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1. Introduction
Wood plastic composites, known as WPC are materials 
that have a polymeric component, with an additional 
filler component embedded within it. These days it is 
quite common to mix materials with natural fibers (Najafi, 
2013); these filaments are generally wood.

Wood fiber fillers were originally employed to reduce the 
material’s density and, in some cases, the cost of products. 
However, it has been demonstrated that adding coupling 
agents can significantly improve certain mechanical 
properties of WPC (Adhikary et al., 2008).  This happens 
due to the coupling agent improving the interaction 
between the polymer base and the wooden fibers. Some 
mechanical properties in WPC, such as tensile strength, 
compression strength, and flexural strength, have been 
improved in thermoplastics like PET (polyethylene 
terephthalate) (Cruz-Salgado et al., 2015; Cruz-Salgado 
et al., 2023). The reinforcement of specific thermoplastics 
with natural filaments can result in properties that are like 
those of fiberglass. (Herrmann et al., 1998). Additionally, 

it can be said that some thermoplastic polymers are 
environmentally beneficial, because the polymer matrix 
and the natural filler are generally recycled materials 
(Cheung et al., 2009)

Additionally, PET is widely known as the prevalent type 
of semi crystalline and see through thermoplastic in 
the polyester group because of its strong rigidity and 
resistance, to both mechanical stress and chemicals 
properties (Ashwani et al., 2021). Due to the wide 
applicability of PET, its demand has been increasing 
over the years. In 2016, a demand of 8400 kilotons was 
reported, with an expected annual growth rate of 6.9% 
(Velásquez et al., 2019). Due to the growing need for it 
and increasing demand these days brings about a surge 
in the buildup of waste poses a significant environmental 
challenge to address. Conversely, it is widely accepted 
that engaging in recycling efforts and advocating for an 
economy stands out as the most effective approach to 
mitigate the environmental repercussions and pave 
the way towards sustainable progress and growth.  
(Dahlbo et al., 2018). This increase in PET waste has 
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generated significant interest in post-consumer recycling, 
representing an area of opportunity, both economically 
and environmentally (Velásquez et al., 2019).

Similarly, the primary difficulty in producing WPC lies 
in optimizing its formulation, specifically in determining 
the appropriate proportions of thermoplastic polymer, 
wood filler, and coupling agent that should constitute 
the mixture. (Cruz-Salgado et al., 2015; Cruz-Salgado 
et al., 2023). These are generally the components that 
make up the composite. To optimize the mechanical 
properties of WPC, it is essential to adjust the proportions 
of the components and thus assess how these variations 
influence the properties of the composite. Since the 
composite represents the mixture of the three components 
that form a WPC, the components cannot be varied 
independently. For example, reducing the proportion of 
PET would require reducing one or more of the remaining 
components, this to have mixtures of the same size for 
a valid comparison (Cruz-Salgado, 2015; Cruz-Salgado 
et al., 2016; Cruz-Salgado, 2016).

On the other hand, design of experiments (DOE) is an 
experimental strategy that efficiently helps to find the best 
arrangement of factors that affect one or more response 
variables. Within DOE, there is a topic called experimental 
designs for mixtures. In this type of experimental design, 
the factors under study are the proportions of the 
components in a mixture. The hypothesis is that different 
proportions of the mixture affect a response variable of 
interest. Applied to the case of WPC, the hypothesis 
is that different proportions of the polymer matrix, the 
coupling agent, and the wood filler, significantly modify 
certain mechanical properties of the composite (Cruz-
Salgado et al., 2023).

These proportions are connected through a linear 
constraint of the type:

   (1)

where  represent the proportion of the component  of the 
mixture (Cornell, 2002).

In some cases, the components proportions in the mixture 
may be subject to additional constraints of the type:

   (2)

for one or more components (Cornell, 2002). In the 
case of WPC, these additional constraints represent, 
for example, that the proportion of wood filler must be 
less than or equal to 20% of the total mixture, or that the 
proportion of the coupling agent must not exceed 5% of 
the total mixture.

Experimental designs for mixtures are generally modeled 
using Scheffé polynomial models (Scheffé, 1958), which 
are fitted to the experimental data using the method of 
least squares. Some alternative forms of models include 
the so-called intercept model, which is obtained by 
replacing one component of the mixture with a constant 
term (Cruz-Salgado, 2016). The justification for using 
the intercept model is that it offers a lower degree 
of collinearity in the terms of the fitted model, which 

represents less numerical instability in the estimation of 
the model coefficients (Piepel et al., 2021). Three articles 
discuss several advantages of this approach, as well as 
recommendations for its use and interpretation (Cruz-
Salgado et al., 2015; Cruz-Salgado, 2016; Kang et al., 
2016). It is important to highlight that experiments for 
mixtures whose components have additional constraints 
of type (2) can result in an extremely small range in terms 
of the mixture. Not only is the region of the experimental 
design restricted, but the model used in the mixture design 
must also satisfy restriction (2). This can lead to problems 
in model fitting, stemming from poor conditioning of 
the information matrix required for least squares fitting 
(Kang et al., 2016). In other words, the columns of the 
corresponding model matrix can be nearly linearly 
dependent. Some consequences of poor conditioning 
include: estimated parameters by least squares have 
large standard errors and tend to be correlated, and the 
estimates tend to be highly dependent on the precise 
location of the experimental design points (Prescott et al., 
2002). 

Process variables are factors in an experiment that are 
not part of the mixture itself but whose variations can 
influence the blending properties of the ingredients. In 
addition to analyzing the effect of varying the proportions 
of a mixture, one might be interested in determining 
the effect when changing the level of one or more 
operational factors (Cornell, 2002). Some examples of 
operational factors are different particle sizes, different 
mixing times, or different types of coupling agents. 
Standard response surface designs, such as factorial 
designs or central composite designs, are not ideally 
suited for mixture problems because these designs 
typically assume that individual factors can be adjusted 
independently of the levels of other factors (Cornell, 
2002). In mixture experiments, altering the proportion of 
one ingredient directly affects the proportions of the other 
ingredients, as the total proportions must sum to 100%. 
Consequently, mixture–process experiments are needed. 
In these experiments, the investigator also examines 
additional variables, such as mixing speed or preparation 
temperature, which can be varied independently of each 
other and of the mixture components. (Anderson-Cook 
et al., 2004).

The inclusion of process variables refers to incorporating 
factors that influence the processing or production 
conditions along with the mixture components 
themselves. Process variables can interact with the 
mixture components, affecting the final product’s 
properties. For instance, in a composite material, factors 
like temperature, pressure, or curing time might interact 
with the proportions of PET, wood powder, and coupling 
agents. Including process variables allows for a more 
comprehensive optimization of the mixture design. By 
accounting for these variables, can better understand how 
different conditions affect the performance and quality of 
the final product. When process variables are included, 
the experimental design can lead to more accurate 
predictive models. This helps in predicting the outcomes 
under various conditions and improving the consistency 
and reliability of the process production (Cornell, 2002).
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The novelty of this study lies in its incorporation of process 
variables into the experimental design for optimizing 
wood plastic composites (WPC). While traditional mixture 
designs focus solely on the proportions of components 
such as the polymer matrix, wood filler, and coupling 
agent, this study introduces operational factors—such 
as particle size, mixing time, and temperature—that can 
be varied independently of the mixture composition. This 
approach allows for a more comprehensive analysis of 
how these process variables interact with the mixture 
components to influence the mechanical properties, 
particularly tensile strength. The unique contribution of 
this research is its integration of mixture and process 
variables in the experimental design, providing a more 
precise understanding of the complex relationships 
between material composition and production conditions. 
By accounting for these interactions, the study offers 
an innovative framework for improving the consistency, 
performance, and overall quality of WPCs, which is 
relatively underexplored in current literature. This 
combined optimization model enhances the predictive 
accuracy of the mechanical behavior of WPCs under 
varying conditions, making it a valuable advancement in 
the field of composite material development.

In this article, we discuss mixture designs that include 
process variables in the analysis applied to wood plastic 
composites optimization. Relatively little research has 
been conducted on incorporating process variables into 
experimental designs that involve mixture variables. The 
goal is to determine both the proportion of the mixture 
components and the levels of the process variables that 
maximize the tensile strength property of a WPC.  

2. Materials and methods
2.1. Materials

Test specimens of the composite material were molded 
using virgin low viscosity (0.75) PET as the polymer 
matrix and wood powder as the natural filler. The PET 
was obtained from INVISTATM POLYPROPYLENE 
(Mexico City). Produced from the industry processing with 
surface planners, wooden shavings of Pinus elliottii were 
purchased from sawmills located at a local lumberyard at 
León Guanajuato México. The additive that acts as the 
coupling agent (maleic anhydride) from Du Pont Company 
was purchased by Taotao Plastic Raw Materials Co., Ltd. 
(China).

2.2. Mixture preparation

The sawdust was sieve utilizing an AS 200 Analytical 
Sieve Shaker and a test sieve for particle size analysis. 
The objective was to dimension the filler particle size to 
mitigate the potential effect of different wood sizes on the 
mechanical properties of the WPC. The particle size used 
in the experiment was 1.4 mm and 2.4 mm.

Three materials, PET, wood powder, and the coupling 
agent, were dehydrated in a drying oven at a temperature 
of 100 °C for 8 hours. This procedure was carried out 

for the total amount of material needed for the entire 
experiment. The range of mixing times used was 5 and 
10 minutes.

After dehydration, the materials were weighed to 
prepare the different formulations for each treatment 
of the experimental design. A Brabender single-screw 
laboratory extruder (PL2200 PLASTICORDER, Mexico) 
was used to mix the materials. The Brabender Single-
Screw Laboratory Extruder is a product manufactured 
by Brabender GmbH & Co. KG, a German company 
specializing in instruments and equipment for material 
testing and quality control, particularly in plastics, food, 
and chemical industries. The screw speed was set to 
ninety RPM. The temperature profile across the various 
zones of the extruder was 240, 250, 260, and 260 °C, 
respectively.

The room temperature during mechanical testing was 
set according to ASTM D638 and ISO 527, which 
are commonly used for tensile testing of plastics and 
composites, the room temperature was maintained at 
23°C (±2 °C), with a relative humidity of around 50% 
(±10%).

All formulations were prepared using an extruder, which 
is supplied through a hopper. The components enter the 
extruder via this hopper and are transported through four 
heating zones by means of a screw mechanism. As the 
polymer comes into contact with the walls of the extruder 
cylinder, it begins to melt, encapsulating the wood. The 
coupling agent, which has a lower melting point than the 
polymer, melts more quickly, allowing it to adhere to the 
polymer and wood before the wood is fully encapsulated. 
After passing through the four warming zones, the material 
is thoroughly melted and mixed, enabling it to be molded 
into various shapes. Following extrusion, the compound 
is ground into a fine powder using a 5HP PAGANI blade 
mill with a 5 mm mesh diameter. The ground material is 
then used to prepare samples for mechanical testing.

2.3. Mechanical tests

The molded specimens were analyzed following the ASTM 
D 638 standard for tensile properties (ASTM, 2008). The 
tests were carried out using an Instron Universal Testing 
Machine (model 1196), at a speed of 1 mm/min. The 
analyzed response variables were measured in kilograms-
force (kg·f/mm2). The Instron Universal Testing Machine, 
Model 1196 is a product manufactured by Instron, a 
well-known company specializing in materials testing 
equipment. Instron is headquartered in the United States, 
with its main office located in Norwood, Massachusetts.

2.4. Experimental mixture design

As mentioned earlier, Scheffé polynomial models are 
commonly used in mixture experimental design. The 
linear Scheffé model has the following form:

  (3)

Similarly, the quadratic Scheffé model can be described 
as follows:
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 (4)

where βi and βj are unknown parameters that must be 
estimated, typically using least squares. Due to the 
mixture constraint in Eq. (1), the form of the quadratic 
Scheffé model only contains linear terms and cross-
product terms (Cornell, 2002).

There may be instances where in addition to the dependent 
mixture components, we have other factors and/or 
process variables that can be controlled independently of 
one another and of the mixture components. For example, 
consider a chemical production system. The composition 
of the WPC formula involves mixture variables (xi) while 
the settings on the manufacturing equipment are process 
variables (zi). The response of interest, Y, can be modelled 
as a function of the mixture and process variables

  (5)

where β is a vector of coefficients representing the main 
effects, interactions, and possibly cubic terms in the 
mixture components and Λ is a matrix of coefficients 
representing the interactions between the mixture and 
process variables (Anderson-Cook et al., 2004). 

Let us consider a mixture experiment involving q 
components and n process variables, where n can be any 
positive integer. For the mixture components, each xi can 
vary from 0 to 1, defining a (q –1)-dimensional simplex 
as the mixture region of interest. The combined region 
of interest, incorporating both the mixture components 
and process variables, is q –1+n dimensional. To set 
up design configurations for the process variables 
and mixture components, one approach is to establish 
a mixture design at each configuration point for the 
process variables, or alternatively, to position a factorial 
arrangement within the process variable settings at 
each composition point of the mixture components. For 
instance, if we select a q=3 simplex-centroid design for 
fitting a special cubic model to the mixture components 
(Anderson-Cook et al., 2004)

 (6)

Let the number of process variables be 2, thus, with z1=±1 
and z2=±1, a 22 factorial design is contemplated for fitting 
the model in the two process variables:

 (7)

The combined simplex-centroid by 22 factorial design is 
shown in Figure 1.

The combined design shown in Figure 1 is utilized for 
gathering data to fit the integrated model encompassing 
both the mixture components and the process variables. 
The combined model is 

Or in an equivalent form

 (8)

3. Results and discussion

The components of the composite analyzed are PET 
(x1), wood powder (x2) and E-GMA coupling agent (x3). 
As mentioned earlier, the sum of the proportions of these 
three components must be equal to 1. Furthermore, 
the components have additional constraints of the type 
shown in Eq. (2). For the coupling agent, it is assumed 
that its effective range for promoting bonding between 
PET and wood is between 0% and 3%. The lower and 
upper constraints of the component proportions in the 
mixture are shown in Table 1. The process variables 
analyzed were particle sizes of 1.4 mm and 2.4 mm; and 
mixing times of 5 and 10 minutes (see Table 1). 

 Table 1: Proportions constraints of the mixture components and 
factors level. 

Component Component and factors

PET (x1) 0.60≤x1≤0.90 (wt%)
Wood (x2) 0.10≤x2≤0.40 (wt%)
E-GMA (x3) 0≤x3≤0.03 (wt%)
Particle size (z1) 1.4 to 2.4 mm

Mixing times (z2) 5 to 10 min

To determine the proportions of the compound and the 
levels of the process variables, a D-optimal mixture 
design experiment was generated by computer. 
The design used is an extreme vertices design, with 

 

Figure 1: Combined design.
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20 design points, combined with a factorial design 22. 
The experimental design and its analysis were performed 
using the statistical software Minitab®, version 21.1.1. 

The experimental region and the experimental points, 
which represent the different formulations made, and the 
process variables levels, are shown in Figure 2.

Figure 2: Combined experimental region.
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The experimental design, which shows the different 
formulations developed and experimental results are 
given in Table 2. 

In mixture experiments, ANOVA (Analysis of Variance) 
is a statistical method used to decide the significance 
of the effects of different factors on a response 
variable, for example tensile strength. Specifically, it 
helps in understanding whether the variations in the 
response variable can be attributed to the differences 
in the proportions of the components in the mixture, 
two or more process variables or if they are due to 
random variation. ANOVA divides the total variability 
in the response variable into components attributable 
to different sources, such as the mixture components, 
process variables and their interactions (Cornell, 2002). 
It tests null hypotheses that state there are no effects due 
to the mixture components, process variables or their 
interactions. If the null hypothesis is rejected, it indicates 
that at least one of the components, process variables or 
the interactions has a significant effect on the response 
(tensile strength (Y)). ANOVA helps in fitting appropriate 
statistical models (e.g., linear, quadratic) to describe 
the relationship between the mixture components, 
process variables and the response. It provides a basis 
for selecting the model that best explains the observed 
data. By computing F-statistics and p-values, ANOVA 
assesses the significance of each factor in the mixture 
experiment and the factorial design. Factors with low 
p-values (typically <0.05) are considered to have 
a significant effect on the response. The estimated 
coefficients for each term in the model, along with 
their standard errors, t-values, and p-values, help in 
understanding the effect size and significance of each 
predictor variable and interaction term.

In Table 3, the estimated coefficients of the regression 
model are presented, along with the p-values and the 
usual statistics. The coefficient of 2.71 (PET) suggests 
that for each unit increase in the PET variable, the tensile 
strength (Y) is expected to increase by 2.71 units, holding 
other factors constant. The asterisks (*) in the T-value and 
P-value columns indicate that this effect is statistically 
significant. The coefficient of 1.26 (Wood) implies that an 
increase in the Wood content leads to a 1.26 unit increase 
in tensile strength, holding other variables constant. Like 
PET, the significance markers (T-value and P-value 
as *) indicate that this is statistically significant. With a 
coefficient of 2.03, E-GMA appears to increase tensile 
strength by 2.03 units for each unit increase, but given the 
large standard error (4.63) and the P-value marked as *, 
it suggests high variability and potential insignificance. 
PET* z1 interaction term has a coefficient of 0.37 with 
a T-value of 2.42 and a P-value of 0.03. This indicates 
a statistically significant interaction between PET and 
z1 on tensile strength, suggesting that changes in the 
variable z1 modify the effect of PET on the response (Y). 
The coefficient of 0.46 (Wood*z1) suggests an interaction 
between Wood and z1, but the T-value of 1.22 and 
P-value of 0.24 indicate this interaction is not statistically 
significant. For E-GMA*z1 the coefficient is 0.46, but with 
a very high standard error (4.63) and a P-value of 0.92, 
suggesting no significant interaction between E-GMA and 
z1. With a coefficient of 0.47 (PET*z2), a T-value of 3.08, 
and a P-value of 0.01, this interaction term is statistically 
significant. This means that the relationship between PET 
and tensile strength is influenced by changes in z2. The 
coefficient of 0.78 (Wood*z2) indicates a strong interaction 
between Wood and z2, with a T-value of 2.07 and a 
P-value of 0.06. While this is not conventionally significant 
at the 0.05 level, it is close enough to suggest a possible 
effect worth investigating further. The coefficient for 
this interaction E-GMA*z2 is 0.59, but the T-value of 

 Table 2: Experimental Design. 

Point
PET (x1)  

wt%
Wood (x2)  

wt%
E-GMA (x3)  

wt%
Particle size (z1) 

mm
Mixing times (z2) 

min
Tensile* (Y) 
(kg·f/mm2)

1 0.6000 0.4000 0.000 -1 -1 1.37
2 0.6000 0.3700 0.030 -1 -1 1.42
3 0.9000 0.1000 0.000 -1 -1 1.68
4 0.8700 0.1000 0.030 -1 -1 1.66
5 0.7425 0.2425 0.015 -1 -1 1.54
6 0.6000 0.4000 0.000 1 -1 1.68
7 0.6000 0.3700 0.030 1 -1 1.72
8 0.9000 0.1000 0.000 1 -1 2.46
9 0.8700 0.1000 0.030 1 -1 2.40
10 0.7425 0.2425 0.015 1 -1 2.03
11 0.6000 0.4000 0.000 -1 1 2.07
12 0.6000 0.3700 0.030 -1 1 2.08
13 0.9000 0.1000 0.000 -1 1 2.70
14 0.8700 0.1000 0.030 -1 1 2.66
15 0.7425 0.2425 0.015 -1 1 2.35
16 0.6000 0.4000 0.000 1 1 3.49
17 0.6000 0.3700 0.030 1 1 3.57
18 0.9000 0.1000 0.000 1 1 3.60
19 0.8700 0.1000 0.030 1 1 3.55
20 0.7425 0.2425 0.015 1 1 3.01

*Experimental results (kg·f/mm2).
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0.13 and P-value of 0.90 suggest this interaction is not 
statistically significant. Variance inflation factor (VIF) 
helps in understanding whether the predictor variables 
are highly correlated and potentially inflating the variance 
of the coefficient estimates. High multicollinearity can 
inflate the variance of coefficient estimates and make the 
model unstable and difficult to interpret. High correlation, 
indicating potential multicollinearity problems (VIF > 5). 
Table 3 shows VIFs values lower than 5.

 Table 3: Estimated regression coefficients for tensile strength (Y). 

Terms Coef SE Coef T-Value P-Value VIF
PET 2.71 0.15 * * 3.46
Wood 1.26 0.38 * * 2.76
E-GMA 2.03 4.63 * * 2.18
PET*z1 0.37 0.15 2.42 0.03 3.46

Wood*z1 0.46 0.38 1.22 0.24 2.76

E-GMA*z1 0.46 4.63 0.10 0.92 2.18

PET*z2 0.47 0.15 3.08 0.01 3.46

Wood*z2 0.78 0.38 2.07 0.06 2.76

E-GMA*z2 0.59 4.63 0.13 0.90 2.18

Coefficients are calculated for coded process variables.

Model Summary provides a quick summary of how good 
the statistical model fits the data. Key metrics such as 
R-squared and adjusted R-squared are included to 
indicate the proportion of variance in the response 
variable explained by the model. A higher R-squared 
value suggests a better fit. In this case, the coefficients 
of determination R-squared and adjusted R-squared are 
92% and 86%, respectively (see Table 4). This indicates 
a satisfactory fit of the regression model. The root mean 
square error (S) assesses the model’s predictive accuracy. 
These metrics indicate how well the model predicts new 
observations. A small value of S suggests a good ability 
to make predictions. In Table 4, the value of S is equal 
to 0.2818, which is a relatively small value. PRESS 
(Prediction Error Sum of Squares) is a statistic used to 
evaluate the predictive capability of a regression model. 
It provides a measure of how well the model predicts 
new data points and is particularly useful for validating 
the model’s performance. A lower PRESS value indicates 
a model with better predictive accuracy. It suggests that 
the model has a good fit and is capable of accurately 
predicting new observations. Comparatively, a higher 
PRESS value may indicate a model that is overfitting the 
training data and may not generalize well to new data. 
Table 4 shows a PRESS value equal to 3.38.

 Table 4: Model Summary.

S R-sq R-sq(adj) PRESS R-sq(pred)
0.281861 92.03% 86.23% 3.38052 69.17%

By computing F-statistics and p-values, ANOVA assesses 
the significance of each factor in the mixture experiment. 
Factors with low p-values (typically <0.05) are considered 
to have a significant effect on the response. In Table 5, 
it can be confirmed that the global regression shows 
significant statistical significance as it has a p-value close 
to 0. The linear part of the mixture components also has a 
significant effect on the response (Y), as it has a p-value 

of 0.041. Regarding the interaction effect between the 
mixture components and the operational variable  (particle 
size), only the interaction between PET and particle 
size has a significant effect on the response (Y), as it 
has a p-value of 0.034. Regarding the interaction effect 
between the mixture components and the operational 
variable  (Mixing times), only the interaction between PET 
and Mixing times has a significant effect on the response 
(Y), as it has a p-value of 0.010.    

 Table 5: Analysis of variance for tensile strength (Y).

Source DF Seq SS Adj SS Adj MS F-Value P-Value
Regression 8 10.0912 10.0912 1.2614 15.88 0.000
Component Only
Linear 2 0.6905 0.6905 0.34525 4.35 0.041
Component*z1
Linear 3 3.1866 3.1866 1.06221 13.37 0.001
PET*z1 1 3.062 0.4647 0.46465 5.85 0.034

Wood*z1 1 0.1238 0.1178 0.11776 1.48 0.249

E-GMA*z1 1 0.0008 0.0008 0.00079 0.01 0.922

Component*z2
Linear 3 6.2141 6.2141 2.07137 26.07 0.000
PET*z2 1 5.8588 0.7541 0.75406 9.49 0.010

Wood*z2 1 0.354 0.3388 0.33882 4.26 0.063

E-GMA*z2 1 0.0013 0.0013 0.0013 0.02 0.900
Residual Error 11 0.8739 0.8739 0.07945
Total 19 10.9651

In experimental design, a main effects plot is a graphical 
representation used to show the effect of each factor 
on the response variable, assuming other factors are 
held constant. The main effects plot helps visualize 
how changes in a particular process variable affect the 
response variable (Y). This is useful for understanding 
the individual contributions of each factor to the overall 
variation in the response. On the plot, the x-axis typically 
represents the levels of the factor being analyzed, while 
the y-axis shows the mean response for each level. For 
each process variable, the plot displays the average 
response at different levels of that factor, providing a 
clear view of how the response changes with changes 
in the process variable levels. If the lines in the plot are 
parallel or nearly parallel, it suggests that the factor has 
a consistent effect across its levels. If the lines are not 
parallel, it indicates that the effect of the factor varies 
depending on its level. The slope of the lines reflects 
the strength and direction of the factor’s effect on the 
response. At the top of Figure 3 is shown that the two 
operational variables, particle size and mixing time, have 
a significant effect on the response (tensile strength). For 
both operational variables, the response value reaches its 
maximum at the high level. 

An interaction plot is a graphical tool used to 
investigate the effects of different combinations of 
mixture components on the response variable. It helps 
to visualize how the interaction between different 
components influences the outcome. The purpose is 
to identify and understand how different components 
of a mixture interact with each other and how these 
interactions affect the response variable. This is 
crucial for optimizing mixture formulations. X-axis 
represents the levels or proportions of one component 
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of the mixture. Y-axis shows the response variable. If 
the lines in the interaction plot are parallel, it suggests 
that there is no significant interaction between the 
components. Each component has a consistent effect 
on the response. If the lines intersect are not parallel, 
it indicates an interaction between the components. 
This means that the effect of one component on the 
response depends on the level of the other component. 
At the bottom of the Figure 3 is shown that there is an 
interaction effect between the two process variables, 
as the lines are perpendicular. 

 

Figure 3: Main and interaction plots for tensile strength (Y).

A cube plot is a graphical representation used to 
visualize the effects of multiple factors and their 
interactions on the response variable in a factorial 
experiment. The purpose is to display the relationship 
between factors and the response variable in a 
multi-dimensional space, typically involving three or 
more factors. It helps in understanding how different 
combinations of factor levels influence the response. 
Each axis of the cube represents one of the factors 
in the experiment. For a three-factor design, the cube 
has three axes, each corresponding to a different 
factor. The vertices of the cube represent the different 
combinations of factor levels. Each vertex corresponds 
to a unique combination of high and low levels of 
factors. The response variable values are plotted 
at the vertices or within the cube, showing how the 
response changes with different factor combinations. 
Figure 4 shows the cube plot for tensile strength (Y).

 

Figure 4: Cube plot (data means) for tensile strength (Y).

A mixture contour plot is a graphical tool used to visualize 
the effects of different combinations of mixture components 
on the response variable. It provides a two-dimensional 
representation of how varying proportions of components 
affect the response. The purpose is to illustrate how the 
response variable changes with different combinations 
of component proportions in a mixture. It helps in 
understanding the optimal proportions of components 
to achieve desired outcomes. The plot typically uses the 
proportions of three mixture components as the axes. The 
spacing and shape of contour lines indicate how sensitive 
the response is to changes in component proportions. 
Closely spaced lines suggest a steep gradient, meaning 
small changes in component proportions can lead to 
significant changes in the response. The contour plot 
helps identify regions of the plot where the response is 
optimized. This is useful for determining the best mixture 
composition. Figure 5 shows the mixture contour plot 
for tensile strength (Y). Darker colors represent higher 
values of the response Y. Similarly, the gray area shows 
the region limited by the constraints listed in Table 1.

Figure 5: Mixture contour plot for tensile strength (Y).

A mixture surface plot is a graphical tool used to visualize 
the relationship between mixture components and the 
response variable across different combinations of 
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component proportions. It provides a three-dimensional 
view of how varying the proportions of two or more 
components affects the response. The purpose is to 
illustrate how the response variable changes with different 
proportions of mixture components. It helps to understand 
the effects of component interactions on the response 
and identify optimal formulations. The shape of the 
surface indicates how the response varies with changes 
in component proportions. For instance, peaks and 
valleys on the surface show areas where the response is 
maximized or minimized. Figure 6 shows that the highest 
value of the response is located at the PET vertex.

 

Figure 6: Mixture surface plot for tensile strength (Y).

A contour plot is a graphical representation that shows 
the relationship between two independent variables and 
a dependent variable (Y). It uses contour lines to connect 
points of equal response values, effectively displaying a 
three-dimensional surface on a two-dimensional plane. 
The purpose is to visualize how the response variable 
changes across different levels of two independent 
variables. Figure 7 shows the process variables contour 
plot for tensile strength (Y). This contour plot shows 
the tensile strength (Y) as a function of particle size 
(z1) and mixing time (z2). From the plot, the following 
interpretations can be made as particle size (z1) increases 
(movement to the right on the X-axis), tensile strength (Y) 
also increases. This is evidenced by the darker areas 
on the plot, which represent higher values of Y, located 
on the right side of the z1 axis. Similarly, as mixing time 

(z2) increases (movement upward on the Y-axis), tensile 
strength (Y) also increases. The darker areas are located 
at the top of the z2 axis. The darker areas, which indicate 
the highest values of tensile strength (Y), are found at 
the high levels of both z1 and z2. This suggests a positive 
synergistic effect when both factors, particle size and 
mixing time, are at their high levels.

Figure 8 shows the process variables surface plot for 
tensile strength (Y). The surface plot showing tensile 
strength (Y) as a function of particle size (z1) and mixing 
time (z2) provides a three-dimensional view of how these 
two factors affect the response. From the plot, the following 
interpretations can be made. The shape of the surface 
indicates how tensile strength (Y) varies with changes 
in particle size (z1) and mixing time (z2). The crests on 
the surface represent areas where tensile strength is at 
its maximum, while the valleys represent areas where 
it is at its minimum. As particle size (z1) increases, the 
surface shows an increase in tensile strength (Y). This 
indicates that, in general, larger particle sizes tend to 
improve tensile strength. As mixing time (z2) increases, 
an increase in tensile strength (Y) is also observed. The 
surface rises when mixing time is increased, suggesting 
that a longer mixing time contributes to higher tensile 
strength. The shape of the surface can show how the 
effects of z1 and z2 interact. If the surface shows a clear 
peak in the high region of both factors, this indicates a 
positive synergistic interaction, where the combination 
of high levels of both factors results in maximum tensile 
strength. The plot can help identify the optimal point for 
both factors, where tensile strength reaches its maximum 
value. This point is where the surface reaches its highest 
peak.

 

Figure 8: Process variables surface plot for tensile strength (Y).

The observed improvement in tensile strength with larger 
particle sizes and longer mixing time can be explained 
through several factors related to the interaction between 
the polymer matrix and wood fibers, the distribution of 
fibers, and the composite’s structural integrity. When larger 
wood particles are used in the composite, the available 
surface area for interaction between the polymer matrix 
and wood fibers increases. Larger particles typically 
provide more contact points with the polymer, enabling 
better mechanical interlocking between the wood and the 
polymer chains. This stronger interfacial adhesion helps 
transfer stress more effectively from the polymer matrix Figure 7: Process variables contour plot for tensile strength (Y).
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to the wood fibers, resulting in improved tensile strength. 
Extended mixing times allow for more uniform dispersion 
of the wood fibers within the polymer matrix. With longer 
mixing, the polymer has more time to infiltrate the wood 
particles’ surface irregularities, filling voids and creating 
stronger bonds. This improved dispersion also helps to 
reduce the formation of agglomerates (clusters of wood 
particles), which can act as stress concentrators and lead 
to mechanical failure. Therefore, a more homogeneous 
distribution contributes to a more effective load transfer 
across the entire composite, increasing tensile strength.

4. Optimization of the composite formulation
Response variable optimization refers to the process of 
finding the best combination of mixture components that 
results in the optimal value of the response variable. The 
primary objective of response variable optimization is to 
identify the proportions of the mixture components that 
maximize or minimize the response variable, depending 
on the desired outcome. Table 6 shows the response 
optimization for tensile strength (Y). 

To attain the maximum tensile strength (Y) within the 
experimental region used, the compound requires the 
following formulation: 90% PET as the polymer matrix, 
10% wood as the natural filler, and 0% E-GMA, meaning 
no coupling agent should be used. Additionally, from the 
analysis discussed in the results section, it is known that 
the two process variables, particle size (z1) and mixing 
time (z2), have a significant interaction effect on tensile 
strength (Y). Therefore, to achieve the highest value of 
the response (Y), the largest particle size and the longest 
mixing time should be used.

It is important to mention that the regression model 
suggests that using particle sizes greater than 2.4 mm 
and mixing times longer than 10 minutes could achieve a 
higher value of tensile strength. This should be considered 
with caution, as it would be extrapolating, meaning these 
would be predictions for areas outside the analyzed 
experimental region.

 Table 6: Response optimization for tensile strength (Y).

Mixture 
components Levels

Process 
variables Leves

Tensile 
strength

Predicted 
response

PET 0.9 z1 1
Y 3.46

Wood 0.1 z2 1
E-GMA 0.0

5. Conclusion
The inclusion of process variables in mixture experimental 
design is essential for a more comprehensive and precise 
optimization of final products. While standard response 
surface designs are not suitable for mixture problems 
due to the constraint that proportions must sum to 
100%, mixture-process experiments allow for a more 
detailed evaluation of how operational factors —such as 
particle size and mixing time— interact with the mixture 
components. This inclusion of process variables not only 
enhances the understanding of how processing conditions 
affect the final product’s properties but also facilitates 

the creation of more accurate predictive models. This 
improves the consistency and reliability of the production 
process, enabling more effective optimization of product 
properties. 

The analysis of the regression model indicates that 
the interaction terms between PET and particle size 
(z1), as well as between PET and mixing time (z2), 
significantly impact the response variable (Y). The model 
demonstrates a strong fit, with R-squared and adjusted 
R-squared values of 92% and 86%, respectively, and a 
low root mean square error (S) of 0.2818, suggesting 
good predictive accuracy. The PRESS value of 
3.38 supports this, indicating that the model accurately 
predicts new data points. Furthermore, the absence of 
high multicollinearity, as evidenced by variance inflation 
factor (VIF) values below 5, confirms the stability and 
interpretability of the model. Both particle size and mixing 
time are shown to significantly influence tensile strength, 
with the highest response observed at elevated levels of 
these operational variables.

Contour plots are valuable graphical tools for understanding 
how varying proportions of mixture components affect 
the response variable. By providing a two-dimensional 
representation of component proportions, these plots 
reveal how changes in the mixture composition influence 
the response, such as tensile strength. The contour lines 
illustrate sensitivity to changes, with closely spaced 
lines indicating significant effects. Figures showing 
the contour plots for tensile strength demonstrate that 
both particle size and mixing time positively impact the 
response. Specifically, higher values of tensile strength 
are achieved when both particle size and mixing time are 
at their maximum levels, indicating a synergistic effect. 
This insight helps in optimizing the mixture composition to 
achieve desired outcomes.

Response variable optimization aims to identify the 
optimal proportions of mixture components that maximize 
or minimize the desired outcome. For maximizing tensile 
strength (Y) within the studied parameters, the optimal 
formulation is 90% PET, 10% wood, and no coupling agent 
(E-GMA). Furthermore, the interaction between process 
variables, such as particle size and mixing time, plays 
a crucial role in enhancing tensile strength. To achieve 
the highest tensile strength, the largest particle size and 
the longest mixing time should be utilized. However, 
predictions for particle sizes beyond 2.4 mm and mixing 
times longer than 10 minutes should be approached 
with caution, as they involve extrapolation beyond the 
analyzed experimental range.

The lack of significant effects of the coupling agent on the 
performance of wood plastic composites (WPC) can be 
attributed to several factors. First, certain thermoplastic 
polymers, such as polyethylene terephthalate (PET), may 
exhibit inherent compatibility with wood fillers, reducing 
the necessity for a coupling agent. In these cases, the 
polymer naturally adheres well to the wood fibers, and 
the addition of a coupling agent may provide limited or no 
additional benefit. Moreover, the proportion of wood filler 
within the composite plays a crucial role in determining 
the efficacy of the coupling agent. When the wood filler 
content is low (e.g., less than 10%), the coupling agent 
may not significantly enhance the interaction between 
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the polymer matrix and the wood fibers. The mechanical 
improvements typically associated with coupling agents, 
such as increased tensile strength or durability, are more 
pronounced when the wood filler proportion is higher, as 
the agent enhances fiber-matrix bonding. Furthermore, 
PET’s high crystallinity and strong mechanical properties 
often negate the need for a coupling agent. In applications 

where PET alone provides sufficient mechanical strength, 
the inclusion of a coupling agent to improve fiber-matrix 
interaction may be unnecessary. The inherent rigidity 
and resistance of PET make the addition of a coupling 
agent redundant, particularly in cases where optimal 
performance is already achieved without it.
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