Journal of Animal Science, 2024, 102, skae339
https://doi.org/10.1093/jas/skae339
Advance access publication 5 November 2024

Metabolism and Metabolomics

(& 1A%

AMERICAN SOCIETY OF ANIMAL SCIENCE

OXFORD

Cecal metabolomics of 2 divergently selected rabbit
lines revealed microbial mechanisms correlated to
intramuscular fat deposition

Agostina Zubiri-Gaitan"©, Marina Martinez-Alvaro"®, Agustin Blasco'®,
and Pilar Hernandez"

"Institute for Animal Science and Technology, Universitat Politécnica de Valencia, Camino de Vera s/n, Valencia, Spain
“Corresponding authors: agzugail@upvnet.upv.es (Agostina Zubiri-Gaitan); phernan@dca.upv.es (Pilar Hernandez)

Abstract

The gastrointestinal microbiota plays a key role in the host physiology and health through a complex host-microbiota co-metabolism. Metabolites
produced by microbial metabolism can travel through the bloodstream to reach distal organs and affect their function, ultimately influencing
the development of relevant production traits such as meat quality. Meat quality is a complex trait made up of a number of characteristics and
intramuscular fat content (IMF) is considered to be one of the most important parameters. In this study, 52 rabbits from 2 lines divergently
selected for IMF (high-IMF (H) and low-IMF (L) lines) were used to perform an untargeted metabolomic analysis of their cecal content, with the
aim to obtain information on genetically determined microbial metabolism related to IMFE A large, correlated response to selection was found
in their cecal metabolome composition. Partial least squares discriminant analysis was used to identify the pathways differentiating the lines,
which showed a classification accuracy of 99%. On the other hand, 2 linear partial least squares analyses were performed, one for each line, to
extract evidence on the specific pathways associated with IMF deposition within each line, which showed predictive abilities (estimated using
the (%) of approximately 60%. The most relevant pathways differentiating the lines were those related to amino acids (aromatic, branched-chain,
and gamma-glutamyl), secondary bile acids, and purines. The higher content of secondary bile acids in the L:line was related to greater lipid
absorption, while the differences found in purines suggested different fermentation activities, which could be related to greater nitrogen utili-
zation and energy efficiency in the Lline. The linear analyses showed that lipid metabolism had a greater relative importance for IMF deposition
in the L:line, whereas a more complex microbial metabolism was associated with the H-line. The lysophospholipids and gamma-glutamyl amino
acids were associated with IMF in both lines; the nucleotide and secondary bile acid metabolisms were mostly associated in the H-line; and the
long-chain and branched-chain fatty acids were mostly associated in the Lline. A metabolic signature consisting of 2 secondary bile acids and 2
protein metabolites was found with 88% classification accuracy, pointing to the interaction between lipid absorption and protein metabolism as
a relevant driver of the microbiome activity influencing IMF

Lay Summary

Genetic determination of phenotypes depends not only on the host genome but also on its microbiome, particularly that of the intestinal tract.
Host and microbiome form a complex co-metabolism that ultimately affects relevant phenotypes, like the intramuscular fat content. The metab-
olomic analysis of the gut content can provide a functional characterization, giving a better insight into the microbiome activity implicated. The
objective of this study was to unveil the genetically determined microbial metabolic pathways related to intramuscular fat deposition, a key
meat quality trait in all species. To do so, the cecal metabolomic analysis of 2 rabbit lines divergently selected for intramuscular fat content was
performed. Important differences between the divergent lines were found in their cecum metabolome, which pointed to the metabolism of
secondary bile acids, purines, and several amino acids as the most relevant microbial pathways differentiating the intramuscular fat deposition
of the lines. Additional analyses also suggested that there were different microbial pathways associated with the intramuscular fat deposition
within each line. Finally, a biomarker composed of 4 microbial metabolites and with 88% classification accuracy was proposed, which pointed to
lipid absorption and protein metabolism as relevant drivers of the microbiome activity influencing intramuscular fat deposition.
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infrared spectroscopy; P, probability of the difference of being greater or lower than zero; PLS, partial least square; PLS-DA, partial least square-discriminant
analysis; RP, reverse phase; SFA, saturated fatty acids; PB, purine bases; PD, purine derivatives; UPLC-MS/MS, ultra-performance liquid chromatography
coupled with tandem mass spectrometry; VIP, variable importance in projection
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Introduction

The gastrointestinal microbiota plays a key role in the host’s
physiology and health through a complex host-microbiota
co-metabolism. The biochemical pathways of the microbi-
ota produce multiple compounds (i.e., metabolites) that can
travel through the bloodstream to reach distal organs and
influence their function, similar to an endocrine organ (Clarke
et al., 2014), ultimately influencing the development of rele-
vant production traits such as meat quality.

Meat quality is a complex trait, as it is made up of sev-
eral characteristics (Warner et al., 2010; Warris, 2010). The
intramuscular fat content (IMF) is considered one of its main
parameters because it affects the tenderness, juiciness, and
flavor of meat, among other characteristics (Warris, 2010),
ultimately affecting consumers’ acceptability (Frank et al.,
2016). It is now known that gut microbiota contributes to
fat deposition in humans (Bickhed et al., 2004; Turnbaugh
et al., 2006) and other animal species (Maltecca et al., 2019;
Krause et al., 2020; Jing et al., 2022), for example by increas-
ing energy harvest from the diet (Turnbaugh et al., 2006),
altering the appetite by modulating satiety hormones (Lar-
raufie et al., 2018; Lim et al., 2020), or acting as a mediator of
inflammatory status (Cani et al., 2008; Cussotto et al., 2020;
Lim et al., 2020). Consequently, the role of the microbiome
in the deposition of IMEF, a key parameter in meat quality, has
also been explored in multiple species like pigs (Fang et al.,
2017), cattle (Krause et al., 2020), sheep (Xie et al., 2022),
chicken (Jing et al., 2022) and rabbits (Martinez-Alvaro et
al., 2021). The biological mechanisms that the microbiota
employs to affect fat deposition are still under elucidation,
although some key players have been suggested like short-
chain fatty acids (Larraufie et al., 2018), bile acids (Wahl-
strom et al., 2016), branched-chain amino acids (BCAA)
(Ridaura et al., 2013), among others. Metagenomics (i.e.,
the high-throughput sequencing of the microbiome) and 16S
(i.e., the sequencing of the variable regions of the 16S rRNA
gene) analyses have been the cornerstone for these studies;
however, the abundance of genes or taxa is not sufficient to
understand the microbial metabolism and its crosstalk with
the host, one of the reasons being because they do not dif-
ferentiate between total and active microbes (Fricker et al.,
2019). In that scenario, metabolomics analyses have gained
special attention due to the fact that metabolites constitute
the last response of biological systems to genetic and envi-
ronmental effects (Fiehn, 2002); therefore, their analysis can
be useful to elucidate the metabolic pathways directly related
to the phenotype of interest. The metabolomic analysis of the
gut content would provide a functional characterization of
the microbiome (Marcobal et al., 2013; Zierer et al., 2018),
giving a better insight into its biological mechanisms that ulti-
mately affect IMF deposition.

The gut microbiota composition is partially modulated
by the host’s genes (Bonder et al., 2016; Lim et al., 2020;
Lopera-Maya et al., 2022), but it is also highly affected by
environmental factors (Rothschild et al., 2018), and the dis-
sociation of such effects is complicated. In this study, animals
from 2 rabbit lines divergently selected for IMF in the Longis-
simus thoracis et lumborum (LTL) muscle were used to per-
form a metabolomic analysis of their cecal microbiota. The
divergent selection started from the same base population and
the lines were contemporarily reared under the same envi-
ronmental conditions (including the same diet), making them
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valuable animal material to study the genetic effect of the
trait under selection and the correlated ones, independently
from the environment. In rabbits, the analysis of the cecal
metabolome is of particular interest due to their cecotrophic
behavior, which is essential for their nutritional wellbeing.
As hindgut fermenters, their fermentation compartment is
located after the enzymatic digestion area. Hence, the inges-
tion of cecotrophes allows them to recycle a large proportion
of the nutrients produced during cecal fermentation, which
can represent up to 18% of their dry matter intake and 30%
of their daily nitrogen intake (Hornicke, 1981). Previous
studies on the microbiome composition (Martinez-Alvaro et
al., 2024) and its metagenome (Martinez-Alvaro et al., 2021)
have been carried out on these lines, indicating an import-
ant role of the microbiome in fat deposition, which can be
directly related to their genetic composition. Additionally, the
analysis of their plasma metabolome revealed several met-
abolic routes that are known to be related to microbiome
metabolism (Zubiri-Gaitan et al., 2023). Therefore, in this
study, the divergent lines were used to perform an untargeted
metabolomics analysis of their cecal content, with the aim of
providing a genetically determined functional characteriza-
tion of the microbiome related to IMF deposition.

Material and Methods

Animals

The Research Ethical Committee of the Universitat Politécnica
de Valéncia approved all experimental procedures according
to Council Directives 98/58/EC and 2010/63/EU (reference
number 2017/VSC/PEA/00212).

Rabbits from 2 lines divergently selected for IMF content
in the LTL muscle were used in this experiment. The selection
criterion was the average IMF content of two 9 wk-old rabbits
of the first parity of each doe (1 male and 1 female). The selec-
tion started from the same base population, and the animals
were selected for higher (H: high-IMF line) and lower (L: low-
IMF line) IMF content, following the procedure described in
previous studies (Zomefio et al., 2013; Martinez-Alvaro et al.,
2016). Animals were housed at the experimental farm of the
Universitat Politécnica de Valéncia. The lines were contempo-
rarily reared, shared the same environmental conditions, and
were fed the same diet, ensuring that the differences found
between them are mainly due to genetic causes.

Rabbit meat is characterized by a low-fat content, LTL
being the leanest muscle, with an average of 1 g IMF/100 g of
fresh meat (Pla et al., 2010). This divergent selection exper-
iment was successful, showing a response to selection in the
10th generation of 0.49 g IMF/100 g of LTL, equivalent to
3.8 SD of the trait. The high-IMF line had a mean of 1.31 g
IMF/100 g of LTL (HPD, , : [1.27 to 1.34]), while that of the
low-IMF line was 0.82 g IMF/100 g of LTL (HPD,,,: [0.78
to 0.86]), after adjustment for systematic effects as described
in Zubiri-Gaitan, et al. (2022a). Correlated responses to selec-
tion were also found in IMF content of other muscles with
different oxidative patterns (Martinez-Alvaro et al., 2018a),
and in total carcass fat content (Zubiri-Gaitan et al., 2022a).
However, no differences were found between lines on carcass
weight (Zubiri-Gaitan et al., 2022a).

For this study, the cecal metabolome was quantified in 27
rabbits from the H-line (13 males and 14 females) and 25
from the L-line (13 males and 12 females) randomly selected
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from the 10th generation of selection (Supplementary Table
1). No cross-fostering was practiced at birth. The litters were
weaned at 28 d and then housed jointly within litters. The
housing ventilation was controlled, and the photoperiod
was constant (16:8 h). The animals were fed ad libitum until
slaughter with a standard pelleted commercial diet (NANTA,
Madrid, Spain) containing 16.5% crude fiber, 16% crude
protein, 7.6% ashes, 2.4% fat, and 0.8% calcium; and sup-
plemented with vitamin A (10,000 Ul/kg), vitamin D3 (900
Ul/kg), vitamin E (25 mg/kg), iron (78 mg/kg), cobalt car-
bonate (0.30 mg/kg), manganese (20 mg/kg), zinc (50 mg/kg),
selenium (0.05 mg/kg), potassium iodide (1.0 mg/kg), cop-
per (8 mg/kg), and bacitracin zinc antibiotic (100 ppm). The
fatty acid composition of the diet, expressed as a percentage
of total fatty acids, was 16.6% C16:0, 0.5% C16:1, 1.8%
C18:0, 19.7% C18:1, 54.8% C18:2, 5.7% C18:3 and 0.9%
fatty acids with more than 20 carbon atoms (C > 20).

Cecum metabolome

The animals were slaughtered at 9 wk of age after 4 h of fast-
ing by electrical stunning and exsanguination. The intestinal
tract was immediately removed, cecal content was collected
in a sterile 50 mL Falcon tube and stirred until homogeniza-
tion. Subsequently, it was aliquoted in 2 mL cryogenic tubes
and frozen immediately by submersion in liquid nitrogen.
The samples were then stored at -80 °C until they were sent
to Metabolon, Inc. laboratory (Morrisville, North Carolina,
USA) for their analysis. The metabolomic profile was obtained
using ultra-performance liquid chromatography (ACQUITY
UPLC System, Waters Corp., Milford, USA) coupled with tan-
dem mass spectrometry (Q-Exactive Orbitrap, Thermo Fisher
Scientific, Waltham, MA, USA) (UPLC-MS/MS), interfaced
with a heated electrospray ionization source (HESI-II). The
Orbitrap mass analyser operated at 35,000 mass resolution.
This analysis was performed under different conditions to
capture metabolites with a wide range of classes and polar-
ities. Sample preparation and analysis steps are thoroughly
described below.

The samples were prepared using the automated MicroLab
STAR® system (Hamilton Company, Reno, Nevada, USA).
The proteins were precipitated with methanol under vigorous
shaking for 2 min (Glen Mills GenoGrinder 2000) followed
by centrifugation. The resulting extract was divided into 4 ali-
quots for different analyses: 2 reverse phase (RP)/UPLC-MS/
MS with positive ion mode electrospray ionization (ESI), one
RP/UPLC-MS/MS with negative ion mode ESI, and one hydro-
philic interaction liquid chromatography (HILIC)/UPLC-MS/
MS with negative ion mode ESI. Samples were placed on a
TurboVap® (Zymark, Hopkinton, MA, USA) to remove the
organic solvent and finally stored overnight under nitrogen
before analysis. The sample extracts were then reconstituted
in solvents compatible with the 4 methodologies, which also
contained a series of standards to ensure injection and chro-
matographic consistency.

The first aliquot was gradient eluted from a C18 column
(Waters UPLC BEH C18-2.1 x 100 mm, 1.7 pm) using water
and methanol, containing 0.05% perfluoropentanoic acid
(PFPA) and 0.1% formic acid (FA), and analyzed under acidic
positive conditions chromatographically optimized for more
hydrophilic compounds (identified as positive-early). The
second aliquot was gradient eluted from the same C18 col-
umn using methanol, acetonitrile, water, 0.05% PFPA and
0.01% FA, and analyzed using acidic positive conditions,

but chromatographically optimized for more hydrophobic
compounds (identified as positive-late). The third aliquot was
gradient eluted from a separate C18 column using methanol
and water, with 6.5 mM ammonium bicarbonate at pH 8,
and analyzed using basic negative conditions (identified as
negative). The last aliquot was eluted from a HILIC column
(Waters UPLC BEH Amide 2.1 x 150 mm, 1.7 pm) using a
gradient consisting of water and acetonitrile with 10 mM
ammonium formate at pH 10.8 and it was analyzed by nega-
tive ionization (identified as polar). The MS/MS analysis was
performed alternating MS and data-dependent MS" scans
using dynamic exclusion. The scan range varied between
methods but covered 70-1000 m/z.

Several quality controls (QC) were analyzed together with
the experimental samples: a pooled matrix composed by a
small volume of each experimental sample served as a tech-
nical replicate; extracted water samples served as process
blanks; and a pool of QC standards were spiked into every
analyzed sample, to monitor instrument performance and aid
in the chromatographic alignment.

Raw data were extracted from the 4 analyses (positive-early,
positive-late, negative, and polar). Metabolon, Inc. laboratory
was responsible for the detection of peaks, the processing of
the QC, and the identification of the compounds by com-
parison to library entries of purified standards or recurrent
unknown entities. The identification was based on 3 crite-
ria: retention index, accurate mass match to the library (+/-
10 ppm), and the MS/MS forward and reverse scores between
the experimental data and authentic standards. Peaks were
quantified using area-under-the-curve. Finally, the informa-
tion regarding the function and metabolic pathways of each
metabolite identified came from the Human Metabolome
Database and the Kyoto Encyclopedia of Genes and Genomes
database.

Data processing

The dataset of each methodology was processed separately as
follows: after some exploratory analyses, the metabolites that
were undetected (i.e., intensity = 0) in more than 20% of the
samples were removed, and the remaining zeros were imputed
using random forest with the R package missForest (Stek-
hoven and Bithlmann, 2011). An additive log-ratio transfor-
mation (alr) was then applied using the R package easyCODA
(Greenacre, 2018). The alr is applied to account for the fact
that metabolomics data are compositional since they carry rel-
ative, rather than absolute, information (Kapoore and Vaidya-
nathan, 2016; Alseekh et al., 2021). The alr is defined as:

ln( a ) =In (%) —In(Xpef), j=1, oop J =1, j#ref

Xref

where x, is the abundance of the jth metabolite, x_, is the
abundance of a reference metabolite and ] is the total number
of metabolites in the dataset. The reference metabolite was
chosen following the methodology proposed by Greenacre et
al. (2021), which consists of choosing the metabolite that 1)
reproduces the geometry of the full set of log-ratios in a Pro-
crustes analysis (measured with the Procrustes correlation),
and 2) has low variance, ensuring that the main variation is
due to the numerator. The metabolites chosen for the 4 data-
sets mentioned above had a Procrustes correlation >0.99
and were: methionine for the positive-early dataset, stearoyl
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ethanolamine for the positive-late dataset, N-acetyl leucine
for the negative dataset, and 2R,3R-dihydroxybutyrate for
the polar dataset. Once transformed, the 4 datasets were
joined to proceed with the statistical analysis.

Statistical analysis and validation

Two multivariate approaches were used to identify the dif-
ferences between lines in the microbiome activity: a partial
least square-discriminant analysis (PLS-DA), for which the y
vector was categorical, coding the H or L-line, and a linear
PLS analysis, for which the y vector contained the IMF con-
tent. Previous studies performed on these lines have suggested
that the metabolic routes that led to greater IMF content in
the H-line, and lower IMF content in the L-line may not be
identical (Zubiri-Gaitan et al., 2023) which means that the
metabolites that adjust linearly to the IMF in each line can
partially differ. Therefore, in this study, 2 different PLS were
performed, one with the samples from the H-line (PLS-H) and
the other with the samples from the L-line (PLS-L). All anal-
yses were performed after scaling the dataset to mean 0 and
SD 1, using the R package mdatools (Kucheryavskiy, 2020).

A cross-model validation (CMV) was performed to select
the relevant metabolites (Anderssen et al., 2006) avoiding
overfitting the models. This procedure was done following
the methodology proposed by Westerhuis et al. (2008), which
was also thoroughly described in the previous plasma metab-
olomic study performed on these lines (Zubiri-Gaitin et al.,
2023). Briefly, the CMV performs an inner cross-validation
(CV) to develop and optimize the models, and an outer CV to
test the models” performance (Westerhuis et al., 2008). After
exploratory analysis, a 7-fold inner CV and an 8-fold outer
CV were used for the PLS-DA analysis, i.e., the samples were
divided into 8 groups (8-fold outer CV), one group was set
aside as a test set and the remaining samples (training set)
were subjected to a 7-fold inner CV procedure to develop
and optimize the model. For the PLS-H and PLS-L analyses, a
7-fold inner CV and a 5-fold outer CV were used.

A variable selection step was performed after the optimi-
zation of the model (inner CV) and before the prediction of
the samples in the test set (outer CV). The metabolites were
selected using the confidence interval of the variable’s regres-
sion coefficients (CI) and the variable importance in projection
value (VIP). First, metabolites that had a 95% CI contain-
ing the 0 were removed. Then, the relevant metabolites were
selected according to their VIP value. To select variables based
on the VIP value, the greater-than-one rule is normally used;
however, higher or lower cutoff may be necessary to increase
the variable selection performance (Chong and Jun, 2005).
Therefore, in this study, several cutoff values were tested (0.8,
0.9,1, 1.1, and 1.2), and their variable selection performance
was analyzed based on the capacity of the new model to pre-
dict the samples in the test set.

The procedure was repeated 8 times for the PLS-DA and
S for the PLS, until all the groups of the outer CV were set
aside once. Additionally, 20 rounds of CMV were performed,
changing the composition of the outer CV groups. Once all
the PLS-DA and PLS models were adjusted, the metabolites
considered as relevant in each approach (PLS-DA, PLS-H, and
PLS-L) were those that were selected in more than 70% of
the models.

The corresponding final models (PLS-DA, PLS-H, and PLS-
L) were adjusted with the selected variables during a new
CMV procedure. The classification ability of the PLS-DA
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was then evaluated using an average misclassification table,
while the prediction ability of the PLS models (PLS-H and
PLS-L) was evaluated using the Q? parameter. A permutation
test was also performed as an additional validation method
(Westerhuis et al., 2008), in which the values of the depen-
dent variable (H and L classes for the PLS-DA or IMF content
for the PLS) were permuted and the average misclassification
table (PLS-DA) or Q? (PLS) of the permuted models were cal-
culated.

The differences between lines of the metabolites selected
during the PLS-DA analysis were estimated with a lin-
ear model that included the fixed effects of line and sex.
Bayesian inference was applied (Blasco, 2001, 2017) using
the R function runRabbit (Martinez-Alvaro et al., 2023).
Bounded flat priors were assumed for all fixed effects and
variances. The residual random effects were assumed to be
a priori uncorrelated and multinormally distributed (N(O,
Io?)). The marginal posterior distributions of the pheno-
typic differences between lines were obtained by Gibbs
sampling, with a chain length of 60,000, a burn-in of
10,000, and a lag of 10. The parameters of the posterior
distributions taken into consideration were the median
of the difference between lines (D), the highest poste-
rior density interval at 95% probability (HPD,_, ), and the
probability of the difference being >0 when D, >0, or
lower than zero when D, < 0 (P,) (Blasco, 2017). Finally,
the difference between lines for each metabolite was
expressed as units of SD of the metabolite, to give a better
understanding of its magnitude.

The regression coefficients of the metabolites selected with
the PLS-H and PLS-L analyses were estimated with a linear
model that included the fixed effect of sex, and the IMF con-
tent as a covariate. The inferences were performed following
the same methodology mentioned above. The parameters of
the posterior distributions of the regression coefficients taken
into consideration were the median (f), the HPD,,, and the
probability of the coefficient being >0 when 3 > 0, or lower
than zero when f < 0 (P).

Metabolic signature

All metabolites selected with the multivariate analyses were
used to identify a metabolic signature composed of a small
subset of metabolites with the ability to classify animals
according to their genetic predisposition toward IMF depo-
sition. A stepwise algorithm for compositional data was used
for the selection of an optimal balance with the highest clas-
sification accuracy, using the selbal R package (Rivera-Pinto
et al., 2018). A balance in compositional data analysis is a
particular type of log-contrast between 2 groups of vari-
ables (Egozcue and Pawlowsky-Glahn, 2005; Rivera-Pinto
et al., 2018), also known as isometric log-ratio (ilr). The
numerator and denominator of such contrast are geomet-
ric means of multiple variables’ abundances. The complete
method is described in Rivera-Pinto et al. (2018). The opti-
mal balance was established using a CV procedure imple-
mented in the algorithm, as recommended by the authors
(Rivera-Pinto et al., 2018). An 8-fold cross-validation was
performed, which was in turn repeated 20 times. In each
iteration, the algorithm stopped when the addition of a new
metabolite to the balance did not improve the area under
the ROC curve (Rivera-Pinto et al., 2018). In a second step,
the selected balance was fitted in a logit regression to test its
classification ability, using an 8-fold CV procedure, which
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was repeated 20 times. The classification ability of the bal-
ance was finally evaluated using a misclassification table.

Results

A total of 711 compounds were detected with the 4 meth-
odologies previously described (241 positive-early, 92
positive-late, 274 negative, and 104 polar). After the data
processing, 633 metabolites were kept for further analysis:
226 from the positive-early dataset, 71 from the positive-late,
241 from the negative, and 95 from the polar, covering a wide
range of biochemical compounds (Supplementary Table 2).
Previous studies performed on these lines suggested that the
biological mechanisms that led to greater or lower IMF con-
tent in each line are not entirely the same (Zubiri-Gaitan et
al., 2022b, 2023). Hence, in this study, a 3-way approach was
used to analyze the cecum metabolomics data: the PLS-DA to
extract evidence regarding the pathways differentiating the
lines, and the PLS-H and PLS-L to extract evidence regarding
the specific pathways associated with IMF deposition within
each line.

Multivariate analyses

PLS-DA analysis identified 142 metabolites during cross-
model validation (CMV) that were relevant for the discrim-
ination between lines (Supplementary Table 3). The final
models adjusted with the relevant metabolites had a classi-
fication ability of 99% (Supplementary Table 4), while that
estimated during the permutation test was around 50%, as
expected when permuted data is used (i.e., no real differences
exist between classes) and a proper cross-validation proce-
dure is performed (Supplementary Table 5) (Westerhuis et al.,
2008).

PLS-L analysis identified 107 metabolites that maximized
the covariance with IMF (Supplementary Table 6), and PLS-H
156 metabolites (Supplementary Table 7), of which only 31
were important for both lines (Figure 1). The small overlap of
relevant metabolites between analyses supports the hypothe-
sis of some differences in the microbial metabolic pathways
leading to higher or lower IMF content within each line. The
Q? parameter of PLS models, estimated during CMV, evi-
denced a moderately good prediction accuracy of 57% for
the L-line (Supplementary Table 8) and 61% for the H-line
(Supplementary Table 9). These results were also validated by
the corresponding permutation tests (Supplementary Tables
10 and S11).

Microbial metabolic pathways affected by selection

The classification of the relevant metabolites according to
their chemical nature and the metabolic pathways in which
they are involved was performed based on the information
available in the Human Metabolome Database and the Kyoto
Encyclopedia of Genes and Genomes database and is summa-
rized in Figures 2 to 5.

Lipids were the most abundant metabolites detected in all
3 analyses, although they had a greater relative importance
in the PLS-L, representing over 50% of the relevant metabo-
lites. A more complex microbial metabolism was associated
with IMF deposition in the H-line, as evidenced by the greater
number of microbial pathways detected with the PLS-H
analysis. The results from the PLS-DA showed that the most
representative pathways differentiating between lines were
those of purines and pyrimidines (i.e., nucleotides), secondary

PLS-H PLS-L

PLS-DA
(142)

Figure 1. Venn diagram of relevant metabolites selected with PLS-DA
(142 metabolites discriminating between lines), PLS-H (156 metabolites
adjusting linearly to intramuscular fat content in animals from the high-
IMF lines), and PLS-L (107 metabolites adjusting linearly to intramuscular
fat content in animals from the low-IMF lines) analyses. PLS-DA: partial
least square—discriminant analysis; PLS-H: linear partial least square
performed only with animals from the high-IMF line; PLS-L: linear partial
least square performed only with animals from the low-IMF line.

bile acids, and of several amino acids, from which aromatic
amino acids (AAA) and BCAA stand out. Additionally, many
relevant metabolites were food components (i.e., xenobiot-
ics), dicarboxylate fatty acids, dipeptides, acyl carnitines,
gamma-glutamyl amino acids, and phosphatidylcholines
(Figure 3). The results from the PLS-L (Figure 4) and PLS-H
(Figure 5) suggested that the lysophospholipids content in the
cecum is related to the IMF content in both lines. However,
the cecum content of nucleotides’ metabolites, secondary bile
acids, and xenobiotics seemed more closely related to IMF
content in the H-line, while that of the long-chain fatty acids
seemed more closely related to IMF content in the L-line.

The PLS-DA identified greater abundance in the cecum of
the H-line of the AAA tryptophan (0.76 SD, P, = 1) and tyro-
sine (1.16 SD, P = 1), together with tryptophan’s degradation
products indole (1.02 SD, P = 1) and indoleacetate (0.49 SD,
P, =0.96), while the 5-hydroxyindoleacetate (5-HIAA) was
greater in the L-line (-0.54 SD, P, = 0.97). Tryptophan metab-
olism was also identified in the PLS-H, but not in the PLS-L.
The previously mentioned indoleacetate was positively related
to IMF content in the H-line (B > 0; P, = 1), together with
tryptophol (B >0; P, =0.99), kynurenine (> 0; P, =0.99)
and anthranilate ( > 0; P, = 0.97).

The metabolism of BCAA (valine, leucine, and isoleu-
cine) was also affected by selection, evidencing differences
between lines and linear relationship with IMF in both lines.
N-acetylisoleucine was more abundant in the cecum of the
L-line (-0.51 SD, P, = 0.96), and it was also negatively related
to the IMF content in the mentioned line (B < 0; P, =0.99).
Isobutyrylcarnitine was greater in the H-line (0.37 SD, P,
= 0.91) and, even though there was no evidence of differ-
ences between lines, isovalerylglycine was negatively associ-
ated with IMF in the L-line (B < 0; P, = 0.98). Additionally,
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Figure 2. Classification of relevant metabolites selected in the PLS-DA (142 metabolites), PLS-H (156 metabolites), and PLS-L (107 metabolites) models

according to their chemical nature. PLS-DA: partial least square—discriminant analysis; PLS-H: linear partial least square performed only with animals
from the high-IMF line; PLS-L: linear partial least square performed only with animals from the low-IMF line.
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metabolic pathways in which they are involved.
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Figure 4. Classification of the 107 relevant metabolites selected in the partial least square model adjusted using only animals from the low-IMF line

(PLS-L) according to the metabolic pathways in which they are involved.

glycine, an amino acid whose availability has been shown to
be related to the BCAA (White et al., 2016), was also nega-
tively associated with IMF in the L-line (B < 0; P, = 0.88).
Also related to the metabolism of proteins and amino
acids, most of the dipeptides and polypeptides found were
more abundant in the cecum of the H-line (from 0.41 to 0.89
SD, all P, > 0.94), whereas the gamma-glutamyl amino acids
were more abundant in the cecum of the L-line (from -0.55
to -0.62 SD, all P, > 0.97). The gamma-glutamyl amino acids
were also found in the PLS-H and PLS-L, evidencing a neg-
ative relationship with the IMF content (§ < 0; all P, 2 0.93).
Additionally, 2-hydroxybutyrate, a metabolite related to glu-
tathione metabolism and consequently to gamma-glutamyl
amino acids, was positively related to IMF in both H and
L-lines (B > 0; P) = 1 in the H-line and P = 0.94 in the L-line).
The cecum of the L-line showed greater abundance of
numerous lipids, including mevalonate (-0.50 SD, P, = 0.96),
involved in the metabolism of cholesterol, 4-cholesten-3-one
(-0.42SD, P =0.93),a cholesterol derivative formed in the gas-
trointestinal tract, sphingosines, phosphatidylethanolamines,
phosphatidylcholines, and other metabolites related to phos-

pholipid metabolism (from -0.36 to -0.72 SD, all P, > 0.89).
Several secondary bile acids were greater in the L-line (from
-0.19 t0 -0.52 SD, all P > 0.76), similar to what was found in
the plasma of these lines (Zubiri-Gaitan et al., 2023), with the
only exception of the 7-ketodeoxycholate, which was greater
in the H-line (0.82 SD, P, = 1). Additionally, numerous second-
ary bile acids metabolites were positively related to the IMF
content only in the H-line ( > 0; all P, > 0.95).

The lysophospholipids, which were not relevant to the
discrimination between lines, were instead some of the most
representative metabolites related to the IMF content in both
lines (B > 05 all P, > 0.94). Similarly, while there were no dif-
ferences between lines neither in long-chain (LC) saturated
fatty acids (LC-SFA) nor branched-chain fatty acids (BCFA),
they were found to be positively related to IMF but only in
the L-line (8 > 0; all P, 2 0.93).

Finally, the PLS-DA identified greater abundance in the
cecum of the H-line of purines and pyrimidines metabolites,
including dinucleotides, nucleosides, and nucleotides (from
0.54 to 1.07 SD, all P> 0.97). Hypoxanthine, a product of
purine catabolism, was also greater in the H-line (0.56 SD, P,
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Figure 5. Classification of the 156 relevant metabolites selected in the partial least square model adjusted using only animals from the high-IMF line

(PLS-H) according to the metabolic pathways in which they are involved.

= 0.98), while other products were greater in the L-line like
urate (-0.45 SD, P, = 0.95), allantoin (-0.58 SD, P, = 0.98),
and dAMP (-0.40 SD, P, = 0.92). Dinucleotides, nucleosides,
and nucleotides were also relevant results of the PLS-H anal-
ysis, and they all had a positive relationship with IMF (f3 > 0;
all P > 0.94).

Metabolic signature

The detection of a metabolic signature, composed of a small
subset of metabolites with high classification accuracy, might
be interesting to identify the main microbial pathways related
to IMF deposition. Hence, once the main pathways associated
with IMF deposition were identified, a stepwise algorithm
was used to select an optimal balance, as described in the
methodology section. The balance with the highest classifica-
tion accuracy was composed of 4 metabolites, 2 in the numer-
ator (guanidinoacetate and glycodeoxycholate) and 2 in the
denominator (glycylisoleucine and 7-ketodeoxycholate). The
metabolites in the numerator were greater in the L-line (guan-
idinoacetate: -1.03 SD, P = 1; glycodeoxycholate: -0.52 SD,
P, =0.97), while those in the denominator were greater in the

H-line (glycylisoleucine: 0.89 SD, P, = 1; 7-ketodeoxycholate:
0.82 SD, P, = 1). The computed value of the balance (or ilr)
for each individual is shown in Supplementary Table 12,
and their distribution is shown in Figure 6. The logit model
adjusted with the selected balance showed an outstanding
classification ability of 88% (Supplementary Table 13).

Discussion

Amino acids and peptides

Amino acid metabolic pathways are among the most
affected by the microbiota, affecting the metabolomic pro-
file of the gastrointestinal tract and of other tissues (Zarei
et al., 2022). The greater cecum abundance of tryptophan
and tyrosine found in the H-line agrees with the greater
abundance of the tyrC gene, involved in their biosynthe-
sis, found in this line in the previous metagenomic analysis
(Martinez-Alvaro et al., 2021). Indole and indoleacetate,
both greater in the H-line, are tryptophan degradation
products produced by bacteria (Roager and Licht, 2018),
while the 5-HIAA, greater in the L-line, is the excretion

Gz0z Aienuep L€ Uo Jasn BIouS|BA ap BoIUDB)I0d 1BNSISAIUN AQ O¥6S .8/ /6E£8e)S/SBIIEE01 0L /I0p/3|o1ue/Sel/woo dnoolwapeoe//:sdiy Woll papeojumod


http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skae339#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skae339#supplementary-data

Zubiri-Gaitan et al.

Balance

H L
Line

Figure 6. Distribution of the isometric log-ratio (iln) balance according to
the genetic line (high- or low-IMF line). The balance was composed of 2
metabolites in the numerator (guanidinoacetate and glycodeoxycholate)
and 2 in the denominator (glycylisoleucine and 7-ketodeoxycholate). The
logit model adjusted with the selected balance showed an outstanding
classification ability of 88%.

product of serotonin (Le Floc’h et al., 2011). Serotonin is
synthesized from tryptophan, and these results could indi-
cate a difference between lines in the metabolic fate of this
essential amino acid. Additionally, a previous microbiome
analysis performed on these lines showed that Lactobacil-
lus, a bacteria that plays an important role in the detoxifi-
cation of indole compounds (Nowak et al., 2008), was less
abundant in the cecum of the H-line (Martinez-Alvaro et
al., 2024), which could also explain the greater abundance
of these metabolites in the mentioned line. The metabolism
of tryptophan was also relevant in determining the IMF
content in the H-line. Indoleacetate and tryptophol, metab-
olites from the microbial indole pathway, and kynurenine
and anthranilate, from the host kynurenine pathway, were
positively related to IMF. Both pathways have been shown
to be altered in obesity in humans, most likely because of
their role in the inflammatory processes related (Cussotto
et al., 2020). The kynurenine pathway is activated by pro-
inflammatory cytokines and has therefore been positively
associated with obesity; however, a negative association has
been found with the indole metabolites (Bansal et al., 2010;
Wlodarska et al., 2017; Cussotto et al., 2020). Plasma
metabolites from both pathways, including the kynurenine,
were also positively associated with IMF in these lines
(Zubiri-Gaitan et al., 2023), suggesting that both the host
and its microbiome play an important role in the metabo-
lism of tryptophan in relation to IMF deposition.

BCAA metabolism is strongly associated with obesity and
insulin resistance in humans (Siddik and Shin, 2019; Van-
weert et al., 2022). The circulating levels of BCAA have been
positively associated with obesity (Newgard et al., 2009; Kim
et al., 2010; Siddik and Shin, 2019) and with IMF content
in pigs (Taniguchi et al., 2020) and cattle (Connolly et al.,
2019). Current evidence suggests that these relationships are
the result of the action of multiple factors related to their
synthesis and catabolism, rather than by differences in their
intake (Tai et al., 2010; Newgard, 2012), in which a greater

production and lower catabolism of BCAA by the intestinal
microbiota seems to be one potential factor contributing to
the greater fat deposition (Ridaura et al., 2013). In these
divergent rabbit lines, results from the genomic (Sosa-Madrid
et al., 2020), metagenomic (Martinez-Alvaro et al., 2021),
plasma metabolomic (Zubiri-Gaitdn et al., 2023), and cecal
metabolomic analyses confirmed the strong and complex rela-
tionship between the BCAA metabolism, both from the host
and its microbiota, with fat deposition in both lines. It has
been shown that isoleucine upregulates the intestinal glucose
transporters (Zhang et al., 2017), enhancing glucose absorp-
tion and utilization, suggesting that the negative relation-
ship found between IMF and N-acetylisoleucine in both the
PLS-DA and PLS-L analyses might be related to the glucose
utilization and that this mechanism may be more important
in the L-line. The circulating levels of short-chain acylcarni-
tines, related to the metabolism of BCAA, have been positively
associated with fat deposition in humans (Libert et al., 2018),
which was also observed in the plasma of these lines (Zubiri-
Gaitan et al., 2023). However, in this study, the PLS-DA did
not identify a clear signature that discriminated between the
lines, and the greater abundance of isobutyrylcarnitine found
in the cecum of the H-line may be associated with the greater
plasma abundance found (Zubiri-Gaitan et al., 2023). In
humans, the glycine and isovalerylglycine concentration in
blood (Tai et al., 2010) and urine (Newgard et al., 2009) have
been negatively associated with obesity and insulin resistance,
similar to what was observed in both the cecum and plasma
(Zubiri-Gaitan et al., 2023) of the L-line. A study performed
in genetically obese and lean rats showed that the rise in
circulating BCAA observed in obesity is responsible for the
lower circulating levels of glycine commonly observed, and
that this limited availability of glycine can be responsible for
the lower formation of acylglycines (White et al., 2016).
Glutathione is an essential antioxidant in mammalian cells,
whose intracellular concentrations are maintained by the
activity of the y-glutamyltransferase (GGT) enzyme. The GGT
catalyzes the transfer of the gamma-glutamyl group from
glutathione to amino acids, thus forming gamma-glutamyl
amino acids (Mitri¢ and Castellano, 2023). Serum GGT lev-
els in humans have been positively associated with fat depo-
sition, type 2 diabetes, and metabolic syndrome (Rantala et
al., 2000; Duk et al., 2004; Coku and Shkembi, 2018; Sheng
et al., 2022), although the relationship between serum GGT
and gamma-glutamyl amino acids has not been established.
A recent study performed in mice suggested that the circulat-
ing levels of gamma-glutamyl amino acids are impacted by
interactions between microbes and dietary fibers (Murga-
Garrido et al., 2021), evidencing a complex co-metabolism
between the host and its microbiota. On the other hand, the 2-
hydroxybutyrate is also related to glutathione metabolism, as
it is a byproduct of its synthesis, and its urinary excretion has
been proposed as a marker for chronic shifts in the rate of
glutathione synthesis. In these lines, the negative relationship
between IMF and gamma-glutamyl amino acids, and the pos-
itive relationship between IMF and 2-hydroxibutyrate, found
both in plasma (Zubiri-Gaitan et al., 2023) and cecum, indi-
cate an interesting and complex co-metabolism that would
benefit from further studies to unravel its role in fat deposition.

Lipids
Lipids were the most abundant metabolites detected in all
3 multivariate analyses and the results from the PLS-H and
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PLS-L analyses showed that their relationship with IMF
was positive. As mentioned in the previous section, lipids
had a greater relative importance in the PLS-L while, as
evidenced by the results discussed so far, a more complex
microbiota metabolism might be related to IMF deposition
in the H-line.

The intestinal absorption of triglycerides and fatty acids
has been shown to be a significant determinant of their
plasma levels (Fujisaka et al., 2018). In these lines, the greater
amount of bile acids found in both plasma and cecum of the
L-line, essential for lipid digestion and absorption in the gas-
trointestinal tract (Di Ciaula et al., 2017; Nelson and Cox,
2021a), together with its greater plasma abundance of tri-
glycerides, cholesterol and non-esterified fatty acids, among
others, (Martinez-Alvaro et al., 2018b; Zubiri-Gaitan et al.,
2022a, 2023) supports this theory. However, despite this
hypothesized greater intestinal absorption, the animals from
the L-line appear to have a lower capacity for uptake, re-
esterification, and storage due to their genetic predisposition
(Zubiri-Gaitan et al., 2023). The former is probably also the
reason why most of these secondary bile acids did not show a
linear relationship with IMF in the L-line, as opposed to the
H-line.

Microbial lipids metabolism in cecotrophic animals like
rabbit is more important than in other hindgut fermenters
because they recycle an important part of the unabsorbed
nutrients through cecotrophy. Particularly, the microbial fer-
mentation of lipids in the cecum of rabbits yields a distinctive
fatty acid profile, characterized by an increased proportion
of BCFA and SFA (especially those with more than 12 car-
bon atoms) (Leiber et al., 2008). Because of the ingestion of
the cecotrophes, these fatty acids can reach the duodenum
and be absorbed into the bloodstream. The relationship
between LC-SFA and BCFA with IMF, detected only in the
PLS-L analysis, suggests that a greater microbial biohydroge-
nation of lipids might be related to a greater IMF deposition
in the L-line. On the other hand, the lysophospholipids were
related to IMF deposition in both lines. Cecal content of lyso-
phospholipids has been shown to be altered in chickens with
obese and lean phenotypes, although their mechanisms were
not entirely clear (Liu et al., 2022). The intestinal content of
lysophospholipids is the result of the phospholipids’ hydroly-
sis, which is in turn necessary for lipid absorption (Beil and
Grundy, 1980). The absorption of these lysophospholipids
has also been related to increased inflammation, leading to an
increased risk of obesity in humans (Hui, 2016). These results
point out that, independently of the genetic line, the intestinal
metabolism of phospholipids is relevant for the deposition of
intramuscular fat, although further studies are necessary to
elucidate the mechanisms.

Nucleotides

The nucleotides’ metabolites were some of the most relevant
in discriminating between lines and also explaining the IMF
content in the H-line, but not in the L-line. While urate and
allantoin were greater in the L-line, hypoxanthine was greater
in the H-line. Urate is the product of purine catabolism, while
allantoin is the oxidation product of urate (Rudolph, 1994;
Nelson and Cox, 2021b). Those metabolites, together with
xanthine and hypoxanthine, are called purine derivatives
(PD), and they originate from the ingested purine bases or
from the turnover of nucleic acids (Nelson and Cox, 2021Db).
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The catabolism of nucleic acids occurs mostly in the intestinal
mucosa, where they are rapidly degraded to their oxidized
derivatives by the high xanthine oxidase enzyme (Balcells et
al., 1998). The former catalyzes the oxidation from hypoxan-
thine to xanthine, and from xanthine to urate. In this exper-
iment, while the urate and the allantoin were greater in the
L-line, the hypoxanthine was greater in the H-line, which
could suggest a difference between the lines in the activity of
the mentioned enzyme.

PD are also important because of their use as a biological
marker of the microbial nitrogen recycling in ruminants and
cecotrophic animals like rabbit. These animals recycle most
of the microbial protein produced during the fermentation;
in the case of rabbits through cecotrophy (Hornicke, 1981).
The purine base content in the cecotrophes is considered to
be of the microbial origin (Balcells et al., 1998), and is used
as a marker of microbial concentrations (Blas and Wiseman,
2020). In turn, the urinary PD excretion is used as a marker
to estimate the microbial protein synthesis, its intake from
cecotrophy, and the consequent microbial nitrogen recycling
(Balcells et al., 1998; Belenguer et al., 2002). No evidence was
found in the literature regarding this relationship with the PD
cecum content, although it has been estimated that around
40% of net microbial synthesis is lost through feces (Balcells
et al., 1998). The modification of cecal fermentation through
changes in the diet has been used to improve the microbial
contribution to the rabbits’ protein nutrition (Belenguer et al.,
2002). One study performed in lambs showed that diets with
greater rumen undegradable protein to rumen degradable
protein ratio led to a greater urinary PD excretion and lower
carcass fat content, which was suggested to be related to
greater nitrogen utilization and energy efficiencies (Valizadeh
et al., 2021). Since these lines are fed the same diet, and if the
relationship between urinary and cecum PD is maintained,
the differences found may suggest changes in their fermenta-
tion activity caused by a different microbiome composition.
These results suggest that this pathway could be of interest
for further investigation.

Metabolic signature

The application of supervised multivariate methods like PLS
and PLS-DA is useful to identify all variables with the ability
to predict a trait of interest, even if they contain redundant
information. Conversely, based on the complex interactions
between metabolites and their pathways, computing a com-
positional balance can be the optimal solution to find a meta-
bolic signature with good prediction accuracy and biological
sense for IMF deposition, which could be then investigated in
other species.

The metabolites finally selected to conform the balance,
or isometric log-ratio (il7), were 2 secondary bile acids (7-
ketodeoxycholate and glycodeoxycholate), one dipeptide
(glycylisoleucine), and one metabolite from the creatine
metabolism (guanidinoacetate). As mentioned in the previ-
ous section, glycodeoxycholate and guanidinoacetate were
greater in the L-line, and they made up the numerator, while 7-
ketodeoxycholate and glycylisoleucine were greater in the
H-line and they made up the denominator. Secondary bile
acids are very important for lipid absorption in the gastroin-
testinal tract (Di Ciaula et al., 2017; Nelson and Cox, 2021a),
and the glycylisoleucine and guanidinoacetate are both
related to the protein metabolism. Both are very important
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pathways in fat deposition, and in these lines, they have been
identified as some of the most relevant pathways based on the
metabolomics analysis of the cecum, but also of the plasma
(Zubiri-Gaitan et al., 2023).

Based on these results, it can be suggested that the interac-
tion between the lipids’ absorption and the metabolism of the
proteins from the diet is a potential main driver of the micro-
biome activity influencing the trait under selection. Even
though this result needs to be validated, it constitutes a very
promising proposal to evaluate the microbial activity based
on its ability to classify animals according to their genetic pre-
disposition toward IMF deposition.

Conclusions

In this study, the use of 2 lines divergently selected for IMF content
allowed us to study the genetically determined microbial metabolic
pathways associated with IMF deposition, independently from the
environmental factors. The comprehensive analysis of the results
showed that the most relevant microbial pathways differentiating
the lines were those of amino acids (aromatic, branched-chain, and
gamma-glutamyl amino acids), lipids (especially secondary bile
acids), and nucleotides (purine metabolism). The microbial meta-
bolic pathways related to IMF deposition within each line showed
that lipids’ metabolism had a greater relative importance in the L
line, while a more complex microbial metabolism was associated
with IMF deposition in the H-line, as evidenced by the greater
amount of related microbial pathways detected. To the authors’
knowledge, this is the first study that identifies a metabolic sig-
nature of the microbial metabolism influencing IMF deposition,
which was composed of 2 secondary bile acids and 2 products of
proteins’ metabolism and had an outstanding classification ability
of 88%.
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online.
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