
PME

I
J

International Journal of
Production Management
and Engineering

https://doi.org/10.4995/ijpme.2025.22196

Received: 2024-07-31 Accepted: 2024-11-23

Optimizing cut order planning: A comparative study of heuristics,
metaheuristics, and MILP algorithms

Sharif Al-Mahmud a1, Jose Alejandro Cano b1*, Emiro Antonio Campo b2, Stephan Weyers a2

a University of Applied Sciences and Arts, Fachhochschule Dortmund, Emil-Figge-Str. 44 - 44227 Dortmund, Germany.
b University of Medellin. Carrera 87 # 30-65, 050026 Medellin, Colombia.

a1 sharif.al-mahmud@fh-dortmund.de; b1 jacano@udemedellin.edu.co; b2 ecampo@udemedellin.edu.co;
a2 stephan.weyers@fh-dortmund.de

Abstract:
Cut Order Planning (COP) optimizes production costs in the apparel industry by efficiently cutting fabric for
garments. This complex process involves challenging decision-making due to order specifications and production
constraints. This article introduces novel approaches to the COP problem using heuristics, metaheuristic
algorithms, and commercial solvers. Two different solution approaches are proposed and tested through
experimentation and analysis, demonstrating their effectiveness in real-world scenarios. The first approach uses
conventional metaheuristic algorithms, while the second transforms the nonlinear COP mathematical model into
a Mixed Integer Linear Programming (MILP) problem and uses commercial solvers for solution. Modifications to
existing heuristics, combined with tournament selection in genetic algorithms (GA), improve solution quality and
efficiency. Comparative analysis shows that Particle Swarm Optimization (PSO) outperforms GA, especially for
small and medium-sized problems. Cost and runtime evaluations confirm the efficiency and practical applicability
of the proposed algorithms, with commercial solvers, delivering superior solutions in shorter computation times.
This study suggests the use of solvers for the COP problem, especially for smaller orders, and reserves PSO
and GA for larger orders where commercial solvers may not provide a solution.

Key words:
COP, cut order planning, heuristics, Metaheuristics, MILP, garment manufacturing.

1. Introduction

The apparel industry, a multi-trillion-dollar market,
needs to improve production efficiency to remain
competitive (Ranaweera et al., 2023; Wijethilake
et al., 2023). However, enhancing business processes
is crucial for productivity, efficiency, and socio-
economic benefits (Yang et al., 2023). Garment
production involves multiple steps, including order
taking, sample preparation, material procurement,
storage, inspection, cutting, sewing, finishing
and outbound logistics (Abd Jelil, 2018; Ünal &
Yüksel, 2020; Xu et al., 2020). These processes
aim to increase productivity and reduce costs, with
sewing being the most critical step (Nchalala et al.,
2023). Fabric cutting, preceding sewing, accounts

for 5-10% of total manufacturing costs and 50-60%
of material costs (Alsamarah et al., 2022; Wong &
Leung, 2008).

As shown in Figure 1, the cutting process begins with
the Cut Order Planning (COP), determining garment
quantities and sizes. Subsequent steps include
marker making, spreading fabric on cutting tables,
cutting according to the marker pattern, identifying
cut pieces, and bundling for further processing. COP
is crucial for garment manufacturing efficiency and
cost (Prasad et al., 2022). It determines optimal
fabric cutting patterns to minimize waste (Fister
et al., 2010), enhancing sustainability and economic
viability (Nasrin & Alam, 2023). Fabric is spread in
layers (plies) on a cutting table, forming sections,

To cite this article: Al-Mahmud, S., Cano, J.A., Campo, E.A., Weyers, S. (2025). Optimizing cut order planning: A comparative study of heuristics, metaheuristics, and
MILP algorithms. International Journal of Production Management and Engineering, 13(1), 1-26. https://doi.org/10.4995/ijpme.2025.22196

http://polipapers.upv.es/index.php/IJPME

Int. J. Prod. Manag. Eng. (2025) 13(1), 1-26Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 1

https://doi.org/10.4995/ijpme.2023
https://orcid.org/0000-0001-7411-7349
https://orcid.org/0000-0002-2638-5581
https://orcid.org/0000-0003-1376-2111
https://doi.org/10.4995/ijpme.2024
http://polipapers.upv.es/index.php/IJPME
http://creativecommons.org/licenses/by-nc-nd/4.0/

while markers guide cutting of irregularly shaped
patterns for different sizes (Martens, 2004; Tsao
et al., 2022).

Although COP focuses on optimizing the number
of fabric plies and sections to minimize production
costs and waste, it does not explicitly address the
spatial arrangement of garment patterns on the
fabric. This spatial arrangement is typically handled
by a related optimization problem known as marker
making or nesting (Puasakul & Chaovalitwongse,
2016; Yang et al., 2024). Marker making involves
placing irregularly shaped garment pieces onto the
fabric in the most efficient way possible to minimize
material waste. While COP determines how many
layers of fabric and sections are needed for a
given order, marker making ensures that the actual
patterns are arranged optimally within each section,
complementing the goals of COP by further reducing
fabric waste (Abd Jelil, 2018).

Figure 2 shows a cutting section consisting of five
fabric plies and a marker for three different garment
sizes, where each color on the patterns represents
a specific size. Large orders may be divided into
multiple sections due to limitations in the cutting
process, and each section may have varying numbers
of plies and unique markers (Fister et al., 2010).

Figure 2. A cutting section of five plies with a marker
containing three garments of three sizes.

The problem of COP can be solved using various
methods. For instance, consider a buyer’s order

comprising five sizes (Table 1). This order could
be addressed using: (1) a single cut section with
one long fabric ply encompassing all sizes; (2) five
separate sections, each dedicated to a single size; or
(3) a multi-section approach, where the first section
consists of 7 plies (size-1 once, size-2 three times,
size-3 three times, size-4 twice, and size-5 once),
the second section would have 2 plies (size-2 once,
size-3 twice, size-4 once, and size-5 three times),
and the third section would have 1 ply (size-4 and
size-5 each appearing once). A solution for COP can
be represented as a matrix with ‘m’ rows (sections)
and ‘s+1’ columns (sizes + ply count). Each row (α)
represents a section, with Gαβ denoting the number
of occurrences of size β within that section, and Pα
indicating the total fabric plies used in section α. To
illustrate, consider the 4 × 6 matrix in Figure 3(a),
which represents the third solution discussed earlier.
The total garments produced by each section α can
be calculated as ∑Gαβ×Pα. Figure 3(b) displays the
total number of garments per size in each section,
while Figure 3(c) confirms the overall quantity of
garment output per section.

Table 1. A COP problem (size-wise demand quantity).

Size1 Size2 Size3 Size4 Size5
7 23 26 17 13

While the cutting and packing problem has been
extensively researched (Yang et al., 2024), COP in
garment manufacturing has received less attention
(Fister et al., 2010; Nascimento et al., 2010).
However, efficient COP has become increasingly
important due to evolving industry demands (Shang
et al., 2019; Ünal & Yüksel, 2020; Xu et al., 2020;
Prasad et al., 2022; Tsao et al., 2022; Xiang et al.,
2022; Ranaweera et al., 2023). COP involves
complex constraints beyond size demand, including
fabric ply limitations and section length restrictions
(Puasakul & Chaovalitwongse, 2016). As the
problem’s complexity increases, manual methods
become inefficient since many alternative solutions
can lead to different overall costs. Optimizing COP

Figure 1. Garment manufacturing process.

Order
Confirmation

Raw	Material	
Purchase Sewing Finishing LogisticsCutting

Cut Order
Planning

Fabric
Spreading

Marker
Placement

Cutting
(Basic)

Marker
Making

Sticker
Placement Bundling

Int. J. Prod. Manag. Eng. (2025) 13(1), 1-26 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Al-Mahmud et al.

2

http://creativecommons.org/licenses/by-nc-nd/4.0/

is NP-complete, as proved by Jacobs-Blecha et al.
(1998), necessitating advanced artificial intelligence
techniques for near-optimal solutions in realistic
scenarios (Abd Jelil, 2018; Abualigah et al., 2021).

Jacobs-Blecha et al. (1998) proposed three greedy
heuristic algorithms, though with limited production
constraints. Rose and Shier (2007) faced similar
limitations. Nascimento et al. (2010) offered a state-
space search method with heuristic rules, allowing
users to choose between optimal and near-optimal
solutions. Shang et al. (2019) employed the iterated
greedy algorithm (HFSC), involving initial solution
construction and repeated improvement. M’Hallah
and Bouziri (2016) proposed five heuristics for initial
population generation, but their approach didn’t
account for limited fabric length. Tsao et al. (2020)
modified two of these algorithms (H1 and H5) to
address consistent solution production and size
prioritization issues. However, these modifications
still lack randomization, potentially limiting the
search space for metaheuristics using such heuristics
as initial solutions.

Genetic algorithms (GA) (Martens, 2004;
Abeysooriya & Fernando, 2012a, 2012b; M’Hallah
& Bouziri, 2016 ; Tsao et al., 2020; Xu et al., 2020;
Prasad et al., 2022) and evolutionary algorithms (EA)
(Filipič et al., 2006; Wong & Leung, 2008; Fister
et al., 2010) are most common for COP. GA studies
often use random selection (Martens, 2004) or
roulette wheel selection (Abeysooriya & Fernando,
2012a, 2012b; Tsao et al., 2020). Hybrid approaches
combining GA with other methods have been
explored (Abeysooriya & Fernando, 2012a, 2012b;
Tsao et al., 2020). Other metaheuristics include Ant
Colony Optimization (2011), Simulated Annealing,
and Tabu Search (M’Hallah & Bouziri, 2016; Tsao
et al., 2020). Some studies used commercial LINGO
software with integer programming (Silva et al., 2017;
Ünal & Yüksel, 2020). These studies employed a
two-step process, first building a mathematical model
with integer programming and then solving it as an

optimization problem using commercial software.
Martens (2004) used GA based on nonlinear integer
programming (NLIP) and integer programming (IP)
models for real-world COP problems. Filipič et al.
(2006) converted COP into a knapsack problem.
Rose and Shier (2007), Wong and Leung (2008),
and Silva et al. (2017) assumed equal marker area
for all sizes, oversimplifying the production process.
Silva et al. (2017) also predetermined the number of
sections, limiting the solution’s flexibility for larger
orders.

This study incorporates existing heuristics
(H1_T2020, H3_MB2016) and introduces three
adapted ones (H1+, H3+, H5+). It proposes a GA
and adapts a Particle Swarm Optimization PSO
algorithm for COP. Additionally, a mixed-integer
linear programming (MILP) model is developed,
solvable with commercial solvers like CPLEX and
OpenSolver. The study aims to compare heuristics,
metaheuristics, and solvers for COP, assessing their
adaptability and cost-minimization potential in the
garment industry. industry. The remainder of this
paper is organized as follows: Section 2 presents the
mathematical model of the COP. Section 3 introduces
solution approaches for the COP. Section 4 details
the numerical applications. Section 5 presents the
results and discussion, and Section 6 concludes the
contributions of this study.

2. Mathematical Modeling

The main objective of COP is to optimize the use of
fabric rolls by determining the most efficient way to
cut garment components from the available fabric.
This involves creating cutting plans that minimize
waste while satisfying production requirements
such as order quantities, garment sizes, and other
constraints. Therefore, to fulfill an order, consider
an arrangement for cutting garments of various sizes
β = 1, 2, …, s, each with a particular quantity Qβ to
fulfill the order. The cutting process is divided into

Figure 3. (a) Garments per ply per section (b) Garments per size (c) Garments per section.

Int. J. Prod. Manag. Eng. (2025) 13(1), 1-26Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Optimizing cut order planning: A comparative study of heuristics, metaheuristics, and MILP algorithms

3

http://creativecommons.org/licenses/by-nc-nd/4.0/

sections (α = 1, 2, 3, …, m). The decision variables
are Gαβ , Pα , and Zα , where Gαβ represents garments
of size β in one fabric ply in section α, Pα represents
ply count in section α, and Zα represents whether
section α is used. The objective is to minimize
the total cost by finding optimal values for these
decision variables. The mathematical model in this
study assumes that the total cost is influenced by
fabric cost, setup cost, and excess production cost.
The setup cost is considered constant for all sections.
The indices, decision variables, parameters, and
mathematical model formulation for optimizing the
COP are outlined below.

Indexes
β: sizes (β =1,2,3,…s)
α: sections (α =1,2,3,…m)

Decision variables

Gαβ: Number copies of size β in section α
Pα: Number of layers in section α
Zα: Takes the value of 1 if section α is used; otherwise, 0

Parameters
Yβ: fabric consumption rate for size β (given)
Qβ: demand for size β
CS: cost of setting up a new section (per section)
CE: cost of excess production (per product)
f: cost of using fabric (per length unit)
lmax: Maximum length of fabric in any section
Pmax: Maximum number of plies in any section
Pmin: Minimum number of plies in any section

Mi n CT = ∑α ∑β
GαβYβPα f + ∑α

ZαCS + ∑α ∑β
CE(PαGαβ − Qβ)

Mi n CT = ∑α ∑β
GαβYβPα f + ∑α

ZαCS + ∑α ∑β
CE(PαGαβ − Qβ) (1)

∑
β

GαβYβ ≤ lmax
 (2)

Pα ≥ Pmin (3)

Pα ≤ Pmax (4)

∑ GαβPα ≥ Qβ
α (5)

Gαβ , Pα ∈ ℤ+, zα ∈ {0,1} ∀ α , β (6)

Equation (1) represents the objective function, which
aims to minimize the total cost. This cost includes
the fabric cost, setup cost, and excess production

cost, which are detailed in the first, second, and
third components respectively. Equation (2) enforces
the length constraint of a section. Equation (3) and
Equation (4) set limits on the number of plies per
section. Equation (5) ensures that customer demand
is satisfied. Equation (6) mandates integer decision
variables for the number of copies of size β in section
α and for the number of layers in section α and
establishes Zα as a binary variable.

This study adapts the mathematical formulation from
Tsao et al. (2020) but modifies the length constraint
due to potential infeasibility. The original model’s
100-meter cumulative length limit for all sections
proved impractical for large orders. Instead, we
impose a length limit on individual sections based on
cutting table dimensions, as reflected in Equation 2.
This approach aligns with common practices in COP
literature (Degraeve & Vandebroek, 1998; Wong &
Leung, 2008; Nascimento et al., 2010; Yang et al.,
2011; Shang et al., 2019).

3. Solution approaches
This study uses various solution approaches to
tackle the COP problem. These approaches involve
heuristic techniques to generate random viable
solutions, which serve as the initial population for
the proposed metaheuristic methods. The use of
population-based metaheuristics, such as GA and
PSO, can accelerate convergence by employing high-
level relay hybridization of metaheuristics to seed
the initial population with high-quality solutions.
The approach for the final solution involves using
general-purpose commercial solvers, specifically
CPLEX and OpenSolver, to find the optimal solution
for experimental instances that allow it in terms of
size and computation time.

3.1. Constructive heuristics
The article examines five constructive heuristics:
H1_T2020, H3_MB2016, H1+, H3+, and H5+.
H1 and H3 provide unique solutions, while H1+,
H3+, and H5+ generate random solutions each
time. These were selected based on M’Hallah and
Bouziri’s (2016) findings on algorithm superiority.
H1_T2020, adopted by Tsao et al. (2020), refines
M’Hallah & Bouziri’s (2016) approach by
accounting for fabric length limitations in each
section. Algorithm 1 (Appendix I) presents a formal
statement of H1_T2020, constructing sections based
on minimal demand, ply height limits, and maximum
size occurrences within length constraints.

Int. J. Prod. Manag. Eng. (2025) 13(1), 1-26 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Al-Mahmud et al.

4

http://creativecommons.org/licenses/by-nc-nd/4.0/

Algorithm 2 (Appendix I) presents H3_MB2016,
adapted from M’Hallah & Bouziri (2016). This
heuristic creates a single section containing all
sizes, with ply count set as the greatest common
divisor (GCD) of order quantities, respecting ply
height constraints. To meet length limits, garments
are removed from frequently occurring sizes.
Residual demands are updated, and new sections are
generated as needed. The algorithm incorporates the
authors’ strategy for converting solutions to feasible
ones, addressing the original version’s lack of length
constraints.

The H1+ heuristic, presented in Algorithm 3
(Appendix I), is a slightly modified version of the
H1_T2020 algorithm. The key difference in the
H1+ heuristic is its randomization of size selection
when placing garments within a section. Unlike
the original approach, which prioritized sizes from
left to right (most likely smallest to largest), H1+
assigns garment occurrences in a random size order.
This randomization allows for potentially different
solutions with each run of the algorithm.

Algorithm 4 (Appendix I) represents the heuristic
H3+, a revised version of M’Hallah & Bouziri’s
(2016) H3 algorithm. The revision ensures viable
solutions, following a similar approach to Tsao et al.’s
(2020) modifications to H1 and H5. The quantity of
garments per size in the marker was constrained
by the maximum allowed without violating length
constraints or by demand requirements. Like the H1+
heuristic, H3+ employs randomized size ordering to
increase solution diversity.

The H5+ heuristic, described in Algorithm 5
(Appendix I), is a refined version of M’Hallah &
Bouziri’s (2016) random search approach, further
improved by Tsao et al. (2020) and revised in this
study. Randomization is introduced by assigning
garment sizes in random order and iteratively
constructing sections with randomized ply counts.
New sections are created until a maximum count
(m = 2s) is reached or all demands are met. Final
sections use the H3+ heuristic to consolidate
remaining demands, if applicable.

Figure 4 shows the solutions obtained using the
constructive heuristics H1_T2020, H3_MB2016,
H1+, H3+, and H5+ based on the information
provided in Table 1. It is important to note that each
heuristic produces a distinct COP solution, which
is characterized by the total number of garments,
garments per size, sections, and plies per section.

3.2. Metaheuristics
Metaheuristic algorithms are non-deterministic
approximation methods designed to find near-
optimal solutions within a reasonable amount of time
(Ezugwu et al., 2021; Gogna & Tayal, 2013). These
algorithms can be broadly categorized into two
types: single-solution-based and population-based.
Single-solution-based algorithms iteratively improve
a single solution, while population-based algorithms
maintain a diverse set of solutions throughout the
search to prevent premature convergence (Katoch
et al., 2021; Toaza & Esztergár-Kiss, 2023). Although
some metaheuristics draw inspiration from physics,
chemistry, social sciences, sports, and other fields,
the majority are inspired by nature (Boussaïd et al.,
2013; Ezugwu et al., 2021). This study examines the
use of GA and PSO as nature-inspired population-
based metaheuristics to address the COP problem.

3.2.1. Genetic Algorithm
GAs are evolutionary optimization methods inspired
by biological evolution and natural selection (Katoch
et al., 2021; Ramos-Figueroa et al., 2021), introduced
by John Holland in 1975. They generate a population
of potential solutions, called chromosomes, and
iteratively evaluate their fitness. Fitter solutions are
more likely to reproduce, generating children for
subsequent generations, evolving towards optimal
solutions (Alhijawi & Awajan, 2023). In COP,
each chromosome represents a potential solution
evaluated by a fitness function to minimize costs.
The selection, crossover, and mutation operations
favor fitter chromosomes, as shown in Algorithm 6
(Appendix II). GA evolves a randomized population
towards optimality through genetic operators across
generations, ensuring viability and handling variable
chromosome sizes.

3.2.1.1. Initial population

The initial population is generated using five
heuristics presented for the COP: H1_T2020,
H3_MB2016, H1+, H3+, and H5+. The first two
heuristics produce single solutions, while the latter
three incorporate randomization, generating a
diverse set of N solutions to populate the initial pool.

3.2.1.2. Selection operation

The selection process involves organizing
tournaments with a predetermined number of
contestants (k) chosen randomly from the population.
The winner of the competition is the contestant with

Int. J. Prod. Manag. Eng. (2025) 13(1), 1-26Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Optimizing cut order planning: A comparative study of heuristics, metaheuristics, and MILP algorithms

5

http://creativecommons.org/licenses/by-nc-nd/4.0/

the best fitness, which in this case corresponds to the
lowest value, and they move on to the mating pool
for reproduction.

3.2.1.3. Crossover operation

To ensure the generation of feasible offspring
solutions, this study modifies the crossover operation
from M’Hallah and Bouziri (2016), addressing the
original procedure’s oversight of length constraints.
Algorithm 7 (Appendix II) provides the pseudocode
for this improved crossover operation. The selection
operator is responsible for choosing two individuals

from the population to participate in the crossover
operation, namely Parent1 and Parent2. This process
results in the creation of a new chromosome, known
as Child, which is composed of some of the m1
sections from Parent1 and some of the m2 sections
from Parent2. In this context, G1 and G2 represent
the G values of Parent1 and Parent2, respectively,
while P1 and P2 indicate the P values of Parent1 and
Parent2, respectively.

Figure 5 presents an example of the crossover
operator based on the COP problem outlined in
Table 1. The operator clones sections i1 through i2

Figure 4. Solutions obtained by using heuristic algorithms.

Int. J. Prod. Manag. Eng. (2025) 13(1), 1-26 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Al-Mahmud et al.

6

http://creativecommons.org/licenses/by-nc-nd/4.0/

from Parent1 to Child, where i1 and i2 are randomly
selected from the discrete uniform distribution
[1, m1]. In this instance, m1=4, so i1 and i2 are equal
to 2 and 3. This implies that Child inherits sections
2 and 3 from Parent1, and residual demands are
computed for this stage of the child’s solution with
2 sections: rβ = [7,19, 18, − 3, 1], ∀β ∈ s. After
positive residual demands persist, Child is then
finished based on the sections from Parent2.

Figure 5. Crossover operator for COP.

Let α′ = 1, which represents the index number
of sections from Parent2. Since α′ ≤ m2, and
max
β ∈ s (rβ) = 19 > Pmin, a temporary variable
gcd = G CD (rβ : rβ > 0, G 2α′ β > 0, β ∈ s) is
determined. In this instance, gcd= Greatest common
divisor of (19,18,1)=1, considering that the residual
demands of sizes 1, 2, 4, and 5 are strictly positive and
G21,β values of only size 2, 3, and 5 are >0. Therefore,
section 3 of Child has P3 = max{Pmin, minP2α´,gcd}} =
max{4,min{4,1}}=4. The Gαβ of this section are
the determined by ⌊

rβ

P3 ⌋, if the residual demand of
size β is strictly positive and G21,β values of that
size β is >0, until the maximum length is reached.
This results in G3,1 = 0, since G 21,1 ≯ 0. Then,
G3,2 = ⌊ 19

4 ⌋ = 4, which fulfills the condition that
G21,2>0; G3,3=3, because G21,3>0, but a maximum
3 garments can be placed without violating length
constraint; G3,4=0 , because there is no residual
demand for this size (r3= –3; and G3,5>0, because
although G21,5>0 no garments can be placed without
violating the length constraint. With the addition of
the third section in the Child solution, the remaining
demands are now rβ = [7,3, 6, − 3, 1], ∀β ∈ s. As
there are still positive demands, a new section is
created based on α' = 2, which corresponds to the
second section of Parent2.

Now, let α' = 2 ≤ m2 and max
β ∈ s (rβ) = 6 > Pmin= 6 >Pmin, the

temporary variable gcd=GCD(rβ:rβ>0, G2α'β>0, β∈s)
is determined. In this case, gcd=GCD(7,3,6,1)=1,
given that the residual demands of sizes 1, 2,
3, and 5 are strictly positive, and G22,β values
of all these sizes are >0. Therefore, section 4
of Child has P4 = max{Pmin, min{P2α',gcd}}
= max{4, min{4,1}}=4. Similar to the previous

section, G4,1 = ⎣ G4,1 = ⌊ 7
4 ⌋ = 1⎦ = 1, G4,2 = ⎣G4,2 = ⌊ 3

4 ⌋ = 0⎦ = 0, G4,3 = ⎣G4,3 = ⌊ 6
4 ⌋ = 1,⎦ = 1,

G4,5 = ⎣G4,5 = ⌊ 2
4 ⌋ = 0, ⎦ = 0, after ensuring that G 22,β values of

all these sizes are >0. Then, G4,4 = 0 since residual
demand of size 4 is not strictly positive. Hence, with
the fourth section in Child, the remaining demands are:
rβ = [3,3, 2, − 3, 1], ∀β ∈ s. As positive demands
persist, a new section is formed. This time α'=3 ≤ m2,

however max
β ∈ s (rβ) = 3 ≱ Pmin. Therefore, P5 and G5,β

are calculated without reflecting any sections from
either parent. P5=max{Pmin, GCD(rβ:rβ > 0,β ∈ s)}
=max{4, GCD(3,3,2,1)} = max{4,1}=4.

The Gαβ of this section are the determined by

⌈
rβ

P5 ⌉, only if the residual demand of size β is strictly
positive, until the maximum length is reached.

Hence, G5,1 = ⎡G4,2 = ⌊ 3
4 ⌋ = 0⎤ = 1, G5,2 = ⎡G4,2 = ⌊ 3

4 ⌋ = 0⎤ = 1, G5,3 = ⎡G5,3 = ⌈ 2
4 ⌉ = 1,⎤ = 1,

G5,5 = ⎡G5,5 = ⌈ 1
4 ⌉ = 1⎤ = 1, and G5,4 =0, since there is no residual

demand of size 4. After appending this fifth section to
Child chromosome, all the residual demands become
zero or negative: rβ = [−1, − 1, − 2, − 3, − 3], ∀β ∈ s
, which ends the crossover operation. Therefore, the
resulting Child solution is now the output of the
crossover operation.

3.2.1.4. Mutation operation

The Mutation operator, presented in Algorithm 8
(Appendix II), is also adopted and modified by the
mutation procedure of M’Hallah and Bouziri (2016)
to generate feasible solutions after alteration. The
mutation is performed on the Child chromosome
after the crossover operation.

Figure 6 illustrates an example of the mutation
process. Suppose that the Mutation operator
randomly selects size 5 in section 2 (G2,5) to be
altered. The Mutate function is then invoked, which
slightly modifies the solution and ensures that it
satisfies all constraints. Initially, the value of G2,5=0
is set, and the residual demand is calculated as
rβ = [−1, − 1, − 2, − 3, 9], ∀β ∈ s. A collection of

Int. J. Prod. Manag. Eng. (2025) 13(1), 1-26Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Optimizing cut order planning: A comparative study of heuristics, metaheuristics, and MILP algorithms

7

http://creativecommons.org/licenses/by-nc-nd/4.0/

sections, excluding section 2, is then identified where
the number of plies (P) is less than or equal

to 𝕀𝕀 = {α′ = 1… . m , :α′ ≠ α , a n d Pα′ ≤ max
β ∈ s (rβ)} = { 1, 3, 4, 5 }(rβ). 𝕀={α′=1….m, : α′≠ α, and Pα'≤𝕀𝕀 = {α′ = 1… . m , :α′ ≠ α , a n d Pα′ ≤ max

β ∈ s (rβ)} = { 1, 3, 4, 5 }(rβ) =

{1,3,4,5}. Section 4 is chosen because it has the

shortest length out of all that belongs to set 𝕀. Then,
 G4,5 = 0 + ⌈ 9

4 ⌉ = 3 is set where, 0 is the previous

value of G4,5, 9 is the residual demand for size 5, and
4 is the number of plies in section 4. All residual
needs have been reduced to zero or negative values,
indicating that all constraints have been satisfied and
the mutation is complete. If there is still positive
demand, section 4 will be removed from set 𝕀, and
the same actions will be repeated with the updated
set 𝕀. If the set 𝕀 is empty and there are still residual
demands >0, the mutation will generate a new section
to meet the demand.

Figure 6. Mutation operator for COP.

3.2.2. Particle Swarm Optimization

PSO, which stands for Particle Swarm Optimization,
is a metaheuristic algorithm proposed by Kennedy
and Eberhart (1995). It involves candidate solutions,
referred to as ‘particles,’ navigating the search
space in a manner like a bird swarm seeking food
(Shami et al., 2022). Although PSO was initially
designed for D-dimensional continuous optimization
problems, it has since been adapted for various
applications (Poli et al., 2007; Shami et al., 2022).
Kennedy and Eberhart (1997) introduced the
binary version of PSO, which paved the way for its
application in discrete search spaces. As a result,
PSO has been used in numerous studies to solve
discrete optimization problems (Chang et al., 2024;
Gómez-Montoya et al., 2020; Jarboui et al., 2008).
Moreover, some researchers have improved the
optimization capabilities of basic or discrete PSO
algorithms by incorporating perturbation processes
(Chen et al., 2021).

In the context of COP, each solution is
represented by a particle’s position vector
Xp = {xp1, xp2, … . , xpm}, where xpα represents
cutting section α of particle p. Each particle p has a
velocity vector Vp = {vp1, vp2, … . , vpm}, a personal
best position Pbestp={pbestp1, pbestp2, … , pbestpm1}
and the global best position Gbestp={gbest1, gbest2,
… , pbestm2}, where m, m2, and m2 are the respective
number of dimensions or sections. Algorithm 9
(Appendix III) demonstrates how PSO iteratively
improves solutions by adjusting particles’ velocities
and positions to explore the search space over T
iterations or until a stopping criterion is met.

The COP problem involves integer variables and a
varying number of dimensions. This research uses
an adapted combinatorial PSO from Jarboui et al.
(2008). While the original PSO considers constant
dimensions in a discrete search space, the adaptation
accommodates solutions with varying section
numbers to suit the COP optimization problem.

3.2.2.1. Swarm Initialization

The PSO begins by initializing a swarm of particles,
represented by position vectors, using the same five
heuristics (H1_T2020, H3_MB2016, H1+, H3+,
H5+) that were used for the GA. This ensures that
the initial solutions are feasible. The velocities of
the particles are randomly generated to explore the
search space.

3.2.2.2. Position and Velocity Vector Update

To facilitate the transition between continuous and
discrete search spaces, we introduced two dummy
variable vectors, Yp = {yp1, yp2, …, ypn} and
Λp = {λp1, λp2, …, λpn}, alongside the basic PSO
variables. However, unlike Jarboui et al. (2008), n
represents the minimum number of sections among
the particle p’s current position X, its personal best
solution Pbest, and the global best solution Gbest.
In other words, n is the number of cutting sections
that can be compared between X, Pbest, and Gbest.
Equation (7) determines the elements of Y i

p based on
comparisons between the particle’s current position,
its personal best, and the global best solutions from
the previous iteration. The velocity elements for the
ith iteration are updated using Equation (8), which
incorporates factors such as the inertia weight (w),
cognitive and social acceleration coefficients (c1 and
c2), and random numbers (r1 and r2). The number of
elements in Y i

p may not necessarily match the number

0 1 1 4 0 4 0 1 1 4 0 4
0 0 1 1 3 4 0 0 1 1 0 4
0 4 3 0 0 4 0 4 3 0 0 4
1 0 1 0 0 4 1 0 1 0 3 4
1 1 1 0 1 4 1 1 1 0 1 4

Child Mutated	child
!!" "! !!" "!

Int. J. Prod. Manag. Eng. (2025) 13(1), 1-26 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Al-Mahmud et al.

8

http://creativecommons.org/licenses/by-nc-nd/4.0/

of elements in V i−1
p . Therefore, if a corresponding

value is available in Y i
p, the velocity element is

updated; otherwise, it remains unchanged.

𝑦𝑦!"# =

⎩
⎪
⎨

⎪
⎧1, 	 𝑖𝑖𝑖𝑖	𝑥𝑥!"#$% = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔"#$%

−1, 𝑖𝑖𝑖𝑖 𝑥𝑥!"#$% = 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔!"#$%

"
#

"
#

−1 or 1,	 randomly if 4𝑥𝑥#!"$% = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 $% = 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔#!"$%5
0,	 𝑖𝑖𝑖𝑖𝑥𝑥#!"$% ≠ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 $%	𝐴𝐴𝑁𝑁𝑁𝑁	 𝑥𝑥#!"$% ≠ 𝑝𝑝b𝑔𝑔st!"$%

(7) (7)

v ipα =
w × v i−1pα + r1 × c1(−1 − y ipα) + r2 × c2 × (1 − y ipα), if y ipα available

v ip−α1 , otherwise (8)

The updated velocity is then utilized in Equation (9)
to calculate the second dummy variable, Λ i

p, which, in
turn, is used in Equation (10) to update the particle’s
position vector Xi

p = {xi
p1, xi

p2, …, xi
pm′ }, where

m' denotes the new section count in the updated
solution. The explore factor φ controls the position
vector update process and may impact the algorithm’s
convergence or divergence. In contrast to Jarboui
et al. (2008), a perturbation procedure is integrated
at this point for the sections transitioning from
the old position vector. This inclusion aims to
introduce fluctuations within the sections, promoting
diversification in the solution space.

λ i
pα = yi

pα + vi
pα (9)

 (10)

Finally, after updating particle p’s position
vector Xi

p to have m' cutting sections, its velocity
vector V i

p is resized to match this new dimension.
If m'≤ m, it keeps the first m' values and deletes the
remaining. If m' > m, it randomly generates (m' – m)
number of values and appends them. Algorithm 10
(Appendix III) provides a detailed explanation of
how to update a position vector.

Figure 7 shows how to update a particle’s position and
velocity vector based on the COP problem described
in Table 1. Let Xi−1

p be a randomly initialized
particle solution, V i−1

p be its associated velocity
vector, Pb es ti−1

p be the personal best solution
found by this particle so far, and G b es ti−1 be the
globally best solution identified among the entire
swarm. Equation (7) is used to determine Y i

p, which
initially contains four values. This is because only
the first four sections of Xi−1

p can be compared
with Pb es t i−1

p and G b es ti−1. Sections 1 and 3 in
Xi−1

p match G b es ti−1 and Pb es t i−1
p , respectively,

resulting in yi
p1 being 1 and yi

p3 being –1 (highlighted
in the same colors). The remaining sections in Xi−1

p
do not align with Pbest and Gbest, resulting in the
other Y i

p values being zero.

Figure 7. Position and velocity vector update process in PSO.

Int. J. Prod. Manag. Eng. (2025) 13(1), 1-26Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Optimizing cut order planning: A comparative study of heuristics, metaheuristics, and MILP algorithms

9

http://creativecommons.org/licenses/by-nc-nd/4.0/

In Step 2, the velocity of the particle is updated for
iteration i using Equation (8). The values of c1 and
c2 are considered as 2, w as 0.4, and random values
of r1 (0.147440) and r2 (0.585727) between 0 and 1.
The first value of V i

p is calculated as –0.78461 using
Equation (8). The next three V i

p values are updated
similarly. As Y i

p has only four values, the velocity
remains unchanged after the fourth section. In Step
3, Equation (9) combines the Y i

p and V i
p components

to produce Λ i
p, which is another dummy variable with

four values. In Step 4, Equation (10) is used to adjust
Xi−1

p and build Xi
p. The new solution, Xi

p is initialized
with 0 sections. The first value of Λ i

p is compared to a
threshold of φ = 0.5. Since −φ ≤ λ i

p1 = 0.21539 ≤ φ,
the first section of Xi−1

p is temporarily assigned as
t e m pxi

p1, subject to perturbation.

The perturbation process initially focuses on the P
value. A generated random number is compared to
the perturbation rate (η). If the random number is
less than η, two integers, p1 and p2, are determined
as p1,p2 = Sorted�Pα,min(Pmax,max{Pmin,

p1,p2 = Sor ted[Pα, m i n⟨Pmax, m a x{Pmin, max
β ∈ s (rβ)}⟩](rβ)}�.

In this case, with Pα=P1=9; Pmax=35; Pmin=4; and
max
β ∈ s (rβ) = 26, we obtain p1,p2=9&26 respectively.
Subsequently, a random integer between [9,26]=10
is set as P1 of Xi

p. The next phase involves perturbing
the G values. Assume that the G of Size5 (G1,5) is
randomly selected for alteration. It begins by setting
G1,5=0. At this point, particle Xi

p consists of only
one temporary section, t e m pxi

p1. The calculated
residual demands with this modified section are:
rβ = [7,23, 26,7, 13], ∀β ∈ s.

Next, a temporary variable temp is calculated as

t e m p = m i n(⌈
rβ

Pα ⌉, ⌊ lmax − lα
Yβ ⌋). With r5=13,

Pα=10, lmax=20, lα=1.79, G1,5=0, Y5=1.51, we
obtain temp=min(2,12)=2. Subsequently, G1,5 is
updated from 0 to a random integer in [2,12]=2.
After perturbation, the section is permanently added
to Xi

p. Perturbed values are visually highlighted.
With this definitive section, residual demands are:
rβ = [7,23, 26,7, − 7], ∀β ∈ s. While demand
remains positive, the process continues. The second
section is taken from the global best (Gbest) and
appended to Xi

p since λ i
p2 = 0.61888 > φ. For the

next Λ i
p value λ i

p3 = − 0.59875 < − φ, the third
section is taken from Pbestp and merged into X i.
It is important to note that none of these sections
undergoes perturbation.

The process iteratively adds sections from Xi−1
p ,

Pbestp or Gbest into Xi
p following Equation (10), as

long as demands remain positive. The fourth section
is added from Xi−1

p using the same perturbation
procedure as the first section, as long as
−φ ≤ λ i

p4 = 0.35773 ≤ φ. Note that due to the
probabilistic nature of the approach, Gαβ, Pα, or
neither may go through perturbation. After adding
four sections, the residual demands now stand as
follows: rβ = [−5, 2, 0, − 5, − 7], ∀β ∈ s. The
process continues to add new sections with remaining
demand. However, perturbed sections are taken
from Xi−1

p when there are no more sections from
Λ i

p to compare against the threshold. This process
continues until there are no more sections left in
Xi−1

p or the remaining demands are non-positive. If
there is still demand after adding all Xi−1

p sections,
the H1+ algorithm packs the remaining demand to
ensure feasibility.

In this example, Xi
p is completed after the fifth section

from Xi−1
p , because no non-zero positive residual

demand remains. The final version of the particle’s
position vector, Xi

p, is illustrated in Figure 7 (Step 4).
In Step 5, the velocity vector V i

p is resized to match
the dimension of the position vector Xi

p. The first
5 values of V i

p are preserved, discarding the rest,
as Xi

p now has five sections instead of the previous
seven. If the new solution had more sections than the
previous one, additional velocity values would be
randomly generated for the extra sections.

3.3. Exact solution using commercial solvers

The COP model presented in Equations 1-6 is a
Mixed-Integer Nonlinear Programming (MINLP)
model. The nonlinearity arises from the product
of decision variables Gαβ and Pα in the objective
function (1) and constraints (5). To solve the COP
problem using commercial solvers, it is necessary to
convert the MINLP model into a (MILP) model. This
can be achieved by introducing additional binary
and integer variables and constraints. This process
of linearization enables the replacement of nonlinear
terms in the objective function and constraints with
equivalent linear expressions, thereby rendering the
problem solvable by standard MILP solvers. The
MILP model modifies certain indexes and variables
while keeping the same parameters as the MINLP
model. Below are the indices, decision variables, and
mathematical formulation for optimizing the COP.

Int. J. Prod. Manag. Eng. (2025) 13(1), 1-26 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Al-Mahmud et al.

10

http://creativecommons.org/licenses/by-nc-nd/4.0/

Indexes

β: sizes (β=1,2,3,…s)

α: sections (α =1,2,3,…m)

k: digits (k=1,2,3,…K)

Decision variables

Gαβ: Number copies of size β in section α

vαk: Technical auxiliary variable to convert an integer
variable into a limited set of binary variables

wαβk: Technical auxiliary variable to convert a product
into an integer variable to linearize the problem

Zα: Takes the value of 1 if section α is used; otherwise, 0

Mi n CT = ∑α ∑β
Yβ f ∑k

2kwαβk + ∑α
ZαCS + ∑β

CE(∑α ∑k
2kwαβk − Qβ)

Mi n CT = ∑α ∑β
Yβ f ∑k

2kwαβk + ∑α
ZαCS + ∑β

CE(∑α ∑k
2kwαβk − Qβ) (11)

∑
β

GαβYβ ≤ lmax
 (12)

∑
k

vαk2k ≤ Pmax Zα (13)

∑
k

vαk2k ≥ PminZα
 (14)

∑
α

∑
k

2k wαβk ≥ Qβ (15)

wαβk ≤ vαkQβ (16)

wαβk ≥ Gαβ − Qβ(1 − vαk) (17)

wαβk ≤ Gαβ (18)

The conversion from the MINLP model to the MILP
model starts with encoding the ply count as binary.
The MILP model introduces new binary decision
variables, vak, to indicate whether section α includes
the value 2k. This enables the representation of Pα (a
decimal number) as a linear combination of these
binary variables: k

Pα =∑ vαk2k
. The index k ranges

from 1 to a maximum value K, which determines the
maximum number of binary digits allowed for
representing Pα. K is given for any concrete problem
as Pα is limited by Pmax. To define new integer
variables, wαβk, we take the product of vαk and Gαβ.
Using wαβk, the nonlinear part of Equation (11) can
be linearly rewritten as ∑ ∑2kwαβk = ∑ GαβPα

α k α
.

Constraint (12) in the

MILP model is equivalent to Constraint (2) in the
MINLP model. Constraints (13) and (14) replace the
Constraints (3) and (4) from the MINLP model,
respectively, enforcing the minimum and maximum
values for Pα using the binary representation.
Constraint (15) replaces the nonlinear Constraint (5)
in the MINLP model. This ensures that the total
production of each size meets the Qβ demand. The
variables wαβk are connected to vαk and Gαβ through
the constraints (16), (17), and (18). If vαk =0,
constraint (16) results to wαβk =0. When vαk = 1, the
constraint (17) reduces to wαβk ≥Gαβ. Together with
constraint (18) this means wαβk =Gαβ. Therefore, in
all possible cases (vαk =0 and vαk= 1) indeed wαβk = vαk
Gαβ holds true.

The relative MIP gap tolerance in CPLEX, which
balances solution quality and computational
complexity (IBM, 2022), is a crucial parameter
when solving the proposed MILP model. A lower
tolerance yields a more accurate solution, but at the
cost of increased computation time, while a higher
tolerance prioritizes speed but may result in a less
optimal solution. In this study, a default tolerance
of 0.1% was initially used, with adjustments made
to 0.5-1.6% for cases of extended runtime or no
solution.

4. Computational experiments

4.1. Parameter tuning

The parameters for the two proposed metaheuristics
were determined through tuning, starting with
initial values from previous studies (Cano et al.,
2023; Fister et al., 2008, 2010; Jarboui et al.,
2008; M’Hallah & Bouziri, 2016; Shen et al.,
2014; Tsao et al., 2020; Wong & Leung, 2008).
A grid search evaluated different combinations
using three COP cases from the industry, each
tested five times. For the PSO algorithm, we
tested η = [0.1, 0.2, 0.3], φ = [0.3, 0.5, 0.7, 0.9],
c1 c2 = [1, 1.5, 2], and w = [0.4, 0.6, 0.9] resulting
in 324 combinations of these values on three cases,
each executed five times, for a total of 4860 runs. For
the GA algorithm, we tested ρ = [0.8, 0.9, 0.95, 1],
η = [0.003, 0.01, 0.05, 0.1], and K = [2, 3, 4, 5, 6].
This led to 80 possible combinations of these values
for the same three cases. Each combination was run
five times, resulting in a total of 1200 runs. The average
fitness values and CPU runtime were recorded, and
combinations were ranked by average fitness. Table
2 shows the selected PSO values: w = 0.4; c1 =c2= 2;

Int. J. Prod. Manag. Eng. (2025) 13(1), 1-26Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Optimizing cut order planning: A comparative study of heuristics, metaheuristics, and MILP algorithms

11

http://creativecommons.org/licenses/by-nc-nd/4.0/

η = 0.2; and φ = 0.5, with a stopping criterion of
90 iterations without improvement. The optimal
swarm size was N = 250 and iteration size T = 200.
For GA, the selected values were K = 2, ρ = 0.95; and
η = 0.003, with a stopping criterion of 99 iterations
without improvement. The optimal population size
was N = 200 and generation size T = 200.

Table 2. Parameter values for the GA and PSO.

Parameters Symbols PSO GA
Swarm size or Population
size N 250 200

Iteration size or
Generation size T 200 200

Crossover rate ρ - 0.95
Perturbation rate or
Mutation rate η 0.2 0.003

Tournament size K - 2
Cognitive acceleration
coefficient c1 2 -

Social acceleration
coefficient c2 2 -

Inertia weight w 0.4 -
Explore factor φ 0.5 -
Stopping criteria sc 90 99

4.2. Experimental instances

To evaluate the proposed solution approaches
(metaheuristics and commercial solvers), nine
datasets (S4, S5, S7, M4, M5, M7, B4, B5, B7) from
Tsao et al. (2020) were tested and compared. Table
3 lists the size requirements and fabric consumption
for these datasets. Parameters include a setup cost
CS=$500 per section, excess production cost
CE=$20 per garment, fabric cost f=$10 per meter,
maximum fabric length per section lmax=20 meters,
and 4 to 40 fabric layers per section. This study
differs from Tsao et al. (2020) by limiting each
section to 20 meters instead of a cumulative

100 meters, as sections in Tsao et al. (2020) did not
exceed 20 meters. This adjustment was necessary
because the original restriction was impractical
for large order sets in M5, B5, and B7 (e.g., the
M5 solution in Tsao et al. (2020) had a total section
length of 101.549 meters).

The metaheuristic algorithms, written in Python
3.8.5, were run on an Apple M1 chip machine with
an 8-core processor and 8 GB of RAM. Anaconda
Navigator and Jupyter Notebook were used to write
and execute the algorithms, finding solutions to a
total of 9 COP sets. Each algorithm was run 10 times
for each of the nine datasets. The MILP model was
implemented using two general-purpose commercial
solvers: CPLEX and OpenSolver (an add-on to MS
Excel). The comparison results show the total cost
and runtime by solution method, as well as the total
cost savings achieved with the proposed solution
methods.

5. Results and discussion

The proposed solution approaches, including
metaheuristics and commercial solvers, were applied
to the same datasets from Tsao et al. (2020) for
comparison. Table 4 shows the averaged results for
each solution method, with metaheuristics averaging
ten executions per dataset due to their stochastic
nature. These results were compared with Tsao et al.
(2020), indicating that the TS algorithm with high
parameter settings (TS high) provided the most cost-
effective solutions in most cases, while CPLEX
delivered the best performance among the proposed
methods.

When comparing the GAs in Table 4, the proposed
GA shows superior performance, consistently
generating lower-cost solutions than the GA (Low)

Table 3. Size wise demand quantity and fabric consumption rate.

Dataset Size 1 Size 2 Size 3 Size 4 Size 5 Size 6 Size 7
S4 80 95 58 28
S5 25 95 145 130 25
S7 8 105 92 56 34 10 5
M4 654 443 938 245
M5 100 443 938 245 234
M7 143 443 1004 345 756 257 156
B4 8751 11 425 14 526 12 498
B5 7051 11 425 14 526 12 498 2256 569
B7 6780 14 526 16 473 18 767 112 498 8569 6532
Fabric Consumption (Yβ) in meters 1.420 1.441 1.462 1.500 1.523 1.634 1.700

Int. J. Prod. Manag. Eng. (2025) 13(1), 1-26 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Al-Mahmud et al.

12

http://creativecommons.org/licenses/by-nc-nd/4.0/

and generally outperforming the GA (High), except
for datasets S7 and M4. On average, the proposed
GA reduces costs by 4.2% and 4.0% compared to
the GA (Low) and GA (High), respectively. This
improvement is attributed to modifications in the
initial solution heuristics (H1+, H3+, H5+) and the
implementation of the tournament selection process.
Table 4 shows that the cost for the M4 dataset by GA
(high) and SA-GA (high) is lower than the cost by
CPLEX with the default gap tolerance, suggesting
35 559 as the optimal solution within 0.1% tolerance.
However, the cost of 35 237 reported by Tsao et al.

(2020) is outside this range. Their study didn’t
publish the M4 solution, preventing verification.
The discrepancy could be due to changes in the
mathematical model or possible non-adherence to
some constraints in their M4 solution, resulting in an
artificially lower cost.

Table 5 shows cost savings from the proposed
solution methods. GA and PSO achieve the highest
savings compared to GA (High) in dataset S5 (18.8%
and 19.9%, respectively), while CPLEX and Open
Solver achieve the highest savings in dataset

Table 4. Total cost by solution method.

Source Solution method
Dataset

S4 S5 S7 M4 M5 M7 B4 B5 B7

Tsao et al.
(2020)

SA (Low) 5308 8175 7187 37 115 32 825 52 878 735 239 763 145 2 975 734
SA (High) 5273 8175 6935 36 559 32 567 52 417 735 239 756 755 2 973 446
GA (Low) 5307 8175 7752 37 059 33 025 53 015 735 739 764 145 2 975 234
GA (High) 5773 9210 6647 35 237 33 290 53 126 735 738 757 755 2 974 342
TS (Low) 5273 8175 6716 37 059 32 464 52 773 735 739 763 645 2 976 233
TS (High) 4773 7175 6647 36 559 32 256 51 737 734 739 756 755 2 973 342
SA-GA (Low) 5376 8626 7464 37 059 33 756 54 553 736 739 766 214 2 977 234
SA-GA (High) 5273 8175 6719 35 237 32 256 53 198 736 739 757 755 2 975 234
TS-GA (Low) 5273 7850 6855 37 059 32 393 53 491 735 239 764 145 2 975 234
TS-GA (High) 5483 8175 6647 36 836 32 894 53 374 735 239 757 255 2 973 342
Minimum cost 4773 7175 6647 35 237 32 256 51 737 734 739 756 755 2 973 342

This study

GA 5013 7479 6733 36 231 31 654 51 445 734 439 756 532 2 973 330
PSO 4884 7375 6694 36 231 31 578 51 329 734 559 756 564 2 973 352
CPLEX 4773 7175 5785 35 559 31 256* 50 133 697 739 718 467* 2 830 683*
OpenSolver 4773 7175 5785 36 362 31 708 50 740 700 506 722 240 Infinite
Minimum cost 4773 7175 5785 35 559 31 256 50 133 697 739 718 467 2 830 683

* Solutions generated with non-default relative MIP gap tolerance.

Table 5. Cost Savings.

Measure Solution method

Dataset

OverallS4 S5 S7 M4 M5 M7 B4 B5 B7

Max Saving

GA 13.2% 18.8% 13.1% 2.4% 6.2% 5.7% 0.3% 1.3% 0.1% 18.8%
PSO 15.4% 19.9% 13.6% 2.4% 6.5% 5.9% 0.3% 1.3% 0.1% 19.9%
CPLEX 17.3% 22.1% 25.4% 4.2% 7.4% 8.1% 5.3% 6.2% 4.9% 25.4%
Open Solver 17.3% 22.1% 25.4% 2.0% 6.1% 7.0% 4.9% 5.7% 0.0% 25.4%

Min Saving

GA -5.0% -4.2% -1.3% -2.8% 1.9% 0.6% 0.0% 0.0% 0.0% -5.0%
PSO -2.3% -2.8% -0.7% -2.8% 2.1% 0.8% 0.0% 0.0% 0.0% -2.8%
CPLEX 0.0% 0.0% 13.0% -0.9% 3.1% 3.1% 5.0% 5.1% 4.8% -0.9%
Open Solver 0.0% 0.0% 13.0% -3.2% 1.7% 1.9% 4.7% 4.6% 0.0% -3.2%

Avg. Saving

GA 5.4% 8.4% 3.0% 0.9% 3.4% 3.0% 0.2% 0.6% 0.1% 2.8%
PSO 7.9% 9.6% 3.5% 0.9% 3.6% 3.2% 0.1% 0.5% 0.1% 3.3%
CPLEX 10.0% 12.1% 16.6% 2.7% 4.6% 5.5% 5.2% 5.6% 4.8% 7.5%
Open Solver 10.0% 12.1% 16.6% 0.6% 3.2% 4.4% 4.8% 5.1% - 7.1%

Min (This study) vs Min
(Tsao et al. (2020)) 0.0% 0.0% 13.0% -0.9% 3.1% 3.1% 5.0% 5.1% 4.8% 0.0%

Int. J. Prod. Manag. Eng. (2025) 13(1), 1-26Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Optimizing cut order planning: A comparative study of heuristics, metaheuristics, and MILP algorithms

13

http://creativecommons.org/licenses/by-nc-nd/4.0/

S7 (25.4% for both). The worst performance for
GA is in S4 compared to TS (High) (-5.0%), and
for PSO in M4 compared to GA (High) and SA-
GA (High) (-2.8%). CPLEX underperforms only
in M4 compared to GA (High) (-0.9%), and Open
Solver underperforms only in M4 compared to GA
(High) and SA-GA (High). Comparing the best
performance of benchmark methods with proposed
methods, CPLEX and Open Solver offer up to 13%
savings in dataset S7 compared to GA (High), TS
(High), and TS-GA (High).

When analyzing the cost savings by demand quantity,
Figure 8(a) shows that the average savings of the
GA, PSO, CPLEX, and Open Solver with respect to
the benchmark solutions are higher in scenarios with
smaller demand quantities per size (small), while for
the metaheuristics, the lowest average savings are
generated in scenarios with large demand quantities.
When analyzing the cost savings by number of sizes,
Figure 8(b) shows that the average savings of CPLEX
and Open Solver with respect to the benchmark
solutions are higher in scenarios with larger number
of sizes, while for GA and PSO, the most notable
average savings are generated in scenarios with sizes
equal to 5.

When comparing solution approaches, it is important
to consider both solution quality and computation
time, as there is a trade-off between the two when
solving an NP-complete problem. While TS (High)
was the best solution in terms of cost, it was one of the
slowest algorithms in Tsao et al. (2020). Conversely,
SA (Low) was the fastest algorithm presented in Tsao
et al. (2020), but its solutions were less optimal. These

two algorithms serve as benchmarks for comparing
solution quality and execution time. Figure 9 plots
CPU runtime (log scale x-axis) and total cost
(y-axis) for COP datasets, with points near the lower
left corner indicating better performance in terms of
both quality and computation time. Similarly, for the
datasets considered in the experiments, the average
computation time for each solution approach is
shown in Table 6.

The proposed approaches generally outperform
TS (High) in solution quality, with CPLEX and
OpenSolver often achieving efficient solutions with
computation time comparable to SA (Low).

For larger instances, the computational time solving
the MILP model increases significantly due to the
growth in variables and constraints. To mitigate this,
we adjusted the relative MIP gap tolerance, applying
higher tolerances (0.5% to 1.6%) for larger datasets
to reduce runtime. For larger order quantities,
computation time increases, but CPLEX excelled
in cases like M5, B5, and B7 due to a higher gap
tolerance. The proposed metaheuristics, PSO and
GA, outperformed TS (High) for medium and large
orders, with PSO performing better in terms of cost,
with an average of 0.6%, but its execution time
increased exponentially for large order sets.

Regarding the time complexity of GA, it is
O(T×N2), where T is the number of generations and
N is the population size. This complexity grows
quadratically as the population size increases. The
tournament selection process is proportional to N,
while the crossover operation, which combines

(a) (b)
Figure 8. Cost savings by (a) demand quantity and (b) number of sizes.

Int. J. Prod. Manag. Eng. (2025) 13(1), 1-26 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Al-Mahmud et al.

14

http://creativecommons.org/licenses/by-nc-nd/4.0/

pairs of individuals, results in approximately
N(N−1)/2 pairwise combinations. As a result,
the crossover complexity is O(N2). Selection and
crossover dominate GA’s computational cost,
requiring O(N2) operations per generation, leading
to a total complexity of O(T×N2) over T generations.

In the case of PSO, the complexity is O(T×N), where
N is the number of particles and T is the number of

iterations. This indicates that the computation time
grows linearly with both the number of particles
and iterations. At each iteration, PSO updates the
velocity and position of all N particles, resulting in
O(N) operations per iteration. Across T iterations, the
overall time complexity becomes O(T×N). Unlike
GA, PSO does not require pairwise operations,
which keeps its complexity linear.

The MILP model used in this study poses significant
computational challenges, particularly for large
instances, as MILP problems are NP-hard, leading
to exponential growth in solution time as problem
size increases. This complexity arises from the
combination of binary decision variables, continuous
variables, and linear constraints. The worst-case
time complexity, using branch-and-bound or branch-
and-cut techniques (e.g., CPLEX), is exponential in
the number of binary variables, as the solver must
explore many possible combinations.

Consequently, these results indicate that the proposed
algorithmic approaches are useful for solving the
COP and provide high quality solutions within
reasonable computation time. In the first instance,
the transformation of MINLP models into MILP

Figure 9. Scatter plot comparing runtime and solution quality (cost) of different solution approaches.

Table 6. Computation time by solution method.

Dataset GA PSO OpenSolver CPLEX
S4 6.8 3.6 7 5

S7 12.0 9.3 20 5

S5 6.9 5.0 27 5

M5 23.3 10.7 5 5

M4 21.7 12.7 3 5

M7 58.8 24.7 2 292

B4 175.3 615.8 24 98

B5 269.0 856.4 109 5

B7 2146.0 6998.7 900 5

Int. J. Prod. Manag. Eng. (2025) 13(1), 1-26Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Optimizing cut order planning: A comparative study of heuristics, metaheuristics, and MILP algorithms

15

http://creativecommons.org/licenses/by-nc-nd/4.0/

models is preferred. In cases where it is not possible
to find a solution within reasonable computation
time using solvers such as CPLEX or OpenSolver,
it is recommended to proceed with the execution
of metaheuristics such as the proposed PSO and
GA. These metaheuristics also produce satisfactory
solutions for the COP compared to existing solution
methods.

Therefore, the solution methods proposed in this
study are well-suited for industrial application in
garment manufacturing due to their ability to solve
the COP problem. For small and medium-sized
production orders, the MILP model provides highly
efficient, near-optimal solutions using commercial
solvers like CPLEX and OpenSolver. These solvers
can be easily integrated into existing production
planning systems, offering precise control over
fabric usage and operational costs. In practical
settings, especially where accuracy is paramount,
the MILP approach could serve as an effective tool
for short production runs and customized orders,
helping companies optimize material usage while
maintaining flexibility.

For larger production orders, where the complexity of
the problem increases significantly, the metaheuristic
approaches (GA and PSO) demonstrate their
value by offering near-optimal solutions within
reasonable computing time. These algorithms are
highly adaptable, making them suitable for real-
world scenarios where rapid decision-making and
scalability are crucial. Their ease of implementation
and lower computational cost compared to exact
methods make them particularly attractive for large-
scale operations or when real-time optimization is
required.

Future industrial implementation could involve
integrating these algorithms into production planning
software, where they can dynamically optimize
cut order plans based on changing demand and
production constraints. Additionally, these methods
can be applied in industries beyond apparel, such
as automotive or furniture manufacturing, where
efficient material cutting is equally critical.

6. Conclusions

In this study, we proposed two different solution
approaches to solve the cut order planning problem
in the garment manufacturing industry. The first
approach used conventional metaheuristic algorithms,

while the second approach involved transforming
the nonlinear mathematical model into a linear
one and using commercial solvers to solve it. We
modified certain heuristics from previous literature
and used them to generate the initial population for
the metaheuristics. This modification, along with the
use of tournament selection in the mating process,
contributed to the improvement of the GA compared
to previous versions in the literature. The proposed
PSO showed better performance than the GA in
most cases, especially for small and medium-sized
problems.

The cost and runtime analysis of the proposed
algorithms compared to benchmarks validates
their efficiency and indicates their suitability for
practical implementation in industry. In particular,
the commercial solvers, CPLEX and OpenSolver,
outperformed the metaheuristic approaches,
providing better solutions in faster computational
times than the metaheuristics. Commercial
solvers provided better solutions than the best
solution provider algorithm while maintaining a
computational time comparable to the fastest solution
provider algorithm presented in the literature.

Although heuristics and metaheuristics are
conventional approaches for solving NP-hard
problems such as the COP problem, the results of
this study show that CPLEX and OpenSolver are
often superior options. Furthermore, the use of
metaheuristics in industry may require a development
and implementation phase, whereas off-the-shelf
software does not. Therefore, this study recommends
the use of general-purpose software, such as CPLEX
and OpenSolver, to solve COP problems, especially
for small and medium-sized orders. For large orders,
where commercial solvers cannot provide a solution,
the use of the proposed PSO and GA is recommended.

The proposed solution methods not only demonstrate
their effectiveness in solving the COP problem
but also contribute to broader industrial goals,
particularly in terms of sustainability. By optimizing
COP, our methods significantly reduce fabric waste,
which is crucial in an industry where material costs
represent a significant portion of total expenses. The
ability to minimize waste while meeting production
demands directly supports sustainable practices,
helping manufacturers reduce their environmental
footprint while improving operational efficiency.

Int. J. Prod. Manag. Eng. (2025) 13(1), 1-26 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Al-Mahmud et al.

16

http://creativecommons.org/licenses/by-nc-nd/4.0/

Future research could focus on the development of
hybrid metaheuristics that combine the strengths of
GA and PSO, leveraging the exploration capabilities
of GA and the fast convergence of PSO. This hybrid
approach could deliver even more efficient solutions,
particularly for large-scale, complex instances of the
COP problem. Additionally, future research could
explore these hybrid enhancements applied not only
in garment manufacturing but also in other industries
with similar cutting and planning challenges. Finally,
further research could explore decomposition
methods such as column generation and Benders
decomposition to address the scalability issues of
the MILP model, breaking the problem into smaller,
more manageable subproblems.

7. Data Availability

The data will be available upon request.

Authors contribution

All authors contributed to the study conception and
design. Material preparation, data collection and
analysis were performed by Sharif Al-Mahmud, Jose
Alejandro Cano, Emiro Antonio Campo, and Stephan
Weyers. The first draft of the manuscript was written
by Sharif Al-Mahmud and Jose Alejandro Cano and
all authors commented on previous versions of the
manuscript. All authors read and approved the final
manuscript.

References
Abd Jelil, R. (2018). Review of Artificial Intelligence Applications in Garment Manufacturing. In S. Thomassey & X.

Zeng (Eds.), Artificial Intelligence for Fashion Industry in the Big Data Era. Springer Series in Fashion Business. (pp.
97–123). Springer Singapore. https://doi.org/doi.org/10.1007/978-981-13-0080-6_6

Abeysooriya, R. ., & Fernando, T. G. . (2012a). Canonical Genetic Algorithm To Optimize Cut Order Plan Solutions in
Apparel. Journal of Emerging Trends in Computing and Information Sciences, 3(2), 150–154.

Abeysooriya, R. ., & Fernando, T. G. . (2012b). Hybrid Approach to Optimize Cut Order Plan Solutions in Apparel
Manufacturing. International Journal of Information and Communication Technology Research, 2(4), 348–353.

Abualigah, L., Gandomi, A. H., Elaziz, M. A., Hamad, H. Al, Omari, M., Alshinwan, M., & Khasawneh, A. M. (2021).
Advances in meta-heuristic optimization algorithms in big data text clustering. Electronics (Switzerland), 10(2), 101.
https://doi.org/10.3390/electronics10020101

Alhijawi, B., & Awajan, A. (2023). Genetic algorithms: theory, genetic operators, solutions, and applications. Evolutionary
Intelligence. https://doi.org/10.1007/s12065-023-00822-6

Alsamarah, W., Younes, B., & Yousef, M. (2022). Reducing waste in garment factories by intelligent planning of optimal
cutting orders. The Journal of The Textile Institute, 113(9), 1917–1925. https://doi.org/10.1080/00405000.2021.1956
711

Boussaïd, I., Lepagnot, J., & Siarry, P. (2013). A survey on optimization metaheuristics. Information Sciences, 237, 82–117.
https://doi.org/10.1016/j.ins.2013.02.041

Cano, J. A., Cortés, P., Muñuzuri, J., & Correa-Espinal, A. (2023). Solving the picker routing problem in multi-block
high-level storage systems using metaheuristics. Flexible Services and Manufacturing Journal, 35(1), 376–415.
https://doi.org/10.1007/s10696-022-09445-y

Chang, D., Shi, H., Liu, C., & Meng, F. (2024). Scheduling optimization of flexible flow shop with buffer capacity limitation
based on an improved discrete particle swarm optimization algorithm. Engineering Optimization, 1–27. https://doi.org
/10.1080/0305215X.2024.2328191

Chen, B., Zhang, R., Chen, L., & Long, S. (2021). Adaptive Particle Swarm Optimization with Gaussian Perturbation and
Mutation. Scientific Programming, 2021, 6676449. https://doi.org/10.1155/2021/6676449

Degraeve, Z., & Vandebroek, M. (1998). A Mixed Integer Programming Model for Solving a Layout Problem in the
Fashion Industry. Management Science, 44(3), 301–310. https://doi.org/10.1287/mnsc.44.3.301

Ezugwu, A. E., Shukla, A. K., Nath, R., & Akinyelu, A. A. (2021). Metaheuristics: a comprehensive overview and
classification along with bibliometric analysis. In Artificial Intelligence Review (Vol. 54, Issue 6). Springer Netherlands.
https://doi.org/10.1007/s10462-020-09952-0

Filipič, B., Fister, I., & Mernik, M. (2006). Evolutionary search for optimal combinations of markers in clothing
manufacturing. GECCO ’06: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation,
1661–1666. https://doi.org/10.1145/1143997.1144270

Int. J. Prod. Manag. Eng. (2025) 13(1), 1-26Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Optimizing cut order planning: A comparative study of heuristics, metaheuristics, and MILP algorithms

17

https://doi.org/doi.org/10.1007/978-981-13-0080-6_6
https://doi.org/10.3390/electronics10020101
https://doi.org/10.1007/s12065-023-00822-6
https://doi.org/10.1080/00405000.2021.1956711
https://doi.org/10.1080/00405000.2021.1956711
https://doi.org/10.1016/j.ins.2013.02.041
https://doi.org/10.1007/s10696-022-09445-y
https://doi.org/10.1080/0305215X.2024.2328191
https://doi.org/10.1080/0305215X.2024.2328191
https://doi.org/10.1155/2021/6676449
https://doi.org/10.1287/mnsc.44.3.301
https://doi.org/10.1007/s10462-020-09952-0
https://doi.org/10.1145/1143997.1144270
http://creativecommons.org/licenses/by-nc-nd/4.0/

Fister, I., Mernik, M., & Filipič, B. (2008). Optimization of markers in clothing industry. Engineering Applications of
Artificial Intelligence, 21(4), 669–678. https://doi.org/10.1016/j.engappai.2007.06.002

Fister, I., Mernik, M., & Filipic, B. (2010). A hybrid self-adaptive evolutionary algorithm for marker optimization in the
clothing industry. Applied Soft Computing, 10, 409–422. https://doi.org/10.1016/j.asoc.2009.08.001

Gogna, A., & Tayal, A. (2013). Metaheuristics: Review and application. In Journal of Experimental and Theoretical Artificial
Intelligence (Vol. 25, Issue 4, pp. 503–526). Taylor & Francis. https://doi.org/10.1080/0952813X.2013.782347

Gómez-Montoya, R. A., Cano, J. A., Cortés, P., & Salazar, F. (2020). A discrete particle swarm optimization to solve the put-
away routing problem in distribution centres. Computation, 8(4), 1–17. https://doi.org/10.3390/computation8040099

IBM. (2022). IBM ILOG CPLEX Optimization Studio. Relative MIP Gap Tolerance. https://www.ibm.com/docs/en/
icos/22.1.1?topic=parameters-relative-mip-gap-tolerance

Jacobs-Blecha, C., Ammons, J. C., Schutte, A., & Smith, T. (1998). Cut order planning for apparel manufacturing. IIE
Transactions, 30(1), 79–90. https://doi.org/10.1080/07408179808966439

Jarboui, B., Damak, N., Siarry, P., & Rebai, A. (2008). A combinatorial particle swarm optimization for solving multi-
mode resource-constrained project scheduling problems. Applied Mathematics and Computation, 195(1), 299–308.
https://doi.org/10.1016/j.amc.2007.04.096

Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A review on genetic algorithm: past, present, and future. In Multimedia
Tools and Applications (Vol. 80, Issue 5). Multimedia Tools and Applications. https://doi.org/10.1007/s11042-020-
10139-6

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN’95 - International Conference on
Neural Networks, 4, 1942–1948. https://doi.org/10.1109/ICNN.1995.488968

Kennedy, J., & Eberhart, R. C. (1997). A discrete binary version of the particle swarm algorithm. IEEE International
Conference on Computational Cybernetics and Simulation, 4104–4108. https://doi.org/10.1109/ICSMC.1997.637339

M’Hallah, R., & Bouziri, A. (2016). Heuristics for the combined cut order planning two-dimensional layout problem
in the apparel industry. International Transactions in Operational Research, 23(1), 321–353. https://doi.org/10.1111/
itor.12104

Martens, J. (2004). Two genetic algorithms to solve a layout problem in the fashion industry. European Journal of
Operational Research, 154(1), 304–322. https://doi.org/10.1016/S0377-2217(02)00706-3

Nascimento, D. B., Neiva De Figueiredo, J., Mayerle, S. F., Nascimento, P. R., & Casali, R. M. (2010). A state-space
solution search method for apparel industry spreading and cutting. International Journal of Production Economics,
128(1), 379–392. https://doi.org/10.1016/j.ijpe.2010.07.035

Nasrin, U., & Alam, S. M. R. (2023). Implementing circular economy principles in the apparel production process:
Reusing pre-consumer waste for sustainability of environment and economy. Cleaner Waste Systems, 6(April), 100108.
https://doi.org/10.1016/j.clwas.2023.100108

Nchalala, A., Alexander, T., & Taifa, I. W. R. (2023). Establishing standard allowed minutes and sewing efficiency for the
garment industry in Tanzania. Research Journal of Textile and Apparel, 27(2), 246–263. https://doi.org/10.1108/RJTA-
09-2021-0112

Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization: An overview. Swarm Intelligence, 1, 33–57.
https://doi.org/10.1007/s11721-007-0002-0

Prasad, S., Panghal, M., & Ali, T. M. (2022). Developing a cost-effective and heuristic tool to solve cut order planning
problems in the apparel industry. International Journal of Mathematics in Operational Research, 21(1), 26–45.

Puasakul, K., & Chaovalitwongse, P. (2016). The review of mark planning problem. Engineering Journal, 20(3), 91–112.
https://doi.org/10.4186/ej.2016.20.3.91

Ramos-Figueroa, O., Quiroz-Castellanos, M., Mezura-Montes, E., & Kharel, R. (2021). Variation Operators for Grouping
Genetic Algorithms: A Review. Swarm and Evolutionary Computation, 60($1 2020). https://doi.org/10.1016/j.
swevo.2020.100796

Ranaweera, R. N. M. P., Rathnayaka, R. M. K. T., & Chathuranga, L. L. G. (2023). Optimal Cut Order Planning Solutions
using Heuristic and Meta-Heuristic Algorithms: A Systematic Literature Review. KDU Journal of Multidisciplinary
Studies, 5(1), 86–97. https://doi.org/10.4038/kjms.v5i1.66

Rose, D. M., & Shier, D. R. (2007). Cut scheduling in the apparel industry. Computers & Operations Research, 34(11),
3209–3228. https://doi.org/10.1016/j.cor.2005.12.001

Shami, T. M., El-saleh, A. A., & Member, S. (2022). Particle Swarm Optimization: A Comprehensive Survey. IEEE Access,
10031–10061. https://doi.org/10.1109/ACCESS.2022.3142859

Shang, X., Shen, D., Wang, F.-Y., & Nyberg, T. R. (2019). A heuristic algorithm for the fabric spreading and cutting
problem in apparel factories. IEEE/CAA Journal of Automatica Sinica, 6(4), 961–968. https://doi.org/10.1109/
JAS.2019.1911573

Int. J. Prod. Manag. Eng. (2025) 13(1), 1-26 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Al-Mahmud et al.

18

https://doi.org/10.1016/j.engappai.2007.06.002
https://doi.org/10.1016/j.asoc.2009.08.001
https://doi.org/10.1080/0952813X.2013.782347
https://doi.org/10.3390/computation8040099
https://www.ibm.com/docs/en/icos/22.1.1?topic=parameters-relative-mip-gap-tolerance
https://www.ibm.com/docs/en/icos/22.1.1?topic=parameters-relative-mip-gap-tolerance
https://doi.org/10.1080/07408179808966439
https://doi.org/10.1016/j.amc.2007.04.096
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICSMC.1997.637339
https://doi.org/10.1111/itor.12104
https://doi.org/10.1111/itor.12104
https://doi.org/10.1016/S0377-2217(02)00706-3
https://doi.org/10.1016/j.ijpe.2010.07.035
https://doi.org/10.1016/j.clwas.2023.100108
https://doi.org/10.1108/RJTA-09-2021-0112
https://doi.org/10.1108/RJTA-09-2021-0112
https://doi.org/10.1007/s11721-007-0002-0
https://doi.org/10.4186/ej.2016.20.3.91
https://doi.org/10.1016/j.swevo.2020.100796
https://doi.org/10.1016/j.swevo.2020.100796
https://doi.org/10.4038/kjms.v5i1.66
https://doi.org/10.1016/j.cor.2005.12.001
https://doi.org/10.1109/ACCESS.2022.3142859
https://doi.org/10.1109/JAS.2019.1911573
https://doi.org/10.1109/JAS.2019.1911573
http://creativecommons.org/licenses/by-nc-nd/4.0/

Shen, M., Zhan, Z., Chen, W., Gong, Y., & Member, S. (2014). Bi-Velocity Discrete Particle Swarm Optimization and Its
Application to Multicast Routing Problem in Communication Networks. IEEE Transactions on Industrial Electronics,
61(12), 7141–7151. https://doi.org/10.1109/TIE.2014.2314075

Silva, P. H. H. P. N. De, Lanel, G. H. J., & Perera, M. T. M. (2017). Integer Quadratic Programming (IQP) Model for Cut
Order Plan. IOSR Journal of Mathematics, 13(02), 76–80. https://doi.org/10.9790/5728-1302027680

Toaza, B., & Esztergár-Kiss, D. (2023). A review of metaheuristic algorithms for solving TSP-based scheduling optimization
problems. Applied Soft Computing, 148(January). https://doi.org/10.1016/j.asoc.2023.110908

Tsao, Y.-C., Vu, T.-L., & Liao, L.-W. (2020). Hybrid heuristics for the cut ordering planning problem in apparel industry.
Computers & Industrial Engineering, 144(1), 106478. https://doi.org/10.1016/j.cie.2020.106478

Tsao, Y.-C., Delicia, M., & Vu, T. L. (2022). Marker planning problem in the apparel industry: Hybrid PSO-based heuristics.
Applied Soft Computing, 123, 108928. https://doi.org/10.1016/j.asoc.2022.108928

Ünal, C., & Yüksel, A. D. (2020). Cut Order Planning Optimisation in the Apparel Industry. Fibres and Textiles in Eastern
Europe, 28(1), 8–13. https://doi.org/10.5604/01.3001.0013.5851

Wijethilake, C., Upadhaya, B., & Lama, T. (2023). The role of organisational culture in organisational change towards
sustainability: evidence from the garment manufacturing industry. Production Planning & Control, 34(3), 275–294.
https://doi.org/10.1080/09537287.2021.1913524

Wong, W. K. Ã., & Leung, S. Y. S. (2008). Genetic optimization of fabric utilization in apparel manufacturing. International
Journal of Production Economics, 114(1), 376–387. https://doi.org/10.1016/j.ijpe.2008.02.012

Xiang, W., Hui, D., Li, Y., & Wen-An, Z. (2022). Hybrid optimization algorithm for cut order planning of multicolor
garment. Control and Decision, 37(6), 1531–1540. https://doi.org/10.13195/j.kzyjc.2020.1749

Xu, Y., Thomassey, S., & Zeng, X. (2020). Optimization of garment sizing and cutting order planning in the context of mass
customization. The International Journal of Advanced Manufacturing Technology, 106(1), 3485–3503.

Yang, C. L., Huang, R. H., & Huang, H. L. (2011). Elucidating a layout problem in the fashion industry by using an ant
optimisation approach. Production Planning and Control, 22(3), 248–256. https://doi.org/10.1080/09537287.2010.49
8600

Yang, Yali, Zhang, Y., Zuo, H., & Yan, N. (2023). The effective practical application of modern intelligent manufacturing
technology in textile and garment industry. International Journal on Interactive Design and Manufacturing (IJIDeM).
https://doi.org/10.1007/s12008-023-01559-3

Yang, Yizhe, Liu, B., Li, X., Jia, Q., Duan, W., & Wang, G. (2024). Fidelity-adaptive evolutionary optimization algorithm
for 2D irregular cutting and packing problem. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-
024-02329-y

Appendices

Appendix I. Pseudocodes for constructive heuristics
Algorithm 1. Pseudocode of H1_T2020

Set residual demand rβ= Qβ for β ∈ s
Set number of sections, α = 0

Repeat While max
β∈s

 (rβ) > 0
Increase the value of α: α = α + 1

Set Pα = max{Pmin, m i n {(rβ : rβ > 0, β ∈ s), Pmax} }
Set length of section α, lα = 0
For β ∈ s:

If rβ ≥ Pmin:

If lα ≤ lmax :

Set t e m p_Gαβ = ⌊
rβ
Pα ⌋

Determine t e m p_lα = ∑
β

t e m p_Gαβ Yβ
If t e m p_lα ≤ lmax : set Gαβ = t e m p_Gαβ; and lα = t e m p_lα

Int. J. Prod. Manag. Eng. (2025) 13(1), 1-26Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Optimizing cut order planning: A comparative study of heuristics, metaheuristics, and MILP algorithms

19

https://doi.org/10.1109/TIE.2014.2314075
https://doi.org/10.9790/5728-1302027680
https://doi.org/10.1016/j.asoc.2023.110908
https://doi.org/10.1016/j.cie.2020.106478
https://doi.org/10.1016/j.asoc.2022.108928
https://doi.org/10.5604/01.3001.0013.5851
https://doi.org/10.1080/09537287.2021.1913524
https://doi.org/10.1016/j.ijpe.2008.02.012
https://doi.org/10.13195/j.kzyjc.2020.1749
https://doi.org/10.1080/09537287.2010.498600
https://doi.org/10.1080/09537287.2010.498600
https://doi.org/10.1007/s12008-023-01559-3
https://doi.org/10.1007/s10845-024-02329-y
https://doi.org/10.1007/s10845-024-02329-y
http://creativecommons.org/licenses/by-nc-nd/4.0/

Else: set Gαβ = ⌊ lmax − lα
Yβ ⌋ and lα = ∑

β
Gαβ Yβ

Else: set Gαβ = 0
Else If Pmin > rβ > 0:

If lα ≤ lmax:

Set t e m p_Gαβ = ⌈
rβ
Pα ⌉

Determine t e m p_lα = ∑
β

t e m p_Gαβ Yβ

If t e m p_lα ≤ lmax : set Gαβ = t e m p_Gαβ; and lα = t e m p_lα

Else: set Gαβ = ⌊ lmax − lα
Yβ ⌋ and lα = ∑

β
Gαβ Yβ

Else: set Gαβ = 0

Else: set Gαβ = 0

Update residual demand, rβ = rβ − Pα × Gαβ ; f o r β ∈ s

Algorithm 2. Pseudocode of H3_MB2016

Set residual demand rβ= Qβ for β ∈ s
Set number of sections,α = 0

Repeat While max
β∈s

 (rβ) > 0:
Increase the value of α: α = α + 1

Set Pα = min{P_ m a x , m a x{G C D(rβ : rβ > 0, β ∈ s), Pmin}}
Set length of section α , lα = 0

For β ∈ s:

Set t e m p_Gαβ = ⌈
rβ
Pα ⌉

Determine t e m p_lα = ∑
β

t e m p_Gαβ Yβ

Repeat While t e m p_lα > lmax :

Determine β′ = β where t e m p_G has the maximum occurrence of garments.

t e m p_Gαβ′ = t e m p_Gαβ′ − 1

Update length t e m p_lα = ∑
β

t e m p_Gαβ Yβ
Set Gαβ = t e m p_Gαβ
Update Residual demand, rβ = rβ − Pα × Gαβ; f o r β ∈ s

Algorithm 3. Pseudocode of H1+

Set Residual demand rβ= Qβ for β ∈ s
Set number of sections, α = 0

Repeat While max
β∈s

 (rβ) > 0
Increase the value of α: α = α + 1

Int. J. Prod. Manag. Eng. (2025) 13(1), 1-26 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Al-Mahmud et al.

20

http://creativecommons.org/licenses/by-nc-nd/4.0/

Set Pα = max{Pmin, m i n {(rβ : rβ > 0, β ∈ s), Pmax} }
Set length of section α , lα = 0

Set K = [1, 2, 3,……, s]; a list of all sizes.
Randomly Shuffle the order of values in K
For β ∈ K:

If rβ ≥ Pmin:

If lα ≤ lmax:

Set t e m p_Gαβ = ⌊
rβ
Pα ⌋

Determine t e m p_lα = ∑
β

t e m p_Gαβ Yβ
If t e m p_lα ≤ lmax : Set Gαβ = t e m p_Gαβ; and lα = t e m p_lα

ELSE: Set Gαβ = ⌊ lmax − lα
Yβ ⌋ and lα = ∑

β
Gαβ Yβ

Else: Set Gαβ = 0

Else If Pmin > rβ > 0:

If lα ≤ lmax:

Set t e m p_Gαβ = ⌈
rβ
Pα ⌉

Determine t e m p_lα = ∑
β

t e m p_Gαβ Yβ

If t e m p_lα ≤ lmax : Set Gαβ = t e m p_Gαβ; and lα = t e m p_lα

Else: Set Gαβ = ⌊ lmax − lα
Yβ ⌋ and lα = ∑

β
Gαβ Yβ

Else: Set Gαβ = 0

Else: Set Gαβ = 0
Update Residual demand, rβ = rβ − Pα × Gαβ; f o r β ∈ s

Algorithm 4. Pseudocode of H3+

Set Residual demand rβ= Qβ for β ∈ s
Set number of sections, α = 0

Repeat While max
β∈s

 (rβ) > 0:
Increase the value of α: α = α + 1

Set Pα = min{P_ m a x , m a x{G C D(rβ : rβ > 0, β ∈ s), Pmin}}
Set length of section α , lα = 0
Set K = [1, 2, 3,……, s]; a list of all sizes
Randomly Shuffle the order of values in K
For β ∈ K:

If rβ > 0:

Set Gαβ = max 0, m i n ⌈
rβ
Pα ⌉, ⌊ lmax − lα

Yβ ⌋
Set lα = ∑

β
Gαβ Yβ

Else: Set Gαβ = 0

Update Residual demand, rβ = rβ − Pα × Gαβ; f o r β ∈ s

Int. J. Prod. Manag. Eng. (2025) 13(1), 1-26Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Optimizing cut order planning: A comparative study of heuristics, metaheuristics, and MILP algorithms

21

http://creativecommons.org/licenses/by-nc-nd/4.0/

Algorithm 5. Pseudocode of H5+

Set Residual demand rβ= Qβ for β ∈ s
Set α = 1, and m = 2

Repeat While max
β ∈ s (rβ) > 0:

For β ∈ s:
IF 0 < rβ < Pmin: then Set rβ = Pmin

Set Pα = a random integer between m a x{Pmin, 1}, m i n Pmax, m a x{Pmin, max
β∈s

 (rβ)}Set length of section α , lα = 0
Set K = [1, 2, 3,……, s]; a list of all sizes.
Randomly Shuffle the order of values in K
For β ∈ K :

If rβ ≤ 0; OR lα ≥ lmax:
Set Gαβ = 0
SKIP the next parts and continue the FOR Loop for next value of β.

Set t e m p_Gαβ = a random integer between 0, ⌊
rβ
Pα ⌋

Determine
t e m p_lα = ∑

β
t e m p_Gαβ Yβ

If t e m p_lα ≤ lmax :

Set Gαβ = t e m p_Gαβ
Set lα = t e m p_lα

Else:

Set Gαβ = a random integer between 0, ⌊ lmax − lα
Yβ ⌋

Set
lα = ∑

β
Gαβ Yβ

Update Residual demand, rβ = rβ − Pα × Gαβ ; where β ∈ s

Increase the value of α: α = α + 1

If α ≥ m AND max
β∈s

 (rβ) > 0:

 Use H3+ algorithm to pack all remaining demands

Appendix II. Pseudocodes for genetic algorithms
Algorithm 6. Pseudocode of GA

Input: population size (N); number of generations (T);: tournament size (k); crossover rate
(ρ); mutation rate (η).
Output: A near global optimum solution
Generate 2 solutions using H1_T2020, and H3_MB2016 and append them to Po p u l a t i o n
Generate solutions randomly Using H1+, H3+ & H5+ until there are N amount of feasible solu-
tion in Po p u l a t i o n
Evaluate Fitness value of each solution in Po p u l a t i o n
For t ∈ T:

For n ∈ N:
Select Pa r e n t1, and Pa r e n t 2 using Tournament Selection
Get C h i l d by calling Crossover (Pa r e n t1, Pa r e n t 2, ρ) Function.
Get M u t a t e d _C h i l d by calling Mutation (C h i l d , η) Function.
Evaluate Fitness value of M u t a t e d _C h i l d .
Append M u t a t e d _C h i l d in variable C h i l d r e n

n e w_Po p u l a t i o n = Merge Po p u l a t i o n and C h i l d r e n

Int. J. Prod. Manag. Eng. (2025) 13(1), 1-26 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Al-Mahmud et al.

22

http://creativecommons.org/licenses/by-nc-nd/4.0/

Sort the n e w_Po p u l a t i o n (2N population size) in a non-decreasing order of Fitness.
Set Po p u l a t i o n= first N individuals of the n e w_Po p u l a t i o n.
If meets the stopping criteria:

Stop and Go To step 6
Return First solution in Po p u l a t i o n

Algorithm 7. Pseudocode of Crossover Operator

Input: Two selected individuals for mating (Pa r e n t1, Pa r e n t 2); crossover rate (ρ)
Output: A solution as a result of their crossover (C h i l d)
FUNCTION Crossover (Pa r e n t1, Pa r e n t 2, ρ):
If Random Uniform [0,1] > ρ:

Stop and Return Pa r e n t1

Set G1αβ , P 1α = Gαβ , Pα of Pa r e n t1; and G 2αβ , P 2α = Gαβ , Pα of Pa r e n t 2

Set
m1, m2 =

 number of sections in Pa r e n t1,and in Pa r e n t 2, respectively.
Set i1, i2 = 2 Randomly chosen values from the discrete uniform [1, m1], where i1 < i2 .
Set the first αc = i2 − i1 + 1 sections of C h i l d by copying sections i1 through i2 from Pa r e n t1
Update residual demand of C h i l d, rβ , β ∈ s
Set α′ = 1, where α′ is the index number of sections from Pa r e n t 2.

Repeat While max
β ∈ s (rβ) > 0:

Create a new section of C h i l d, αc = i2 − i1 + 1 + α′
If α′ ≤ m2 AND max

β ∈ s (rβ) > Pmin :

Determine variable g c d = G C D (rβ : rβ > 0, G 2α′ β > 0, β ∈ s)
Set Pαc = max{Pmin, m i n {P 2α′ , g c d}}, where P 2α′ is the number of plies in sec-
tion α′ of Pa r e n t 2
Set length of section αc, lαc = 0
For β ∈ s:

If rβ > 0, AND G 2α′ β > 0 :

Set Gαc β = m i n ⌊
rβ

Pαc ⌋, ⌊
lmax − lαc

Yβ ⌋
Update lαc = lengths of the section αc

Else Set Gαc β = 0

Set α′ = α′ + 1
Else:

Set Pαc = max{Pmin, G C D (rβ : rβ > 0, β ∈ s)}
Set length of section αc, lαc = 0
For β ∈ s :

If rβ > 0, THEN

Set Gαc β = m i n ⌈
rβ

Pαc ⌉, ⌊
lmax − lαc

Yβ ⌋
Update lαc = lengths of the section αc

Else Set Gαc β = 0
Stop While Loop

Update residual demand for Child rβ , β ∈ s
Return C h i l d

Int. J. Prod. Manag. Eng. (2025) 13(1), 1-26Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Optimizing cut order planning: A comparative study of heuristics, metaheuristics, and MILP algorithms

23

http://creativecommons.org/licenses/by-nc-nd/4.0/

Algorithm 8. Pseudocode of Mutation Operator

Input: Chromosome solution for mutation operation; η: probability of mutating of a gene (C h i l d).

Output: A solution as a result of mutation operation (M u t a t e d _C h i l d)

FUNCTION Mutation (C h i l d , η) :
For α ∈ m : where m is number of sections in C h i l d

For β ∈ s:

If random uniform [0,1] < η:
M u t a t e d _C h i l d = Call FUNCTION Mutate (α , β , Gαβ , Pα)

Return M u t a t e d _C h i l d

FUNCTION Mutate (α , β , Gαβ , Pα):
Set Gαβ = 0
Update residual demand rβ , β ∈ s

Set 𝕀𝕀𝕀 = {α′ = 1… . m , w h e r e α′ ≠ α , a n d Pα′ ≤ rβ}
Repeat While max

β ∈ s (rβ) > 0:

If 𝕀 is not NULL:
Determine lα′ = list of lengths of the sections for α′ ∈ 𝕀𝕀 𝕀
Determine α′ ′ = α′ and Pα′ ′ = Pα′ where lα′ ′ = m i n{lα′ }

Set Gα′ ′ β = previous value +min ⌈
rβ

Pα′ ′ ⌉, ⌊
lmax − m i n{lα′ }

Yβ ⌋
Set 𝕀 = 𝕀𝕀𝕀 = 𝕀𝕀\{ α ′ ′ }

Else:
Create new section α′ ′ = m + 1

Set Pα′ ′ = min{Pmax, m a x {Pmin, rβ}}
If Pα′ ′ ≥ rβ :

Set Gα′ ′ β = 1
Else:

Set Gα′ ′ β = m i n ⌊
rβ

Pα′ ′ ⌋, ⌊ lmax
Yβ ⌋

Update residual demand rβ , β ∈ s
Return M u t a t e d _C h i l d

Appendix III. Pseudocodes for particle swarm optimization
Algorithm 9. Pseudocode of PSO Algorithm

Input: Swarm size (N); number of iterations (T); explore factor (φ); perturbation rate (η)
Output: A near global optimum solution (G b e s t)
Generate 2 solutions using H1_T2020, and H3_MB2016 Algorithm and (N − 2) solutions randomly
Using H1+, H3+ & H5+ algorithms in S w a r m, where each particle is XP
Generate Initial velocity VP in range [−φ , φ] for each particle XP in S w a r m
For p ∈ N:

Set Pb e s tP = XP
Set G b e s t = Best position vector of a particle in the swarm with lowest fitness value (local
search method)
For i ∈ T:

For p ∈ N:

Update Xi
P & Vi

P by calling ParticleUpdate (Xi
P
−1, Vi

P
−1, Gbest , PbestP, φ , η) function.

If Fitness (Xi
P) < Fitness (Pb e s tP):

Set Pb e s tP = Xi
P

Int. J. Prod. Manag. Eng. (2025) 13(1), 1-26 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Al-Mahmud et al.

24

http://creativecommons.org/licenses/by-nc-nd/4.0/

If Fitness (Xi
P) < Fitness (G b e s t):

Set G b e s t = Xi
P

If meets the stopping criteria:

Stop the For loop and go to step 6

Return G b e s t

Algorithm 10. Pseudocode of Updating Position & Velocity Vector (P a r t i c l eUpdate)

Input: Particle’s position vector (Xi−1
P); particle’s position vector (V i−1

P); global best posi-
tion vector (G b e s t); particle’s personal best position vector (Pb e s t); explore factor (φ); per-
turbation rate (η)
Output: Updated particle (Xi

P)

FUNCTION ParticleUpdate (Xi
P
−1, Vi

P
−1, Gbest , PbestP, φ , η) :

Calculate Yi
P = {yi

p1, yi
p2, … . , yipα…, yipn} by Equation (7)

Update velocity Vi
P = {vi

p1, vi
p2, … . , vipα…, vipm} by Equation (8)

Calculate Λi
P = {λ i

p1, λ i
p2, … . , λ ipα…, λ ipn} by Equation (9)

Initialize n e w_X with 0 section.

R = (rβ : β ∈ s) : Update residual demand for solution n e w_X

Set s e c = number of sections in Λi
P

For α ∈ s e c:

If λ ipα > φ:
n e w_xα = g b e s tα: Copy α th section of G b e s t and create a new section α for
n e w_X

Else If λ ipα < − φ:
n e w_xα = p b e s tα : Copy α th section of Pb e s tP and create a new section α for
n e w_X

Else:

temp_xα = xiα−1 : Copy α th section of Xi−1
P and create a new section α for n e w_X

n e w_xα = Perturbation(temp_xα, R , η)
R = (rβ : β ∈ s) : Update residual demand for solution n e w_X

If max(R = rβ : β ∈ s) ≤ 0:
STOP and Go to Update dimension of velocity vector to match the Position
vector’s dimension

Set q= Total number of sections in Xi−1
P

For α ∈ r a n g e [s e c + 1, q]:
temp_xα = xiα−1 : Copy α th section of Xi−1

P and create a new section α for n e w_X

n e w_xα = Perturbation(temp_xα, R , η)
R = (rβ : β ∈ s): Update residual demand for solution n e w_X

If max(R = rβ : β ∈ s) ≤ 0:
Stop and Go to Update dimension of velocity vector to match the Position
vector’s dimension

If Positive residual demand: Use H1+ algorithm to pack all remaining demands.
Update dimension of velocity vector to match the Position vector’s dimension

Return n e w_X as Xi
P, and Vi

P

Int. J. Prod. Manag. Eng. (2025) 13(1), 1-26Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Optimizing cut order planning: A comparative study of heuristics, metaheuristics, and MILP algorithms

25

http://creativecommons.org/licenses/by-nc-nd/4.0/

FUNCTION Perturbation(new_xα, R, η):

Set Gα Pα = Gα Pα of n e w_xα

If Random Uniform [0,1] < p_r a t e:

p1, p 2 = So r t e d Pα, m i n⟨P_ m a x , m a x{P_ m i n , max
β ∈ s (rβ)}⟩

Set Pα= Random Integer between [p1,p 2]
For β ∈ s:

If Random Uniform [0,1] < p_r a t e:
Set Gαβ = 0
If rβ > 0:

Determine length of the section Lα

Determine
t e m p = max 0, m i n ⌈

rβ
Pα ⌉, ⌊ lmax − lα

Yβ ⌋

Set Gαβ = Random integer [0,t e m p]
Return n e w_xα = (Gα Pα)

Int. J. Prod. Manag. Eng. (2025) 13(1), 1-26 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Al-Mahmud et al.

26

http://creativecommons.org/licenses/by-nc-nd/4.0/

