
Chaos, Solitons and Fractals 187 (2024) 115451 

A
0
n

Contents lists available at ScienceDirect

Chaos, Solitons and Fractals

journal homepage: www.elsevier.com/locate/chaos

Probabilistic analysis of the steady state of weakly perturbed linear
oscillators subject to a class of Gaussian inputs
J.-C. Cortés, J.-V. Romero, M.-D. Roselló ∗, J.F. Valencia Sullca
Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain

A R T I C L E I N F O

Keywords:
Nonlinear oscillator
Principle of maximum entropy
Equivalent linearization
Perturbation technique

A B S T R A C T

This paper aims to probabilistically study a class of nonlinear oscillator subject to weak perturbations and
driven by stationary zero-mean Gaussian stochastic processes. For the sake of generality in the analysis, we
assume that the perturbed term is a polynomial of arbitrary degree in the spatial position, that contains, as a
particular case, the important case of the Duffing equation. We then take advantage of the so-called stochastic
equivalent linearization technique to construct an equivalent linear model so that its behavior consistently
approximates, in the mean-square sense, that of the nonlinear oscillator. This approximation allows us to take
extensive advantage of the probabilistic properties of the solution of the linear model and its first mean-
square derivative to construct reliable approximations of the main statistical moments of the steady state.
From this key information, we then apply the principle of maximum entropy to construct approximations of
the probability density function of the steady state. We illustrate the superiority of the equivalent linearization
technique over the perturbation method through some examples.

1. Introduction and motivation

The study of nonlinear dynamical systems with stochastic perturbations has been the subject of very substantial research in Applied
Mathematics [1,2], and a very large number of contributions can, indeed, be found in the technical literature discussing a wide variety of
applications, as for example in Control [3], Economy [4] and Nonlinear Vibratory Systems [5], to cite a few.

It is interesting to mention that many types of systems subject to vibrations have been discussed in Physics and Engineering to analyze, for
example, several classes of linear and nonlinear oscillators in the deterministic case [6,7], using different approaches, such as energy balance
method [8] and its improved modifications [9], removing noise in the oscillation term [10], etc.

Many important vibratory systems, in particular of nonlinear oscillators, are described by scalar differential equations of the following form:

�̈�(𝑡) + 𝑔(𝑋(𝑡), �̇�(𝑡)) = 𝑌 (𝑡), 𝑡 > 0, (1)

where 𝑋(𝑡) denotes the position of the oscillatory system at the time instant 𝑡 > 0, 𝑔 is a nonlinear function that depends on both the position
and velocity, �̇�(𝑡), and the input 𝑌 (𝑡) represents an external source/forcing term driven the system. An important class of nonlinear oscillators that
belongs to model (1) is that where

𝑔(𝑋(𝑡), �̇�(𝑡)) = 2𝛽�̇�(𝑡) + 𝜔2
0[𝑋(𝑡) + 𝜖𝑓 (𝑋(𝑡))]. (2)

Here, the parameter 𝛽 > 0 denotes the damping constant, 𝜔0 > 0 is the undamped angular frequency and 𝜖 is a small parameter that represents the
intensity of a perturbation that affects a nonlinear function of the position, 𝑓 (𝑋(𝑡)). For example, when 𝑓 (𝑋(𝑡)) = (𝑋(𝑡))3, model (1)–(2) corresponds
to the familiar case of the Duffing oscillator subject to the input 𝑌 (𝑡) [11]. As happens with the Duffing oscillator, the family of nonlinear oscillators
(1)–(2) does not admit, in general, closed-form solutions when 𝑓 is nonlinear. This fact motivates that the main objective is the achievement of
conditions on the perturbation parameter 𝜖 so that the oscillator reaches the steady state. When 𝑌 (𝑡) is a deterministic function, many techniques
have been devised to achieve the aforementioned goal [12–15]. However, the external forces producing vibrations when acting on an oscillator are
often not deterministically known but involve uncertainties due to complex factors that may include the incomplete knowledge of the properties of
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the surrounding medium, the intrinsic nature of the external forces, etc. So, it is more realistic to consider 𝑌 (𝑡) as a stochastic process rather than
a deterministic function. These facts have motivated an increasing trend in the research community to incorporate randomness when analyzing
vibratory systems, particularly nonlinear oscillators, then using random/stochastic techniques [16,17]. In this context, studying the probabilistic
properties of vibratory systems in the steady state, such as the model (1)–(2), is crucial for understanding their long-term behavior. It is important
to note that, within this framework, the steady-state behavior, being a random variable, must be characterized by statistics such as the mean and
variance (or standard deviation), or by the stationary probability density function. The mean provides an estimate of the expected position of the
oscillators, while the standard deviation quantifies the variability around this expected position. The probability density function, in turn, allows
for the calculation of key information, such as the probability that the position of the oscillator will, in the long term, fall within any specific
interval of interest for the vibratory system. Some contributions illustrating the relevance of studying the probabilistic properties of the steady
state of specific vibratory systems can be found, for example, in [18–20].

In the particular case that 𝜖 = 0 and 𝑌 (𝑡) is a stochastic process, Eqs. (1)–(2) describe the dynamics of a random linear oscillator. This class of
stochastic oscillators has been studied in [21] under very general assumptions. In that paper, the authors determine the so-called first probability
density function of the position, 𝑋(𝑡), in different scenarios with respect to the form of the stochastic forcing term 𝑌 (𝑡). First, they considered
hat 𝑌 (𝑡) is a Gaussian stochastic process, encompassing the important case of a damped pendulum modeled by an Itô-type stochastic differential
quation [22]. Second, they analyzed the case that 𝑌 (𝑡) can be approximated by a stochastic process belonging to the space L2([0, 𝑇 ]×𝛺) of Lebesgue
quare-integrable stochastic processes defined in a complete probability space (𝛺,F𝛺 ,P) [22, ch.2]. This latter scenario includes the relevant cases
here 𝑌 (𝑡) can be approximated by means of a Karhunen-Loève expansion [23] or represented via a random power series [24]. The success of the
forementioned contribution relied on the fact that a semi-explicit (in terms of an integral) solution can be obtained in the linear case (𝜖 = 0).
owever, as previously indicated, in the nonlinear case a solution to the corresponding differential equation is generally unavailable. Then, the
ain goal is to obtain reliable probabilistic information about the steady state. It includes the calculation of the expectation, the variance, the

orrelation, the probability density function, etc., in terms of the size of the perturbation 𝜖 > 0.
The so-called stochastic perturbation technique is a popular approach to analyzing mechanical systems with small nonlinearities that are subject

o external random vibrations. In the setting of vibratory systems, this method was first introduced in the pioneering contributions [25,26] by
randall. Later, the method was continued with many studies (see [27–29]). More recently, some of the authors have applied this technique to
nalyze a type of nonlinear oscillators that fall within the class (1)–(2), [18]. In that contribution, one takes 𝑓 (𝑋(𝑡)) = sin(𝑋(𝑡)) as the nonlinear
unction affected by the perturbation, and the input or source term 𝑌 (𝑡) is assumed to be a mean-square differentiable and stationary Gaussian
tochastic process with zero-mean whose correlation function is known. In the present paper, we will extend this study to a wider class for the
nput term and more general oscillators that those analyzed there using the stochastic equivalent linearization method.

If the perturbation size 𝜖 is not small enough, the stochastic approximations obtained by the perturbation technique may deteriorate and become
nrealistic. An alternative to overcome this drawback in practice is the so-called stochastic equivalent linearization technique. This method is
nspired by its deterministic counterpart introduced by Krylov and Bogoliubov [30]. The advantage of the equivalent linearization technique over
he perturbation method is that it is not restricted to problems with very small nonlinearities [24, p. 209], which extends its application for a certain
lass of nonlinear problems appearing in Control and Mechanical Vibrations. Since its inception, the equivalent linearization method has proven
o be a powerful approach with enough flexibility to be successfully adapted to analyze different classes of random vibratory systems. Indeed,
n [31], one proposes a higher-order equivalent linearization method for analyzing non-linear random vibration problems, where the non-linear
erms are replaced by unknown linear terms that are described by extra non-linear differential equations, with the objective to obtain a higher
egree-of-freedom equation for the original system. In [32], the dynamics of a non-linear oscillator with multiple static equilibrium excited by a
hite noise is approximated by means of an equivalent locally linear oscillator. In [33], the authors propose a two-step linearization procedure to

mprove the accuracy of oscillators’ mean-square response estimation with quadratic damping excited by a white noise random process. In [33],
ne develops a method based on a two-step linearization procedure to improve the accuracy of the mean-square response estimation of oscillators
ith quadratic damping excited by white noise random process. In [34], one proposes a new mean-square criterion of error sample function to
etermine the coefficients of the linearized equivalent equation, with the objective to obtain the stationary response of nonlinear systems under
ero-mean Gaussian random excitation for both weak and strong nonlinearity. Also, in [35] has developed an efficient analysis procedure for the
andom vibration analysis of nonlinear structures subjected to nonstationary random excitations based on the equivalent linearization method
nd the time-domain explicit formulation method. In [36–38], one design weighted averaging equivalent linearization methods to study different
lasses of the nonlinear Duffing oscillator. Recently, in [39], one has applied this same technique to study systems of two coupled strong nonlinear
ifferential equations, where nonlinear differential equations are transferred into a single equation by using some intermediate variables. For an
verview of the equivalent linearization technique, including many of its applications over the years, see [40]. Finally, it is interesting to point out
hat slight variations of this technique have been proposed and discussed in the scientific community [41].

This paper performs a probabilistic study of random nonlinear oscillators formulated by (1)–(2) by considering that the nonlinear function
(𝑋(𝑡)) is a polynomial of arbitrary degree, so containing the relevant case of the Duffing oscillator, for which 𝑓 (𝑋(𝑡)) = (𝑋(𝑡))3. As it shall be
ommented later, the foregoing choice also permits approximating the case that 𝑓 (𝑋(𝑡)) is an analytic function of 𝑋(𝑡) by truncating at an arbitrary
rder the corresponding Taylor expansion, so extending the analysis performed in [18], where, as previously indicated, 𝑓 (𝑋(𝑡)) = sin(𝑋(𝑡)). It is
mportant to point out that our analysis is addressed to approximate the probability density function (PDF) of the steady state. To achieve this goal,
e shall approximate the first statistical moments of the steady state via the equivalent linearization technique, and then we will take advantage
f the principle of maximum entropy (PME) to approximate the PDF [42]. To show the flexibility of the proposed approach, we shall illustrate the
heoretical results with different relevant stochastic processes playing the role of the input 𝑌 (𝑡).

The paper is organized as follows. In Section 2, we introduce the main results that will be required throughout the paper. This section is certainly
uite lengthy because one requires a large number of previous results so that the interested reader can follow in detail the full development of
he paper, which is rather technical in some of its developments. Section 2 contains abundant results about mean-square stochastic calculus and
ts relationship with key deterministic functions associated with second-order stochastic processes such as the mean, the variance, the (cross-
correlation, and the (cross-)power spectral density function. Section 3 is devoted to explaining how the equivalent linearized technique can be
pplied to probabilistically analyze the steady state of the general Duffing oscillators we are interested in when they are subject to a class of Gaussian
nputs. To address this goal, we first will introduce some statistical properties of the solution and its mean-square derivative in Sections 3.1 and
.2, respectively. The properties developed in Section 3.1 will play a key role in our subsequent study, particularly the variance of the solution

s well as other higher moments. Whereas, those exhibited in Section 3.1 have been included so that the reader can understand a thorough
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discussion about alternative approaches to those followed in our development. In Section 3.3, we explain in detail how the stochastic equivalent
linearization technique works when applied to study the class of nonlinear oscillators given in (1) which contains the family of oscillators studied
in this paper. In Section 4, we focus on the analysis of the steady state of a class of random oscillators where nonlinearity affects the spatial
position. This family of oscillators contains, as a particular case, the Duffing oscillator. We then obtain the stochastic equivalent linear system of
the aforementioned class of nonlinear oscillators. Obtaining this equivalent system involves determining a reliable approximation of the variance
of the solution. This approximation is explained in Section 4.1. In Section 5, we explain how the principle of maximum entropy can be applied
to obtain reliable approximations of the probability density function of the steady state using the higher moments of the solution, which have
been previously calculated. Section 6 contains several examples illustrating our main theoretical findings. In these examples, we have obtained
the main probabilistic information of the steady state solution, including the mean, the variance, and the correlation functions as well as the PDF.
We show that the numerical results obtained via the stochastic linearized equivalent technique are consistent with those provided by simulations
calculated by stochastic numerical schemes and better than those calculated using the stochastic perturbation method. To better illustrate the
applicability of our approach, we have considered a variety of scenarios in the examples that consider as inputs the white noise Gaussian and the
Ornstein–Uhlenbeck processes when dealing with different nonlinear oscillators including the Duffing oscillator. Finally, in Section 7, we summarize
the main conclusions drawn from our study, including its limitations.

2. Stochastic preliminaries

In this section, and for the sake of completeness, we introduce a number of definitions and technical results that will be required throughout
the paper. Many of them belong to the so-called mean-square random calculus for random variables and stochastic processes having finite variance
(or equivalently second-order moments) [24,43,44].

We will work with an underlying complete probability space (𝛺,F𝛺 ,P), where 𝛺 denotes the sample space, which is the set of all possible
utcomes 𝜔 ∈ 𝛺; F𝛺 is the 𝜎-algebra of 𝛺, whose elements are called events, an event being a set of outcomes in 𝛺; and P is a probability

measure. We recall that a real-valued random variable is a function 𝑍 ∶ 𝛺 ⟶ R, such that 𝑍−1(𝐴) ∈ F𝛺 for all 𝐴 ∈ BR, where R denotes the
𝜎-algebra of Borel generated by the collection of all open intervals in the whole real line R. A real-valued stochastic process, 𝑍(𝑡;𝜔), is a set of
eal-valued random variables indexed by 𝑡 ∈ T, where T is a subset. In this paper, we shall take T = [0,∞). A random variable can be regarded

as a time-constant stochastic process, in other words, given a stochastic process, 𝑍(𝑡), for each 𝑡 fixed, 𝑍(𝑡) is a random variable. Hereinafter,
hen convenient, we will alleviate the notation by omitting the 𝜔-dependence, and we will simply write 𝑍 = 𝑍(𝜔) and 𝑍(𝑡) = 𝑍(𝑡;𝜔) for random
ariables and stochastic processes, respectively. Note that in our setting of the differential equation (1)–(2), the source term, 𝑌 (𝑡), and the solution,
(𝑡), are stochastic processes where the 𝜔-dependence has been omitted.

Given a stochastic process, {𝑍(𝑡) ∶ 𝑡 ∈ T}, if for every finite set of values {𝑡1,… , 𝑡𝑛} ∈ T, there corresponds a set of random variables,
1 = 𝑍(𝑡1),… , 𝑍𝑛 = 𝑍(𝑡𝑛), with a well-defined joint probability distribution function

𝐹𝑍1 ,…,𝑍𝑛
(𝑧1, 𝑡1;… ; 𝑧𝑛, 𝑡𝑛) = P{{𝑍1 ≤ 𝑧1} ∩⋯ ∩ {𝑍𝑛 ≤ 𝑧𝑛}}, 𝑧𝑛 ∈ R, 𝑛 = 1, 2,… ,

here {𝑍𝑖 ≤ 𝑧𝑖} = {𝜔 ∈ 𝛺 ∶ 𝑍𝑖(𝜔) ≤ 𝑧𝑖}, then this family of joint distributions defines the 𝑛-distribution function of the stochastic process 𝑍(𝑡).
his deterministic function is often denoted by 𝐹𝑛(𝑧1, 𝑡1;… ; 𝑧𝑛, 𝑡𝑛) instead of 𝐹𝑍1 ,…,𝑍𝑛

(𝑧1, 𝑡1;… ; 𝑧𝑛, 𝑡𝑛) to shorten the notation.
Throughout this paper, we will work with stochastic processes satisfying

E{(𝑍(𝑡))2} = ∫𝛺
(𝑍(𝑡;𝜔))2dP(𝜔) < ∞,

sually referred to as second-order stochastic processes. Here E{⋅} stands for the expectation operator. In the particular case that 𝑍(𝑡) does not
epend on 𝑡, and it satisfies E{(𝑍(𝑡))2} < ∞, 𝑍(𝑡) is called a second-order stochastic processes. The set of all second-order stochastic processes (and
n particular, second-order random variables) endowed with the following inner product

⟨𝑍1(𝑡), 𝑍2(𝑡)⟩ = E{𝑍1(𝑡)𝑍2(𝑡)} = ∫𝛺
𝑍1(𝑡;𝜔)𝑍2(𝑡;𝜔)dP(𝜔) < ∞,

is a Hilbert space, denoted as (L2(𝛺), ⟨⋅, ⋅⟩). From the above inner product, one infers the so-called 2-norm: ‖𝑍(𝑡)‖2 =
(

E{(𝑍(𝑡))2}
)1∕2 < ∞. This space

is made up of all the stochastic processes with finite second-order moment, E{(𝑍(𝑡))2} < ∞ (and so, with finite mean, E{𝑍(𝑡)} < ∞, and variance,
V{𝑍(𝑡)} = E{(𝑍(𝑡))2} − (E{𝑍(𝑡)})2 < ∞) for all 𝑡 ∈ T. The 2-norm permits defining the concepts of mean-square continuity, differentiability, and
integrability of a second-order stochastic process [24, ch.4], [43]. Given a second-order stochastic process, 𝑍(𝑡), 𝑡 ∈ T, we can define a deterministic
function, called the covariance function K𝑍 (𝑡1, 𝑡2) = E{𝑍(𝑡1)𝑍(𝑡2)} − E{𝑍(𝑡1)}E{𝑍(𝑡2)}, 𝑡1, 𝑡2 ∈ T. For second-order stochastic processes, it can be
assumed, without loss of generality, that E{𝑍(𝑡)} = 0 by defining �̂�(𝑡) = 𝑍(𝑡) − E{𝑍(𝑡)}, that obviously satisfies E{�̂�(𝑡)} = 0. In such a case,
he stochastic process is called centered at its mean, and the auto-correlation function simplifies as 𝛤𝑍 (𝑡1, 𝑡2) = E{𝑍(𝑡1)𝑍(𝑡2)}, 𝑡1, 𝑡2 ∈ T, which

is referred to as the correlation function. Throughout this paper, we will work zero-mean stochastic processes for which the covariance and the
correlation functions coincide, i.e., K𝑍 (𝑡1, 𝑡2) = 𝛤𝑍 (𝑡1, 𝑡2). Because of Jensen and Cauchy–Schwarz inequalities [43], it is clear that the correlation
function is well-defined

|𝛤𝑍 (𝑡1, 𝑡2)| ≤ E{|𝑍(𝑡1)𝑍(𝑡2)|} ≤ ‖

‖

𝑍(𝑡1)‖‖2 ‖‖𝑍(𝑡2)‖‖2 < ∞.

Moreover, the correlation function is nonnegative definite on T × T, i.e., it satisfies ∑𝑛
𝑗=1

∑𝑛
𝑘=1 𝛤𝑍 (𝑡𝑗 , 𝑡𝑘)𝑔(𝑡𝑗 )𝑔(𝑡𝑘) ≥ 0, for every 𝑛 and 𝑡1,… , 𝑡𝑛 ∈ T,

and for an arbitrary function 𝑔(𝑡) defined on T.
The correlation function can be extended for two second-order stochastic processes, 𝑍1(𝑡) and 𝑍2(𝑡), and then it is referred to as the cross-

correlation function 𝛤𝑍1 ,𝑍2
(𝑡1, 𝑡2) = E{𝑍1(𝑡1)𝑍2(𝑡2)} (obviously, for a single stochastic process 𝑍(𝑡), one gets 𝛤𝑍,𝑍 (𝑡1, 𝑡2) = 𝛤𝑍 (𝑡1, 𝑡2)). If 𝛤𝑍1 ,𝑍2

(𝑡1, 𝑡2) =
E{𝑍1(𝑡1)𝑍2(𝑡2)} = 0 for all 𝑡1, 𝑡2 ∈ T, the zero-mean (or centered) processes 𝑍1(𝑡) and 𝑍2(𝑡) are termed uncorrelated stochastic processes. For
non-centered processes, this definition is given in terms of the cross-covariance function, K𝑍1 ,𝑍2

(𝑡1, 𝑡2) = E{𝑍1(𝑡1)𝑍2(𝑡2)} − E{𝑍1(𝑡1)}E{𝑍2(𝑡2)};
clearly, K𝑍1 ,𝑍2

(𝑡1, 𝑡2) = K𝑍2 ,𝑍1
(𝑡2, 𝑡1). Observe that for zero-mean stochastic processes, the cross-covariance and the cross-correlation functions

match, i.e., K𝑍1 ,𝑍2
(𝑡1, 𝑡2) = 𝛤𝑍1 ,𝑍2

(𝑡1, 𝑡2). As it shall be seen later, throughout this paper will utilize the cross-correlation function for a stochastic
process and its mean-square derivative, as well as the cross-correlation function of the input 𝑌 (𝑡) and the solution 𝑋(𝑡) for a class of nonlinear
oscillators of the form (1).

Independence between two stochastic processes is an important probability concept with useful operational properties and is closely related to

uncorrelation, particularly when both are Gaussian processes. The following results are well-known [45].
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Proposition 1. Let 𝑍1(𝑡) and 𝑍2(𝑡) be independent stochastic processes. Then

(i) 𝑍1(𝑡) and 𝑍2(𝑡) are uncorrelated.
(ii) E{𝑍1(𝑡)𝑍2(𝑡)} = E{𝑍1(𝑡)}E{𝑍2(𝑡)}. More generally, for 𝑓 and 𝑔 Borel measurable functions, 𝑓 (𝑍1(𝑡)) and 𝑔(𝑍2(𝑡)) are also independent stochastic

processes and

E{𝑓 (𝑍1(𝑡))𝑔(𝑍2(𝑡))} = E{𝑓 (𝑍1(𝑡))}E{𝑔(𝑍2(𝑡))}.

In general, the reciprocal of the statement (i) of Proposition 1 is false, unless when the processes are Gaussian

Proposition 2. Let 𝑍1(𝑡) and 𝑍2(𝑡) be Gaussian stochastic processes. Then, the following statements are equivalent:

(i) 𝑍1(𝑡) and 𝑍2(𝑡) are uncorrelated.
(ii) 𝑍1(𝑡) and 𝑍2(𝑡) are independent.

As we shall see later, some stochastic processes with specific properties will be handled throughout this paper. A stochastic process, say
𝑍(𝑡) ≡ {𝑍(𝑡) ∶ 𝑡 ∈ T}, is said to be stationary (or strictly stationary) if all its finite probability distributions, 𝐹𝑛, are invariant under an arbitrary
translation of 𝑡, i.e.,

𝐹𝑛(𝑧1, 𝑡1;… ; 𝑧𝑛, 𝑡𝑛) = 𝐹𝑛(𝑧1, 𝑡1 + 𝜏;… ; 𝑧𝑛, 𝑡𝑛 + 𝜏), 𝑡𝑗 , 𝑡𝑗 + 𝜏 ∈ T, 𝑗 = 1,… , 𝑛. (3)

By putting 𝜏 = −𝑡1, it is clear that the probability functions depend upon the time parameters only via the differences, i.e., the statistical properties
of a stationary stochastic process are independent of the absolute time origin [24, p. 43]. As a consequence, the mean function is constant,
E {𝑍(𝑡)} = 𝜇𝑍 with 𝜇𝑍 constant for all 𝑡 ∈ T; the correlation function depends on a single variable 𝛤𝑍 (𝑡1, 𝑡2) = 𝛤𝑍 (𝑡2 − 𝑡1) and is an even function
𝛤𝑍 (𝜏) = 𝛤𝑍 (−𝜏). Similar properties for higher-order moments can be easily obtained. However, in general, when dealing with real-world physical
problems, it is difficult to check that condition (3) holds for all 𝑛 in order to ascertain whether the process 𝑍(𝑡) is stationary. This fact motivates
the definition of wide-sense (or weakly or covariance) stationary stochastic processes as those satisfying that |E {𝑍(𝑡)} | = 𝜇𝑍 , with 𝜇𝑍 constant;
E
{

(𝑍(𝑡))2
}

< ∞ and 𝛤𝑍 (𝑡1, 𝑡2) = 𝛤𝑍 (𝑡2 − 𝑡1). Clearly, every weak stationary process is a stationary process provided its second-order moment is
finite, but in general, the converse is not true. An important exception is a Gaussian process which is completely determined by its mean and
covariance functions, so any wide-sense stationary Gaussian process is also stationary.

The correlation function of a second-order is very important because many relevant properties, such as mean-square continuity, differentiability,
and integrability, can be characterized in terms of this two-variable deterministic function. This characterization is particularly readily applicable
when the process is also wide stationary. The following result about the mean-square continuity will used later

Proposition 3 (Th. 4.3.3 [24]). Let 𝑍(𝑡), 𝑡 ∈ T, be a second-order stochastic process whose correlation function is 𝛤𝑍 (𝑡1, 𝑡2). Then, the following statements
are equivalent:

(i) 𝑍(𝑡) is mean-square continuous in T.
(ii) 𝛤𝑍 (𝑡1, 𝑡2) is continuous at (𝑡, 𝑡) ∈ T × T.

If 𝑍(𝑡) is wide-sense stationary with correlation function 𝛤𝑍 (𝜏), then, the following statements are equivalent:

(iii) 𝑍(𝑡) is mean-square continuous in T.
(iv) 𝛤𝑍 (𝜏) is continuous at 𝜏 = 0.

Now we recall the concept and main properties of power spectral density of a wide-sense stationary process that will be required later. Let 𝑍(𝑡)
be a mean-square continuous wide-sense stationary stochastic process with correlation function 𝛤𝑍 (𝜏). From Proposition 3, we know that 𝛤𝑍 (𝜏) is
continuous at 𝜏 = 0. As the correlation function of a stochastic process is also real and nonnegative definite, by Bochner theorem [46], it can be
represented in the form 𝛤𝑍 (𝜏) =

1
2 ∫

∞
−∞ exp(i𝑤𝜏)d𝜆(𝑤), i =

√

−1, where 𝜆(𝑤) is real, non-decreasing and bounded. If 𝜆(𝑤) is absolutely continuous,
i.e., there exists 𝑆𝑍 (𝑤) such that 𝑆𝑍 (𝑤) = d𝜆(𝑤)

d𝑤 , then

𝛤𝑍 (𝜏) =
1
2 ∫

∞

−∞
exp(i𝑤𝜏)𝑆𝑍 (𝑤)d𝑤. (4)

Because of the properties of 𝜆(𝑤), clearly 𝑆𝑍 (𝑤) is real and nonnegative. Furthermore, from (4), one deduces that (𝛤𝑍 (𝜏), 𝑆𝑍 (𝑤)) form a Fourier
pair and then

𝑆𝑍 (𝑤) = 1
𝜋 ∫

∞

−∞
exp(−i𝑤𝜏)𝛤𝑍 (𝜏)d𝜏. (5)

This function is called the power spectral density function associated with the wide-sense stationary process 𝑍(𝑡). Using that the correlation function
s even, i.e., 𝛤𝑍 (𝜏) = 𝛤𝑍 (−𝜏), the Euler’s identity exp(−i𝑥) = cos(𝑥) + i sin(𝑥), and that 𝛤𝑍 (𝜏) cos(𝑥) is even and 𝛤𝑍 (𝜏) sin(𝑥) is odd, one gets

𝑆𝑍 (𝑤) = 2
𝜋 ∫

∞

0
cos(𝑤𝜏)𝛤𝑍 (𝜏)d𝜏. (6)

So, 𝑆𝑍 (𝑤) is an even function. Furthermore, using (4) and that as 𝛤𝑍 (𝜏) is an even function, one deduces

2𝛤𝑍 (𝜏) = 𝛤𝑍 (𝜏) + 𝛤𝑍 (−𝜏) =
1
2 ∫

∞

−∞
(exp(i𝑤𝜏) + exp(−i𝑤𝜏))𝑆𝑍 (𝑤)d𝑤 = ∫

∞

−∞
cos(𝑤𝜏)𝑆𝑍 (𝑤)d𝑤.

s the integrand cos(𝑤𝜏)𝑆𝑍 (𝑤) is an even function (observe that it is the product of two even functions), one deduces that ∫ ∞
−∞ cos(𝑤𝜏)𝑆𝑍 (𝑤)d𝑤 =

2 ∫ ∞
0 cos(𝑤𝜏)𝑆𝑍 (𝑤)d𝑤. Then substituting this in the last expression, one obtains the following representation for the correlation function

𝛤𝑍 (𝜏) =
∞
cos(𝑤𝜏)𝑆𝑍 (𝑤)d𝑤. (7)
∫0
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Putting here 𝜏 = 0, one gets the following expression of the second-order moment of 𝑍(𝑡) in terms of its power spectral density function

𝛤𝑍 (0) = E
{

(𝑍(𝑡))2
}

= ∫

∞

0
𝑆𝑍 (𝑤)d𝑤. (8)

Since 𝑍(𝑡) is a wide-sense stationary process, observe that this moment does not depend on 𝑡, as expected.
The definition of wide-sense stationary can be extended to two stochastic processes. Indeed, 𝑍1(𝑡) and 𝑍2(𝑡) are called jointly wide-sense

tationary stochastic processes if their means are constant and the cross-covariance function only depends of the time lag, i.e., E
{

𝑍1(𝑡)
}

= 𝜇𝑍1
ith 𝜇𝑍1

constant, E
{

𝑍2(𝑡)
}

= 𝜇𝑍2
with 𝜇𝑍2

constant and K𝑍1 ,𝑍2
(𝑡1, 𝑡2) = K𝑍1 ,𝑍2

(𝑡2 − 𝑡1). Clearly, for two jointly wide-sense stationary processes
𝑍1(𝑡) and 𝑍2(𝑡), one satisfies the following property for the cross-covariance function K𝑍1 ,𝑍2

(𝜏) = K𝑍2 ,𝑍1
(−𝜏) and for the cross-correlation function

𝛤𝑍1 ,𝑍2
(𝜏) = 𝛤𝑍2 ,𝑍1

(−𝜏). The definition of power spectral density also naturally extends for two jointly wide-sense stationary stochastic processes,
𝑍1(𝑡) and 𝑍2(𝑡), whose cross-correlation function, 𝛤𝑍1 ,𝑍2

(𝑡1, 𝑡2), is continuous, forming both a Fourier pair

𝑆𝑍1 ,𝑍2
(𝑤) = 1

𝜋 ∫

∞

−∞
exp(−i𝑤𝜏)𝛤𝑍1 ,𝑍2

(𝜏)d𝜏, 𝛤𝑍1 ,𝑍2
(𝜏) = 1

2 ∫

∞

−∞
exp(i𝑤𝜏)𝑆𝑍1 ,𝑍2

(𝑤)d𝑤. (9)

The function 𝑆𝑍1 ,𝑍2
(𝑤) is termed cross-power spectral density. In contrast to 𝑆𝑍 (𝑡), which is always a real-valued function, in general, 𝑆𝑍1 ,𝑍2

(𝑤)
s a complex function. Using the property 𝛤𝑍1 ,𝑍2

(𝜏) = 𝛤𝑍2 ,𝑍1
(−𝜏), previously seen, and denoting 𝑧 the complex conjugate, one gets

𝑆𝑍2 ,𝑍1
(𝑤) = 1

𝜋 ∫

∞

−∞
exp(−i𝑤𝜏)𝛤𝑍2 ,𝑍1

(𝜏)d𝜏 = 1
𝜋 ∫

∞

−∞
exp(−i𝑤𝜏)𝛤𝑍2 ,𝑍1

(𝜏)d𝜏

= 1
𝜋 ∫

∞

−∞
exp(i𝑤𝜏)𝛤𝑍2 ,𝑍1

(𝜏)d𝜏 = 1
𝜋 ∫

∞

−∞
exp(i𝑤𝜏)𝛤𝑍1 ,𝑍2

(−𝜏)d𝜏

= − 1
𝜋 ∫

−∞

∞
exp(−i𝑤𝑢)𝛤𝑍1 ,𝑍2

(𝑢)d𝑢 = 1
𝜋 ∫

∞

−∞
exp(−i𝑤𝜏)𝛤𝑍1 ,𝑍2

(𝑢)d𝜏

= 𝑆𝑍1 ,𝑍2
(𝑤).

This property will be utilized later.
As previously indicated, we are interested in calculating the statistical moments of the steady state solution of model (1)–(2), where 𝑓 is a

nonlinear function and 𝑌 (𝑡) is a stochastic process whose mathematical properties will be detailed later. Now, we introduce some technical results
that will be very useful in achieving this goal. It is important to point out that some of these auxiliary results apply when the corresponding
stochastic process is Gaussian satisfying additional hypotheses.

The following result permits expressing the moments of the product of an arbitrary number of zero-mean Gaussian random variables in terms
of their correlations, and in particular, it gives an explicit expression for the moments of a zero-mean Gaussian random variable:

Proposition 4 ([24, p. 28], [47, p. 148]). Let 𝑍1,…, 𝑍𝑛 be zero-mean random variables with a joint Gaussian distribution, i.e., E
{

𝑍𝑖
}

= 0, 𝑖 = 1,… , 𝑛.
Then, all odd-order moments of these random variables vanish and, for 𝑛 even,

E
{

𝑍1 ⋯𝑍𝑛
}

=
∑

𝑚1 ,𝑚2 ,…,𝑚𝑛

E
{

𝑍𝑚1
𝑌𝑚2

}

E
{

𝑍𝑚3
𝑍𝑚4

}

⋯E
{

𝑍𝑚𝑛−1
𝑍𝑚𝑛

}

, (10)

where the sum above is taken over all possible combinations of 𝑛∕2 pairs of 𝑛 random variables. The number of terms in the summation is (𝑛 − 1)!! =
1 ⋅ 3 ⋅ 5⋯ (𝑛 − 3) ⋅ (𝑛 − 1).

In the particular case that 𝑍1 = ⋯ = 𝑍𝑛 = 𝑍, one gets

E {𝑍𝑛} =
{

0 if 𝑛 odd,
(𝑛 − 1)!! (𝜎𝑍 )𝑛 if 𝑛 even,

(11)

where 𝜎𝑍 denotes the standard deviation of 𝑍.

The following result establishes that the mean-square derivative of a Gaussian stochastic process is also a Gaussian process:

Proposition 5 ([24, p. 110]). Let 𝑍(𝑡) be a Gaussian process Then, �̇�(𝑡) is also a Gaussian process.

The following result provides sufficient conditions so that a Gaussian process and its mean-square derivative are independent:

Proposition 6 ([24, p. 114]). Let 𝑍(𝑡) be a mean-square differentiable stationary zero-mean Gaussian process. Then, 𝑍(𝑡) and �̇�(𝑡) are independent.

The following proposition permits calculating the expectation and correlation function of the mean-square integral of a stochastic process by
commuting the expectation operator.

Proposition 7 ([24, p. 104]). Let 𝑌 (𝑡) ≡ {𝑌 (𝑡) ∶ 𝑡 ∈ (𝑎, 𝑏)} be a mean-square integrable stochastic process with mean and correlation functions E {𝑌 (𝑡)}
and 𝛤𝑌 (𝑡1, 𝑡2), respectively. Let 𝑓 (𝑡, 𝑠) be a Riemann integrable deterministic function on 𝑡, 𝑠 ∈ (𝑎, 𝑏), −∞ ≤ 𝑎 < 𝑏 ≤ ∞ and consider the integral stochastic
process

𝑍(𝑡) = ∫

𝑡

𝑎
𝑓 (𝑡, 𝑠)𝑌 (𝑠)d𝑠, 𝑎 ≤ 𝑡 ≤ 𝑏.

Then,

E {𝑍(𝑡)} =
𝑡
𝑓 (𝑡, 𝑠)E {𝑌 (𝑠)} d𝑠, 𝑎 ≤ 𝑡 ≤ 𝑏, (12)
∫𝑎
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and

𝛤𝑍 (𝑡1, 𝑡2) = ∫

𝑡1

𝑎 ∫

𝑡2

𝑎
𝑓 (𝑡1, 𝑠1)𝑓 (𝑡2, 𝑠2)𝛤𝑌 (𝑠1, 𝑠2)d𝑠1d𝑠2, 𝑎 ≤ 𝑡1, 𝑡2 ≤ 𝑏. (13)

The following result is similar to Proposition 5, but changing the mean-square derivative by the mean-square integral of a Gaussian process.

Proposition 8 ([24, p. 112]). Let 𝑌 (𝑡) ≡ {𝑌 (𝑡) ∶ 𝑎 ≤ 𝑡 ≤ 𝑏} be a Gaussian process and let 𝑓 (𝑡, 𝑠) be a Riemann integrable deterministic function on
𝑡, 𝑠 ∈ (𝑎, 𝑏), −∞ ≤ 𝑎 < 𝑏 ≤ ∞ such that the following mean-square integral

𝑍(𝑡) = ∫

𝑡

𝑎
𝑓 (𝑡, 𝑠)𝑌 (𝑠)d𝑠, 𝑎 ≤ 𝑡 ≤ 𝑏, (14)

exists. Then, 𝑍(𝑡) ≡ {𝑍(𝑡) ∶ 𝑎 ≤ 𝑡 ≤ 𝑎} is a Gaussian process.

We finish this section stating the mean-square Leibniz rule for differentiating, in the mean-square sense, an integral process:

Proposition 9 ([24, p. 104]). Let 𝑌 (𝑡) ≡ {𝑌 (𝑡) ∶ 𝑎 ≤ 𝑡 ≤ 𝑏} be a mean-square integrable stochastic process. Let 𝑓 (𝑡, 𝑠) be a continuous deterministic function
on 𝑡, 𝑠 ∈ (𝑎, 𝑏), −∞ ≤ 𝑎 < 𝑏 ≤ ∞ with finite first partial derivative 𝜕𝑓 (𝑡,𝑠)

𝜕𝑡 . Then, the mean-square derivative of

𝑍(𝑡) = ∫

𝑡

𝑎
𝑓 (𝑡, 𝑠)𝑌 (𝑠)d𝑠, 𝑎 ≤ 𝑡 ≤ 𝑏, (15)

exists for all 𝑡 ∈ (𝑎, 𝑏) and is given by

�̇�(𝑡) = 𝑓 (𝑡, 𝑡)𝑌 (𝑡) + ∫

𝑡

𝑎

𝜕𝑓 (𝑡, 𝑠)
𝜕𝑡

𝑌 (𝑠)d𝑠, 𝑎 ≤ 𝑡 ≤ 𝑏. (16)

3. Probabilistic analysis via the equivalent linearization technique

The equivalent linearization technique consists in determining parameters, 𝛽e and 𝑘2e , such that the linear differential equation

�̈�(𝑡) + 2𝛽e�̇�(𝑡) + 𝑘2e𝑋(𝑡) = 𝑌 (𝑡), (17)

approximates the nonlinear differential Eq. (1), using some error measure (for example, the mean-square error). Once this approximation has
been constructed, the properties of the nonlinear Eq. (1) are approximated via the corresponding properties for the linear Eq. (17) provided the
aforementioned approximation is accurate enough. In the following Sections 3.1 and 3.2, a number of statistical properties for the solution, 𝑋(𝑡),
of the linear Eq. (17) and its mean-square derivative, �̇�(𝑡), are deduced, respectively. As will be seen later, these properties will play a crucial
role in our subsequent deductions. In Section 3.3, we detail how the equivalent linearization technique operates in dealing with random nonlinear
oscillators of the form (1) without particularizing neither the form of the function 𝑔(𝑋(𝑡), �̇�(𝑡)) nor the function 𝑓 (𝑋(𝑡)) that is affected by the
perturbation parameter 𝜖 [24,48].

3.1. Statistical properties of the solution of the linearized oscillator

To study the steady state solution of the linear Eq. (17) in the underdamped case, i.e., when 𝛽e < 𝑘e, one can take as initial condition
𝑋(0) = �̇�(0) = 0, and then it is well-known that the corresponding solution is given by

𝑋(𝑡) = ∫

𝑡

−∞
ℎ(𝑡 − 𝑢)𝑌 (𝑢)d𝑢 = ∫

∞

0
ℎ(𝑢)𝑌 (𝑡 − 𝑢)d𝑢, (18)

where

ℎ(𝑡) =

⎧

⎪

⎨

⎪

⎩

1
√

𝑘2e−𝛽2e
exp(−𝛽e𝑡) sin

(

√

𝑘2e − 𝛽2e 𝑡
)

, if 𝑡 ≥ 0,

0, if 𝑡 < 0.
(19)

Notice that, if E {𝑌 (𝑡)} = 0, then using (18) and Proposition 7, one gets

E {𝑋(𝑡)} = ∫

∞

0
ℎ(𝑢)E {𝑌 (𝑡 − 𝑢)} d𝑢 = 0. (20)

Moreover, using (18) again and Proposition 8, it is clear that the solution 𝑋(𝑡) is a Gaussian process. Furthermore, utilizing the property (13) of
roposition 7 and assuming that 𝑌 (𝑡) is a wide-sense stationary stochastic process, one gets,

𝛤𝑋 (𝑡1, 𝑡2) = ∫

∞

0 ∫

∞

0
ℎ(𝑢1)ℎ(𝑢2)𝛤𝑌 (𝑡1 − 𝑢1, 𝑡2 − 𝑢2)d𝑢1d𝑢2

= ∫

∞

0 ∫

∞

0
ℎ(𝑢1)ℎ(𝑢2)𝛤𝑌 (𝑡2 − 𝑡1 + 𝑢1 − 𝑢2)d𝑢1d𝑢2.

(21)

So, 𝑋(𝑡) is also a wide-sense stationary stochastic process since it has finite mean and second-order moment, and moreover, its correlation function

calculated at (𝑡1, 𝑡2) only depends on the difference 𝑡2− 𝑡1. As 𝑋(𝑡) is Gaussian and wide-sense stationary, hence it is also stationary. Finally, observe
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that its variance function can be straightforwardly obtained from (21)

𝜎2𝑋 = V {𝑋(𝑡)} = 𝛤𝑋 (𝑡, 𝑡)

= ∫

∞

0 ∫

∞

0
ℎ(𝑢1)ℎ(𝑢2)𝛤𝑌 (𝑢1 − 𝑢2)d𝑢1d𝑢2 = E

{

(𝑋(𝑡))2
} (22)

Let us first observe that the variance does not depend on 𝑡 as expected since 𝑋(𝑡) is a stationary stochastic process (hence the previous notation
𝜎2𝑋 instead of 𝜎2𝑋 (𝑡)). Second, notice that in the last step, we have used that E {𝑋(𝑡)} = 0, so the variance coincides with the second-order moment.
Moreover, we can calculate higher moments of 𝑋(𝑡) using Proposition 4,

E {(𝑋(𝑡))𝑛} =
{

0 if 𝑛 odd,
(𝑛 − 1)!!

(

𝜎𝑋
)𝑛 if 𝑛 even,

(23)

where, according to (22), 𝜎𝑋 =
(

∫ ∞
0 ∫ ∞

0 ℎ(𝑢1)ℎ(𝑢2)𝛤𝑌 (𝑢1 − 𝑢2)d𝑢1d𝑢2
)1∕2.

Now, we show some properties of the cross-correlation function of the input 𝑌 (𝑡) and the solution 𝑋(𝑡) that will be used later. Let us first observe
that 𝑋(𝑡), given in (18), can be expressed as follows

𝑋(𝑡) = ∫

∞

−∞
ℎ(𝑢)𝑌 (𝑡 − 𝑢)d𝑢, (24)

since, according to (19), ℎ(𝑡) = 0 for 𝑡 < 0. Then,

𝛤𝑌 𝑋 (𝑠) = E{𝑌 (𝑡)𝑋(𝑡 + 𝑠)} = E
{

𝑌 (𝑡)∫

∞

−∞
ℎ(𝑢)𝑌 (𝑡 + 𝑠 − 𝑢)d𝑢

}

= ∫

∞

−∞
ℎ(𝑢)E{𝑌 (𝑡)𝑌 (𝑡 + 𝑠 − 𝑢)}d𝑢 = ∫

∞

−∞
ℎ(𝑢)𝛤𝑌 𝑌 (𝑠 − 𝑢)d𝑢

(25)

where, first we have applied Proposition 7 to commute the expectation operator and the integral and second that E{𝑌 (𝑡)𝑌 (𝑡+𝑠−𝑢)} = 𝛤𝑌 𝑌 (𝑡, 𝑡+𝑠−𝑢) =
𝛤𝑌 𝑌 (𝑠 − 𝑢) since 𝑌 (𝑡) is wide-stationary.

Analogously,

𝛤𝑋𝑋 (𝑠) = E{𝑋(𝑡)𝑋(𝑡 + 𝑠)} = E
{(

∫

∞

−∞
ℎ(𝑢)𝑌 (𝑡 − 𝑢)d𝑢

)

𝑋(𝑡 + 𝑠)
}

= ∫

∞

−∞
ℎ(𝑢)E{𝑌 (𝑡 − 𝑢)𝑋(𝑡 + 𝑠)}d𝑢 = ∫

∞

−∞
ℎ(𝑢)𝛤𝑌 𝑋 (𝑢 + 𝑠)d𝑢,

(26)

where now we have utilized that E{𝑌 (𝑡 − 𝑢)𝑋(𝑡 + 𝑠)} = 𝛤𝑌 𝑋 (𝑡 − 𝑢, 𝑡 + 𝑠) = 𝛤𝑌 𝑋 (𝑢 + 𝑠).

Let us calculate the cross-power spectral density of the input, 𝑌 (𝑡), and the solution, 𝑋(𝑡), by taking the Fourier transform of 𝛤𝑌 𝑋 (𝑠) given in
(25)

𝑆𝑌 𝑋 (𝑤) = 1
𝜋 ∫

∞

−∞
𝛤𝑌 𝑋 (𝜏) exp(−i𝑤𝜏)d𝜏

= 1
𝜋 ∫

∞

−∞

(

∫

∞

−∞
ℎ(𝑢)𝛤𝑌 𝑌 (𝜏 − 𝑢)d𝑢

)

exp(−i𝑤𝜏)d𝜏

= 1
𝜋 ∫

∞

−∞ ∫

∞

−∞
ℎ(𝑢)𝛤𝑌 𝑌 (𝜏 − 𝑢) exp(−i𝑤𝜏)d𝑢d𝜏

= 1
𝜋 ∫

∞

−∞ ∫

∞

−∞
ℎ(𝑢)𝛤𝑌 𝑌 (𝜏 − 𝑢) exp(−i𝑤𝜏)d𝜏d𝑢

= ∫

∞

−∞
ℎ(𝑢)

(

1
𝜋 ∫

∞

−∞
𝛤𝑌 𝑌 (𝜏 − 𝑢) exp(−i𝑤𝜏)d𝜏

)

d𝑢

= ∫

∞

−∞
ℎ(𝑢)

(

1
𝜋 ∫

∞

−∞
𝛤𝑌 𝑌 (𝜏 − 𝑢) exp(−i𝑤(𝜏 − 𝑢))d𝜏

)

exp(−i𝑤𝑢)d𝑢,

(27)

where we have applied Fubbini’s theorem to interchange the integrals. Using the change of variable 𝑣 = 𝜏 − 𝑢 in the last integral, one gets

1
𝜋 ∫

∞

−∞
𝛤𝑌 𝑌 (𝜏 − 𝑢) exp(−i𝑤(𝜏 − 𝑢))d𝜏 = 1

𝜋 ∫

∞

−∞
𝛤𝑌 𝑌 (𝑣) exp(−i𝑤𝑣)d𝑣 = 𝑆𝑌 𝑌 (𝑤), (28)

where in the last step we have used (9). So, plugging (28) in (27), one obtains

𝑆𝑌 𝑋 (𝑤) =
∞
ℎ(𝑢)𝑆𝑌 𝑌 (𝑤) exp(−i𝑤𝑢)d𝑢 = 𝑆𝑌 𝑌 (𝑤)

∞
ℎ(𝑢) exp(−i𝑤𝑢)d𝑢. (29)
∫−∞ ∫−∞
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Similarly, taking the Fourier transform of 𝛤𝑋𝑋 (𝑠) given in (26), one gets

𝑆𝑋𝑋 (𝑤) = 1
𝜋 ∫

∞

−∞
𝛤𝑋𝑋 (𝜏) exp(−i𝑤𝜏)d𝜏

= 1
𝜋 ∫

∞

−∞

(

∫

∞

−∞
ℎ(𝑢)𝛤𝑌 𝑋 (𝑢 + 𝜏)d𝑢

)

exp(−i𝑤𝜏)d𝜏

= 1
𝜋 ∫

∞

−∞ ∫

∞

−∞
ℎ(𝑢)𝛤𝑌 𝑋 (𝑢 + 𝜏) exp(−i𝑤𝜏)d𝑢d𝜏

= 1
𝜋 ∫

∞

−∞ ∫

∞

−∞
ℎ(𝑢)𝛤𝑌 𝑋 (𝑢 + 𝜏) exp(−i𝑤𝜏)d𝜏d𝑢

= ∫

∞

−∞
ℎ(𝑢)

(

1
𝜋 ∫

∞

−∞
𝛤𝑌 𝑋 (𝑢 + 𝜏) exp(−i𝑤𝜏)d𝜏

)

d𝑢

= ∫

∞

−∞
ℎ(𝑢)

(

1
𝜋 ∫

∞

−∞
𝛤𝑌 𝑋 (𝑢 + 𝜏) exp(−i𝑤(𝑢 + 𝜏))d𝜏

)

exp(i𝑤𝑢)d𝑢.

(30)

gain, the change of variable 𝑣 = 𝑢 + 𝜏, the last integral can be expressed as

1
𝜋 ∫

∞

−∞
𝛤𝑌 𝑋 (𝑢 + 𝜏) exp(−i𝑤(𝑢 + 𝜏))d𝜏 = 1

𝜋 ∫

∞

−∞
𝛤𝑌 𝑋 (𝑣) exp(−i𝑤𝑣)d𝑣 = 𝑆𝑌 𝑋 (𝑤). (31)

Therefore, substituting (31) in (30), one obtains

𝑆𝑋𝑋 (𝑤) = ∫

∞

−∞
ℎ(𝑢)𝑆𝑌 𝑋 (𝑤) exp(i𝑤𝑢)d𝑢 = 𝑆𝑌 𝑋 (𝑤)∫

∞

−∞
ℎ(𝑢) exp(i𝑤𝑢)d𝑢. (32)

Plugging 𝑆𝑌 𝑋 (𝑤), given in (29), in (32), one finally gets the relation between the power spectral densities of the response 𝑋(𝑡) and the input 𝑌 (𝑡),

𝑆𝑋𝑋 (𝑤) = 𝑆𝑌 𝑌 (𝑤)∫

∞

−∞
ℎ(𝑢) exp(−i𝑤𝑢)d𝑢∫

∞

−∞
ℎ(𝑢) exp(i𝑤𝑢)d𝑢. (33)

This relation can be expressed in terms of the so-called frequency response function associated with the linear model (17)

ℎ̂(𝑧) = ∫

∞

−∞
ℎ(𝑡) exp(−𝑧𝑡)d𝑡, 𝑧 ∈ C. (34)

Indeed, notice that (33) can be written in terms of ℎ̂(𝑧), defined in (34), evaluated at 𝑧 = i𝑤

𝑆𝑋𝑋 (𝑤) = 𝑆𝑌 𝑌 (𝑤)ℎ̂(i𝑤)ℎ̂(−i𝑤). (35)

Moreover, using the Euler identity, exp(i𝑟) = cos(𝑟) + i sin(𝑟), 𝑟 ∈ R, one gets

ℎ̂(−i𝑤) = ∫

∞

−∞
ℎ(𝑡) exp(i𝑤𝑡)d𝑡 = ∫

∞

−∞
ℎ(𝑡)exp(−i𝑤𝑡)d𝑡 = ∫

∞

−∞
ℎ(𝑡) exp(−i𝑤𝑡)d𝑡 = ℎ̂(i𝑤). (36)

his permits expressing (35) as follows

𝑆𝑋𝑋 (𝑤) = 𝑆𝑌 𝑌 (𝑤)ℎ̂(i𝑤)ℎ̂(i𝑤) = 𝑆𝑌 𝑌 (𝑤)|ℎ̂(i𝑤)|2, (37)

where ℎ̂(i𝑤) is defined in (34). This value can be calculated by integration

ℎ̂(i𝑤) = 1
�̂�(𝑤)

, �̂�(𝑤) = 1
𝑘2e −𝑤2 + 2i𝑤𝛽e

. (38)

Hence, expression (37) can be written as

𝑆𝑋𝑋 (𝑤) = 𝑆𝑌 𝑌 (𝑤)ℎ̂(i𝑤)ℎ̂(i𝑤) = 𝑆𝑌 𝑌 (𝑤)|�̂�(𝑤)|−2, (39)

where �̂�(𝑤) is defined in (38).
In summarizing, if 𝑌 (𝑡) is a stationary zero-mean Gaussian process with a given correlation function, 𝛤𝑌 (𝜏), then the stochastic process 𝑋(𝑡)

defined in (18)–(19) is also a stationary zero-mean Gaussian process whose correlation function is given by (21). Furthermore, we have calculated
the spectral density function of the response, 𝑆𝑋𝑋 (𝑤), in terms of the spectral density function of the input, 𝑆𝑌 𝑌 (𝑤), and the system function or
frequency-response function associated with the linear system.

3.2. Statistical properties of the mean-square derivative of the solution of the linearized oscillator

In Section 3.1 we have obtained a number of properties of the stochastic process 𝑋(𝑡), given by (18)–(19), from the properties of the input
𝑌 (𝑡). Now, we shall rigorously obtain analogous properties for �̇�(𝑡) by retaining the same hypotheses for 𝑌 (𝑡) assumed in Section 3.1, i.e., it is a
stationary zero-mean Gaussian process.

On the one hand, applying the mean-square Leibniz’s rule stated in Proposition 9 to the first expression of 𝑋(𝑡) given in (18), one gets

�̇�(𝑡) = ℎ(0)𝑌 (𝑡) +
𝑡
ℎ′(𝑡 − 𝑢)𝑌 (𝑢)d𝑢 =

𝑡
ℎ′(𝑡 − 𝑢)𝑌 (𝑢)d𝑢, (40)
∫−∞ ∫−∞
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since ℎ(0) = 0 (see (19)). Notice that ℎ(𝑡) is not differentiable at 𝑡 = 0 since

ℎ′(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

exp(−𝛽e𝑡)

⎛

⎜

⎜

⎜

⎜

⎝

cos
(

√

𝑘2e − 𝛽2e 𝑡
)

−
𝛽e sin

(

√

𝑘2e − 𝛽2e 𝑡
)

√

𝑘2e − 𝛽2e

⎞

⎟

⎟

⎟

⎟

⎠

, if 𝑡 > 0,

0, if 𝑡 < 0.

(41)

However, Leibniz’s rule is also valid when the partial derivative exists almost everywhere and does not require that it be continuous [49]. Then,
pplying Proposition 6, one deduces the following key property that will be extensively used later

𝛤𝑋,�̇� (𝑡, 𝑡) = E{𝑋(𝑡)�̇�(𝑡)} = 0, (42)

n other words, the stochastic processes given by (18) and (40), where ℎ(𝑡) is defined in (19), are orthogonal or uncorrelated. Even more, as 𝑌 (𝑡)
s Gaussian then, by Proposition 5, �̇�(𝑡) is also Gaussian, so by Proposition 2, 𝑋(𝑡) and �̇�(𝑡) are independent. Then, applying Proposition 8 to
xpression (40), one deduces that �̇�(𝑡) is Gaussian too. Furthermore, as E {𝑌 (𝑡)} = 0, then taking in (40) the expectation operator and applying
roposition 7, one obtains

E{�̇�(𝑡)} = ∫

𝑡

−∞
ℎ′(𝑡 − 𝑢)E {𝑌 (𝑢)} d𝑢 = 0. (43)

rom the second expression of �̇�(𝑡) given in (40) and formula (13) in Proposition 7, the correlation function of �̇�(𝑡) can be calculated as follows

𝛤�̇� (𝑡1, 𝑡2) = ∫

𝑡1

−∞ ∫

𝑡2

−∞
ℎ′(𝑡1 − 𝑢1)ℎ′(𝑡2 − 𝑢2)𝛤𝑌 (𝑢1, 𝑢2)d𝑢1d𝑢2

= ∫

𝑡1

−∞ ∫

𝑡2

−∞
ℎ′(𝑡1 − 𝑢1)ℎ′(𝑡2 − 𝑢2)𝛤𝑌 (𝑢1 − 𝑢2)d𝑢1d𝑢2,

(44)

where in the last step we have utilized that 𝑌 (𝑡) is a wide-sense stationary stochastic process. As a consequence, the variance (and second-order
oment of �̇�(𝑡) since E{�̇�(𝑡)} = 0) is given by

𝜎2
�̇�
= V{�̇�(𝑡)} = 𝛤�̇� (𝑡, 𝑡) = ∫

𝑡

−∞ ∫

𝑡

−∞
ℎ′(𝑡 − 𝑢1)ℎ′(𝑡 − 𝑢2)𝛤𝑌 (𝑢1 − 𝑢2)d𝑢1d𝑢2 = E{(�̇�(𝑡))2}. (45)

Using the change of variable: 𝑣1 = 𝑡 − 𝑢1 and 𝑣2 = 𝑡 − 𝑢2, observe that (45) writes

𝜎2
�̇�
= ∫

0

−∞ ∫

0

−∞
ℎ′(𝑣1)ℎ′(𝑣2)𝛤𝑌 (𝑣2 − 𝑣1)(−d𝑣1)(−d𝑣2) = ∫

∞

0 ∫

∞

0
ℎ′(𝑣1)ℎ′(𝑣2)𝛤𝑌 (𝑣2 − 𝑣1)d𝑣1d𝑣2, (46)

showing, as expected, that the variance does not depend on 𝑡 since �̇� is a stationary stochastic process.
Summarizing up, if 𝑌 (𝑡) is a stationary zero-mean Gaussian process with a given correlation function, 𝛤𝑌 (𝜏), then the stochastic process �̇�(𝑡),

defined by (40) and (19), is also a stationary zero-mean Gaussian process which is orthogonal (or uncorrelated) to the 𝑋(𝑡) defined in (18)–(19).
Observe that, even more, 𝑋(𝑡) and �̇�(𝑡) are independent because both are Gaussian.

3.3. Stochastic equivalent linearization technique

Now, we detail how to perform the above-mentioned linear approximation. For this goal, let us consider the auxiliary equation

�̈�(𝑡) + 2𝛽e�̇�(𝑡) + 𝑘2e𝑋(𝑡) = 𝑌 (𝑡) +𝑁(𝑡), (47)

where the stochastic process

𝑁(𝑡) = 2𝛽e�̇�(𝑡) + 𝑘2e𝑋(𝑡) − 𝑔(𝑋(𝑡), �̇�(𝑡)) (48)

is the error function of the linear approximation. If we use the usual mean-square error to minimize this function, then 𝛽e and 𝑘2e must be chosen
such that

𝑒(𝑡) ∶= E
{

(𝑁(𝑡))2
}

= E
{

(

2𝛽e�̇�(𝑡) + 𝑘2e𝑋(𝑡) − 𝑔(𝑋(𝑡), �̇�(𝑡))
)2} (49)

is minimized for 𝑡 > 0. To perform the minimization, we first calculate the first and second-order derivatives of 𝑒(𝑡) w.r.t. 𝛽e and 𝑘2e , and we then
impose the well-known conditions for minimizing a function. This way, one obtains

𝜕𝑒(𝑡)
𝜕𝛽e

= 4E
{

2𝛽e(�̇�(𝑡))2 + 𝑘2e𝑋(𝑡)�̇�(𝑡) − �̇�(𝑡)𝑔(𝑋(𝑡), �̇�(𝑡))
}

= 0,

𝜕𝑒(𝑡)
𝜕𝑘2e

= 2E
{

𝑘2e (𝑋(𝑡))2 + 2𝛽e𝑋(𝑡)�̇�(𝑡) −𝑋(𝑡)𝑔(𝑋(𝑡), �̇�(𝑡))
}

= 0,

𝜕2𝑒(𝑡)
𝜕𝛽2e

= 8E{(�̇�(𝑡))2} > 0,

𝜕2𝑒(𝑡)
𝜕(𝑘2e )2

= 2E
{

(𝑋(𝑡))2
}

> 0,

𝜕2𝑒(𝑡)
2

=
𝜕2𝑒(𝑡)

2
= 4E{𝑋(𝑡)�̇�(𝑡)}.

(50)
𝜕𝑘e𝜕𝛽e 𝜕𝛽e𝜕𝑘e
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Therefore,

𝜕2𝑒(𝑡)
𝜕𝛽2𝑒

𝜕2𝑒(𝑡)
𝜕(𝑘2𝑒 )2

−

[

𝜕2𝑒(𝑡)
𝜕𝑘2e𝜕𝛽e

]2

= 16
[

E
{

(𝑋(𝑡))2
}

E{(�̇�(𝑡))2} − (E{𝑋(𝑡)�̇�(𝑡)})2
]

≥ 0.

(51)

To justify the last inequality, we utilize that 𝑋(𝑡) is zero-mean stationary Gaussian process (see Section 3.1), so by Proposition 6, 𝑋(𝑡) and �̇�(𝑡) are
ndependent. Now, applying Proposition 1(ii) with 𝑍1(𝑡) = 𝑋(𝑡), 𝑍2(𝑡) = �̇�(𝑡), 𝑓 (𝑢) = 𝑔(𝑢) = 𝑢2, we can guarantee that (𝑋(𝑡))2 and (�̇�(𝑡))2 are also
ndependent and hence E

{

(𝑋(𝑡))2
}

E{(�̇�(𝑡))2} = E{(𝑋(𝑡))2(�̇�(𝑡))2}. As a consequence,

E
{

(𝑋(𝑡))2
}

E{(�̇�(𝑡))2} − (E{𝑋(𝑡)�̇�(𝑡)})2

= E{(𝑋(𝑡))2(�̇�(𝑡))2} − (E{𝑋(𝑡)�̇�(𝑡)})2 = V
{

𝑋(𝑡)�̇�(𝑡)
}

≥ 0,

where V {⋅} denotes the variance, which by definition is non-negative.
Then, according to the first two equations above and using the linearity of the expectation operator E{⋅}, it is sufficient that 𝛽e and 𝑘2e solve

the following system of algebraic equations
{

2𝛽eE{(�̇�(𝑡))2} + 𝑘2eE{𝑋(𝑡)�̇�(𝑡)} − E{�̇�(𝑡)𝑔(𝑋(𝑡), �̇�(𝑡))} = 0,

𝑘2eE{(𝑋(𝑡))2} + 2𝛽eE{𝑋(𝑡)�̇�(𝑡)} − E{𝑋(𝑡)𝑔(𝑋(𝑡), �̇�(𝑡))} = 0,
(52)

in order to the error function 𝑒(𝑡), defined in (49), be minimized. Notice that in the particular case that 𝑋(𝑡) is given by (18)–(19), where 𝑌 (𝑡) is a
mean-square differentiable zero-Gaussian stationary Gaussian process, these two conditions simplify as

{

2𝛽eE{(�̇�(𝑡))2} − E{�̇�(𝑡)𝑔(𝑋(𝑡), �̇�(𝑡))} = 0,

𝑘2eE{(𝑋(𝑡))2} − E{𝑋(𝑡)𝑔(𝑋(𝑡), �̇�(𝑡))} = 0,
(53)

because of (42).

Remark 1. Observe that in Sections 3.1 and 3.2 we have deduced that 𝑋(𝑡) and �̇�(𝑡) are stationary zero-mean independent Gaussian process, so
its joint probability density function is given by

𝑓𝑋(𝑡),�̇�(𝑡)(𝑥, �̇�) =
1

2𝜋𝜎2𝑋𝜎
2
�̇�

exp

(

−1
2

(

𝑥2

𝜎2𝑋
+ �̇�2

𝜎2
�̇�

))

= 𝑓𝑋(𝑡)(𝑥)𝑓�̇�(𝑡)(�̇�) (54)

where

𝑓𝑋(𝑡)(𝑥) =
1

√

2𝜋𝜎2𝑋
exp

(

− 𝑥2

2𝜎2𝑋

)

, 𝑓�̇�(𝑡)(�̇�) =
1

√

2𝜋𝜎2
�̇�

exp

(

− �̇�2

2𝜎2
�̇�

)

. (55)

Then, the expectations involved in the Eq. (53) can be calculated in terms of 𝑓𝑋(𝑡)(𝑥), 𝑓�̇�(𝑡)(�̇�) and 𝑓𝑋(𝑡),�̇�(𝑡)(𝑥, �̇�):

E{(𝑋(𝑡))2} = ∫

∞

−∞
𝑥2𝑓𝑋(𝑡)(𝑥) d𝑥, E{(�̇�(𝑡))2} = ∫

∞

−∞
�̇�2𝑓�̇�(𝑡)(�̇�) d�̇�,

E{𝑋(𝑡)𝑔(𝑋(𝑡), �̇�(𝑡))} = ∫

∞

−∞ ∫

∞

−∞
𝑥𝑔(𝑥, �̇�)𝑓𝑋(𝑡),�̇�(𝑡)(𝑥, �̇�) d𝑥d�̇�,

and

E{�̇�(𝑡)𝑔(𝑋(𝑡), �̇�(𝑡))} = ∫

∞

−∞ ∫

∞

−∞
�̇�𝑔(𝑥, �̇�)𝑓𝑋(𝑡),�̇�(𝑡)(𝑥, �̇�) d𝑥d�̇�.

However, observe that these expectations depend ultimately on 𝛽e and 𝑘2e . Indeed, 𝑓𝑋(𝑡)(𝑥) and 𝑓�̇�(𝑡)(�̇�) depend on 𝜎2𝑋 and 𝜎2
�̇�

(see (55)) that in
turn depend on ℎ(𝑡) (see expressions (22) and (46), respectively), and, ℎ(𝑡) is a function of 𝛽e and 𝑘2e (see (19)). Therefore, the parameters 𝛽e and
𝑘2e could be theoretically calculated using iterative methods to the system of Eq. (53). However, it seems to be an unfeasible approach in practice
since the resulting system is highly nonlinear in both unknowns, 𝛽e and 𝑘2e , which makes extremely difficult their computation. In the next section,
we develop an alternative approach to circumvent this drawback.

4. Random oscillators where nonlinearity affects the spatial position

In this section, we study the class of random nonlinear oscillators formulated in (1)–(2) for the case that

𝑓 (𝑋(𝑡)) =
𝑁
∑

𝑛=1
𝑎𝑛(𝑋(𝑡))𝑛. (56)

Notice that when we take 𝑎3 ≠ 0 and 𝑎𝑛 = 0, 𝑛 ≠ 3, one gets the Duffing oscillator. We will apply the results obtained in the foregoing section to
study the class of random oscillators formulated in (1)–(2), where 𝑓 (𝑋(𝑡)) is given in (56). So, according to (2),

𝑔(𝑋(𝑡), �̇�(𝑡)) = 2𝛽�̇�(𝑡) + 𝜔2
0

[

𝑋(𝑡) + 𝜖
𝑁
∑

𝑛=1
𝑎𝑛(𝑋(𝑡))𝑛

]

. (57)

First, we calculate the constants 𝛽e and 𝑘2e , with 𝛽e < 𝑘2e (underdamped case), to determine the equivalent linear oscillator (17). We know, from
our previous analysis, that 𝛽e and 𝑘2e must solve the algebraic system of Eq. (53) with 𝑔(𝑋(𝑡), �̇�(𝑡)) given in (57). So, from the first equation of (53)
using the linearity of the expectation operator, one obtains

2𝛽eE{(�̇�(𝑡))2} − 2𝛽E{(�̇�(𝑡))2} − 𝜖𝜔2
0

𝑁
∑

𝑎𝑛E{(𝑋(𝑡))𝑛�̇�(𝑡)} = 0. (58)

𝑛=0

10 
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In Section 3.2 we have proven that 𝑋(𝑡) and �̇�(𝑡) are independent stochastic processes, so by Proposition 1(ii) with 𝑓 (𝑢) = 𝑢𝑛 and 𝑔(𝑢) = 𝑢, it is
guaranteed that (𝑋(𝑡))𝑛 and �̇�(𝑡) are also independent and E{(𝑋(𝑡))𝑛�̇�(𝑡)} = E{(𝑋(𝑡))𝑛}E{�̇�(𝑡)}. As 𝑋(𝑡) is Gaussian (see Section 3.1), then all its
moments are finite, i.e., E{(𝑋(𝑡))𝑛} < ∞, and then using that by Section 3.2, E{�̇�(𝑡)} = 0, one gets E{(𝑋(𝑡))𝑛�̇�(𝑡)} = 0. Using this fact, Eq. (58)
writes

2(𝛽e − 𝛽)E{(�̇�(𝑡))2} = 0, (59)

hence

𝛽e = 𝛽. (60)

This result is consistent (and intuitive) since �̇�(𝑡) appears linearly in (57) and its coefficient matches the corresponding to the linear model (17)
when 𝛽e = 𝛽.

Now, we substitute (57) in the second equation of (53) and apply the linearity of the expectation operator. This leads to

𝑘2eE{(𝑋(𝑡))2} − 2𝛽E{𝑋(𝑡)�̇�(𝑡)} − 𝜔2
0E{(𝑋(𝑡))2} − 𝜖𝜔2

0

𝑁
∑

𝑛=1
𝑎𝑛E{(𝑋(𝑡))𝑛+1} = 0.

The orthogonality of 𝑋(𝑡) and �̇�(𝑡), deduced in (42), simplifies the previous expression as

(𝑘2e − 𝜔2
0)E{(𝑋(𝑡))2} − 𝜖𝜔2

0

𝑁
∑

𝑛=1
𝑎𝑛E{(𝑋(𝑡))𝑛+1} = 0.

Now, using the fact that the odd moments of a zero-mean Gaussian random variable are zero (see Proposition 4), the foregoing relation writes

(𝑘2e − 𝜔2
0 − 𝜖𝜔2

0𝑎1)E{(𝑋(𝑡))2} − 𝜖𝜔2
0

⌊

𝑁+1
2 ⌋

∑

𝑛=2
𝑎2𝑛−1E{(𝑋(𝑡))2𝑛} = 0.

e now substitute the explicit values of the even moments of a zero-mean Gaussian random variable (see Proposition 4) and utilize the
ime-independent notation E{(𝑋(𝑡))2} = 𝜎2𝑋 (since 𝑋(𝑡) is stationary and E{𝑋(𝑡)} = 0),

(𝑘2e − 𝜔2
0 − 𝜖𝜔2

0𝑎1)𝜎
2
𝑋 − 𝜖𝜔2

0

⌊

𝑁+1
2 ⌋

∑

𝑛=2
𝑎2𝑛−1(2𝑛 − 1)!!(𝜎2𝑋 )

𝑛 = 0.

inally, solving for 𝑘2e , one obtains the value of the second parameter of the linearized model (47)

𝑘2e = (1 + 𝜖𝑎1)𝜔2
0 + 𝜖𝜔2

0

⌊

𝑁+1
2 ⌋

∑

𝑛=2
𝑎2𝑛−1(2𝑛 − 1)!!(𝜎2𝑋 )

𝑛−1, (61)

which can be rewritten

𝑘2e = 𝜔2
0

⎡

⎢

⎢

⎢

⎣

1 + 𝜖
⌊

𝑁+1
2 ⌋

∑

𝑛=1
𝑎2𝑛−1(2𝑛 − 1)!!(𝜎2𝑋 )

𝑛−1

⎤

⎥

⎥

⎥

⎦

, (62)

here 𝜎2𝑋 is given in (22), which in turns is defined in terms of the function ℎ defined in (19). The expression (62) for 𝑘2e admits the following
ntuitive interpretation: 𝑘2e is the undamped angular frequency, 𝜔2

0, plus a deviation whose size is proportional to the perturbation parameter 𝜖.
uch deviation depends on ultimately the correlation of the input 𝑌 (𝑡).

emark 2. We here discuss the form chosen in (56) for the function 𝑓 . It might be natural to start the summation in (56) from 𝑛 = 0 instead of
= 1; however, in such a case, the input would violate the condition of having a null expectation. Indeed, if 𝑓 (𝑋(𝑡)) =

∑𝑁
𝑛=0 𝑎𝑛(𝑋(𝑡))𝑛, then the

onlinear oscillator (1)–(2) writes

�̈�(𝑡) + 2𝛽�̇�(𝑡) + 𝜔2
0

[

𝑋(𝑡) + 𝜖
𝑁
∑

𝑛=0
𝑎𝑛(𝑋(𝑡))𝑛

]

= 𝑌 (𝑡), (63)

r equivalently,

�̈�(𝑡) + 2𝛽�̇�(𝑡) + 𝜔2
0

[

𝑋(𝑡) + 𝜖
𝑁
∑

𝑛=1
𝑎𝑛(𝑋(𝑡))𝑛

]

= 𝑌 (𝑡)

here

𝑌 (𝑡) ∶= 𝑌 (𝑡) − 𝜖𝜔2
0𝑎0. (64)

Then,

E{𝑌 (𝑡)} = E{𝑌 (𝑡)} − 𝜖𝜔2
0𝑎0 = −𝜖𝜔2

0𝑎0 ≠ 0,

since E{𝑌 (𝑡)} = 0. So, the previous development cannot be applied unless 𝑎0 = 0 which leads to E{𝑌 (𝑡)} = 0. More broadly, the previous development
can be applied to any analytic function 𝑓 (𝑧), such that 𝑓 (0) = 0, by taking (56) as the truncation, at an arbitrary order 𝑁 , of its Taylor expansion,

d𝑛𝑓 (𝑧)
| .
so 𝑎𝑛 = d𝑧𝑛 𝑧=0

11 
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Example 1. We determine the coefficients 𝛽e and 𝑘2e of the linear model (17) that approximates the nonlinear oscillator (1)–(2) in the case that
(𝑥) = 𝑥3 that corresponds to the Duffing oscillator. Therefore, in accordance with (60) and (62),

𝛽e = 𝛽, 𝑘2e = 𝜔2
0
[

1 + 3𝜖
(

𝜎2𝑋
)]

. (65)

hese values for 𝛽e and 𝑘2e will be utilized later in the first part of Example 3.

xample 2. We determine the coefficients 𝛽e and 𝑘2e of the linear model (17) that approximates the nonlinear oscillator (1)–(2) in the case that
(𝑥) = sin(𝑥). For it, we approximate 𝑓 (𝑥) via its Taylor expansion truncated at order 𝑁 = 5. Then, observe that this approximation corresponds to
xpression (56) with 𝑁 = 5:

𝑓 (𝑥) =
𝑁
∑

𝑛=1
𝑎𝑛𝑥

𝑛 =
⌊

𝑁+1
2 ⌋

∑

𝑛=1
𝑎2𝑛−1𝑥

2𝑛−1, 𝑎2𝑛−1 =
(−1)𝑛

(2𝑛 − 1)!
.

herefore, in accordance with (60) and (62),

𝛽e = 𝛽,

𝑘2e = 𝜔2
0

[

1 + 𝜖
3
∑

𝑛=1
𝑎2𝑛−1(2𝑛 − 1)!!(𝜎2𝑋 )

𝑛−1

]

= 𝜔2
0

[

1 + 𝜖
(

1 − 1
2
𝜎2𝑋 + 1

8
(𝜎2𝑋 )

2
)]

.
(66)

hese values for 𝛽e and 𝑘2e will be utilized later in the second part of Example 3.

.1. Approximating the variance

In Remark 1, we explained that 𝜎2𝑋 depends on 𝛽e and 𝑘2e , so the expression given in (62) for 𝑘2e is not completely useful in practice since in
any cases it may result in an equation very difficult to solve since 𝑘2e could appear in a highly nonlinear way. In this section, we present an

alternative to calculate reliable approximations of (62). To this end, we will take advantage of the fact that if 𝑌 (𝑡) is wide-sense stationary then
𝑋(𝑡) does (see Section 3.1), and the relationship between the variance of 𝑋(𝑡), 𝜎2𝑋 , and the spectral density function of 𝑋(𝑡) that ultimately depends
n the spectral density function of the stochastic input 𝑌 (𝑡).

Applying the general result (8) to the wide-sense stationary process 𝑍 = 𝑋(𝑡) (for which E {𝑋(𝑡)} = 0, so its variance coincides with its
econd-order moment), and taking into account (39), one gets

𝜎2𝑋 = E
{

(𝑋(𝑡))2
}

= ∫

∞

0
𝑆𝑋𝑋 (𝑤)d𝑤 = ∫

∞

0
|�̂�(𝑤)|−2𝑆𝑌 𝑌 (𝑤)d𝑤, (67)

where �̂�(𝑤) is given in (38). As 𝛽e = 𝛽 (see (60)), �̂�(𝑤) only depends on 𝑘2e ,

�̂�(𝑤) = 1
𝑘2e −𝑤2 + 2i𝑤𝛽

, (68)

and (67) writes

𝜎2𝑋 = ∫

∞

0

1
|𝑘2e −𝑤2 + 2i𝑤𝛽|2

𝑆𝑌 𝑌 (𝑤)d𝑤. (69)

Substituting this value in (62), one arrives at the following nonlinear equation in 𝑘2e

𝑘2e = 𝜔2
0

⎡

⎢

⎢

⎢

⎣

1 + 𝜖
⌊

𝑁+1
2 ⌋

∑

𝑛=1
𝑎2𝑛−1(2𝑛 − 1)!!

(

∫

∞

0

𝑆𝑌 𝑌 (𝑤)

|𝑘2e −𝑤2 + 2i𝑤𝛽|2
d𝑤

)𝑛−1⎤
⎥

⎥

⎥

⎦

, (70)

which is completely defined once a spectral density function, 𝑆𝑌 𝑌 (𝑤), of the input 𝑌 (𝑡), has been given. As solving Eq. (70) for 𝑘2e may become
hallenging, one can check whether the simplest approximation consisting of approximating �̂�(𝑤) given in (68) by

�̂�0(𝑤) = 1
𝑤2

0 −𝑤2 + 2i𝑤𝛽
, (71)

that is the inverse of the frequency response function of the linear system resulting from (1)–(2) when 𝜖 = 0. In such a case, the variance given in
(69) is approximated by the following constant (recall that both 𝑤2

0 and 𝛽 are given constants)

𝜎2𝑋0
= ∫

∞

0

1

|𝑤2
0 −𝑤2 + 2i𝑤𝛽|2

𝑆𝑌 𝑌 (𝑤)d𝑤 = ∫

∞

0

1
(𝑤2

0 −𝑤2)2 + 4𝑤2𝛽2
𝑆𝑌 𝑌 (𝑤)d𝑤. (72)

Example 3. In the setting of Examples 1 and 2, the equivalent linear equations using the approximation (72) are given by

�̈�(𝑡) + 2𝛽�̇�(𝑡) + 𝜔2
0

[

1 + 3𝜖
(

𝜎2𝑋0

)]

𝑋(𝑡) = 𝑌 (𝑡). (73)

and

�̈�(𝑡) + 2𝛽�̇�(𝑡) + 𝜔2
0

[

1 + 𝜖
(

1 − 1
2
𝜎2𝑋0

+ 1
8
(𝜎2𝑋0

)2
)]

𝑋(𝑡) = 𝑌 (𝑡), (74)

respectively. The Eq. (73) will used later in Example 4 while Eq. (74) will used in Examples 5 and 6.
12 
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5. Approximating the PDF via the maximum entropy principle

In this section, we explain how we can take advantage of the approximations of the first statistical moments of the steady state to compute
approximations of its PDF. To address this goal, we will apply the principle of maximum entropy (PME) based on the Shannon entropy [42]. It is
clear that the knowledge of the PDF, 𝑓𝑍 (𝑧), of a random variable, say 𝑍, is very advantageous since it permits calculating any statistical moments
E {𝑍𝑚} = ∫ ∞

−∞ 𝑧𝑚𝑓𝑍 (𝑧) d𝑧, 𝑚 = 1, 2,…, provided they exist as well as calculating confidence intervals at any specific confidence level, say 𝛼 ∈ (0, 1),
ia 1− 𝛼 = P

{

𝜇𝑍 − 𝑘𝜎𝑍 ≤ 𝑍 ≤ 𝜇𝑍 + 𝑘𝜎𝑍
}

= ∫ 𝜇𝑍+𝑘𝜎𝑍
𝜇𝑍−𝑘𝜎𝑍

𝑓𝑍 (𝑧)d𝑧, where 𝜇𝑍 and 𝜎𝑍 denote the expectation and standard deviation of 𝑍, respectively.
Furthermore, the PDF permits calculating the probability that 𝑍 lies within any interval of interest, P {𝑎 ≤ 𝑍 ≤ 𝑏} = ∫ 𝑏

𝑎 𝑓𝑍 (𝑧)d𝑧.
The principle of maximum entropy (PME) is a technique for assigning a probability density function (PDF) to a random variable in a way that

remains consistent with the available information without introducing unwarranted assumptions. This information typically includes values like
the domain, mean, variance, etc., which are gathered from sampling the random variable. In simple terms, PME seeks a PDF that represents the
highest level of uncertainty and the minimal amount of information. A PDF with lower entropy, even if it satisfies the same constraints, would
imply more information and thus make stronger claims than intended. Therefore, the PDF with the highest entropy, given the constraints, is the
most unbiased in terms of its predictions [50,51].

To determine the PDF, 𝑓𝑍 (𝑧), of a random variable with domain (𝑎, 𝑏) one maximizes the Shannon’s entropy defined by the functional

S
{

𝑓𝑍 (𝑧)
}

= −∫

𝑏

𝑎
𝑓𝑍 (𝑧) log

(

𝑓𝑍 (𝑧)
)

d𝑧, (75)

subject to the following 𝑀 + 1 restrictions:

∫

𝑏

𝑎
𝑓𝑍 (𝑧)d𝑧 = 1, (76)

E {𝑍𝑛} = ∫

𝑏

𝑎
𝑧𝑛𝑓𝑍 (𝑧)d𝑧 = 𝑚𝑛 𝑛 = 1,… ,𝑀. (77)

Condition (76) guarantees 𝑓𝑍 (𝑧) is a PDF, and the next 𝑀 conditions given in (77) impose that the sampled moments, 𝑚𝑛, match the theoretical
moments, E {𝑍𝑛}. In our setting, the values 𝑚𝑛 are obtained by the stochastic equivalent linearization method. To maximize S

{

𝑓𝑍 (𝑧)
}

subject to
(76)–(77), one applies the Lagrange multipliers method by defining the auxiliary function

L
{

𝑓𝑍 , 𝜆0,… , 𝜆𝑀
}

= S
{

𝑓𝑍 (𝑧)
}

+
𝑀
∑

𝑛=0
𝜆𝑛

[

𝑚𝑛 − ∫

𝑏

𝑎
𝑧𝑛𝑓𝑍 (𝑧)d𝑧

]

, (78)

where 𝑚0 = 1. Then, using Variational Calculus, it can be seen that [50]

𝑓𝑍 (𝑧) = 1[𝑎,𝑏] exp

(

−
𝑀
∑

𝑛=0
𝜆𝑖𝑧

𝑛

)

, (79)

where 1[𝑎,𝑏] denotes the characteristic function of the interval [𝑎, 𝑏]. In practice, the Lagrange multipliers 𝜆𝑛, 𝑛 = 0, 1,… ,𝑀 , can be calculated
solving numerically the system of nonlinear equations (76)–(77). In Examples 4–6, the Mathematica© FindRoot function will be used to solve
numerically this integro-algebraic system (76)–(77) [52].

As shall be specified in the examples, once the values of 𝛽e and 𝑘2e have been calculated, we will apply the PME taking [𝑎, 𝑏] = [𝜇𝑍−𝑘𝜎𝑍 , 𝜇𝑍+𝑘𝜎𝑍 ]
ith 𝑘 = 10 and different values of 𝑀 until we observe that two consecutive approximations are very close. Observe that the application of the
ME for different values of 𝑀 is feasible since we have previously obtained the explicit information about the moments of 𝑍 ≡ 𝑋(𝑡) (see (23)).
inally, notice that, according to the Bienaymé-Chebyshev inequality [53], taking 𝑘 = 10 for the domain of the PDF, we guarantee the probability
f values lying within the interval [𝜇𝑍 − 10𝜎𝑍 , 𝜇𝑍 + 10𝜎𝑍 ], which is called the coverage, is at least 99% regardless the distribution of 𝑍.

. Numerical examples

This section is devoted to illustrating the theoretical findings obtained in previous sections through three examples. In all the examples we
onsider Eqs. (1)–(2) with parameters 𝛽 = 1

20 = 0.05 and 𝜔2
0 = 1, i.e.,

�̈�(𝑡) + 1
10

�̇�(𝑡) +𝑋(𝑡) + 𝜖𝑓 (𝑋(𝑡)) = 𝑌 (𝑡), 𝑡 > 0, (80)

where 𝑓 (𝑋(𝑡)) is given (or can be approximated) by (56) and the excitation 𝑌 (𝑡) is a stationary zero-mean Gaussian stochastic process that will
be defined in each one of the examples. Table 1 shows the choice of 𝑓 (𝑋(𝑡)) and its approximation, if any, together with 𝑌 (𝑡) in each example.
Specifically, Example 4 is devoted to studying a Duffing oscillator that corresponds to the choice 𝑓 (𝑥) = 𝑥3. As an extension of this model, in
Examples 5 and 6, the function involving nonlinear terms will be 𝑓 (𝑥) = sin(𝑥), that we approximate (as in Example 2) via its Taylor expansion
truncated at order 𝑁 = 5, 𝑓 (𝑥) ≈ 𝑥 − 𝑥3

3! +
𝑥5

5! , in order to use the previous developments when the nonlinear term is given by (56).
Finally, the excitation term 𝑌 (𝑡) has been chosen for Examples 4 and 5 as 𝑌 (𝑡) = 𝜉(𝑡), a Gaussian white-noise (WN) process with mean zero. The

orrelation function of 𝑌 (𝑡) is

𝛤𝑌 𝑌 (𝜏) = 𝜋𝑆0𝛿(𝜏), (81)

where 𝛿(𝜏) is the Dirac delta function and 𝑆0 =
1

200𝜋 is the noise power. This type of random noise has been extensively used in the literature since
he earliest contributions [26]. The power spectral density of 𝑌 (𝑡) is obtained from Eqs. (28) and (81), and it is given by

𝑆𝑌 𝑌 (𝜔) = 𝑆0, 𝜔 ∈ (−∞,∞). (82)

We have considered the Ornstein–Uhlenbeck (OU) process to play the role of the external source, 𝑌 (𝑡), in Example 6. This process is defined as
he stationary solution of the Langevin equation

𝑑𝑌 (𝑡)
+ 𝛼 𝑌 (𝑡) = 𝜎

𝑑𝑊 (𝑡)
, 𝛼 > 0, (83)
𝑑𝑡 1 2 𝑑𝑡 1
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Table 1
Specification of the data 𝑓 (𝑋(𝑡)), its polynomial, representation according to (56), and the excitation term
𝑌 (𝑡) to Eq. (80) in the Examples 4–6 WN and OU stand for white noise and Ornstein–Uhlenbeck processes,
respectively.

𝑓 (𝑋(𝑡))
∑𝑁

𝑛=1 𝑎𝑛(𝑋(𝑡))𝑛 𝑌 (𝑡)

Example 4 (𝑋(𝑡))3 (𝑋(𝑡))3 WN

Example 5 sin(𝑋(𝑡)) 𝑋(𝑡) − (𝑋(𝑡))3

3!
+ (𝑋(𝑡))5

5!
WN

Example 6 sin(𝑋(𝑡)) 𝑋(𝑡) − (𝑋(𝑡))3

3!
+ (𝑋(𝑡))5

5!
OU

where 𝑊 (𝑡) is the Wiener process [3]. Notice that 𝛼1 > 0 is a necessary and sufficient condition to have a stationary solution. In particular, we
onsider the following values for the parameters 𝜎2 = 0.01 and 𝛼1 = 0.5, so the existence of the steady state solution is ensured. The correlation
unction of 𝑌 (𝑡) is

𝛤𝑌 𝑌 (𝜏) = 𝜎22 exp(−𝛼1|𝜏|). (84)

he power spectral density of 𝑌 (𝑡) is obtained from Eqs. (28) and (84), and it is given by

𝑆𝑌 𝑌 (𝜔) =
2𝜎22𝛼1

𝜋(𝜔2 + 𝛼21 )
. (85)

Notice that the two types of excitations, WN and OU, playing the role of 𝑌 (𝑡) are well-known wide-sense stationary zero-mean Gaussian stochastic
rocesses [24, p. 33–71]. So, the stochastic perturbation method and the equivalent linearization technique can be applied to study the probabilistic
roperties of the steady state of model (80) using the approach exhibited in previous sections.

The organization of the examples is as follows. We compute the mean and standard deviation at the steady state using the perturbation method
or different values of the perturbation parameter 𝜖. It is well known that the perturbation method is only applicable for small values of 𝜖. We
rovide the maximum value of 𝜖 where the method can be used. Solutions deteriorate drastically when we are near this maximum value.

In each one of the examples, we shall take advantage of the stochastic equivalent linearization technique to obtain reliable approximations
f the aforementioned statistics of the steady state for greater values of the 𝜖. These results are compared with those calculated by the Kloeden–
laten–Schurz numerical method, an explicit order 1.5 strong numerical scheme for solving stochastic differential equations [54, Sec. 4.2 B]. This
umerical method is implemented in Mathematica©’s ItoProcess function with the Method ‘‘KloedenPlatenSchurz’’ option. Notice
hat we are interested in obtaining the probabilistic properties of the steady state in each example. As the foreign numerical method constructs
scillatory solutions, we obtain the solution in a time interval in which the solution is stabilized. An interval where the solution has stabilized is
etermined by calculating the mean with the smallest number of simulations, 103, which is the worst case. It is also checked that the standard
eviation has stabilized in that interval. When a larger number of simulations are performed, it is found that in all cases the working interval
onsidered is adequate. Therefore, in addition to calculating the mean and standard deviation in that interval, it is also important to provide an
stimate of the error by calculating the standard deviation. To check the efficiency of the numerical method, solutions have been obtained with
03, 104, 105 and 106 simulations. In Examples 5 and 6, we consider the exact nonlinear term 𝑓 (𝑥) = sin(𝑥). Results obtained applying the different
ethods are collected in Tables 2–3 (Example 4), Tables 8–9 (Example 5) and Tables 14–15 (Example 6).

Once we have verified that good results are obtained with the stochastic equivalent linearization technique, we proceed to calculate the
orrelation function for different values of the perturbation parameter 𝜖. In each example, we provide their explicit expressions, and we also
how their graphical representation in Fig. 1 (Example 4), Fig. 5 (Example 5) and Fig. 9 (Example 6).

In addition, as shown in the previous theoretical study, we can calculate the moments of order 𝑀 for each one of the three examples. With
his key information, we construct approximations to the PDF using the PME taking 𝑀 = 3, 5 and for different values of 𝜖, including those where
erturbation cannot be used to better illustrate the limitations of this method. Results corresponding to the application of the PME technique,
or 𝑀 = 3, 5, are given in Tables 5–6 (Example 4), Tables 11–12 (Example 5) and Tables 16–17 (Example 6). The corresponding PDFs, for

= 5, are shown in Figs. 3–4 (Example 4), Figs. 7–8 (Example 5) and Figs. 10–11 (Example 6). The PDFs corresponding to 𝑀 = 3 are very
imilar, as can be seen when we measure the error using the 𝐿1-norm by comparing the PDFs calculated from different moments. The results
f the corresponding errors are given in Table 7 (Example 4), Table 13 (Example 5) and Table 18 (Example 6). We have also compared the
esults obtained for the approximation of the PDF using the PME with 𝑀 = 7 for the first value of 𝜖 computed in each example where the

stochastic perturbation method cannot be used. The results are shown in Table 4 (Example 4), Table 10 (Example 5) and Table 19 (Example 6),
and Fig. 2 (Example 4), Fig. 6 (Example 5) and Fig. 12 (Example 6). Finally, as indicated at the end of Section 5, in all the examples we have taken
[𝑥1, 𝑥2] = [𝜇𝑋(𝑡) − 10𝜎𝑋(𝑡), 𝜇𝑋(𝑡) + 10𝜎𝑋(𝑡)] as the domain of the PDF when applying the PME to ensure at least 99% coverage.

Example 4. Taking the data from Table 1 corresponding to Duffing oscillators, we are going to apply the stochastic equivalent linearization
method to study model (80). First, we must determine the coefficients 𝛽e and 𝑘2e of the equivalent Eq. (17). From Example 1, these are given by

𝛽e = 𝛽 = 1
20

, 𝑘2e = 𝜔2
0
[

1 + 3𝜖𝜎2𝑋
]

= 1 + 3𝜖𝜎2𝑋 .

otice that

𝛽e =
1
20

< 1 ≤ 1 + 3𝜖𝜎2𝑋 = 𝑘2e , ∀𝜖 ≥ 0,

o the condition corresponding to the underdamped case is fulfilled as was assumed to develop the theoretical study.
Since E {𝑋(𝑡)} = 0, the following step is to compute the variance given by (69) that is approximated by (72), obtaining 𝜎2𝑋0

= 1
40 . Now, it is

easy to check that, using expression (22), the second-order moment is given by

E
{

(𝑋(𝑡))2
}

= V {𝑋(𝑡)} = 1 . (86)

40 + 3𝜖
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Table 2
Comparison of the mean (𝜇𝑋 ) and the standard deviation (𝜎𝑋 ) between stochastic perturbation method,
stochastic equivalent linearization method and Kloeden–Platen–Schurz scheme with 106 simulations (in
the latter method, we also include an estimate of the error by calculating the standard deviation of
the corresponding approximations obtained via the simulations). We have carried out for different 𝜖 ∈
{0, 0.01, 0.05, 0.1, 0.3, 0.5, 1, 2, 3}. The largest value for which the perturbation method works is 𝜖 < 0.33333,
so from that value on, no approximation is included. It is indicated by −. Example 4.
𝜖 Perturbation Equivalent linearization Kloeden–Platen–Schurz

method method 106 simulations

0 𝜇𝑋 0 0 0.000012 ± 0.000150
𝜎𝑋 0.158114 0.158114 0.158193 ± 0.000088

0.01 𝜇𝑋 0 0 0.000013 ± 0.000210
𝜎𝑋 0.155724 0.158055 0.158194 ± 0.000120

0.05 𝜇𝑋 0 0 0, 000000 ± 0.00014
𝜎𝑋 0.145774 0.157818 0.158009 ± 0.000093

0.1 𝜇𝑋 0 0 −0.000004 ± 0.00014
𝜎𝑋 0.132288 0.157524 0.157717 ± 0.000110

0.3 𝜇𝑋 0 0 −0.000032 ± 0.000260
𝜎𝑋 0.05 0.156365 0.156594 ± 0.000110

0.5 𝜇𝑋 0 0 −0.000010 ± 0.000140
𝜎𝑋 – 0.155230 0.155540 ± 0.000099

1.0 𝜇𝑋 0 0 0.000002 ± 0.000130
𝜎𝑋 – 0.152499 0.153282 ± 0.000092

2.0 𝜇𝑋 0 0 0.000007 ± 0.000200
𝜎𝑋 – 0.147442 0.149321 ± 0.000076

3.0 𝜇𝑋 0 0 0.000003 ± 0.000120
𝜎𝑋 – 0.142857 0.146010 ± 0.000077

Table 3
Approximations of the mean (𝜇𝑋 ) and the standard deviation (𝜎𝑋 ) using the Kloeden–Platen–Schurz
numerical scheme with 103, 104 and 105 simulations including an estimate of the error by calculating the
standard deviation of the corresponding approximations obtained via the simulations. We have carried out
for different 𝜖 ∈ {0, 0.01, 0.05, 0.1, 0.3, 0.5, 1, 2, 3}. Example 4.
𝜖 103 simulations 104 simulations 105 simulations

0 𝜇𝑋 0.0001 ± 0.0037 0.00006 ± 0.00088 0.00000 ± 0.00060
𝜎𝑋 0.1571 ± 0.0034 0.1581 ± 0.0011 0.15817 ± 0.00027

0.01 𝜇𝑋 −0.0001 ± 0.0040 0.0001 ± 0.0013 −0.00002 ± 0.00042
𝜎𝑋 0.1587 ± 0.0030 0.15780 ± 0.00070 0.15798 ± 0.00040

0.05 𝜇𝑋 0.0003 ± 0.0053 0.0000 ± 0.0014 −0.00004 ± 0.00072
𝜎𝑋 0.1601 ± 0.0040 0.15700 ± 0.00073 0.15767 ± 0.00036

0.1 𝜇𝑋 0.0000 ± 0.0056 0.0000 ± 0.0013 −0.00002 ± 0.00053
𝜎𝑋 0.1586 ± 0.0029 0.15779 ± 0.00086 0.15766 ± 0.00032

0.3 𝜇𝑋 0.0000 ± 0.0044 0.0000 ± 0.0015 0.00000 ± 0.00052
𝜎𝑋 0.1558 ± 0.0024 0.15686 ± 0.00076 0.15650 ± 0.00034

0.5 𝜇𝑋 0.0002 ± 0.0044 0.0000 ± 0.0018 −0.00002 ± 0.00039
𝜎𝑋 0.1543 ± 0.0030 0.1553 ± 0.0010 0.15543 ± 0.00029

1.0 𝜇𝑋 −0.0003 ± 0.0058 −0.0002 ± 0.0017 0.00000 ± 0.00056
𝜎𝑋 0.1544 ± 0.0032 0.1531 ± 0.0014 0.15296 ± 0.00029

2.0 𝜇𝑋 −0.0001 ± 0.0052 −0.0000 ± 0.0011 0.00001 ± 0.00041
𝜎𝑋 0.1485 ± 0.0032 0.14924 ± 0.00082 0.14933 ± 0.00032

3.0 𝜇𝑋 0.0000 ± 0.0045 0.0000 ± 0.0013 0.00002 ± 0.00050
𝜎𝑋 0.1477 ± 0.0025 0.14585 ± 0.00079 0.14593 ± 0.00029

As mentioned above, to check that the approximations obtained with the stochastic equivalent linearization technique are reliable, we compare
he mean and standard deviation of the approximate solution obtained via the equivalent linearization technique, with those calculated applying
he stochastic perturbation method and the approximations computed by the Kloeden–Platen–Schurz numerical method using different number of
imulations. It is important to mention that the bound for the perturbation parameter, 𝜖, when applying the perturbation method at Example 4

is 𝜖 < 0.33333. The results are collected in Tables 2–3. We can observe that the stochastic perturbation method is valid only for small 𝜖. In this
xample, it is only reliable up to 𝜖 = 0.01. However, with the stochastic equivalent linearization method, we are able to obtain good approximations
ven up to 𝜖 = 3. The higher the number of simulations, the better the approximation obtained at the expense of a higher computational burden.
pecifically, the timing for carrying out 103 simulations is about 1 min, while 106 simulations lasted about 1 day. All computations were performed
n a desktop PC with 64 GB of DDR5 RAM, and i9-13900K CPU. On the other hand, once the theoretical expressions developed in the article
ave been obtained, the calculation of the mean and variance of the steady state of the model by the stochastic equivalent linearization method is
irtually immediate.

Now, applying (21), we obtain the following approximation of the correlation function,

𝛤𝑋𝑋 (𝜏) =
{

𝑓1(𝜏), if 𝜏 ≥ 0, (87)

𝑓2(𝜏), if 𝜏 < 0,
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Fig. 1. Comparison of the correlation function 𝛤𝑋𝑋 (𝜏) of 𝑋(𝑡), given in (87)–(89), for different values of 𝜖. Example 4.

Table 4
Values for 𝜆𝑖, 𝑖 ∈ {0, 1, 2, 3, 4, 5, 6, 7} and the domain

[

𝑥1 , 𝑥2
]

obtained via the PME method, for 𝜖 = 0.3. Example 4.

Order 𝜆0 𝜆1 𝜆2 𝜆3 𝜆4 𝜆5 𝜆6 𝜆7
𝑀 = 3 −1.936626498 0.0 20.45 0.0 – – – –
𝑀 = 5 −1.936626498 0.0 20.449999999 0.0 1.81925 ⋅ 10−9 0.0 – –
𝑀 = 7 −1.936617097 0.0 20.449677961 0.0 −6.69252 ⋅ 10−3 0.0 4.77832 ⋅ 10−2 0.0

Fig. 2. Approximation of PDF, 𝑓𝑋(𝑡)(𝑥), using the PME with 𝑀 = 3, 5, 7 moments for 𝜖 = 0.3. Example 4.

Table 5
Values of 𝜆𝑖, 𝑖 ∈ {0, 1, 2, 3}, and the domain [𝑥1 , 𝑥2] obtained via PME based on the three first moments (𝑀 = 3), for
𝜖 ∈ {0, 0.01, 0.05, 0.1, 0.3, 0.5, 1.0, 2.0, 3.0}. Example 4.

𝜖 = 0 𝜖 = 0.01 𝜖 = 0.05 𝜖 = 0.1 𝜖 = 0.3

𝜆0 −1.925501193 −1.925876053 −1.927372686 −1.929237201 −1.936626498
𝜆1 0 0 0 0 0
𝜆2 20 20.015 20.075 20.15 20.45
𝜆3 0 0 0 0 0
[𝑥1 , 𝑥2] [−1.581, 1.581] [−1.580, 1.580] [−1.578, 1.578] [−1.575, 1.575] [−1.563, 1.563]

𝜖 = 0.5 𝜖 = 1.0 𝜖 = 2.0 𝜖 = 3.0

𝜆0 −1.943908180 −1.961661524 −1.995382165 −2.026971615
𝜆1 0 0 0 0
𝜆2 20.749999999 21.500000000 23.000000000 24.500000000
𝜆3 0 0 0 0
[𝑥1 , 𝑥2] [−1.552, 1.552] [−1.524, 1.524] [−1.474, 1.474] [−1.428, 1.428]

𝑓1(𝜏) =
exp

(

− 𝜏
20

)

40 + 3𝜖

[

cos
( 𝜏
20

√

399 + 30𝜖
)

+ 1
√

399 + 30𝜖
sin

( 𝜏
20

√

399 + 30𝜖
)

]

, (88)

𝑓2(𝜏) =
exp

(

𝜏
20

)

40 + 3𝜖

[

cos
( 𝜏
20

√

399 + 30𝜖
)

− 1
√

399 + 30𝜖
sin

( 𝜏
20

√

399 + 30𝜖
)

]

. (89)

In Fig. 1, we show the graphical representation of the correlation function, 𝛤𝑋𝑋 (𝜏), given by expressions (87)–(89), for different values of 𝜖. We
can observe from this plot that the approximations obtained for 𝛤𝑋𝑋 (𝜏) preserve the symmetry with respect to the vertical axis (even functions)
as desirable.

Once we have obtained the standard deviation, 𝜎𝑋(𝑡), all the even-order moments can be directly calculated using (23). Notice that the odd-order
moments are null. Now, we shall utilize this information to construct approximations of the PDF of 𝑋(𝑡), 𝑓𝑋(𝑡)(𝑥), applying the PME with different
orders of truncation, 𝑀 , corresponding to the number of statistical moments used.

We first consider the case, 𝜖 = 0.3, where the stochastic perturbation technique fails. We calculate the PDF using 𝑀 = 3, 5, 7. The values
of the parameters 𝜆 required to construct the PDF according to (79), are given in Table 4. The graphical representation of the corresponding
𝑖
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Table 6
Values of 𝜆𝑖, 𝑖 ∈ {0, 1, 2, 3, 4, 5}, and the domain [𝑧1 , 𝑧2] obtained via PME based on the five first moments (𝑀 = 5), for
𝜖 ∈ {0, 0.01, 0.05, 0.1, 0.3, 0.5, 1.0, 2.0, 3.0}. Example 4.

𝜖 = 0 𝜖 = 0.01 𝜖 = 0.05 𝜖 = 0.1 𝜖 = 0.3

𝜆0 −1.925501193 −1.925876053 −1.927372686 −1.929237201 −1.936626498
𝜆1 0 0 0 0 0
𝜆2 19.999999999 20.014999999 20.074999999 20.149999999 20.449999999
𝜆3 0 0 0 0 0
𝜆4 1.74018 ⋅ 10−9 1.74274 ⋅ 10−9 1.7531 ⋅ 10−9 1.76642 ⋅ 10−9 1.81925 ⋅ 10−9

𝜆5 0 0 0 0 0
[𝑥1 , 𝑥2] [−1.581, 1.581] [−1.580, 1.580] [−1.578, 1.578] [−1.575, 1.575] [−1.563, 1.563]

𝜖 = 0.5 𝜖 = 1.0 𝜖 = 2.0 𝜖 = 3.0

𝜆0 −1.943908180 −1.961661524 −1.995382165 −2.026971615
𝜆1 0 0 0 0
𝜆2 20.749999999 21.499999999 22.999999999 24.499999999
𝜆3 0 0 0 0
𝜆4 1.8731 10−9 2.011 10−9 2.30126 10−9 2.6113 10−9

𝜆5 0 0 0 0
[𝑥1 , 𝑥2] [−1.552, 1.552] [−1.524, 1.524] [−1.474, 1.474] [−1.428, 1.428]

Table 7
Values of the error (𝐿1-norm) between the PDF generated by the PME with 𝑀 = 3, 5, for 𝜖 ∈ {0, 0.01, 0.05, 0.1, 0.3, 0.5, 1.0, 2.0, 3.0}.
Example 4.

𝜖 = 0 𝜖 = 0.01 𝜖 = 0.05 𝜖 = 0.1 𝜖 = 0.3

Error 4.61006 ⋅ 10−12 4.60995 ⋅ 10−12 4.60959 ⋅ 10−12 4.61028 ⋅ 10−12 4.60978 ⋅ 10−12

[𝑥1 , 𝑥2] [−1.581, 1.581] [−1.580, 1.580] [−1.578, 1.578] [−1.575, 1.575] [−1.563, 1.563]

𝜖 = 0.5 𝜖 = 1.0 𝜖 = 2.0 𝜖 = 3.0

Error 4.61006 ⋅ 10−12 4.61031 ⋅ 10−12 4.60966 ⋅ 10−12 4.61001 ⋅ 10−12

[𝑥1 , 𝑥2] [−1.552, 1.552] [−1.524, 1.524] [−1.474, 1.474] [−1.428, 1.428]

Fig. 3. Approximation of the PDF, 𝑓𝑋(𝑡)(𝑥), using until the five order moment (𝑀 = 5) for 𝜖 ∈ {0, 0.01, 0.05, 0.1, 0.3} via the PME. Example 4.

Fig. 4. Approximation of the PDF, 𝑓𝑋(𝑡)(𝑥), using until the five order moment (𝑀 = 5) for 𝜖 ∈ {0.3, 0.5, 1.0, 2.0, 3.0} via the PME. Example 4.

PDFs is shown in Fig. 2. We can observe that the three approximations are very close. Then, we have made the decision to only represent the
PDF using 𝑀 = 5 when applying the PME method. The graphical results are shown in Fig. 3 (for 𝜖 ∈ {0, 0.01, 0.05, 0.1, 0.3}) and Fig. 4 (for
𝜖 ∈ {0.3, 0.5, 1.0, 2.0, 3.0}). We can conclude that the approximations obtained with 𝑀 = 5 are good, as confirmed in Table 7, where it can be
checked the small values of the error between the approximations of order 𝑀 = 3 (Table 5) and 𝑀 = 5 (Table 6), measured using the 𝐿1-norm.

Finally, to reinforce that our decision of taking the approximating of the PDF corresponding to 𝑀 = 5 when applying the PME is adequate, in
Table 7 we show the error (𝐿1-norm) obtained when comparing the PDFs calculated with 𝑀 = 3 and 𝑀 = 5 for different values of 𝜖. We evidence
this error is very small.
17 
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Table 8
Comparison of the mean (𝜇𝑋 ) and the standard deviation (𝜎𝑋 ) between stochastic perturbation method,
stochastic equivalent linearization method and Kloeden–Platen–Schurz scheme with 106 simulations (in
the latter method, we also include an estimate of the error by calculating the standard deviation of
the corresponding approximations obtained via the simulations). We have carried out for different 𝜖 ∈
{0, 0.01, 0.1, 0.5, 1, 1.5, 2, 3}. The largest value for which the perturbation method works is 𝜖 < 1.01258, so
from that value on, no approximation is included. It is indicated by −. Example 5.
𝜖 Perturbation Equivalent linearization Kloeden–Platen–Schurz

method method 106 simulations

0 𝜇𝑋 0 0 0.00000 ± 0.00013
𝜎𝑋 0.158114 0.158114 0.15818 ± 0.00012

0.01 𝜇𝑋 0 0 0.00000 ± 0.00025
𝜎𝑋 0.157331 0.157339 0.15738 ± 0.00011

0.1 𝜇𝑋 0 0 0.00000 ± 0.00022
𝜎𝑋 0.150103 0.150841 0.15096 ± 0.00011

0.5 𝜇𝑋 0 0 0.00000± 0.00026
𝜎𝑋 0.112496 0.129368 0.129501 ± 0.000068

1.0 𝜇𝑋 0 0 0.000006 ± 0.000095
𝜎𝑋 0.017622 0.112152 0.112366 ± 0.000076

1.5 𝜇𝑋 0 0 −0.000003 ± 0.000079
𝜎𝑋 – 0.100375 0.101348± 0.000059

2.0 𝜇𝑋 0 0 0.00000 ± 0.00010
𝜎𝑋 – 0.091667 0.093091 ± 0.000071

3.0 𝜇𝑋 0 0 0.000000 ± 0.000097
𝜎𝑋 – 0.079428 0.081880 ± 0.000065

Table 9
Approximations of the mean (𝜇𝑋 ) and the standard deviation (𝜎𝑋 ) using the Kloeden–Platen–Schurz
numerical scheme with 103, 104 and 105 simulations including an estimate of the error by calculating the
standard deviation of the corresponding approximations obtained via the simulations. We have carried out
for different 𝜖 ∈ {0, 0.01, 0.1, 0.5, 1, 1.5, 2, 3}. Example 5.
𝜖 103 simulations 104 simulations 105 simulations

0 𝜇𝑋 −0.0004 ± 0.0051 0.0001 ± 0.0014 −0.00001 ± 0.00037
𝜎𝑋 0.1588 ± 0.0036 0.15842 ± 0.00095 0.15816 ± 0.00036

0.01 𝜇𝑋 0.0001 ± 0.0045 0.0001 ± 0.0010 0.00000 ± 0.00051
𝜎𝑋 0.1567 ± 0.0033 0.1580 ± 0.0011 0.15726 ± 0.00033

0.1 𝜇𝑋 0.0003 ± 0.0046 0.0000 ± 0.0012 0.00002 ± 0.00058
𝜎𝑋 0.1517 ± 0.0037 0.1508 ± 0.0011 0.15097 ± 0.00037

0.5 𝜇𝑋 0.0002 ± 0.0044 0.00008 ± 0.00064 0.00006 ± 0.00041
𝜎𝑋 0.1283 ± 0.0025 0.12938 ± 0.00081 0.12952 ± 0.00033

1.0 𝜇𝑋 0.0001 ± 0.0044 0.0000 ± 0.0011 −0.00001 ± 0.00029
𝜎𝑋 0.1117 ± 0.0022 0.11307 ± 0.00075 0.11239 ± 0.00023

1.5 𝜇𝑋 −0.0001 ± 0.0027 0.0000 ± 0.0012 −0.00001 ± 0.00026
𝜎𝑋 0.1020 ± 0.0023 0.10088 ± 0.00064 0.10056 ± 0.00025

2.0 𝜇𝑋 0.0001 ± 0.0025 0.0000 ± 0.0010 0.00001 ± 0.00023
𝜎𝑋 0.0916 ± 0.0022 0.09168 ± 0.00070 0.09221 ± 0.00019

3.0 𝜇𝑋 0.0000 ± 0.0025 0.00006 ± 0.00094 −0.00006 ± 0.00023
𝜎𝑋 0.0813 ± 0.0014 0.08033 ± 0.00058 0.08050 ± 0.00017

Fig. 5. Comparison of the correlation function 𝛤𝑋𝑋 (𝜏) of 𝑋(𝑡), given in (93)–(95), for different values of 𝜖. Example 5.

Example 5. In this example, we will assume the same excitation 𝑌 (𝑡) that in previous example, but considering a nonlinear function more general
that the corresponding to Duffing oscillator. In particular, we are going to apply the stochastic equivalent linearization method to study model (80)
taking the data from Table 1 corresponding to Example 5. The first step is to determine the coefficients 𝛽 and 𝑘2 of the equivalent Eq. (17). We
e e
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Table 10
Values for 𝜆𝑖, 𝑖 ∈ {0, 1, 2, 3, 4, 5, 6, 7} and the domain

[

𝑥1 , 𝑥2
]

obtained via the PME method, for 𝜖 = 1.0. Example 5.

Order 𝜆0 𝜆1 𝜆2 𝜆3 𝜆4 𝜆5 𝜆6 𝜆7
𝑀 = 3 −2.268959631 0.0 39.751562499 0.0 – – – –
𝑀 = 5 −2.268959631 0.0 39.751562499 0.0 6.87437 ⋅ 10−9 0.0 – –
𝑀 = 7 −2.268959729 0.0 39.751585900 0.0 −6.20366 ⋅ 10−4 0.0 3.30217 ⋅ 10−3 0.0

Fig. 6. Approximation of PDF, 𝑓𝑋(𝑡)(𝑥), using the PME with 𝑀 = 3, 5, 7 moments for 𝜖 = 1.0. Example 5.

Table 11
Values of 𝜆𝑖, 𝑖 ∈ {0, 1, 2, 3}, and the domain [𝑥1 , 𝑥2] obtained via PME based on the three (𝑀 = 3) first moments, for
𝜖 ∈ {0, 0.01, 0.1, 0.5, 1.0, 1.5, 2.0, 3.0}. Example 5.

𝜖 = 0 𝜖 = 0.01 𝜖 = 0.1 𝜖 = 0.5

𝜆0 −1.925501193 −1.930414861 −1.972591334 −2.126159137
𝜆1 0 0 0 0
𝜆2 20.0 20.197515624 21.975156249 29.875781249
𝜆3 0 0 0 0
[𝑥1 , 𝑥2] [−1.581, 1.581] [−1.573, 1.573] [−1.508, 1.508] [−1.293, 1.293]

𝜖 = 1.0 𝜖 = 1.5 𝜖 = 2.0 𝜖 = 3.0

𝜆0 −2.268959631 −2.379906040 −2.470649473 −2.613968336
𝜆1 0 0 0 0
𝜆2 39.751562499 49.627343749 59.503125000 79.254687499
𝜆3 0 0 0 0
[𝑥1 , 𝑥2] [−1.121, 1.121] [−1.003, 1.003] [−0.916, 0.916] [−0.794, 0.794]

Table 12
Values of 𝜆𝑖, 𝑖 ∈ {0, 1, 2, 3}, and the domain [𝑥1 , 𝑥2] obtained via PME based on the five (𝑀 = 5) first moments, for
𝜖 ∈ {0, 0.01, 0.1, 0.5, 1.0, 1.5, 2.0, 3.0}. Example 5.

𝜖 = 0 𝜖 = 0.01 𝜖 = 0.1 𝜖 = 0.5

𝜆0 −1.925501193 −1.930414861 −1.972591334 −2.126159137
𝜆1 0 0 0 0
𝜆2 19.999999999 20.197515624 21.975156249 29.875781249
𝜆3 0 0 0 0
𝜆4 1.74018 ⋅ 10−9 1.77476 ⋅ 10−9 2.10067 ⋅ 10−9 3.88272 ⋅ 10−9

𝜆5 0 0 0 0
[𝑥1 , 𝑥2] [−1.581, 1.581] [−1.573, 1.573] [−1.508, 1.508] [−1.293, 1.293]

𝜖 = 1.0 𝜖 = 1.5 𝜖 = 2.0 𝜖 = 3.0

𝜆0 −2.268959631 −2.379906040 −2.470649473 −2.613968336
𝜆1 0 0 0 0
𝜆2 39.751562499 49.627343749 59.503124998 79.254687498
𝜆3 0 0 0 0
𝜆4 6.87437 ⋅ 10−9 1.07083 ⋅ 10−8 1.54024 ⋅ 10−8 2.73267 ⋅ 10−8

𝜆5 0 0 0 0
[𝑥1 , 𝑥2] [−1.121, 1.121] [−1.003, 1.003] [−0.916, 0.916] [−0.794, 0.794]

have obtained them in Example 2 (see expression (66)), and they are given by

𝛽e = 𝛽 = 1
20 ,

𝑘2e = 𝜔2
0

[

1 + 𝜖
(

1 − 1
2
𝜎2𝑋 + 1

8
(𝜎2𝑋 )

2
)]

= 1 + 𝜖
(

1 − 1
2
𝜎2𝑋 + 1

8
(𝜎2𝑋 )

2
)

.
(90)

Notice that the condition corresponding to the underdamped case (assumed in the theoretical development) is fulfilled, since

𝛽e =
1
20

< 1 ≤ 1 + 𝜖
(

1 − 1
2
𝜎2𝑋 + 1

8
(𝜎2𝑋 )

2
)

= 1 + 𝜖
8

(

(

𝜎2𝑋 − 2
)2 + 4

)

= 𝑘2e , ∀𝜖 ≥ 0. (91)

As mentioned in the theoretical development, all the moments of odd-order are null, in particular the mean. Next step is to compute the
variance, given by (69), that is approximated by (72), obtaining 𝜎2 = 1 . With this information, it is easy to check that, using expression (22),
𝑋0 40
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Fig. 7. Approximation of the PDF, 𝑓𝑋(𝑡)(𝑥), using until the five order moment (𝑀 = 5) for 𝜖 ∈ {0, 0.01, 0.1, 0.5, 1.0} via the PME. Example 5.

Fig. 8. Approximation of the PDF, 𝑓𝑋(𝑡)(𝑥), using until the five order moment (𝑀 = 5) for 𝜖 ∈ {0.5, 1.0, 1.5, 2.0, 3.0} via the PME. Example 5.

Fig. 9. Comparison of the correlation function 𝛤𝑋𝑋 (𝜏) of 𝑋(𝑡), given in (97)–(99), for different values of 𝜖. Example 6.

Fig. 10. Approximation of the PDF, 𝑓𝑋(𝑡)(𝑥), using until the five (𝑀 = 5) order moment (𝑀 = 5) for 𝜖 ∈ {0, 0.01, 0.1, 0.2, 0.5} via the PME. Example 6.

the second-order moment is determined by

E
{

(𝑋(𝑡))2
}

= V {𝑋(𝑡)} = 320
12800 + 12641𝜖

. (92)

In a similar way as in the previous example, the correlation function, 𝛤𝑋𝑋 (𝜏), can be obtained applying (21),

𝛤𝑋𝑋 (𝜏) =
{

𝑓1(𝜏) if 𝜏 ≥ 0, (93)

𝑓2(𝜏) if 𝜏 < 0,
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Fig. 11. Approximation of the PDF, 𝑓𝑋(𝑡)(𝑥), using until the five (𝑀 = 5) order moment (𝑀 = 5) for 𝜖 ∈ {0.5, 1.0, 1.5, 2.0, 3.0} via the PME. Example 6.

Fig. 12. Approximations of PDF, 𝑓𝑋(𝑡)(𝑥), using the PME with 𝑀 = 3, 5, 7 moments for 𝜖 = 0.5. Example 6.

Table 13
Values of the error (𝐿1-norm) between the PDF generated by the PME with 𝑀 = 3, 5 for 𝜖 ∈
{0, 0.01, 0.1, 0.5, 1.0, 1.5, 2.0, 3.0}. Example 5.

𝜖 = 0 𝜖 = 0.01 𝜖 = 0.1 𝜖 = 0.5

Error 4.61006 ⋅ 10−12 4.61009 ⋅ 10−12 4.60943 ⋅ 10−12 4.60960 ⋅ 10−12

[𝑥1 , 𝑥2] [−1.581, 1.581] [−1.573, 1.573] [−1.508, 1.508] [−1.293, 1.293]

𝜖 = 1.0 𝜖 = 1.5 𝜖 = 2.0 𝜖 = 3.0

Error 4.60905 ⋅ 10−12 4.60479 ⋅ 10−12 4.60974 ⋅ 10−12 4.61009 ⋅ 10−12

[𝑥1 , 𝑥2] [−1.121, 1.121] [−1.003, 1.003] [−0.916, 0.916] [−0.794, 0.794]

𝑓1(𝜏) =
64

(12768 + 12641𝜖)(12800 + 12641𝜖)
exp

(

− 𝜏
20

)

[

(63840 + 63205𝜖) cos

(

𝜏
√

399
400

+ 12641𝜖
12800

)

+ 20
√

25536 + 25282𝜖 sin

(

𝜏
√

399
400

+ 12641𝜖
12800

) ]

,

(94)

𝑓2(𝜏) =
64

(12768 + 12641𝜖)(12800 + 12641𝜖)
exp

( 𝜏
20

)

[

(63840 + 63205𝜖) cos

(

𝜏
√

399
400

+ 12641𝜖
12800

)

− 20
√

25536 + 25282𝜖 sin

(

𝜏
√

399
400

+ 12641𝜖
12800

) ]

.

(95)

In Fig. 5, we show the graphical representation of the correlation function, 𝛤𝑋𝑋 (𝜏), given by expressions (93)–(95) for different values of 𝜖.
Also, in Tables 8–9, we show the comparison between the mean and standard deviation of the stationary approximated solution obtained via the
perturbation method, the equivalent linearization method versus the ones calculated by Kloeden–Platen–Schurz scheme with different number or
simulations (in Table 8, we show the results with 106 simulations, and in Table 9, we show the results with 103, 104 and 105 simulations). It is
important to mention that the bound for the perturbative parameter when applying the perturbation method at Example 5 is 𝜖 < 1.01258.

Applying the results presented in Section 5, we obtain the approximation of the PDF, 𝑓𝑋(𝑡)(𝑥), of the steady state, using the PME based on the
three (𝑀 = 3) and five (𝑀 = 5) first moments. Tables 11 and 12 show the values of 𝜆𝑖, 𝑖 ∈ {0, 1, 2, 3, 4, 5}, and the corresponding domain

[

𝑥1, 𝑥2
]

for different values of 𝜖.
As the procedure followed in the presentation of results is the same as in Example 4, we will proceed directly to comment on the corresponding

figures and tables.
As in Example 4, we have obtained the approximation of the PDF, 𝑓𝑋(𝑡)(𝑥), for 𝜖 = 1.0 (where the stochastic perturbation technique is near

to the value where it begins to fail) in order to compute the approximation based on the three (𝑀 = 3), five (𝑀 = 5) and seven (𝑀 = 7) first
moments, given in Table 10. In Fig. 6, we compare their graphical representations, where it can be observed that the PDFs are very similar to each
other with the moments until 𝑀 = 3, 5, 7.

In Figs. 7 and 8, we compare the graphical representations of the PDF, 𝑓𝑋(𝑡)(𝑥) for different values of 𝜖 (for the sake of clarify in the presentation,
we split the values of 𝜖 in both plots as follows: 𝜖 ∈ 0, 0.01, 0.1, 0.5, 1 and 𝜖 ∈ 0.5, 1, 1.5, 2, 3 , respectively) in order to compute the approximation
{ } { }
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Table 14
Comparison of the mean (𝜇𝑋 ) and the standard deviation (𝜎𝑋 ) between stochastic perturbation method,
stochastic equivalent linearization method and Kloeden–Platen–Schurz scheme with 106 simulations (in
the latter method, we also include an estimate of the error by calculating the standard deviation of
the corresponding approximations obtained via the simulations). We have carried out for different 𝜖 ∈
{0, 0.01, 0.1, 0.2, 0.5, 1, 1.5, 2, 3}. The largest value for which the perturbation method works is 𝜖 < 0.56534,
so from that value on, no approximation is included. It is indicated by −. Example 6.
𝜖 Perturbation Equivalent linearization Kloeden–Platen–Schurz

method method 106 simulations

0 𝜇𝑋 0 0 0.000001 ± 0.000024
𝜎𝑋 0.021483 0.021483 0.021497 ± 0.000012

0.01 𝜇𝑋 0 0 0.000003 ± 0.000025
𝜎𝑋 0.021293 0.021295 0.021294 ± 0.000016

0.1 𝜇𝑋 0 0 −0.000003 ± 0.000026
𝜎𝑋 0.019491 0.019739 0.019747 ± 0.000014

0.2 𝜇𝑋 0 0 −0.000001 ± 0.000015
𝜎𝑋 0.017270 0.018258 0.0182797± 0.0000091

0.5 𝜇𝑋 0 0 0.000002 ± 0.000024
𝜎𝑋 0.007304 0.014908 0.014929 ± 0.000010

1.0 𝜇𝑋 0 0 0.000002 ± 0.000018
𝜎𝑋 – 0.011422 0.0114944 ± 0.0000086

1.5 𝜇𝑋 0 0 0.000002 ± 0.000035
𝜎𝑋 – 0.009259 0.0093562 ± 0.0000054

2.0 𝜇𝑋 0 0 0.000000 ± 0.000045
𝜎𝑋 – 0.007786 0.00790689 ± 0.0000047

3.0 𝜇𝑋 0 0 0.000001 ± 0.000047
𝜎𝑋 – 0.005907 0.0060859 ± 0.0000041

Table 15
Approximations of the mean (𝜇𝑋 ) and the standard deviation (𝜎𝑋 ) using the Kloeden–Platen–Schurz
numerical scheme with 103, 104 and 105 simulations including an estimate of the error by calculating the
standard deviation of the corresponding approximations obtained via the simulations. We have carried out
for different 𝜖 ∈ {0, 0.01, 0.1, 0.2, 0.5, 1, 1.5, 2, 3}. Example 6.
𝜖 103 simulations 104 simulations 105 simulations

0 𝜇𝑋 −0.00004 ± 0.00073 −0.00001 ± 0.00028 −0.000003 ± 0.000055
𝜎𝑋 0.02181 ± 0.00052 0.02148 ± 0.00014 0.021493 ± 0.000044

0.01 𝜇𝑋 0.00003 ± 0.00082 0.00002 ± 0.00018 0.000009 ± 0.000060
𝜎𝑋 0.02118 ± 0.00047 0.02133 ± 0.00014 0.021315 ± 0.000039

0.1 𝜇𝑋 0.00002 ± 0.00074 −0.00001 ± 0.00021 −0.000011 ± 0.000053
𝜎𝑋 0.01990 ± 0.00036 0.01980 ± 0.00014 0.019737 ± 0.000040

0.2 𝜇𝑋 0.00000 ± 0.00049 0.00001 ± 0.00016 0.000005 ± 0.000063
𝜎𝑋 0.01834 ± 0.00040 0.01831 ± 0.00013 0.018277 ± 0.000033

0.5 𝜇𝑋 −0.00004 ± 0.00033 0.00001 ± 0.00013 −0.000006 ± 0.000051
𝜎𝑋 0.01487 ± 0.00030 0.01491 ± 0.00010 0.014906 ± 0.000034

1.0 𝜇𝑋 −0.00003 ± 0.00038 0.00000 ± 0.00012 0.000006± 0.000029
𝜎𝑋 0.01140 ± 0.00022 0.011454 ± 0.000074 0.011457 ± 0.000029

1.5 𝜇𝑋 0.00003 ± 0.00028 0.000024 ± 0.000054 0.000001 ± 0.000028
𝜎𝑋 0.00940 ± 0.00020 0.009302 ± 0.000057 0.009303 ± 0.000023

2.0 𝜇𝑋 0.00000 ± 0.00031 0.000002 ± 0.000060 −0.000002 ± 0.000022
𝜎𝑋 0.00790 ± 0.00017 0.007853 ± 0.000053 0.007845 ± 0.000018

3.0 𝜇𝑋 0.00000 ± 0.00023 0.000001 ± 0.000075 −0.000001 ± 0.000022
𝜎𝑋 0.00602 ± 0.00012 0.006005 ± 0.000042 0.005994 ± 0.000013

based on the five (𝑀 = 5) first moments. We can confirm that the approximations obtained for the different values of 𝜖 are good, taking into
account the error given by the 𝐿1-norm presented in Table 13 with respect to the PDFs with 𝑀 = 3 (Table 11) and 𝑀 = 5 (Table 12) for different
values of 𝜖.

Example 6. In this example, we will consider the same nonlinear function as in Example 5, but considering now 𝑌 (𝑡) an Ornstein–Uhlenbeck
(OU) stochastic process to play the role of the external source. In particular, we are going to apply the stochastic equivalent linearization method
to study model (80) taking the data from Table 1 corresponding to Example 6. When applying the stochastic equivalent linearization technique, the
first step is to determine the coefficients 𝛽e and 𝑘2e of the equivalent Eq. (17). As in Example 5, they are given by (90). In this case, the condition
corresponding to the underdamped case assumed in the theoretical development is fulfilled for all 𝜖 ≥ 0 (see (91)).

From Eq. (23), one can ensure that all the odd-order moments are null, and all the even-order moments can be directly computed from the
standard deviation, 𝜎 . So, obtaining the second-order moments is our main goal.
𝑋(𝑡)

22 



J.-C. Cortés et al.

p

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 187 (2024) 115451 
Table 16
Values of 𝜆𝑖, 𝑖 ∈ {0, 1, 2, 3}, and the domain [𝑥1 , 𝑥2] obtained via PME based on the three (𝑀 = 3) first moments, for
𝜖 ∈ {0, 0.01, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 3.0}. Example 6.

𝜖 = 0 𝜖 = 0.01 𝜖 = 0.1 𝜖 = 0.2 𝜖 = 0.5

𝜆0 −3.921534050 −3.930338629 −4.006224397 −4.084210638 −4.286907297
𝜆1 0 0 0 0 0
𝜆2 1083.333333333 1102.578872314 1283.285262401 1499.896167603 2249.682740012
𝜆3 0 0 0 0 0
[𝑥1 , 𝑥2] [−0.214, 0.214] [−0.212, 0.212] [−0.197, 0.197] [−0.182, 0.182] [−0.149, 0.149]

𝜖 = 1.0 𝜖 = 1.5 𝜖 = 2.0 𝜖 = 3.0

𝜆0 −4.553272216 −4.763175955 −4.936472449 −5.212639576
𝜆1 0 0 0 0
𝜆2 3832.506550039 5831.804763413 8247.577380136 14 328.545823625
𝜆3 0 0 0 0
[𝑥1 , 𝑥2] [−0.114, 0.114] [−0.092, 0.092] [−0.077, 0.077] [−0.059, 0.059]

Table 17
Values of 𝜆𝑖, 𝑖 ∈ {0, 1, 2, 3}, and the domain [𝑥1 , 𝑥2] obtained via PME based on the five (𝑀 = 5) first moments, for 𝜖 ∈
{0, 0.01, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 3.0}. Example 6.

𝜖 = 0 𝜖 = 0.01 𝜖 = 0.1 𝜖 = 0.2 𝜖 = 0.5

𝜆0 −3.921534050 −3.930338629 −4.006224397 −4.084210638 −4.286907297
𝜆1 0 0 0 0 0
𝜆2 1083.333333314 1102.578872295 1283.285262379 1499.896167577 2249.682739973
𝜆3 0 0 0 0 0
𝜆4 5.10517 ⋅ 10−6 5.28847 ⋅ 10−6 7.16397 ⋅ 10−6 9.78709 ⋅ 10−6 2.20165 ⋅ 10−5

𝜆5 0 0 0 0 0
[𝑥1 , 𝑥2] [−0.214, 0.214] [−0.212, 0.212] [−0.197, 0.197] [−0.182, 0.182] [−0.149, 0.149]

𝜖 = 1.0 𝜖 = 1.5 𝜖 = 2.0 𝜖 = 3.0

𝜆0 −4.553272216 −4.763175955 −4.936472449 −5.212639576
𝜆1 0 0 0 0
𝜆2 3832.506549972 5831.804763312 8247.577380009 14 328.545823504
𝜆3 0 0 0 0
𝜆4 6.38942 ⋅ 10−5 1.47961 ⋅ 10−4 2.51535 ⋅ 10−4 2.89265 ⋅ 10−4

𝜆5 0 0 0 0
[𝑥1 , 𝑥2] [−0.114, 0.114] [−0.092, 0.092] [−0.077, 0.077] [−0.059, 0.059]

Table 18
Values of the error (𝐿1-norm) between the PDF generated by the PME with 𝑀 = 3, 5, for 𝜖 ∈ {0, 0.01, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 3.0}.
Example 6.

𝜖 = 0 𝜖 = 0.01 𝜖 = 0.1 𝜖 = 0.2 𝜖 = 0.5

error 4.60967 ⋅ 10−12 4.60983 ⋅ 10−12 4.60978 ⋅ 10−12 4.61020 ⋅ 10−12 4.60973 ⋅ 10−12

[𝑥1 , 𝑥2] [−0.214, 0.214] [−0.212, 0.212] [−0.197, 0.197] [−0.182, 0.182] [−0.149, 0.149]

𝜖 = 1.0 𝜖 = 1.5 𝜖 = 2.0 𝜖 = 3.0

error 4.60959 ⋅ 10−12 4.61014 ⋅ 10−12 4.17807 ⋅ 10−12 2.74973 ⋅ 10−12

[𝑥1 , 𝑥2] [−0.114, 0.114] [−0.092, 0.092] [−0.077, 0.077] [−0.059, 0.059]

Table 19
Values for 𝜆𝑖, 𝑖 ∈ {0, 1, 2, 3, 4, 5, 6, 7} obtained via the PME method for different orders 𝑀 and for 𝜖 = 0.5. Example 6.

Order 𝜆0 𝜆1 𝜆2 𝜆3 𝜆4 𝜆5 𝜆6 𝜆7
𝑀 = 3 −4.286907297 0.0 2249.682740012 0.0 – – – –
𝑀 = 5 −4.286907297 0.0 2249.682739973 0.0 2.20165 ⋅ 10−5 0.0 – –
𝑀 = 7 −4.286907621 0.0 2249.685721446 0.0 1.52476 ⋅ 10−2 0.0 5.17235 ⋅ 10−4 0.0

The variance is given by (69), that is approximated by (72), obtaining for this example 𝜎2𝑋0
= 3

6500 . Then, using expression (22), the second-order
moment is determined by

E
{

(𝑋(𝑡))2
}

= V {𝑋(𝑡)} = 68546400000000
(338000000 + 337922009𝜖)(439400000 + 337922009𝜖)

. (96)

In Fig. 9, we show the graphical representation of the correlation function, 𝛤𝑋𝑋 (𝜏), obtained from expression (97) for different values of 𝜖. The
articular expression of the correlation function when 𝜖 = 0.1 is given by

𝛤𝑋𝑋 (𝜏) =
{

𝑓1(𝜏) if 𝜏 > 0, (97)

𝑓2(𝜏) if 𝜏 ≤ 0,
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where

𝑓1(𝜏) =
1142440000000000 exp(− 𝜏

2 )

286749253323229781912453614765434508561

[

13791527624030546081

+ 84003256588656730405 exp
( 9𝜏
20

)

cos

(

1
26000

√

3709472009
5

𝜏

)

+ 77772279175500
√

18547360045 exp
( 9𝜏
20

)

sin

(

1
26000

√

3709472009
5

𝜏

) ]

(98)

and

𝑓2(𝜏) =
1142440000000000 exp

(

𝜏
20

)

286749253323229781912453614765434508561

[

13791527624030546081 exp
( 9𝜏
20

)

+ 84003256588656730405 cos

(

1
26000

√

3709472009
5

𝜏

)

− 77772279175500
√

18547360045 sin

(

1
26000

√

3709472009
5

𝜏

) ]

.

(99)

Also, to check that our approximations obtained via the stochastic equivalent linearization method are reliable, we compare the mean
nd standard deviation against those obtained via the stochastic perturbation method and the Kloeden-Platen-Schurz numerical method using
ifferent number of simulations. Results are presented in Tables 14–15. As in the previous examples, we observe that with the stochastic
quivalent linearization method good results are obtained even with 𝜖 = 3, while the approximations with the stochastic perturbation method

the approximations are only reliable for very small values of 𝜖, specifically for 𝜖 < 0.56534.
Next, we obtain the approximation of the PDF, 𝑓𝑋(𝑡)(𝑥), of the steady state, using the PME based on the three (𝑀 = 3) and five (𝑀 = 5) first

oments. Tables 16 and 17 show, respectively, the values of 𝜆𝑖, 𝑖 ∈ {0, 1, 2, 3, 4, 5}, necessary in the computation of the PDF given by expression
79) and the corresponding domain

[

𝑥1, 𝑥2
]

for different values of 𝜖.
In Figs. 10 and 11, we compare the graphical representations of the PDF, 𝑓𝑋(𝑡)(𝑥) for different values of 𝜖 in order to compute the approximation

ased on the five (𝑀 = 5) first moments from Table 17. Notice that for the sake of clarity in the visualization of both plots, we have split
he range of 𝜖. Fig. 10 shows the range 𝜖 ∈ {0, 0.01, 0.1, 0.2, 0.5}, while Fig. 11 shows the range 𝜖 ∈ {0.5, 1.0, 1.5, 2.0, 3.0}. Table 18
hows the error (𝐿1-norm) obtained from the comparison between the PDF obtained by the PME with 𝑀 = 3, 5 for each values of 𝜖 ∈
0, 0.01, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 3.0}. From the order of the error we can conclude that the approximations of the PDFs depicted in Figs. 10
nd 11 are reliable.

As in previous examples, we have obtained the approximation of the PDF, 𝑓𝑋(𝑡)(𝑥), of the steady state for 𝜖 = 0.5 using the PME method wit the
= 3, 5, 7 (see Table 19). In Fig. 12, we compare the graphical representations of these approximations of the PDF. As expected from previous

esults, we observe that plots are virtually identical.

. Conclusions

The study of the probabilistic properties of weakly perturbed nonlinear oscillators is, in general, a difficult task often limited to analyzing
articular cases with regard to both the type of nonlinearity and the stochastic noise affecting the oscillators. Moreover, many contributions usually
ocus on calculating a few statistics for the steady state such as mean and the variance. In this paper, we have contributed to the advance in the
robabilistic analysis of the steady state of a general class of nonlinear oscillators whose nonlinear term is an arbitrary polynomial of the position
hat is affected by a small perturbation. This family contains, as a particular case, the important case of the Duffing oscillator but also permits
pproximating oscillators whose nonlinear term is an analytic function of the position by truncating its Taylor series expansion. To conduct our
robabilistic analysis, we have taken advantage of the stochastic equivalent linearization technique, assuming that the input or external force
s a zero-mean stationary Gaussian stochastic process, which includes many relevant cases such as the white noise or the Ornstein–Uhlenbeck
rocesses. Our approach has enabled us to approximate not only the mean and variance but also the density function of the steady state. Our
umerical experiments show full agreement with the approximations obtained using stochastic numerical integrators and better results than the
tochastic perturbation method. Nevertheless, the study presented in this contribution has several aspects we would like to undertake in the future.
irst, improve the approximations of the undamped angular frequency of the linear equivalent equation of the nonlinear oscillator to expand the
ange of perturbation values, 𝜖, for which the steady state statistics are reliable. And secondly, to extend our analysis to oscillators whose nonlinear
erm depends not only on the position but also on the velocity via very general functions.
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