Nr ·∆r +NδA ·∆δA +NδR ·∆δR) (6.44)

∆ṙ =
Ixz
A

(Lv ·∆v + Lp ·∆p+ Lr ·∆r + LδA ·∆δA + LδR ·∆δR) (6.45)

+
Ixx
A

(Nv ·∆v +Np ·∆p+Nr ·∆r +NδA ·∆δA +NδR ·∆δR) (6.46)

∆ϕ̇ ≈ ∆p+ tan θ0 ·∆r (6.47)

State space matrices

These equations can be written in the form of state space representation ẋ = A · x+
B · u:


∆u̇
∆ẇ
∆q̇

∆θ̇

 =


Xu

m
Xw

m

Xq

m
−g cos θ0

Zu

m−Zẇ

Zw

m−Zẇ

Zq+mV0

m−Zẇ
−mg sin θ0

m−Zẇ
Mu

Iyy
+ MẇZu

Iyy(m−Zẇ)
Mw

Iyy
+ MẇZw

Iyy(m−Zẇ)

Mq

Iyy
+ Mẇ(mV0+Zq)

Iyy(m−Zẇ)
−mg sin θ0Mẇ

Iyy(m−Zẇ)

0 0 1 0



∆u
∆w
∆q
∆θ



+


TX,δP

m
0

0
ZδE

m−Zẇ

0
MδE

Iyy
+

MẇZδE

Iyy(m−Zẇ)

0 0


[
∆δP
∆δE

]

(6.48)
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
∆v̇
∆ṗ
∆ṙ

∆ϕ̇

 =


Yv

m

Yp

m
Yr

m
− U0 g cos θ0

LvIzz+NvIxz
A

LpIzz+NpIxz
A

LrIzz+NrIxz
A

0
NvIxx+LvIxz

A

NpIxx+LpIxz
A

NrIxx+LrIxz
A

0
0 1 tan(θ0) 0



∆v
∆p
∆r
∆ϕ



+


0

YδR

m
LδA

Izz+NδA
Ixz

A

LδR
Izz+NδR

Ixz

A
NδA

Ixx+LδA
Ixz

A

NδR
Ixx+LδR

Ixz

A

0 0


[
∆δA
∆δR

]
(6.49)

Note that : A = (Ixx · Izz − I2xz) ≈ constant

The eigenvalues of matrix A indicate the stability of the system at the operating
point.

Aerodynamic derivatives

The components of the matrices will be calculated once the aerodynamic derivatives
inside them are computed.

The forces and moments can be written as [26]:

XA =
1

2
· ρ(z) · SW · [(V0 +∆u)2 +∆v2 +∆w2] · CX (6.50)

YA =
1

2
· ρ(z) · SW · [(V0 +∆u)2 +∆v2 +∆w2] · CY (6.51)

ZA =
1

2
· ρ(z) · SW · [(V0 +∆u)2 +∆v2 +∆w2] · CZ (6.52)

LA =
1

2
· ρ(z) · SW · bW · [(V0 +∆u)2 +∆v2 +∆w2] · Cl (6.53)

MA =
1

2
· ρ(z) · SW · cW · [(V0 +∆u)2 +∆v2 +∆w2] · CM (6.54)

NA =
1

2
· ρ(z) · SW · bW · [(V0 +∆u)2 +∆v2 +∆w2] · CN (6.55)

The coefficients of the previous equations are given by:
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CX =
cosα

cos β
· CD − cosα · tan β · CY + sinα · CL (6.56)

CY = CYβ
· β + CYδA

· δA + CYδR
· δR +

bw
2 · V

· (CYβ̇
· β̇ + CYp · p+ CYr · r) (6.57)

CZ =
sinα

cos β
· CD − sinα · tan β · CY − cosα · CL (6.58)

Cl = Clβ · β + ClδA
· δA + ClδR

· δR +
bw

2 · V
· (Clβ̇

· β̇ + Clp · p+ Clr · r) (6.59)

CM = CM0 + CMα · α + CMδE
· δE +

cw
2 · V

· (CMα̇
· α̇ + CMq · q) (6.60)

CN = CNβ
· β + CNδA

· δA + CNδR
· δR +

bw
2 · V

· (CNβ̇
· β̇ + CNp · p+ CNr · r) (6.61)

CL = CL0 + CLα · α + CLδE
· δE +

cw
2 · V

· (CLα̇
· α̇ + CLq · q) (6.62)

CD = CD0 + CD1 · α + CD2 · α2 (6.63)

These coefficients are used to describe the behaviour of an aircraft independently
of the flight conditions.

Once the forces and moment equations include these coefficients, they are derived
to obtain the components of A and B matrices, but for one component in the latter
matrix related to propulsion.

Propulsive model

A propulsive model is needed for each aircraft engine type. Generally, turbojet and
turbofan engines have different models that accomplish good results, but for propeller
based engines it is not as straightforward. In this case, propellers are used combined
with hydrogen based propulsion.

The model is given by HORUS [2] [27], and is obtained by fitting equations to
experimental data.

Thrust and power are defined as well with dimensionless coefficients:

T = CT ·
(
ρ · n2 ·D4

)
P = CP ·

(
ρ · n3 ·D5

)
Here, T and P are thrust and power respectively, n is the blade angular velocity

expressed in Hz, and D is the blade diameter.

Blade angular velocity is defined as:

n = pn1 · δP
The coefficients are given by:
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CT = pCT3
· J3 + pCT2

· J2 + pCT1
· J + pCT0

CP = pCP6
· J6 + pCP5

· J5 + pCP4
· J4

+ pCP3
· J3 + pCP2

· J2 + pCP1
· J + pCP0

A new term known as non-dimensional induced velocity (J) is introduced, defined
as:

J =
V

D · n
=

V

D · pn1 · δP
Summarizing, this is the propulsive model for H200 aircraft, which depends on

thrust lever position (δP ):

T (δP ) = CT (δP ) ·
(
ρ ·D4 · n2(δP )

)
(6.64)

P (δP ) = CP (δP ) ·
(
ρ ·D5 · n3(δP )

)
(6.65)

CT (δP ) = pCT3
· J3(δP ) + pCT2

· J2(δP ) + pCT1
· J(δP ) + pCT0

(6.66)

CP (δP ) = pCP6
· J6(δP ) + pCP5

· J5(δP ) + pCP4
· J4(δP ) (6.67)

+ pCP3
· J3(δP ) + pCP2

· J2(δP ) + pCP1
· J(δP ) + pCP0

(6.68)

J(δP ) =
V

D · n(δP )
(6.69)

n(δP ) = pn1 · δP (6.70)

6.2 Implementation

This section describes the theoretical background implementation into the project,
and additional considerations that arise during this process. Moreover, concepts
needed for the understanding of the implementation are introduced.

6.2.1 Considerations

Some considerations are to be first taken into account to understand the followed
implementation.

State space matrices

There is no reading of airspeed provided by the sensors, which means that angle of
attack α and drift angle β cannot be provided to the model seen in Section 6.1.6.
Moreover, aerodynamic speed (V ) is managed by TECS (3.2.3) algorithm. There-
fore, longitudinal system will not include u and w, and lateral system v.

Recalling the longitudinal state space matrices (Equation 6.48), the first and sec-
ond rows and columns are cancelled for state matrix, and first and second rows and
first column are cancelled for input matrix:
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
��∆u̇

�
��∆ẇ

∆q̇

∆θ̇

 =


�
�Xu

m �
�Xw

m �
�Xq

m �����−g cos θ0
����Zu

m−Zẇ ����Zw

m−Zẇ ����Zq+mV0

m−Zẇ �����−mg sin θ0
m−Zẇ

��������
Mu

Iyy
+ MẇZu

Iyy(m−Zẇ) ���������
Mw

Iyy
+ MẇZw

Iyy(m−Zẇ)

Mq

Iyy
+ Mẇ(mV0+Zq)

Iyy(m−Zẇ)
−mg sin θ0Mẇ

Iyy(m−Zẇ)

�0 �0 1 0



��∆u

���∆w
∆q
∆θ



+


�

�
�TX,δP

m �0

�0
�

�
��ZδE

m−Zẇ

�0
MδE

Iyy
+

MẇZδE

Iyy(m−Zẇ)

�0 0


[
���∆δP
∆δE

]

For the lateral-directional case (Equation 6.49), first row and column is cancelled
for the state matrix, and first row is cancelled for the input matrix:


��∆v̇
∆ṗ
∆ṙ

∆ϕ̇

 =


�
�Yv

m �
�Yp

m �����Yr

m
− U0 ����g cos θ0

������LvIzz+NvIxz
A

LpIzz+NpIxz
A

LrIzz+NrIxz
A

0

������NvIxx+LvIxz
A

NpIxx+LpIxz
A

NrIxx+LrIxz
A

0

�0 1 tan(θ0) 0



��∆v
∆p
∆r
∆ϕ



+


�0 �

�YδR

m
LδA

Izz+NδA
Ixz

A

LδR
Izz+NδR

Ixz

A
NδA

Ixx+LδA
Ixz

A

NδR
Ixx+LδR

Ixz

A

0 0


[
∆δA
∆δR

]

Therefore, the resulting matrices are the following:

[
∆q̇

∆θ̇

]
=

[
Mq

Iyy
+ Mẇ(mV0+Zq)

Iyy(m−Zẇ)
−mg sin θ0Mẇ

Iyy(m−Zẇ)

1 0

][
∆q
∆θ

]

+

[
MδE

Iyy
+

MẇZδE

Iyy(m−Zẇ)

0

] [
∆δE

]
(6.71)

∆ṗ∆ṙ

∆ϕ̇

 =

LpIzz+NpIxz
A

LrIzz+NrIxz
A

0
NpIxx+LpIxz

A
NrIxx+LrIxz

A
0

1 tan(θ0) 0

∆p∆r
∆ϕ



+


LδA

Izz+NδA
Ixz

A

LδR
Izz+NδR

Ixz

A
NδA

Ixx+LδA
Ixz

A

NδR
Ixx+LδR

Ixz

A

0 0

[∆δA
∆δR

]
(6.72)

Integral Action addition

The longitudinal system includes the pitch error state which follows the pitch reference
given by TECS algorithm (3.2.3):
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∆q̇∆θ̇
żθ

 =

Mq

Iyy
+ Mẇ(mV0+Zq)

Iyy(m−Zẇ)
−mg sin θ0Mẇ

Iyy(m−Zẇ)
0

1 0 0
0 −1 0

∆q∆θ
zθ


+

MδE

Iyy
+

MẇZδE

Iyy(m−Zẇ)

0
0

 [∆δE] (6.73)

For the lateral-directional system, only the roll error is needed as changing the
heading is accomplished by rolling the aircraft. The setpoint comes from FixedWing-
Position script, which forms part of the Position Controller (3.2.3).

∆ṗ
∆ṙ

∆ϕ̇
żϕ

 =


LpIzz+NpIxz

A
LrIzz+NrIxz

A
0 0

NpIxx+LpIxz
A

NrIxx+LrIxz
A

0 0
1 tan(θ0) 0 0
0 0 −1 0



∆p
∆r
∆ϕ
zϕ



+


LδA

Izz+NδA
Ixz

A

LδR
Izz+NδR

Ixz

A
NδA

Ixx+LδA
Ixz

A

NδR
Ixx+LδR

Ixz

A

0 0
0 0


[
∆δA
∆δR

]
(6.74)

PX4 communications

The software will be running in Linux connected to Windows via WSL2. This con-
nection will enable applications like Visual Studio Code to modify the files stored in
Linux, or communication with MATLAB and QGroundControl.

6.2.2 Scheme

With the previous information, Figure 6.3 shows the experimental implementation
control scheme:

Figure 6.3: Control scheme of experimental implementation. Source: own

where u is representing actuators output and δ actuators deflection. Estimated
variables (x̂), are obtained from an Extended Kalman filter.
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6.2.3 State space matrices calculation

To obtain the linearized model parameters of Bryan equations expressed in state
space matrices, a MATLAB script developed by HORUS is used. The input for this
function is the H200 model and the operating point. This operating point (cruise
flight condition) is set at V = 18 m/s and h = 100 m.

H200 model

Here are the different parameters that describe the H200 model, seen in Tables 6.1,
6.2, 6.3 and 6.4.

Geometric parameters

Parameter Symbol Value Units

Wingspan bw 2.95 m

Mean aerodynamic chord cw 0.3731 m

Wing surface Sw 1.0162 m2

Reference mass m 15 kg

Elevator arm Lelev 1.1 m

Propellers arm Lprop 0 m

X-Axis inertia Ixx 1.609 kg/m3

Y-Axis inertia Iyy 2.773 kg/m3

Z-Axis inertia Izz 4.310 kg/m3

X-Y axis cross inertia Ixy −4.804 · 10−3 kg/m3

X-Z axis cross inertia Ixz −8.232 · 10−2 kg/m3

Y-Z axis cross inertia Iyz −9.468 · 10−4 kg/m3

Table 6.1: Geometric parameters of H200 aircraft model

Note that propeller arm is 0, so it does not generate pitch moment (M).

Aerodynamic forces coefficients

CD CY CL

CD0 0.039 CYβ
-0.206777 CL0 0.308

CD1 0.007 CYp 0.016541 CLα 5.140879

CD2 0.057 CYr 0.126227 CLα̇
0.667

CYδA
-0.000410 CLq 7.326102

CYδR
-0.003172 CLδE

0.007585

CLδF
0.013771

Table 6.2: Aerodynamic forces parameters of H200 aircraft model
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Aerodynamic moments coefficients

Cl CM CN

Clβ -0.105871 CM0 0.00835 Cnβ
0.031839

Clp -0.476318 Cmα -0.507412 Cnp -0.046901

Clr 0.057 Cmα̇
-2.1287 Cnr -0.06186

ClδA
-0.003786 Cmq -7.275333 CnδA

-0.000072

ClδR
-0.000452 CmδE

-0.0185 CnδR
0.001064

CmδF
-0.001192

Table 6.3: Aerodynamic moments parameters of H200 aircraft model

Propulsive model coefficients

D 0.3302 pn1 179.9970 pCT3 0.07115 pCP6 0.1446

pCT2 −0.1954 pCP5 0.0126

pCT1 −0.02019 pCP4 −0.4078

pCT0 0.1068 pCP3 0.2859

pCP2 −0.1337

pCP1 0.0424

pCP0 0.03482

Table 6.4: Propulsive coefficients of H200 aircraft model

Longitudinal system

The results for the longitudinal system are:

Alongitudinal =

−2.5830 0 0
1 0 0
0 −1 0

 Blongitudinal =

17.74740
0

 (6.75)

Moreover, as the initial pitch angle and elevator deflection are not zero, their
values will be taken into account for the calculations:

θTrim = 4.759◦

δE,Trim = 2.925◦

Lateral-directional system

The results for the lateral-directional system are:

Alateral =


−14.2934 4.4844 0 0
−0.5254 −0.6930 0 0

1 0.0832 0 0
0 0 −1 0

 Blateral =


41.5931 −1.4594
0.2953 1.2825

0 0
0 0

 (6.76)
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6.2.4 Simulink LQR simulation

To check if the matrices are properly obtained, calculations are made with MATLAB
and the LQR with integral action is simulated using Simulink.

Procedure

First, the state space model (A, B, C and D matrices) is defined. Then, by using ctrb
function, the system is checked to be controllable. This is to check that the integral
action is implemented correctly. The function has the controllability matrix (6.1.2)
calculation integrated. Listing 6.1 shows this function being used.

1 Co = ctrb(A, B);

2 rank_Co = rank(Co);

3

4 if rank_Co < size(A, 1)

5 disp(’System is not controllable ’);

6 return

7 end

Listing 6.1: Controllability check in MATLAB

After that, the weighting matrices Q and R are defined. To obtain the state feed-
back gain K, a built-in MATLAB function named lqr is employed. This takes as an
input A, B, Q and R matrices (model and weighting factors), and outputs the state
feedback gain. In the process, it minimizes the cost function seen in Subsection 5.3.3.
It can be seen in Listing 6.2.

1 K = lqr(Ahat ,Bhat ,Qhat ,Rhat);

Listing 6.2: Feedback gain calculation in MATLAB

where Ahat and Bhat are the state space matrices augmented with integral action
and Qhat, and Rhat are the augmented weighting matrices.

The following step is to set initial conditions and required setpoints for the system
that is simulated. Listing 6.3 gives an example of initial conditions and setpoints for
the longitudinal system.

1 initialq = deg2rad (0);

2 initialtheta = deg2rad (0);

3 x0 = [initialq ,initialtheta ];

4

5 initialthetasetpoint = deg2rad (0);

6 finalthetasetpoint = deg2rad (12);

Listing 6.3: Example of initial conditions and setpoints for the longitudinal system

Finally, the model is simulated and plots are obtained.
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Longitudinal system

In Figure 6.4 the schematics of the controller are shown for the longitudinal system,
where integral action is applied through an integrator block to the pitch error.

Figure 6.4: Simulink scheme of longitudinal system LQR with integral action. Source:
own

For this first approach Q and R are set to identity matrices, the initial conditions
to zero. With this, the gain matrix becomes:

K =
[
0.960 1.792 −0.999

]
Pitch setpoint is initially 0◦ and changes to 12◦ mid-simulation. Figure 6.5 shows

the results of the simulation.
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Figure 6.5: Longitudinal system simulation results. Source: own

It can be seen that, initially, the elevator is not deflected, and the states stay at
zero. When the pitch setpoint is changed, the elevator is deflected and pitch angular
velocity is generated until reaching the desired pitch angle.

Lateral-directional system

For the lateral-directional system, Figure 6.6 shows the Simulink diagram.

Figure 6.6: Simulink scheme of lateral system LQR with integral action. Source: own

With same weights as the longitudinal system, the gain matrix is the following:

K =

[
0.752 0.098 1.792 −0.997
−0.028 0.604 0.201 −0.072

]
The simulation, yield and roll setpoint initially at 0◦ and finally at 25◦, is shown

in Figure 6.7.
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Figure 6.7: Lateral system simulation results. Source: own

From the results, similar conclusions are drawn to longitudinal system. Control
action only appears when roll setpoint changes, and achieves the setpoint value with-
out steady-state error. The result is that some yaw angular rate is generated, and
thus the heading is changed throughout this process. Moreover, from the perspective
of flight mechanics the results are reasonable, as the aircraft will roll and maintain a
small aileron deflection to keep roll angle constant, and a small rudder deflection to
generate some lift at the back of the aircraft.

Therefore, it can be concluded that the model and integral action matrices are
correct.
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6.2.5 SITL simulation

To perform a Software in The Loop (SITL) simulation of PX4 stack, the required
steps are the following:

1. Compile PX4 in WSL2 with make px4 sitl none plane command

2. Load H200 model variables

3. Run Simulink Dynamic H200 model

4. Open QGroundControl

The command compiles PX4 stack in SITL mode (px4 sitl), without any included
simulator and in fixed-wing mode (none plane). This enables using a custom simula-
tor, in this case implemented in Simulink by HORUS. Its conceptual general diagram
is shown in Figure 6.8.

Figure 6.8: Conceptual diagram of SITL simulator. Source: own

Here, PX4 communicates with Simulink via TCP using port 4560, and receives
the current aircraft states via the SITL block. PX4 uses this information to calculate
actuator commands, which are then returned to the SITL block. Finally, the SITL
block forwards these commands to the dynamic model, which computes the updated
aircraft states. Moreover, SITL block communicates with QGroundControl via UDP
using port 18570 to display the simulation. The real scheme can be seen in Figure
6.9.
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Figure 6.9: Simulator of H200 dynamic model implemented in Simulink [28]. Source:
own

After loading the variables of the model and running the simulator it connects
to PX4 and the simulation starts. To visualize, send commands and plan mis-
sions, QGroundControl is configured to communicate with PX4. Figure 6.10 shows
QGroundControl interface connected to PX4:

Figure 6.10: Simulation display in QGroundControl. Source: own

6.2.6 PX4 implementation

To understand how to modify the original files, basic concepts about how PX4 is
implemented are explained.
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File hierarchy

Each module contains at least a header file and a cpp file.

Header files structure is the following:

1. Include all libraries

2. Declare subscriptions to uORB topics

3. Declare publishers to uORB topics

4. Declare parameters

5. Declare functions

On the other hand cpp files have this structure:

1. Define constructor

2. Define destructor

3. Define auxiliary functions

4. Define Run function

In the constructor, param values are fetched initially. To do so, a function named
parameters update() is defined. Moreover, Run function is the main loop, which
contains all the code that runs at a frequency set for each file. This frequency is
useful for implementing the integral action.

Params

Params are variables that can be changed through the MAVLink console in mid-
simulation and monitored using QGroundControl Graphical User Interface (GUI).
Moreover, they are used in PX4 to store constant values of aircraft or algorithm be-
haviour.

Through the code implementation, they will be used to store values such as the
State feedback gain matrix (K), or the control switch parameter. Listing 6.4 shows
the general implementation for each module param file:

1 /**

2 * Description

3 *

4 * @group group_name

5 */

6 PARAM_DEFINE_DATATYPE(PARAM_NAME , INITIAL_VALUE);

Listing 6.4: General param implementation
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where group name is used to classify the params and DATATYPE is replaced with
the required datatype (e.g, INT 32 or FLOAT ).

In addition, the header file contains a parameter to retrieve the param, as seen in
Listing 6.5:

1 DEFINE_PARAMETERS(

2 (ParamDatatype <px4:: params ::PARAM_NAME >) param_retrieval

3 )

Listing 6.5: Param header implementation

where Datatype is substituted by the previously defined datatype (for INT 32 it would
be Int).

The PX4 code uses class objects to store this params. However, new of them
will be implemented with simple variables. To retrieve the param and store it to a
variable, the Run function of cpp file will include the code seen in Listing 6.6:

1 param_retrieval.update ();

2

3 datatype param_storage = param_retrieval.get();

Listing 6.6: Param retrieval implementation

Finally, to change a param mid-simulation through MAVLink, the command seen in
Listing 6.7 is used:

1 param set PARAM_NAME VALUE

Listing 6.7: Param change command using MAVLink protocol

Alternatively, inside QGroundControl software settings, specifically in the Param-
eters tab of Vehicle Setup, the parameters can be changed in a more intuitively way.
There, all parameters are classified into the groups explained above. Figure 6.11
shows this tab.
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Figure 6.11: Parameters tab of QGroundControl. Source: own

Subscribers

These variables subscribe to uORB topics to retrieve messages that contain informa-
tion from the different modules. List 6.8 shows the declaration of a subscriber in a
header file:

1 #include <uORB/topics/topic_name.h>

2 uORB:: Subscription

3

4 _message_sub{ORB_ID(topic_name)};

5

6 _message_s _message {};

Listing 6.8: Subscriber header declaration

where message and topic words are changed by the corresponding ones. Note that
the header file for the specific topic has also to be included.

Publishers

These are responsible for publishing the messages related to a topic. List 6.9 shows
the declaration of a publisher in a header file:

1 uORB:: Publication <message_s > _message_pub{ORB_ID(topic)};

Listing 6.9: Publisher header declaration

Listing 6.10 shows how a variable is published in the Run main loop of a cpp file:
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1 _message_pub.publish(variable);

Listing 6.10: Message publishing example

Extended Kalman Filter module

The state variables used in the algorithm are estimated variables published to uORB
by the Extended Kalman Filter module. How this filter is implemented and its be-
haviour lies outside the scope of the project, but a brief introduction is given:

The Extended Kalman Filter (EKF) is a state estimation algorithm that esti-
mates the vehicle’s states (e.g., position, velocity and attitude) by combining sensor
measurements (e.g., GPS, IMU, barometer, and magnetometer) with a mathematical
model of the aircraft’s dynamics.

It works with a nonlinear state-space model of the aircraft’s dynamics:

ẋ = f(x, u, t) + w (6.77)

z = h(x, t) + v (6.78)

where x represents the states, u is the input vector, z represents measurements from
onboard sensors, and finally w and v are process and measurement noise. The former
are the uncertainty coming from the measurement of the sensors and from the model
used to represent the system.

The EKF approximates the nonlinear model using a linearization process around
the current state estimate. Then does a prediction step, in which uses aircraft dy-
namics to predict the next state and its uncertainty. Finally, it does a correct step in
which sensor measurements are used to correct the predicted state, considering sensor
noise.

Modified files

Recalling the file structure from Section 3.2.3, the modified files are FixedwingAttitudeControl,
FixedwingRateControl and fw rate control params, shown in Figures 6.12 and
6.13.

Figure 6.12: Modified Attitude Controller files. Source: own
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Figure 6.13: Modified Rates Controller files. Source: own

The modified part of FixedwingAttitudeControl will be in the main loop. It is
the same for FixedwingRateControl, as well as an addition of a function to include
LQR. Finally, fw rate control params includes all the parameters needed for the
LQR to work.

The following sections explain this in more detail.

Attitude Control file

The file FixedWingAttitudeControl contains the first loop of the cascade seen in Fig-
ure 3.6, which generates the angular velocity setpoints for FixedWingRateControl.
To leave other functionalities working, this code will run as it normally would, so it
will publish angular velocity setpoints that will not be used by FixedWingRateCon-
trol.

This script, however, will print to the console a warning when the experimental
code is being used. To achieve this functionality, first, a param needs to be created
using what is seen in this section, whose name will be FW CTRL. After that, if and
else statements are employed to check the param value and print it to the console.
The result is observed in Figure 6.14:

Figure 6.14: Switch between controls using console. Source: own

The value 0 represents the default control, and 1 the LQR control. Alternatively,
this parameter can be more intuitively selected into QGrounControl from a dropdown
menu, shown in Figure 6.15.
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Figure 6.15: Switch between controls using console. Source: own

The control type can only be selected before flight, as the change between controls
in the middle of it needs extra implementation.

Rate Control file

This file will include all the experimental code. Regarding the header file, a subscrip-
tion to the attitude and attitude setpoint topics from uORB is required to obtain all
data. Listing 6.11 illustrates the required code:

1

2 #include <uORB/topics/vehicle_attitude.h>

3 #include <uORB/topics/vehicle_attitude_setpoint.h>

4

5 uORB:: Subscription _att_sub{ORB_ID(vehicle_attitude)};

6 uORB:: Subscription _att_sp_sub{ORB_ID(vehicle_attitude_setpoint)};

7

8 vehicle_attitude_s _att {};

9 vehicle_attitude_setpoint_s _att_sp {};

Listing 6.11: Rate Control required topics subscription

The cpp file starts by fetching the params related to LQR implementation. Listing
6.12 shows the different params:

1 _lqr_lat_k11 = _param_fw_lqr_lat_k11.get();

2 _lqr_lat_k12 = _param_fw_lqr_lat_k12.get();

3 _lqr_lat_k13 = _param_fw_lqr_lat_k13.get();

4 _lqr_lat_k14 = _param_fw_lqr_lat_k14.get();

5 _lqr_lat_k21 = _param_fw_lqr_lat_k21.get();

6 _lqr_lat_k22 = _param_fw_lqr_lat_k22.get();

7 _lqr_lat_k23 = _param_fw_lqr_lat_k23.get();

8 _lqr_lat_k24 = _param_fw_lqr_lat_k24.get();

9

10 _lqr_lon_k1 = _param_fw_lqr_lon_k1.get();

11 _lqr_lon_k2 = _param_fw_lqr_lon_k2.get();

12 _lqr_lon_k3 = _param_fw_lqr_lon_k3.get();

13

14 _deltaE_trim = _param_fw_deltaE_trim.get();

15 _lqr_Ts = _param_fw_lqr_Ts.get();
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16 _rudder_max = _param_fw_rudder_max.get();

17 _rudder_min = _param_fw_rudder_min.get();

18 _theta_trim = _param_fw_theta_trim.get();

Listing 6.12: Rate Control params obtention

These are the variables of the state feedback gain matrices of longitudinal and
lateral systems. Next one is the value of δE,Trim that is added to the elevator output
as LQR calculates increments respect to trim values. After that, the time constant
of the loop, which is the inverse of the frequency at which runs, in this case 250 Hz.
It has been obtained with work queue status command. It is followed by minimum
and maximum rudder angles for antiwindup. Finally, the trim value of pitch angle is
obtained to feed back the increment of theta (current pitch subtracted by trim value).

After that, in Run main loop an if-else statement is used to switch between codes.
If experimental code is selected, a function named LQR will be computed, seen in
Listing 6.13.

1 void FixedwingRateControl ::LQR(){

2

3 bool params_updated = _parameter_update_sub.updated ();

4

5 // check for parameter updates

6 if (params_updated) {

7 // clear update

8 parameter_update_s pupdate;

9 _parameter_update_sub.copy(& pupdate);

10

11 // update parameters from storage

12 updateParams ();

13 parameters_update ();

14 }

15

16 // Update attitude values and setppoints

17 _att_sp_sub.update (& _att_sp);

18 _att_sub.update (&_att);

19

20 // Obtain euler angles

21 const matrix :: Eulerf euler_angles(matrix ::Quatf(_att.q));

22

23 // Rates setpoint is updated to obtain thrust setpoint

24 _rates_sp_sub.update (& _rates_sp);

25

26 /* throttle passed through if it is finite */

27 _vehicle_thrust_setpoint.xyz[0] = PX4_ISFINITE(_rates_sp.

thrust_body [0]) ? _rates_sp.thrust_body [0] : 0.0f;

28

29 // Calculate roll error and apply antiwindup by stopping the update

of roll error

30 float roll_error = _att_sp.roll_body - euler_angles.phi();

31 float ei_roll = (_antiwindup_flag) ? _ei_roll_1 : _ei_roll_1 +

roll_error * _lqr_Ts;

32 _ei_roll_1 = ei_roll;

33

34 // Calculate pitch error
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35 float pitch_error = _att_sp.pitch_body - euler_angles.theta ();

36 float ei_pitch = _ei_pitch_1 + pitch_error*_lqr_Ts;

37 _ei_pitch_1 = ei_pitch;

38

39 // Obtain angular velocities and calculate body rates

40 vehicle_angular_velocity_s angular_velocity {};

41 Vector3f rates(angular_velocity.xyz);

42 float p = rates (0) - rates (2)*sin(euler_angles.theta ());

43 float q = rates (1)*cos(euler_angles.phi()) + rates (2)*sin(

euler_angles.phi())*cos(euler_angles.theta());

44 float r = -rates (1)*sin(euler_angles.phi()) + rates (2)*cos(

euler_angles.phi())*cos(euler_angles.theta());

45

46 // Aileron and rudder calculation (lateral LQR)

47 //They are defined as torque variables , but they are angles

48 _vehicle_torque_setpoint.xyz[0] = -1*( _lqr_lat_k11*p +

_lqr_lat_k12*r + _lqr_lat_k13*euler_angles.phi() + _lqr_lat_k14*

ei_roll);

49 _vehicle_torque_setpoint.xyz[2] = -1*( _lqr_lat_k21*p +

_lqr_lat_k22*r + _lqr_lat_k23*euler_angles.phi() + _lqr_lat_k24*

ei_roll);

50

51 // Antiwindup limits and flag

52 if(_vehicle_torque_setpoint.xyz [2] > _rudder_max ||

_vehicle_torque_setpoint.xyz [2] < _rudder_min){

53 _antiwindup_flag = 1;

54 _vehicle_torque_setpoint.xyz[2] = math:: constrain(

_vehicle_torque_setpoint.xyz[2], _rudder_min , _rudder_max);

55 }

56

57 else

58 _antiwindup_flag = 0;

59

60 // Elevator calculation (longitudinal LQR)

61 // Initial elevator deflection is added at the end as LQR

calculates the increment from trim value

62 // Initial pitch angle is subtracted to the current pitch angle to

obtain the increment

63 _vehicle_torque_setpoint.xyz[1] = -1*( _lqr_lon_k1*q + _lqr_lon_k2

* (euler_angles.theta ()-_theta_trim) + _lqr_lon_k3*ei_pitch) +

_deltaE_trim;

64

65

66 /* scale effort by battery status */

67 if (_param_fw_bat_scale_en.get() && _vehicle_thrust_setpoint.xyz

[0] > 0.1f) {

68

69 if (_battery_status_sub.updated ()) {

70 battery_status_s battery_status {};

71

72 if (_battery_status_sub.copy(& battery_status) &&

battery_status.connected && battery_status.scale > 0.f) {

73 _battery_scale = battery_status.scale;

74 }

75 }

76

77 _vehicle_thrust_setpoint.xyz[0] *= _battery_scale;
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78 }

79

80 // Publish thrust and deflection of control surfaces

81 _vehicle_thrust_setpoint.timestamp = hrt_absolute_time ();

82 _vehicle_thrust_setpoint.timestamp_sample = angular_velocity.

timestamp_sample;

83 _vehicle_thrust_setpoint_pub.publish(_vehicle_thrust_setpoint);

84

85 _vehicle_torque_setpoint.timestamp = hrt_absolute_time ();

86 _vehicle_torque_setpoint.timestamp_sample = angular_velocity.

timestamp_sample;

87 _vehicle_torque_setpoint_pub.publish(_vehicle_torque_setpoint);

88 }

Listing 6.13: LQR function

where the last part is omitted, which enables manual flaps and spoilers control.
Note that the control output is defined as torque because of quadcopter drone tradi-
tion, but they represent deflection angle of the control surfaces.

The control law (6.4) is the published output, used by servos to deflect the control
surfaces.

6.2.7 Weighting matrices calibration

After the algorithm implementation, its behaviour has to be adjusted by tuning Q
and R. The objective of the project is not to define a calibration methodology for
them, so an empirical approach is used for it.

Theoretical foundations

The followed approach has some foundations:

– Raising the value of Q associated to an state generates that the controller tries
to minimize it quicker, so it has a stronger influence reflected in the values of
the feedback gain matrix K. This means that it will try to reach the initial or
trim value seen in Subsection 6.1.6.

– Lowering the value of R associated to a control has a similar effect as explained
above. A low value will result in high deflections of the control surface to achieve
the desired effects.

The following chapter, dedicated to experimental results, will show this process
of simulations and its results.

Simulink simulations

A series of Simulink simulations are conducted to demonstrate the impact of varying
the weight assigned to each state and control. In these simulations, all weights are
set to 1, except for the one being analyzed.

66



� Longitudinal system

The state that will be analysed is pitch as it is the one that needs to follow a
reference.

– Sweep of q

Figure 6.16 shows that increasing the weight associated to q a slower re-
sponse with more overshoot is obtained. Moreover, the elevator response
is also lower and slower. This is because by increasing the weight q tries
to get to the trim value, which is 0, thus making difficult a fast pitch
change. It is concluded that a low weight value is preferred to obtain a
faster response.
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Figure 6.16: Sweep of simulations with different associated weight values to q. Source:
own

– Sweep of pitch

In Figure 6.17 it can be seen that increasing the weight associated to pitch
a slower response with less overshoot is obtained. The elevator response is
also lower. This is because by increasing the weight pitch tries to get to
the trim value (in this case 0◦). It opposes to a faster change of pitch, but
eliminates overshoot, so it will be increased until overshoot is overcome.
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Figure 6.17: Sweep of simulations with different associated weight values to pitch.
Source: own

– Sweep of pitch error

From Figure 6.18 it can be derived that increasing the weight associated
to pitch error a faster response with more overshoot is obtained. The
elevator response is also higher. This is because by increasing the weight
pitch tries to get faster to the reference value. It is concluded that it will
be the highest weight value.
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Figure 6.18: Sweep of simulations with different associated weight values to pitch
error. Source: own

– Sweep of elevator

For the elevator sweep, Figure 6.19 shows that increasing the weight asso-
ciated to elevator a slower response with more overshoot is obtained. The
elevator response is also lower and slower. It can be explained as increasing
the weight makes the cost of using the control higher. The conclusion is
that this weight value will be as low as possible.
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Figure 6.19: Sweep of simulations with different associated weight values to elevator.
Source: own

� Lateral system The state that will be analysed is roll as it is the one that
needs to follow a reference.

– Sweep of p

Figure 6.20 shows that increasing the weight associated to p a slower re-
sponse with more overshoot is obtained. The aileron response is lower and
slower, and the rudder is higher to compensate. Similarly to q, increasing
p weight makes the effort to get it to trim value is higher, therefore oppos-
ing to changes in roll. It is concluded that this weight value will be as low
as possible.
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Figure 6.20: Sweep of simulations with different associated weight values to p. Source:
own

– Sweep of r

Changing the weight associated to r does not have an impact in roll, as seen
in Figure 6.21. The aileron response is not changed significantly. However,
rudder response has a higher peak, and a lower steady value. It is explained
as the final r value will be closer to 0 ◦/s (trim value) thanks to rudder
action. Thus less aileron is required in steady conditions to maintain a
lower r. A low weight value will be preferred.
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Figure 6.21: Sweep of simulations with different associated weight values to r. Source:
own

– Sweep of roll

In Figure 6.22 it can be seen that increasing the weight associated to roll
the response is lower and with less overshoot. The aileron and rudder
responses are also lower. The explanation is the same as for pitch in the
longitudinal system, it tries to get to 0◦. It will be used to overcome
overshoot.
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Figure 6.22: Sweep of simulations with different associated weight values to roll.
Source: own

– Sweep of roll error

Increasing the weight associated to roll error, as seen in Figure 6.23, gen-
erates a faster response with more overshoot. The aileron and rudder
responses are also higher. It is because roll gets faster to its reference
value to reduce error. It will be set to maximum.

75



76



Figure 6.23: Sweep of simulations with different associated weight values to roll.
Source: own

– Sweep of aileron

The effect of increasing the weight associated to aileron is a slower re-
sponse with more overshoot ,as seen in Figure 6.24. The aileron response
loses importance respect to rudder, so they are decreased and increased
respectively. A low weight value is preferred to obtain a faster response.
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Figure 6.24: Sweep of simulations with different associated weight values to aileron.
Source: own

– Sweep of rudder

No effect is observed when changing the weight associated to rudder in
roll response, as seen in Figure 6.25. The rudder response, however, is
decreased. No major changes are seen in aileron response. A low weight
value is preferred.
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Figure 6.25: Sweep of simulations with different associated weight values to rudder.
Source: own

Param change after calibration

All the params of the gain matrixK that require changes after calibration are grouped
into FW LQR CONTROL inside Parameters tab of QGroundControl, as seen in
Figure 6.26.

Figure 6.26: LQR parameters in QGroundControl. Source: own
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Chapter 7

Experimental results

This chapter shows results of simulations to justify the followed calibration and to
compare the performance against the regular implementation.

To obtain the information of the simulations, the log file is downloaded from
QGrounControl and analysed in MATLAB.

7.1 Weighting matrices calibration

The conclusions drawn from Section 6.2.7 will be considered during the calibration
in the SITL scenario.

7.1.1 Longitudinal System

This system is simpler to calibrate as it contains fewer states and control elements.

Control effort

In the calibration process, the control effort variable proves to be the most sensi-
tive. Reducing its value to achieve greater surface deflection results in oscillatory
behaviour, while high values lead to a slower response from the controller. However,
there exists a range where oscillations are absent, and the controller performance is
maximized.

To find a value within this range, simulations are performed with different R
values, and keeping Q = I. They start from trim conditions, and make a descent to
h = 70 m, and an ascent to h = 100 m. Figure 7.1 shows the results of them.
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Figure 7.1: Pitch and elevator deflection for different R values. Source: own

It is concluded that the value in which oscillations disappear but performance is
maximised is with R = 4.

State deviation

The states in the system are q, pitch and pitch error. Raising their associated value
will generate a stronger response to bring them to trim values (0, θTrim and 0, re-
spectively). Therefore, the value associated to pitch error should be maintained high,
therefore 1. In the case of q, it needs a low value as high pitch angular velocity is
needed to reduce pitch error, so it is set to 0.01.

However, as seen in Section 6.2.7, a high weight associated to pitch error generates
overshoot. Thus, pitch associated weight will be used to overcome it. Figure 7.2 shows
Simulink simulations where different weights to pitch are set. The other weights are:

Q =

0.01 0 0
0 Qθ 0
0 0 1


R = 4
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Figure 7.2: Sweep of simulations with different weights associated to pitch. Source:
own

It can be seen that Qθ = 0.45 is the value with no overshoot with the fastest
response, so it is the selected one.

Results

The final matrices are:

Q =

0.01 0 0
0 0.45 0
0 0 1

 (7.1)

(7.2)

R = 4 (7.3)

Which after solving the Riccati equation, the gain matrix results in:

K =
[
0.166 0.651 −0.500

]
(7.4)

Figure 7.3 shows the results of a simulation with the descent to h = 70 m and
ascent to h = 100 m.
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Figure 7.3: Pitch and elevator deflection for the calibrated longitudinal system.
Source: own

7.1.2 Lateral-directional System

Contrary to the previous section, this system has more variables to tune. Still, the
effect of changing these has analogies with the conclusions drawn from longitudinal
system.

Control effort

In this case, low R values (high control effort) also lead to oscillations. Again, simula-
tions are performed to compare the response by changing these values. The followed
trajectory consists of two wide turns and two sharp turns, seen in Figure 7.4.

Figure 7.4: Target trajectory used for lateral controls calibration. Source: own

Figure 7.5 shows the results of the different simulations with Q = I.
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Figure 7.5: Roll and aileron and rudder deflection for different values of R. Source:
own

From the oscillations seen in the simulations, R = 0.1 · I is discarded. Between
the remaining values R = 0.5 · I offers better performance, so it is chosen.

State deviation

As in the longitudinal system, the value associated to roll error will be the highest,
therefore 1. On the other hand, the associated to p will be the lowest to have a faster
response that eliminates roll error. In addition, r will also take the lowest value to
generate the most change in yaw. Both will be set to 0.01. For the weight associated
to roll, it is chosen to eliminate overshoot with R = 0.5 · I. Figure 7.6 shows these
simulations.
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Figure 7.6: Simulink simulation with different weight values associated to roll. Source:
own

It can be concluded that the best value is Qϕ = 0.45.

Results

The final matrices are:

Q =


0.01 0 0 0
0 0.01 0 0
0 0 0.45 0
0 0 0 1

 (7.5)

R =

[
0.5 0
0 0.5

]
(7.6)

The gain matrix is the following:

K =

[
0.110 0.133 1.485 −1.414
0 0.031 0.025 0.016

]
(7.7)

Figure 7.7 shows the results with the selected matrices.
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Figure 7.7: Calibrated lateral system simulation results. Source: own

7.2 Comparison with regular implementation

In this section the results will be compared with the PID implementation. A more
complex mission is followed, which includes a climb phase, an acceleration phase,
turns at constant height and turns at variable height.

Moreover, for this section the PID is calibrated with values obtained by HORUS.
These can be seen in Table 7.1.

PID values

Roll Pitch Yaw

P 0.05 P 0.005 P 0.02

I 0.03 I 0.005 I 0.1

D 0 D 0.005 D 0

FF 0.4 FF 0.4 FF 0.3

Table 7.1: PID calibration values

7.2.1 Error-based indices

The following indices will be used to compare the performance between algorithms:
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1. Integral of Absolute Error (IAE):

IAE =

∫ ∞

0

|e(t)| dt

Measures the total error over time. Lower values indicate better tracking per-
formance.

2. Integral of Squared Error (ISE):

ISE =

∫ ∞

0

e2(t) dt

Penalizes larger errors more heavily, emphasizing the elimination of large devi-
ations.

3. - Integral of Time-weighted Absolute Error (ITAE):

ITAE =

∫ ∞

0

t|e(t)| dt

Penalizes errors at later times, encouraging faster error correction.

4. Root Mean Square Error (RMSE):

RMSE =

√√√√ 1

n

n∑
i=1

e(ti)2

Measures the average or root-mean-square value of the error.

7.2.2 Pitch error

Figure 7.8 shows the comparison of pitch error over time. However, it may be because
of poor PID calibration as higher constant error over time is the responsible for this.

Figure 7.8: Comparison of pitch error between PID and LQR implementations.
Source: own

89



Table 7.2 shows the error-based indices for pitch, and the percentage difference
between them.

Index PID LQR Percentage

IAE 3.1954 1.4517 -54.57%

ISE 0.0720 0.0419 -41.81%

ITAE 234.2405 151.5056 -35.32%

RMSE 0.0183 0.0139 -24.04%

Table 7.2: Pitch error-based indices for PID and LQR implementation

It can be concluded that the new implementation outperforms the regular one
regarding pitch.

7.2.3 Roll error

Figure 7.9 shows the comparison of roll error over time.

Figure 7.9: Comparison of roll error between PID and LQR implementations. Source:
own

Table 7.3 shows the error-based indices for roll, and the percentage difference
between them.

Index PID LQR Percentage

IAE 4.8105 7.5204 +56.33%

ISE 0.5160 1.1785 +128.39%

ITAE 461.7153 715.3954 +54.94%

RMSE 0.0485 0.0740 +52.58%

Table 7.3: Roll error-based indices for PID and LQR implementation

It is concluded that the regular implementation outperforms the experimental one
regarding roll.
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7.2.4 Trajectory error

Figure 7.10 shows the comparison of trajectory error over time.

Figure 7.10: Comparison of trajectory error between PID and LQR implementations.
Source: own

Table 7.4 shows the error-based indices for trajectory, and the percentage differ-
ence between them.

Index PID LQR Percentage

IAE 4539.7368 4552.7832 +0.29%

ISE 194321.7812 195698.7188 +0.71%

ITAE 512496.0312 518481.7500 +1.17%

RMSE 30.2578 30.3489 +0.30%

Table 7.4: Trajectory error-based indices for PID and LQR implementation

Trajectory following is the final goal of the algorithm. In this case, LQR has worse
performance, but the difference is minimum.

7.2.5 Comparison conclusion

PID outperformed LQR in two of the three errors. However, regarding trajectory
error they were similar. Nevertheless, the experimental implementation has room for
improvement: With the position controller being substituted, having data for angle
of attack and angle of drift, and an optimal calibration methodology, the algorithm
would perform better.

Furthermore, LQR control is distinguished by its ability to produce smoother tra-
jectories, as seen in Figures 7.8 and 7.9. These figures show that the error is reduced
more smoothly with LQR compared to PID implementation. Since LQR incorporates
all system states in its formulation, disturbances affecting any state are rejected in a
more gradual and controlled manner than in the PID approach.
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7.3 Objectives evaluation

After the comparison of both implementations the project is considered complete.
Recalling the steps:

1. Adaptation of PX4 code to be suited for control mode switchability.

2. Comprobation of correct behaviour of the regular implementation and of control
mode switchability.

3. Development of experimental LQR code.

4. Linearization of Bryan equations with aircraft dynamic model around an oper-
ating point.

5. Q and R matrices assignment.

6. Riccati’s equation calculation.

7. LQR parameters insertion and simulation with H200 model.

8. Validation of experimental controller performance.

9. Comparison with original PID implementation.

The code has been adapted to suit an experimental version and its behaviour is
checked in Section 6.2.6. The LQR code is shown in the same section. The lineariza-
tion of Bryan equations to obtain the aircraft model is performed in Section 6.2.3.
The calibration process is shown in 7.1. The Riccati equation calculation is presented
in Section 6.2.4 and done in Section 7.1. The LQR parameters insertion is shown in
Section 6.2.7. Finally, the validation of experimental controller and its comparison
with the original implementation is done in Section 7.1. Therefore, all the objectives
have been accomplished.
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Chapter 8

Conclusion

During this project, an experimental implementation of a control algorithm into the
existing PX4 platform has been developed and tailored for an specific aircraft. This
was achieved by understanding the behaviour of the PX4 stack and modifying it with-
out disrupting its usual workflow.

Furthermore, after validating the algorithm and refining its implementation, the
system can be tested using non-destructive simulations based on Software-in-the-
Loop (SITL). These simulations provide an approximation to real-world conditions,
enabling performance validation in realistic scenarios. This is a step towards deploy-
ment on the physical aircraft and subsequent validation through actual flight testing.

Additionally, a linear model of the H200 aircraft has been developed and tailored
to meet the exact requirements of the project. This model has been validated through
simulations, ensuring its accuracy and applicability to the control algorithm’s design
and testing processes.

However, some limitations persist. The integration of the control algorithm within
existing PX4 modules and files imposes constraints on flexibility and may limit the
performance of future updates due to the coexistence of legacy and experimental
code. Furthermore, the implemented control algorithm focuses solely on managing
aircraft attitude, leaving room for enhanced performance through the incorporation
of broader control strategies. The absence of data regarding the direction of air ve-
locity during flight also reduces the algorithm’s effectiveness, as well as the lack of an
optimal calibration method. In spite of that, LQR implementation has proved to have
similar performance to the PID implementation. Nevertheless, LQR implementation
demonstrated smoother trajectory rejection due to its nature.

Lastly, any changes in the aircraft’s design or geometry would necessitate updates
to both the dynamic model and the control variables to maintain optimal performance.

Considering everything, all the objectives set for the project have been accom-
plished.
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Chapter 9

Annex

9.1 Sustainable development goals: Agenda 2030

Sustainable High Medium Low Not

development goals applicable

SDG 1. No Poverty x

SDG 2. Zero Hunger x

SDG 3. Good Health and Well-being x

SDG 4. Quality Education x

SDG 5. Gender Equality x

SDG 6. Clean water and sanitation x

SDG 7. Affordable and Clean Energy x

SDG 8. Decent Work and Economic Growth x

SDG 9. Industry, Innovation, and Infrastructure x

SDG 10. Reduced Inequality x

SDG 11. Sustainable Cities and Communities x

SDG 12. Responsible Consumption and Production x

SDG 13. Climate Action x

SDG 14. Life Below Water x

SDG 15. Life on Land x

SDG 16. Peace, Justice, and Strong Institutions x

SDG 17. Partnerships for the Goals x

Table 9.1: Sustainable development goals relation with the project

The Sustainable and Development Goal 9. Industry, Innovation, and Infrastructure
is the most related to the project as it works on the development of UAS technology.
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Diseño Industrial

Grado en Ingenieŕıa Aeroespacial
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1 Introduction

This document outlines the terms of reference for the project, detailing the techni-
cal and legal specifications required for its execution. It provides a comprehensive
framework for the project’s development. Additionally, it delineates the assignment
of responsibilities, rights, and duties for both the client and the contractor, ensur-
ing clear communication and understanding of each party’s obligations to facilitate
successful project completion.

2 Project description

This project consists of the following parts:

1. Modification of PX4 standard code to suit the experimental algorithm imple-
mentation. The client will be able to switch between control modes.

2. Implementation of the LQR algorithm code.

3. Comprobation of correct behaviour of the original implementation after its ma-
nipulation.

4. Linearization of the aircraft model. The dynamic model of the aircraft will
be provided by the client, including all the necessary variables of geometry,
aerodynamics or propulsion

5. Q and R matrices terms assignment.

6. Riccati’s equation solving to obtain controller gain matrix.

7. Run software in the loop simulation with gain matrix terms.

8. System validation with results.

9. Comparison with original PID implementation.

3 General terms of reference

In this section the project contents are enumerated and the relationship between
client and contractor and its administrative aspects are defined.

3.1 Project documents

The documents provided in the project are:

1. Memory

2. Costs

3. Terms of reference
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3.2 General conditions

In this section the relationship between client and contractor is detailed.

Client functions

The responsibilities that lie on the client are the following:

� Mathematical model of the aircraft, including geometric, aerodynamic and
propulsive information required to use control theory on it.

� Simulink® model of the aircraft to be able to perform Software in the Loop
(SIL) simulations.

� Regular implementation of the autopilot.

� Control specifications of the desired experimental implementation.

Contractor functions

The responsibilities that lie on the contractor are the following:

� Accomplish the different sections of the project with good engineering practices
and provide the documents indicated in section 3.1

However, as the dynamic model is a responsibility of the client, the contractor
cannot guarantee its exactitude or the correct behaviour of the control.

3.3 Conditions of the project accomplishment

Project submission

All of the output of the project, including documents specified in section 3.1, and
generated code, will be submitted to the client.

The code will be functional without the need of modifications or corrections, and
will be properly commented for easy comprehension in case of future extensions of
it. In case there is dissatisfaction of the final result by the client, modifications of
it can be requested as long as it lies inside the project specifications. As previously
stated, the dynamic model or experimental control specifications are responsibilities
of the client. In case of dissatisfaction regarding these aspects, it is not the contractor
responsibility to modify these.

For the project output to be replicated in other computer system, the required
programs and tools will not be provided by the contractor. Instead, these will be
detailed in section 4.
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Deadline and time extensions

The project deadline is agreed between both sides of the contract. It is detailed in
section 4, where the different stages of the development are also mentioned. If it is
requested by the client, it will be needed to provide written evidence of it.

If beginning or ending a project section inside the deadline is not feasible due to
force majeure, a time extension will be provided for the sake of the contract. This
time extension will be agreed between both sides of the contract.

3.4 General economical conditions

This section will detail the economical conditions of the project. The Costs document
will provide the complete version of this section.

Prices

For price calculations three different aspects are being considered:

� Direct costs: they include the labour cost, tools, material and software licenses.

� General costs: they include costs that are not considered in direct costs, such
as energetic, reparation or maintenance costs. These are considered to be 15%
of the direct costs.

� Industrial benefit: it is the economic surplus obtained by a business after elim-
inating costs associated to production and distribution of goods or services.
They are considered to be 6% of the direct costs.

4 Technical terms of reference

4.1 Motivation

This section is responsible for describing the materials and tools used for the develop-
ment of the project, which, due to the project nature, will include software licenses.
Moreover, the terms of use of these are also described.

4.2 Materials and tools conditions

The materials and tools used are the different software programs needed for the code
development and simulation. The terms of use of each of them are described:

� MATLAB® and Simulink®: For the former, version R2023b is used, and for
the latter it is version 23.2. In addition, to be able to perform the required
simulations, the following toolboxes are required, all with version 23.2:

■ Aerospace Blockset

■ Aerospace Toolbox
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■ Control System Toolbox

■ Symbolic Math Toolbox

MATLAB is not open-source, it is a commercial software product that requires
a paid license to use. Special academic licenses are available for students and
educators at a discounted rate. These licenses may have additional restrictions,
such as non-commercial use only. In this case, an educational version is used.

� QGroundControl: it is a software dedicated to plan an autonomous mission ,
communicate with the autonomous aircraft, and visualize the environment in a
simulation or real mission. The source code of QGroundControl is dual-licensed
under Apache 2.0 and GPLv3 (or later), the artwork/images are licensed under
CC by SA. The version being used is v4.3.0.

� PX4 source code: It is an open-source flight control software for drones and
other unmanned vehicles. It is the base code frame of the autopilot of the
aircraft which will be modified to obtain an experimental version compatible
with the regular implementation. PX4 is distributed under the BSD 3-Clause
License. This is a permissive open-source license that allows for free use, mod-
ification, and distribution of the software, with minimal restrictions. The main
conditions are that the original copyright notice, list of conditions, and dis-
claimers must be retained in all copies or substantial portions of the software.
The version used is v1.14.0.

� Microsoft Visual Studio Code (VS Code): It is a free, open-source code editor
developed by Microsoft. It is used to modify the PX4 source C++ code and
develop the experimental control. Visual Studio Code is distributed under the
Microsoft Software License Terms. The source code for Visual Studio Code is
available on GitHub under the MIT License, which allows for free use, modi-
fication, and distribution of the source code. However, the official binary dis-
tributions provided by Microsoft come with a proprietary license that includes
additional terms and conditions, particularly around redistribution and usage.
The version used is 1.91.0.

� Texmaker: It is a free, cross-platform LaTeX editor, which is the software used
to create the documents of the project. Texmaker is distributed under the
GNU General Public License (GPL) v2. This license allows users to freely use,
modify, and distribute the software, provided that any distributed versions or
derivative works also come under the GPL. The version used is 5.1.4.

� MiKTeX: It is a distribution of the TeX/LaTeX typesetting system. It includes a
package manager that automatically installs missing packages from the Internet.
It is required for Texmaker to work, so the project documents also rely on this
software. MiKTeX is distributed under the MiKTeX Project Public License,
which is similar to the LaTeX Project Public License (LPPL). The source code
for MiKTeX is available, and users can contribute to its development. The
version used is 4.12.
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4.3 Description of tools usage

This section provides the link between the procedures and tools needed for the
project accomplishment:

• Modification of PX4 standard code and implementation of LQR algorithm code:
Using Microsoft Visual Studio and PX4 software, the C++ PX4 code is
modified to suit the experimental LQR code and allow the different imple-
mentations to be switched from QGroundControl console.

• Aircraft dynamic model linearization and LQR parameter calculation: the

model is implemented in Simulink® making use of the Aerospace Toolbox,
Aerospace Blockset, Symbolic Math Toolbox and Control System Tool-
box. The implementation is based on Bryan equations which approximate
the behaviour of the flight of an aircraft. It is linearized and then using
MATLAB® the LQR parameters are calculated. Then, using Microsoft
Visual Studio and PX4 software they are implemented in the code.

• Software in the Loop simulation: the purpose is to run the experimental
code and check that the original implementation works as well. With the
Simulink® model connected to QGroundControl, the mission is planned,
launched and monitored. In this scenario, the regular and experimental
implementations can be switched.

• System validation: by looking at the error between the desired trajectory
and the followed one from QGroundControl, the system performance is
assessed.

4.4 Final checks and adjustments

Upon completion of project components, the client may assess the developed
simulation system through testing with various autonomous missions. If the
results of these tests are unsatisfactory, the client may request modifications
to the simulation system, always falling between the project scope. This phase
corresponds to the final adjustments of the project. Ultimately, the client will
receive all documentation generated throughout the project, along with the code
developed for each component, as per the terms of execution.
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Grado en Ingenieŕıa Aeroespacial

2024-2025 Course





Contents

List of Tables ii

1 Introduction 1

2 Partial costs 1
2.1 Labour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1.1 Project phases . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Software licenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Global costs 4

i



List of Tables

1 Summary of labour hour cost . . . . . . . . . . . . . . . . . . . . . . 1
2 Project phases costs . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3 Tools costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
4 Software licenses costs . . . . . . . . . . . . . . . . . . . . . . . . . . 3
5 Total gross costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
6 Tender budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

ii





1 Introduction

In this document the different costs that are needed for the accomplishment of the
project “Design and implementation of multivariable control strategies for autopilots
based on the PX4 control stack” are presented.

Costs are divided into labour, material costs and software license costs. Global
cost will be the addition of these, plus 15% due to general costs and 6% of industrial
benefit, as stated in Terms of Reference document. Finally, an addition of 21% of
VAT due to Spanish regulation is required.

2 Partial costs

Time spent in each project stage is crucial to define partial costs. To do so, the hour
of labour cost will be calculated to obtain the price of each stage of the project.

2.1 Labour

Considering a workday that consists of 8 hours during 22 days a month over 11 months
of a year (considering 1 month of vacation), yields a total of 1,936 hours.

Assuming the labour to be a junior engineer (Salary level 2), according to “Dis-
posición 5873 del BOE núm. 73 de 2024” from the Spanish state bulletin, in which
the XX collective agreement of engineering companies and technical offices is revised
to change salary amounts, the annual salary in 2024 would be of 22,224.26¿. To this
amount, a 30% increase to pay Social Security contribution will be added.

The price of an hour is obtained with annual salary and annual worked hours,
which in this case is 14.91¿. This is summarized in Table 1.

Annual salary [¿] Worked hours Hour salary [¿/h]
22,224.26¿ 1,936 11.48

Annual salary (SS) [¿] SS contribution Final hour salary [¿/h]
28,869.30 6,645.05 14.91

Table 1: Summary of labour hour cost

2.1.1 Project phases

The stages are defined in Terms of Reference document and are summarized here:

1. Modification of PX4 standard code and implementation of LQR algorithm code:
Using Microsoft Visual Studio Code and PX4 software.

1



2. Aircraft dynamic model linearization and LQR parameter calculation: Using MATLAB®,

Simulink®, Aerospace Toolbox, Aerospace Blockset, Symbolic Math Toolbox,
Control System Toolbox, Microsoft Visual Studio and PX4 software.

3. Software in the Loop simulation: Using MATLAB®, Simulink®, Aerospace Tool-
box, Aerospace Blockset, Symbolic Math Toolbox, Control System Toolbox and
QGroundControl.

4. System validation and comparison with original implementation: using MATLAB®

and QGroundControl.

Total labour costs are represented in Table 2, where time spent in each project
phase is assigned and calculated its cost with the previous section work.

Project phase Time spent [h] Total [¿]
1 165 2460.15
2 30 447.30
3 35 521.85
4 25 372.75

Documents creation 100 110.20
TOTAL 355 5293.05

Table 2: Project phases costs

2.2 Tools

The main tool used for the project is the computer in which the code is modified and
the simulations are run. In this case, an HP VICTUS 16-e1007ns. It is considered to
be amortized in a period of 5 years, which is 10,080 hours.

Tool HP VICTUS 16-e1007ns
Acquisition cost [¿] 849.50
Hours amortized 10,080

Hours spent in the project 355
Cost of project utilisation [¿] 29.92

Table 3: Tools costs

The consulted bibliography is of free access so there are not associated costs to it.

2.3 Software licenses

As there is only one employee doing the work requested by the client, software licenses
costs will be considered for one computer, the one described in the previous section.
Again, the different software licenses are considered to be amortized during a period
of time, so cost calculation will be based on the portion of time from the amortization
period. In Table 4 software licenses costs are collected. MATLAB® related costs are
obtained from https://es.mathworks.com/pricing-licensing.html.
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Software Annual cost [¿] Time used [h] Cost [¿]

MATLAB® 900 90 41.84

Simulink® 1360 65 45.66
Aerospace Toolbox 560 65 18.80
Aerospace Blockset 780 65 26.19

Symbolic Math Toolbox 448 65 15.04
Control System Toolbox 520 65 17.46

Microsoft Visual Studio Code 0 195 0
PX4 0 195 0

QGroundControl 0 55 0
TexMaker 0 100 0
MikTex 0 100 0

TOTAL 164.99

Table 4: Software licenses costs
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3 Global costs

Total cost calculation, as stated previously, will be comprised of the addition of project
phase, tools, and software license costs. This is shown in Table 5 before applying the
percentage increase due to general costs, industrial benefit or VAT.

Cost Type Total [¿]
Labour 5293.05
Tools 29.92

Software Licenses 164.99
TOTAL 5487.96

Table 5: Total gross costs

Tender budget is obtained after the percentage increase of general costs, industrial
benefit and VAT. It is shown in Table 6.

Total [¿]
Total gross cost 5487.96

+15% general costs 823.20
+6% industrial benefit 329.28

Investment costs 6640.43
+21% VAT 1394.49

Tender budget 8034.92

Table 6: Tender budget

Therefore, the total cost of this project is in EUROS:

EIGHT THOUSAND THIRTY-FOUR and NINETY-TWO

4
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