
Real-time One-pass Decoder for Speech Recognition Using LSTM Language
Models

Javier Jorge, Adrià Giménez, Javier Iranzo-Sánchez, Jorge Civera, Albert Sanchis, Alfons Juan

Departament de Sistemes Informàtics i Computació, Universitat Politècnica de València (Spain)
{jjorge,agimenez,jairsan,jcivera,josanna,ajuan}@dsic.upv.es

Abstract
Recurrent Neural Networks, in particular Long-Short Term
Memory (LSTM) networks, are widely used in Automatic
Speech Recognition for language modelling during decoding,
usually as a mechanism for rescoring hypothesis. This paper
proposes a new architecture to perform real-time one-pass de-
coding using LSTM language models. To make decoding ef-
ficient, the estimation of look-ahead scores was accelerated by
precomputing static look-ahead tables. These static tables were
precomputed from a pruned n-gram model, reducing drasti-
cally the computational cost during decoding. Additionally,
the LSTM language model evaluation was efficiently performed
using Variance Regularization along with a strategy of lazy
evaluation. The proposed one-pass decoder architecture was
evaluated on the well-known LibriSpeech and TED-LIUMv3
datasets. Results showed that the proposed algorithm obtains
very competitive WERs with ∼0.6 RTFs. Finally, our one-pass
decoder is compared with a decoupled two-pass decoder.
Index Terms: ASR, one-pass decoding, real-time, LSTM-LM

1. Introduction
Recurrent Neural Networks (RNNs) and particularly Long-
Short Term Memory (LSTM) networks are widely used to
build Language Models (LMs) for Large-Vocabulary Contin-
uous Speech Recognition (LVCSR) [1, 2, 3]. An initial recog-
nition step is first applied on the basis of an n-gram LM, from
which a set of best hypotheses is produced (e.g. an N-best list
or a lattice). Then, a second recognition step is carried out
in which an LSTM-based LM is used for hypothesis rescor-
ing [4, 5, 6, 7, 8, 9]. The use of this two-steps approach instead
of a more direct, one-pass decoding, is needed to overcome the
high computational cost associated with the LSTM-LM. That
is, by applying an LSTM-LM to a limited set of best hypothe-
ses, we take advantage of its high accuracy while keeping the
decoding time under reasonable levels.

Although the above two-step approach is still the preferred
way to develop fast yet accurate ASR systems, we think that it
will be soon replaced by one-pass decoding alone, not only to
avoid cascade errors but, more importantly, to leverage the full
potential of state-of-the-art ASR at real-time. To our knowl-
edge, the direct use of Neural LMs during decoding was first
explored in [10], where the authors proposed the use of a Vari-
ance Regularization (VR) term along with caching strategies
to speed-up this process. Despite using (feed-forward) Neural
LMs in decoding early was seen as a big challenge at that time,
empirical results showed significant relative improvements both
in speed and accuracy. Other relevant contributions address-
ing this challenge have focused on applying heuristics to reduce
model’s queries and caching the network’s states [11], propos-
ing alternative one-pass decoding strategies such as on-the-fly
rescoring [12], improving CPU-GPU communications [13] and,

more recently, combining Gated Recurrent Units with more ef-
ficient objective functions, such as Noise Contrastive Estima-
tion [14]. On the other hand, and certainly different from these
contributions, other authors have explored the idea of convert-
ing Neural LMs, either recurrent or not, into n-gram models that
can thus be smoothly integrated into the conventional recogni-
tion pipeline [15, 16].

This work follows the idea of directly using Neural LMs
in decoding and, as in the pioneering work by Shi et al. [10],
we advocate the use of the one-pass decoding strategy instead
of the conventional two-step approach. It is worth noting, how-
ever, that significant progress has been made in ASR since the
publication of this pioneering work, and thus the work reported
here, based on current ASR technology, differs greatly from it.
Generally speaking, we propose the direct use of LSTM-based
LMs during one-pass decoding based on a History Conditioned
Search (HCS) strategy [17]. To alleviate the computational cost
entailed by the use of LSTM-LMs, three main ideas are ex-
ploited: static look-ahead tables; accelerated LSTM-LM com-
putation by variance regularization and lazy evaluation; and two
new pruning techniques. Results are reported on two standard
tasks showing that these ideas are really useful for real-time
one-pass decoding using LSTM-LMs.

2. One-pass decoder architecture
As previously mentioned, we propose the direct use of LSTM-
LMs in one-pass HCS-based decoding. This proposal derives
from the large capacity LSTM-LMs have, in contrast to n-
gram LMs, to deal with histories of unlimited length [4]. This
makes HCS-based decoding perfectly suited for its use with
LSTM-LMs, as HCS decoders group hypotheses by history, and
thus large decoding sub-networks can be safely removed during
search, thereby lowering memory requirements.

Although the HCS approach allows us to deal with po-
tentially infinite LM histories during decoding, LSTM-LMs
present other challenges which need to be overcome in order
to get a real-time decoder. The most important one is the high
computational cost required by these models. In particular, the
calculation of the Softmax layer is very expensive for large vo-
cabularies. In what follows we describe the solutions we imple-
mented in our decoder to the problems we encountered.

2.1. Static look-ahead tables

LM look-ahead is a well-known and widespread pruning tech-
nique. Basically, this technique consists of adjusting the LM
score for each hypothesis h and time t by also taking into ac-
count every possible word w to follow [17]. In terms of com-
putational cost, it requires a separate set of look-ahead scores,
often referred to as the look-ahead table, for each new history h;
that is, it requires the computation of p(w | h) for each history

h and word w. Moreover, the cost of this computation, which is
already high for conventional n-gram LMs, is even exacerbated
when LSTM-LMs are used instead.

A common technique for HCS decoders to keep the look-
ahead complexity at a reasonable level is to build look-ahead ta-
bles from simplified LMs; that is, if an n-gram LM is being used
as the “big” reference LM, look-ahead tables are built from m-
gram LMs with m < n. The only exception is that, whenever a
word-end node is reached, the look-ahead score is replaced by
the probability given by the big LM. This way, the number of
different look-ahead tables and queries to the big LM are greatly
reduced, which is particularly convenient for our LSTM-based
one-pass decoder. That is, for fast computation of look-ahead
tables, we propose the use of n-gram LMs.

Although the above trick for fast computation of look-ahead
tables is really effective, it is worth noting that it can be refined
even further, in a straightforward manner. To this end, consider,
as we do here, the use of a small n-gram LM such as a pruned
4-gram LM. Then, all look-ahead tables can be precalculated
before the actual recognition process begins, and thus the look-
ahead complexity during decoding becomes negligible. This is
done here, and in order to fit all look-ahead tables in memory,
we use an approach similar to the Sparse LM Look-Ahead strat-
egy described in [17].

2.2. Variance regularization and lazy evaluation

As commented before, one of the main drawbacks of using
LSTM-LMs is the high computational cost of the Softmax layer.
This high cost is mainly due to the estimation of the normaliza-
tion term. Following the idea posed in [10], including a Vari-
ance Regularization (VR) term reduces drastically this compu-
tation. In this technique the normalization term is approximated
by a constant. Therefore, the probability of a word can be ap-
proximated as

p(w | h) =
exp(vL(h)T · aw)

Z(h)
≈ exp(vL(h)T · aw)

D
, (1)

where h denotes the current history, L is the number of hidden
layers, vL(h) and Z(h) are respectively the input vector to the
Softmax layer and the normalization term related to h, aw is the
weight vector for word w, and D is a constant.

In order to speed up the evaluation of the LSTM-LM dur-
ing decoding, the models were trained based on the VR tech-
nique in conjunction with a lazy evaluation strategy in the de-
coding process. The basic idea behind the VR technique is to
avoid computing the full Softmax, while the lazy strategy de-
lays the evaluation of LSTM-LM as much as possible. More
precisely, during decoding each LSTM history h is represented
as a tuple h = (w, h′, V), where w is the last word of h,
h′ = (w′, h′′, V ′) is the state of the previous history (imple-
mented as a pointer), and V is either ∅ (empty) or vL1 (h). The
term vL1 (h) refers to the LSTM hidden state for h and can be
calculated as vL1 (h) = RNN(w, vL1 (h′)). Therefore, during
decoding each time a word-end node (w) is reached for a given
history h′ = (w′, h′′, V ′) the following steps are executed:

1. If V ′ = ∅ then V ′ = RNN(w′, vL1 (h′′))

2. Estimate p(w | h′) = exp(vL(h
′)T ·aw)

D

3. Create new state as h = (w, h′, ∅)
Using this approach new histories are created at negligi-

ble cost, since the forward step in the model is carried out
only when a word-end node is reached for the first time. Once

the hidden state is calculated, it is cached in the current state.
In practice most of these new histories will be pruned before
any hypothesis reaches a word-end node, saving a significant
amount of computations. In addition, each time p(w | h′) is
required, it is approximated using Eq. 1 that replaces the full
Softmax calculation.

2.3. Novel pruning techniques

Apart from the conventional pruning methods, two new pruning
techniques were implemented for the one-pass decoder. On the
one hand, in some situations the lack of LM history recombina-
tion in conjunction with the histogram pruning (upper bound for
the maximum number of active hypothesis at each time frame)
resulted in a decrease of performance. More precisely, for some
long sentences, most part of the active hypotheses were simi-
lar, except for some long term differences in the LM history.
Thus, in this case, the decoder behaves similarly to a greedy
decoder. In order to avoid this behaviour a LM history recom-
bination (LMHR) parameter was introduced. More precisely,
for a given N two different LM histories wM

1 and ŵL
1 are re-

combined if wM
M−N+1 = ŵL

L−N+1. This recombination forces
the decoder to consolidate word prefixes, and thus, it focuses
on the current time frame. It is worth noting that the history
length for the LSTM-LM is not limited. Each hypothesis still
keeps a reference to the real LSTM state. A similar technique
was introduced in [11], although the motivation was different.

Furthermore, the maximum number of new LM histories
that can be created at each time frame is limited according to a
parameter that we refer to as LM histogram pruning (LMHP).

2.4. Additional remarks

Although our approach is based on an HCS decoder, note that
it could be reinterpreted as an on-the-fly composition as other
authors have proposed in the past [18, 19]. Indeed, static look-
ahead tables resembles the WFST approach, since the informa-
tion stored in the set of look-ahead tables is similar to that rep-
resented in a WFST. Thus, the memory requirements are alike
and the most important difference is that in the look-ahead ta-
bles the information is organized according to the LM histories.

Regarding this interpretation, this could be seen as per-
forming the composition of a WFST (look-ahead tables) with
a LSTM-LM. Nevertheless, it is important to remark that we
are still using an HCS decoder. Thus, the structure of the small
LM used for look-ahead is not introducing any kind of hypothe-
sis recombination during the search. Its impact is limited to the
look-ahead score computation.

Since our approach can be referred to as an on-the-fly com-
position of a small n-gram model and a big LM, it is possible to
use other types of LMs rather than LSTMs. Indeed, an on-the-
fly interpolation of n-gram and LSTM-LMs was implemented.

3. Experiments
3.1. Experimental settings

The proposed approach has been evaluated on the LibriSpeech
ASR corpus [20], and the third version of the TED-LIUM cor-
pus [21]. Statistics for these datasets are shown in Table 1.
The provided vocabulary for LibriSpeech includes 200K words,
while TED-LIUM’s vocabulary comprises 153K. Regarding the
partitions, we have used the *-other for LibriSpeech and the *-
legacy ones for TED-LIUM.

Table 1: Statistics of the corpora.

LibriSpeech TED-LIUM
Dur.(h) Words Dur.(h) Words

Train 961 884M 452 258M
Dev 5.3 50K 1.59 17K
Test 5.1 52K 2.61 27K

Our acoustic models were based on the hybrid ap-
proach [22]. First, we trained a context-dependent feed-forward
DNN-HMM with three left-to-right states. State-tying schema
follows a phonetic decision tree approach [23], resulting in 8.3K
and 10.8K tied states for LibriSpeech and TED-LIUM respec-
tively. We used the transLectures-UPV toolkit (TLK) to train
both acoustic models [24].

The DNN-HMM model was then used to bootstrap a Bidi-
rectional LSTM-HMM model [25], using TLK and Tensor-
Flow [26]. The BLSTM network was composed of eight bidi-
rectional hidden layers with 512 LSTM cells per layer and per
direction. We limited the previous history to perform back prop-
agation through time to a window size of 50 frames.

Regarding language modelling, we used n-gram and
LSTM-LMs separately and in combination through linear in-
terpolation. For LibriSpeech, we used the 4-gram ARPA LM
(fglarge) that is provided with the dataset, while for TED-LIUM
we trained a standard Kneser-Ney smoothed 4-gram LM model
with the same data as it is indicated in [21] using SRILM [27].
The OOV ratio on dev sets was 0.57% and 0.17%, while was
0.54% and 0.09% on test sets, for LibriSpeech and TED-LIUM
respectively. A pruned version for both models was used to es-
timate the static look-ahead tables.

LSTM-LMs were trained using Noise Contrastive Estima-
tion (NCE) [28] and VR [10] criterion, in order to reduce
the computational cost during both, training and test phases.
Training was performed on GPU using the CUED-RNNLM
toolkit [29]. We selected those models that provided the low-
est perplexity on the dev sets: dev-other and dev-legacy for
LibriSpeech and TED-LIUM, respectively. Both models con-
sisted of a 256-unit embedding layer and a hidden LSTM layer
of 1024 units. The output layer is a 200K units Softmax layer
in the case of LibriSpeech, while in TED-LIUM the intersec-
tion between the provided vocabulary and words in the training
set resulted in an output layer of 144K units. As our decoder
can combine any number of models during decoding, an of-
fline evaluation of the best linear interpolation of both n-gram
and LSTMs using SRILM was performed. The interpolation
weights were wngram = 0.15, wlstm = 0.85 for LibriSpeech
and wngram = 0.22, wlstm = 0.78 for TED-LIUM.

Regarding the hardware setup, experiments were conducted
on an Intel Xeon(R) CPU E5-1620@3.50GHz, and a GPU
GTX1080Ti with 12GB. The estimation of the acoustic model
scores was performed on GPU, while the estimation of the LM
score and the rest of the decoding was carried out on CPU.

3.2. Experimental results

In this section, the impact of the LMHR parameter presented in
Section 2.3 is evaluated. After this, a comparative experiment
is shown using different LM during decoding. Then, the LMHP
parameter is studied to assess the trade-off between Word Error
Rate (WER) and Real-Time Factor (RTF). Finally, a compari-
son between one-pass and two-pass decoders is performed.

Figure 1 shows WER curves as a function of the LMHR
parameter for the dev sets of LibriSpeech and TED-LIUM. As

mentioned before, the LMHR controls the number of words that
were kept during the decoding to perform hypothesis recombi-
nation. The LM employed in these figures is a linear interpola-
tion between a large 4-gram LM and a VR-trained LSTM-LM
described in Section 3.1.

10.0

10.1

10.2

10.3

10.4

10.5

 2 5 10 20 50 100

WER

LMHR

LibriSpeech

7.5

7.6

7.7

7.8

7.9

8.0

 2 5 10 20 50 100

WER

LMHR

TED-LIUM

Figure 1: Evaluation of the impact of the LMHR parameter in
terms of WER [%] for LibriSpeech and TED-LIUM.

As observed in both datasets, there is an optimum WER at
around a history length of 10. This means a decrease of 0.5 and
0.3 WER points in LibriSpeech and TED-LIUM, respectively,
w.r.t. a history length of 2. History lengths above 20 did not
provide further improvements. In what remains, we have deter-
mined the optimal LMHR value for each dataset of 10.

Regarding the impact of using different LMs, Table 2 shows
WER figures, relative improvement of WER (∆%) and perplex-
ity (PPL) for LibriSpeech and TED-LIUM test sets on systems
that differ in their LM. From top to bottom, the baseline LM
is the pruned (small) 4-gram LM used to perform look-ahead,
then the large 4-gram LM, next the VR-trained LSTM-LM and
finally the interpolated LM mentioned above. Decoding hyper-
parameters were tuned on the dev set.

As shown in Table 2, one-pass decoding systems including
LSTM-LM present relative improvements of ∼17% for Lib-
riSpeech and ∼13% for TED-LIUM, compared with large 4-
gram-based systems. In addition, interpolated LM systems pro-
vide an additional∼1% improvement over only-LSTM LM sys-
tems. In terms of perplexity w.r.t. large 4-gram LMs, interpo-
lated LMs offer a significant reduction of∼40% across datasets,
stressing the consistent relation between perplexity and WER.
This interpolated LM was the default model for posterior exper-
iments.

Table 2: Comparison of WER, relative improvement of WER
w.r.t the baseline, and perplexity results using different LM mod-
els on LibriSpeech and TED-LIUM test partitions.

LibriSpeech TED-LIUM
WER ∆% PPL WER ∆% PPL

small 4-gram 14.4 - 222.1 10.4 - 176.4
+ 4-gram 12.3 14.6 146.2 9.6 7.7 148.7
+ LSTM 10.2 29.2 89.2 8.3 20.2 91.1
+ interp. 10.1 29.9 86.4 8.2 21.1 88.0

Figure 2 shows WER/RTF curves for LibriSpeech and
TED-LIUM dev sets as a function of several selected values for
the LMHP parameter (LMHP = 30, 60, 100, unlimited), vary-
ing the beam width. As remarked in Section 2.3, LMHP allows
us to control the number of new LM histories that will be ex-
panded, reducing the queries to the LSTM-LM.

As shown in Figure 2, the LMHP parameter has a strong
impact in RTF, allowing us to adjust the WER/RTF trade-off on

10.0

11.0

12.0

13.0

14.0

15.0

16.0

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

LibriSpeechWER

RTF

LMHP=30
LMHP=60
LMHP=100
LMHP=unlim.

7.5

8.0

8.5

9.0

9.5

10.0

10.5

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

TED-LIUMWER

RTF

LMHP=30
LMHP=60
LMHP=100
LMHP=unlim.

Figure 2: Comparison of the impact of different values for the
LM-histogram-pruning (LMHP) parameter in terms of WER
and RTF for LibriSpeech and TED-LIUM.

demand. To this purpose, real-time performance (RTF∼1) can
be reached at almost no cost in terms of WER, as differences
among LMHP values show. In particular, limiting LMHP to 100
allows us to obtain RTF results below 1 without WER reduction
in both datasets.

Table 3 shows WER figures, RTF and relative increase of
RTF (∆%) on LibriSpeech and TED-LIUM test sets comparing
the best performing LMHP value and unlimited using the same
pruning parameters. As observed, RTF was drastically reduced
while maintaining similar WER figures.

Table 3: Comparison of WER, RTF and relative increase of RTF
w.r.t to LMHP=100 on LibriSpeech and TED-LIUM test sets.

LibriSpeech TED-LIUM
LMHP WER RTF ∆% WER RTF ∆%
unlimited 10.12 1.56 - 8.18 1.38 -
100 10.20 0.88 43.6 8.19 0.87 37.0

As mentioned in Section 2, our decoder can be consid-
ered as an on-the-fly composition of the pruned LM and the
LSTM/n-gram interpolation. This motivates another set of ex-
periments that assesses the impact of performing this on-the-fly
composition in contrast to the decoupled approach. For the de-
coupled approach, the standard two-pass decoding strategy was
adopted based on generating lattices and then rescoring them
with the LSTM/n-gram interpolated LM. For lattice generation
two options were considered: using the pruned (small) n-gram
model, already used for static look-ahead tables estimation, and
the large LM. In the case of the small n-gram, a WFST decoder
was used. In the second option, the large LM was used in our
HCS decoder replacing the LSTM-LM to generate lattices. The
posterior lattice rescoring was carried out in both cases using
the CUED-RNNLM toolkit, which imports this function from
HTK [30]. It is important to remark that this software was ex-
tended to include the VR normalization. The same acoustic and
language models were used in both cases.

Figure 3 compares the WER/RTF curves for one-pass using
LMHR=10 and LMHP=100 versus both two-pass approaches
on LibriSpeech (left) and TED-LIUM (right) datasets. Results
show that the one-pass decoder produces significant improve-
ments in WER compared to WFST, especially when RTF is
greater than 0.4. Considering a very similar RTF performance,
the one-pass decoding approach achieves relative improvements
in WER ∼12% and ∼6% in LibriSpeech and TED-LIUM, re-
spectively. Comparing HCS decoders, one-pass shows a consis-
tent improvement in RTF, reducing WER (∼6%) in the case of

10.0

11.0

12.0

13.0

14.0

15.0

16.0

0.2 0.6 1.0 1.4 1.8

LibriSpeechWER

RTF

One-Pass
Two-Pass (HCS)
Two-Pass (WFST)

7.5

8.0

8.5

9.0

9.5

10.0

10.5

0.2 0.4 0.6 0.8 1.0 1.2 1.4

TED-LIUMWER

RTF

One-Pass
Two-Pass (HCS)
Two-Pass (WFST)

Figure 3: Comparison of the one-pass HCS decoder and the
two-pass HCS and WFST decoders in terms of WER and RTF
for LibriSpeech (left) and TED-LIUM (right).

LibriSpeech and obtaining a similar accuracy in TED-LIUM.
Table 4 shows WER figures for similar RTFs on test par-

titions, considering the aforementioned decoders, one-pass and
two-pass HCS, and the two-pass WFST decoder. As shown in
development sets, the one-pass HCS significantly improves over
the WFST approach. Finally. the one-pass HCS obtains a better
WER/RTF trade-off than the two-pass HCS.

Table 4: Comparison of WER for similar RTFs between one-
pass HCS decoder and the two-pass HCS and WFST decoders
on LibriSpeech and TED-LIUM test partitions.

LibriSpeech TED-LIUM
WER RTF WER RTF

one-pass HCS 10.20 0.88 8.19 0.87
two-pass HCS 10.95 0.90 8.46 0.88
two-pass WFST 11.39 1.16 8.70 1.06

4. Conclusions and future work
A novel one-pass decoder that seamlessly combines the use of
static look-ahead tables and LSTM-LMs has been presented.
This decoder has been evaluated on reference ASR datasets,
such as LibriSpeech and TED-LIUM, obtaining competitive
WER/RTF results. Indeed, RTF figures are reported well below
one that makes this decoder specially suitable for a real-time
streaming setup.

Moreover, two new pruning parameters, LMHR and LMHP,
were introduced allowing us to adjust the trade-off between
WER and RTF according to our requirements. In addition,
the one-pass and two-pass decoders were directly compared to
demonstrate how the one-pass decoder clearly benefits from the
integration of all LMs in the first stage of the decoding process.

As future work, the current decoder will be evaluated on a
real streaming scenario providing recognition hypothesis as the
audio signal data is ingested. In addition, the current LSTM-
LM evaluation will be moved from CPU to GPU in order to
further alleviate the computational cost.

5. Acknowledgements
This research has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement no. 761758 (X5gon) and the TIN2015-68326-R and
RTI2018-094879-B-I00 (MINECO/MCIU/AEI/FEDER,UE)
research projects, and the grant FPU14/03981 from the Spanish
Ministry of Education, Culture and Sport.

6. References
[1] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”

Neural Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[2] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khu-
danpur, “Recurrent neural network based language model,” in
Eleventh annual conference of the international speech commu-
nication association, 2010.

[3] R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu,
“Exploring the limits of language modeling,” arXiv preprint
arXiv:1602.02410, 2016.

[4] S. Kombrink, T. Mikolov, M. Karafiát, and L. Burget, “Recurrent
neural network based language modeling in meeting recognition,”
in Twelfth annual conference of the international speech commu-
nication association, 2011.

[5] Y. Si, Q. Zhang, T. Li, J. Pan, and Y. Yan, “Prefix tree based n-best
list re-scoring for recurrent neural network language model used
in speech recognition system.” in Interspeech, 2013, pp. 3419–
3423.

[6] M. Sundermeyer, Z. Tüske, R. Schlüter, and H. Ney, “Lattice
decoding and rescoring with long-span neural network language
models,” in Fifteenth Annual Conference of the International
Speech Communication Association, 2014.

[7] X. Chen, X. Liu, A. Ragni, Y. Wang, and M. J. Gales, “Fu-
ture word contexts in neural network language models,” in 2017
IEEE Automatic Speech Recognition and Understanding Work-
shop (ASRU). IEEE, 2017, pp. 97–103.

[8] H. Xu, T. Chen, D. Gao, Y. Wang, K. Li, N. Goel, Y. Carmiel,
D. Povey, and S. Khudanpur, “A pruned rnnlm lattice-rescoring
algorithm for automatic speech recognition,” 2018.

[9] A. Ogawa, M. Delcroix, S. Karita, and T. Nakatani, “Rescoring n-
best speech recognition list based on one-on-one hypothesis com-
parison using encoder-classifier model,” in 2018 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2018, pp. 6099–6103.

[10] Y. Shi, W.-Q. Zhang, M. Cai, and J. Liu, “Efficient one-pass de-
coding with nnlm for speech recognition,” IEEE Signal Process-
ing Letters, vol. 21, no. 4, pp. 377–381, 2014.

[11] Z. Huang, G. Zweig, and B. Dumoulin, “Cache based recurrent
neural network language model inference for first pass speech
recognition,” in 2014 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE, 2014, pp.
6354–6358.

[12] T. Hori, Y. Kubo, and A. Nakamura, “Real-time one-pass de-
coding with recurrent neural network language model for speech
recognition,” in 2014 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE, 2014, pp.
6364–6368.

[13] K. Lee, C. Park, I. Kim, N. Kim, and J. Lee, “Applying gpgpu
to recurrent neural network language model based fast network
search in the real-time lvcsr,” in Sixteenth Annual Conference of
the International Speech Communication Association, 2015.

[14] K. Lee, C. Park, N. Kim, and J. Lee, “Accelerating recurrent neu-
ral network language model based online speech recognition sys-
tem,” arXiv preprint arXiv:1801.09866, 2018.

[15] E. Arısoy, S. F. Chen, B. Ramabhadran, and A. Sethy, “Con-
verting neural network language models into back-off language
models for efficient decoding in automatic speech recognition,”
IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing, vol. 22, no. 1, pp. 184–192, 2014.

[16] M. Singh, Y. Oualil, and D. Klakow, “Approximated and domain-
adapted lstm language models for first-pass decoding in speech
recognition.” in INTERSPEECH, 2017, pp. 2720–2724.

[17] D. Nolden, “Progress in decoding for large vocabulary continuous
speech recognition,” Ph.D. dissertation, RWTH Aachen Univer-
sity, Computer Science Department, RWTH Aachen University,
Aachen, Germany, Apr. 2017.

[18] T. Hori, C. Hori, Y. Minami, and A. Nakamura, “Efficient wfst-
based one-pass decoding with on-the-fly hypothesis rescoring in
extremely large vocabulary continuous speech recognition,” IEEE
Transactions on audio, speech, and language processing, vol. 15,
no. 4, pp. 1352–1365, 2007.

[19] H. Sak, M. Saraclar, and T. Güngör, “On-the-fly lattice rescoring
for real-time automatic speech recognition,” in Eleventh annual
conference of the international speech communication associa-
tion, 2010.

[20] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: an asr corpus based on public domain audio books,”
in 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2015, pp. 5206–5210.

[21] F. Hernandez, V. Nguyen, S. Ghannay, N. Tomashenko, and
Y. Estève, “Ted-lium 3: twice as much data and corpus repartition
for experiments on speaker adaptation,” in International Confer-
ence on Speech and Computer. Springer, 2018, pp. 198–208.

[22] H. Bourlard and C. J. Wellekens, “Links between Markov models
and multilayer perceptrons,” in Advances in Neural Information
Processing Systems I, D. Touretzky, Ed. San Mateo, CA, USA:
Morgan Kaufmann, 1989, pp. 502–510.

[23] S. J. Young, J. J. Odell, and P. C. Woodland, “Tree-based state
tying for high accuracy acoustic modelling,” in Proc. Workshop on
Human Language Technology, Plainsboro, NJ, USA, Mar. 1994,
pp. 307–312.

[24] M. del Agua, A. Giménez, N. Serrano, J. Andrés-Ferrer, J. Civera,
A. Sanchis, and A. Juan, “The translectures-UPV toolkit,” in Ad-
vances in Speech and Language Technologies for Iberian Lan-
guages, Nov. 2014, pp. 269–278.

[25] A. Zeyer, P. Doetsch, P. Voigtlaender, R. Schlüter, and H. Ney, “A
comprehensive study of deep bidirectional lstm rnns for acous-
tic modeling in speech recognition,” in 2017 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2017, pp. 2462–2466.

[26] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat,
I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz,
L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning
on heterogeneous systems,” 2015, software available from
tensorflow.org. [Online]. Available: https://www.tensorflow.org/

[27] A. Stolcke, “SRILM – an extensible language modeling toolkit,”
Denver, CO, USA, Sep. 2002, pp. 901–904.

[28] A. Mnih and Y. W. Teh, “A fast and simple algorithm for
training neural probabilistic language models,” arXiv preprint
arXiv:1206.6426, 2012.

[29] X. Chen, X. Liu, Y. Qian, M. J. F. Gales, and P. C. Woodland,
“CUED-RNNLM – An open-source toolkit for efficient train-
ing and evaluation of recurrent neural network language models,”
Mar. 2016, pp. 6000–6004.

[30] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. Liu,
G. Moore, J. Odell, D. Ollason, D. Povey et al., “The htk book,”
Cambridge university engineering department, vol. 3, p. 175,
2002.

