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A B S T R A C T

The global growth of urban areas is unstoppable, and this growth is accompanied by an intensification of urban 
heat island effects, exacerbating the challenges of climate change and sustainable urban development in warm 
climates. In this context, understanding the intricate dynamics of these phenomena and their implications on the 
thermal behaviour of buildings becomes paramount. This study focuses on València, a Spanish city characterized 
by a Mediterranean climate, where the interplay between ground temperature variations, vegetation levels, and 
the thermal demands of buildings is investigated.

Land surface temperature measurements derived from satellite data, specifically from the Landsat-8 mission, 
provide a valuable lens through which to assess the heat island effect. These measurements are harmonized with 
data collected from local weather stations to establish a robust foundation for evaluating the thermal dynamics of 
the urban environment. European standards, coupled with Geographic Information System technologies, enable 
the simulation of temperature variations, and facilitate a nuanced analysis of their impact on the thermal de
mands of a building.

Moreover, recognizing the crucial role played by the urban climate in the influencing of heating and cooling 
needs, this study explores nature-based solutions implemented in València. By leveraging satellite-derived 
temperature and vegetation data over an extended period, it is possible to identify actions and elements that 
contribute positively to mitigating UHI effects and improving the overall climatic conditions. Results indicate 
that vegetation has a notable impact on local temperature, with distinct patterns observed in different seasons. 
The research incorporated the simulation of climate scenarios, introducing varying levels of vegetation. Results 
demonstrated a substantial reduction in cooling demand, particularly during the summer months. Buildings with 
a lower exterior surface-to-volume ratio exhibited a more pronounced reduction in energy consumption.

1. Introduction

Climate change is the most significant challenge ever encountered by 
humanity; several sectors are implicated in its causation [1], and in 
order to offer a response, it is imperative that all the sectors become 
involved in comprehensive planning [1]. Cities, responsible for a sub
stantial 72 % of greenhouse gas emissions, are particularly pivotal in this 
endeavour, especially considering their projected role as hosts to around 
70 % of the global population by 2050 [2]. As key battlegrounds against 
global warming, cities play a crucial role in enhancing the quality of life 
for their inhabitants [1].

Effective planning for the coming years is crucial to achieving the 

goals of climate change mitigation and adaptation. In this regard, energy 
usage emerges as a critical focus point due to its significant environ
mental impact. Due to their high energy demand resulting from popu
lation density, cities in particular come under the spotlight [1]. Planning 
must extend to regions prone to extreme climates, where quality of life is 
seriously endangered. Adaptation and mitigation strategies, especially 
in cities with Mediterranean climates and similar, facing extreme con
ditions, demand the meticulous examination of microclimates and ac
tion plans based on climate change forecasts [3].

Extreme weather events have surged in the last two decades, causing 
severe heatwaves, intense droughts in Southern Europe, biodiversity 
loss, and flooding in Central Europe [4]. The outlook is serious if 
effective measures are not taken. In response, the European Union has 
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set ambitious targets, aiming to reduce emissions by 80 % compared to 
2019 levels across all sectors [5] by 2050. These goals have progressed 
over the years, culminating in the pursuit of climate neutrality by 2050 
[4]. The European Union’s comprehensive action plan focuses on all 
sectors, with specific attention to cities and buildings. Key objectives 
include maximizing the benefits of energy efficiency through zero (or 
positive) energy buildings, the widespread deployment of renewable 
energy, the promotion of clean and secure mobility, the fostering of a 
circular economy, the creation of carbon sinks, the implementation of 
green infrastructure, and advances in carbon capture [4].

As a result, it is necessary to study climate at the local level so as to 
produce indicators that will help decision-making at the municipal level. 
In this way, if the neighbourhoods which have the most extreme con
ditions are known, it will be easier to propose adaptation and mitigation 
measures and determine where they would have the greatest impact.

Several studies, exemplified by [6], delve into the evaluation of 
climate change-induced uncertainties in energy dynamics. This research 
generates diverse future scenarios, emphasizing the importance of 
climate models considering extreme climates over traditional Typical 
Meteorological Year (TMY) approaches. Other studies, such as [7], 
explore the impact of the urban heat island effect on the energy con
sumption of various buildings in Rome, offering insights into the inter
connectedness of climate and energy demand.

In the realm of urban planning, methodologies such as those pre
sented in [8] aim to prioritize impactful actions. The authors propose a 
methodology for the selection of buildings suitable for green roofs, 
considering parameters such as the urban heat island effect. Results 
suggest that green roofs can significantly enhance the urban microcli
mate, offering multifaceted advantages, including thermal demand 
reduction, the mitigation of heat islands, poverty alleviation, support for 
biodiversity, flood prevention, and habitat creation.

An examination into the manifold benefits of nature-based in
terventions extends to comprehensive studies investigating their impact 
on local fauna and public health. A significant contribution in this 
domain is exemplified by [9], which elucidates how green roofs posi
tively affect biodiversity in comparison to traditional roofing structures. 
Conducted in a municipality near València, a Mediterranean city, the 
study concludes that vegetated roofs significantly enhance biodiversity, 
offering valuable insights into the ecological advantages of such in
terventions in this climatic context. In tandem, a parallel exploration of 
health implications is undertaken by another notable study, [10]. This 
analysis investigates the correlation between mortality rates and the 
Urban Heat Island (UHI) effect, demonstrating how integrating green 
spaces into urban infrastructure could mitigate the health risks associ
ated with urban heat. These findings underscore the holistic advantages 
of incorporating nature-based solutions into urban planning, show
casing their potential to positively influence both ecological and human 
health dynamics.

However, the implementation of nature-based measures requires a 
nuanced assessment of their diverse effects and their potential to 

mobilize the population. [11] critically evaluates the societal re
percussions of nature-based initiatives, highlighting how renaturaliza
tion efforts can inadvertently lead to green gentrification and the 
displacement of vulnerable communities. This thorough investigation 
across 28 cities in the Northern Hemisphere underscores the need for 
strategic policies to counteract potential inequalities stemming from 
renaturalization, emphasizing that these measures should first and 
foremost improve the overall quality of life for the existing population.

A research initiative conducted at the University of Florida [12] in
vestigates the nuanced impacts of the Heat Island Effect as regards cli
matic conditions and its influence on building energy consumption in 
the United States. The study specifically explores the relationship be
tween UHI and climatic variables, such as Degrees Day, absolute hu
midity, and solar radiation, revealing a direct correlation. Notably, wind 
speed and precipitation exhibited no discernible impact while the ab
solute humidity of the city enhanced the effect of UHI on building energy 
demand. The findings indicate that UHI contributes to heightened en
ergy demand in warmer regions while conversely reducing demand in 
colder areas. This underscores the contextual dependence of the phe
nomenon on specific climatic variables, highlighting that its effects are 
not universally applicable across temperate climate zones. In regions 
characterized by warm climates, the lengthening of the summer period 
due to climate change emerges as a critical health concern for in
habitants. The urban heat island effect further exacerbates this chal
lenge, as metropolitan temperatures surpass those of surrounding areas 
owing to human activities, building materials, and urban traffic. While 
the literature offers an extensive examination of the assessment of the 
heat island effect, the modification it induces in the thermal demand of 
buildings has received comparatively little attention. Recognizing the 
significance of this relationship, especially in warm climates, is crucial 
for effective urban energy planning.

It should be noted that UHI cannot be generalized to a single 
parameter. Researchers must delve into the complex interplay of vari
ables influencing localized temperature increases in order to compre
hend the factors that make a significant contribution to urban hot spots. 
This has been the subject of much research and a comprehensive ex
amination of the urban heat island (UHI) phenomenon, and its 
contributing factors can be found in [13]. Additionally, studies such as 
[14] shed light on the intricate dynamics of urban microclimates, of
fering valuable insights into the specific factors that contribute to the 
formation and intensification of hot spots within urban environments. 
Atmospheric turbulence emerges as a critical factor, influencing air 
mixing and subsequently impacting local temperatures. Research into 
the energy exchanges between urban surfaces and the surrounding at
mosphere provides insights into the heat accumulation dynamics within 
urban areas. Land use composition, including the prevalence of imper
vious surfaces, buildings, and green spaces, plays a pivotal role in UHI 
generation. The presence and characteristics of urban vegetation 
directly influence solar radiation absorption and evaporation, further 
modulating temperature patterns. Additionally, the choice of construc
tion materials contributes significantly, with materials possessing high 
thermal inertia influencing local heat retention. Finally, anthropogenic 
activities, particularly vehicular traffic and industrial processes, 
contribute substantial heat emissions, amplifying the UHI effect. This 
multifaceted examination underscores the intricate interplay of these 
factors in shaping the urban thermal environment [14].

Nature-based solutions (NBS) have gained popularity as an effective 
means of reducing energy demand and mitigating the impacts of climate 
change in urban environments. The integration of green infrastructure, 
such as urban parks, green roofs, and vertical gardens, can help to 
reduce urban heat island effects, lower the demand for energy-intensive 
heating and cooling, and promote energy conservation [15]. Urban 
parks are a key component of NBS that can help to reduce energy de
mand in cities. Research by Konarska [16] showed that the presence of 
urban parks can reduce cooling demand by up to 40 % during peak 
summer months. Moreover, the use of urban parks can promote energy 

Nomenclature

LST Land surface temperature
NDVI Normalised Difference Vegetation Index
UHI Urban Heat Island effect
NBS Nature-based solutions
AMSL Above mean sea level
RH Relative humidity
S/V Shape factor
GIS Geographic Information Systems
AT Air Temperature
kWh kilowatt hour

C. Prades-Gil et al.                                                                                                                                                                                                                             Energy Conversion and Management: X 24 (2024) 100706 

2 



conservation by reducing the need for energy-intensive indoor activities, 
such as exercising and socializing. Research by Wahba et al. [17]
showed that the implementation of green roofs and walls can also reduce 
the cooling demand of a building by up to 25 %. Similarly, green facades 
have been shown to reduce the surface temperature of buildings by up to 
9 ◦C [18], while Davis et al. [19] demonstrated that the implementation 
of vertical gardens on building facades can reduce the cooling demand of 
a building by up to 8 %.

It is essential to monitor vegetation levels in cities for the purposes of 
understanding urban green spaces, their distribution, and changes over 
time. Satellite imagery provides a valuable tool for the assessment of 
vegetation cover and density in urban environments. Sari et al. [20]
employed high-resolution satellite images to assess vegetation cover in a 
rapidly expanding city. They found that urban areas with higher vege
tation cover exhibited lower surface temperatures and reduced energy 
consumption. Satellite imagery also allows for temporal analysis, 
enabling researchers to monitor changes in vegetation levels over time. 
For example, Özyavuz [21] made use of multi-temporal satellite images 
to investigate vegetation trends in urban parks, highlighting the 
importance of vegetation maintenance and management to sustain 
healthy green spaces. His findings demonstrated the effectiveness of 
satellite-based monitoring in quantifying changes in vegetation cover 
and identifying areas with decreasing green spaces.

Vegetation indices are commonly used to assess vegetation levels in 
urban areas using satellite imagery. The most widely-used vegetation 
index is the Normalized Difference Vegetation Index (NDVI), which 
measures the amount of green vegetation in an area. Research by Khalifa 
et al. [22] shows that NDVI can accurately capture changes in vegetation 
cover over time. Moreover, the use of additional vegetation indices, such 
as the Enhanced Vegetation Index (EVI) and the Green Normalized 
Difference Vegetation Index (GNDVI), can provide a more comprehen
sive understanding of vegetation cover and composition in urban areas 
[23].

While satellite imagery provides a powerful tool for assessing vege
tation levels in urban areas, there are some challenges that need to be 
addressed. One challenge is the presence of shadows and built-up areas, 
which can interfere with the accuracy of vegetation measurements. 
Research by Chen et al. [24] demonstrated that the use of high- 
resolution imagery and advanced image processing techniques can 
help to mitigate these challenges, resulting in more accurate assessments 
of vegetation levels in urban areas.

On the other hand, surface temperature is an important indicator of 
urban heat island effects [25]. Satellite imagery also provides accurate 
means of assessing surface temperature in urban areas [26]. Recent 
advances in remote sensing technology have enabled the collection of 
high-resolution imagery, which can capture detailed information on 
surface temperature at a fine spatial scale; for example, research by Kim 
et al. [27] showed that satellite imagery can accurately measure surface 
temperature in urban areas, with an accuracy of up to 90 %.

The most widely-used thermal index to assess surface temperature in 
urban areas using satellite imagery is the Land Surface Temperature 
(LST). LST measures the radiative temperature of the land surface. 
Research by Yang et al. [28] showed that LST can accurately capture 
changes in surface temperature in urban areas over time. Moreover, the 
use of additional thermal indices, such as the Surface Urban Heat Island 
Intensity (SUHII) and the Urban Heat Island Effect (UHIE) index, can 
provide a more comprehensive understanding of surface temperature in 
urban areas.

Assessing surface temperature in urban areas with satellite imagery 
also has some challenges that need to be addressed. The main one is the 
presence of atmospheric effects, which can interfere with the accuracy of 
temperature measurements. Research by Tan et al. [29] demonstrated 
that the use of advanced image processing techniques, such as atmo
spheric correction and emissivity estimation, can help to mitigate these 
challenges, resulting in more accurate assessments of surface tempera
ture in urban areas.

In this paper, the authors have considered the use of Landsat-8 sat
ellite imagery based on a thorough review of the existing literature, in 
particular reviews elucidating various methodologies for the study of 
urban microclimates. One noteworthy review, comprehensively 
covering models applicable to urban climate studies, is presented by 
[30]. The review emphasizes the multifaceted nature of urban climate 
modelling, necessitating diverse data sets and processing techniques. 
Parameters crucial for Urban Climate Models (UCMs) are categorized 
into land use/land cover classes, morphological information, architec
tural details, socio-economic parameters, and urban vegetation 
description. Additionally, the review by [31] focuses on numerical 
models for thermal analysis at mesoscale and microscale in mid-latitude 
climate regions. This study classifies tools and models based on their 
resolution and usage, providing a nuanced understanding of their pros 
and cons.

Considering the resolution and applicability of different models, 
satellite imagery, especially Landsat-8, emerges as a valuable tool for 
mesoscale studies. The Landsat-8 satellite offers a global coverage with 
high spatial resolution, around 100 m for temperature, making it 
particularly suited for observing Urban Heat Island (UHI) dynamics. 
Although its temporal resolution is comparatively low, and interference 
from cloud cover is a limitation, the real-world results derived from 
satellite imagery provide a tangible advantage over model-generated 
outcomes [31].

The decision to focus on Landsat-8 is underscored by specific studies 
such as the analysis conducted in Skopje, Macedonia [32], which pro
vides foundational insights into UHI patterns. Moreover, investigations 
in Santiago, Chile [33], exemplify the satellite’s capacity to capture 
spatio-temporal variations in UHI, leveraging its thermal bands. 
Notably, studies such as the piece comparing land surface and air tem
peratures in a snow climate city [34] showcase Landsat-8′s effectiveness 
by demonstrating statistically significant relationships between Land 
Surface Temperature (LST) and Air Temperature (AT). The study affirms 
that LST is a considerably stronger indicator of Surface Urban Heat Is
land (SUHI) intensity than AT, both in summer and winter, providing 
valuable data for understanding UHI dynamics.

2. Objectives and innovation

This paper presents a methodology for the evaluation of the potential 
effect on the thermal demand of buildings of increasing the vegetation 
level of urban areas affected by the Heat Island effect. For this purpose, 
real measurements from satellite and weather stations are used. Firstly, 
vegetation indexes and land surface temperatures are extracted from 
satellite images of the urban area to obtain a correlation between these 
two variables. Secondly, the land surface temperature is compared with 
measurements from weather stations around the city, obtaining a second 
correlation. With these correlations, it is possible to calculate the fall in 
the air temperature caused by an increase in the vegetation level. 
Finally, the air temperature of a weather file is modified accordingly to 
calculate the thermal demand of the buildings, i.e. including the effect of 
the vegetation. The methodology is applied to several districts of the city 
of València, considering the construction typologies presented in the 
city. Thus, the research had the following objectives:

- To obtain the vegetation index and land surface temperature for the 
city of València.

- To evaluate the relationship between the vegetation index and land 
surface and air temperatures.

- To estimate the effect of increasing the vegetation index on the air 
temperature.

- To calculate the impact of increasing the vegetation index on the 
thermal demand of the buildings.

This way, the paper proposes the following contributions:
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- To propose a methodology to adapt a weather file considering the 
effect of increasing the vegetation index.

- To evaluate the change in the thermal demand of buildings in urban 
areas when a nature-based solution is implemented.

3. Materials

3.1. Study area

València (39.46962, − 0.37636), situated on the eastern coast of the 
Iberian Peninsula on the Mediterranean Sea, is the third most populous 
city in Spain, Europe. Encompassing an area of 134.65 km2, València 
experiences a mild and slightly rainy Mediterranean climate during 
winters, transitioning to hot and dry conditions in the summers. Ac
cording to Köppen’s climate classification criteria, the climate of 
València transitions between Mediterranean (Csa) and warm semi-arid 
(BSh), with an average annual temperature of 18.4 ◦C [35].

València ’s climate manifests warm summers and mild winters, with 
January being the coldest month, featuring average maximum temper
atures of 16–17 ◦C and minimum temperatures of 7–8 ◦C. In contrast, 
August emerges as the warmest month, characterized by average 
maximum temperatures of 30–31 ◦C, minimum temperatures of 
21–23 ◦C, and moderately high absolute humidity. The daily thermal 
amplitude remains limited, averaging around 9 ◦C, attributed to mari
time influences. Similarly, the annual thermal amplitude remains 
modest, ranging between 9 and 10 ◦C, influenced by the proximity of the 
sea [35].

Fig. 1 shows land use, differentiating between vegetation and crops 
(light green), water bodies (blue), and any type of construction or land 
use as buildings or roads (red). Data obtained from the Valencian 
Cartographic Institute [36]. As can be seen in Fig. 1, the city of Valencia 
is surrounded by a wide plain, is on the coast and is not too urbanised 
around it. However, due to its intrinsic urbanism, the intense activity in 
the city and climate change, the UHI effect is noticeable, as discussed 
throughout this article.

Annual precipitation in València ranges from 450 to 500 mm, with 
pronounced minima during the summer months (June to August), 
notably in July, averaging around 8 mm. In contrast, the autumn 
months, particularly September and October, experience maxima, with 
October reaching slightly below 80 mm on average. The annual average 
humidity remains relatively high, between 9 and 15 g/m3, exhibiting 
minimal variation throughout the year due to the maritime influence 
[35].

The districts of the urban centre of València have been chosen for the 
case study. Fig. 2 shows their spatial organisation. The districts are: 
Ciutat Vella, Eixample, Extramurs, Campanar, La Saïdia, El Pla Del real, 
Benimaclet, Rascanya and Benicalap. Only these districts were chosen in 
order to decrease the effect of big water masses, such as the Mediter
ranean Sea, located to the east, the River Turia to the south and the 
“Albufera” Lake to the far south. Therefore, the effect of vegetation on 
temperature is studied in the most heavily urbanised areas of the city.

3.2. Data sources

3.2.1. Acquisition of satellite images − Landsat-8
The datasets used in the article comprise Landsat-8 satellite images, 

climatic files collected from various installations across the city, and 
geo-spatial information for constructing 3D models of buildings. 
Landsat-8 satellite images have a spatial resolution of 30 m for bands 1 
to 9 (except for band 8, which has 15-m resolution) and a 100-meter 
spatial resolution for the infrared or TIRS bands, from 10 to 11. The 
images date from the years 2014, 2015, 2019, 2020, 2021, 2022 and 
2023. The specific dates are shown in Table 3. On the data acquisition 
dates, the sky conditions were clear. All the images were captured at 
around 10:00 a.m. local time due to the limited availability and suit
ability of Landsat 8 TIRS. Before interpretation and LST retrievals, 
radiometric correction and co-registration processes were applied to 
these images, ensuring their correction to the UTM projection system.

3.2.2. Climate files from weather stations
The authors have also made use of measurements from several 

weather stations located throughout the city of València, that can be 
consulted in Fig. 3. Information regarding the distribution, location, 
dates, height above mean sea level (AMSL) and distance from the sea, is 
given in Table 1. The information has been provided by the Valencian 
meteorological association AVAMET [37] and the national Spanish 
meteorological Agency AEMET [38]. All the weather stations are made 
of professional calibrated equipment and are installed at several meters 
above the ground level. The location of the stations can be consulted in 
Fig. 3.

4. Methodology

In this section, the methodology employed in the current study is 
detailed. The workflow of the methodology can be seen in Fig. 4. The 
steps undertaken in the methodology are the following:

1. Relation between LST and NDVI. Acquisition from satellite images.
2. Relation between AT and LST.
3. New scenarios based on NDVI increments, improved weather files & 

thermal demand simulation.

4.1. Relationship between LST and NDVI. Acquisition from satellite 
images

Landsat-8 mission data is used to obtain the values of NDVI and LST 
at the different locations of the city; this is because of its high spatial 
resolution in comparison with other typical satellites that have low 
spatial resolution but higher temporal resolution: for example, MODIS 
[33]. Landsat-8 [39] pictures allow the study of temperatures and Fig. 1. Land use of València and its surroundings.

C. Prades-Gil et al.                                                                                                                                                                                                                             Energy Conversion and Management: X 24 (2024) 100706 

4 



vegetation indexes inside the city and compare data from different dis
tricts, and furthermore, it incorporates data from recent years. The 
process described below can be consulted in many other studies, such as 
[34,40] or [40].

For the purposes of calculating NDVI (Normalized Difference Vege
tation Index) using bands 4 and 5, it is necessary to use the spectral 

information from these bands, where band 4 corresponds to the red 
spectrum, and band 5 corresponds to the near-infrared spectrum. The 
data has a resolution of 30 m. 

NDVI =
band5 − band4

band5 + band4
(1) 

Fig. 2. Area under study in the city of València, Spain, Europe.

Fig. 3. Locations of weather stations.

Table 1 
Information related the weather stations.

Station Source Type Lon Lat Height AMSL Distance from sea First date Last date

Viveros AEMET Park − 0.366387 39.480556 11 m 3.9 km 01/01/2020 31/12/2020
Airport AEMET Airport − 0.474677 39.485016 56 m 13.1 km 01/01/2020 31/12/2020
Growgreen Benicalap AEMET Park − 0.39449 39.49676 22 m 6.4 km 09/01/2019 19/12/2021
Camins al Grau AVAEMET Building − 0.3455 39.4666 6 m 2.1 km 01/01/2020 31/12/2021
Olivereta AVAEMET Building − 0.4008 39.471 19 m 6.7 km 02/12/2020 31/12/2021
Altocumulo AVAEMET Building − 0.390072 39.476774 19 m 5.7 km 01/01/2020 31/12/2021
Micalet AVAEMET Building − 0.376359 39.475452 14 m 4.5 km 01/01/2020 31/12/2021
Penyaroja AVAEMET Building − 0.350283 39.458332 7 m 1.8 km 01/01/2020 31/12/2021
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Bands 10 and 11 are employed to calculate the LST,. These bands 
represent the thermal infrared spectrum and have a resolution of 100 m. 
Firstly, the Landsat-8 TIRS digital band 10 (DN) is converted to spectral 
radiance, using the radiance scaling factors provided in the metadata of 
each image. According to the Data USERS HANDBOOK [41]. 

Lλ10 = ML*band10 +AL (2) 

where Lλ10 is the spectral radiance W
m2*sr*nm and ML and AL are the scaling 

factors, both parameters provided in the metadata of the image; band10, 
is the satellite band, and the calculation is performed in each pixel value 
in the image, both for band 10 and band 11. The spectral radiance is 
thereafter converted into a brightness temperature under an assumption 
of unity emissivity as follows: 

Tb10 =
K2

log
(

K1
Lλ10

+ 1
) (3) 

Tb10 is the pixel brightness temperature, K1 and K2 are the conversion 
constants, also provided in the metadata. Finally, to obtain the LST, the 
brightness temperature should be further corrected based on the land 
surface emissivity. 

Ts10 =
Tb10

1 +

(
λ*Tb10

ρ

)

log(LSE10)

(4) 

where Ts10 is the LST(K), λ is the wavelength of radiation emission 
(10.9*10− 6μm); ρ is 1.43*10− 2mK; LSE10 is land surface emissivity, 
which can be calculated based on the NDVI threshold method (es10 =

0.971, ev10 = 0.987, es11 = 0.977, ev11 = 0.989). 

LSE10 = es10*(1 − Pv)+ ev10*Pv (5) 

NDVI is necessary to obtain the LSE10, being NDVImin and NDVImax, 
which conventionally are 0.2 and 0.5, respectively; the Pv is calculated 
as follows: 

Pv =

(
NDVI − NDVImin

NDVImax − NDVImin

)2

(6) 

Finally, a pixel-by-pixel comparison was carried out across every satel

lite image to examine the correlation between LST and NDVI levels. This 
made it possible to investigate the impact of vegetation on land surface 
temperature.

This relationship was studied on a monthly basis so as to assess the 
impact of vegetation throughout the year. Graphs were generated for 
each month, aggregating every image sharing the same month but 
differing as to the dates (days and years). These graphs facilitate the 
exploration of the relationship between LST and NDVI for each image, as 
well as for all the images within each month.

A noteworthy observation is the similarity in the slopes formed by 
images of the same month, as evident in the results section. For each 
image, the correlation slope between NDVI and LST was recorded, and 
subsequently, the median was calculated for each month. This process 
yielded a representative value for the Δ LST∝Δ NDVI relationship for 
each month throughout the year.

4.2. Correlation between AT and LST

Having established the relationship between Land Surface Temper
ature (LST) and Normalized Difference Vegetation Index (NDVI), the 
authors aim to ascertain the correlation between LST and Air Temper
ature (AT). Notably, satellite images exhibit high spatial resolution but 
low temporal resolution, while climatic data files present null spatial 
resolution but high temporal resolution. In this section, a comparative 
analysis of both datasets is conducted to elucidate the relationship be
tween these two terms.

To achieve this, temperature values are obtained for each weather 
station at the time of satellite image acquisition. Simultaneously, the LST 
is extracted for the coordinates corresponding to the measurement sta
tions. Consequently, temperature values from both sources are obtained 
for the same moment and location, facilitating an exploration of the 
relationship Δ AT ∝Δ LST.

Up to this point, the study has revealed the connection between 
vegetation and ground temperature, as well as the correlation between 
ground temperature and air temperature. This understanding sets the 
stage for extrapolating the subsequent relationship, revealing how air 
temperature is influenced by variations in vegetation levels, Δ AT ∝Δ 
NDVI.

Fig. 4. Visual methodology.
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4.3. New scenarios based on NDVI increments, modified climatic data 
files & thermal demand simulation

Upon establishing the relationships, the subsequent step in the 
methodology involves selecting a study area and applying new vegeta
tion conditions. Initially, an area of the city is chosen and its LST and 
NDVI values are obtained for the whole year. Following a similar 
structure, the median of all satellite-derived measurements is computed 
for each month, forming the foundational information for creating new 
scenarios. This baseline scenario is used to compare NDVI increments.

Armed with information from the study area (LST and NDVI), a series 
of scenarios with varying vegetation levels is proposed. The increase in 
vegetation levels triggers a change in the zone’s LST, which, in turn, can 
be translated into a change in the location’s air temperature. Adjust
ments are made to the climatic data files using the AT increment derived 
from the NDVI increase.

The authors adopt an approach based on monthly medians, incor
porating the obtained AT increment into all hourly entries of the cli
matic data file. This process is repeated for each month, effectively 
modifying the climatic files to reflect the anticipated changes in AT 
resulting from the increase in NDVI. Once the new scenarios with their 
respective climatic data files are obtained, the final step involves 
simulating the thermal demand. The simulation methodology for ther
mal demand is based on the approach presented in a previous article 
[42], which follows the European methodology for the calculation of 
thermal needs [43], both for heating and cooling. This methodology 
enables the simulation of a substantial number of buildings in condensed 
time periods, making parametric studies feasible for large scenarios and 
building combinations. The current study’s methodology uses national 
sources for creating a 3D model of the city and the buildings under 
investigation, with Geographic Information System (GIS) tools 
employed for data acquisition and manipulation.

This methodology conducts a detailed analysis of the radiation 
incident on each surface. The constructive information of the buildings 
can be modified, and for this purpose, the Tabula project [44] is 
employed for information on enclosures and characteristics of the city’s 
buildings. The article also outlines a methodology for selecting the study 
sample, wherein 1000 buildings from the city of València are chosen by 
neighbourhoods (approximately 50 buildings per neighbourhood), 
organized by constructive typologies, years and shapes. The more 
representative a typology, the more instances of that typology are 
included in the sample.

The buildings used in the study have been simulated with 
constructive information, the distribution and shape of buildings, a 
detailed radiation evaluation, and the new climatic data files. In this 
study, all 1000 buildings have been simulated for the four presented 
scenarios, which is the same sample as [42]. The constructive infor
mation of the buildings used in article [42] is attached in Annex C. As the 
objective is to understand how changes in climatic conditions would 
impact each building, the authors examine how alterations in vegetation 
(and consequently in the climatic data file) would affect each building, 
considering their unique constructive and formative conditions.

Finally, the thermal demand for heating and cooling is converted 
into electricity consumption for the purposes of being able to account for 
the global energy needs, which is calculated by using a heat pump. The 
efficiencies employed for the study are denoted as 3.7 (Coefficient of 
Performance: COP) for heating and 5.35 for cooling (Seasonal energy 
efficiency ratio: SEER). An average seasonal value for the heat pump is 
selected from [45].

5. Results & discussion

In this section, the results of the study are discussed. As mentioned 
earlier, the study area is in the city centre of València, and Landsat-8 
satellite data has been obtained for this location. The dates of the ac
quired images can be found in Table 3. Details of the locations where 

climatic data files were collected are available in Table 1. As regards the 
building sample under study, it aligns with that of article [42]. A total of 
1000 buildings have been simulated under various conditions corre
sponding to the newly created scenarios.

5.1. NDVI and LST correlations

In this study, the monthly NDVI and LST indices have been obtained 
for several years, both of which have been compared and an example can 
be consulted in Fig. 5. In Annex B: NDVI and LST comparison graphs can 
be consulted: one graph for each month of the year. Due to cloud 
shadows, it has not been possible to obtain the same number of valid 
images for every month. Therefore, there is a variable count in each of 
the graphs.

The information has been presented as follows: each of the graphs 
represents one month of the year. Data from different years have been 
represented in each graph. Each colour represents a satellite image on a 
different day (and in different years). Each point represents a square 
with a resolution of 100x100 meters, from which the NDVI and LST have 
been obtained. In this way, the temperature in each area can be 
compared versus its level of vegetation. For each cloud of points (rep
resenting one day of a year), its trend line has been drawn (in the same 
colour).

From the graphs, it can be seen that the point clouds do not coincide 
every month, and nor do the trend lines. But it is revealing to note that 
the slope of the trend lines in each month is practically identical. The 
difference is seen in the average temperature of the city, which changes 
on the different dates. Therefore, it is not possible to determine the exact 
LST based on the NDVI, but it is possible to estimate how the LST is going 
to decrease when the vegetation level is increased in one specific loca
tion, using the correlation slope as a function of the NDVI to predict LST. 
However, it is not feasible to obtain a correlation on an annual basis 
since significant differences occur within the months.

The first conclusion extracted from the previous figure is that the 
average temperature is different, which may be attributed to various 
atmospheric phenomena, such as the thermal inertia of previous days, 
the orientation of the predominant wind, etc. Fig. 6 shows the distri
bution of slopes for every month of the year and their median. The 
annexed graphs demonstrate how vegetation affects soil temperature, 
and it may be seen that, vegetation manages to reduce ground temper
ature during the summer months: the warmer the month, the greater the 
cooling effect of vegetation. It could, therefore, be inferred that vege
tation has a cooling effect on soil temperature. However, it is note
worthy that in the winter months, vegetation even manages to retain the 
warmth, i.e. to raise the temperature of the area, indicating a positive 
year-long effect: it reduces temperature in the summer months and in
creases it (albeit slightly) in the winter months.

The graphs also reveal variations in daily average temperature and 
changes in trends, which will be the subject of future studies in order to 
gain a better understanding of how vegetation affects soil temperature. 
Fig. 6 shows the relationship between NDVI and LST for each satellite 
image, represented with a boxplot to assess its variability throughout the 
months of the year. Some months, such as May, exhibit a much more 
pronounced dispersion. This is possibly due to a change in the trend 
from positive to negative (in terms of LST reduction by NDVI), whereas 
in October the trend is reversed.

Thus, the authors have chosen to use the median of the slopes of the 
correlations between LST and NDVI as the ratio by which an increase in 
NDVI will affect LST. The proportions used in the study can be found in 
the following equations (7). A ratio has been generated for each month, 
and this has been applied to assess how vegetation modifies ground 
temperature when an increment is applied to the baseline case. 
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ΔLST(January) = 2.68Â⋅ΔNDVI
ΔLST(February) = 4Â⋅ΔNDVI

ΔLST(March) = − 1.42Â⋅ΔNDVI
ΔLST(April) = − 3.98Â⋅ΔNDVI
ΔLST(May) = − 6.51Â⋅ΔNDVI
ΔLST(June) = − 6.52Â⋅ΔNDVI
ΔLST(July) = − 5.70Â⋅ΔNDVI

ΔLST(August) = − 5.00Â⋅ΔNDVI
ΔLST(September) = − 3.39Â⋅ΔNDVI
ΔLST(October) = − 1.64Â⋅ΔNDVI
ΔLST(November) = 0.12Â⋅ΔNDVI
ΔLST(December) = 1.17Â⋅ΔNDVI

(7) 

5.2. AT and LST correlations

This section presents the relationship between LST obtained from 
satellite imagery and AT from climatic stations and, for comparison 
purposes, the hours from the climatic data file that matched the satellite 
images were selected. Fig. 7 illustrates this relationship, with each point 
on the graph representing the combination of existing data from both 
satellite images and climatic files. Each colour corresponds to a different 
weather station, distributed throughout the city of València, and the 
linear correlation for each station has been presented in the same colour 
as the points for that station. Finally, a general correlation, depicted in 
blue and extending across the entire graph, has been obtained based on 
the median of each station’s correlations. The equation for the general 
correlation is provided in the upper-left hand corner of the graph.

In the figure, it is evident that there is a close relationship between 

Fig. 5. Relationship between LST and NDVI, for every image of July. Each point represents a pixel.

Fig. 6. Collection of slopes of every linear correlation between LST and NDVI 
for every month.

Fig. 7. Relationship between LST and AT, grouped by weather stations, and its correlation.
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both parameters, as expected. Notably, as LST increases, the rise in AT is 
less pronounced. Numerous other writers have noted [33] that the 
relationship between AT and LST is significant and varies throughout the 
whole range. During the summer, the air temperature is typically lower 
than the LST. Another publication that shows a similar effect is [34], in 
which the study is conducted in a snowy Chinese city where summer
time low temperatures are higher than wintertime lows.

It is important to note that the measurement station captures the 
temperature at a specific point, whereas the satellite image provides 
information for a 100x100 meter tile. Naturally, the temperature 
measured by the satellite image takes into account various factors in the 
image area, resulting in dispersion relative to air temperature. This 
comparison and the subsequent use of correlations have been conducted 
from a qualitative standpoint. The authors do not aim to predict air 
temperature based on ground temperature. The goal of this comparison 
is to understand how a change in LST might be expected to influence AT.

So, as an example, if the LST of zone A is 30 ◦C, the AT of zone A is 
27 ◦C and in the new scenario for zone A (called A’) the LST of zone A’ is 
28 ◦C, the process to estimate the AT of zone A’, is: 

ATÁ = ATA − (AT(LSTA) − AT(LSTÁ )) (8) 

ATÁ = 27◦C − (AT(30◦C) − AT(28◦C) ) = 27 − (25.6405 − 24.1605)

= 25.52◦C
(9) 

5.3. Generation of new scenarios

The next step involves the generation of new scenarios for the case 
study; as a means of testing the methodology, the Olivereta station has 
been used, about which there is more information available in Table 1. 
This station is located at coordinates 39.471, 0.4008 and is character
ized by the absence of virtually any vegetation in the area. Table 2
provides the median values of LST and NDVI for each month (derived 
from every satellite image in the study).

At this location, the authors have increased vegetation levels in three 
scenarios. A low-density scenario, where 0.15 has been added to the 
NDVI for each month; a medium-density scenario with an NDVI increase 
of 0.3, and a high-density vegetation scenario where the NDVI has been 
increased by a value of 0.45. Various points in the city with different 
vegetation indices were studied in order to make this decision. A con
stant value was added every month to maintain the variability of the 
NDVI already present in the study area. Given the methodology, any 
NDVI distribution could be chosen for each month of the year, and with 
this NDVI increment hypothesis, the authors aim to test the proposed 
methodology, without claiming that it reflects the distribution resulting 
from nature-based solutions. Defining the NDVI distribution by month 
will be the subject of future analysis. Table 2 displays the three scenarios 
along with the results for each month. With the new NDVI values, the 

expected increase in LST in that area has been calculated. Similarly, the 
increase in LST using the equations outlined in the study allows con
version into an increase in AT.

As a visual aid, Fig. 8 illustrates the increase in AT for each month 
and scenario. It is noteworthy that, for the summer months, a significant 
reduction in air temperature can be observed, while for the winter 
months, there is a less pronounced increase. The months of spring and 
autumn show values close to zero, with an imperceptible effect on 
temperature. This result is similar to those found in the literature 
[16,46]. This monthly increment curve will be added to the climatic 
data file for the study area, specifically the Olivereta weather station. 
The climatic data file will be supplemented with the increase for every 
hour of the month, adding the respective increment for each month 
accordingly.

5.4. Thermal demand and consumption results

Once the new climatic data files for each scenario have been 
generated, the next step was the simulation of the thermal demand for 
buildings. Through simulation, the expected heating and cooling ther
mal demand for each building in each scenario will be determined. This 
enables the assessment of the potential reduction that nature-based so
lutions could contribute to the study area. The methodology followed 
aligns with that presented in [42], simulating the same sample of 
buildings from that study. A total of 1000 buildings from across the city 
of València were simulated for the four scenarios: base, low increase, 
medium increase, and high increase. All of the buildings were simulated 
as if they were in the same area of the city in which the Olivereta 
weather station is located. This approach was chosen to observe the 
variability of results with the aim of exploring whether nature-based 
measures affect all buildings to the same extent. These questions will 
be addressed through subsequent graphs.

The first results graph is Fig. 9. This figure presents the thermal de
mand for heating and cooling for every building and each month. The 
graph is a box plot illustrating the distribution of normalized thermal 
demand per unit area (kWh/m2). To complement this information, 
Fig. 10 displays the distribution of annual demand for every building 
across all the studied scenarios and shows an evident reduction in 
cooling demand as well as a drop, although to a lesser extent in heating 
demand. The distribution of the four scenarios is quite similar, but it is 
possible to observe a higher concentration of cases around 15–20 kWh/ 
m2. It could be inferred that these measures have had a greater impact 
on some buildings with higher demands than on others.

5.5. Consumption savings due to vegetation

Now that the electricity consumption for each building and scenario 
is available, the impact of nature-based measures has been calculated. 
Thus, for each scenario, the simulation result has been subtracted from 

Table 2 
Base case and information on new NDVI scenarios.

Base Low NDVI increase ΔNDVI = 0.15 Mid NDVI increase ΔNDVI = 0.3 High NDVI increase ΔNDVI = 0.45

Month NDVI LST ΔLST ΔAT ΔLST ΔAT ΔLST ΔAT

1 0.031 10.277 0.402 0.298 0.805 0.595 1.207 0.893
2 0.042 13.508 0.600 0.444 1.199 0.888 1.799 1.331
3 0.066 20.682 − 0.212 − 0.157 − 0.425 − 0.314 − 0.637 − 0.471
4 0.090 23.561 − 0.597 − 0.442 − 1.194 − 0.884 − 1.791 − 1.326
5 0.086 28.967 − 0.977 − 0.723 − 1.954 − 1.446 − 2.931 − 2.169
6 0.091 32.794 − 0.979 − 0.724 − 1.958 − 1.449 − 2.936 − 2.173
7 0.085 33.377 − 0.856 − 0.633 − 1.712 − 1.267 − 2.567 − 1.900
8 0.078 32.186 − 0.750 − 0.555 − 1.500 − 1.110 − 2.250 − 1.665
9 0.071 25.756 − 0.508 − 0.376 − 1.017 − 0.752 − 1.525 − 1.129
10 0.061 23.289 − 0.245 − 0.182 − 0.491 − 0.363 − 0.736 − 0.545
11 0.040 15.718 0.018 0.013 0.036 0.027 0.054 0.040
12 0.033 10.808 0.176 0.130 0.352 0.261 0.529 0.391
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the baseline case. The first graph, Fig. 11, shows the percentage reduc
tion in electricity consumption for heating and cooling. This graph re
veals a highly significant reduction in cooling, averaging 10 %, 20 %, 
and up to 30 % for the three scenarios, respectively. It is also evident that 
with more vegetation, there is greater dispersion in the results. Some 
buildings have obtained greater benefits from nature-based measures, of 
up to 40 % in their electricity consumption, while others barely show a 
change. These values are consistent with the results of the previous 
analyses found in [12–14].

Considering the limited increase in temperature, the expected 

savings as far as heating is concerned are under 5 % and the dispersion is 
almost non-existent, even in the best scenario. This is still a significant 
result because one assumption for the authors was that vegetation re
duces the area’s temperature, which is not a desirable effect in winter. 
However, the vegetation also prevents the heat generated by the city 
from being radiated outside, especially on the clear days so common in 
the Mediterranean winter. Hence, the study has shown that vegetation 
helps in both heating and cooling months, making it a valuable measure 
for the purposes of achieving energy efficiency and comfort throughout 
the year.

Fig. 8. Evolution in the AT difference for every month with respect to the reference weather data set in the 3 new NDVI scenarios: the Olivereta station.

Fig. 9. Heating and cooling thermal demand distribution throughout the year for the 1000 buildings under study.

Fig. 10. Annual heating and cooling thermal demand for the base case and new scenarios.
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It is important to remember here that studies such as [12] find that 
the absolute humidity of the city is positively correlated with the in
fluence of the UHI effect on the energy demand of buildings. However, 
relative humidity and precipitation is insignificant in mediating the 
energy impacts of the UHI effect. In València, absolute humidity is quite 
high all year round, especially in the summer with typical values of 15 g/ 
m3 [35].

The authors have generated new graphs with the aim of under
standing the causes of result dispersion. Fig. 12 displays the annual 
savings in electricity consumption for the three scenarios, ordered ac
cording to the year of construction. This graph shows the reduction in 
relation to annual consumption, i.e., the older the building, the less 
influential the variations in NDVI, although the variation is very small. 
In addition, it can be observed that the maximum annual reduction 
achieved is around 17 % for the scenario with the highest vegetation 
values. For the other two scenarios, the average ranges between 6 % and 
12 %, respectively. The points are grouped according to the registration 
date of each building; it was usual for older buildings to be registered 
upon periodic inspections, every 5 years, rather than when they were 
built. It is interesting to reiterate that each building has responded 
differently to the simulated measures, and there is great variability in 
the results. Given that each building has unique characteristics and 
shapes, it is important to consider them so as to improve the quality of 

the results.
Analysing the results from another perspective, Fig. 13 illustrates the 

annual savings in electricity consumption for every building, ordered 
according to their shape factor. This factor is calculated as the free 
surface of the building (the part in contact with the air, without being in 
contact with other buildings, elements, or the ground) divided by the 
internal volume to be conditioned. This parameter has been shown in 
multiple studies to correlate quite well with the building’s energy needs. 
The figure reveals a clearer trend: the higher the exterior surface-to- 
volume ratio, the less effect these measures have. This can be under
stood as follows: the greater the surface area in contact with the air 
relative to the internal volume, the less effect changes in climate will 
have on consumption. In simpler terms, a greater exterior surface area 
leads to fewer benefits from nature-based solutions. A variation of 5–10 
% can be considered for each scenario with respect to the maximum and 
minimum values. However, it would be interesting to explore further, in 
future studies, how other characteristic parameters of buildings corre
late with the results of the study.

6. Conclusions

In a comprehensive overview of the challenges posed by climate 
change, the European Union’s strategic focus on mitigation and 

Fig. 11. Annual savings in heating and cooling consumption due to vegetation increase for the new NDVI scenarios.

Fig. 12. Annual consumption savings due to increase in vegetation, arranged by construction year.
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adaptation policies gives a critical role to cities. The need for meticulous 
planning spanning various sectors, especially energy use in high-density 
urban areas, is highlighted as being essential if climate goals are to be 
achieved. The escalating frequency of extreme weather events and the 
European Union’s ambitious targets for emissions reduction further 
underscore the urgency of implementing effective measures. Addition
ally, studies delve into the examination of urban microclimates, 
emphasizing the importance of understanding and addressing the areas 
most affected by global warming. Nature-based solutions, including 
green infrastructure and urban parks, are identified as potent tools for 
reducing energy demand and mitigating the urban heat island effect. For 
this purpose. satellite imagery, notably Landsat-8, plays a pivotal role in 
monitoring and quantifying these changes. The nuanced exploration of 
factors contributing to urban hot spots and the subsequent focus on 
surface temperature assessments using satellite data provide valuable 
insights into an understanding of the intricate dynamics of urban envi
ronments. This research assesses the impact of nature-based measures on 
the thermal demand of buildings in an urban area of València, on the 
Mediterranean coast of Spain. Through the analysis of land surface 
temperature data, vegetation levels, modified climate data files and 
thermal demand simulations, significant findings have been obtained, 
contributing to a comprehensive understanding of how vegetation in
fluences the energy consumption of buildings. A clear correlation has 
been established between vegetation and land surface temperature. 
Landsat-8 satellite data facilitated this analysis, revealing a consistent 
influence of vegetation on temperature throughout the year. The study 
conducted a comprehensive temporal analysis, correlating the NDVI and 
LST for each month. The results indicated that vegetation has a notable 
impact on temperature, with distinct patterns observed in different 
seasons. This analysis provided insights into the dynamic nature of the 
relationship between vegetation and soil temperature.

Extending the analysis to include AT, the study explores the rela
tionship between this parameter and LST. The comparison of tempera
tures from both sources, taken at the same locations and times, allows 
for the assessment of their correlation, which provides insights into how 
an increase in LST influences air temperature. By establishing a corre
lation between LST and AT, the study bridges the gap between surface 
temperature dynamics and their consequences for the overall atmo
spheric conditions. This nuanced analysis contributes to a more 
comprehensive perspective on the impact of urban vegetation on the 
local microclimate, thereby advancing the knowledge base for sustain
able urban planning and climate-responsive building design.

The research incorporated the simulation of climate scenarios, 
introducing varying levels of vegetation. The results demonstrated not 
only a substantial reduction in cooling demand, particularly during the 

summer months, but also. the nuanced impact on heating demand, 
emphasizing the dual-season effectiveness of vegetation in moderating 
temperature extremes. The simulation of climate scenarios is a pivotal 
aspect of the research, enabling the assessment of how different levels of 
vegetation impact the heating and cooling needs of buildings. The sig
nificant reduction in cooling demand, primarily observed during the 
summer months, underscores the potential of nature-based solutions to 
mitigate the impact of the urban heat island effect. The focus on heating 
demand highlights the versatility of vegetation, influencing not only the 
warm season but also exerting a noticeable effect during the colder 
months. It should be remembered that absolute humidity is positively 
correlated with the influence of the UHI effect on the energy demand of 
buildings. In cities with lower absolute humidity influence of NDVI 
changes may be smaller.

An intriguing observation was the influence of the building shape 
factor, that is exterior surface-to-volume ratio, on the effectiveness of 
nature-based solutions. Buildings with a lower form factor exhibited a 
more pronounced reduction in energy consumption. Further analysis, 
considering the year of construction, revealed diverse responses of 
buildings to simulated measures. The annual savings in electricity con
sumption varied, with older buildings showcasing a range of outcomes. 
These findings underscore the need for tailored simulations that account 
for the unique characteristics of each building.

In conclusion, this study provides valuable insights into the complex 
interplay between vegetation, surface temperature, and building energy 
demand in urban environments. The findings show the potential of 
nature-based measures to mitigate energy consumption and enhance the 
resilience of urban areas to climate variability. Future research should 
explore additional building parameters to refine the understanding of 
the relationships observed in this study.

The limitations, and potential future lines of improvement of this 
study are: i) 2 satellite images are obtained per month, and when there 
are shadows (clouds) they are not useful. Other sources of information 
are needed to obtain more complete time series; ii)it would be better to 
be able to modify the climatic files day by day, not just month by month; 
iii) real data from weather stations are used, which can make extrapo
lation to other cities difficult; and finally, iv) this study could be repli
cated to many different Mediterranean cities to try to quantify the role 
that variables, such as absolute humidity, urban planning, city sur
roundings, etc. play in the impact of the UHI effect on building energy 
demand.
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arro: Writing – review & editing, Supervision, Resources, Project 
administration, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Data availability

The authors do not have permission to share data.

Acknowledgments

This study has been possible thanks to the support of the Chair of 
Urban Energy Transition, UPV - Las Naves & València Clima i Energia 
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Appendix A. Date and time of satellite images.

Table 3. Date and time of each satellite image from Landsat-8 collected.

2014–01-20 
10:38:34

2014–02-12 
10:44:28

2014–03-16 
10:44:06

2014–04-10 
10:37:31

2014–05-03 
10:43:18

2014–05-19 
10:43:08

2014–06-04 
10:43:15

2014–07-22 
10:43:29

2014–09-01 
10:37:32

2014–10-10 
10:43:49

2014–12-06 
10:37:35

2014–12-29 
10:43:40

2015–01-14 
10:43:39

2015–01-30 
10:43:34

2015–02-08 
10:37:19

2015–10-22 
10:37:30

2015–03-12 
10:37:02

2015–04-20 
10:42:59

2015–05-15 
10:36:26

2015–06-07 
10:42:25

2015–08-03 
10:37:03

2015–09-20 
10:37:24

2015–11-30 
10:43:46

2019–01-02 
10:37:18

2019–02-26 
10:43:18

2019–03-14 
10:43:12

2019–05-26 
10:37:07

2019–06-18 
10:43:27

2019–07-04 
10:43:32

2019–07-29 
10:37:28

2019–08-14 
10:37:34

2019–09-22 
10:43:55

2019–10-01 
10:37:47

2019–10-17 
10:37:49

2019–11-18 
10:37:46

2019–12-27 
10:43:51

2020–01-05 
10:37:38

2020–01-12 
10:43:48

2020–02-06 
10:37:29

2020–02-29 
10:43:35

2020–05-03 
10:43:03

2020–05-19 
10:43:03

2020–06-13 
10:37:04

2020–06-20 
10:43:18

2020–07-06 
10:43:26

2020–07-31 
10:37:22

2020–08-07 
10:43:35

2020–10-26 
10:43:56

2020–11-11 
10:43:53

2020–11-20 
10:37:45

2020–12-13 
10:43:58

2020–12-22 
10:37:45

2020–12-29 
10:43:54

2021–01-14 
10:43:47

2021–01-30 
10:43:45

2021–03-12 
10:37:19

2021–04-20 
10:43:16

2021–05-06 
10:43:06

2021–06-07 
10:43:24

2021–07-18 
10:37:22

2021–09-27 
10:43:57

2021–11-07 
10:37:50

2021–11-30 
10:43:58

2021–12-09 
10:37:47

2022–01-17 
10:43:49

2022–02-02 
10:43:45

2022–04-07 
10:43:24

2022–05-09 
10:43:30

2022–06-10 
10:43:44

2022–07-12 
10:43:50

2022–08-06 
10:37:54

2022–09-07 
10:38:00

2022–09-30 
10:44:15

2022–10-25 
10:38:03

2022–11-10 
10:38:02

2022–12-28 
10:37:50

2023–01-04 
10:44:01

2023–01-20 
10:43:55

2023–02-05 
10:43:35

2023–03-25 
10:43:27

2023–04-03 
10:37:10

2023–05-05 
10:36:51

2023–06-06 
10:36:48

2023–07-08 
10:37:07

2023–07-15 
10:43:19

2023–08-09 
10:37:17

2023–08-25 
10:37:26

2023–09-01 
10:43:36

2023–09-26 
10:37:32

2023–10-12 
10:37:36

Appendix B. : NDVI and LST comparison graphs.
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Fig. 14. Relationship between NDVI and LST for each Landsat-8 image, organized according to months.

Appendix C. : Constructive information from the study sample.

The sample of buildings used in the simulation of the present article are the same as those used in article [43]. The following graphs have been 
compiled from article [43]. 
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Fig. 15. Distribution of buildings by the period of construction for the 19 districts of València.

Fig. 16. Buildings studied in the present research, grouped by construction year and district.
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Fig. 17. Spatial representation of the studied buildings in the research, located in the city of València.
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