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Abstract

Urban air pollution, primarily generated by vehicular emissions in densely populated
cities, poses a significant threat to public health and environmental sustainability.
Traditional traffic management strategies have historically focused on reducing
congestion, neglecting the environmental impacts of vehicular traffic. This thesis
addresses this issue by developing a framework for urban traffic management that
integrates pollution criteria, particularly by incorporating real-time air quality
data into traffic re-routing decisions. Using the city of Valencia as a case study,
the framework combines realistic traffic modelling, emissions analysis, and new
static and dynamic re-routing strategies based on environmental criteria.

Our journey begins with the innovative challenge of generating accurate traffic
demand data without compromising privacy. Leveraging data from induction loop
detectors, we propose an approach that utilises reverse engineering to create a
realistic traffic demand model. This method significantly improves the accuracy
in representing traffic volume, the spatial distribution of origin points, and route
lengths compared to current solutions, providing a more reliable foundation for
further analysis.

Building on this foundation, we use the Simulation of Urban MObility (SUMO)
tool and the Handbook Emission Factors for Road Transport (HBEFA) emissions
model to simulate vehicle traffic flow and emissions. SUMO provides detailed
traffic simulation capabilities, while HBEFA offers comprehensive emission factors
for road transport, making them ideal for our modelling needs. We then develop
SUMO2GRAL, a custom tool that integrates SUMO results with the Graz La-
grangian Model (GRAL) to perform detailed pollutant dispersion modelling and
translate emissions expressed in mass into concentration. This integration considers
factors such as urban orography and meteorological conditions, thereby improving
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the accuracy of air quality assessments in urban environments.
Next, we explore traffic re-routing strategies aimed at mitigating air pollution.

First, we present a static re-routing approach that adjusts traffic weights on street
segments based on fixed environmental parameters. By applying this method in
Valencia, we demonstrate its effectiveness in reducing pollutant concentrations,
especially in critical areas such as green spaces or parks, providing practical
implications for urban policy and planning.

Recognising the limitations of static methods in adapting to dynamic conditions,
we develop a novel dynamic traffic re-routing algorithm that adjusts vehicle routes
based on street-level air quality data and specific vehicle emissions profiles. By
introducing an emission sensitivity factor, our algorithm modulates routing decisions
in response to environmental conditions. Simulations in Valencia of environmental
crises, such as building fires and smog episodes, reveal that the dynamic approach
significantly reduces pollutant concentrations in affected areas without severely
impacting traffic efficiency, effectively balancing air quality and mobility levels.
This provides valuable insights for urban planners and policymakers in designing
responsive traffic management systems prioritising public health.

Finally, we extend our analysis to future urban traffic scenarios by examining
the expected evolution of the vehicle fleet in Valencia, particularly the increase
in electric vehicle adoption. Based on vehicle fleet evolution models from similar
European cities, we simulate scenarios that consider technological advancements
and social trends. Our findings suggest that a gradual transition to electric vehicles
can substantially improve air quality over time, highlighting the importance of
promoting cleaner technologies alongside effective traffic management.

Overall, this PhD thesis presents several strategies to alleviate urban air pollu-
tion through intelligent traffic management strategies. Integrating pollution criteria
into urban traffic frameworks provides valuable insights and tools for policymakers
and urban planners to create healthier, more sustainable urban environments to
address this global challenge.
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Resumen

La contaminación atmosférica urbana, generada en gran medida por las emisiones
vehiculares en ciudades densamente pobladas, representa una amenaza significativa
para la salud pública y la sostenibilidad ambiental. Las estrategias tradicionales
de gestión del tráfico se han centrado históricamente en reducir la congestión,
desatendiendo los impactos ambientales del tráfico vehicular. Esta tesis aborda
este problema mediante el desarrollo de un marco de gestión del tráfico urbano que
integra criterios de contaminación, particularmente a través de la incorporación
innovadora de datos en tiempo real sobre la calidad del aire en las decisiones de
reencaminamiento del tráfico. Utilizando la ciudad de Valencia como estudio de
caso, el marco combina la modelización realista del tráfico, el análisis de emisiones
y nuevas estrategias de reencaminamiento estático y dinámico basadas en criterios
medioambientales.

Nuestro recorrido comienza con el innovador desaf́ıo de generar datos de de-
manda de tráfico precisos, sin comprometer la privacidad. Aprovechando los datos
de detectores de bucles de inducción, proponemos un enfoque que se aprovecha del
uso de la ingenieŕıa inversa para crear un modelo de demanda de tráfico realista.
Este método mejora significativamente la precisión en la representación del volumen
de tráfico, la distribución espacial de los puntos de origen, y la longitud de las
rutas en comparación con las soluciones actuales, proporcionando una base más
fiable para análisis posteriores.

Sobre esta base, empleamos la herramienta SUMO, junto con el modelo de
emisiones HBEFA, para simular el flujo de tráfico y las emisiones de los veh́ıculos.
SUMO proporciona capacidades detalladas de simulación de tráfico, mientras que
HBEFA ofrece factores de emisión completos para el transporte por carretera, lo
que los hace ideales para nuestras necesidades de modelización. A continuación
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desarrollamos SUMO2GRAL, una herramienta personalizada que integra los resul-
tados de SUMO con GRAL para realizar un modelado detallado de la dispersión
de contaminantes, y traducir estas emisiones expresadas en masa a concentración.
Esta integración tiene en cuenta factores como la orograf́ıa urbana y las condiciones
meteorológicas, mejorando aśı la precisión de las evaluaciones de la calidad del aire
en entornos urbanos.

A continuación, exploramos estrategias de reencaminamiento del tráfico di-
rigidas a mitigar la contaminación del aire. Primero, presentamos un enfoque
de reencaminamiento estático que ajusta los pesos del tráfico en segmentos de
calles según parámetros ambientales fijos. Al aplicar este método en Valencia, de-
mostramos su efectividad en la reducción de las concentraciones de contaminantes,
especialmente en áreas cŕıticas como espacios verdes o parques, proporcionando
implicaciones prácticas para la poĺıtica y planificación urbanas.

Reconociendo las limitaciones de los métodos estáticos para adaptarse a condi-
ciones dinámicas, desarrollamos un algoritmo dinámico de reencaminamiento del
tráfico que ajusta las rutas de los veh́ıculos basándose en los datos de calidad del aire
de las calles, y en los perfiles espećıficos de emisiones de los veh́ıculos. Al introducir
un factor de sensibilidad de emisiones, nuestro algoritmo modula las decisiones de
encaminamiento en respuesta a las condiciones ambientales. Las simulaciones de
situaciones de crisis ambiental, como incendios de edificios, y episodios de niebla
producida por la contaminación (smog), revelan que el enfoque dinámico reduce
significativamente las concentraciones de contaminantes en las áreas afectadas sin
afectar gravemente la eficiencia del tráfico, equilibrando eficazmente los niveles de
calidad del aire y de movilidad. Esto proporciona valiosas ideas para urbanistas y
responsables poĺıticos en el diseño de sistemas de gestión del tráfico que prioricen
la salud pública.

Finalmente, extendemos nuestro análisis a escenarios futuros de tráfico urbano
al examinar la evolución esperada del parque vehicular de Valencia, en particular el
aumento en la adopción de veh́ıculos eléctricos. Basándonos en modelos de evolución
de parques vehiculares de ciudades europeas similares, simulamos escenarios que
consideran los avances tecnológicos y las tendencias sociales. Nuestros hallazgos
sugieren que una transición gradual hacia los veh́ıculos eléctricos puede mejorar
sustancialmente la calidad del aire con el tiempo, subrayando la importancia de
promover tecnoloǵıas más limpias junto con una gestión eficaz del tráfico.

En general, esta tesis doctoral presenta varias estrategias para paliar la con-
taminación atmosférica urbana mediante estrategias inteligentes de gestión del
tráfico. La integración de criterios de contaminación en los marcos de tráfico urbano
proporciona ideas y herramientas valiosas para que los responsables poĺıticos y los
planificadores urbanos creen entornos urbanos más saludables y sostenibles para
hacer frente a este desaf́ıo global.
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Resum

La contaminació atmosfèrica urbana, generada en gran part per les emissions de
vehicles en ciutats densament poblades, representa una amenaça significativa per a
la salut pública i la sostenibilitat ambiental. Les estratègies tradicionals de gestió
del trànsit s’han centrat històricament en reduir la congestió, deixant de costat
els impactes ambientals del trànsit vehicular. Esta tesi aborda este problema a
través del desenroll d’un marc de gestió del trànsit urbà que integra criteris de
contaminació, particularment mitjançant la incorporació innovadora de dades en
temps real sobre la qualitat de l’aire en les decisions de reencaminament del trànsit.
Utilisant la ciutat de Valéncia com a cas d’estudi, el marc combina la modelació
realista del trànsit, l’anàlisi d’emissions i noves estratègies de reencaminament
estàtic i dinàmic basades en criteris mediambientals.

El nostre recorregut comença amb el repte innovador de generar dades de
demanda de trànsit precises sense comprometre la privacitat. Aprovisionant-se
de les dades de detectors de bucles d’inducció, proponem un enfocament que es
beneficia de l’ingenieria inversa per a crear un model de demanda de trànsit realista.
Este métode millora significativament la precisió en la representació del volum
de trànsit, la distribució espacial dels punts d’orige i la longitud de les rutes en
comparació en les solucions actuals, proporcionant una base més fiable per a anàlisis
posteriors.

Sobre esta base, usem l’eina SUMO, junt en el model d’emissions HBEFA,
per a simular el flux de trànsit i les emissions dels vehicles. SUMO oferix capaci-
tats detallades de simulació de trànsit, mentres que HBEFA proporciona factors
d’emissió complets per al transport per carretera, lo que els fa ideals per a les
nostres necessitats de modelació. A continuació, desenrollem SUMO2GRAL, una
ferramenta personalisada que integra els resultats de SUMO en GRAL per a realisar

xi



una modelació detallada de la dispersió de contaminants, i traduir estes emissions
expressades en massa a concentració. Esta integració té en compte factors com
l’orografia urbana i les condicions meteorològiques, millorant aix́ı la precisió de les
evaluacions de la qualitat de l’aire en entorns urbans.

A continuació, explorem estratègies de reencaminament del trànsit dirigides
a mitigar la contaminació de l’aire. Primer, presentem un enfocament de reen-
caminament estàtic que ajusta els pesos del trànsit en segments de carrers segons
paràmetres ambientals fixos. En aplicar este métode en Valéncia, demostrem la
seua efectivitat en la reducció de les concentracions de contaminants, especialment
en àrees cŕıtiques com espais verds o parcs, proporcionant implicacions pràctiques
per a la poĺıtica i la planificació urbana.

Reconeguent les limitacions dels métodes estàtics per a adaptar-se a condicions
dinàmiques, desenrollem un algoritme dinàmic de reencaminament del trànsit
que ajusta les rutes dels vehicles basant-se en les dades de qualitat de l’aire dels
carrers i en els perfils espećıfics d’emissions dels vehicles. Al introduir un factor de
sensibilitat d’emissions, el nostre algoritme modula les decisions d’encaminament
en resposta a les condicions ambientals. Les simulacions de situacions de crisi
ambiental, com incendis d’edificis i episodis de boira prodüıda per la contaminació
(smog), revelen que l’enfocament dinàmic redüıx significativament les concentracions
de contaminants en les àrees afectades sense afectar greument l’eficiència del
trànsit, equilibrant eficaçment els nivells de qualitat de l’aire i de mobilitat. Això
proporciona valuoses idees per a urbanistes i responsables poĺıtics en el disseny de
sistemes de gestió del trànsit que prioritzen la salut pública.

Finalment, ampliem el nostre anàlisi a escenaris futurs de trànsit urbà exami-
nant l’evolució esperada del parc vehicular de Valéncia, en particular l’augment en
l’adopció de vehicles elèctrics. Basant-nos en models d’evolució de parcs vehiculars
de ciutats europees similars, simulem escenaris que consideren els avanços tec-
nològics i les tendències socials. Els nostres resultats suggerixen que una transició
gradual cap als vehicles elèctrics pot millorar substancialment la qualitat de l’aire
en el temps, subratllant la importància de promoure tecnologies més netes junt en
una gestió eficaç del trànsit.

En general, esta tesi doctoral presenta diverses estratègies per a pal·liar la
contaminació atmosfèrica urbana a través d’estratègies intel·ligents de gestió del
trànsit. La integració de criteris de contaminació en els marcs de trànsit urbà oferix
idees i ferramentes valuoses per a que els responsables poĺıtics i els planificadors
urbans creen entorns urbans més saludables i sostenibles per a enfrontar este repte
global.
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Chapter 1

Introduction

The rapid urbanisation of societies worldwide has led to the appearance of complex
and densely populated cities. With this growth, the concept of the smart city has
gained prominence, envisioning urban areas that leverage technology and data
to enhance the quality of life for their inhabitants. Central to this vision is the
development of efficient, sustainable, and intelligent transportation systems that
can address the challenges posed by increasing urban mobility demands [1, 2].

Historically, cities have evolved alongside advancements in transportation.
From horse-drawn carriages to the widespread adoption of automobiles in the
20th century, each era has introduced new opportunities and challenges. Today,
we are on the verge of another transformation due to Intelligent Transportation
System (ITS) and autonomous vehicles. These technologies promise not only to
revolutionise how we travel, but also to mitigate the negative effects of traditional
transportation methods, such as congestion and pollution [3].

One of the most pressing concerns in urban environments is air pollution,
primarily caused by vehicular emissions. Pollutants such as Nitrogen Oxides (NOx)
and Particulate Matter (PMx) have serious implications for both public health
and the environment. Despite advancements in vehicle technology and stricter
emission standards, the sheer volume of urban traffic continues to pose significant
environmental challenges [4]. Traditional traffic management strategies have focused
on reducing congestion and improving traffic flow, but they have not sufficiently
addressed the environmental impact of vehicular emissions.

1



1. Introduction

In recent years, there has been a growing recognition of the need to incorporate
environmental considerations into traffic management strategies [5]. However,
existing approaches often rely on static measures or administrative decisions,
lacking the flexibility to adapt to real-time conditions. Furthermore, while some
research has explored re-routing traffic based on environmental data, there remains
a gap in developing systems that can effectively improve air quality without
significantly compromising traffic efficiency.

1.1 Motivation

Urban air quality remains a significant public health concern, particularly in cities
with severe traffic congestion. Traffic-related air pollution has been linked to various
adverse health effects, including respiratory diseases, cardiovascular problems, and
increased mortality rates [6]. In economic terms, the European Environmental
Agency (EEA) estimates that air pollution costs the European Union between
268 and 428 billion euros annually due to health expenses and lost productivity
[7]. Moreover, traffic jams cause personal stress and contribute significantly to air
pollution, as vehicles idling in stop-and-go traffic emit higher levels of pollutants
than when the traffic is fluid. According to the Spanish Society of Pneumology and
Thoracic Surgery (SEPAR), air pollution is responsible for 10,000 deaths annually
in Spain [8], underscoring the urgent need for effective traffic management and
environmental solutions.

Despite these severe impacts, existing traffic management strategies often
prioritise congestion reduction over environmental considerations, leaving a critical
gap in addressing the full spectrum of issues caused by vehicular traffic [9]. A
paradigm shift in urban mobility is expected with the widespread adoption of
electric and autonomous vehicles and advancements in Vehicle to Everything (V2X)
communication [10]. These intelligent vehicles will be capable of interacting with
both the urban infrastructure and other vehicles, providing opportunities for cities
to implement centralised traffic management systems that make real-time, data-
driven decisions. Such systems can optimise traffic flow from the perspective of
individual vehicles and by considering the overall impact on air quality and public
health. For example, a central traffic management platform could reroute vehicles
dynamically to reduce congestion and lower pollutant emissions in heavily trafficked
areas.

However, to fully leverage these technologies, several challenges must be ad-
dressed:

1. Realistic traffic models must be developed to simulate the interactions between
intelligent vehicles and urban infrastructure.
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2. Accurate and real-time air quality data and emissions profiles of different
vehicle types must be integrated into traffic management systems.

3. A context-aware routing framework that optimises traffic flow while prioritis-
ing environmental considerations needs to be developed.

4. Evaluating the environmental impacts of these traffic management strategies
is essential, ensuring they lead to sustainable improvements in urban air
quality.

Motivated by these challenges and opportunities, this thesis aims to contribute
to developing sustainable urban environments where technology and data are used
to address real-world problems. By integrating environmental considerations into
traffic management systems, we can improve public health and pave the way for
more intelligent, cleaner transportation networks that adapt to the evolving needs
of modern cities. Ultimately, this thesis seeks to lay the groundwork for the next
generation of traffic management solutions benefiting society and the environment.

1.2 Objectives

The main objective of this PhD thesis is to develop a comprehensive vehicular
traffic management framework that effectively reduces urban air pollution. This is
achieved by integrating realistic traffic modelling, dynamic re-routing algorithms
based on environmental criteria, and a detailed analysis of the environmental
impact of traffic restrictions. The framework aims to improve urban air quality
without compromising traffic efficiency, contributing to the advancement of ITS
within the context of smart cities.

To achieve this overall goal, several sub-objectives must be defined. These are
the following:

1. Develop a Realistic Traffic Simulation Framework: Create a simula-
tion environment capable of modelling realistic traffic conditions based on
actual traffic flow data. The framework should manage vehicle routes during
simulations and accurately assess the pollutant emissions of each vehicle.

2. Define Realistic Urban Traffic Scenarios: Establish simulation scenar-
ios that accurately represent urban vehicular environments. This scenario
includes accounting for various vehicle types and behaviours and modelling
their interactions with road networks, congestion patterns, and traffic flow
dynamics to reflect realistic conditions within Valencia.
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3. Design and Implement Dynamic Re-routing Algorithms: Develop
algorithms that assign optimal traffic routes by considering traffic flow op-
timisation and pollution levels across the city. These algorithms should
dynamically adjust routes based on air quality data and vehicle emission
profiles.

4. Characterise Air Quality and Vehicle Emissions: Perform an in-depth
analysis of air quality impacts by integrating emission models with traffic
simulations. This analysis will assess how different vehicle engine types and
routes contribute to pollutant levels, enabling the identification of major
emission sources and their environmental effects in urban settings.

5. Evaluate the Environmental Impact of Traffic Management Strate-
gies: Investigate the effects of various traffic restrictions and management
decisions on actual traffic patterns and pollutant emissions. This research
includes analysing the trade-offs between reducing pollution in specific areas
and maintaining acceptable congestion levels city-wide.

6. Develop a Context-Aware Routing Framework: Propose a routing
system that adapts to environmental contexts, such as pollution hotspots
and environmental crises. This system should integrate air quality data to
provide adaptive routing solutions that mitigate air pollution while ensuring
efficient traffic flow.

7. Evaluate Air Quality in Future Urban Scenarios: Simulate and analyse
the air quality in Valencia under different future vehicle distribution scenarios.
This objective focuses on predicting the air quality improvements that can
be achieved as we gradually reduce the share of combustion engine vehicles,
increasing the proportion of electric cars accordingly. The goal is determining
the expected impact of such changes from an air quality perspective with a
high level of detail.

1.3 Structure of the Thesis

The thesis dissertation is organised in nine chapters. Below is a brief overview of
each chapter:

• Chapter 2, Air Pollution, provides a foundation in the basics of air
pollution. It discusses the pollutants contributing to poor air quality, methods
for measuring these pollutants, the concept of Air Quality Index (AQI), and
the computational techniques used to estimate pollution concentrations. This
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chapter lays the groundwork for understanding the environmental pollutants
relevant to vehicular emissions.

• Chapter 3, Vehicular Traffic and Re-routing Solutions, explores meth-
ods of traffic data collection, reviews vehicular traffic simulators and emission
models, and examines existing re-routing solutions. The chapter discusses the
challenges of reducing urban pollution through traffic management, surveying
state-of-the-art technologies and strategies for mitigating air pollution via
traffic re-routing.

• Chapter 4, Proposed Vehicular Traffic Management Framework,
introduces our comprehensive framework for managing vehicular traffic to
reduce air pollution. It explains the use of the SUMO tool, outlines method-
ologies for pollutant concentration calculations, and discusses the calibration
of pollution concentrations. This framework forms the basis for testing and
implementing the proposed traffic management strategies.

• Chapter 5, Generating Traffic Demand in a Realistic Way, focuses
on creating realistic traffic demand models for simulation. It provides an
overview of Valencia’s traffic conditions and identifies unresolved issues in
current traffic demand generation methods. A novel solution is proposed and
validated through experiments by comparing results against DFROUTER,
and demonstrating the effectiveness of our method in generating realistic
traffic patterns.

• Chapter 6, Traffic Re-routing Based on Air Pollution: A Static
Approach, presents a static traffic re-routing strategy aimed at reducing air
pollution. The chapter details the proposed solution, which adjusts traffic
flows based on predefined environmental constraints. Experiments conducted
using Valencia as a case study are analysed to assess the impact of the static
re-routing on pollutant concentrations and traffic efficiency.

• Chapter 7, Traffic Re-routing Based on Air Pollution: A Dynamic
Approach, expands on the static approach by introducing a dynamic traffic
re-routing algorithm. This method adjusts vehicle routes based on current
air quality data and vehicle emission profiles. The chapter describes the
development of the dynamic algorithm, simulates various environmental
crisis scenarios, and evaluates the results, focusing on reducing pollutant
concentrations while maintaining traffic efficiency.

• Chapter 8, Predicting Air Quality for Current and Future Urban
Traffic, examines the evolution of Valencia’s vehicular fleet and its impact
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on future air quality. It analyses trends such as the increasing adoption of
electric vehicles, and predicts how these changes might affect urban pollution.
The chapter presents experiments that offer insights into the long-term impact
of evolving traffic compositions on air quality.

• Chapter 9, Conclusions, Future Work, and Publications, summarises
the key findings of the research, and reflects on its contributions to urban
traffic management and air quality improvement. It discusses future research
directions, such as incorporating advanced emission models or exploring
further dynamic re-routing strategies. The chapter also lists the publications
resulting from this research, showcasing the dissemination of the work within
the scientific community.
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Chapter 2

Air Pollution

Urban air pollution is a critical environmental and public health issue, with
vehicular emissions being a major contributor in cities worldwide. This chapter
covers the key aspects of air pollution caused by road transport, emphasising the
primary pollutants emitted by vehicles, and their significant impacts on human
health and the environment. First, we analyse the major pollutants regulated by
international organisations such as the EEA and the United States Environmental
Protection Agency (USEPA). Each pollutant is discussed in terms of its primary
sources, health implications, and environmental effects, with a focus on vehicular
emissions. The chapter also explores the methods used to measure these pollutants,
categorising them into fixed, mobile, and remote sensing techniques, all essential for
accurate air quality monitoring. Additionally, we introduce the concept of the AQI,
explaining how pollutant concentrations are converted into standardised indices
that reflect air quality levels. Finally, we cover the methods for calculating pollution
concentrations from vehicular emissions, focusing on modelling techniques such
as the “Fixed Box Model” and the GRAL. These models are vital for translating
emission data into concentration levels, allowing us to assess the impact of traffic
emissions on urban air quality. This comprehensive understanding of air pollution
provides the foundation for developing effective strategies to mitigate vehicular
emissions in urban environments, which will be explored in the following chapters.

7



2. Air Pollution

2.1 Pollutants

This section analyses the urban pollutants emitted by road transport, which are
regulated by international organisations such as the EEA and the USEPA. These
pollutants present significant risks to both human health and the environment.
Each pollutant is analysed in terms of its sources, primarily vehicular emissions,
its impact on human health, and its broader environmental effects. The primary
pollutants discussed include NOx, PMx, and Carbon Monoxide (CO), along with
others such as Carbon Dioxide (CO2), Ozone (O3), Sulphur Dioxide (SO2), and
Volatile Organic Compounds (VOCs) [11, 12, 13].

2.1.1 NOx

NOx are a group of highly reactive gases containing varying amounts of nitrogen and
oxygen, with the most significant forms in air pollution being Nitric Oxide (NO) and
Nitrogen Dioxide (NO2) [14]. These gases are generated during high-temperature
combustion processes, such as those in vehicle engines. Specifically, in vehicular
emissions, NOx is primarily released from motor vehicle exhaust as a result of
the reaction between nitrogen and oxygen during fuel combustion. Diesel engines,
in particular, emit higher levels of NOx compared to petrol engines, due to their
higher combustion temperatures and pressures [15].

Regarding health impacts, exposure to elevated levels of NOx can cause a variety
of adverse effects. In the short term, it can irritate the respiratory system, leading
to symptoms such as coughing, wheezing, and difficulty breathing. Moreover, it
can exacerbate asthma and increase vulnerability to respiratory infections [16].
Prolonged exposure is associated with the development of asthma and an increased
risk of cardiovascular diseases [17].

In addition to health concerns, NOx has significant environmental effects. It
plays a critical role in atmospheric reactions that produce ground-level O3 and
fine particulate matter (PM2.5), both of which have additional health implications.
Furthermore, NOx contributes to the formation of acid rain and nutrient pollution
in coastal waters, causing imbalances in ecosystems [18].

2.1.2 PMx

PMx refers to a complex mixture of tiny particles suspended in the air. The “x”
denotes the particle’s diameter in micrometers, with PM10 (particles with diameters
of 10 micrometers or less) and PM2.5 (2.5 micrometers or less) being the most
commonly monitored sizes due to their ability to penetrate the respiratory system.
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Regarding vehicular emissions, PMx is generated from several sources. Exhaust
emissions, particularly from diesel engines, are significant contributors to PM2.5

[19]. Additionally, non-exhaust emissions such as brake wear, tire wear, and road
dust resuspension contribute to both PM10 and PM2.5 levels in urban environments.

Regarding health impacts, exposure to particulate matter poses serious risks.
PM2.5 can penetrate deep into the lungs and even enter the bloodstream, leading
to respiratory and cardiovascular diseases, aggravated asthma, decreased lung
function, and premature death in individuals with heart or lung diseases [20]. There
is evidence that both short-term and long-term exposures can have significant
health effects, and no safe threshold has been identified.

Environmentally, PMx contributes to reduced visibility (haze) and can settle
on soil and water bodies, leading to environmental degradation [21]. Particulate
matter can also affect climate by influencing the Earth’s radiation balance, either
by absorbing or reflecting sunlight [22]. This can have further implications for
climate change and weather patterns.

2.1.3 CO

Carbon monoxide is a colourless, odourless gas produced by the incomplete com-
bustion of carbon-containing fuels.

In terms of vehicular emissions, CO is primarily emitted from motor vehicle
exhaust when the combustion process is inefficient, such as during cold starts,
or when engines are not properly tuned [23]. Older vehicles and those in poor
mechanical condition tend to emit higher levels of CO.

Concerning health impacts, CO can lead to cardiovascular and neurological
effects, especially in individuals with pre-existing heart conditions [24]. Symptoms
of CO exposure include headaches, dizziness, weakness, nausea, confusion, and at
very high levels, it can be fatal.

From an environmental perspective, while CO does not have significant direct
environmental effects, it plays a role in the formation of ground-level ozone by
reacting with other pollutants in the presence of sunlight. This indirect contribution
to O3 formation can have further environmental and health implications.

2.1.4 Other Relevant Pollutants

In addition to primary pollutants, several other substances emitted by vehicles
significantly impact health and the environment.

SO2, a colourless gas, results from burning sulphur-containing fuels, such as
diesel. Although SO2 emissions from vehicles have decreased due to low-sulphur

9
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fuel regulations, they remain a concern where higher sulphur fuels are used. Short-
term exposure to SO2 irritates the respiratory system, exacerbating asthma and
bronchitis, while, environmentally, it contributes to acid rain, damaging ecosystems
and infrastructure [25].

CO2, a primary greenhouse gas, is a major contributor to climate change. It is
produced as a by product of fossil fuel combustion in vehicles and leads to global
warming, resulting in rising sea levels, extreme weather, and biodiversity loss.
Though CO2 itself is not harmful at typical ambient concentrations, the broader
effects of climate change severely impact human health [26].

VOCs, organic chemicals that easily evaporate at room temperature, are released
through fuel evaporation and incomplete combustion in vehicles [27]. Exposure to
VOCs can irritate the eyes, nose, and throat, and some are carcinogenic [28]. Addi-
tionally, VOCs react with NOx in sunlight to form ground-level ozone, contributing
to smog, and further damaging air quality and ecosystems.

Ground-level O3, a secondary pollutant formed from NOx and VOCs, is a key
component of urban smog. It causes respiratory issues, reduces lung function,
and worsens asthma. O3 also damages vegetation, reducing crop yields and forest
growth, which harms ecosystems and biodiversity [29].

Ultimately, understanding these pollutants is crucial for developing effective
strategies to reduce vehicular emissions. Table 2.1 provides a summary of the
primary pollutants discussed, highlighting their sources, health effects, and envi-
ronmental impacts.

2.2 Methods of Measuring Pollutants

Accurate measurement of air pollutants is critical for monitoring air quality, ensur-
ing compliance with environmental regulations, and informing effective pollution
control strategies. Methods for measuring pollutants can be broadly categorised
into fixed sensing, mobile sensing, and remote sensing.

2.2.1 Fixed Sensing

Air quality monitoring stations are fixed installations equipped with instruments
that continuously measure concentrations of key pollutants such as NOx, PMx,
SO2, CO, and O3 [30]. These stations are strategically placed in urban, suburban,
and rural areas to provide comprehensive coverage of air quality across different
regions. The instruments used in these stations include:
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Table 2.1: Summary of primary pollutants from vehicular emissions.

Pollutant Sources Health Effects Environmental Effects

NOx Vehicle exhaust Respiratory irritation,
asthma, increased infec-
tion risk

Ground-level ozone, acid rain,
nutrient pollution

PMx Exhaust emissions,
brake and tire wear,
road dust

Respiratory and cardio-
vascular diseases, reduced
lung function

Reduced visibility, climate ef-
fects

CO Incomplete combus-
tion in engines

Reduced oxygen delivery,
cardiovascular and neuro-
logical effects

Contributes to ground-level
ozone

SO2 Sulphur-containing
fuel combustion

Respiratory irritation,
asthma

Acid rain formation, ecosys-
tem damage

CO2 Fuel combustion Indirect health impacts via
climate change

Greenhouse gas, global warm-
ing

VOCs Fuel evaporation,
incomplete combus-
tion

Respiratory irritation, or-
gan damage, some carcino-
genic

Ground-level ozone, photo-
chemical smog

O3 Formed from NOx

and VOCs
Respiratory problems, re-
duced lung function

Vegetation damage, reduced
crop yields

• Gas Analysers: Devices that measure gaseous pollutants using techniques
such as chemiluminescence for NOx, fluorescence for SO2, and infrared
absorption for CO [31].

• Particulate Matter Monitors: Instruments such as Beta Attenuation
Monitors (BAMs) and Tapered Element Oscillating Microbalances (TEOMs)
measure the mass concentration of particulate matter in the air [32].

• Meteorological Sensors: Equipment that measures wind speed, wind
direction, temperature, and humidity, which are essential for interpreting
pollutant dispersion patterns [33].

To illustrate, Figure 2.1 presents an example of an air quality monitoring
station.
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Figure 2.1: Example of an air quality monitoring station [34].

2.2.2 Mobile Sensing

Advances in technology have led to the development of portable and low-cost
sensors capable of measuring air pollutants [35]. These devices include:

• Electrochemical Sensors: These are used to detect gases like NO2, SO2,
and CO by measuring the current produced by the chemical reaction of the
target gas at an electrode [36].

• Optical Sensors: These sensors use light scattering or absorption to detect
PMx concentrations [37].

• Photoionisation Detectors: These devices measure VOCs by ionising
organic compounds with ultraviolet light, and then measuring the resulting
current [38].

Such sensors are increasingly used in networks to provide high-resolution spatial
data on air quality, complementing data from fixed monitoring stations. Their
portability and affordability make them suitable for community-based monitoring
and personal exposure assessments.

2.2.3 Remote Sensing

Remote sensing involves the use of satellites, aircraft, or ground-based remote
sensors to detect and measure pollutants in the atmosphere [39]. The main
techniques include:
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• Satellite Observations: Instruments onboard satellites measure the Earth’s
reflected and emitted radiation, allowing for the estimation of atmospheric
concentrations of pollutants such as NO2, SO2, and O3 [40].

• Light Detection and Ranging (LiDAR) Systems: LiDAR technology
uses laser pulses to measure PMx aerosols in vertical profiles of the atmosphere
[41].

• Aerial Measurements: Aircraft equipped with sensors provide high-
resolution data over specific areas, useful for validating satellite data and
capturing localised pollution events [42].

Ultimately, remote sensing provides valuable data over large spatial scales,
contributing to global air quality monitoring, climate research, and the validation
of ground-based measurements.

Figure 2.2 provides a graphical overview of the various methods and techniques
discussed in this section, highlighting the main advantages and disadvantages of
each.

Figure 2.2: Comparison of pollutant measurement methods.

In summary, accurate measurement of air pollutants is essential for effective air
quality management. Fixed sensing provides continuous, high-accuracy data at
specific locations, which is vital for regulatory compliance and long-term monitoring.
Mobile sensing enhances spatial coverage and offers flexibility, making it valuable
for exposure assessments and identifying pollution hotspots. Remote sensing
extends the monitoring capabilities to regional and global scales, contributing to
comprehensive environmental assessments and supporting climate change research.
Combining these methods allows for a more complete understanding of air pollution
patterns, and supports the development of effective mitigation strategies.
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2.3 Air Quality

Air quality is a crucial factor in urban health and environmental sustainability,
particularly in areas with heavy vehicular traffic. Pollutants emitted from vehicles
significantly affect air quality, posing serious health risks, especially for vulnerable
populations such as children, the elderly, and those with pre-existing respiratory
conditions. To monitor and manage air quality, indices like the AQI are commonly
used. These indices offer a standardised assessment of air quality by measuring
the concentration of key pollutants, enabling comparisons across regions and time
periods. In this section, we examine the concept of the AQI, and the standards
established by regulatory bodies such as the EEA and the USEPA.

2.3.1 AQI

The AQI is a numerical scale designed to communicate air pollution levels to the
public. It is calculated based on the concentrations of key pollutants, including
NOx, PM10, PM2.5, SO2, and O3. Although the specific pollutants used to calculate
the AQI may vary slightly across countries and organisations, the primary goal
is to provide an easily interpretable index that reflects the potential health risks
associated with current air quality conditions.

In this thesis, we focus on NOx and PM10, as these are key pollutants covered
by the EEA’s air quality guidelines [43]. Although traffic simulators also provide
data on pollutants like CO as we will see in the Chapter 3, it is not included in
our analysis because it is not considered by the EEA for AQI calculations [44].
However, CO is included in the USEPA framework [45]. To maintain relevance,
our pollutant selection aligns with the EEA standards, while also incorporating
the USEPA methodology for converting pollutant concentrations into AQI values.

The AQI for each pollutant is calculated using Equation 2.1, which converts
pollutant concentrations into an index value based on predefined concentration
breakpoints. This formula ensures consistency when comparing pollutant levels
against health impact thresholds.

Ip =
IHi − ILo

BPHi −BPLo
· (Cp −BPLo) + ILo (2.1)

where:

• Ip is the index for pollutant p,

• Cp is the truncated concentration of pollutant p,

• BPHi is the concentration breakpoint that is greater than or equal to Cp,
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• BPLo is the concentration breakpoint that is less than or equal to Cp,

• IHi is the AQI value corresponding to BPHi,

• ILo is the AQI value corresponding to BPLo.

After calculating the AQI for each pollutant, the overall AQI for a given area
is determined by taking the maximum index value from the pollutants under
consideration, as shown in Equation 2.2:

I = max(IPMx, INOx) (2.2)

This approach ensures that the most critical pollutant at any given time dictates
the overall air quality rating, thereby informing the public of the highest potential
health risk.

2.3.2 Air Quality Standards

The AQI is derived from pollutant concentration thresholds established by organi-
sations such as the EEA and the USEPA. These thresholds represent varying levels
of air quality concern, ranging from “Good” air quality, which poses no risk, to
“Extremely Poor” air quality, which poses significant health risks to the general
population. Although the standards set by these agencies differ slightly due to
regional variations in air quality regulations, both aim to protect public health
and reduce environmental harm. The thresholds defined by both agencies for key
pollutants can be observed in Tables 2.2 and 2.3.

Table 2.2: USEPA thresholds for PM10 and NOx.

Level of Concern AQI Range PM10 (µg/m3) NOx (µg/m3)

Good 0-50 0-54 0-100
Fair 51-100 55-154 101-188
Moderate 101-150 155-254 189-283
Poor 151-200 255-354 284-376
Very Poor 201-300 355-424 377-565
Extremely Poor 301 and higher 425 and higher 566 and higher

As can be observed, the EEA standards are generally stricter at lower pollutant
concentrations than the USEPA standards. For example, the EEA defines “Good”
air quality for PM10 as concentrations up to 20 µg/m3, while the USEPA considers
concentrations up to 54 µg/m3 as “Good”. Similarly, for NOx, the EEA’s “Good”
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Table 2.3: EEA thresholds for PM10 and NOx.

Level of Concern PM10 (µg/m3) NOx (µg/m3)

Good 0-20 0-40
Fair 20-40 40-90
Moderate 40-50 90-120
Poor 50-100 120-230
Very Poor 100-150 230-340
Extremely Poor 150-1200 340-1000

threshold is up to 40 µg/m3, whereas the USEPA sets it at up to 100 µg/m3. These
differences highlight how regional health assessments and policy priorities influence
air quality regulations.

In this thesis, we adopt a combination of standards from both the EEA and
USEPA, with a focus on two primary pollutants: PM10 and NOx. Table 2.4
presents the threshold values for each pollutant and their corresponding AQI levels,
offering a consistent framework for evaluating air quality across different urban
areas.

Table 2.4: AQI thresholds for PM10 and NOx used in this thesis.

Level of Concern AQI Range PM10 (µg/m3) NOx (µg/m3)

Good 0-50 0-20 0-40
Fair 51-100 20-40 40-90
Moderate 101-150 40-50 90-120
Poor 151-200 50-100 120-230
Very Poor 201-300 100-150 230-340
Extremely Poor 301 and higher 150-1200 340-1000

These standards ensure that our analysis of vehicular emissions adheres to in-
ternationally recognised guidelines, providing a solid foundation for assessing urban
air quality and its associated health impacts. In particular, it facilitates meaningful
comparisons within the European context and underscores our commitment to
rigorous environmental assessment.
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2.4 Pollution Concentration Computation

Road transport emissions are a significant source of urban air pollution, accounting
for 37% of NOx, and for 18% of CO emissions in the European Union [46]. However,
to fully assess their impact on air quality and associated health risks, emission
quantities must be converted into pollutant concentration levels, which represent
the amount of pollution in a given volume of air. This conversion is crucial for
determining whether pollutant levels exceed the thresholds established by air
quality standards, such as the AQI.

To achieve this, mathematical models are used to simulate the dispersion of
pollutants in the atmosphere. These models take into account factors such as
emission rates, meteorological conditions, and urban environmental characteristics
to estimate how pollutants spread and concentrate in different areas [47]. This
section reviews the main modelling techniques used for pollutant dispersion, and
specifically focuses on the two approaches applied in this thesis for calculating
pollution concentrations: the “Fixed Box Model” and the GRAL. While both are
atmospheric dispersion models, they differ in complexity and application, offering
complementary advantages based on the specific needs of the study.

The following subsections outline the principles behind these models, explaining
how they convert emission data into concentration values, and examining their
strengths and limitations for urban air quality assessments.

2.4.1 Overview of Modelling Techniques

Several techniques are available to model the concentration and dispersion of
pollutants in the atmosphere, each varying in complexity, required input data, and
suitability for different environmental conditions. They can be grouped into three
main categories:

• Dispersion Models: These models simulate how pollutants disperse in the
atmosphere from point or area sources. Gaussian plume models, or the “Fixed
Box Model”, are often used for quick, preliminary assessments. In contrast,
more advanced tools like GRAL [48] offer higher accuracy, particularly in
complex urban environments.

• Chemical Transport Models: These models simulate the physical and
chemical transformations that pollutants undergo as they travel through the
atmosphere. They account for processes such as chemical reactions, wet and
dry deposition, and large-scale transport of pollutants [49].
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• Computational Fluid Dynamics (CFD) Models: CFD models provide
high-resolution simulations of pollutant dispersion, making them particularly
valuable in detailed studies of urban environments. However, they are
computationally intensive and require extensive data on pollutant sources,
meteorology, and urban layout [50].

For the purposes of this thesis, two primary models, the “Fixed Box Model”, and
GRAL, were selected for their ability to convert emissions data into concentration
levels, evaluate pollution impacts, and provide valuable insights into urban air
quality.

2.4.2 Fixed Box Model

The “Fixed Box Model” is a simple and yet widely used atmospheric dispersion
model that estimates pollutant concentrations by assuming uniform mixing of
pollutants within a defined volume, or “box” [51, 52]. The dimensions of the box
are set according to the characteristics of the study area, and the model assumes
that pollutants remain within this volume over a specified time, typically one hour.
The model is particularly useful for quick, preliminary assessments of air quality.

Figure 2.3: Air available for dilution in a “Fixed Box Model” [51].

In this thesis, the “Fixed Box Model” is applied to convert emission data
generated by the traffic simulator, which is expressed in mass, into pollutant
concentrations that can be compared with AQI standards. The concentration of
pollutants, C, is calculated using the following equation:
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C =
Q · t

x · y · z
(2.3)

where:

• Q is the release rate of the pollutant (mass per unit time),

• t is the time period for which mixing occurs,

• x and y are the horizontal dimensions of the box (downwind and crosswind),
z is the vertical dimension of the box.

The “Fixed Box Model” is straightforward and requires minimal input data,
making it a valuable tool for estimating pollutant concentrations over short time
frames. However, its simplicity also presents limitations. It assumes constant
emissions, stationary meteorological conditions, and a uniform pollutant mix,
which may not always reflect real-world scenarios. Additionally, it does not account
for the complex interactions between buildings, terrain, and local meteorology.
Despite these drawbacks, its low computational cost and ease of use make it ideal
for initial assessments.

2.4.3 GRAL

GRAL is a more advanced dispersion model designed to simulate pollutant dis-
persion in complex urban environments. It takes into account factors like terrain,
building geometry, vegetation, and internal wind flows, making it highly accurate
for studies requiring detailed modelling of pollution dispersion. Developed by the
Austrian Technical University of Graz, GRAL is widely used in urban air quality
studies, offering a more sophisticated alternative to simpler models like the “Fixed
Box Model”.

Unlike the “Fixed Box Model”, GRAL accounts for the three-dimensional
structure of urban areas, which significantly affects the way pollutants disperse.
This makes it especially useful for cities like Valencia, where interactions between
buildings, traffic, and meteorological conditions create complex pollution patterns.

For this thesis, GRAL is used to convert emissions data from SUMO into
concentration levels, similar to the “Fixed Box Model” but with greater precision.
Its advanced algorithms enable the modelling of dynamic urban environments,
where factors like wind turbulence, street canyons, and local meteorology play
a significant role in determining pollution levels. Additionally, GRAL has been
validated in multiple studies, including those conducted by Austrian regulatory
bodies and international research projects [53, 54]. This strong validation and its
open-source nature make GRAL a reliable and valuable tool for this research study.
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2.4.4 Comparison of Fixed Box Model and GRAL

While both the “Fixed Box Model” and GRAL are effective tools for estimating
pollutant concentrations, they serve different purposes and are suited for different
scales of analysis. The “Fixed Box Model” is ideal for rapid, low-cost assessments,
where the primary concern is to gain a general understanding of pollution impacts.
In contrast, GRAL provides a more detailed and accurate representation of pollutant
dispersion in complex urban environments. A comparison of the main features can
be observed in Table 2.5.

Table 2.5: Comparison between “Fixed Box Model” and GRAL.

Feature Fixed Box Model GRAL

Complexity Low High

Data Requirements Minimal Extensive (topography,
meteorology)

Computation Time Fast Slower due to higher preci-
sion

Suitable Applications Preliminary assessments Detailed urban air quality
studies

Real-World Accuracy Limited High, especially in urban
areas

Use in Thesis Quick emission estimates Accurate modelling of ur-
ban pollution

In summary, both models are essential in this thesis. The “Fixed Box Model”
provides a simple, computationally efficient method for initial assessments of
pollution concentration, while GRAL allows for more complex, detailed simulations
that account for the intricacies of urban environments. Together, these models
enable a comprehensive understanding of the relationship between vehicle emissions
and air quality, providing a robust framework for assessing the environmental impact
of traffic management strategies.
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Chapter 3

Vehicular Traffic and Re-routing
Solutions

In the previous chapter, we explored the fundamental aspects of air pollution,
focusing on key pollutants, measurement methods, and the calculation of pollu-
tion concentrations. We highlighted the critical impact of air quality on public
health and the environment, underscoring the need for effective monitoring and
reduction strategies. Building upon this foundation, the current chapter exam-
ines the significant role of vehicular traffic in urban air pollution, and explores
re-routing solutions to mitigate its effects. Vehicular emissions, including CO2,
NOx, and PMx, are major contributors to city pollution, making efficient traffic
management essential for reducing emissions and improving air quality. We begin
by discussing various traffic data collection methods, emphasising on their unique
benefits and challenges in terms of accuracy, privacy, and infrastructure. The
chapter then reviews vehicular traffic simulators and emission models, assessing
their effectiveness and integration for emission estimation. Finally, we critically
evaluate existing re-routing solutions, highlighting their limitations in addressing
congestion, pollution, and real-time air quality data integration. This analysis sets
the stage for proposing new strategies in the following chapters to address these
challenges, thereby enhancing urban sustainability.
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3.1 Traffic Data Collection

Traffic data can be obtained from various sources such as Global Positioning
System (GPS), cellular networks, inductive loops, video image processors, and
others, as studied by Leduc [55] and Jain et al. [56]. These data collection methods
can be broadly categorised into Floating Car Data (FCD) and conventional “in-
situ” technologies. FCD approaches collect traffic data by tracking individual
vehicles, primarily through two methods: GPS-based and cellular phone-based
approaches. On the other hand, “in-situ” technologies collect data from detectors
placed along the road, such as induction loops and video image processors.

To enhance understanding, Figure 3.1 provides a comparative overview of FCD
and “in-situ” data collection methods, highlighting their examples of data sources,
advantages, and limitations.

Figure 3.1: Comparison of FCD and “in-situ” traffic data collection methods.

As depicted, FCD methods offer comprehensive and detailed data by tracking
individual vehicles, providing high-resolution temporal and spatial information.
However, they face challenges such as privacy concerns, data accessibility issues,
and often high costs due to reliance on private companies for data access. In
contrast, “in-situ” methods like induction loops and cameras are less intrusive,
provide more privacy and are controlled by public administrations. They offer
reliable and continuous data collection but may require custom solutions to create
traffic demand and provide less coverage compared to FCD methods.
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3.1.1 FCD Methods

In recent years, the affordability and widespread use of GPS systems have led to
their increased integration in vehicles. This growth, coupled with the proliferation
of smartphones, has made it possible to analyse vehicles that lack built-in GPS
systems. Herrera et al. [57] leveraged this source to create a system that retrieves
GPS data directly from smartphones. Their system comprises four layers: (i)
GPS-enabled smartphones inside vehicles, (ii) a cellular network provider, (iii)
a data collection infrastructure, and (iv) an information display system. The
smartphones sent their location (latitude, longitude, altitude) every 3 seconds,
which allowed for the calculation of the car’s speed and trajectory. Building on this,
Ge and Fukade [58] further developed a solution to create Origin-Destination (OD)
traffic matrices by aggregating GPS traces and applying spatial interaction models.
Despite its advantages, acquiring GPS data is often challenging due to privacy
concerns, and the difficulty of accessing data owned by private companies.

An alternative to GPS for traffic data collection is the use of cellular networks.
With advancements in technologies like Long Term Evolution (LTE) and 5G,
tracking vehicles through cellular networks has become more feasible. Cáceres et al.
[59] evaluated six different models to estimate vehicle movement between cells using
anonymous phone call data, selecting a physical model that correlates call activity
with traffic mobility. This model assumes that a cell phone is in motion when it
either initiates a call in two different cells within a short period, or has an active
call while switching from one cell to another. The results showed a reasonable
estimation of traffic flow. Similarly, Iqbal et al. [60] developed a method to create
OD matrices based on cell phone Call Detail Records (CDR). Their approach
involves three steps: (i) generating an initial OD matrix from tower-to-tower
transit data, (ii) converting it to a node-to-node transient OD matrix, and (iii)
applying a scaling factor to obtain the final OD matrix. Despite its potential, this
method is also limited by data accessibility issues, as it relies on telecommunication
companies, making it costly and difficult for public administrations to deploy.

3.1.2 “In-situ” Methods

Video image processors are among the most widely used “in-situ” methods for traffic
data collection. Recent advancements in artificial intelligence have made it easier
to monitor traffic mobility through video cameras. For instance, Mallikarjuna et al.
[61] developed a system that uses video image processing for traffic data collection,
involving two key methodologies: data collection and traffic estimation. Cameras
are placed to cover substantial portions of the road, and a multistep AI process
(learning, detection, classification, filtering, tracking, and feature extraction) enables
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both macroscopic and microscopic traffic data collection. Savrasovs and Pticina
[62] proposed a method to generate OD matrices using video data, following a five-
step process involving data collection, OD matrix generation, manual validation,
calibration, and regression analysis. While video image processing is effective for
traffic monitoring, it requires a significant investment in infrastructure, making it
more suitable for smaller cities or specific high-traffic areas, rather than extensive
urban coverage.

Among “in-situ” methods, induction loops are one of city administrations’ most
reliable and widely used technologies to monitor traffic volume across large urban
areas. These sensors create an electromagnetic field that detects the presence of
metallic objects, such as vehicles, as they pass over or near the loop embedded
in the road surface. When a vehicle passes over the induction loop, it disturbs
the electromagnetic field, triggering a change in inductance detected by the loop’s
connected hardware. This allows the system to count vehicles and measure traffic
density in real-time.

In Valencia, 720 induction loops have been strategically placed across the
city’s road network to monitor traffic volume and gather essential data for traffic
analysis and management. These sensors are connected to a central data repository,
with traffic information stored in a database accessible through an Application
Programming Interface (API) for research and public use [63]. The data collected
includes timestamps, vehicle counts, and traffic density, providing high temporal
resolution for ongoing analysis. One notable tool that uses induction loop data is
DFROUTER [64], which generates traffic demand based on such data. DFROUTER
operates through four key steps: importing the road network and induction loop
data, classifying detectors into source, middle, and sink types, calculating vehicle
flow between consecutive detectors, and generating demand based on route usage
probabilities. Our research builds upon this foundation, addressing DFROUTER’s
limitations in generating realistic traffic volumes and route lengths with a refined
solution, as discussed in chapter 5.

3.2 Vehicular Traffic Simulators and Emission Models

Efficiently managing urban traffic while minimising its environmental impact
requires the use of advanced modelling tools, particularly vehicular traffic simu-
lators and emission models. Traffic simulators are essential for modelling vehicle
movements and traffic flow on road networks, enabling the analysis of congestion
patterns, and assessing the effectiveness of various traffic management strategies.
Emission models complement these tools by estimating the pollutant emissions
from vehicles, which is vital for determining the environmental impact of different
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traffic scenarios.
Vehicular traffic simulators are generally categorised into three types: micro-

scopic, mesoscopic, and macroscopic models [65]. Microscopic models provide
detailed simulations of individual vehicle behaviour, capturing interactions such as
lane changes and accelerations. Mesoscopic models strike a balance by representing
vehicle groups with simplified dynamics, while macroscopic models treat traffic as a
continuous flow, focusing on aggregated metrics like speed and density. Integrating
emission models with these simulators allows for the assessment of pollutants such
as CO2, CO, NOx, and PMx, offering a comprehensive understanding of both
traffic dynamics and their environmental consequences.

This section provides a detailed overview of various traffic simulators and
emission models, and presents a comparative evaluation of their strengths and
limitations in supporting effective traffic management and pollution mitigation in
urban environments.

3.2.1 Vehicular Traffic Simulators: Classification and Overview

Vehicular traffic simulators are essential for analysing, predicting, and managing
traffic flow in urban and suburban areas. They allow transportation planners
and engineers to assess the impact of infrastructure changes, traffic management
strategies, and policy decisions without the costs and disruptions associated with
real-world experiments. As stated above, traffic simulators are often classified into
three categories based on their modelling approach and level of detail: macroscopic,
mesoscopic, and microscopic. Each type has specific strengths and is suited to
different types of traffic studies, from large-scale strategic planning to detailed
operational analysis. Below we provide a more detailed overview of each category,
highlighting state-of-the-art simulators used in each of them.

Macroscopic Traffic Simulators

Macroscopic traffic simulators model traffic flow using aggregated variables such as
flow rates, average speeds, and vehicle densities, treating traffic as a continuous
fluid. This approach emphasises on overall traffic patterns and system-level be-
haviours, rather than individual vehicle interactions [66]. Macroscopic models are
particularly useful for strategic planning, long-term infrastructure development,
and policy analysis, where large-scale impacts are of primary interest. They are
computationally efficient, allowing for the simulation of extensive road networks
over long time horizons. This makes them ideal for assessing scenarios like urban
expansion, regional transportation policies, and large-scale traffic management
systems.
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One notable macroscopic simulator is TRAffic Network StudY Tool (TRANSYT)
[67], developed by TRL Software in the UK. TRANSYT focuses on optimising
traffic signal timings across extensive networks. Utilising traffic flow theory, it
calculates queue lengths, delays, and stops, enabling urban planners to enhance
signal coordination across multiple intersections rather than optimising them
individually. This holistic approach reduces overall congestion and improves traffic
flow efficiency on a network-wide scale.

Another prominent macroscopic tool is VISUM [68], developed by the PTV
Group. VISUM excels in transport demand modelling and strategic planning. It in-
tegrates seamlessly with other PTV tools like VISSIM to facilitate multi-resolution
modelling, combining macroscopic, mesoscopic, and microscopic simulation capa-
bilities within a single framework. VISUM is extensively used by transportation
agencies for long-term planning, public transport analysis, and infrastructure in-
vestment decisions, providing comprehensive insights into future transportation
needs and the effects of various policy interventions.

Mesoscopic Traffic Simulators

Mesoscopic traffic simulators strike a balance between the detailed vehicle-level
modelling of microscopic simulators, and the aggregated flow-based approach of
macroscopic models [69]. They simulate traffic at an intermediate level of detail,
typically representing groups of vehicles or traffic streams, rather than individual
vehicles. This approach offers a compromise between computational efficiency
and the ability to capture essential interactions within traffic flows. Mesoscopic
simulators are well-suited for corridor-level studies, medium-sized urban networks,
and scenarios requiring moderate detail without the high computational demands
of microscopic models.

A leading mesoscopic simulator is DynaMIT [70], developed by the Mas-
sachusetts Institute of Technology. DynaMIT is designed for real-time traffic
management applications, integrating traffic assignment models with dynamic traf-
fic prediction. It provides real-time information to travellers and traffic managers,
making it valuable for evaluating Advanced Traveller Information Systems (ATIS)
and dynamic traffic management strategies. By enabling the assessment of real-
time interventions such as dynamic routing, variable message signs, and adaptive
signal control, DynaMIT helps enhance traffic flow and reduce congestion.

Similarly, TransModeler [71], developed by Caliper Corporation, offers versatility
by operating in microscopic and macroscopic modes as well. This flexibility allows
TransModeler to handle a wide range of traffic simulation scenarios, from corridor
studies and congestion management to evacuation planning. Its ability to switch
between different levels of granularity makes it a powerful tool for comprehensive
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traffic analysis, accommodating diverse study requirements, and providing detailed
insights into traffic dynamics across various contexts.

Microscopic Traffic Simulators

Microscopic traffic simulators provide the highest level of detail by modelling the
behaviour and interactions of individual vehicles within a road network. These
simulators incorporate car-following models, lane-changing algorithms, and gap
acceptance rules to replicate realistic traffic behaviour at the level of individual
drivers and vehicles. This granular approach allows for detailed analysis of traffic
phenomena such as queue formation, intersection conflicts, and the impact of
specific traffic control measures. Microscopic models are essential for operational
studies, detailed traffic impact assessments, and the design and evaluation of ITS.

A widely-used microscopic simulator is VISSIM [72], developed by PTV Group.
VISSIM is celebrated for its flexibility and detailed modelling capabilities, allowing
for comprehensive urban traffic analysis, intersection design, public transport
simulation, and pedestrian flow modelling. Its rich set of APIs facilitates extensive
customisation and integration with external systems, making VISSIM a preferred
choice for detailed traffic studies, traffic signal optimisation, and the simulation of
complex traffic scenarios involving multiple modes of transportation.

Finally, SUMO [73], an open-source simulator developed by the German
Aerospace Centre (DLR), is renowned for its extensibility and versatility. SUMO
is particularly popular in academic research due to its open-source nature, which
allows users to modify and extend its functionalities to suit specific research needs.
It supports multi-modal traffic simulation, including vehicles, public transport,
and pedestrians, making it ideal for studies on traffic emissions, traffic control
algorithms, and smart city applications. SUMO’s comprehensive suite of tools
and active user community contribute to its widespread adoption and continuous
development.

To sum up, Figure 3.2 provides a visual comparison of these simulation types,
illustrating the scale and detail of macroscopic, mesoscopic, and microscopic
simulators, ranging from more aggregated to more detailed levels.

3.2.2 Emission Models in Traffic Simulations: an Overview

Emission models are indispensable tools in traffic simulations, enabling researchers
and policymakers to evaluate the environmental impact of vehicular traffic. Ac-
cording to Boulter et al. [75], these models are classified into five main types based
on their approach and level of detail: aggregated emission factor models, average
speed models, traffic situation models, multiple linear regression models, and modal
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Figure 3.2: Comparison of traffic simulators: from macroscopic to microscopic [74].

models. Typically, emission models estimate pollutants such as CO2, CO, NOx,
and PMx. Despite sharing common objectives, these models differ significantly in
their methodologies, level of detail, and data requirements. This section provides a
comprehensive overview of the primary emission models used in traffic simulations,
highlighting their features, strengths, limitations, and typical applications.

Aggregated Emission Factor Models

Aggregated emission factor models represent the most basic category of emission
estimation tools. They adopt a single emission factor to characterise the emissions
from a particular type of vehicle on a specific type of road (e.g., urban, rural,
highway) [76]. However, their simplistic approach often lacks the granularity needed
for detailed, local-level studies, as they do not account for variations in driving
behaviour or traffic conditions [77].

Examples of aggregated emission factor models include those developed during
projects like Coordination Information AIR (CORINAIR) [78].

28



3.2. Vehicular Traffic Simulators and Emission Models

Average Speed Models

Average speed models estimate emissions based on the average speed of vehicles,
using emission factors typically expressed in grams per kilometre (g/km) [79].
Adjusted average speed models enhance this approach by including correction
factors that account for different driving modes such as acceleration, cruising, and
idling, thereby providing more refined emission estimates [80].

Prominent examples of average speed models include Computer Programme
to Calculate Emissions from Road Transport (COPERT), extensively used in
Europe for national emission inventories [81], and Motor Vehicle Emission Sim-
ulator (MOVES), developed by the U.S. Environmental Protection Agency [82].
Additionally, the HBEFA model is widely adopted in several European countries.
HBEFA provides emission factors based on average speeds, and includes a compre-
hensive database for different vehicle categories and traffic situations, enhancing
the accuracy of emission estimations [83].

Traffic Situation Models

Traffic situation models improve emission estimations by integrating speed and
driving cycle dynamics to model emissions under specific traffic conditions [84].
These models consider factors such as speed variability, traffic density, and signal
timing, offering a more accurate representation of real-world driving conditions
[85]. By capturing the nuances of different traffic situations, they provide enhanced
emission estimates over average speed models. An example is the Traffic Energy
and Emissions Model (TEE), developed by the Italian National Agency for New
Technologies, Energy and Sustainable Economic Development [86].

Multiple Linear Regression Models

Multiple linear regression models employ statistical techniques to predict emissions
based on various driving cycle variables, including idle time and positive kinetic
energy [87]. By considering a broader range of influencing factors, these models offer
improved accuracy in emission estimations [88]. However, they require detailed
driving pattern data, which may limit their applicability in scenarios lacking
such information [89]. VERSIT+, developed by the Netherlands Organisation for
Applied Scientific Research, is an example of such a model. It predicts emission
factors for different vehicle fleets and traffic situations by analysing extensive
empirical data [90].
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Modal Models

Modal models, also known as instantaneous emission models, are based on detailed
vehicle operating modes such as idling, cruising, acceleration, and deceleration [91].
These models provide high-resolution emission estimates, often on a second-by-
second basis, making them suitable for detailed studies where specific operating
conditions are known [92]. While more complex to develop and implement, they
offer greater accuracy, especially for analyses involving dynamic driving conditions
[93].

Examples of modal models include Passenger Car and Heavy-duty Emission
Model (PHEM), which estimates emissions based on instantaneous engine power
demand, and that can simulate a wide range of vehicles under various driving
conditions [94]. Similarly, Comprehensive Modal Emissions Model (CMEM) models
emissions as a function of vehicle operating modes, being applicable to diverse
vehicle types and technologies [95]. Vehicle Transient Emissions Simulation Software
(VeTESS) calculates emissions for individual vehicles over specific driving cycles,
allowing for detailed analysis of transient emission behaviour [96].

Finally, Table 3.1 summarises the different emission models, highlighting their
key characteristics, applications, and levels of detail. This comparative overview
shows that, while each model type offers different advantages, they vary considerably
in terms of both approach taken and granularity.

3.2.3 Comparative Evaluation of Traffic Simulators and
Emission Models

In this subsection we present a comparative evaluation of various traffic simulators
and emission models, aiming to identify the most suitable tools for our research. The
analysis considers several key factors, including the level of detail, computational
efficiency, data requirements, cost, and suitability for emission estimation.

Traffic Simulators

Table 3.2 outlines the key features of macroscopic, mesoscopic, and microscopic
traffic simulators, emphasising their relevance for emission modelling.

Since this thesis requires detailed vehicle behaviour modelling to accurately
assess emissions, microscopic simulators are the most appropriate choice. Among
these, VISSIM and SUMO stand out.

VISSIM is a commercial software that offers extensive features and customisation
options; however, it comes with high licensing costs, which may not be feasible for all
projects. In contrast, SUMO, being open-source, provides similar functionalities at

30



3.2. Vehicular Traffic Simulators and Emission Models

Table 3.1: Summary of Emission Models in Traffic Simulations.

Model Type Level of
Detail

Key Features Typical Applica-
tions

Aggregated Emis-
sion Factor Mod-
els

Low Use single emission factors for vehicle-
road type combinations; minimal data
requirements

Large-scale emis-
sion inventories;
strategic assess-
ments

Average Speed
Models

Low to
Medium

Estimate emissions based on average ve-
hicle speeds; can include correction fac-
tors for driving modes; examples include
COPERT, MOVES, and HBEFA

National emission
inventories; policy
analysis

Traffic Situation
Models

Medium Integrate speed and driving cycle dy-
namics; consider traffic conditions like
speed variability

Localised emission
studies; urban plan-
ning

Multiple Linear
Regression Mod-
els

Medium
to High

Use statistical methods to predict emis-
sions based on driving variables; require
detailed data; example includes VER-
SIT+

Detailed emission
estimations; re-
search applications

Modal Models High Provide second-by-second emission es-
timates based on vehicle operating
modes; highly detailed; examples in-
clude PHEM, CMEM, and VeTESS

Micro-scale studies;
dynamic traffic sim-
ulations

Table 3.2: Comparison of Traffic Simulators

Simulator Type Level of De-
tail

Advantages Disadvantages Examples

Macroscopic Low Computationally efficient;
suitable for large-scale
planning

Lacks detail for individ-
ual vehicle behavior; inad-
equate for emission model-
ing

TRANSYT,
VISUM

Mesoscopic Medium Balances detail and ef-
ficiency; appropriate for
medium-scale studies

Insufficient for micro-level
emission analysis

DynaMIT,
TransMod-
eler

Microscopic High Detailed vehicle modeling;
suitable for emission esti-
mation

Computationally intensive;
requires more data

VISSIM,
SUMO

no cost, and allows for extensive customisation, making it more suitable for academic
research. Thus, SUMO is selected due to its adaptability, cost-effectiveness, and
flexibility.
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Emission Models

Table 3.3 compares the different emission models described before, examining
factors such as the level of detail, data requirements, availability, and suitability
for integration with traffic simulators.

Table 3.3: Comparison of Emission Models.

Model Type Level of De-
tail

Advantages Disadvantages Examples

Aggregated Emis-
sion Factor Models

Low Simple; minimal data
needs

Inadequate for detailed
analysis; lacks granularity

CORINAIR

Average Speed
Models

Low to
Medium

Widely used; suitable for
large-scale inventories

Insufficient for micro-level
analysis; limited driving
dynamics

COPERT,
MOVES,
HBEFA

Traffic Situation
Models

Medium Accounts for traffic condi-
tions; more accurate than
average speed models

Requires more data; lim-
ited for high-resolution
studies

TEE

Multiple Linear Re-
gression Models

Medium to
High

Improved accuracy; consid-
ers driving variables

Requires detailed data;
complex

VERSIT+

Modal Models High High-resolution estimates;
captures dynamic condi-
tions

Complex; may require pro-
prietary software; high
data demands

PHEM,
CMEM,
VeTESS

Given that our thesis focuses on detailed emission modelling, modal models are
therefore the preferred option as they offer high resolution, and they can capture
instantaneous emission variations. Among the modal models, PHEM provides
detailed emission estimations, but its proprietary nature and associated licensing
fees, approximately €16,000 [97], make it less accessible.

Within the SUMO simulator, there are two main emission modelling options:
PHEMLight, which is a simplified version of PHEM, and also HBEFA. While
PHEMLight’s free version is limited to two emission classes, HBEFA provides
a comprehensive database of emission factors for various vehicle categories and
standards, at no cost. Moreover, HBEFA is widely used in Europe, and it integrates
seamlessly with SUMO, making it the most suitable choice for our research despite
being an average speed model.

In conclusion, combining SUMO with HBEFA allows us to conduct detailed
traffic and emission simulations without incurring in prohibitive costs, while still
meeting the required level of detail and accuracy for the thesis.
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3.3 Re-routing Solutions and Challenges for Reducing
Urban Pollution

Recent years have seen extensive exploration of re-routing solutions aimed at
mitigating the environmental impact of urban traffic by reducing vehicular emissions.
Various approaches have been proposed, each with distinct methods and objectives.
These solutions generally focus on optimising traffic flow to decrease congestion
and to reduce vehicular emissions, primarily targeting greenhouse gases like CO2,
or pollutants such as NOx and PMx.

One notable contribution is EcoTrec, a vehicle routing solution introduced
by Doolan and Muntean [98]. EcoTrec aims to reduce CO2 emissions while
minimising impacts on travel time. It uses a Vehicular Ad-Hoc Network (VANET)
where vehicles exchange messages about traffic and road conditions to build a
fuel efficiency model. The routing engine calculates the most fuel-efficient route
by evaluating road segments based on factors such as road and traffic conditions.
While EcoTrec shows promise in reducing fuel consumption, it has limitations in
handling congestion, and it does not account for pollutants beyond CO2. Moreover,
it lacks a model for measuring air pollutant concentrations and AQI levels.

Similarly, Akabane et al. proposed iMOB, an intelligent urban mobility man-
agement system that uses Vehicular Social Networks (VSN) and Social Network
Analysis (SNA) to manage traffic flow [99]. The system uses a collaborative,
three-layered architecture that enables vehicles to reroute altruistically to avoid
congestion. The results demonstrate a reduction in average travel time and CO2

emissions. However, the study focuses only on CO2, failing to address other
pollutants or air pollutant concentrations, which are crucial for a comprehensive
assessment of urban air quality.

Another approach, SmartFlow, proposed by Khan and Koubaa [100], is designed
for Vehicle to Infrastructure (V2I) communications to minimise delays at traffic
signals by suggesting optimal speeds to vehicles. It uses frequent beacon messages to
communicate with other vehicles and Road Side Units (RSUs). Although effective
in reducing waiting times, SmartFlow relies entirely on autonomous vehicles and
lacks AQI measurement capabilities, limiting its applicability in current urban
environments.

Gomides et al. introduced REACT, a traffic management solution aimed at
minimising congestion in smart cities through a Vehicle to Vehicle (V2V) network
architecture where vehicles act as intelligent agents [101]. While REACT reduces
communication overhead and travel time effectively, it remains largely conceptual
and lacks validation with real-world traffic data. Also, it does not analyse pollutant
emissions or concentrations, thereby having limited applicability in environmental
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impact assessments.
Another relevant study by Akabane et al. is the distributed traffic management

system called dEASY [102]. This infrastructure-less system relies on a three-layer
architecture to gather, process, and distribute traffic data for route suggestions.
The system performs well in reducing travel time and CO2 emissions. However, it
only considers CO2, and does not account for other pollutants like NOx or PMx,
nor does it measure pollutant concentrations and their corresponding AQI values.

Managing urban air quality becomes especially challenging during environmental
crises like wildfires, smog, and dust storms, which rapidly deteriorate air quality [103,
104, 105]. These situations underscore the need for advanced traffic management
systems that dynamically respond to changes in air quality. For instance, during
smog episodes, pollutants can increase by 10 µg/m3, leading to a 3% increase
in mortality [106]. Current Low Emission Zones (LEZ) implemented in cities
like Berlin, Amsterdam, Paris, London, and Madrid have proven effective [107].
However, these strategies often fail to dynamically incorporate real-time air quality
data and diverse vehicle emission profiles, despite the rapidly changing nature of
these emissions [108, 109].

Previous studies have also explored various methods for air quality monitoring
and traffic management, but often lack the granularity needed to respond to
sudden changes in air quality during environmental crises [110, 111, 112, 113,
114]. These traditional methods provide valuable data, but often do not integrate
real-time air quality data with dynamic traffic management, which is crucial for
mitigating health impacts during crises. The increasing frequency and intensity of
environmental disasters, such as wildfires in California in 2020, and dust storms
in the Middle East in 2022, further highlight the need for systems that integrate
real-time environmental data with urban traffic management [115, 116, 117, 118,
119].

In contrast to previous published works, the solution proposed in this PhD
thesis, and which will be detailed in the following chapters, addresses these research
challenges by dynamically integrating AQI data with detailed vehicle emissions
profiles so as to minimise pollution in critically affected areas. Unlike existing
solutions, we adopt a holistic approach targeting multiple pollutants, including,
NOx, and PMx, while also incorporating pollutant concentration modelling to
calculate AQI levels. This comprehensive approach aims to provide a more effective
response to urban air quality crises, balancing both environmental and traffic
management needs. Additionally, our solution is designed to adapt dynamically to
changes in environmental conditions and vehicle emissions profiles, which is often
lacking in current systems.
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Chapter 4

Proposed Vehicular Traffic
Management Framework

In this chapter, we present our proposed vehicular traffic management framework
designed to assess and mitigate urban air pollution caused by vehicular emissions.
The framework integrates several components to simulate realistic traffic flow,
calculate vehicle emissions, and compute pollutant concentrations in urban envi-
ronments. Starting with traffic data collected from induction loop detectors, we
generate realistic traffic demand using an algorithm that processes these data,
and manages vehicle routes within the network. The SUMO tool is then used to
simulate the traffic demand, incorporating detailed network configurations and
vehicle types to accurately reflect real-world scenarios. By integrating the HBEFA
emission model, SUMO generates detailed outputs on vehicle emissions and traffic
measures, including edge-based emissions, which are critical for pollution analysis.
We then focus on how these emissions are translated into pollutant concentrations
within our framework, using the two options outlined in Figure 4.1 and discussed in
chapter 2: the “Fixed Box Model” and GRAL. For GRAL, we use SUMO2GRAL,
a tool we have developed to automate the conversion of SUMO outputs, and thay
incorporates additional data, such as building geometries and meteorological condi-
tions. By integrating these components, our framework provides a comprehensive
approach to modelling vehicular traffic, estimating emissions, and assessing air
quality impacts in urban environments.
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Figure 4.1: Proposed vehicular traffic management framework.

4.1 SUMO

As stated in chapter 3, SUMO is an open-source microscopic traffic simulator
recognised for its accuracy and versatility in modelling various traffic environments,
including urban areas and highways. Its open-source framework and detailed
simulation capabilities make it particularly suitable for our traffic management
framework. In this section, we focus on key SUMO tools that are essential to
the proposed framework, specifically network editing, traffic demand generation,
vehicle emissions modelling, and emissions measurement. By integrating these
tools, we create realistic traffic scenarios and assess their impacts on urban air
quality.

Furthermore, this section explains how SUMO generates crucial outputs for
analysis. These outputs include vehicle emissions measures, which quantify emis-
sions from individual vehicles; traffic measures, which provide data on vehicle flow
and speeds across the network; and edge-based emissions measures, which capture
emissions along specific road segments (edges). These outputs form the basis for
pollutant concentration calculations and subsequent air quality assessments.

In the following subsections, we detail the processes of network creation, traffic
demand generation, vehicle type configuration, and emission calculations. Addi-
tionally, we discuss the specific outputs produced by the simulation.

36



4.1. SUMO

4.1.1 Network Creation

The first step in setting up a simulation in SUMO is the creation of a realistic
traffic network, for which two essential tools are used: NETCONVERT [120] and
NETEDIT [121].

NETCONVERT converts external map data, such as OpenStreetMap (OSM)
files, into SUMO’s network format (.net.xml). OSM files provide valuable real-
world geographic and road data, but the conversion process often introduces errors,
such as incorrect lane directions or missing traffic lights. Thus, while this initial
conversion step is fundamental for building the traffic network, further refinements
are necessary to ensure accuracy.

To address these issues, NETEDIT is employed to correct inaccuracies intro-
duced during the network conversion. This tool enables manual adjustments to lane
directions, turn restrictions, traffic lights, speed limits, and other critical compo-
nents, ensuring the network more accurately reflects real-world conditions. Figure
4.2 illustrates a comparison between the raw network generated by NETCONVERT,
the refined version created using NETEDIT, and the actual intersection as seen on
Google Maps.

(a) Raw network generated
by NETCONVERT.

(b) Edited network using
NETEDIT.

(c) Real intersection from
Google Maps.

Figure 4.2: Comparison of a traffic intersection.

In the raw network (Figure 4.2a), generated with NETCONVERT, several
small intersections display incorrect lane directions and turnarounds. In contrast,
the refined version produced using NETEDIT (Figure 4.2b) closely mirrors the
real intersection (Figure 4.2c), combining multiple smaller intersections into a
larger one with correct lane assignments and turn restrictions. This refinement
process is critical, as it significantly enhances the accuracy of the traffic simulation,
and ensures that the simulated environment accurately reflects real-world traffic
behaviour.
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4.1.2 Traffic Demand Generation

After refining the network, the next step in the simulation process is generating
realistic traffic demand. In SUMO, traffic demand refers to the movement of
vehicles through the network, which can be described either as trips or routes. A
trip defines a starting point (source edge), an endpoint (destination edge), and a
departure time. In particular, a trip can follow different alternative routes between
the two points. In contrast, a route includes all the edges a vehicle will travel along
between the source and destination.

To generate traffic demand in our framework, we rely on several SUMO tools,
with one of the primary tools being DFROUTER [64]. DFROUTER creates routes
based on detector data collected from sources such as induction loops. These loops,
commonly used by traffic authorities, provide valuable data on vehicle flow and
traffic patterns. DFROUTER processes this data to create routes that mirror
real-world traffic demand by using observed vehicle counts. However, as discussed
in chapter 5, DFROUTER has certain limitations, including producing unrealistic
route lengths and traffic volumes when applied to large or complex networks. To
address these challenges, we implemented adjustments and optimisations, ensuring
that the generated traffic demand more accurately reflects actual traffic conditions.

For input data, we used a Comma Separated Values (CSV) file format containing
geolocated vehicle counts, which capture the number of vehicles passing by specific
points in the network over a given period. The CSV file structure includes data
such as vehicle count, location (latitude and longitude), and the way ID from OSM.
For DFROUTER, only the vehicle count and geolocation are required, while our
proposed solution uses additional information like population and district data,
which are not necessary for this method. An example of the CSV columns definition
is provided in chapter 5, Table 5.3.

The output of the traffic demand generation process is an .rou.xml file, which
contains both route definitions and vehicles assigned to those routes. Each route is
identified by a unique route ID and consists of a sequence of edges that the vehicle
will traverse. The vehicle entries specify the vehicle type, which will be discussed in
more detail in the next subsection, linking each vehicle to specific emission profiles.
Additionally, the vehicle entries include the route ID, departure time, departure
speed, departure lane, among others. An example of the content of a .rou.xml file,
illustrating both the route (see Figure 4.3a) and vehicle structure (see Figure 4.3b),
is shown in Figure 4.3.
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(a) Route structure.

(b) Vehicle structure.

Figure 4.3: Example of a .rou.xml file structure.

4.1.3 Vehicle Types Configuration

In order to accurately assess emissions within our proposed framework, it is essential
to define different vehicle types and their corresponding emission profiles. SUMO,
combined with the HBEFA emission model, allows us to assign various vehicle
categories based on fuel type, engine specifications, and emission standards. By
doing so, we can simulate realistic vehicle behaviour and quantify emissions for
different types of vehicles on the road.

In our framework, vehicles are categorised according to the HBEFA emission
classes, which provide detailed information on emission factors based on vehicle
type, engine type, and the European emission standard (EURO class) to which they
belong. HBEFA allows for the classification of vehicles into multiple categories,
including petrol and diesel cars, trucks, buses, hybrid vehicles, and electric vehicles,
each with different emissions profiles.

Table 4.1 outlines the key HBEFA passenger vehicle classes used in this thesis,
along with their corresponding EURO standards and engine types. For the purposes
of this thesis, we focus solely on passenger vehicles, as will be explained later in
chapter 5. This categorisation ensures that our simulations align with real-world
traffic scenarios, where vehicles of various engine types and emission standards
exist.

The vehicle types and their configurations are defined within the SUMO route
file (.rou.xml) through a set of parameters, which include the vehicle ID, type,
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Table 4.1: HBEFA passenger vehicle classes and corresponding EURO norms.

HBEFA class EURO norm Engine type

PC petrol Euro-3 Euro 3 Petrol
PC petrol Euro-6ab Euro 6 Petrol
PC diesel Euro-4 Euro 4 Diesel
PC diesel Euro-6ab Euro 6 Diesel
PC CNG petrol Euro-6 (CNG) Euro 6 Hybrid (Petrol CNG)
PC BEV Euro 6 Battery Electric

route, and departure attributes (time, lane, speed). The vehicle type is specified
using the “vType” tag, where parameters such as emission class can be defined.
Figure 4.4 provides an example of a vehicle type definition within the .rou.xml file.

Figure 4.4: Example of vehicle type definition in SUMO .rou file.

In this example, the vehicle type “gas oil b” is linked to the HBEFA emission
class for Euro 4 diesel passenger cars. The “vType” tag defines the vehicle’s
physical properties, such as the emissions profile, while the “vehicle” tag assigns
this type to a specific vehicle with its departure time, route, and other driving
behaviour parameters.

By configuring vehicle types, we are able to make that each vehicle in the
simulation adheres to real-world emissions profiles, making the emission calculations
more accurate, and allowing us to better understand the contribution of different
vehicle types to overall urban emissions.

4.1.4 Emission Calculation

In our proposed framework, vehicle emissions are calculated using the HBEFA
emission model integrated within SUMO, as described in chapter 3. SUMO
computes emissions for each vehicle at every simulation time step, accounting for
factors such as engine type, and fuel consumption. The emissions are saved in
eXtensible Markup Language (XML) files and provide detailed data on pollutants,
including CO2, NOx, and PMx, as emitted by each vehicle.
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4.1.5 Vehicles Emissions Measures

In SUMO, emissions data for each vehicle are saved in the tripinfo XML output
file [122], which combines both traffic and emissions data for individual vehicles.
The emissions tracked during each trip include key pollutants, such as CO, CO2,
Hydrocarbon (HC), PMx, and NOx, as well as total fuel consumption, all expressed
in milligrams. This data is summarised at the end of each trip, providing a
comprehensive overview of the vehicle’s environmental impact throughout its
journey.

Although this data is valuable for analysing emissions at the individual vehicle
level, our framework does not directly use the tripinfo file for pollutant concentration
calculations. Instead, we rely on edge-based emissions data, which aggregates
emissions by edges. This aggregated data is more suitable for calculating pollution
concentrations, and is essential for estimating urban air quality across the entire
network. Further details on edge-based emissions are discussed in the following
subsection.

An example of the emissions section from the tripinfo output file is shown in
Figure 4.5.

Figure 4.5: Example of vehicle emissions output in the tripinfo XML file.

4.1.6 Traffic Measures

In SUMO, traffic measures are essential for understanding the flow and performance
of both individual vehicles and the entire traffic network. Traffic data is captured
in two primary ways: one file provides vehicle-level information (using the tripinfo
XML file), while another file contains network-wide traffic statistics based on edges,
stored in the edge-based traffic XML file [123].

For each vehicle, SUMO generates a tripinfo file that contains detailed traffic
metrics such as departure time, arrival time, travel duration, route length, and
average speed. These metrics are critical for assessing vehicle-level performance.
In our framework, tripinfo data is primarily used to evaluate the impact of traffic
management strategies on congestion, travel time, and route length. These measures
help identify trade-offs between emissions reduction and potential increases in
travel time or route length. Figure 4.6 provides an example of vehicle traffic data
stored in the tripinfo file.
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Figure 4.6: Example of vehicle-level traffic data in the tripinfo XML file.

On the other hand, SUMO also generates traffic measures for each edge within
the network. Such data are stored in a separate edge-based traffic file, which
contains metrics such as time loss, average speed, and traffic density for each edge.
This file provides a broader perspective of network performance, helping us assess
congestion and traffic patterns across the entire simulated area. Figure 4.7 shows
an example of edge-level traffic data stored in the edge-based traffic file.

Figure 4.7: Example of edge-level traffic data in the edge-based traffic XML file.

4.1.7 Edge-based Emission Measures

In our framework, edge-based emission measures are critical for estimating pollution
concentrations across the city. These data capture emissions from all vehicles
on each edge. The output is structured in XML format and includes detailed
information on both traffic flow and emissions for each edge. Unlike vehicle-
specific emissions in the tripinfo file, edge-based emissions aggregate pollution data,
providing a comprehensive view of emissions over time and space.

The output file records several key metrics, including absolute pollutant emis-
sions and traffic-related data. These absolute values, expressed in milligrams
(mg), represent the total amount of pollutants emitted during a specified period
(e.g., one hour). The primary fields include CO abs, CO2 abs, HC abs, PMx abs,
NOx abs, fuel abs, and electricity abs, which correspond to the total emissions
or consumption on a particular edge or lane. For example, CO abs refers to the
total CO emitted by all vehicles on a specific edge. Similar fields are used for
CO2, HC, PMx, NOx, fuel consumption (fuel abs), and electricity consumption
(electricity abs). These absolute emission measures form the basis of our analysis,
allowing us to estimate the concentration of pollutants in the city through the
models described in chapter 2.

42



4.2. Pollutant Concentration Calculation

Figure 4.8: Example of edge-level emissions data in the edge-based emissions XML
file.

Additionally, the output provides other useful fields such as “sampledSeconds”,
which indicates the total time vehicles were measured on the edge or lane. Likewise,
the “traveltime” field estimates the average time vehicles take to travel across an
edge, based on mean speed.

In the output, data is saved for each edge (edge id) or lane (lane id), and
aggregated over specified time intervals, marked by begin and end times in seconds.
Figure 4.8 shows an example of the edge-based emissions output in XML format.

As shown, the output also includes normalised emission values (e.g., CO normed,
NOx normed) in grams per kilometre per hour (g/km/h), normalised by time and
road length. These values allow comparisons across different road segments, regard-
less of their length or the duration of the simulation. However, in our framework,
we prioritise absolute emission values, as they directly represent total pollutant
output, making them more suitable for calculating pollution concentrations.

By using edge-based emissions, our framework aggregates emissions data across
the entire traffic network, providing the base for calculating pollution concentrations
in urban areas.

4.2 Pollutant Concentration Calculation

In our proposed framework, we provide two options for calculating pollutant
concentrations from the vehicle emissions data generated by SUMO. As detailed in
chapter 2, both methods are dispersion models that convert vehicle emissions into
pollutant concentration levels, allowing us to assess the impact of vehicular traffic
on air quality.

The first option uses the “Fixed Box Model”, a fast and straightforward method
for estimating pollutant concentrations. This approach is ideal for preliminary
assessments where computational efficiency is important. However, its simplicity
results in less accuracy compared to more complex models.

The second option employs GRAL, a more sophisticated model that simulates
pollutant dispersion in complex urban environments. GRAL incorporates factors
such as meteorology and building configurations, making it suitable for studies that
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require high precision. Despite its accuracy, the setup and configuration process
for GRAL can be time-consuming and requires significant detail.

To streamline the use of GRAL in our framework, we developed a tool called
SUMO2GRAL [124]. This tool automates the conversion of SUMO emissions data
into the format required by GRAL, eliminating the need for external software like
Geographic Information System (GIS) software or the GRAL GUI. SUMO2GRAL
is cross-platform, ensuring that users can perform the workflow efficiently without
manually converting their emissions output into the CSV format, or relying on
other tools, simplifying what would otherwise be a tedious process. We now proceed
to describe it more in detail.

4.2.1 Proposed SUMO2GRAL tool

This section details the architecture of SUMO2GRAL, highlighting its key compo-
nents, modules, and their interactions within the context of our traffic management
framework. SUMO2GRAL plays a key role in preparing SUMO-generated emissions
data for pollution dispersion modelling in GRAL.

SUMO2GRAL operates in both online and offline modes. In online mode, if
users do not have an OSM file or specific meteorological data, SUMO2GRAL can
automatically generate default geographic and weather files. However, in this
thesis, we focus on the offline mode, where it is assumed that all necessary files,
such as OSM and meteorological data, are already available.

Developed in Python 3.10, SUMO2GRAL is cross-platform compatible, enabling
its use across various operating systems. Its modular architecture ensures an efficient
workflow, with four main modules executed sequentially and independently. The
following subsection describes each module in detail.

Modules

The SUMO2GRAL tool consists of six primary modules: (i) Buildings, (ii) Weather,
(iii) Line Emission Sources, (iv) Local Files Processor, (v) GRAL Processor, and
(vi) Display. Below is an overview of their functions:

• Buildings: This module processes geographic data about buildings from
the OSM file and converts it into a Shapefile. The process ensures clean
and consistent building data, free from anomalies, to avoid errors during the
pollutant dispersion simulation.

• Weather: This module manages weather data to ensure compatibility with
GRAL’s input requirements. It processes parameters such as wind speed,
wind direction, and atmospheric stability classes. If specific weather data is
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unavailable, SUMO2GRAL generates a default weather file to proceed with
the simulation.

• Line Emission Sources: This module combines road data from the OSM
file with SUMO’s edge-based emissions data, generating a Shapefile that
integrates the road network and emissions for GRAL simulation. It also
identifies and corrects inconsistencies in the road data.

• Local Files Processor: This module processes local OSM and SUMO XML
files. Using libraries like osmium and XML parsing tools, it reads OSM
and SUMO data, and passes relevant information to the Buildings and Line
Emission Sources modules for further processing.

• GRAL Processor: This module generates the input files required for GRAL.
It compiles outputs from the Buildings, Line Emission Sources, and Weather
modules, while allowing users to specify GRAL parameters such as pollutant
types, dispersion time, and particle count.

• Display: This optional module allows to visualise GRAL simulation results,
offering an intuitive display of pollutant concentrations for a quick assessment
of the simulation’s accuracy and outcomes.

Workflow

Having described the individual modules, we now explore how these components
interconnect to form a workflow.

Figure 4.9: SUMO2GRAL workflow.

As illustrated in Figure 4.9, the workflow begins with input files such as the OSM
file, the edge-based emissions file, the weather data, and the GRAL configuration
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file. These files are processed sequentially by their respective modules to ensure
compatibility with GRAL.

The workflow starts with the Local Files Processor, which reads OSM and
SUMO data, and converts it into suitable formats. Then, the Buildings, Line
Emission Sources, and Weather modules process their respective data, ensuring it
meets the required standards for GRAL.

Once all data is prepared, the GRAL Processor compiles the inputs and
generates the final files for the GRAL simulation. The GRAL simulation is then
executed, producing pollutant dispersion data based on these inputs.

Finally, the Display module can be used to visualise the simulation results,
offering an intuitive representation of pollutant concentrations in the study area.
This allows users to assess the realism of the simulation and make adjustments if
necessary.

4.3 Pollutant Concentration Calibration

While two methods for calculating pollutant concentrations were outlined earlier,
the “Fixed Box Model” and GRAL, only the latter requires calibration. The “Fixed
Box Model” is a simplified approach that assumes uniform pollutant dispersion,
making it useful for quick assessments, but less accurate for real-world applications;
hence, there is little use in calibrating it, reason why we discarded such option.
In contrast, GRAL provides a more detailed simulation of pollutant dispersion,
especially in urban environments where factors such as buildings, wind patterns,
and multiple pollution sources must be considered. To enhance the accuracy of
GRAL outputs, calibration with real-world data is recommendable.

Our model uses GRAL to simulate pollutant dispersion based on vehicular
emissions alone. However, real-world pollution levels are generally higher, as
vehicles represent just one of many pollution sources in urban areas. To address
this discrepancy, we calibrate the simulated pollutant concentrations with actual air
quality monitoring data, bringing the simulation in line with real-world conditions.

The calibration process begins by collecting real-world air quality data for
NOx and PM10 from monitoring stations in Valencia [125]. This data corresponds
to the same date and time as the simulated scenario, and it is geographically
aligned with the simulation for accurate location-specific comparisons. Once the
data is prepared, outliers are removed by capping values outside the 1st and 99th
percentiles, ensuring that extreme values do not distort the calibration process.

Next, adjustment factors are calculated for each monitoring station by compar-
ing the real NOx and PM10 levels with the simulated values at each station. These
factors are applied to the simulated pollutant concentrations based on proximity

46



4.4. Summary

to the monitoring stations. For locations within 200 meters of a station, the
specific adjustment factor for that station is used. Beyond this radius, an average
adjustment factor from all stations is applied. This method ensures comprehensive
calibration across the simulation area, including locations where direct monitoring
data is unavailable.

For future environmental scenarios, such as those discussed in chapter 7, the
adjustment process involves scaling the future scenario’s GRAL output by the
percentage difference between the calibrated current scenario and its simulation
output. This allows for more accurate predictions of future air quality conditions
based on the calibration of the current scenario.

4.4 Summary

In this chapter, we introduced a comprehensive vehicular traffic management
framework designed to assess and reduce urban air pollution caused by vehicular
emissions. The framework starts with the collection of traffic data from induction
loop detectors, which is processed through an algorithm to generate realistic traffic
demand (discussed in the next chapter) and manage vehicle routes within the
network. Using SUMO, we simulated traffic flow with detailed network configura-
tions and vehicle types, while using the HBEFA emission model. SUMO provided
valuable outputs, including vehicle emissions, traffic measures, and edge-based
emissions, essential for analysing pollution levels across the network.

To compute pollutant concentrations from the emissions data, we employed
the two methods introduced in chapter 2. The first is the “Fixed Box Model”.
The second method uses SUMO2GRAL, a tool we developed to integrate SUMO
with GRAL, enabling detailed and accurate pollutant dispersion modelling in
urban environments. SUMO2GRAL automates the conversion of SUMO outputs
and incorporates additional data, such as building geometries from OSM and
meteorological conditions, to improve the accuracy of the simulations.

Additionally, we addressed the calibration of pollutant concentrations using
real-world air quality data, specifically for GRAL simulations. This calibration
adjusts the simulated pollutant concentrations to align with observed data from air
quality monitoring stations, accounting for factors not included in the simulation,
such as background emissions, or other transport emissions.

In conclusion, this chapter established a robust framework that integrates traffic
simulation, emission modelling, and pollutant dispersion analysis. By combining
these components, the framework provides a solid foundation for evaluating the
impact of traffic management strategies on urban air quality, setting the way for
developing effective pollution mitigation measures in the chapters that follow.
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Chapter 5

Generating Traffic Demand in a
Realistic Way

In the previous chapters, we have discussed the different vehicle traffic simulators,
and the reason we have selected SUMO as our simulator. We have also examined
traffic emissions and outlined the process of obtaining these emissions from SUMO.
In this sense, to be able to perform those simulations, we need to have some
accurately modelled traffic demand data, and to do so, having a reliable traffic
dataset is fundamental. Usually, it is difficult to obtain reliable traffic demand
if they are not obtained through GPS traces. However, the use of GPS traces
is a challenging task due to the difficulty of accessing GPS data from personal
vehicles or drivers’ smartphones, which raises significant privacy concerns. In
general, the solution to the aforementioned problem lies in the use of induction
loop detectors or cameras in the cities. Along this chapter, we will focus on the
first ones, which count the number of vehicles passing over them. Such data help
to identify areas with varying congestion levels. However, this is not enough to
generate traffic demand, and so external tools are necessary to compute this demand
accurately. In this chapter, we will analyse existing state-of-the-art solutions to
this problem, highlighting their shortcomings. Furthermore, we will introduce our
proposed solution, demonstrating how it addresses these issues, and surpasses the
performance of current methods.
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5.1 Overview of Valencia’s Traffic Conditions

Understanding the different traffic intensities can help city administrations to better
plan different scenarios. This can avoid unnecessary congestion and discomfort for
people living in the city. Traffic intensity, which is the number of vehicles passing
over an induction loop, is a key metric in analysing traffic flow and congestion
in cities. By examining this data, we can identify patterns in traffic behaviour
over time and space, which is crucial for developing ITS and traffic management
strategies.

In this regard, we retrieve the data from the Open Data portal of the City
Council of Valencia [63]. The portal provides access to different sources of data. In
particular, we gather the traffic intensity data for the year 2022 from 720 induction
loops placed all over the city. These induction loops are embedded within road
surfaces, and employ electromagnetic fields to detect passing vehicles, logging each
instance to provide continuous traffic information, such as vehicle count, density,
and timestamp.

The placement of these induction loops throughout Valencia ensures extensive
coverage of major roads, secondary streets, and residential areas, providing a
detailed and representative picture of traffic flow across different types of roads.
Such data helps identify peak congestion times and specific locations with high
traffic volumes, allowing for a more targeted analysis of urban traffic behaviour, as
well as informed decision-making for future traffic management solutions.

To gain an overall view of Valencia’s traffic, we start by analysing the average
monthly traffic intensity, which is depicted in Figure 5.1. As observed, traffic is
lower in August and December, likely due to people going on holiday and leaving
the city. Conversely, months like May, June, October, and November have the
highest traffic intensity. For our study, we choose November, as Calafate et al.
[126] did, because it is a month without major holiday periods, and it has traffic
values similar to other high-traffic months like May.

Following the analysis of monthly traffic intensity, Figure 5.2 shows the traffic
pattern throughout the week. As seen, traffic intensity is higher on weekdays
(around 45,000 vehicles) than on weekends (around 33,000 vehicles). Monday and
Tuesday have the highest intensity, with approximately 50,000 vehicles each day.
Thus, for a detailed hourly analysis, we choose Monday as the representative day.

Figure 5.3 illustrates the hourly evolution of average traffic intensity for a
typical Monday. Peak hours are from 7 a.m. to 9 a.m., and from 5 p.m. to 7 p.m.,
with a smaller peak around 2 p.m. The morning and evening peaks correspond to
people commuting to and from work, while the midday peak likely results from
people leaving work for lunch or picking up their children from school. For our
study, we focus on the time slot between 8 a.m. and 9 a.m., as it exhibits the
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Figure 5.1: Average traffic intensity in Valencia per month.

Figure 5.2: Average traffic intensity in Valencia per day of the week.

highest traffic intensity during the day.
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Figure 5.3: Daily behaviour in a typical weekday (Monday).

5.2 State-of-the-Art Unresolved Issues

In this section, we will focus on DFROUTER due to its capability of generating
vehicle routes from induction loop count data. In particular, we want to address
some of the limitations of it, specifically in regard to determining actual traffic
injected into a network, and analysing the lengths of generated routes, particularly
in urban environments. Notice that DFROUTER was designed primarily for
highways and not city streets or avenues, as its authors state in [127]: “The
idea behind this router is that nowadays, most highways are well-equipped with
induction loops, measuring each of the highways’ entering and leaving flows.” This
means that its usefulness in generating a traffic demand in a city is limited.

5.2.1 DFROUTER Traffic Injected Issue

In [128], Zambrano et al. discussed a problem for DFROUTER, which is related
to the number of vehicles that pass over the different induction loops in the output
that is generated. In particular, the authors found that it has a large deviation
compared to the real data. Furthermore, this deviation is also reflected in the
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number of vehicles injected. This means that DFROUTER injects a number of
vehicles that is greater than expected, being that the overall difference obtained
was +238% when compared to real data. Due to this issue, the traffic demand
generated was not representative of the actual traffic conditions in the city.

For evaluating and analysing our proposed new methodology, we have recreated
their experiments to obtain the reliability of the DFROUTER data. Specifically, we
have also used DFROUTER and the city induction loop real data, although such
data was retrieved much more recently using web tools, and so correspond to current
traffic patterns, as opposed to the former ones. As a result, we have obtained via
DFROUTER the traffic distribution throughout the city (traffic demand). Then,
applying reverse engineering, we obtained the distribution of vehicles per induction
loop. This allowed us to compare, side by side, the percentage error between the
real data and the data provided by DFROUTER.

Analysing the induction loop data distribution in more depth, we can look at
the Empirical Cumulative Distribution Function (ECDF) presented in Figure 5.4.
This figure shows the number of vehicles that pass over each induction loop, sorted
by size. In it, we can observe that there is a great difference between both functions,
evidencing that DFROUTER is not generating realistic traffic routes. Specifically,
for the real data function, we observe a linear function with a small slope, and
with a parable at around 600 induction loops, with a maximum value of about
2,5k vehicles. In contrast, the DFROUTER function has a maximum value of
17k vehicles, and it is 0 for the first 270 detectors. Then, it behaves like a linear
function with a big slope until 650, a value beyond which it starts to make a
parable. This leads us to think that the difference between the detector data for
DFROUTER, and the actual traffic, will be somewhat high.

Table 5.1 complements the data shown in Figure 5.4. In particular, Table 5.1
presents different statistical measures that provide a complete overview of the
differences between the real and the DFROUTER induction loop data. Notice
that such difference is calculated for each detector. We can see that the minimum
values absolute difference between the data of induction loops and DFROUTER is
-4, while the maximum values’ difference goes up to 530% more in DFROUTER.
In terms of quartiles, we observe that the first half of the values (Q2) already
experience an increase of +314%, but, for the Q3 threshold, this number increases
to +554%. Due to these numbers, the average percentage difference between real
and DFROUTER induction loop data is 516%.

All in all, considering both the analysis of Zambrano et al., and our own analysis,
we can state that DFROUTER has an issue when distributing and injecting the
traffic in a city when having induction loop data as input. In particular, we observe
that the variation remains with an overestimation tendency: 238% in the former
work, and 516% in our work. This led us to think that the error DFROUTER
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Figure 5.4: ECDF of induction loop real and DFROUTER data.

Table 5.1: Induction loop data difference stats (Real vs. DFROUTER).

Real DFROUTER Abs. Difference Rel. Difference

Avg. 504 3,108 2,604 +516%
Std. Dev. 481 4,000 3,519 +732%
Q1 125 0 -125 N.A.
Q2 313 1,670 1,357 +314%
Q3 815 5,330 4,515 +554%
Min. 4 0 -4 N.A.
Max. 2,728 17,204 14,476 +530%

introduces is consistent, and repetitive. Specifically, in the next subsection, we
focus on evaluating the length of routes.

5.2.2 DFROUTER Routes Length Issue

As previously stated, DFROUTER is more oriented toward generating routes for
highways than for streets or avenues. Since there is a clear difference between a
highway environment and a city environment, the resulting lengths of the routes
are prone to have little representativeness in urban environments. In order to check
the validity of this statement, we have generated the routes for the city of Valencia.
To contextualise, in terms of population, Valencia is the 3rd city in Spain, and
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the 23rd in the European Union, with 800,215 inhabitants. Regarding size, the
analysed area has a size of 127.89 square kilometres (approx.: 12.6 km W-E; 10.1
km N-S). Likewise, the city has around 4,000 streets and avenues, with major roads
such as the “Calle San Vicente Mártir” with a length of approximately 4 km, and
minor roads such as the “Calle Doctor Serrano”, with a length of approximately
180 m.

The route length distribution is presented in Figure 5.5. As we can see, most
of the routes are concentrated in the range from 1,000 m to 2,500 m. In addition,
we can observe that there is a large number of routes with a length of less than
1,000 m, and even as low as 500 m in some cases. These short lengths are not
representative of a city such as Valencia, with very limited parking availability,
meaning that most people will make such trips on foot or using public transport
like the underground.

Figure 5.5: Route length distribution for DFROUTER.

To make a more complete analysis of the results generated by DFROUTER,
we can observe the routes statistics from DFROUTER on Table 5.2. In particular,
the minimum length of a route is 34 m, which is very small and is not close to
real situations. On the contrary, the maximum length is 17,401 m., which is a
large route, and representative of someone who lives on the outskirts of the city.
Additionally, for the median and average length, we have 1,897 and 2,035 meters,
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respectively. These lengths, as we said before, are too short considering the actual
citizen experience. In fact, 75% of the routes can be considered not representative
as they are below 2,385 m.

Table 5.2: Routes statistics from the DFROUTER route output file.

Statistic Value

Num. of routes 123,958

Avg. 2,035 m.
Std. Dev. 1,068 m.
Q1 1,448 m.
Q2 1,897 m.
Q3 2,385 m.
Min. 34 m.
Max. 17,401 m.

Finally, to summarise, considering that 75% of the routes are below 2,385 m,
we can state that the length of most of the routes clearly does not represent the
traffic in this city considering its size. To sum up, it has been demonstrated that
DFROUTER has an issue with the length of the routes when generating them in
the context of a city.

5.3 Proposed Solution

In traffic simulators, there is a constant problem when trying to generate rep-
resentative traffic for a city based on data from induction loops. As detailed
in the previous section, the problem is generated by DFROUTER. Specifically,
DFROUTER faces two main problems when generating traffic within a city; (i)
the amount of traffic injected is excessive, and (ii) the length of the routes remains
too short. In this section, we detail how to solve these issues by proposing a
novel traffic route generator using the library of SUMO, sumolib [129]. Since
DFROUTER generates the routes, along with the traffic distribution in time and
space, we divide our algorithm in 4 parts for the sake of clarity. These are: (i)
data collection and curation, (ii) routing core, (iii) data expansion, and (iv) time
distribution. In addition, we will explain how data is prepared in order to apply
our algorithm effectively. The complete workflow of the proposed solution can be
observed in Figure 5.6.
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Figure 5.6: Workflow of the proposed solution.

5.3.1 Data Collection and Curation

As we discussed previously in section 5.1, we start by gathering data from the
Valencia City Council through a public API [63]. Then, based on our study, we
focus on the data from the year 2022 obtained from the 720 induction loops in
the city between 8am and 9am on an ordinary Monday. To clarify, all sensors are
of the same type, and were deployed in different sections of the main streets and
avenues of the city. Afterwards, we converted the data from a JSON file to a CSV
file in order to better deal with such data.

Secondly, we add to the CSV: (i) the ID of the street, based on the information
provided by OpenStreetMap [130], (ii) the district code where the detector is placed,
and (iii) the population of each district based on the information gathered from the
City Hall. Then, since data is split into 5-minute slots, we combine all the data for
the same induction loop to be more efficient. Having done that, the CSV columns
will resemble the structure presented in Table 5.3. The “ATA” column corresponds
to the ID of the induction loop as provided by the City Hall, and it adopts a
string format. The “n vehicles” column is the aggregated number of vehicles that
pass over the induction loop between 8 and 9 am. Then, the “way id” column
correspond to the associated ID of the way(s) for the induction loop. Finally, the
district code and population columns correspond to the district and population of
the district on where the detector is placed.

Thirdly, we cleansed the data based on two main factors: the number of
passenger cars, and the number of vehicles cruising to find a parking spot.

Concerning the first one, we have obtained the number of passenger cars for
Valencia from the Spanish Department of Traffic (DGT) (Dirección General de
Tráfico) on their 2022 annual table statistics [131]. According to this, the number
of passenger cars is 72% of the total. So, because our goal is to analyse the routes
of passenger cars in particular, we reduce the number of vehicles corresponding to
each induction loop by 28%.
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Table 5.3: CSV columns structure

ATA n vehicles way id district code population

1 65 429492850 18 14546
1001 1408 770904161 4 39164
1003 131 13945413 4 39164
... ... ... ... ...

Regarding the second one, the number of passenger cars cruising for parking
is 15%. This value is estimated according to Hampshire et al. [132], considering
that in Stuttgart (207.4 km², and 634,830 inhabitants), a city similar to Valencia
(134.6 km², and 791,413 inhabitants), that is the percentage of vehicles cruising
for parking. Since we only want vehicles that do a specific route instead of a cruise
for parking, we now subtract a 15% from the 72% of the previous step. To sum
up, we have reduced the data of the vehicles that pass through the induction loop
by 38.8% so as to achieve more representative route data in terms of traffic that
actually requires management and/or improvement.

Finally, with the use of NETCONVERT [120], we add the edges (ID of the road
given by SUMO) and their associated nodes, and the nodes with their associated
coordinates in a database. Likewise, we include in the database the cleansed data
of the CSV, in order to have all the parameters in the same file.

At the conclusion of this process, we have the necessary data to operate the
“Routing core” part.

5.3.2 Routing Core

Having obtained the required data by following the procedures detailed above, we
now proceed to describe the core part of our solution. As stated above, the route
generator of our routing algorithm will be the sumolib package. In particular, the
function getOptimalPath() from the Net class. This is a function that finds the
optimal (shortest or fastest) path from source edge to destination edge by using
Dijkstra’s algorithm. Afterwards, along with sumolib, our implementation consists
of the combination of various steps. These can be observed in Algorithm 5.1, and
with them, it will be able to generate more representative routes.

As can be seen in Algorithm 5.1, the inputs consist on: (i) the edges of SUMO
and their relation to nodes; (ii) the nodes and their relation to coordinates; and (iii)
the traffic data provided by the induction loops. Furthermore, the outputs are two
CSV files: one with the routes created, and the other one with the updated traffic
data. The idea of the algorithm is to iteratively obtain the routes, selecting the
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Algorithm 5.1: Proposed routing algorithm.

Input: Edges, Nodes, Traffic data
Output: CSV with routes, CSV with updated traffic data

1 d ← Num. of detectors, β ← reduction coefficient;

2 n ← Num. of vehicles for a detector,
∑︁d

i=1 ni ← Total num. of vehicles;
3 δo,des,mid ← tolerated error for origin, destination and intermediate point;

4 endCondition ← (
∑︁d

i=1 ni) × (1 − β), currentV ehicles ← Current∑︁d
i=1 ni;

5 routesGenerated ← 0;
6 SUMORt, NodesRt ← {};
7 Filter suitable edges;
8 Interpolate Traffic data;
9 while currentV ehicles ≥ endCondition do

10 originPoint = getMostProbablePoint(Interpolated traffic data);
11 Filter possible destination points → min. distance 1,25km;
12 destinationPoint = getMostProbablePoint(Filtered interpolated traffic

data);
13 SUMORoute = getOptimalPath(originPoint, destinationPoint);
14 NodesRoute = SUMOtoNodesFormat(SUMORoute);
15 ATAList ← {};
16 if no ≤ δo and ndes ≤ δdes then
17 Add origin and destination ATA to ATAList;
18 for node in NodesRoute do
19 ATA = getATAFromNode(node);
20 if nmid ≤ δmid then
21 Add the ATA to ATAList if is not present yet;
22 if node == lastNode then
23 Update currentV ehicles ← Decrease n by 1 for each

detector present in the ATAList;
24 AddRouteToCorresponding

Set(SUMORoute,NodesRoute);
25 if routesGenerated % 1000 == 0 then
26 Interpolate Traffic data;
27 end

28 end

29 else
30 break;
31 end

32 end

33 end

34 end
35 CSV with routes ← generateCSV(SUMORt,NodesRt) ;
36 Return (CSV with routes, CSV with updated traffic data);
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origin and destination based on the number of vehicles that pass over the induction
loops.

We now proceed to explain in detail the four key parts of our algorithm. Firstly,
in lines 7 and 8, we prepare the data to adjust it to our needs. In particular, in
line 7 we filter the edges in order to get only the suitable ones. The condition to be
suitable is that the edge must be a secondary, tertiary, or residential street, and its
length must be greater than 50 meters. This way we can ensure that no route will
start in the middle of an intersection or roundabout, nor on a primary or highway
road where no parking is available. In line 8, we interpolate the input traffic data
to get more points from where the routes can start or finish. In this way, we can
have a better granularity rather than using only the detector’s location as source
or destination.

Secondly, the loop condition present on line 9. This condition is fundamental
because the algorithm iterates up to a certain value, which affects the accuracy of
the results. This is because the process of obtaining routes is costly in terms of
execution time because, by placing constraints on the allowed error, the difficulty
of obtaining a route gradually increases. Therefore, we have chosen to obtain the
routes for a percentage of the vehicles through the use of a reduction factor β.
These routes will be expanded in the next module “Data expansion”. If we now
analyse the values of the condition, these are: the total number of vehicles that
pass over the induction loops, and a reduction factor β. This reduction factor
will be 0 ≤ β ≤ 1. As an example, if we want to iterate over 50% of the data, β
needs to be 0.50. It is important to mention that the

∑︁d
i=1 ni on the left on the

condition decreases according to line 23, while the
∑︁d

i=1 ni on the right is a copy,
and remains unchanged.

Thirdly, the block between lines 10 and 14 includes two main functions: one
that gets the most probable point, and one that retrieves the route from sumolib’s
function getOptimalPath(). Regarding the first one, it works in a way where an
interpolated point is selected based on the number of vehicles associated with it,
and the number of people living in its associated district. Then, its associated
edge is selected, in order to obtain the specific source edge of the route. This
mechanism is applied to select origin and destination points, which results in a
more accurate and comprehensive estimation. The only difference between them is
that the destination point must be at least 1.25 km away in a straight line from
the origin point. In this sense, this minimum distance seems reasonable because
it corresponds to a 15-minute walk, or a 6-minute trip by bike. With regard to
the second function, it calls the getOptimalPath() function to obtain the route
path in the SUMO format. This route covers the streets without induction loops
because sumolib adopts the full map to create paths, and not only the streets with
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induction loop detectors. Since routes are long and traverse many points of the
city, roads without induction loops are mainly covered. At the end, this route is
converted into a sequence of nodes. This is done in order to be able to run the
next part of this algorithm.

Finally, with regard to the rest of the lines, notice that the conditions present
on lines 16 and 20, and the update step on line 23, are critical. With respect to
the condition on line 16, the tolerated error δo,des is the ratio of vehicles exceeded
(compared to the reference value), which we do not want to surpass to avoid high
error values. Specifically, for the origin and destination points, the tolerated error is
0, and so the counter of that detector must not be less than 0. On the contrary, the
δmid in the condition shown on line 20 must not exceed a certain percentage of the
initial value of the detector. This percentage will vary depending on the chosen β
value. This is because, when a higher β is chosen, the execution time will be longer,
and so a very restrictive δmid will be counterproductive. Regarding line 23, this is
where we update the data in order to be able to execute the algorithm correctly.
In particular, we subtract 1 from the counter of each induction loop present in the
route. This will lead to the variation of currentV ehicles, and, consequently, to
the variation of the selected origin and destination points. This is because, as we
have already mentioned, both points are selected based on probability, and the
change in the number of vehicles will modify this probability. To conclude, each
time 1,000 routes are generated, the updated traffic data is interpolated to obtain
a newer version of the interpolated traffic data.

5.3.3 Data Expansion

In the previous subsection, we discussed that the total amount of vehicles is not
generated by our solution due to an excessive execution time. This is the reason
why we need to implement another algorithm that expands the generated data so
that a reduced dataset can mimic the results of the full dataset. This process is
accomplished by Algorithm 5.2.

As can be seen, the algorithm is mainly based on the variance (σ2) and mean
(µ) values, for both real traffic data and the generated traffic data in Algorithm
5.1. The algorithm begins with an iteration that satisfies the condition

µgen.

µreal
< 1.1.

This is in order to ensure that the ratio between both means is acceptable (just a
10% higher) to generate representative data. Then, the rate between both σ2

real and
σ2
gen. must be less than 1, in order to generate a more accurate result. Afterwards,

if the condition is satisfied, it will choose a route from the Generated routes file
with probability proute. Then, it updates by adding 1 to the values corresponding
to those detectors present in the route. Finally, since detector data are changed, a
recalculation of σ2

gen. and µgen. is needed.
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Algorithm 5.2: Data expansion algorithm.

Input: Real traffic data, Generated traffic data, CSV routes file
Output: CSV with all the routes, CSV with the total traffic data

1 σ2
real,gen. ← Variance of real traffic and generated traffic;

2 µreal,gen. ← Mean of real traffic and generated traffic;

3 n ← Detector count;
4 proute ← Probability to choose a route;
5 RoutesCopy ← copy of the data in the CSV routes file;
6 while

µgen.

µreal
< 1.1 do

7 if not
σ2

gen.

σ2
real

> 1 then

8 Choose a route based on proute;
9 Add the route to RoutesCopy;

10 Update generated traffic data ← +1 to all n present in the route;
11 Recalculate µgen. and σ2

gen.;

12 else
13 Generate CSV ← RoutesCopy;
14 Generate CSV with the total generated traffic data;
15 break;

16 end

17 end
18 Return (CSV with all the routes, CSV with the total traffic data);

On the contrary, if the variance condition is not satisfied, it means that the
iteration process needs to stop. Before this, the algorithm will generate the output
CSV including all the routes generated, and the traffic data generated.

5.3.4 Time Distribution

In order to have the same outputs as DFROUTER we need to create a vehicles file.
Specifically, what differentiates this file from the route file generated in Algorithm
5.2 is that our routes (from now on referred to as vehicles) have no depart time.
These vehicles are generated by counting the number of routes and the number
of repetitions of each of them. The number of repetitions will be the number of
vehicles that travel through the route. Therefore, we generate all the routes, and
then we count the number of repetitions of each route to assign the number of
vehicles that travel through that route. Having made this clear, in order to satisfy
the DFROUTER requirement, we need to assign to all vehicles a specific departure

62



5.3. Proposed Solution

time. This is done by applying a Poisson Distribution for the vehicles that take the
same route. The complete behaviour of this function can be observed in Algorithm
5.3.

Algorithm 5.3: Time distribution algorithm.

Input: CSV with all the routes
Output: CSV with vehicles traffic information

1 T ← simulation period;
2 λroute ← mean number of vehicles for a certain route during T ;
3 Routes ← New set with routes ID and num. of vehicles associated to it;
4 for route, vehiclesroute in Routes do
5 A ← Empty set of size T ;

6
vehiclesroute

T ← Calculate λroute;
7 for k=0:T do

8 Draw a sample from P (x = k) =
e−λrouteλk

route

k! and add it to A;
9 end

10 for element in A do
11 if element != 0 then
12 Add vehicle to the CSV vehicles file;
13 end

14 end

15 end
16 Generate CSV with vehicles traffic information;
17 Optimise for simulation the CSV with vehicles traffic information;
18 Return (CSV with vehicles traffic information);

As stated above, the key functionality of the algorithm is the use of the
Poisson Distribution Function. We have chosen Poisson, and not Gaussian or other
alternatives, since Poisson processes are widely accepted as being adequate for
generating the number of vehicles passing through a given route segment during a
specific time interval [133, 134, 135]. Regarding the algorithm structure, we can
observe that it iterates over the routes and vehicles per route. Then, in order to
be able to draw samples from the Poisson distribution, an empty set of size T is
created for each route. At the same time, the λroute is calculated. Afterwards, we
draw a sample from the execution of the Poisson Distribution Function, and add it
to A at position k. This position refers to the simulation time at which the vehicle
will depart. Then, we add each vehicle in a particular route to the CSV file of
vehicles’ traffic information and, once the iteration over all the routes is completed,
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we generate the CSV. To conclude, and to avoid future simulation warm-up issues,
we optimise it and return the result.

Algorithm 5.4: Optimisation of vehicle departure time.

Input: CSV with vehicles traffic information
Output: CSV with vehicles traffic information optimised

1 σveh ← Standard deviation of vehicles per second;
2 µveh ← Mean of vehicles per second;
3 ϵ ← Value that changes depending on the method used;
4 µduration ← Mean of vehicles trip duration;
5 Γ(µveh, ϵ) ← Optimisation function;
6 V ehicles ← Set of vehicles traffic information from the CSV;
7 vehicleCounter, departureT ime → 0;
8 for vehicle in V ehicles where vehicledepartT ime ≥ µduration do
9 if vehicledepartT ime ̸= departureT ime then

10 vehicledepartT ime = vehicledepartT ime - µduration ;
11 vehicleCounter = 1 ;

12 else
13 if not vehicleCounter ≥ Γ(µveh, ϵ) then
14 vehicledepartT ime = vehicledepartT ime - µduration ;
15 vehicleCounter = vehicleCounter + 1 ;

16 end

17 end

18 end
19 Return (CSV with vehicles traffic information optimised);

Elaborating on the optimisation algorithm (see Algorithm 5.4), this consists
of an iteration over the CSV file containing vehicles’ traffic information. The
iteration starts over the last vehicle with a departure time equal to or greater than
the µduration. Afterwards, the departure time of a certain number of vehicles is
updated. This number is calculated by an optimisation function Γ(µveh, ϵ) which
is established before running the iteration. This function is described as:

Γ(µveh, ϵ) = µveh + ϵ (5.1)

where ϵ can be equal to 0, σveh, -σveh, or a random integer in the range {-
σveh,σveh}. Finally, it returns the optimised CSV with the vehicles’ traffic
information.
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5.4 Validation and Comparison Against DFROUTER

Having analysed the details of our proposed solution, we will now detail how the
experiments used to validate our proposal were defined, and which performance
metrics have been used. Afterwards, we discuss the quality of our solution by
analysing the results for each experiment.

It is important to mention that all experiments have been done using as reference
the data from the induction loops, and comparing the results using either the
traffic demand produced by DFROUTER, or our traffic demand generated through
the combination of Algorithms 5.1, 5.2, and 5.3. Likewise, the hardware used for
these experiments consists of a PC with an Intel i7-12700 3.6 GHz CPU, 32 GB
DDR4 2400 MHz RAM, and an M.2 SSD storage with a reading speed of 3300
MB/s, and a writing speed of 1200 MB/s.

5.4.1 Tuning Our Algorithm

To adequately tune our algorithm we first need to select an optimal β that achieves
an acceptable performance in terms of Mean Squared Error (MSE), while avoiding
excessive execution times when compared to other solutions.

In particular, we have tested different reduction factors to find the one offering
the best trade-off: β = {0.01; 0.05; 0.10; 0.15; 0.20; 0.25;
0.30; 0.35; 0.40; 0.45; 0.50; 0.60; 0.75}. In the same way, the intermediate tolerated
error used (normalised value) is δmid = 1.1, and so the value for each detector
cannot exceed 10% of its reference value. Having this in mind, we will divide
our experiments into two groups: the traffic distribution analysis along with the
algorithm validation, and the characterisation of generated routes in terms of
quality and representativeness.

In order to show the different trade-offs between our proposed solution and
DFROUTER, we calculate the MSE with respect to the real data using the following
equation:

MSE(y, ŷ) =
1

ndetectors

ndetectors−1∑︂
i=0

(yi − ŷi)
2 (5.2)

where:
ndetectors = Total num. of detectors

yi = num. of vehicles that pass over a detector

ŷi = num. of vehicles that pass over a detector for some β

We do it for our solution when adopting different β values, and also for
DFROUTER. Likewise, we calculate the number of unique routes and the execution
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time for our solution (again varying the β value), and for DFROUTER. Finally,
an analysis of the trade-off between MSE, number of unique routes, and execution
time, is presented to show how much the MSE drops when increasing the execution
time and the number of unique routes.

Table 5.4 shows the behaviour of the MSE when increasing β. As we can
observe, there is a decreasing tendency when β is higher, but, for all the β values,
the MSE obtained is nearly 50 times lower than the one obtained by DFROUTER.
Due to this, none of these β values are ruled out yet. In particular, we can observe
that the relative difference between β = 0.01, and β = 0.75 is of about 10%. This is
not a great difference when compared to the DFROUTER values, so all reduction
factors are still considered when targeting the optimal solution.

Table 5.4: MSE values for different reduction factors and DFROUTER.

Reduction Factor (β) MSE

DFROUTER 19,058,648

0.01 399,329

0.05 381,701

0.10 368113

0.15 370,985

0.20 364,145

0.25 364,472

0.30 365,609

0.35 363,815

0.40 363,435

0.45 361,895

0.50 360,811

0.60 359,644

0.75 358,326

Regarding the performance in terms of execution time when increasing β,
Table 5.5 shows that such time increases by a factor of 2 on average. In particular,
we can observe that the difference in the amount of time from β = 0.01 to β = 0.60
is limited to 2 hours, while for β = 0.75 it increases by 2 hours more, having an
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executing time of more than 4 hours. Moreover, more than half of the values
achieved for our solution are higher than those for DFROUTER. This is because
of the complexity of Algorithm 5.1, and our restrictive δmid parameter.

Table 5.5: Execution time for different reduction factors and DFROUTER.

Reduction Factor (β) Execution Time (minutes)

DFROUTER 23.31

0.01 0.37
0.05 1.41
0.10 3.09
0.15 5.40
0.20 10.01
0.25 18.35
0.30 26.48
0.35 37.12
0.40 52.09
0.45 67.07
0.50 85.68
0.60 139.57
0.75 253.72

When analysing the reduction factors we also need to consider the number of
unique routes that are going to be repeated with the “Data expansion” algorithm
(see algorithm 5.2). In this sense, we can observe that all values are lower than
for DFROUTER. Among these values, we can discard the β values less than
0.20. This is because the amount of unique routes for β = 0.20 is more than half
when compared to β = 0.35, and almost 3 times less when compared to β = 0.50.
Likewise, we can observe that, as β increases by 0.05, the number of unique routes
increases by 1,000.

In Table 5.7 we combine the results of the previous tables to observe the general
performance of our solution compared to DFROUTER. It shows that there is
a correlation between MSE, execution time, unique routes, and β; so, when β
becomes higher, the execution time and number of unique routes are higher, but
the MSE becomes lower. Thus, we need to select an optimal β that achieves an
acceptable performance in terms of MSE, while avoiding excessive execution times
when compared to other solutions, and avoiding a low number of unique routes. In
this case, the β value we select for the experiments that follow is 0.50, because it
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Table 5.6: Number of unique routes for different reduction factors and DFROUTER.

Reduction Factor (β) Unique routes

DFROUTER 64,200

0.01 213
0.05 1,142
0.10 2,394
0.15 3,811
0.20 5,625
0.25 7,342
0.30 8,744
0.35 10,127
0.40 11,544
0.45 12,880
0.50 14,149
0.60 16,664
0.75 20,329

returns the highest number of unique routes, while maintaining the execution time
in less than an hour and a half.

Having identified the β value with the best trade-off, we proceed to analyse the
behaviour of our solution in SUMO over a simulation period of 60 minutes. To this
end, we compare the use of various methods. “Default” refers to the unoptimised
vehicle traffic information file generated in Algorithm 5.3. “ϵ = {σveh, -σveh, 0,
and ϵ in {-σveh,+σveh}}” refer to the optimised solution (see Algorithm 5.4).

As can be observed in Figure 5.7, the unoptimised solution (Default), performs
badly in terms of the number of vehicles during simulation. This is because it
never reaches a steady state, and the number of vehicles keeps rising over time.
Likewise, when compared to the other solutions, we notice that there are warm-up
issues. While the other methods are able to achieve peak values after roughly
9.5 minutes, the “Default” procedure reaches a similar value only at the end of
simulation time. Regarding optimised solutions, we observe that all methods reach
the peak after 9.5 minutes. Furthermore, we observe that the steady-state lasts for
a period of 40 minutes for all optimised methods. In addition, ϵ = σveh; ϵ = 0;
and ϵ = ϵ in {−σveh,+σveh} achieve a similar performance, being the number
of vehicles stable, while ϵ = −σveh rises the number of vehicles over time. Finally,
all optimised methods enter the terminating state at time t = 50 minutes, beyond
which the number of vehicles decreases substantially.
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Table 5.7: Trade-off between MSE and execution time.

β MSE Exec. Time (min.) Unique routes

DFROUTER 19,058,648 23.31 64,200

0.01 399,329 0.38 213
0.05 381,701 1.41 1,142
0.10 368,114 3.10 2,394
0.15 370,985 5.41 3,811
0.20 364,146 10.02 5,625
0.25 364,473 18.36 7,342
0.30 365,610 26.49 8,744
0.35 363,816 37.12 10,127
0.40 363,435 52.09 11,544
0.45 361,895 67.08 12,880
0.50 360,812 85.69 14,149
0.60 359,644 139.58 16,664
0.75 358,326 253.72 20,329

To determine which of the methods is the most stable one during the steady-
state period, we analysed the distribution of the number of vehicles during that
period. Figure 5.8 shows that when ϵ is σveh, 0, and ϵ in {−σveh,+σveh} , the
number of vehicles are the more stable, while “Default” and ϵ = −σveh are not,
being “Default” the least. In particular, we can see that ϵ = σveh has the smallest
difference in the distribution. Therefore, we conclude that this is the best solution.

5.4.2 Traffic Distribution Analysis and Algorithm Validation

Having selected the best β value, we now proceed by observing in Figure 5.9 the
ECDF that characterises our solution, along with the distribution for DFROUTER,
and the induction loop data used as reference. As mentioned in Section 5.2,
DFROUTER has a maximum value of 17k vehicles, and it behaves like a linear
function with a big slop line until 650, a value beyond which it starts to make a
parable. On the contrary, the function for our solution is very similar to the one
for real data. Both behave with a similar linear function, with a slight parable
close to 700, and only differ in the maximum value (2,7k for real data, and 1,4k for
our solution).

Data present in Table 5.8 and Table 5.9 complement the ECDF shown in
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Figure 5.7: Vehicles present during simulation time using different methods.

Figure 5.8: Distribution of the number of vehicles during steady-state.

Figure 5.9 by providing further details so as to gain greater insight. As we did
earlier in Section 5.2, we present different statistical metrics that provide a complete
overview of the differences between the real data, DFROUTER, and our proposed
solution.

On one hand, in Table 5.8 we can see that, on average, our solution introduces
an average decrease of 47% when compared to real data. Regarding minimum
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Figure 5.9: ECDF of induction loop real, DFROUTER and our solution (β = 0.50)
data.

values, we observe that our solution has a minimum value of 0. This occurs when
our algorithm estimates that no vehicles will pass through a given induction loop,
but instead, for the actual data, we have vehicles passing over it. On the contrary,
we obtain a maximum difference compared to real data of -47%, in this case for
the maximum value detected. Notice that such value becomes possible despite the
fact we introduce limits to the error in Algorithm 5.1, since Algorithm 5.2 does
not consider this particular type of error.

On the other hand, Table 5.9 shows the relative difference for the induction
loops statistics with respect to our solution, and DFROUTER. Specifically, it can
be observed that, on average, we outperform DFROUTER by a 469%. Likewise,
regarding standard deviation, our solution only differs from real data by 43%,
outperforming DFROUTER by 689% As we can see, there is a common trend
for both, and a notable difference exists in all the statistic values compared. To
conclude, by observing this, we can determine that our solution provides a better
fit.

As a last step, we now proceed to visualise the traffic distribution according
to the induction loop data. To this end, we present three different heatmaps, as
shown in Figure 5.10. In particular, three subfigures are presented (see Figure a,
Figure b, Figure c), one for each dataset: real values (reference), DFROUTER,
and our solution. We can observe that our solution is a better match to the real
distribution than DFROUTER. This can be seen by noticing the concentration of
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Table 5.8: Induction loop data difference stats (Real vs Proposed Solution).

Real Proposed Solution Abs. Diff. Rel. Diff.

Avg. 504 268 -236 -47%
Std. Dev. 481 272 -209 -43%
Q1 125 65 -60 -48%
Q2 313 174 -139 -44%
Q3 815 394 -421 -52%
Min. 4 0 -4 N.A.
Max. 2,728 1,457 -1,271 -47%

Table 5.9: Induction loop data difference stats (DFROUTER vs Proposed Solution).

DFROUTER Proposed Solution
w.r.t. real w.r.t. real

Avg. +516% -47%
Std. Dev. +732% -43%
Q1 N.A. -48%
Q2 +314% -44%
Q3 +554% -52%
Min. N.A. N.A.
Max. +530% -47%

vehicles that pass over the induction loop at the edges of the city for our solution
(and the reference map), while for DFROUTER a much higher maximum value for
detectors in reached, reason why most of the map is red.

5.4.3 Routes Characterisation

As we discussed previously in Section 5.2, one of the problems associated with
DFROUTER, in the context of a city, is the length of the generated routes. This
is the reason why we analyse different statistics for the selected β versus the
DFROUTER solution. Specifically, we analyse the mean value, the standard
deviation, and the maximum and minimum values associated to the route length.

As we can observe, Table 5.10 shows in detail the routes’ characterisation in
terms of length for both approaches. In particular, the minimum and maximum
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values achieved by our proposal are 1,251 m and 25,602 m, respectively. In contrast,
as seen earlier in Section 5.2, minimum and maximum values for DFROUTER
are 734 m and 17,401 m. In this regard, our solution outperforms DFROUTER
by 3,581% and 47%, respectively. In fact, it is very important that our minimum
route value has such a length because that is one of the main disadvantages of
DFROUTER. It does not seem realistic that a vehicle is going to travel a route
of 34 m, or even 500 m, in a city like Valencia, where finding a parking stop is
quite problematic, and where several areas have parking restrictions, requiring
citizens to park far away so as to promote public & green transportation (bikes,
electric scooters, etc.). Regarding quartiles, we observe that our solution improves
DFROUTER by 63%, being half of our routes longer than 3,656 m, while for
DFROUTER this value is at 1,897 m. Our solution achieves a route length of
4,672 m on average, while DFROUTER stays at 2,035 m; hence, our improvement
is 78%.

Table 5.10: Route length statistics (DFROUTER vs. Proposed solution).

Metrics DFROUTER Prop. Sol. Abs. Diff. Rel. Diff.

Unique routes 64,200 14,149

Avg. 2,035 m 4,672 m +2,637 m +78%
Std. Dev. 1,068 m 3,123 m +2,055 m +98%
Q1 1,448 m 2,434 m +986 m +50%
Q2 1,897 m 3,656 m +1,759 m +63%
Q3 2,385 m 5,871 m +3,486 m +84%
Min. 34 m 1,251 m +1,217 m +3,581%
Max. 17,401 m 25,602 m +8,201 m +47%

With respect to the distribution of the origin of the routes, Figure 5.11 shows
the distribution of the vehicles for DFROUTER and our solution. In particular, this
distribution is for two specific consecutive avenues (inside the red lines): Gran Vı́a
Marqués del Turia, and Gran Vı́a de Ramón y Cajal. As it can be seen, our solution
achieves a better spatial distribution of route origin points than DFROUTER.
Specifically, while DFROUTER only has 17 points along these avenues, our solution
multiplies by more than 5 such results, having 88 points.

To conclude, Figure 5.12 displays 10 random sample routes of each approach.
Through this geographical example, we can better understand the data previously
presented in Table 5.10. As shown, DFROUTER generates routes with a small
length. In this case, these routes are distributed through various parts of the
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city, but their length is too short for them to be representative. On the contrary,
having a closer look at the routes of our solution, we observe that their length is
significantly longer. More importantly, all of our routes are representative, since
they represent a significant distance being covered in the city, and it seemed more
natural and adequate for someone to actually use their car to take these routes.

5.5 Summary

In this chapter, we have made clear that the process of generating representative
traffic demand is not a simple task. In particular, we have analysed the generation
of this demand with the data from induction loops. For this purpose, we have
assessed a widely adopted tool, DFROUTER. With it, we have demonstrated that
the data obtained in terms of traffic volume and route length is not representative
of the case of a city.

For this reason, we have proposed a novel approach to perform reverse engineer-
ing by generating traffic demand based on induction loop data in the context of a
city. Specifically, we have demonstrated that our solution improves DFROUTER
in various aspects.

Firstly, we have achieved an improvement in terms of traffic volume. In
particular, DFROUTER had 516% more traffic (on average) than the real measured
values that were used as reference. With our solution, we were able to reduce that
percentage by 469%, only introducing an average decrease of 47% compared to
the real data. Likewise, the MSE obtained for the selected reduction factor has
improved the MSE of DFROUTER by 50 times.

Secondly, a better spatial distribution of the origin points of the routes has
been obtained. In particular, we have discussed an example of a representative
street. In this case, we have obtained 418% more origin points than DFROUTER.
So, with our solution, we are able to achieve a much better distribution for the
actual departure areas.

Finally, we have obtained larger routes than those generated by DFROUTER.
In particular, we have increased the average length of the routes by 78%. This
means that, with our solution, we are able to obtain routes with an average length
of 4,672 m, while with DFROUTER it remains at 2,035 m.

To sum up, we have demonstrated in this paper that our solution outperforms
DFROUTER in three key aspects: traffic volume, route spatial distribution, and
route length, providing more realistic and accurate values for further experimenta-
tion and traffic analysis.
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(a) Real data.

(b) DFROUTER.

(c) Proposed solution.

Figure 5.10: Heatmap of the induction loop data distribution.
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(a) DFROUTER

(b) Proposed solution

Figure 5.11: Route origin points distribution for two selected roads (Gran Vı́a
Marqués del Turia, and Gran Vı́a de Ramón y Cajal).

76



5.5. Summary

Figure 5.12: Length of 10 sample routes (DFROUTER vs. Proposed solution).
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Chapter 6

Traffic Re-routing Based on Air
Pollution: a Static Approach

In the previous chapter we discussed the challenges of generating accurate traffic
demand using induction loop detectors and other methods to represent real-world
traffic patterns. We highlighted the limitations of existing approaches, and we
introduced a new method to address these issues. Building upon this, the current
chapter focuses on managing and optimising traffic flow to reduce environmental
impact, specifically air pollution in urban areas. Instead of traditional traffic man-
agement practices, such as closing streets or altering routes based on administrative
decisions, our approach uses a static environmental parameter, the α value, to
regulate traffic flow. This fixed parameter adjusts traffic weights on street segments,
providing a straightforward yet effective way to control traffic distribution and
manage pollution levels. By integrating this method with SUMO’s DUAROUTER
tool, and using Valencia as a case study, we simulate various traffic management
scenarios, and assess their impact on urban air quality. Through an analysis of
two models, full and partial traffic isolation, we determine which strategy is more
effective at reducing pollution while maintaining a balanced traffic flow. This
demonstrates that an approach based on static parameters is an effective and
powerful tool for sustainable urban traffic management.
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6.1 Proposed Solution

Our proposed solution uses a static approach to manage urban traffic flow and to
reduce environmental impact through predefined constraints. Unlike conventional
methods that rely on administrative decisions to close streets or change routes,
our approach uses a fixed environmental parameter (α) to adjust traffic weights on
street segments. By artificially modifying the maximum allowed speed for specific
streets, this parameter helps control traffic flow and reduce pollution in targeted
areas. Such method enables urban planners to implement effective traffic strategies
without complex monitoring.

The re-routing algorithm integrates with SUMO through its routing component,
DUAROUTER. The algorithm generates a weights file with adjusted costs for
each street segment, based on the user-defined α value. This value serves as
a scaling factor to modify the original speed of each lane. By applying this
factor, the algorithm artificially reduces speed on selected segments, increasing
their travel costs so as to discourage traffic. These adjusted costs directly affect
DUAROUTER’s route-finding logic, redistributing traffic according to predefined
environmental constraints.

Algorithm 6.1: Proposed static algorithm to enforce traffic restrictions.

Input: Traffic Demand, Network, α value
Output: Rerouted Traffic Demand

1 routes ← getAllRoutes(Traffic Demand);
2 allEdges ← getAllEdges(Network);
3 newEdgesWeights ← {} ;
4 for Edge in allEdges do
5 originalSpeed ← getOriginalSpeed(Edge);
6 newSpeed ← orginalSpeed / α value;
7 newEdgesWeights[Edge] = newSpeed ;

8 end
9 for routeId in Routes do

10 newRoute = requestNewRouteToDUAROUTER(routeId,
newEdgesWeights);

11 updateRouteInTrafficDemand(newRoute);

12 end
13 return Rerouted Traffic Demand;

As shown in Algorithm 6.1, the proposed static traffic management strategy
involves several key steps. First, the process begins by retrieving all existing routes
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and edges from the traffic demand data and the network (lines 1–3). Then, the
algorithm iterates over each street segment (edge) in the network to compute a new
speed value using the chosen α parameter (lines 4–7). The new speed is calculated
by dividing the original speed by the α value, effectively adjusting the weight of
the street segment to deter traffic flow. These adjusted weights are stored in a
dictionary, newEdgesWeights, which is later used to generate the weights file for
DUAROUTER.

Next, after computing the new weights, the algorithm proceeds to update
the routes in the traffic demand. For each route, it requests a new route from
DUAROUTER based on the modified weights, thereby ensuring that the new
routes reflect the adjusted traffic costs (lines 8–11). The traffic demand is then
updated with the newly computed routes, resulting in a rerouted traffic demand
that conforms to the desired environmental constraints.

Moreover, the integration of the algorithm with DUAROUTER, which employs
the Multi-Level Dijsktra (MLD) algorithm, ensures compatibility between the
computed new routes and the modified weights. As a result, traffic flow is effectively
redistributed, diverting vehicles away from areas with increased weights due to the
static α parameter.

The core of the re-routing strategy lies in Equation (6.1), which defines the
formula used to adjust the speed of each street segment. Here, the original speed
(V) of a street segment is statically modified by dividing it by the α parameter.
This controlled reduction in speed increases the travel cost of the segment, guiding
traffic flow away from environmentally sensitive areas.

f(α) =
V

α
(6.1)

In summary, the use of a static α value simplifies the traffic management process
while maintaining the flexibility to address various environmental constraints. By
integrating with DUAROUTER, the proposed approach is demonstrated to be
both effective and adaptable, making it applicable to other routing tools that use
Dijkstra-based algorithms.

6.2 Experiments & Results

To evaluate the effectiveness of our proposed solution in reducing pollution levels
and improving air quality, we focus on the main green area of Valencia, the old
riverbed (see Figure 6.1). This area spans 1,110,000 m2, and attracts approximately
7,000,000 visitors annually. Given its significance as a central urban green space,
minimising pollutant concentrations there is essential for enhancing public health
and the environment.
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Figure 6.1: Old riverbed of Valencia (highlighted in red).

To conduct this study, we designed a simulation involving a set of vehicles
departing from various points across the city, aiming to generate data that reflects
real-world conditions. The traffic source points, shown in Figure 6.2, are strate-
gically distributed throughout the city to capture diverse traffic patterns. Based
on the traffic flow model discussed in chapter 5, which represents typical working
day conditions between 8 and 9 a.m., our experiment simulates the circulation of
approximately 22,500 vehicles over a 1-hour period. Additionally, as outlined in
the previous chapter, the vehicle data is sourced from the DGT. Using this data,
and in line with the HBEFA vehicle classes defined in chapter 4, Table 6.1 presents
the vehicle distribution according to engine type and EURO norm.

Regarding the calculation of air quality levels, we employ the “Fixed Box Model”
previously detailed in chapter 2. For the old riverbed, the model uses its total area
(1,100,100 m2) as the XY dimension of the box, while the height of the box is set
to 20 m.

The experiments are designed to evaluate two distinct traffic management
models. First, we analyse the full traffic isolation model by examining the average
variation of pollutants for different α values, the AQI levels for each pollutant,
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Figure 6.2: Simulation traffic sources marked in blue, and target area (old riverbed)
highlighted in red.

Table 6.1: Estimation of the vehicle’s distribution in Valencia according to their
profile.

Engine type EURO norm Volume (%)

Petrol Euro 3 23
Petrol Euro 6 22
Diesel Euro 4 28
Diesel Euro 6 27

and the overall changes in pollutant distribution across the city, comparing the
optimal result to the default scenario. Next, we perform a similar analysis for
the partial traffic isolation model, focusing on the same parameters. Finally, we
compare the best results from both models to determine which approach offers
better performance in terms of pollution reduction and air quality improvement.
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6.2.1 Full Traffic Isolation

To evaluate the full traffic isolation model, we gradually increase the α parameter
from 1 (representing the default situation) to 3.5, and we do this for all streets and
bridges near the old riverbed. Such approach allows us to analyse how pollutant
levels vary with different α values, and to identify the optimal setting for reducing
emissions.

The results showing the variation in terms of average pollutant emissions in the
old riverbed relative to normal levels (in percentage terms) are presented in Figure
6.3. Specifically, in Figure 6.3a, it can be observed that α values of 2, 2.8, and 3.5
achieve the best results, with a decrease in PMx emissions of approximately 8%.
Conversely, for α values of 1.1 and 1.8, there is an increase in PMx emissions of
about 5%. In terms of NOx emissions, Figure 6.3b shows a reduction of about 10%
for α values of 2.2 and 2.7, while for α = 2.1, there is a 6% increase.

(a) PMx (b) NOx

Figure 6.3: Difference in pollutants in the old riverbed with respect to the default
case for various α values (full traffic isolation).

Since the average variation in pollution levels alone is not sufficient to determine
the optimal α value, we apply the “Fixed Box Model” to calculate the AQI for
the selected area. For this purpose, we consider a time frame of t = 1 hour for
NOx, and t = 24 hours for PMx. Based on these parameters and the assumptions
mentioned earlier, we derive pollutant concentrations for each α value, as shown
in Figures 6.4a, and 6.4b. As expected, the best and worst α values for PMx

concentration are consistent with those for the average variation. Similar results
are observed for NOx. Given these observations, we proceed to analyse the results
in terms of AQI, which provides a more comprehensive measure of air quality.

To calculate the AQI for each pollutant and α value, we use the concentration
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(a) PMx (b) NOx

Figure 6.4: Concentration of pollutants for each α in the old riverbed (full traffic
isolation model).

values, the AQI Equation, and the AQI table described in chapter 2. After
performing the necessary calculations, Figures 6.5a, and 6.5b are obtained. As
shown, the optimal AQI values for the old riverbed area are achieved for certain
α values of PMx and NOx, while the worst AQIs correspond to other α values
of NOx. From these individual pollutant AQIs, we compute the overall AQI for
the target area, considering that the overall AQI is the average of the different
pollutant AQIs.

Figure 6.6 presents the overall AQI for the old riverbed for each α value. The
results indicate that several α values (3.2, 3.3, 3.4, and 3.5) yield better AQI
outcomes than the default scenario (α = 1), with AQIs of 66 and 74, respectively.
Conversely, the worst α value (3) results in an AQI of 98, an increase of 24 compared
to the default case. Thus, we focus on the α with the best AQI in the old riverbed
to achieve the lowest pollutant levels. Specifically, α = 3.3 emerges as the optimal
solution, showing a minimal increase in city-wide pollutant levels, while significantly
reducing pollutants in our target area.

After identifying α = 3.3 as the optimal solution in terms of AQI, we proceed
to analyse how pollutants are distributed throughout the city compared to the
default case. Figure 6.7 shows the distribution of pollutants for PMx and NOx.
Green areas indicate a reduction in pollutant levels relative to the default scenario,
while red areas indicate an increase. Notably, there is a decrease in pollutants in
the target area, but also an increase in other parts of the city, likely because most
vehicles are redirected through those areas.
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(a) PMx (b) NOx

Figure 6.5: AQI for each pollutant and α value in the old riverbed (full traffic
isolation model).

In terms of drawbacks, we find that the red area on the right side of Figure 6.7,
experiences an average increase in pollutants of 44.18%. Specifically, the increases
are 48.98% for PMx and 39.39% for NOx. This outcome is expected because most
vehicles that previously traversed the old riverbed are now diverted to this area.
Despite this, the city’s overall AQI does not increase, and the pollutant levels in the
old riverbed decrease, indicating that the new emission distribution is satisfactory.

Regarding traffic behaviour throughout the city, Table 6.2 provides average
values for speed, distance, and travel time for the various routes taken by vehicles.
The results show minimal changes compared to the default situation. In terms of
traffic volume along the old riverbed, Table 6.3 shows a 15.55% decrease in the
number of vehicles compared to the default scenario. Overall, the restrictive solution
not only improves pollutant emissions in the old riverbed, but also maintains similar
values for average traffic flow parameters across the city.

Table 6.2: Average traffic performance values in the city for the default and least
pollutant situation (full traffic isolation).

Metrics Default Situation α = 3.3 ∆ [%]

Speed 33.8 km/h 34 km/h 0.59
Distance 5006 m 5015 m ∼ 0
Time 613 s 612 s ∼ 0
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Figure 6.6: Global AQI in the old riverbed for each α (full traffic isolation).

Table 6.3: Volume of traffic in the old riverbed for default and least pollutant
situations (full traffic isolation).

Metrics Default Situation α = 3.3 ∆ [%]

Nº of Vehicles 6162 5204 -15.55

6.2.2 Partial Traffic Isolation

In this experiment, we once again vary the α parameter from 1 to 3.5, where α = 1
represents the default scenario. Unlike the previous experiment, restrictions are
applied only to streets near the old riverbed, and not to the bridges that cross it.
This approach allows us to analyse how emissions change for different α values,
and to identify the optimal configuration for the target area.

Figure 6.8 shows the average percentage variation of pollutants for each α
value compared to the default case along the streets near the old riverbed. Two
subfigures are presented: Figure 6.8a for PMx, and Figure 6.8b for NOx. For PMx,
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(a) PMx (b) NOx

Figure 6.7: Difference in pollutants throughout the city with respect to the default
case for α = 3.3 (full traffic isolation).

a significant decrease occurs for α = 2.2 and α = 2.7, with a reduction of about
20%. Conversely, other α values, such as 1.6, result in a 15% increase in PMx

emissions. For NOx, the emissions behave differently; while α = 2.2 causes a 7%
increase, the best reductions, close to 7-8%, are achieved with α = 2.7 and α = 2.9.

(a) PMx (b) NOx

Figure 6.8: Difference in pollutants with respect to the default case for various α
values in the old riverbed (partial traffic isolation).

While the percentage difference in emissions provides an initial understanding,
it is not sufficient to identify the optimal solution. To address this, we apply the
“Fixed Box Model” to compute the AQI of the target area. Similarly to the previous
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experiment, the model considers t = 1 hour for NOx and t = 24 hours for PMx.
Based on these conditions, the pollutant concentrations for each α value are shown
in Figure 6.9). Figure 6.9a displays the concentrations of PMx, where the lowest
levels are obtained for α = 2.2 and α = 2.7. For NOx, the concentrations are
generally consistent across different α values, except for outliers such as α = 1.1,
α = 1.4, and α = 2.3, which deviate from the trend.

(a) PMx (b) NOx

Figure 6.9: Concentration of pollutants in the old riverbed for each α value
(partial traffic isolation).

Figure 6.10 presents the AQI values for each pollutant across different α values.
Figure 6.10a shows the AQI values for PMx, where the lowest AQI, 36, is achieved
for α = 2.7. Regarding NOx, the AQI values are shown in Figure 6.10b. Here, most
α values result in an AQI around 50, except for certain outliers such as α = 1.1,
α = 1.4, α = 1.7, α = 1.8, α = 2.1, α = 2.5, and α = 3.5, which have AQI values
around 100. After analysing the AQIs for both pollutants, we can identify the
most favourable overall AQIs.

The overall AQI for the old riverbed is shown in Figure 6.11. As observed,
multiple values emerge from the experiments. The best α values (α = 2.7, α = 3.2,
and α = 3.3) achieve AQI values between 47 and 48, which are 25–26 points lower
than the default scenario (α = 1), which has an AQI of 73. In contrast, the worst
α values (α = 1.6 and α = 1.9) result in AQIs of 97, an increase of 24 points
compared to the default case.

We now focus on the α values with the lowest pollutant concentrations in the
old riverbed to identify the most effective solution. In particular, the solution with
α = 2.7 is selected. Examining its performance across the city, we find that this α
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(a) PMx (b) NOx

Figure 6.10: AQI for each pollutant and α in the old riverbed (partial traffic
isolation).

value provides favourable results, maintaining pollutant levels similar to the default
approach, with a mere 1.93% increase.

Next, we examine how pollutant emissions are distributed throughout the
city compared to the default situation (see Figure 6.12). Green areas indicate
regions where pollutant levels are lower than the default scenario, while red areas
indicate regions where levels are higher. Figure 6.12a shows the difference in PMx

distribution across the city for α = 2.7 compared to the default case. In the target
area, there is a reduction in emissions, but some parts of the city see an increase.
A similar pattern is observed for NOx in Figure 6.12b. The red areas result from
diverting traffic through those streets, consequently increasing pollutant emissions.

As with any solution, there are trade-offs. In this case, the red areas indicate
air quality issues, with an average increase in pollutants of 42.63% in the large red
area on the right side of the map. The breakdown of this increase is 44.24% for
PMx, and 41.03% for NOx. This outcome is expected, as most traffic is redirected
to this area. Considering these results, we observe that there is a redistribution of
pollutant emissions. Overall, the city’s AQI does not increase because the increase
in emissions in the red areas is compensated by the decrease in our target area,
achieving the desired effect.

Finally, Table 6.4 shows the average traffic flow performance across the city
for both the default and least pollutant situations. Overall, for the least pollutant
scenario, the vehicle speed remains similar, while travel time and distance increase
by 1.59% and 0.58%, respectively. Regarding the traffic volume on the streets
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Figure 6.11: Global AQI in the old riverbed for each α (partial traffic isolation).

near the old riverbed, the results are presented in Table 6.5, showing a decrease in
the number of vehicles by 14.52%. In summary, this method achieves a reduction
in pollutant emissions in the target area with a negligible impact on the average
traffic flow data across the city.

Table 6.4: Average traffic performance values in the city for the default and least
pollutant situation (partial traffic isolation).

Metrics Default Situation α = 2.7 ∆ [%]

Speed 33.8 km/h 33.7 km/h ∼ 0
Distance 5006 m 5034 m 0.58
Time 613 s 623 s 1.59
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(a) PMx (b) NOx

Figure 6.12: Difference in pollutants throughout the city with respect to the
default case for α = 2.7 (partial traffic isolation).

Table 6.5: Volume of traffic in the old riverbed for default and least pollutant
situation (partial traffic isolation).

Metrics Default Situation α = 2.7 ∆ [%]

Nº of Vehicles 6162 5267 -14.52

6.2.3 Comparison Between Approaches

To determine which traffic management approach yields the best results, we compare
the most effective configurations from the previous models: α = 3.3 for full traffic
isolation, and α = 2.7 for partial traffic isolation. Table 6.6 summarises the key
metrics and the differences between the results obtained for both approaches.

Table 6.6: Metrics comparison between best α values of both approaches.

Metrics FTI1 (α = 3.3) PTI2 (α = 2.7) Difference

∆PMx[%] -7.75 -20.63 -12.88 %
∆NOx[%] -7.59 -7.37 0.22 %

AQI 66 47 -19

Nº of Vehicles 5204 5267 1.21 %
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On one hand, when analysing the variation of pollutants in the old riverbed
compared to the default case, we observe that the partial traffic isolation approach
(α = 2.7) generally provides better results. Specifically, while the full traffic isolation
approach with α = 3.3 reduces PMx levels by 7.75%, the partial traffic isolation
approach with α = 2.7 achieves a more substantial reduction of 20.63%. In terms
of NOx, both approaches deliver similar results, with reductions of approximately
7.5% compared to the default case. In terms of the overall AQI, the partial traffic
isolation approach with α = 2.7 results in a 19-point reduction compared to the
full traffic isolation scenario with α = 3.3. This difference is noteworthy because
the AQI for partial traffic isolation falls within the “good” range, whereas the AQI
for full traffic isolation remains within the “moderate” range.

On the other hand, when considering the volume of traffic in the streets near
the old riverbed, the differences between both approaches are minimal and mostly
negligible.

To better understand the spatial distribution of pollutants across the city, we
compare the two configurations using heatmaps (see Figure 6.13). In these maps,
green areas indicate locations where pollutant levels are lower for the partial traffic
isolation solution (α = 2.7) compared to the full traffic isolation solution (α = 3.3),
while red areas represent locations where pollutant levels are higher. Overall, we
observe that pollutant levels in the target area are reduced more effectively with
the partial traffic isolation approach. Specifically, the distribution of PMx and
NOx (Figures 6.13a and 6.13b), shows more green spots, which is consistent with
the AQI results.

6.3 Summary

In this chapter, we presented a static approach to manage urban traffic flow
using predefined environmental constraints. Our method relies on a static α value
to adjust traffic weights on street segments. To demonstrate its effectiveness,
we used SUMO’s DUAROUTER and a weights file generated by our re-routing
algorithm. This file contains adjusted costs for each street segment, and guides
DUAROUTER’s routing process. We tested this approach in Valencia, targeting
the old riverbed, a key green space, to reduce air pollution.

We first examined the full traffic isolation model, applying restrictions to
both streets and bridges near the old riverbed. By varying the α parameter, we
significantly reduced pollutant levels in the area. The best results were achieved

1FTI: Full Traffic Isolation.
2PTI: Partial Traffic Isolation.
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(a) PMx (b) NOx

Figure 6.13: Difference in pollutants with respect to α = 3.3 (full traffic isolation)
for α = 2.7 (partial traffic isolation) throughout the city.

with α = 3.3, which lowered the overall AQI in the target zone without substantially
increasing pollutants elsewhere in the city.

Next, we explored the partial traffic isolation model, restricting only the streets
around the old riverbed. This allowed for different traffic patterns and pollutant
distributions. Our analysis found that α = 2.7 was the optimal value, leading to a
notable reduction in pollutants, and a better AQI than the full isolation model.

Finally, we compared both approaches to assess their effectiveness. The partial
traffic isolation model with α = 2.7 provided better overall results, achieving a
greater reduction in pollutants and a lower AQI in the target area. Moreover, it
had minimal impact on the overall traffic flow, showing that environmental goals
can be met without major disruptions.

In summary, this chapter has demonstrated that a static traffic management
approach using a predefined α value is an effective tool for reducing urban pollution.
By taking advantage of SUMO’s DUAROUTER and our simple method, urban
planners can apply specific traffic restrictions that balance environmental and
traffic management needs.
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Chapter 7

Traffic Re-routing Based on Air
Pollution: a Dynamic Approach

In the previous chapter, we explored a static approach to managing and optimising
traffic flow to reduce air pollution in urban areas by using a fixed environmental
parameter, the α value, which allowed us to adjust traffic weights on street segments.
While this method provided a straightforward way to control traffic distribution and
manage pollution levels, it lacked the flexibility to respond to real-time changes in
traffic conditions and air quality. Building upon this, the current chapter introduces
a dynamic traffic re-routing algorithm that adjusts vehicle routes based on current
air quality data, while also accounting for the specific vehicle emission profiles. By
integrating this dynamic method with SUMO’s DUAROUTER tool, and again
using the city of Valencia as our case study, we simulate various environmental
crisis scenarios, such as building fires and smog episodes, to assess the impact of
our approach on urban air quality. Through these simulations, we evaluate how air
quality data integration enhances pollution reduction while maintaining a balanced
traffic flow, demonstrating that a dynamic strategy offers a more effective and
adaptive solution for sustainable urban traffic management compared to static
methods.
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7.1 Proposed Solution

Our proposed solution introduces a dynamic approach to mitigate urban air pol-
lution during environmental crises. Unlike the static traffic management method
discussed in the previous chapter, which relies on predefined constraints, this dy-
namic approach adjusts vehicle routes in real time based on current air quality data
for street segments (edges), and on NOx vehicle emission profiles. By continuously
updating the traffic flow, the algorithm aims at keeping the concentrations of
pollutants such as NOx and PM10 at low levels, improving air quality without
significantly compromising traffic efficiency.

To determine optimal routes, we use the MLD algorithm of DUAROUTER,
which calculates the shortest paths based on free-flow travel times. However, our
algorithm modifies these paths to incorporate air quality considerations, ensuring
that vehicles are rerouted to minimise emissions in polluted areas. Although we
use DUAROUTER for simulation purposes, our approach is compatible with any
routing tool that bases its cost calculations on travel time, speed, or distance, and
that uses a Dijkstra-based algorithm.

Additionally, vehicles are categorised according to their NOx emissions profiles,
as defined by the EEA [136]. This categorisation allows the algorithm to apply
different weights to routes based on vehicle type, factoring in the specific emissions
each vehicle contributes to the environment.

The steps of the dynamic traffic re-routing algorithm are formalised in Algorithm
7.1, which outlines the process of adjusting travel times based on air quality and
emissions data, recalculating routes accordingly.

As shown in Algorithm 7.1, the dynamic traffic management strategy involves
several key steps:

1. The algorithm starts by retrieving all existing routes and edges from the
traffic demand data and network (lines 1–3). The variable routes contains
all vehicle routes in the initial traffic demand, while allEdges includes all
the edges present in the network. An empty dictionary newEdgesWeights is
initialised to save the adjusted travel times for each edge and vehicle type.

2. Next, the algorithm computes the AQI weight for each edge (lines 5–8).
For every edge, it calculates the free-flow travel time and retrieves the AQI
value, which is then normalised relative to the maximum AQI in the network.
The normalised AQI is used to compute the AQI weight (WAQI) using the
negative exponential function in Equation 7.1. This function assigns higher
weights to highly polluted segments, making them a worse route option for
the routing algorithm.
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Algorithm 7.1: Proposed dynamic traffic re-routing algorithm.

Input: Traffic Demand, Network, Vehicle Emissions Profiles, AQI Data, ∆
value

Output: Rerouted Traffic Demand
1 routes ← getAllRoutes(Traffic Demand);
2 allEdges ← getAllEdges(Network);
3 newEdgesWeights ← {};
4 for Edge in allEdges do
5 freeFlowTravelTime ← getFreeFlowTravelTime(Edge);
6 AQIValue ← getAQIValue(Edge);
7 normalisedAQI ← normalise(AQIValue);
8 WAQI[Edge] ← calculateAQIWeight(normalisedAQI);
9 for vehicleType in Vehicle Emissions Profiles do

10 emissionsFactor ← getEmissionsFactor(vehicleType);
11 Wemissions[vehicleType] ← normalise(emissionsFactor);
12 Wreroute[Edge][vehicleType] ← WAQI[Edge] ×

Wemissions[vehicleType] × ∆;
13 Tnew[Edge][vehicleType] ← freeFlowTravelTime ×

(1 +Wreroute[Edge][vehicleType]);
14 newEdgesWeights[Edge][vehicleType] ← Tnew[Edge][vehicleType];

15 end

16 end
17 for routeId in routes do
18 vehicleType ← getVehicleType(routeId);
19 newRoute ← requestNewRouteToDUAROUTER(routeId,

newEdgesWeights, vehicleType);
20 updateRouteInTrafficDemand(newRoute);

21 end
22 return Re-routed Traffic Demand;

97
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WAQI = exp

(︃
− 1

64
·Normalised AQI6

)︃
(7.1)

3. After computing the AQI weights, the algorithm normalises the emissions
factors for each vehicle type to obtain the emissions weights (lines 10–11). As
stated above, the emissions factors are based on the vehicle emission profiles
corresponding to different EURO standards, as defined by the EEA. The
normalised emissions factors are stored as Wemissions for each vehicle type.

4. Then, the algorithm calculates the re-routing weights and adjusts the travel
times for each edge and vehicle type (lines 12–14). For every combination of
edge and vehicle type, the re-routing weight Wreroute is calculated by multi-
plying the AQI weight, the emissions weight, and the “Emission Sensitivity
Factor” (∆) using Equation 7.2

Wreroute = WAQI ×Wemissions ×∆ (7.2)

5. The new travel time Tnew for each edge and vehicle type is then computed by
adjusting the free-flow travel time using Equation 7.3. Then, these adjusted
travel times are saved in the newEdgesWeights dictionary.

Tnew = Tfree-flow × (1 +Wreroute) (7.3)

6. Finally, the algorithm updates the traffic demand with new routes (lines
18–20). For each route, the algorithm identifies the vehicle type, and requests
a new route from DUAROUTER based on the modified travel times. The
traffic demand is then updated with these newly computed routes, resulting
in a rerouted traffic flow that considers air quality and emissions data.

In summary, the dynamic traffic re-routing algorithm integrates air quality
data and vehicle emission profiles into the traffic routing process. By adjusting
travel times to avoid routes through highly polluted areas, especially for high-
emission vehicles, the algorithm aims to reduce pollutant exposure during urban
environmental crises while maintaining the traffic flow unaltered.

7.2 Experiments & Results

To evaluate the effectiveness of our proposed solution in mitigating air pollution
during urban environmental crises, and similarly to the previous chapter, we
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conduct simulations in the city of Valencia, Spain. This scenario provides a realistic
urban environment to assess the impact of dynamic traffic re-routing strategies on
both traffic flow and air quality.

Our experiments focus on two specific areas within the city that represent
potential environmental crisis scenarios. In the first, the Building Fire Scenario,
we simulate a building fire similar to the February 2024 incident in Valencia [137].
Here, PM10 concentrations are increased by ten times, and NOx concentrations are
doubled in the affected area. These assumptions are based on studies by Gupta et
al. [138] and Yue et al. [139], which analyse the impact of urban fires on air quality.
In the second scenario, the Smog Episode Scenario, we simulate a smog1 event near
the central train station, tripling NOx concentrations and doubling PM10 levels,
reflecting conditions observed in similar urban smog events, as documented by
research in Turin [140]. Figure 7.1 shows the locations of these simulated impact
areas within the city of Valencia.

(a) Building fire scenario. (b) Smog episode scenario near the
central train station.

Figure 7.1: Simulated impact areas of environmental disasters.

As stated in the previous chapter, we generate realistic traffic conditions by
designing simulations involving vehicles that depart from various points across the
city during peak traffic hours, specifically between 8 a.m. and 9 a.m. on a typical
weekday. This time frame captures the morning rush hour when traffic density
is high, providing a robust context for evaluating our algorithm’s performance.
Based on the traffic flow model discussed in chapter 5, our experiment simulates
the circulation of approximately 22,500 vehicles over the one-hour period.

1Fog or haze intensified by smoke or other atmospheric pollutants.
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Regarding vehicle fleet composition, we base the vehicle type distribution on
projections by Gassner et al. for Vienna [141], adapted to Valencia’s context.
Given that electric vehicles currently make up less than 1% of the fleet in Valencia,
we simulate a future scenario with an increased ratio of electric vehicles. This
creates a more meaningful context for evaluating our algorithm in a mixed fleet
environment. Table 7.1 presents the vehicle distribution according to engine type
and EURO norm, aligned with the HBEFA vehicle classes defined in chapter 4.

Table 7.1: Vehicle’s distribution in the experiment according to their profile.

Engine Type EURO norm Volume (%)

Battery Electric Euro 6 35
Diesel Euro 4 5
Diesel Euro 6 25
Petrol Euro 3 5
Petrol Euro 6 25
Hybrid (Petrol CNG) Euro 6 5

For calculating air quality levels, we employ the GRAL model, described in
chapter 2, to simulate pollutant dispersion in the city. As previously said, GRAL
incorporates detailed building geometries and meteorological data to accurately
estimate pollutant concentrations, particularly for NOx and PM10

The experiments are designed to assess the impact of our dynamic re-routing
algorithm under different conditions. Specifically, we vary the ∆ value from 1 to
10 to explore the trade-offs between reducing pollutants in affected areas and the
potential for increased congestion elsewhere due to re-routing. By adjusting the ∆
value, we aim to identify the optimal balance between improving local air quality
and maintaining overall traffic efficiency.

To evaluate the performance of our algorithm, we monitor key traffic-related
and pollution-related parameters. Traffic metrics include global average travel
time, congestion levels, and average vehicle speed across the city, providing insight
into how the algorithm impacts the overall traffic flow, and whether it introduces
significant delays or congestion. Pollution metrics include the AQI within the
affected areas and across the city, as well as concentrations of NOx and PM10. We
track both mass emissions and pollutant concentrations to assess the algorithm’s
effectiveness in reducing pollution within crisis zones, and to identify any potential
increases in pollution elsewhere in the city.

Having outlined the experimental setup and the parameters to be measured,
we now present the results of our simulations, and discuss the implications of
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our findings. We begin by evaluating how varying the ∆ value affects air quality
metrics such as AQI, NOx, and PM10 levels in both scenarios. We then examine
the effects of the optimal ∆ value on traffic flow parameters to determine whether
improvements in air quality are achieved without significant trade-offs in traffic
efficiency.

7.2.1 Effect of Varying ∆ on Air Quality

The “Emission Sensitivity Factor” (∆) is a critical parameter in our dynamic
traffic re-routing algorithm, determining how strongly the algorithm prioritises air
quality considerations over travel efficiency. By adjusting ∆, we control the extent
to which vehicles, particularly high-emission ones, are rerouted away from highly
polluted areas. To evaluate the impact of varying ∆ on air quality, we conducted
simulations across a range of ∆ values from 1 to 10 for both the Building Fire and
Smog Episode scenarios introduced earlier.

Figures 7.2 and 7.3 present the results of these simulations, illustrating changes
in NOx and PM10 mass emissions and concentrations, both within a 1 km radius
of the pollution sources, and across the entire city. While PM10 is included for
completeness, our primary focus is on NOx, as it is more directly influenced by
vehicle emissions.

In the Building Fire Scenario, as shown in Figures 7.2a and 7.2c, increasing ∆
leads to a significant decrease in NOx mass emissions and concentrations within the
affected area. Specifically, at ∆ = 10, there is a reduction of approximately 25% in
NOx mass emissions. This decline indicates that higher ∆ values effectively reduce
pollutant levels by re-routing traffic away from the impacted zone. However, when
considering the entire city, the changes are less pronounced, with a slight increase
in NOx concentrations at higher ∆ values. This suggests that, while pollution
decreases locally, it may be redistributed to other parts of the city, emphasising on
the need for a balanced approach.

Similarly, in the Smog Episode Scenario depicted in Figures 7.2b and 7.2d,
increasing ∆ results in substantial reductions in NOx emissions and concentrations
within the studied area. At ∆ = 10, the reduction in NOx mass emissions exceeds
50%, showcasing the algorithm’s effectiveness in mitigating pollution in critical
zones. Nonetheless, fluctuations in NOx concentrations across the city are observed,
with some ∆ values (e.g., ∆ = 4 and ∆ = 6) leading to slight increases in other
areas due to traffic redistribution.

The PM10 variations mirror the trends observed for NOx, although to a lower
magnitude, as PM10 is less directly influenced by vehicle emissions in these scenarios.

To further assess the impact on overall air quality, we analysed the changes
in the AQI. Figure 7.4 illustrates the AQI variations for both scenarios across
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(a) NOx Mass Difference: Building Fire
Scenario.

(b) NOx Mass Difference: Smog Episode
Scenario.

(c) NOx Concentration Difference:
Building Fire Scenario.

(d) NOx Concentration Difference: Smog
Episode Scenario.

Figure 7.2: Impact of varying ∆ on NOx mass emissions and concentrations for
different scenarios.

different ∆ values.

In the Building Fire Scenario (see Figure 7.4a), as ∆ increases, the AQI in the
studied area shows a slight decline, with the most significant reduction of around
-6 at ∆ = 6. However, the AQI remains relatively stable across all ∆ values. In
contrast, the overall city AQI increases modestly, peaking at approximately 4 for
∆ = 10. This trend can be attributed to the fact that, in the city, the increased
traffic congestion from re-routing leads to higher NOx levels in other areas, thereby
raising the AQI.
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(a) PM10 Mass Difference: Building Fire
Scenario.

(b) PM10 Mass Difference: Smog Episode
Scenario.

(c) PM10 Concentration Difference:
Building Fire Scenario.

(d) PM10 Concentration Difference: Smog
Episode Scenario.

Figure 7.3: Impact of varying ∆ on PM10 mass emissions and concentrations for
different scenarios.

For the Smog Episode Scenario (see Figure 7.4b), the optimal ∆ appears to be
around 6 as well. At this point, the AQI improvement is well-balanced between
the city and the affected area, with the city-wide AQI increasing by approximately
3 points, while the studied area sees a significant reduction of about -7. At very
high ∆ values, although the AQI in the studied area is reduced further, the overall
city impact shows an increase, indicating that traffic and emissions are being
redistributed.

Based on these observations, ∆ = 6 is identified as the optimal value for this
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(a) AQI Variation: Building Fire Scenario. (b) AQI Variation: Smog Episode
Scenario.

Figure 7.4: Impact of varying ∆ on AQI levels for different scenarios.

city. This choice provides the best trade-off between reducing AQI, and NOx in the
selected area, while controlling the increases in these metrics across the city. This
selection ensures that the algorithm is effective in re-routing high-emission vehicles
away from sensitive zones, while minimising negative impacts on the overall city
air quality. Further research could explore more dynamic methods of adjusting ∆
in real-time to respond to evolving traffic and environmental conditions.

To visualise the spatial impact of our algorithm, we present AQI heatmaps for
the default scenario and the optimised ∆ = 6 scenario in Figure 7.5.

In the Building Fire Scenario, Figures 7.5a, 7.5c, and 7.5e depict the AQI
distribution. The heatmaps reveal that, while most of the area shows minimal
changes in AQI, there is a noticeable external ring where AQI levels decrease
significantly, by almost 20 points. In contrast, certain parts of the northern area
experience increases of up to 15 points, explaining the average AQI reduction of 6
points in the studied area.

In the Smog Episode Scenario, the corresponding heatmaps are shown in
Figures 7.5b, 7.5d, and 7.5f. These figures demonstrate that our solution effectively
lowers AQI levels within the targeted area, while slightly increasing them in the
surrounding zones, and in a localised section of the studied area. Unlike the Building
Fire Scenario, the AQI reduction in this scenario is more evenly distributed, with
substantial decreases spread across the area. Comparing Figures 7.5b and 7.5d, we
observe a noticeable reduction in the size of the high-pollution zone (represented
by the orange circle), indicating a significant improvement in air quality within
the affected area.
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(a) Building Fire Scenario (Default). (b) Smog Episode Scenario (Default).

(c) Building Fire Scenario (∆ = 6). (d) Smog Episode Scenario (∆ = 6).

(e) Building Fire (AQI Difference). (f) Smog Episode Scenario (AQI
Difference).

Figure 7.5: Comparison of AQI heatmaps for different scenarios and re-routing
solutions.
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Overall, these heatmaps confirm that the optimised ∆ = 6 re-routing strategy
successfully mitigates high AQI levels in critical zones, while still maintaining
acceptable air quality throughout the city. Overall, the results underscore the
algorithm’s capability to improve local air quality during environmental crises
without causing substantial negative impacts elsewhere.

7.2.2 Traffic Flow Analysis for Optimal ∆

After identifying ∆ = 6 as the optimal “Emission Sensitivity Factor”, we analysed
the algorithm’s impact on traffic flow to determine if the air quality benefits come
at the expense of traffic efficiency. Key traffic metrics, including average travel
time, route length, waiting time, time loss, and average speed, were evaluated for
the Default scenario, and for the two environmental crisis scenarios with ∆ = 6.
Table 7.2 summarises these metrics and the percentage differences relative to the
Default scenario.

Table 7.2: Average traffic metrics across scenarios and percentage differences from
the Default scenario.

Metric Default Building
Fire

% Diff. Smog
Episode

% Diff.

Trip Duration (s) 625.73 631.18 +0.87% 629.55 +0.61%
Route Length (m) 5131.67 5206.08 +1.45% 5206.67 +1.46%
Waiting Time (s) 145.48 146.37 +0.61% 143.64 -1.26%
Time Loss (s) 234.37 233.97 -0.17% 233.61 -0.32%
Speed (m/s) 8.48 8.50 +0.24% 8.52 +0.47%

When analysing average trip duration and route length, we observe a marginal
increase in both metrics in the Building Fire and the Smog Episode scenarios
compared to the non-rerouted scenario (Default). Specifically, the average duration
for vehicles to complete their routes increases by 0.87% in the Building Fire
scenario, and by 0.61% in the Train Station scenario. Similarly, the average
route length increases by about 1.45% in both scenarios. These small increments
indicate that, while the algorithm effectively reroutes vehicles to avoid high-emission
areas, it results in only a minor increase in travel times and travel distances. This
demonstrates that the re-routing strategy balances air quality improvement without
significantly compromising traffic efficiency.

The impact on average waiting time and time loss reveals additional insights
into congestion levels. In the Building Fire scenario, the average waiting time
shows a slight increase of 0.61%, indicating a small rise in congestion in some parts
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of the city. Conversely, in the Smog Episode scenario, the average waiting time
decreases by 1.26%, suggesting a more effective dispersion of traffic in this case.
The average time loss, which measures delays due to driving below optimal speeds,
shows negligible differences across all scenarios. There is a slight reduction of 0.17%
in the Building Fire scenario, and 0.32% in the Smog Episode scenario, indicating
that the re-routing strategy does not significantly disrupt overall traffic efficiency.

The average speed of vehicles across the network remains relatively stable,
showing only minor variations between the scenarios. In the Building Fire scenario,
there is a slight increase of 0.24% in the average speed, while the Smog Episode
scenario sees a marginal increase of 0.47%. These small increases confirm that
re-routing does not considerably impact traffic flow dynamics, and that vehicles
can still maintain an efficient pace throughout the network. This demonstrates the
algorithm’s capability to manage re-routing effectively without causing significant
slowdowns or bottlenecks.

To illustrate the practical impact of the re-routing algorithm, Figure 7.6 presents
an example of a vehicle’s route in the Smog Episode Scenario. The algorithm
redirects the vehicle away from the high-pollution area near the train station,
selecting an alternative path that maintains travel efficiency while contributing to
air quality improvement.

Figure 7.6: Example of a rerouted path in the Smog Episode Scenario.

Overall, the analysis indicates that the air quality benefits achieved by the
re-routing algorithm with the optimal ∆ value are attained without a substantial
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detriment to traffic efficiency. While there are minor increases in average travel
time and route length, the reductions in waiting time and time loss, particularly in
the Smog Episode scenario, reflect the algorithm’s ability to balance improved air
quality with smooth traffic flow.

7.3 Summary

In this chapter, we presented a dynamic approach to managing urban traffic flow
by integrating air quality data and vehicle emission profiles. Our method relies
on adjusting vehicle routes dynamically based on the AQI and specific emissions
factors for different vehicle types, controlled by an “Emission Sensitivity Factor”
(∆). To demonstrate its effectiveness, we implemented our dynamic traffic re-
routing algorithm using SUMO’s DUAROUTER tool, and applied it to the city of
Valencia, simulating environmental crisis scenarios such as building fires and smog
episodes.

We first assessed the impact of varying the ∆ value on air quality metrics,
specifically focusing on NOx and PM10 mass emissions and concentrations. By
analysing different ∆ values, we found that ∆ = 6 provided the optimal balance we
sought, significantly reducing pollutant concentrations in the affected areas without
causing substantial increases elsewhere in the city. This optimal ∆ effectively
lowered the AQI in the target zones, demonstrating the algorithm’s capability to
mitigate air pollution during environmental crises.

Next, we evaluated the algorithm’s effect on traffic flow parameters under
the optimal ∆. We examined metrics such as average travel time, route length,
waiting time, time loss, and average speed. The results indicated that the dynamic
re-routing strategy led to only minimal increases in travel time and route length,
with negligible impacts on waiting time and time loss. Average speeds remained
stable or improved slightly, confirming that the air quality benefits were achieved
without significantly compromising traffic efficiency.

In summary, this chapter has demonstrated that a dynamic traffic manage-
ment approach, using air quality data and vehicle emission profiles, is an effective
tool for reducing urban pollution during critical events. By leveraging SUMO’s
DUAROUTER and our adaptive algorithm, urban planners can implement respon-
sive traffic strategies that balance environmental objectives with traffic efficiency,
contributing to more sustainable and resilient urban environments.
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Chapter 8

Predicting Air Quality for Current
and Future Urban Traffic

In the previous chapters, we focused on dynamic and static traffic re-routing
strategies to mitigate urban air pollution by optimising traffic flow based on
environmental criteria. In this chapter, we wanted to go one step further and
account for the long-term changes in vehicle technology and fleet composition, to
ascertain how this significantly impacts air quality. Building upon this foundation,
the current chapter examines the projected evolution of Valencia’s vehicular fleet,
particularly the increasing adoption of Electric Vehicles (EVs) that is expected,
and its potential effects on future urban air quality. By adapting fleet evolution
scenarios from a study conducted for Vienna, we simulate various future scenarios
up to year 2050, considering a pessimistic outlook on public transportation uptake.
Through these simulations, we assess how vehicle type shifts have an influence on
the city’s AQI, demonstrating that a gradual transition towards electric vehicles can
substantially improve air quality over time; our analysis provides valuable insights
for policymakers and urban planners aiming for sustainable urban environments.
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8.1 Overview of Valencia’s Traffic Fleet Evolution

Predicting future air quality in urban environments requires a comprehensive
understanding of how the vehicular fleet will evolve. Changes in vehicle technology,
regulatory policies, and consumer preferences significantly influence the composition
of vehicles on the road, which in turn affects emission profiles and air quality
outcomes. Without specific projections for Valencia, we have adapted the vehicle
fleet evolution scenarios from Gassner et al.’s study conducted for Vienna [141].

Vienna and Valencia share several characteristics that make this adaptation
reasonable. As members of the European Union, they are subject to similar
environmental regulations, emission standards, and policy frameworks to reduce
vehicular emissions and promote sustainable transportation. Additionally, both
cities show comparable urban dynamics, including population density, economic
activity, and a dependence on private vehicles for urban mobility.

In our fleet evolution scenarios for Valencia, we have taken a pessimistic view of
the increasing use of public transportation. This view derives from observed trends
suggesting limited investment in public transport infrastructure, and a persistent
preference among residents for private vehicle use over buses or the underground
metro system. Factors contributing to this preference include the convenience and
flexibility offered by private vehicles and perceived shortcomings in the coverage,
frequency, and reliability of public transport services.

Given these considerations, our projections highlight an increase in the adoption
of hybrid and electric vehicles, driven by policy incentives, technological advance-
ments, and initiatives by vehicle manufacturers to promote cleaner transportation
options. Conversely, the share of conventional diesel and petrol vehicles is expected
to decline over time, specifically older models that do not meet emission standards.

Table 8.1 summarises our proposed evolution of Valencia’s vehicle fleet com-
position from the current state through the year 2050. The vehicle categories are
defined based on engine type and Euro emission standards.

As shown in Table 8.1, the ratio of older diesel (Euro 4) and petrol (Euro 3)
vehicles is projected to decrease significantly, with these categories being phased
out by 2040 and 2035, respectively. Newer diesel and petrol vehicles meeting Euro
6 standards are expected to remain in the fleet, with declining shares over time.
Also, hybrid vehicles see a modest increase, reflecting gradual adoption, while
electric vehicles exhibit substantial growth, reaching 80% of the fleet by 2050.

In the following subsection, we plan to assess how changes in the composition
of vehicle fleets affect the widespread air quality in Valencia.
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Table 8.1: Proposed vehicle’s fleet evolution in Valencia according to their profile.

Diesel Petrol Hybrid Electric

Year Euro 4 Euro 6 Euro 3 Euro 6 Euro 6 Euro 6

Current 29.96% 20.21% 27.35% 18.45% 3.42% 0.61%
2030 15.00% 25.00% 15.00% 25.00% 5.00% 15.00%
2035 5.00% 25.00% 5.00% 25.00% 5.00% 35.00%
2040 0% 25.00% 0% 20.00% 10.00% 45.00%
2045 0% 20.00% 0% 12.50% 7.50% 60.00%
2050 0% 5.00% 0% 5.00% 10.00% 80.00%

8.2 Experiments & Results

To assess the potential impact of the projected evolution of Valencia’s vehicle
fleet on urban air quality, we performed a series of simulations modelling different
future scenarios stated above. These simulations aim to evaluate how increasing
the adoption of EVs, and the gradual reduction of higher-emission vehicles, affect
the AQI levels across the city over time.

For our analysis, we used our customised air quality levels and the EEA
associated colour codes to categorise and visualise the AQI results. Figure 8.1
presents the AQI values along with their corresponding colours, as established by
the EEA guidelines.1 This colour classification clearly explains air quality levels
and facilitates comparisons between different scenarios.

We structured the results into two main subsections. The first subsection
provides a detailed statistical assessment of the AQI for each scenario. This
includes presenting the average AQI values, differences compared to the current
situation, and the distribution of AQI values through standard distribution plots.
This quantitative analysis enables us to understand the overall trends in air quality
improvements over time, and to assess the effectiveness of the projected fleet
evolution in reducing pollution.

The second subsection is a key part of our analysis. It focuses on the geographical
representation of air quality levels across Valencia. We present AQI heatmaps for
the city for all the scenarios considered, illustrating the spatial distribution of air
quality, and highlighting areas of significant change. Besides, we include different
heatmaps that depict the changes in AQI levels between the current scenario and
each future scenario. This spatial analysis helps identify specific regions where air

1The colours are derived from the EEA guidelines, and the range values correspond to those
presented in Table 2.4 in Chapter 2.
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Figure 8.1: AQI values with their associated colours.

quality improvements are most prominent, providing valuable insights for targeted
policy interventions.

By analysing these results, we aim to provide a thorough understanding of
how the increasing penetration of electric vehicles, and the reduction of older,
higher-emission vehicles, contribute to changes in AQI levels across Valencia. This
information is essential for policymakers and urban planners in developing strategies
that enhance air quality and promote sustainable urban environments.

8.2.1 Quantitative Analysis of AQI Values

As presented in Table 8.2, there is a lowered trend in average AQI values as
Valencia’s vehicle fleet shifts from predominantly diesel and petrol vehicles to
electric ones.

In the current scenario, the average AQI is 127, placing it within the “Mod-
erate” category according to the established thresholds. This means that, under
current conditions, air quality is concerning but not severe, with potential health
implications for sensitive individuals. However, the simulations show that, by
2030, the average AQI will decrease to 98, entering the “Fair” category, a 29-point
improvement. This shift reflects the transition from Euro 4 diesel vehicles to the
Euro 6 EVs. This improvement in air quality is expected to significantly reduce
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Table 8.2: Average AQI and difference with respect to the current scenario.

Scenario Avg. AQI Difference w.r.t. current

Current 127 N/A
2030 98 -29
2035 71 -56
2040 58 -69
2045 53 -74
2050 51 -76

the incidence of respiratory diseases and other health issues related to poor air
quality.

From 2030 to 2035, we observe a more significant reduction in AQI, dropping by
27 points, resulting in an average AQI of 71. This improvement can be attributed
to a 20% increase in electric vehicle share (from 15% to 35%), as older diesel and
petrol vehicles are replaced by cleaner alternatives (see Table 8.1). This marks a
turning point, as the increased penetration of electric vehicles substantially affects
pollutant levels, further enhancing air quality. With these data, we assume that,
by 2035, most of the city will experience air quality in the “Fair” range, indicating
that public health risks are significantly reduced.

The trend continues in later years, with AQI values progressively falling to 58
in 2040, 53 in 2045, and finally reaching 51 by 2050. By 2050, Valencia’s air quality
will consistently fall almost within the “Good” category, a drastic improvement
of 76 points compared to the current situation. This outcome is driven by the
near-complete transition to electric vehicles, which represent 80% of the fleet by
2050, and the absence of older diesel and petrol vehicles, which emit far more
significant amounts of pollutants such as NOx.

To complement the average AQI values, Figure 8.2 shows the normal distribution
of AQI for each scenario, providing a deeper understanding of how air quality
varies across different city areas.

In the current scenario (Figure 8.2a), the distribution is skewed toward higher
AQI values, with many values falling into the “Moderate” or even “Poor” categories,
and with no points within the “Good” category. This indicates that large portions
of Valencia are exposed to harmful levels of air pollution, with significant public
health risks. In addition, the long tail that gets into the “Very Poor” category
highlights the variability in pollution levels across the city, where some areas face
more serious pollution challenges.

As we move forward to 2030 and 2035 (see Figures 8.2b and 8.2c), the dis-
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(a) Current. (b) Year 2030.

(c) Year 2035. (d) Year 2040.

(e) Year 2045. (f) Year 2050.

Figure 8.2: Air quality normal distribution in Valencia for the different years.

tribution shifts significantly leftward, reflecting the positive impact of replacing
older diesel and petrol vehicles with electric alternatives. This shift is particularly
pronounced in 2035 when EV adoption will increase to 35%. The more uniform
distributions and shorter tails in these scenarios indicate a lower standard deviation
of air quality, suggesting that pollution is becoming less concentrated in specific
urban hotspots.

By 2040 (Figure 8.2d), the distribution narrows further, having a higher peak.
This shows a clear trend toward lower AQI values. The average AQI drops, and
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most points now fall into the “Fair” air quality range, with a low standard deviation,
getting almost no points into the “Poor” category. This improvement means a more
consistent reduction in air pollution across the city, driven by a continued increase
in electric vehicle penetration, reducing dependence on conventional combustion
engines.

Finally, the 2045 and 2050 scenarios (see Figures 8.2e and 8.2f) reveal an even
tighter distribution centred around the “Good” and “Fair” categories. Their short
tails suggest a narrower standard deviation, further confirming the homogenisation
of air quality across the city, with most points consistently improving air conditions.
By 2050, nearly all regions of Valencia will have AQI values close to 50, with a low
standard deviation, showing that high-pollution areas have been almost entirely
eradicated.

8.2.2 Spatial Visualisation of AQI Distributions

As the generated heatmaps show (see Figure 8.3), the spatial analysis of AQI across
Valencia offers critical insights into the city’s evolving pollution landscape under
different vehicle fleet compositions. By analysing these changes over time, we can
better understand the environmental impact of transitioning to electric vehicles
and reducing reliance on traditional internal combustion engines.

In the current scenario (Figure 8.3a), the air quality across Valencia remains
a significant public health concern, with all districts falling into the “Moderate”
and “Poor” AQI categories. This is particularly pronounced in central areas with a
concentration of vehicle congestion and, consequently, emissions. We can observe a
big red stain in the middle of the city, which indicates that these areas are subjected
to harmful levels of pollutants, such as NOx and PMx, which pose serious risks to
the residents’ health.

However, as we move to the 2030 scenario (Figure 8.3b), a notable improvement
in air quality is observed, with much of the city transitioning into the Fair AQI
category. This shift can be attributed to the gradual adoption of EVs, which
comprise 15% of the vehicle fleet, replacing older diesel and petrol vehicles. Despite
these improvements, certain areas, such as the city centre and some peripheral areas
close to the highway, continue to show “Moderate” levels of air pollution. This
underscores the urgent need for continued interventions in these zones, ensuring
that no area is left behind in the transition to cleaner air.

The 2035 scenario (Figure 8.3c) brings a more pronounced improvement, with
all the districts now displaying AQI values within the Fair category. By 2035, 35%
of the vehicle fleet has shifted to electric alternatives, which significantly reduces
emissions. As a result, pollution levels in central areas that previously fell within
the “Poor” air quality category have significantly decreased.
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(a) Current. (b) Year 2030.

(c) Year 2035. (d) Year 2040.

(e) Year 2045. (f) Year 2050.

Figure 8.3: Evolution of air quality in Valencia for the different years.

In the 2040 scenario (Figure 8.3d), Valencia significantly improves air quality,
with 45% of vehicles being electric. This transition has resulted in a few areas having
the “Good ” air quality category, leaving most areas with the “Fair” category.
Progressing to the 2045 scenario (Figure 8.3e), the situation looks even more
optimistic, with 60% of the vehicle fleet including electric vehicles. At this point,
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the city has more areas falling within the “Good” category.

Finally, half of Valencia’s districts achieve the “Good” air quality category in
the 2050 scenario (Figure 8.3f). The scenario predicts that 80% of the city’s vehicles
will be electric, significantly reducing NOx and PMx emissions. The complete
phase-out of older diesel and petrol vehicles has resulted in consistently low AQI
values throughout the city. The improvement in air quality in this scenario is
particularly significant in areas that previously suffered from poor air quality.

Regarding the difference heatmaps, these are shown in Figure 8.4. This figure
illustrates the AQI changes between the current scenario and future vehicle fleet
compositions across different years.

Firstly, we observe significant reductions in AQI across various districts by
comparing the current scenario and 2030 (Figure 8.4a). Notably, areas near the
centre show moderate improvements, reflecting a reduction in emissions as the
fleet composition shifts toward electric vehicles. However, the overall difference is
moderate, suggesting that this initial phase of vehicle replacement is insufficient to
bring about dramatic reductions in air pollution.

Moving forward to 2035 (Figure 8.4b), the AQI reduction becomes more pro-
nounced, especially in districts near the centre and close to the port. These regions
experience reductions of up to 50 AQI points. This improvement coincides with a
substantial rise in the share of electric vehicles in the fleet (20% increase), which
replaces a large portion of older diesel and petrol vehicles.

Thirdly, the heatmaps for 2040 and 2045 (Figures 8.4c and 8.4d) show even
more significant changes. Most areas now experience AQI reductions exceeding 50
points, with several districts in the eastern and centre parts of Valencia achieving
reductions approaching 100 points. By this time, the city’s vehicle fleet consists
primarily of Euro 6 petrol, hybrid, and electric vehicles, with nearly half of the
fleet comprising electric vehicles. The impact on AQI is evident, as most city areas
shift from “Moderate” to “Fair” or “Good”.

Finally, the 2050 scenario (Figure 8.4e) presents the most dramatic reduction
in AQI levels across the city, with most of the map having bright colours. With
an 80% electric vehicle share, AQI reductions of up to 100 points are common,
especially in central districts. As seen earlier, almost all areas of Valencia now fall
into the “Good” or “Fair” categories, showing a significant improvement in air
quality, and a corresponding reduction in public health risks associated with air
pollution.
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(a) Year 2030. (b) Year 2035.

(c) Year 2040.

(d) Year 2045. (e) Year 2050.

Figure 8.4: Difference in AQI levels in Valencia for the different years with respect
to the current situation.
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8.3 Summary

In this chapter, we have analysed the potential impact of Valencia’s projected
vehicular fleet evolution on urban air quality. Acknowledging the absence of
specific local projections, we adapted fleet evolution scenarios from Gassner et
al.’s study [141] for Vienna, given the similarities between the two European
cities in terms of regulations and urban characteristics. In particular, we assumed
a pessimistic scenario regarding public transportation growth, focusing on the
increasing adoption of electric vehicles due to policy incentives and technological
advancements.

We presented our proposed fleet composition from the current state to 2050,
showing a significant decrease in older diesel and petrol vehicles, and a substantial
increase in electric vehicles, being that the latter reach 80% of the fleet by 2050.
Using these data projections, we conducted simulations to assess how these changes
affect the AQI across Valencia.

Our quantitative analysis revealed a consistent downward trend in average AQI
values as the fleet transitions towards electric vehicles. The average AQI decreased
from 127 in the current scenario, to 51 by 2050, moving from the “Moderate” and
“Poor” towards the “Good” air quality category. The standard distribution plots
of AQI for each scenario showed a significant shift towards lower AQI values over
time, indicating widespread improvements in air quality across the city.

Spatial visualisation through AQI heatmaps highlighted substantial reductions
in pollutant concentrations, particularly in urban areas that previously experienced
high pollution levels. Difference heatmaps between current and future scenarios
underscored the areas with the most significant improvements, correlating with
regions of dense traffic and high initial emissions.

In summary, this chapter demonstrated that the projected evolution of Valen-
cia’s vehicle fleet towards a greater electric vehicle adoption can lead to significant
improvements in urban air quality over time. The findings emphasise the impor-
tance of promoting cleaner vehicle technologies and provide crucial insights for
policymakers and urban planners. Specifically, our research suggests that poli-
cies promoting electric vehicle adoption and improving public transportation can
significantly enhance air quality, public health, and the sustainability of urban
environments.
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Chapter 9

Conclusions, Future Work and
Publications

Urban air pollution remains a critical challenge, significantly affecting public health
and environmental sustainability. With the rapid growth of urban populations and
increasing vehicular traffic, cities worldwide struggle to manage congestion while
minimising air pollution. Traditional traffic management strategies have focused
on improving traffic flow, often ignoring the environmental impacts of vehicular
emissions. However, addressing urban air pollution is essential given its direct link
to health problems and reduced quality of life.

Recent advancements in ITS and vehicular communication offer new oppor-
tunities to attack these issues. By employing real-time data, advanced traffic
modelling, and adaptive algorithms, traffic management solutions can be devel-
oped to optimise traffic flow while prioritising environmental considerations. This
requires a comprehensive framework that integrates realistic traffic simulation,
accurate emission modelling, dynamic re-routing based on environmental data,
and an exhaustive assessment of the environmental impacts of traffic restrictions.
Throughout this thesis we addressed several key challenges: (i) creating realistic
traffic models; (ii) accurately characterising vehicle emissions and air quality data;
(iii) developing context-aware routing algorithms; (iv) evaluating the environmental
effects of traffic restrictions; and (v) predicting future air quality with evolving
vehicle fleets. We now summarise our findings, discuss potential directions for
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future work, and showcase the publications derived from this research.

9.1 Conclusions

We began by establishing a robust vehicular traffic management framework. This
framework integrated traffic data collection from induction loop detectors, traffic
simulation using SUMO, emission modelling with the HBEFA model, and pollutant
dispersion analysis using both the “Fixed Box Model” and GRAL. By combining
these components, we provided a solid foundation for evaluating the impact of
traffic management strategies on urban air quality. Integrating SUMO with
GRAL through our SUMO2GRAL tool enabled detailed and accurate pollutant
dispersion modelling in urban environments, accounting for building geometries
and meteorological conditions.

Once our framework was created, we started by addressing the challenge of
generating realistic traffic demand based on induction loop data. We analysed
the limitations of existing tools like DFROUTER, which produced unrealistic
traffic volumes and route lengths in urban contexts. To overcome these limita-
tions, we proposed a novel reverse-engineering approach that significantly improved
the accuracy of traffic volume, spatial distribution of origin points, and route
lengths. Our solution reduced the discrepancy between simulated and real traffic
volumes, achieving a more realistic representation of traffic flows. Specifically,
we decreased the average traffic volume deviation from 516% to a much lower
percentage compared to real measurements. Additionally, we improved the distri-
bution of departure areas by increasing the number of origin points by 418% over
DFROUTER, and increased the average route length by 78%, resulting in more
realistic travel distances within the simulation.

After creating the traffic demand, we focused on a static approach to traffic
re-routing to reduce air pollution in specific urban areas. We developed a method
that adjusts traffic weights on street segments using a static α value, influencing
routing decisions to minimise pollution in targeted zones. Applying this method
to Valencia, we tested two models: full and partial traffic isolation around the old
riverbed. Our experiments demonstrated that the partial isolation model, with an
optimal α value of 2.7, achieved better results, reducing pollutant concentrations
and improving the AQI in the target area by 19 points with a minimal impact on
the overall traffic flow. This approach showed that environmental goals could be
met without significant disruptions, highlighting the effectiveness of static traffic
management using predefined environmental constraints.

Building upon the static approach, we introduced a dynamic traffic re-routing
algorithm that adjusts vehicle routes based on real-time air quality data and vehicle
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emission profiles. By incorporating an “Emission Sensitivity Factor” (∆), we
controlled the algorithm’s responsiveness to environmental conditions. Simulating
environmental crisis scenarios in Valencia, such as building fires and smog episodes,
we found that an optimal ∆ value of 6 significantly reduced pollutant concentrations
by 15% in affected areas without causing substantial increases elsewhere in the
city. The dynamic re-routing strategy demonstrated minimal impact on traffic
efficiency, with only minor increases in average travel time and route length, and
minor changes in waiting time and time loss. Likewise, average speeds remained
stable, confirming that air quality benefits were achieved without significantly
compromising traffic flow.

Finally, we examined the impact of increasing the share of EVs in the urban
fleet on future air quality. Our simulations showed that, as the proportion of EVs
increases, the AQI levels in the city decrease correspondingly. This finding suggests
that encouraging the adoption of electric vehicles can be an effective long-term
strategy for improving urban air quality. The results provide valuable insights
for policymakers and urban planners considering initiatives to encourage electric
vehicle use, highlighting the potential for significant air quality improvements as
the vehicle fleet evolves.

With the contributions mentioned above, the original goals of this thesis have
been achieved, so this dissertation can now be concluded.

9.2 Future Work

This thesis has laid a solid foundation for integrating air quality considerations
into urban traffic management systems, but several research opportunities remain
to extend and enhance the framework proposed here. Below are some potential
future works derived from the findings of this thesis.

One of the most promising directions for future research involves enhancing
the dynamic re-routing algorithm. The current study has shown the potential of
dynamic traffic management strategies to reduce pollution during environmental
crises, such as building fires or smog episodes. However, future research should
explore further optimisation of the “Emission Sensitivity Factor” (∆) by incorpo-
rating more pollutants beyond NOx and PMx, such as O3 and SO2. Additionally,
integrating machine learning models to predict air quality and traffic patterns
could improve the precision of the re-routing algorithm, enabling it to adapt more
intelligently to real-time environmental data. This would enhance the algorithm’s
capability to mitigate pollution under various urban conditions, such as industrial
accidents or heavy traffic congestion.
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Similarly, SUMO2GRAL presents another area with potential for future devel-
opment. While the tool has proven effective in combining traffic simulations with
pollutant dispersion modelling, future enhancements could focus on adding more
features based on feedback from the research community. Testing SUMO2GRAL
across various urban settings and under various traffic policies would help solidify
its utility.

Another important direction for future work is implementing and testing
our proposed traffic management solutions in real controlled environments to
demonstrate their effectiveness. While our simulations have shown promising
results, validating these approaches in real-world scenarios is essential for assessing
their practical applicability. By conducting pilot studies within controlled urban
areas, we can evaluate the operational feasibility, identify potential implementation
challenges, and gather empirical data to refine our models and algorithms. This
would provide valuable insights into the interaction between traffic systems and
environmental factors.

Finally, we could explore extending the applicability of traffic re-routing be-
yond pollution reduction. For example, optimising traffic flows during holidays,
major city events, or emergency evacuations represents an opportunity for further
exploration. By developing algorithms that adapt to daily traffic conditions and
exceptional events, we could make traffic management more flexible, efficient, and
capable of serving various urban needs.

In conclusion, while this thesis has significantly improved urban traffic manage-
ment from an environmental perspective, the field has room for further research
and innovation. Integrating more pollutants, enhanced simulation tools, optimised
algorithms, and real-world testing will enable the development of even more robust
and adaptive traffic management solutions, ultimately helping to create healthier,
more sustainable urban environments.

9.3 Publications

This section lists the publications that are a result of this thesis. It also covers
other collaborations and related publications published during this time.

International Journals

1. Padrón, J. D., Soler, D., Calafate, C. T., Cano, J. C., & Manzoni, P.
(2022). Improving air quality in urban recreational areas through smart traffic
management, Sustainability 2022. I.F. 2022: 3.9; JCR: Q2 Category.
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2. Padrón, J. D., Hernández-Orallo, E., Calafate, C. T., Soler, D., Cano, J. C.,
& Manzoni, P. (2023). Realistic traffic model for urban environments based
on induction loop data, Simulation modelling practice and theory 2023. I.F.
2023: 3.5; JCR: Q1 Category.

3. Padrón, J. D., Calafate, C. T., Cano, J. C., & Manzoni, P. (2024). Dynamic
Traffic Routing for Air Quality Enhancement During Urban Environmental
Crises, Transportation research part d: transport and environment 2024. I.F.
2023: 7.4; JCR: Q1 Category. (Under review)

International Conferences

1. Padrón, J. D., Terol, M., Zambrano-Martinez, J. L., Calafate, C. T., Cano,
J. C., & Manzoni, P. (2021, September). Assessing the impact of road traffic
constraints on pollution. In 2021 IEEE 94th Vehicular Technology Conference
(VTC2021-Fall) (pp. 1-5). IEEE. Core B / GGS class 2.

2. Riviere, M., Padrón, J. D., Calafate, C. T., Cano, J. C., & Razafindralambo,
T. (2023, June). Improving emergency vehicles flow in urban environments
through SDN-based V2X communications. In 2023 IEEE 97th Vehicular
Technology Conference (VTC2023-Spring) (pp. 1-6). IEEE. Core B / GGS
class 2.

3. Mart́ınez, A., Padrón, J. D., Zambrano-Martinez, J. L., & Calafate, C. T.
(2023, December). Adaptive Sharing of IoT Resources Through SDN-Based
Microsegmentation of Services Using Mininet. In International Conference
on Simulation Tools and Techniques (pp. 229-242). Cham: Springer Nature
Switzerland.

4. Padrón, J. D., Behrisch, M., & Calafate, C. T. (2024, October). SUMO2GRAL:
A tool to simplify the workflow of estimating pollutant concentrations in
urban areas. In 2024 IEEE/ACM 28th International Symposium on Dis-
tributed Simulation and Real Time Applications (DS-RT 2024) (pp.42-47).
IEEE. Core C.

National Conferences (Spain)

1. Padrón, J. D., Terol, M., Zambrano-Martinez, J. L., Calafate, C. T., Cano,
J. C., & Manzoni, P (2021, September). Evaluación del impacto de las
restricciones de tráfico en los niveles de contaminación. In V Jornadas de
Computación Empotrada y Reconfigurable.
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2. Baidez, S., Zambrano-Martinez, J. L., Padrón, J. D., Aksenova, T., &
Calafate, C. T. (2022, September). Cactus Pi: gestión remota de un mini-
invernadero usando Telegram. In VI Jornadas de Computación Empotrada y
Reconfigurable.

3. Tarazona-Gala, J., Padrón, J. D., & Calafate, C. T. (2024, June). Sistema
móvil para la medición de PM2.5: estudio en el área de Valencia. In VIII
Jornadas de Computación Empotrada y Reconfigurable.

126



Acronyms

A

API Application Programming Interface
AQI Air Quality Index
ATIS Advanced Traveller Information Systems

B

BAM Beta Attenuation Monitor

C

CDR Call Detail Records
CFD Computational Fluid Dynamics
CO2 Carbon Dioxide
CO Carbon Monoxide
CORINAIR Coordination Information AIR
COPERT Computer Programme to Calculate Emissions from Road

Transport
CMEM Comprehensive Modal Emissions Model
CSV Comma Separated Values

D
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Acronyms

DLR German Aerospace Centre
DGT Spanish Department of Traffic

E

ECDF Empirical Cumulative Distribution Function
EEA European Environmental Agency
EV Electric Vehicle

F

FCD Floating Car Data

G

GPS Global Positioning System
GRAL Graz Lagrangian Model
GIS Geographic Information System

H

HBEFA Handbook Emission Factors for Road Transport
HC Hydrocarbon

I

ITS Intelligent Transportation System

L

LTE Long Term Evolution
LEZ Low Emission Zones
LiDAR Light Detection and Ranging

M

MSE Mean Squared Error
MLD Multi-Level Dijsktra
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MOVES Motor Vehicle Emission Simulator

N

NOx Nitrogen Oxides
NO Nitric Oxide
NO2 Nitrogen Dioxide

O

OD Origin-Destination
OSM OpenStreetMap
O3 Ozone

P

PHEM Passenger Car and Heavy-duty Emission Model
PMx Particulate Matter

R

RSU Road Side Unit

S

SUMO Simulation of Urban MObility
SNA Social Network Analysis
SO2 Sulphur Dioxide
SEPAR Spanish Society of Pneumology and Thoracic Surgery

T

TRANSYT TRAffic Network StudY Tool
TEE Traffic Energy and Emissions Model
TEOM Tapered Element Oscillating Microbalance

U
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Acronyms

USEPA United States Environmental Protection Agency

V

VANET Vehicular Ad-Hoc Network
VSN Vehicular Social Networks
V2I Vehicle to Infrastructure
V2X Vehicle to Everything
V2V Vehicle to Vehicle
VeTESS Vehicle Transient Emissions Simulation Software
VOC Volatile Organic Compound

X

XML eXtensible Markup Language
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[48] M. Kuntner and D. Öttl. GRAL - Graz Lagrangian Model. https://gral.
tugraz.at/. Last accessed 11th September 2024. 2024 (cited on p. 17).

[49] A. Baklanov, O. Hänninen, L. H. Slørdal, et al. “Integrated systems for
forecasting urban meteorology, air pollution and population exposure”. In:
Atmospheric Chemistry and Physics 7.3 (2007), pp. 855–874 (cited on p. 17).

136

https://www.eea.europa.eu/themes/air/air-quality-index
https://www.eea.europa.eu/publications/air-quality-in-europe-2022/sources-and-emissions-of-air
https://www.eea.europa.eu/publications/air-quality-in-europe-2022/sources-and-emissions-of-air
https://gral.tugraz.at/
https://gral.tugraz.at/


Bibliography

[50] Y. Tominaga and T. Stathopoulos. “CFD modeling of pollution dispersion
in building array: evaluation of turbulent scalar flux modeling in RANS
model using LES results”. In: Journal of Wind Engineering and Industrial
Aerodynamics 104 (2012), pp. 484–491 (cited on p. 18).

[51] L. Ortolano. “Estimating air quality impacts”. In: Environmental Impact
Assessment Review 5.1 (1985), pp. 9–35 (cited on p. 18).

[52] L. Canter. “Methods for the assessment of ground water pollution potential”.
In: Ground Water Quality, John Wiley and Sons, New York NY. 1985. p
270-306, 1 fig, 22 tab, 15 ref. (1985) (cited on p. 18).

[53] A. Berchet, K. Zink, D. Oettl, J. Brunner, L. Emmenegger, and D. Brunner.
“Evaluation of high-resolution gramm–gral (v15. 12/v14. 8) no x simulations
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