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Abstract:
Cut Order Planning (COP) optimizes production costs in the apparel industry by efficiently cutting fabric for 
garments. This complex process involves challenging decision-making due to order specifications and production 
constraints. This article introduces novel approaches to the COP problem using heuristics, metaheuristic 
algorithms, and commercial solvers. Two different solution approaches are proposed and tested through 
experimentation and analysis, demonstrating their effectiveness in real-world scenarios. The first approach uses 
conventional metaheuristic algorithms, while the second transforms the nonlinear COP mathematical model into 
a Mixed Integer Linear Programming (MILP) problem and uses commercial solvers for solution. Modifications to 
existing heuristics, combined with tournament selection in genetic algorithms (GA), improve solution quality and 
efficiency. Comparative analysis shows that Particle Swarm Optimization (PSO) outperforms GA, especially for 
small and medium-sized problems. Cost and runtime evaluations confirm the efficiency and practical applicability 
of the proposed algorithms, with commercial solvers, delivering superior solutions in shorter computation times. 
This study suggests the use of solvers for the COP problem, especially for smaller orders, and reserves PSO 
and GA for larger orders where commercial solvers may not provide a solution.
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1. Introduction 

The apparel industry, a multi-trillion-dollar market, 
needs to improve production efficiency to remain 
competitive (Ranaweera et al., 2023; Wijethilake 
et al., 2023). However, enhancing business processes 
is crucial for productivity, efficiency, and socio-
economic benefits (Yang et al., 2023). Garment 
production involves multiple steps, including order 
taking, sample preparation, material procurement, 
storage, inspection, cutting, sewing, finishing 
and outbound logistics (Abd Jelil, 2018; Ünal & 
Yüksel, 2020; Xu et al., 2020). These processes 
aim to increase productivity and reduce costs, with 
sewing being the most critical step (Nchalala et al., 
2023). Fabric cutting, preceding sewing, accounts 

for 5-10% of total manufacturing costs and 50-60% 
of material costs (Alsamarah et al., 2022; Wong & 
Leung, 2008).

As shown in Figure 1, the cutting process begins with 
the Cut Order Planning (COP), determining garment 
quantities and sizes. Subsequent steps include 
marker making, spreading fabric on cutting tables, 
cutting according to the marker pattern, identifying 
cut pieces, and bundling for further processing. COP 
is crucial for garment manufacturing efficiency and 
cost (Prasad et al., 2022). It determines optimal 
fabric cutting patterns to minimize waste (Fister 
et al., 2010), enhancing sustainability and economic 
viability (Nasrin & Alam, 2023). Fabric is spread in 
layers (plies) on a cutting table, forming sections, 
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while markers guide cutting of irregularly shaped 
patterns for different sizes (Martens, 2004; Tsao 
et al., 2022).

Although COP focuses on optimizing the number 
of fabric plies and sections to minimize production 
costs and waste, it does not explicitly address the 
spatial arrangement of garment patterns on the 
fabric. This spatial arrangement is typically handled 
by a related optimization problem known as marker 
making or nesting (Puasakul & Chaovalitwongse, 
2016; Yang et al., 2024). Marker making involves 
placing irregularly shaped garment pieces onto the 
fabric in the most efficient way possible to minimize 
material waste. While COP determines how many 
layers of fabric and sections are needed for a 
given order, marker making ensures that the actual 
patterns are arranged optimally within each section, 
complementing the goals of COP by further reducing 
fabric waste (Abd Jelil, 2018).

Figure 2 shows a cutting section consisting of five 
fabric plies and a marker for three different garment 
sizes, where each color on the patterns represents 
a specific size. Large orders may be divided into 
multiple sections due to limitations in the cutting 
process, and each section may have varying numbers 
of plies and unique markers (Fister et al., 2010).

Figure 2. A cutting section of five plies with a marker 
containing three garments of three sizes.

The problem of COP can be solved using various 
methods. For instance, consider a buyer’s order 

comprising five sizes (Table 1). This order could 
be addressed using: (1) a single cut section with 
one long fabric ply encompassing all sizes; (2) five 
separate sections, each dedicated to a single size; or 
(3) a multi-section approach, where the first section 
consists of 7 plies (size-1 once, size-2 three times, 
size-3 three times, size-4 twice, and size-5 once), 
the second section would have 2 plies (size-2 once, 
size-3 twice, size-4 once, and size-5 three times), 
and the third section would have 1 ply (size-4 and 
size-5 each appearing once). A solution for COP can 
be represented as a matrix with ‘m’ rows (sections) 
and ‘s+1’ columns (sizes + ply count). Each row (α) 
represents a section, with Gαβ denoting the number 
of occurrences of size β within that section, and Pα 
indicating the total fabric plies used in section α. To 
illustrate, consider the 4 × 6 matrix in Figure 3(a), 
which represents the third solution discussed earlier. 
The total garments produced by each section α can 
be calculated as ∑Gαβ×Pα. Figure 3(b) displays the 
total number of garments per size in each section, 
while Figure 3(c) confirms the overall quantity of 
garment output per section. 

Table 1. A COP problem (size-wise demand quantity).

Size1 Size2 Size3 Size4 Size5
7 23 26 17 13

While the cutting and packing problem has been 
extensively researched (Yang et al., 2024), COP in 
garment manufacturing has received less attention 
(Fister et al., 2010; Nascimento et al., 2010). 
However, efficient COP has become increasingly 
important due to evolving industry demands (Shang 
et al., 2019; Ünal & Yüksel, 2020; Xu et al., 2020; 
Prasad et al., 2022; Tsao et al., 2022; Xiang et al., 
2022; Ranaweera et al., 2023). COP involves 
complex constraints beyond size demand, including 
fabric ply limitations and section length restrictions 
(Puasakul & Chaovalitwongse, 2016). As the 
problem’s complexity increases, manual methods 
become inefficient since many alternative solutions 
can lead to different overall costs. Optimizing COP 

Figure 1. Garment manufacturing process.
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is NP-complete, as proved by Jacobs-Blecha et al. 
(1998), necessitating advanced artificial intelligence 
techniques for near-optimal solutions in realistic 
scenarios (Abd Jelil, 2018; Abualigah et al., 2021). 

Jacobs-Blecha et al. (1998) proposed three greedy 
heuristic algorithms, though with limited production 
constraints. Rose and Shier (2007) faced similar 
limitations. Nascimento et al. (2010) offered a state-
space search method with heuristic rules, allowing 
users to choose between optimal and near-optimal 
solutions. Shang et al. (2019) employed the iterated 
greedy algorithm (HFSC), involving initial solution 
construction and repeated improvement. M’Hallah 
and Bouziri (2016) proposed five heuristics for initial 
population generation, but their approach didn’t 
account for limited fabric length. Tsao et al. (2020) 
modified two of these algorithms (H1 and H5) to 
address consistent solution production and size 
prioritization issues. However, these modifications 
still lack randomization, potentially limiting the 
search space for metaheuristics using such heuristics 
as initial solutions.

Genetic algorithms (GA) (Martens, 2004; 
Abeysooriya & Fernando, 2012a, 2012b; M’Hallah 
& Bouziri, 2016 ; Tsao et al., 2020; Xu et al., 2020; 
Prasad et al., 2022) and evolutionary algorithms (EA) 
(Filipič et al., 2006; Wong & Leung, 2008; Fister 
et al., 2010) are most common for COP. GA studies 
often use random selection (Martens, 2004) or 
roulette wheel selection (Abeysooriya & Fernando, 
2012a, 2012b; Tsao et al., 2020). Hybrid approaches 
combining GA with other methods have been 
explored (Abeysooriya & Fernando, 2012a, 2012b; 
Tsao et al., 2020). Other metaheuristics include Ant 
Colony Optimization (2011), Simulated Annealing, 
and Tabu Search (M’Hallah & Bouziri, 2016; Tsao 
et al., 2020). Some studies used commercial LINGO 
software with integer programming (Silva et al., 2017; 
Ünal & Yüksel, 2020). These studies employed a 
two-step process, first building a mathematical model 
with integer programming and then solving it as an 

optimization problem using commercial software. 
Martens (2004) used GA based on nonlinear integer 
programming (NLIP) and integer programming (IP) 
models for real-world COP problems. Filipič et al. 
(2006) converted COP into a knapsack problem. 
Rose and Shier (2007), Wong and Leung (2008), 
and Silva et al. (2017) assumed equal marker area 
for all sizes, oversimplifying the production process. 
Silva et al. (2017) also predetermined the number of 
sections, limiting the solution’s flexibility for larger 
orders.

This study incorporates existing heuristics 
(H1_T2020, H3_MB2016) and introduces three 
adapted ones (H1+, H3+, H5+). It proposes a GA 
and adapts a Particle Swarm Optimization PSO 
algorithm for COP. Additionally, a mixed-integer 
linear programming (MILP) model is developed, 
solvable with commercial solvers like CPLEX and 
OpenSolver. The study aims to compare heuristics, 
metaheuristics, and solvers for COP, assessing their 
adaptability and cost-minimization potential in the 
garment industry. industry. The remainder of this 
paper is organized as follows: Section 2 presents the 
mathematical model of the COP.  Section 3 introduces 
solution approaches for the COP. Section 4 details 
the numerical applications. Section 5 presents the 
results and discussion, and Section 6 concludes the 
contributions of this study.

2. Mathematical Modeling

The main objective of COP is to optimize the use of 
fabric rolls by determining the most efficient way to 
cut garment components from the available fabric. 
This involves creating cutting plans that minimize 
waste while satisfying production requirements 
such as order quantities, garment sizes, and other 
constraints. Therefore, to fulfill an order, consider 
an arrangement for cutting garments of various sizes 
β  =  1, 2, …,  s, each with a particular quantity Qβ  to 
fulfill the order. The cutting process is divided into 

Figure 3. (a) Garments per ply per section (b) Garments per size (c) Garments per section.
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sections (α = 1, 2, 3, …, m). The decision variables 
are Gαβ , Pα , and Zα , where Gαβ represents garments 
of size β in one fabric ply in section α, Pα represents 
ply count in section α, and Zα represents whether 
section α is used. The objective is to minimize 
the total cost by finding optimal values for these 
decision variables. The mathematical model in this 
study assumes that the total cost is influenced by 
fabric cost, setup cost, and excess production cost. 
The setup cost is considered constant for all sections. 
The indices, decision variables, parameters, and 
mathematical model formulation for optimizing the 
COP are outlined below.

Indexes
β: sizes (β =1,2,3,…s)
α: sections (α =1,2,3,…m)

Decision variables 

Gαβ: Number copies of size β in section α 
Pα: Number of layers in section α
Zα: Takes the value of  1 if section α is used; otherwise, 0 

Parameters
Yβ: fabric consumption rate for size β (given) 
Qβ: demand for size β
CS: cost of setting up a new section (per section) 
CE: cost of excess production (per product) 
f: cost of using fabric (per length unit) 
lmax: Maximum length of fabric in any section
Pmax: Maximum number of plies in any section 
Pmin: Minimum number of plies in any section

Mi n  CT = ∑α ∑β
GαβYβPα f + ∑α

ZαCS + ∑α ∑β
CE(PαGαβ − Qβ) 

Mi n  CT = ∑α ∑β
GαβYβPα f + ∑α

ZαCS + ∑α ∑β
CE(PαGαβ − Qβ)  (1)

∑
β

GαβYβ ≤  lmax
  (2)

Pα  ≥  Pmin  (3)

Pα  ≤  Pmax  (4)

∑ GαβPα ≥  Qβ
α   (5)

Gαβ ,  Pα  ∈  ℤ+,  zα ∈ {0,1}       ∀ α , β  (6)

Equation (1) represents the objective function, which 
aims to minimize the total cost. This cost includes 
the fabric cost, setup cost, and excess production 

cost, which are detailed in the first, second, and 
third components respectively. Equation (2) enforces 
the length constraint of a section. Equation (3) and 
Equation (4) set limits on the number of plies per 
section. Equation (5) ensures that customer demand 
is satisfied. Equation (6) mandates integer decision 
variables for the number of copies of size β in section 
α and for the number of layers in section α and 
establishes Zα as a binary variable.

This study adapts the mathematical formulation from 
Tsao et al. (2020) but modifies the length constraint 
due to potential infeasibility. The original model’s 
100-meter cumulative length limit for all sections 
proved impractical for large orders. Instead, we 
impose a length limit on individual sections based on 
cutting table dimensions, as reflected in Equation 2. 
This approach aligns with common practices in COP 
literature (Degraeve & Vandebroek, 1998; Wong & 
Leung, 2008; Nascimento et al., 2010; Yang et al., 
2011; Shang et al., 2019).

3. Solution approaches
This study uses various solution approaches to 
tackle the COP problem. These approaches involve 
heuristic techniques to generate random viable 
solutions, which serve as the initial population for 
the proposed metaheuristic methods. The use of 
population-based metaheuristics, such as GA and 
PSO, can accelerate convergence by employing high-
level relay hybridization of metaheuristics to seed 
the initial population with high-quality solutions. 
The approach for the final solution involves using 
general-purpose commercial solvers, specifically 
CPLEX and OpenSolver, to find the optimal solution 
for experimental instances that allow it in terms of 
size and computation time.

3.1. Constructive heuristics
The article examines five constructive heuristics: 
H1_T2020, H3_MB2016, H1+, H3+, and H5+. 
H1 and H3 provide unique solutions, while H1+, 
H3+, and H5+ generate random solutions each 
time. These were selected based on M’Hallah and 
Bouziri’s (2016) findings on algorithm superiority. 
H1_T2020, adopted by Tsao et al. (2020), refines 
M’Hallah & Bouziri’s (2016) approach by 
accounting for fabric length limitations in each 
section. Algorithm 1 (Appendix I) presents a formal 
statement of H1_T2020, constructing sections based 
on minimal demand, ply height limits, and maximum 
size occurrences within length constraints.
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Algorithm 2 (Appendix I) presents H3_MB2016, 
adapted from M’Hallah & Bouziri (2016). This 
heuristic creates a single section containing all 
sizes, with ply count set as the greatest common 
divisor (GCD) of order quantities, respecting ply 
height constraints. To meet length limits, garments 
are removed from frequently occurring sizes. 
Residual demands are updated, and new sections are 
generated as needed. The algorithm incorporates the 
authors’ strategy for converting solutions to feasible 
ones, addressing the original version’s lack of length 
constraints.

The H1+ heuristic, presented in Algorithm 3 
(Appendix I), is a slightly modified version of the 
H1_T2020 algorithm. The key difference in the 
H1+ heuristic is its randomization of size selection 
when placing garments within a section. Unlike 
the original approach, which prioritized sizes from 
left to right (most likely smallest to largest), H1+ 
assigns garment occurrences in a random size order. 
This randomization allows for potentially different 
solutions with each run of the algorithm.

Algorithm 4 (Appendix I) represents the heuristic 
H3+, a revised version of M’Hallah & Bouziri’s 
(2016) H3 algorithm. The revision ensures viable 
solutions, following a similar approach to Tsao et al.’s 
(2020) modifications to H1 and H5. The quantity of 
garments per size in the marker was constrained 
by the maximum allowed without violating length 
constraints or by demand requirements. Like the H1+ 
heuristic, H3+ employs randomized size ordering to 
increase solution diversity.

The H5+ heuristic, described in Algorithm 5 
(Appendix I), is a refined version of M’Hallah & 
Bouziri’s (2016) random search approach, further 
improved by Tsao et al. (2020) and revised in this 
study. Randomization is introduced by assigning 
garment sizes in random order and iteratively 
constructing sections with randomized ply counts. 
New sections are created until a maximum count 
(m = 2s) is reached or all demands are met. Final 
sections use the H3+ heuristic to consolidate 
remaining demands, if applicable.

Figure 4 shows the solutions obtained using the 
constructive heuristics H1_T2020, H3_MB2016, 
H1+, H3+, and H5+ based on the information 
provided in Table 1. It is important to note that each 
heuristic produces a distinct COP solution, which 
is characterized by the total number of garments, 
garments per size, sections, and plies per section.

3.2. Metaheuristics
Metaheuristic algorithms are non-deterministic 
approximation methods designed to find near-
optimal solutions within a reasonable amount of time 
(Ezugwu et al., 2021; Gogna & Tayal, 2013). These 
algorithms can be broadly categorized into two 
types: single-solution-based and population-based. 
Single-solution-based algorithms iteratively improve 
a single solution, while population-based algorithms 
maintain a diverse set of solutions throughout the 
search to prevent premature convergence (Katoch 
et al., 2021; Toaza & Esztergár-Kiss, 2023). Although 
some metaheuristics draw inspiration from physics, 
chemistry, social sciences, sports, and other fields, 
the majority are inspired by nature (Boussaïd et al., 
2013; Ezugwu et al., 2021). This study examines the 
use of GA and PSO as nature-inspired population-
based metaheuristics to address the COP problem.

3.2.1. Genetic Algorithm
GAs are evolutionary optimization methods inspired 
by biological evolution and natural selection (Katoch 
et al., 2021; Ramos-Figueroa et al., 2021), introduced 
by John Holland in 1975. They generate a population 
of potential solutions, called chromosomes, and 
iteratively evaluate their fitness. Fitter solutions are 
more likely to reproduce, generating children for 
subsequent generations, evolving towards optimal 
solutions (Alhijawi & Awajan, 2023). In COP, 
each chromosome represents a potential solution 
evaluated by a fitness function to minimize costs. 
The selection, crossover, and mutation operations 
favor fitter chromosomes, as shown in Algorithm 6 
(Appendix II). GA evolves a randomized population 
towards optimality through genetic operators across 
generations, ensuring viability and handling variable 
chromosome sizes.

3.2.1.1. Initial population

The initial population is generated using five 
heuristics presented for the COP: H1_T2020, 
H3_MB2016, H1+, H3+, and H5+. The first two 
heuristics produce single solutions, while the latter 
three incorporate randomization, generating a 
diverse set of N solutions to populate the initial pool.

3.2.1.2. Selection operation

The selection process involves organizing 
tournaments with a predetermined number of 
contestants (k) chosen randomly from the population. 
The winner of the competition is the contestant with 
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the best fitness, which in this case corresponds to the 
lowest value, and they move on to the mating pool 
for reproduction.

3.2.1.3. Crossover operation

To ensure the generation of feasible offspring 
solutions, this study modifies the crossover operation 
from M’Hallah and Bouziri (2016), addressing the 
original procedure’s oversight of length constraints. 
Algorithm 7 (Appendix II) provides the pseudocode 
for this improved crossover operation. The selection 
operator is responsible for choosing two individuals 

from the population to participate in the crossover 
operation, namely Parent1 and Parent2. This process 
results in the creation of a new chromosome, known 
as Child, which is composed of some of the m1 
sections from Parent1 and some of the m2 sections 
from Parent2. In this context, G1 and G2 represent 
the G values of Parent1 and Parent2, respectively, 
while P1 and P2 indicate the P values of Parent1 and 
Parent2, respectively.

Figure 5 presents an example of the crossover 
operator based on the COP problem outlined in 
Table 1. The operator clones sections i1 through i2 

Figure 4. Solutions obtained by using heuristic algorithms.
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from Parent1 to Child, where i1 and i2 are randomly 
selected from the discrete uniform distribution 
[1, m1]. In this instance, m1=4, so i1 and i2 are equal 
to 2 and 3. This implies that Child inherits sections 
2 and 3 from Parent1, and residual demands are 
computed for this stage of the child’s solution with 
2 sections: rβ = [7,19, 18, − 3, 1],   ∀β ∈ s. After 
positive residual demands persist, Child is then 
finished based on the sections from Parent2.

Figure 5. Crossover operator for COP.

Let α′ = 1, which represents the index number 
of sections from Parent2. Since α′ ≤ m2, and  
max
β ∈ s (rβ) = 19 >  Pmin,  a temporary variable 
gcd =  G CD (rβ :  rβ > 0,  G 2α′ β > 0,  β ∈ s) is 
determined. In this instance, gcd= Greatest common 
divisor of (19,18,1)=1, considering that the residual 
demands of sizes 1, 2, 4, and 5 are strictly positive and   
G21,β values of only size 2, 3, and 5 are >0. Therefore, 
section 3 of Child has P3 = max{Pmin, minP2α´,gcd}} = 
max{4,min{4,1}}=4. The Gαβ of this section are 
the determined by ⌊

rβ

P3 ⌋, if the residual demand of 
size β is strictly positive and G21,β values of that 
size β is >0, until the maximum length is reached. 
This results in G3,1 =  0, since G 21,1 ≯ 0. Then, 
G3,2 = ⌊ 19

4 ⌋ = 4, which fulfills the condition that 
G21,2>0; G3,3=3, because G21,3>0, but a maximum 
3 garments can be placed without violating length 
constraint; G3,4=0 , because there is no residual 
demand for this size (r3= –3; and G3,5>0, because 
although G21,5>0 no garments can be placed without 
violating the length constraint. With the addition of 
the third section in the Child solution, the remaining 
demands are now rβ = [7,3, 6, − 3, 1],   ∀β ∈ s. As 
there are still positive demands, a new section is 
created based on α' = 2, which corresponds to the 
second section of Parent2.

Now, let α' = 2 ≤ m2 and max
β ∈ s (rβ) = 6 >  Pmin= 6 >Pmin, the 

temporary variable gcd=GCD(rβ:rβ>0, G2α'β>0, β∈s) 
is determined. In this case, gcd=GCD(7,3,6,1)=1, 
given that the residual demands of sizes 1, 2, 
3, and 5 are strictly positive, and G22,β values 
of all these sizes are >0. Therefore, section 4 
of Child has P4 = max{Pmin, min{P2α',gcd}} 
= max{4, min{4,1}}=4. Similar to the previous 

section, G4,1 = ⎣ G4,1 = ⌊ 7
4 ⌋ = 1⎦ = 1, G4,2 = ⎣G4,2 = ⌊ 3

4 ⌋ = 0⎦ = 0, G4,3 = ⎣G4,3 = ⌊ 6
4 ⌋ = 1,⎦ = 1, 

G4,5 = ⎣G4,5 = ⌊ 2
4 ⌋ = 0, ⎦ = 0, after ensuring that G 22,β values of 

all these sizes are >0. Then, G4,4 = 0 since residual 
demand of size 4 is not strictly positive. Hence, with 
the fourth section in Child, the remaining demands are: 
rβ = [3,3, 2, − 3, 1],   ∀β ∈ s. As positive demands 
persist, a new section is formed. This time α'=3 ≤ m2, 

however max
β ∈ s (rβ) = 3 ≱ Pmin. Therefore, P5 and G5,β 

are calculated without reflecting any sections from 
either parent. P5=max{Pmin, GCD(rβ:rβ > 0,β ∈ s)} 
=max{4, GCD(3,3,2,1)} = max{4,1}=4.

The Gαβ of this section are the determined by 

⌈
rβ

P5 ⌉, only if the residual demand of size β is strictly 
positive, until the maximum length is reached.  

Hence, G5,1 = ⎡G4,2 = ⌊ 3
4 ⌋ = 0⎤ = 1, G5,2 = ⎡G4,2 = ⌊ 3

4 ⌋ = 0⎤ = 1,   G5,3 = ⎡G5,3 = ⌈ 2
4 ⌉ = 1,⎤ = 1, 

G5,5 = ⎡G5,5 = ⌈ 1
4 ⌉ = 1⎤ = 1, and G5,4 =0, since there is no residual 

demand of size 4. After appending this fifth section to 
Child chromosome, all the residual demands become 
zero or negative: rβ = [−1, − 1, − 2, − 3,  − 3],   ∀β ∈ s
, which ends the crossover operation. Therefore, the 
resulting Child solution is now the output of the 
crossover operation. 

3.2.1.4. Mutation operation

The Mutation operator, presented in Algorithm 8 
(Appendix II), is also adopted and modified by the 
mutation procedure of M’Hallah and Bouziri (2016) 
to generate feasible solutions after alteration. The 
mutation is performed on the Child chromosome 
after the crossover operation.

Figure 6 illustrates an example of the mutation 
process. Suppose that the Mutation operator 
randomly selects size 5 in section 2 (G2,5) to be 
altered. The Mutate function is then invoked, which 
slightly modifies the solution and ensures that it 
satisfies all constraints. Initially, the value of G2,5=0 
is set, and the residual demand is calculated as 
rβ = [−1, − 1, − 2, − 3, 9],   ∀β ∈ s. A collection of 
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sections, excluding section 2, is then identified where 
the number of plies (P) is less than or equal 

to 𝕀𝕀 = {α′ = 1… . m ,  :α′ ≠ α , a n d Pα′ ≤ max
β ∈ s (rβ)} =  { 1, 3, 4, 5 }(rβ). 𝕀={α′=1….m, : α′≠ α, and Pα'≤𝕀𝕀 = {α′ = 1… . m ,  :α′ ≠ α , a n d Pα′ ≤ max

β ∈ s (rβ)} =  { 1, 3, 4, 5 }(rβ) = 

{1,3,4,5}. Section 4 is chosen because it has the 

shortest length out of all that belongs to set 𝕀. Then, 
 G4,5 = 0 + ⌈ 9

4 ⌉ = 3 is set where, 0 is the previous 

value of G4,5, 9 is the residual demand for size 5, and 
4 is the number of plies in section 4. All residual 
needs have been reduced to zero or negative values, 
indicating that all constraints have been satisfied and 
the mutation is complete. If there is still positive 
demand, section 4 will be removed from set 𝕀, and 
the same actions will be repeated with the updated 
set 𝕀. If the set 𝕀 is empty and there are still residual 
demands >0, the mutation will generate a new section 
to meet the demand.

Figure 6. Mutation operator for COP.

3.2.2. Particle Swarm Optimization 

PSO, which stands for Particle Swarm Optimization, 
is a metaheuristic algorithm proposed by Kennedy 
and Eberhart (1995). It involves candidate solutions, 
referred to as ‘particles,’ navigating the search 
space in a manner like a bird swarm seeking food 
(Shami et al., 2022). Although PSO was initially 
designed for D-dimensional continuous optimization 
problems, it has since been adapted for various 
applications (Poli et al., 2007; Shami et al., 2022). 
Kennedy and Eberhart (1997) introduced the 
binary version of PSO, which paved the way for its 
application in discrete search spaces. As a result, 
PSO has been used in numerous studies to solve 
discrete optimization problems (Chang et al., 2024; 
Gómez-Montoya et al., 2020; Jarboui et al., 2008). 
Moreover, some researchers have improved the 
optimization capabilities of basic or discrete PSO 
algorithms by incorporating perturbation processes 
(Chen et al., 2021).

In the context of COP, each solution is 
represented by a particle’s position vector 
Xp = {xp1, xp2, … . , xpm}, where xpα represents 
cutting section α of particle p. Each particle p has a 
velocity vector Vp = {vp1, vp2, … . , vpm}, a personal 
best position Pbestp={pbestp1, pbestp2, … , pbestpm1} 
and the global best position Gbestp={gbest1, gbest2, 
… , pbestm2}, where m, m2, and m2 are the respective 
number of dimensions or sections. Algorithm 9 
(Appendix III) demonstrates how PSO iteratively 
improves solutions by adjusting particles’ velocities 
and positions to explore the search space over T 
iterations or until a stopping criterion is met.

The COP problem involves integer variables and a 
varying number of dimensions. This research uses 
an adapted combinatorial PSO from Jarboui et al. 
(2008). While the original PSO considers constant 
dimensions in a discrete search space, the adaptation 
accommodates solutions with varying section 
numbers to suit the COP optimization problem.

3.2.2.1. Swarm Initialization

The PSO begins by initializing a swarm of particles, 
represented by position vectors, using the same five 
heuristics (H1_T2020, H3_MB2016, H1+, H3+, 
H5+) that were used for the GA. This ensures that 
the initial solutions are feasible. The velocities of 
the particles are randomly generated to explore the 
search space.

3.2.2.2. Position and Velocity Vector Update

To facilitate the transition between continuous and 
discrete search spaces, we introduced two dummy 
variable vectors, Yp = {yp1,  yp2,  …,  ypn} and 
Λp = {λp1,  λp2,  …,  λpn}, alongside the basic PSO 
variables. However, unlike Jarboui et al. (2008), n 
represents the minimum number of sections among 
the particle p’s current position X, its personal best 
solution Pbest, and the global best solution Gbest. 
In other words, n is the number of cutting sections 
that can be compared between X, Pbest, and Gbest. 
Equation (7) determines the elements of Y i

p based on 
comparisons between the particle’s current position, 
its personal best, and the global best solutions from 
the previous iteration. The velocity elements for the 
ith iteration are updated using Equation (8), which 
incorporates factors such as the inertia weight (w), 
cognitive and social acceleration coefficients (c1 and 
c2), and random numbers (r1 and r2). The number of 
elements in Y i

p may not necessarily match the number 

0 1 1 4 0 4 0 1 1 4 0 4
0 0 1 1 3 4 0 0 1 1 0 4
0 4 3 0 0 4 0 4 3 0 0 4
1 0 1 0 0 4 1 0 1 0 3 4
1 1 1 0 1 4 1 1 1 0 1 4

Child Mutated	child
!!" "! !!" "!
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of elements in V i−1
p . Therefore, if a corresponding 

value is available in Y i
p, the velocity element is 

updated; otherwise, it remains unchanged.

𝑦𝑦!"# =

⎩
⎪
⎨

⎪
⎧1, 	 𝑖𝑖𝑖𝑖	𝑥𝑥!"#$% = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔"#$%

−1, 𝑖𝑖𝑖𝑖  𝑥𝑥!"#$% = 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔!"#$%

"
#

"
#

−1 or 1,	 randomly if 4𝑥𝑥#!"$% = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 $% = 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔#!"$%5 
0,	            𝑖𝑖𝑖𝑖𝑥𝑥#!"$% ≠ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 $%	𝐴𝐴𝑁𝑁𝑁𝑁	 𝑥𝑥#!"$% ≠ 𝑝𝑝b𝑔𝑔st!"$%

(7) (7)

v ipα =
w × v i−1pα + r1 × c1(−1 − y ipα) + r2 × c2 × (1 − y ipα),   if y ipα  available

v ip−α1                                   ,    otherwise   (8)

The updated velocity is then utilized in Equation (9) 
to calculate the second dummy variable, Λ i

p, which, in 
turn, is used in Equation (10) to update the particle’s 
position vector Xi

p = {xi
p1, xi

p2, …, xi
pm′ }, where 

m' denotes the new section count in the updated 
solution. The explore factor φ controls the position 
vector update process and may impact the algorithm’s 
convergence or divergence. In contrast to Jarboui 
et al. (2008), a perturbation procedure is integrated 
at this point for the sections transitioning from 
the old position vector. This inclusion aims to 
introduce fluctuations within the sections, promoting 
diversification in the solution space.

λ i
pα = yi

pα + vi
pα (9)

  (10)

Finally, after updating particle p’s position 
vector Xi

p to have m' cutting sections, its velocity 
vector V i

p is resized to match this new dimension. 
If m'≤ m, it keeps the first m' values and deletes the 
remaining. If m' > m, it randomly generates (m' – m) 
number of values and appends them. Algorithm 10 
(Appendix III) provides a detailed explanation of 
how to update a position vector.

Figure 7 shows how to update a particle’s position and 
velocity vector based on the COP problem described 
in Table 1. Let Xi−1

p  be a randomly initialized 
particle solution, V i−1

p  be its associated velocity 
vector, Pb es ti−1

p  be the personal best solution 
found by this particle so far, and G b es ti−1 be the 
globally best solution identified among the entire 
swarm. Equation (7) is used to determine Y i

p, which 
initially contains four values. This is because only 
the first four sections of Xi−1

p  can be compared 
with Pb es t i−1

p  and G b es ti−1. Sections 1 and 3 in 
Xi−1

p  match G b es ti−1 and Pb es t i−1
p , respectively, 

resulting in yi
p1 being 1 and yi

p3 being –1 (highlighted 
in the same colors). The remaining sections in Xi−1

p  
do not align with Pbest and Gbest, resulting in the 
other Y i

p values being zero.

Figure 7. Position and velocity vector update process in PSO.
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In Step 2, the velocity of the particle is updated for 
iteration i using Equation (8). The values of c1 and 
c2 are considered as 2, w as 0.4, and random values 
of r1 (0.147440) and r2 (0.585727) between 0 and 1. 
The first value of V i

p is calculated as –0.78461 using 
Equation (8). The next three V i

p values are updated 
similarly. As Y i

p has only four values, the velocity 
remains unchanged after the fourth section. In Step 
3, Equation (9) combines the Y i

p and V i
p components 

to produce Λ i
p, which is another dummy variable with 

four values. In Step 4, Equation (10) is used to adjust 
Xi−1

p  and build Xi
p. The new solution, Xi

p is initialized 
with 0 sections. The first value of Λ i

p is compared to a 
threshold of φ = 0.5. Since −φ ≤ λ i

p1 = 0.21539 ≤ φ, 
the first section of Xi−1

p  is temporarily assigned as 
t e m pxi

p1, subject to perturbation. 

The perturbation process initially focuses on the P 
value. A generated random number is compared to 
the perturbation rate (η). If the random number is 
less than η, two integers, p1 and p2, are determined 
as p1,p2 = Sorted�Pα,min(Pmax,max{Pmin,

p1,p2  =  Sor ted[Pα, m i n⟨Pmax, m a x{Pmin, max
β ∈ s (rβ)}⟩](rβ)}�. 

In this case, with Pα=P1=9; Pmax=35; Pmin=4; and 
max
β ∈ s (rβ) = 26, we obtain p1,p2=9&26 respectively. 
Subsequently, a random integer between [9,26]=10 
is set as P1 of Xi

p. The next phase involves perturbing 
the G values. Assume that the G of Size5 (G1,5) is 
randomly selected for alteration. It begins by setting 
G1,5=0. At this point, particle Xi

p consists of only 
one temporary section, t e m pxi

p1. The calculated 
residual demands with this modified section are: 
rβ = [7,23, 26,7, 13],   ∀β ∈ s. 

Next, a temporary variable temp is calculated as 

t e m p =  m i n(⌈
rβ

Pα ⌉,  ⌊ lmax − lα
Yβ ⌋). With r5=13, 

Pα=10, lmax=20, lα=1.79, G1,5=0, Y5=1.51, we 
obtain temp=min(2,12)=2. Subsequently, G1,5 is 
updated from 0 to a random integer in [2,12]=2. 
After perturbation, the section is permanently added 
to Xi

p. Perturbed values are visually highlighted. 
With this definitive section, residual demands are: 
rβ = [7,23, 26,7, − 7],   ∀β ∈ s. While demand 
remains positive, the process continues. The second 
section is taken from the global best (Gbest) and 
appended to Xi

p since λ i
p2 = 0.61888 > φ. For the 

next Λ i
p value λ i

p3 = − 0.59875  < − φ, the third 
section is taken from Pbestp and merged into X i. 
It is important to note that none of these sections 
undergoes perturbation.

The process iteratively adds sections from Xi−1
p , 

Pbestp or Gbest into Xi
p following Equation (10), as 

long as demands remain positive. The fourth section 
is added from Xi−1

p  using the same perturbation 
procedure as the first section, as long as 
−φ ≤ λ i

p4 = 0.35773 ≤ φ. Note that due to the 
probabilistic nature of the approach, Gαβ, Pα, or 
neither may go through perturbation. After adding 
four sections, the residual demands now stand as 
follows: rβ = [−5, 2, 0, − 5, − 7],   ∀β ∈ s. The 
process continues to add new sections with remaining 
demand. However, perturbed sections are taken 
from Xi−1

p  when there are no more sections from 
Λ i

p to compare against the threshold. This process 
continues until there are no more sections left in  
Xi−1

p  or the remaining demands are non-positive. If 
there is still demand after adding all Xi−1

p  sections, 
the H1+ algorithm packs the remaining demand to 
ensure feasibility. 

In this example, Xi
p is completed after the fifth section 

from Xi−1
p , because no non-zero positive residual 

demand remains. The final version of the particle’s 
position vector, Xi

p, is illustrated in Figure 7 (Step 4). 
In Step 5, the velocity vector V i

p is resized to match 
the dimension of the position vector Xi

p. The first 
5 values of V i

p are preserved, discarding the rest, 
as Xi

p now has five sections instead of the previous 
seven. If the new solution had more sections than the 
previous one, additional velocity values would be 
randomly generated for the extra sections.

3.3. Exact solution using commercial solvers

The COP model presented in Equations 1-6 is a 
Mixed-Integer Nonlinear Programming (MINLP) 
model. The nonlinearity arises from the product 
of decision variables Gαβ and Pα in the objective 
function (1) and constraints (5). To solve the COP 
problem using commercial solvers, it is necessary to 
convert the MINLP model into a (MILP) model. This 
can be achieved by introducing additional binary 
and integer variables and constraints. This process 
of linearization enables the replacement of nonlinear 
terms in the objective function and constraints with 
equivalent linear expressions, thereby rendering the 
problem solvable by standard MILP solvers. The 
MILP model modifies certain indexes and variables 
while keeping the same parameters as the MINLP 
model. Below are the indices, decision variables, and 
mathematical formulation for optimizing the COP.
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Indexes

β: sizes (β=1,2,3,…s) 

α: sections  (α =1,2,3,…m)

k: digits  (k=1,2,3,…K)

Decision variables 

Gαβ: Number copies of size β in section α

vαk: Technical auxiliary variable to convert an integer 
variable into a limited set of binary variables

wαβk: Technical auxiliary variable to convert a product 
into an integer variable to linearize the problem 

Zα: Takes the value of 1 if section α is used; otherwise, 0

Mi n  CT = ∑α ∑β
Yβ f ∑k

2kwαβk + ∑α
ZαCS + ∑β

CE(∑α ∑k
2kwαβk − Qβ)

Mi n  CT = ∑α ∑β
Yβ f ∑k

2kwαβk + ∑α
ZαCS + ∑β

CE(∑α ∑k
2kwαβk − Qβ) (11)

∑
β

GαβYβ ≤ lmax
  (12)

∑
k

vαk2k ≤ Pmax Zα  (13)

∑
k

vαk2k ≥ PminZα
  (14)

∑
α

∑
k

2k wαβk ≥ Qβ  (15)

wαβk ≤  vαkQβ  (16)

wαβk ≥ Gαβ − Qβ(1 − vαk)  (17)

wαβk ≤ Gαβ  (18)

The conversion from the MINLP model to the MILP 
model starts with encoding the ply count as binary. 
The MILP model introduces new binary decision 
variables, vak, to indicate whether section α includes 
the value 2k. This enables the representation of Pα (a 
decimal number) as a linear combination of these 
binary variables: k

Pα =∑ vαk2k
. The index k ranges 

from 1 to a maximum value K, which determines the 
maximum number of binary digits allowed for 
representing Pα. K is given for any concrete problem 
as Pα is limited by Pmax. To define new integer 
variables, wαβk, we take the product of vαk and Gαβ. 
Using wαβk, the nonlinear part of Equation (11) can 
be linearly rewritten as ∑ ∑2kwαβk = ∑ GαβPα

α k α
. 

Constraint (12) in the 

MILP model is equivalent to Constraint (2) in the 
MINLP model. Constraints (13) and (14) replace the 
Constraints (3) and (4) from the MINLP model, 
respectively, enforcing the minimum and maximum 
values for Pα using the binary representation. 
Constraint (15) replaces the nonlinear Constraint (5) 
in the MINLP model. This ensures that the total 
production of each size meets the Qβ demand. The 
variables wαβk are connected to vαk  and Gαβ through 
the constraints (16), (17), and (18). If  vαk =0, 
constraint (16) results to wαβk =0. When vαk = 1, the 
constraint (17) reduces to wαβk ≥Gαβ. Together with 
constraint (18) this means wαβk =Gαβ. Therefore, in 
all possible cases (vαk =0 and vαk= 1) indeed wαβk = vαk 
Gαβ holds true.

The relative MIP gap tolerance in CPLEX, which 
balances solution quality and computational 
complexity (IBM, 2022), is a crucial parameter 
when solving the proposed MILP model. A lower 
tolerance yields a more accurate solution, but at the 
cost of increased computation time, while a higher 
tolerance prioritizes speed but may result in a less 
optimal solution. In this study, a default tolerance 
of 0.1% was initially used, with adjustments made 
to 0.5-1.6% for cases of extended runtime or no 
solution.

4. Computational experiments

4.1. Parameter tuning

The parameters for the two proposed metaheuristics 
were determined through tuning, starting with 
initial values from previous studies (Cano et al., 
2023; Fister et al., 2008, 2010; Jarboui et al., 
2008; M’Hallah & Bouziri, 2016; Shen et al., 
2014; Tsao et al., 2020; Wong & Leung, 2008). 
A grid search evaluated different combinations 
using three COP cases from the industry, each 
tested five times. For the PSO algorithm, we 
tested η = [0.1,  0.2,  0.3], φ = [0.3,  0.5,  0.7,  0.9], 
c1  c2 = [1, 1.5,  2], and w = [0.4,  0.6,  0.9] resulting 
in 324 combinations of these values on three cases, 
each executed five times, for a total of 4860 runs. For 
the GA algorithm, we tested ρ = [0.8,  0.9,  0.95,  1], 
η =  [0.003,  0.01,  0.05,  0.1], and K = [2, 3, 4, 5, 6]. 
This led to 80 possible combinations of these values 
for the same three cases. Each combination was run 
five times, resulting in a total of 1200 runs. The average 
fitness values and CPU runtime were recorded, and 
combinations were ranked by average fitness. Table 
2 shows the selected PSO values: w = 0.4; c1 =c2= 2; 
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η = 0.2; and φ = 0.5, with a stopping criterion of 
90 iterations without improvement. The optimal 
swarm size was N = 250 and iteration size T = 200. 
For GA, the selected values were K = 2, ρ = 0.95; and 
η = 0.003, with a stopping criterion of 99 iterations 
without improvement. The optimal population size 
was N = 200 and generation size T = 200.

Table 2. Parameter values for the GA and PSO.

Parameters Symbols PSO GA
Swarm size or Population 
size N 250 200

Iteration size or 
Generation size T 200 200

Crossover rate ρ - 0.95
Perturbation rate or 
Mutation rate η 0.2 0.003

Tournament size K - 2
Cognitive acceleration 
coefficient c1 2 -

Social acceleration 
coefficient c2 2 -

Inertia weight w 0.4 -
Explore factor φ 0.5 -
Stopping criteria sc 90 99

4.2. Experimental instances

To evaluate the proposed solution approaches 
(metaheuristics and commercial solvers), nine 
datasets (S4, S5, S7, M4, M5, M7, B4, B5, B7) from 
Tsao et al. (2020) were tested and compared. Table 
3 lists the size requirements and fabric consumption 
for these datasets. Parameters include a setup cost 
CS=$500 per section, excess production cost 
CE=$20 per garment, fabric cost f=$10 per meter, 
maximum fabric length per section lmax=20 meters, 
and 4 to 40 fabric layers per section. This study 
differs from Tsao et al. (2020) by limiting each 
section to 20 meters instead of a cumulative 

100 meters, as sections in Tsao et al. (2020) did not 
exceed 20 meters. This adjustment was necessary 
because the original restriction was impractical 
for large order sets in M5, B5, and B7 (e.g., the 
M5 solution in Tsao et al. (2020) had a total section 
length of 101.549 meters).

The metaheuristic algorithms, written in Python 
3.8.5, were run on an Apple M1 chip machine with 
an 8-core processor and 8 GB of RAM. Anaconda 
Navigator and Jupyter Notebook were used to write 
and execute the algorithms, finding solutions to a 
total of 9 COP sets. Each algorithm was run 10 times 
for each of the nine datasets. The MILP model was 
implemented using two general-purpose commercial 
solvers: CPLEX and OpenSolver (an add-on to MS 
Excel). The comparison results show the total cost 
and runtime by solution method, as well as the total 
cost savings achieved with the proposed solution 
methods.

5. Results and discussion

The proposed solution approaches, including 
metaheuristics and commercial solvers, were applied 
to the same datasets from Tsao et al. (2020) for 
comparison. Table 4 shows the averaged results for 
each solution method, with metaheuristics averaging 
ten executions per dataset due to their stochastic 
nature. These results were compared with Tsao et al. 
(2020), indicating that the TS algorithm with high 
parameter settings (TS high) provided the most cost-
effective solutions in most cases, while CPLEX 
delivered the best performance among the proposed 
methods.

When comparing the GAs in Table 4, the proposed 
GA shows superior performance, consistently 
generating lower-cost solutions than the GA (Low) 

Table 3. Size wise demand quantity and fabric consumption rate.

Dataset Size 1 Size 2 Size 3 Size 4 Size 5 Size 6 Size 7
S4 80 95 58 28
S5 25 95 145 130 25
S7 8 105 92 56 34 10 5
M4 654 443 938 245
M5 100 443 938 245 234
M7 143 443 1004 345 756 257 156
B4 8751 11 425 14 526 12 498
B5 7051 11 425 14 526 12 498 2256 569
B7 6780 14 526 16 473 18 767 112 498 8569 6532
Fabric Consumption (Yβ) in meters 1.420 1.441 1.462 1.500 1.523 1.634 1.700
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and generally outperforming the GA (High), except 
for datasets S7 and M4. On average, the proposed 
GA reduces costs by 4.2% and 4.0% compared to 
the GA (Low) and GA (High), respectively. This 
improvement is attributed to modifications in the 
initial solution heuristics (H1+, H3+, H5+) and the 
implementation of the tournament selection process. 
Table 4 shows that the cost for the M4 dataset by GA 
(high) and SA-GA (high) is lower than the cost by 
CPLEX with the default gap tolerance, suggesting 
35 559 as the optimal solution within 0.1% tolerance. 
However, the cost of 35 237 reported by Tsao et al. 

(2020) is outside this range. Their study didn’t 
publish the M4 solution, preventing verification. 
The discrepancy could be due to changes in the 
mathematical model or possible non-adherence to 
some constraints in their M4 solution, resulting in an 
artificially lower cost.

Table 5 shows cost savings from the proposed 
solution methods. GA and PSO achieve the highest 
savings compared to GA (High) in dataset S5 (18.8% 
and 19.9%, respectively), while CPLEX and Open 
Solver achieve the highest savings in dataset 

Table 4. Total cost by solution method.

Source Solution method
Dataset

S4 S5 S7 M4 M5 M7 B4 B5 B7

Tsao et al. 
(2020)

SA (Low) 5308 8175 7187 37 115 32 825 52 878 735 239 763 145 2 975 734
SA (High) 5273 8175 6935 36 559 32 567 52 417 735 239 756 755 2 973 446
GA (Low) 5307 8175 7752 37 059 33 025 53 015 735 739 764 145 2 975 234
GA (High) 5773 9210 6647 35 237 33 290 53 126 735 738 757 755 2 974 342
TS (Low) 5273 8175 6716 37 059 32 464 52 773 735 739 763 645 2 976 233
TS (High) 4773 7175 6647 36 559 32 256 51 737 734 739 756 755 2 973 342
SA-GA (Low) 5376 8626 7464 37 059 33 756 54 553 736 739 766 214 2 977 234
SA-GA (High) 5273 8175 6719 35 237 32 256 53 198 736 739 757 755 2 975 234
TS-GA (Low) 5273 7850 6855 37 059 32 393 53 491 735 239 764 145 2 975 234
TS-GA (High) 5483 8175 6647 36 836 32 894 53 374 735 239 757 255 2 973 342
Minimum cost 4773 7175 6647 35 237 32 256 51 737 734 739 756 755 2 973 342

This study

GA 5013 7479 6733 36 231 31 654 51 445 734 439 756 532 2 973 330
PSO 4884 7375 6694 36 231 31 578 51 329 734 559 756 564 2 973 352
CPLEX 4773 7175 5785 35 559 31 256* 50 133 697 739 718 467* 2 830 683*
OpenSolver 4773 7175 5785 36 362 31 708 50 740 700 506 722 240 Infinite
Minimum cost 4773 7175 5785 35 559 31 256 50 133 697 739 718 467 2 830 683

* Solutions generated with non-default relative MIP gap tolerance.

Table 5. Cost Savings.

Measure Solution method

Dataset

OverallS4 S5 S7 M4 M5 M7 B4 B5 B7

Max Saving

GA 13.2% 18.8% 13.1% 2.4% 6.2% 5.7% 0.3% 1.3% 0.1% 18.8%
PSO 15.4% 19.9% 13.6% 2.4% 6.5% 5.9% 0.3% 1.3% 0.1% 19.9%
CPLEX 17.3% 22.1% 25.4% 4.2% 7.4% 8.1% 5.3% 6.2% 4.9% 25.4%
Open Solver 17.3% 22.1% 25.4% 2.0% 6.1% 7.0% 4.9% 5.7% 0.0% 25.4%

Min Saving

GA -5.0% -4.2% -1.3% -2.8% 1.9% 0.6% 0.0% 0.0% 0.0% -5.0%
PSO -2.3% -2.8% -0.7% -2.8% 2.1% 0.8% 0.0% 0.0% 0.0% -2.8%
CPLEX 0.0% 0.0% 13.0% -0.9% 3.1% 3.1% 5.0% 5.1% 4.8% -0.9%
Open Solver 0.0% 0.0% 13.0% -3.2% 1.7% 1.9% 4.7% 4.6% 0.0% -3.2%

Avg. Saving

GA 5.4% 8.4% 3.0% 0.9% 3.4% 3.0% 0.2% 0.6% 0.1% 2.8%
PSO 7.9% 9.6% 3.5% 0.9% 3.6% 3.2% 0.1% 0.5% 0.1% 3.3%
CPLEX 10.0% 12.1% 16.6% 2.7% 4.6% 5.5% 5.2% 5.6% 4.8% 7.5%
Open Solver 10.0% 12.1% 16.6% 0.6% 3.2% 4.4% 4.8% 5.1% - 7.1%

Min (This study) vs Min 
(Tsao et al. (2020)) 0.0% 0.0% 13.0% -0.9% 3.1% 3.1% 5.0% 5.1% 4.8% 0.0%
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S7 (25.4% for both). The worst performance for 
GA is in S4 compared to TS (High) (-5.0%), and 
for PSO in M4 compared to GA (High) and SA-
GA (High) (-2.8%). CPLEX underperforms only 
in M4 compared to GA (High) (-0.9%), and Open 
Solver underperforms only in M4 compared to GA 
(High) and SA-GA (High). Comparing the best 
performance of benchmark methods with proposed 
methods, CPLEX and Open Solver offer up to 13% 
savings in dataset S7 compared to GA (High), TS 
(High), and TS-GA (High).

When analyzing the cost savings by demand quantity, 
Figure 8(a) shows that the average savings of the 
GA, PSO, CPLEX, and Open Solver with respect to 
the benchmark solutions are higher in scenarios with 
smaller demand quantities per size (small), while for 
the metaheuristics, the lowest average savings are 
generated in scenarios with large demand quantities. 
When analyzing the cost savings by number of sizes, 
Figure 8(b) shows that the average savings of CPLEX 
and Open Solver with respect to the benchmark 
solutions are higher in scenarios with larger number 
of sizes, while for GA and PSO, the most notable 
average savings are generated in scenarios with sizes 
equal to 5.

When comparing solution approaches, it is important 
to consider both solution quality and computation 
time, as there is a trade-off between the two when 
solving an NP-complete problem. While TS (High) 
was the best solution in terms of cost, it was one of the 
slowest algorithms in Tsao et al. (2020). Conversely, 
SA (Low) was the fastest algorithm presented in Tsao 
et al. (2020), but its solutions were less optimal. These 

two algorithms serve as benchmarks for comparing 
solution quality and execution time. Figure 9 plots 
CPU runtime (log scale x-axis) and total cost 
(y-axis) for COP datasets, with points near the lower 
left corner indicating better performance in terms of 
both quality and computation time. Similarly, for the 
datasets considered in the experiments, the average 
computation time for each solution approach is 
shown in Table 6.

The proposed approaches generally outperform 
TS (High) in solution quality, with CPLEX and 
OpenSolver often achieving efficient solutions with 
computation time comparable to SA (Low). 

For larger instances, the computational time solving 
the MILP model increases significantly due to the 
growth in variables and constraints. To mitigate this, 
we adjusted the relative MIP gap tolerance, applying 
higher tolerances (0.5% to 1.6%) for larger datasets 
to reduce runtime. For larger order quantities, 
computation time increases, but CPLEX excelled 
in cases like M5, B5, and B7 due to a higher gap 
tolerance. The proposed metaheuristics, PSO and 
GA, outperformed TS (High) for medium and large 
orders, with PSO performing better in terms of cost, 
with an average of 0.6%, but its execution time 
increased exponentially for large order sets.

Regarding the time complexity of GA, it is 
O(T×N2), where T is the number of generations and 
N is the population size. This complexity grows 
quadratically as the population size increases. The 
tournament selection process is proportional to N, 
while the crossover operation, which combines 

(a) (b)
Figure 8. Cost savings by (a) demand quantity and (b) number of sizes.
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pairs of individuals, results in approximately 
N(N−1)/2 pairwise combinations. As a result, 
the crossover complexity is O(N2). Selection and 
crossover dominate GA’s computational cost, 
requiring O(N2) operations per generation, leading 
to a total complexity of O(T×N2) over T generations.

In the case of PSO, the complexity is O(T×N), where 
N is the number of particles and T is the number of 

iterations. This indicates that the computation time 
grows linearly with both the number of particles 
and iterations. At each iteration, PSO updates the 
velocity and position of all N particles, resulting in 
O(N) operations per iteration. Across T iterations, the 
overall time complexity becomes O(T×N). Unlike 
GA, PSO does not require pairwise operations, 
which keeps its complexity linear.

The MILP model used in this study poses significant 
computational challenges, particularly for large 
instances, as MILP problems are NP-hard, leading 
to exponential growth in solution time as problem 
size increases. This complexity arises from the 
combination of binary decision variables, continuous 
variables, and linear constraints. The worst-case 
time complexity, using branch-and-bound or branch-
and-cut techniques (e.g., CPLEX), is exponential in 
the number of binary variables, as the solver must 
explore many possible combinations. 

Consequently, these results indicate that the proposed 
algorithmic approaches are useful for solving the 
COP and provide high quality solutions within 
reasonable computation time. In the first instance, 
the transformation of MINLP models into MILP 

Figure 9. Scatter plot comparing runtime and solution quality (cost) of different solution approaches.

Table 6. Computation time by solution method.

Dataset GA PSO OpenSolver CPLEX
S4 6.8 3.6 7 5

S7 12.0 9.3 20 5

S5 6.9 5.0 27 5

M5 23.3 10.7 5 5

M4 21.7 12.7 3 5

M7 58.8 24.7 2 292

B4 175.3 615.8 24 98

B5 269.0 856.4 109 5

B7 2146.0 6998.7 900 5
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models is preferred. In cases where it is not possible 
to find a solution within reasonable computation 
time using solvers such as CPLEX or OpenSolver, 
it is recommended to proceed with the execution 
of metaheuristics such as the proposed PSO and 
GA. These metaheuristics also produce satisfactory 
solutions for the COP compared to existing solution 
methods.

Therefore, the solution methods proposed in this 
study are well-suited for industrial application in 
garment manufacturing due to their ability to solve 
the COP problem. For small and medium-sized 
production orders, the MILP model provides highly 
efficient, near-optimal solutions using commercial 
solvers like CPLEX and OpenSolver. These solvers 
can be easily integrated into existing production 
planning systems, offering precise control over 
fabric usage and operational costs. In practical 
settings, especially where accuracy is paramount, 
the MILP approach could serve as an effective tool 
for short production runs and customized orders, 
helping companies optimize material usage while 
maintaining flexibility.

For larger production orders, where the complexity of 
the problem increases significantly, the metaheuristic 
approaches (GA and PSO) demonstrate their 
value by offering near-optimal solutions within 
reasonable computing time. These algorithms are 
highly adaptable, making them suitable for real-
world scenarios where rapid decision-making and 
scalability are crucial. Their ease of implementation 
and lower computational cost compared to exact 
methods make them particularly attractive for large-
scale operations or when real-time optimization is 
required.

Future industrial implementation could involve 
integrating these algorithms into production planning 
software, where they can dynamically optimize 
cut order plans based on changing demand and 
production constraints. Additionally, these methods 
can be applied in industries beyond apparel, such 
as automotive or furniture manufacturing, where 
efficient material cutting is equally critical.

6. Conclusions

In this study, we proposed two different solution 
approaches to solve the cut order planning problem 
in the garment manufacturing industry. The first 
approach used conventional metaheuristic algorithms, 

while the second approach involved transforming 
the nonlinear mathematical model into a linear 
one and using commercial solvers to solve it. We 
modified certain heuristics from previous literature 
and used them to generate the initial population for 
the metaheuristics. This modification, along with the 
use of tournament selection in the mating process, 
contributed to the improvement of the GA compared 
to previous versions in the literature. The proposed 
PSO showed better performance than the GA in 
most cases, especially for small and medium-sized 
problems.

The cost and runtime analysis of the proposed 
algorithms compared to benchmarks validates 
their efficiency and indicates their suitability for 
practical implementation in industry. In particular, 
the commercial solvers, CPLEX and OpenSolver, 
outperformed the metaheuristic approaches, 
providing better solutions in faster computational 
times than the metaheuristics. Commercial 
solvers provided better solutions than the best 
solution provider algorithm while maintaining a 
computational time comparable to the fastest solution 
provider algorithm presented in the literature.

Although heuristics and metaheuristics are 
conventional approaches for solving NP-hard 
problems such as the COP problem, the results of 
this study show that CPLEX and OpenSolver are 
often superior options. Furthermore, the use of 
metaheuristics in industry may require a development 
and implementation phase, whereas off-the-shelf 
software does not. Therefore, this study recommends 
the use of general-purpose software, such as CPLEX 
and OpenSolver, to solve COP problems, especially 
for small and medium-sized orders. For large orders, 
where commercial solvers cannot provide a solution, 
the use of the proposed PSO and GA is recommended.

The proposed solution methods not only demonstrate 
their effectiveness in solving the COP problem 
but also contribute to broader industrial goals, 
particularly in terms of sustainability. By optimizing 
COP, our methods significantly reduce fabric waste, 
which is crucial in an industry where material costs 
represent a significant portion of total expenses. The 
ability to minimize waste while meeting production 
demands directly supports sustainable practices, 
helping manufacturers reduce their environmental 
footprint while improving operational efficiency.
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Future research could focus on the development of 
hybrid metaheuristics that combine the strengths of 
GA and PSO, leveraging the exploration capabilities 
of GA and the fast convergence of PSO. This hybrid 
approach could deliver even more efficient solutions, 
particularly for large-scale, complex instances of the 
COP problem. Additionally, future research could 
explore these hybrid enhancements applied not only 
in garment manufacturing but also in other industries 
with similar cutting and planning challenges. Finally, 
further research could explore decomposition 
methods such as column generation and Benders 
decomposition to address the scalability issues of 
the MILP model, breaking the problem into smaller, 
more manageable subproblems.
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The data will be available upon request.
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Appendices

Appendix I. Pseudocodes for constructive heuristics
Algorithm 1. Pseudocode of H1_T2020

Set residual demand rβ= Qβ for β ∈ s
Set number of sections, α = 0

Repeat While max
β∈s

 (rβ )  > 0
Increase the value of α: α = α + 1

Set Pα = max{Pmin, m i n {(rβ :   rβ > 0,  β ∈ s ),   Pmax} } 
Set length of section α, lα = 0 
For β ∈ s:

If rβ ≥ Pmin:

If lα  ≤ lmax : 

Set  t e m p_Gαβ =  ⌊
rβ
Pα ⌋

Determine t e m p_lα =  ∑
β

t e m p_Gαβ Yβ
If t e m p_lα  ≤  lmax : set Gαβ = t e m p_Gαβ; and lα = t e m p_lα
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Else: set Gαβ = ⌊ lmax − lα
Yβ ⌋ and lα =  ∑

β
Gαβ Yβ

Else: set Gαβ = 0
Else If Pmin > rβ > 0:

If   lα  ≤ lmax: 

Set t e m p_Gαβ =  ⌈
rβ
Pα ⌉

Determine t e m p_lα =  ∑
β

t e m p_Gαβ Yβ

If t e m p_lα ≤ lmax : set Gαβ = t e m p_Gαβ; and lα = t e m p_lα

Else: set Gαβ = ⌊ lmax − lα
Yβ ⌋ and lα =  ∑

β
Gαβ Yβ

Else: set Gαβ = 0

Else: set Gαβ = 0

Update residual demand, rβ  = rβ − Pα × Gαβ ;     f o r β ∈ s

Algorithm 2. Pseudocode of H3_MB2016

Set residual demand rβ= Qβ for β ∈ s
Set number of sections,α = 0

Repeat While max
β∈s

 (rβ )  > 0:
Increase the value of α: α = α + 1

Set Pα = min{P_ m a x ,  m a x{G C D(rβ :  rβ > 0, β ∈ s ),    Pmin}}
Set length of section α , lα = 0

For β ∈ s:

Set t e m p_Gαβ = ⌈
rβ
Pα ⌉

Determine t e m p_lα =  ∑
β

t e m p_Gαβ Yβ

Repeat While t e m p_lα > lmax :

Determine β′ = β where t e m p_G has the maximum occurrence of garments.

t e m p_Gαβ′ = t e m p_Gαβ′   − 1

Update length t e m p_lα =  ∑
β

t e m p_Gαβ Yβ
Set Gαβ = t e m p_Gαβ
Update Residual demand, rβ  = rβ − Pα × Gαβ; f o r β ∈ s

Algorithm 3. Pseudocode of H1+

Set Residual demand  rβ= Qβ for β ∈ s
Set number of sections, α = 0

Repeat While max
β∈s

 (rβ )  > 0
Increase the value of α: α = α + 1
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Set Pα = max{Pmin, m i n {(rβ :   rβ > 0,  β ∈ s ),   Pmax} } 
Set length of section α , lα = 0

Set K =  [1, 2, 3,……,  s];   a list of all sizes.
Randomly Shuffle the order of values in K
For β ∈ K:

If rβ ≥ Pmin:

If   lα  ≤ lmax: 

Set  t e m p_Gαβ =  ⌊
rβ
Pα ⌋

Determine t e m p_lα =  ∑
β

t e m p_Gαβ Yβ
If t e m p_lα ≤  lmax :  Set Gαβ = t e m p_Gαβ; and lα = t e m p_lα

ELSE: Set Gαβ = ⌊ lmax − lα
Yβ ⌋ and lα =  ∑

β
Gαβ Yβ

Else: Set Gαβ = 0

Else If Pmin > rβ > 0:

If   lα  ≤ lmax: 

Set  t e m p_Gαβ =  ⌈
rβ
Pα ⌉

Determine t e m p_lα =  ∑
β

t e m p_Gαβ Yβ

If t e m p_lα ≤ lmax :  Set Gαβ = t e m p_Gαβ; and lα = t e m p_lα

Else: Set Gαβ = ⌊ lmax − lα
Yβ ⌋ and lα =  ∑

β
Gαβ Yβ

Else: Set Gαβ = 0

Else: Set Gαβ = 0
Update Residual demand, rβ  = rβ − Pα × Gαβ; f o r β ∈ s

Algorithm 4. Pseudocode of H3+

Set Residual demand  rβ= Qβ for β ∈ s
Set number of sections, α = 0

Repeat While max
β∈s

 (rβ )  > 0:
Increase the value of α: α = α + 1

Set Pα = min{P_ m a x ,  m a x{G C D(rβ :  rβ > 0, β ∈ s ),    Pmin}}
Set length of section α , lα = 0 
Set K =  [1, 2, 3,……,  s]; a list of all sizes
Randomly Shuffle the order of values in K
For β ∈ K:

If rβ > 0:

Set Gαβ = max 0,  m i n  ⌈
rβ
Pα ⌉,  ⌊ lmax − lα

Yβ ⌋
Set lα =  ∑

β
Gαβ Yβ

Else: Set Gαβ = 0

Update Residual demand, rβ  = rβ − Pα × Gαβ; f o r β ∈ s
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Algorithm 5. Pseudocode of H5+

Set Residual demand  rβ= Qβ for β ∈ s
Set α = 1, and m = 2

Repeat While max
β ∈ s (rβ) > 0:

For β ∈ s: 
IF 0 < rβ < Pmin: then Set rβ = Pmin

Set Pα =  a random integer between m a x{Pmin, 1},   m i n Pmax,  m a x{Pmin,  max
β∈s

 (rβ )}Set length of section α , lα = 0 
Set K =  [1, 2, 3,……,  s]; a list of all sizes.
Randomly Shuffle the order of values in K
For β ∈ K :

If rβ  ≤ 0; OR lα  ≥ lmax:
Set Gαβ = 0  
SKIP the next parts and continue the FOR Loop for next value of β.

Set t e m p_Gαβ =  a random integer between 0,  ⌊
rβ
Pα ⌋ 

Determine 
t e m p_lα =  ∑

β
t e m p_Gαβ Yβ

If t e m p_lα ≤ lmax :

Set Gαβ = t e m p_Gαβ
Set  lα = t e m p_lα

Else: 

Set Gαβ =  a random integer between 0,  ⌊ lmax − lα
Yβ ⌋ 

Set 
lα =  ∑

β
Gαβ Yβ

Update Residual demand, rβ  = rβ − Pα × Gαβ ;  where β ∈ s

Increase the value of α: α = α + 1

If α  ≥  m AND max
β∈s

 (rβ )  > 0:

       Use H3+ algorithm to pack all remaining demands

Appendix II. Pseudocodes for genetic algorithms
Algorithm 6. Pseudocode of GA

Input: population size (N); number of generations (T);: tournament size (k); crossover rate 
(ρ); mutation rate (η).
Output: A near global optimum solution 
Generate 2 solutions using H1_T2020, and H3_MB2016 and append them to Po p u l a t i o n
Generate solutions randomly Using H1+, H3+ & H5+ until there are  N amount of feasible solu-
tion in Po p u l a t i o n
Evaluate Fitness value of each solution in Po p u l a t i o n
For t ∈ T:

For n ∈ N:
Select Pa r e n t1, and Pa r e n t 2 using Tournament Selection 
Get C h i l d  by calling Crossover (Pa r e n t1, Pa r e n t 2, ρ) Function.
Get M u t a t e d _C h i l d by calling Mutation (C h i l d , η) Function.
Evaluate Fitness value of M u t a t e d _C h i l d .
Append M u t a t e d _C h i l d  in variable C h i l d r e n

n e w_Po p u l a t i o n =  Merge Po p u l a t i o n and C h i l d r e n
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Sort the n e w_Po p u l a t i o n (2N population size) in a non-decreasing order of Fitness.
Set Po p u l a t i o n= first N individuals of the n e w_Po p u l a t i o n.
If meets the stopping criteria:

Stop and Go To step 6
Return First solution in Po p u l a t i o n

Algorithm 7. Pseudocode of Crossover Operator

Input: Two selected individuals for mating (Pa r e n t1, Pa r e n t 2); crossover rate (ρ)
Output: A solution as a result of their crossover (C h i l d )
FUNCTION Crossover (Pa r e n t1, Pa r e n t 2, ρ):
If Random Uniform [0,1] > ρ:

Stop and Return Pa r e n t1

Set G1αβ ,   P 1α  = Gαβ ,   Pα of Pa r e n t1;  and  G 2αβ ,   P 2α  = Gαβ ,   Pα of Pa r e n t 2

Set 
m1,  m2 =

 number of sections in Pa r e n t1,and in Pa r e n t 2, respectively.
Set i1,   i2  =  2 Randomly chosen values from the discrete uniform [1, m1], where i1 < i2 .
Set the first αc = i2 − i1 + 1 sections of C h i l d by copying sections i1 through i2 from  Pa r e n t1
Update residual demand of C h i l d, rβ ,  β ∈ s
Set α′ = 1, where α′  is the index number of sections from Pa r e n t 2.

Repeat While max
β ∈ s (rβ)  > 0:

Create a new section of C h i l d, αc = i2 − i1 + 1 + α′  
If α′ ≤ m2 AND  max

β ∈ s (rβ)  >  Pmin :   

Determine variable g c d =  G C D (rβ :  rβ > 0,  G 2α′ β > 0,  β ∈ s)
Set Pαc = max{Pmin,  m i n {P 2α′  ,   g c d}}, where P 2α′  is the number of plies in sec-
tion α′  of Pa r e n t 2 
Set length of section αc, lαc = 0
For β ∈  s:

If rβ > 0, AND G 2α′ β > 0 :

Set Gαc β =  m i n ⌊
rβ

Pαc ⌋, ⌊
lmax −  lαc

Yβ ⌋
Update lαc =  lengths of the section αc

Else Set Gαc β =  0

Set α′ = α′ + 1
Else:

Set Pαc = max{Pmin,  G C D (rβ :  rβ > 0,  β ∈ s)}
Set length of section αc, lαc = 0
For β ∈  s :

If rβ > 0, THEN 

Set Gαc β =  m i n ⌈
rβ

Pαc ⌉, ⌊
lmax −  lαc

Yβ ⌋
Update lαc =  lengths of the section αc

Else Set Gαc β =  0
Stop While Loop

Update residual demand for Child rβ ,   β ∈ s   
Return C h i l d
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Algorithm 8. Pseudocode of Mutation Operator

Input: Chromosome solution for mutation operation; η: probability of mutating of a gene (C h i l d ).

Output: A solution as a result of mutation operation (M u t a t e d _C h i l d )

FUNCTION Mutation (C h i l d ,   η ) :
For α ∈  m : where m is number of sections in C h i l d

For β ∈  s:

If random uniform [0,1] < η:
M u t a t e d _C h i l d =  Call FUNCTION Mutate (α , β ,  Gαβ ,  Pα)

Return M u t a t e d _C h i l d

FUNCTION Mutate (α , β ,  Gαβ ,  Pα):
Set Gαβ  =  0
Update residual demand rβ ,  β ∈ s

Set 𝕀𝕀𝕀 =  {α′ = 1… . m ,   w h e r e  α′ ≠  α ,  a n d Pα′ ≤ rβ}
Repeat While  max

β ∈ s (rβ) > 0:

If 𝕀 is not NULL:
Determine lα′ =  list of lengths of the sections for α′ ∈  𝕀𝕀 𝕀
Determine  α′ ′ =  α′  and Pα′ ′ = Pα′  where  lα′ ′ =  m i n{lα′ }

Set  Gα′ ′ β =  previous value +min ⌈
rβ

Pα′ ′ ⌉, ⌊
lmax −  m i n{lα′ }

Yβ ⌋
Set 𝕀 = 𝕀𝕀𝕀  =  𝕀𝕀\{ α ′ ′ }

Else:
Create new section α′ ′ =  m + 1

Set Pα′ ′   = min{Pmax,  m a x {Pmin, rβ}}
If  Pα′ ′ ≥  rβ :

Set  Gα′ ′ β  =  1
Else:

Set  Gα′ ′ β  =  m i n ⌊
rβ

Pα′ ′ ⌋,  ⌊ lmax
Yβ ⌋  

Update residual demand rβ ,  β ∈ s  
Return M u t a t e d _C h i l d 

Appendix III. Pseudocodes for particle swarm optimization
Algorithm 9. Pseudocode of PSO Algorithm

Input: Swarm size (N ); number of iterations (T ); explore factor (φ); perturbation rate (η)
Output: A near global optimum solution (G b e s t)
Generate 2 solutions using H1_T2020, and H3_MB2016 Algorithm and (N − 2) solutions randomly 
Using H1+, H3+ & H5+ algorithms in S w a r m, where each particle is XP
Generate Initial velocity VP  in range [−φ ,  φ] for each particle XP in S w a r m 
For p ∈ N:  

Set Pb e s tP = XP
Set G b e s t = Best position vector of a particle in the swarm with lowest fitness value (local 
search method)
For i ∈ T:

For p ∈ N:

Update Xi
P & Vi

P by calling ParticleUpdate (Xi
P
−1, Vi

P
−1,  Gbest ,  PbestP, φ ,  η)  function.

If Fitness (Xi
P) < Fitness (Pb e s tP): 

Set Pb e s tP = Xi
P
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If Fitness (Xi
P) < Fitness (G b e s t):

Set G b e s t = Xi
P

If meets the stopping criteria:

Stop the For loop and go to step 6

Return G b e s t

Algorithm 10. Pseudocode of Updating Position & Velocity Vector (P a r t i c l eUpdate)

Input: Particle’s position vector (Xi−1
P ); particle’s position vector (V i−1

P ); global best posi-
tion vector (G b e s t ); particle’s personal best position vector (Pb e s t ); explore factor (φ); per-
turbation rate (η)
Output: Updated particle (Xi

P)

FUNCTION ParticleUpdate (Xi
P
−1, Vi

P
−1,  Gbest ,  PbestP, φ ,  η) :

Calculate Yi
P = {yi

p1, yi
p2, … . , yipα…, yipn} by Equation (7) 

Update velocity Vi
P = {vi

p1, vi
p2, … . , vipα…, vipm} by Equation (8)

Calculate Λi
P = {λ i

p1, λ i
p2, … . , λ ipα…, λ ipn} by Equation (9)

Initialize n e w_X with 0 section.

R = (rβ :  β ∈ s) : Update residual demand for solution n e w_X

Set s e c =  number of sections in Λi
P

For α ∈  s e c:

If λ ipα >  φ:
n e w_xα  = g b e s tα: Copy α th section of G b e s t and create a new section α for 
n e w_X 

Else If  λ ipα < − φ:
n e w_xα = p b e s tα :  Copy α th section of Pb e s tP and create a new section α for 
n e w_X 

Else:

temp_xα = xiα−1 : Copy α th section of Xi−1
P  and create a new section α for n e w_X

n e w_xα = Perturbation(temp_xα,   R , η)
R = (rβ :  β ∈ s) : Update residual demand for solution n e w_X

If max(R = rβ :  β ∈ s) ≤ 0:
STOP and Go to Update dimension of velocity vector to match the Position 
vector’s dimension

Set  q= Total number of sections in Xi−1
P

For α ∈  r a n g e [s e c + 1,  q]:
temp_xα = xiα−1 : Copy α th section of Xi−1

P  and create a new section α for n e w_X

n e w_xα = Perturbation(temp_xα,   R , η)
R = (rβ :  β ∈ s): Update residual demand for solution n e w_X

If max(R = rβ :  β ∈ s) ≤ 0:
Stop and Go to Update dimension of velocity vector to match the Position 
vector’s dimension

If Positive residual demand: Use H1+ algorithm to pack all remaining demands.
Update dimension of velocity vector to match the Position vector’s dimension

Return n e w_X as Xi
P,  and Vi

P
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FUNCTION Perturbation(new_xα, R, η):

Set Gα  Pα  =  Gα  Pα of n e w_xα

If Random Uniform [0,1] <  p_r a t e:

p1,  p 2 = So r t e d Pα,   m i n⟨P_ m a x ,  m a x{P_ m i n ,   max
β ∈ s (rβ)}⟩

Set Pα= Random Integer between [p1,p 2]
For β ∈  s:

If Random Uniform [0,1] <  p_r a t e:
Set Gαβ  = 0 
If rβ > 0:

Determine length of the section Lα

Determine 
t e m p = max 0,  m i n ⌈

rβ
Pα ⌉,  ⌊ lmax − lα

Yβ ⌋  

Set Gαβ =  Random integer [0,t e m p]
Return n e w_xα = (Gα  Pα)
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