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Normas Asimétricas y los Espacios de Complejidad Dual

Desde el punto de vista de la Ciencia de la Computaciéon, un avance reciente
lo ha constituido el establecimiento de un modelo matematico que da cuenta de
la distancia entre algoritmos y programas, cuando estos son analizados desde la
optica de la complejidad computacional, entendiendo por complejidad, por ejemplo,
la medida del tiempo de computacion.

En la iltima década se han llevado a cabo notables esfuerzos para elaborar una
teoria matematica robusta que goce, en cierta medida, de buenas propiedades y
constituya una herramienta que, en este contexto, juegue un papel andlogo al que
los espacios vectoriales normados han desempenado en diversos ambitos de la ciencia
y la tecnologia.

En el caso de la complejidad computacional, se demuestra que un modelo muy sa-
tisfactorio lo constituye el de los espacios vectoriales dotados de una norma asimétrica.
En esta tesis, realizamos un estudio general de las propiedades de estos espacios, en
analogia con las propiedades que clasicamente se estudian en los espacios vectoriales
normados. Asi, hemos estudiado las propiedades de separaciéon de los espacios vec-
toriales de norma asimétrica, obteniendo una caracterizacion de aquellos espacios
que son Hausdorff; hemos obtenido una teoria satisfactoria de la bicompletacion
de dichos espacios; también hemos realizado un estudio de la compacidad cuando
el espacio vectorial tiene dimension finita; hemos determinado condiciones bajo las
cuales una norma asimétrica definida en un conjunto algebraicamente cerrado de
un espacio vectorial puede ser extendida a todo el espacio y hemos analizado la
estructura del espacio dual y las topologias débiles asociadas. Por ltimo, hemos
aplicado los resultados obtenidos al campo de la Ciencia de la Computacién, mas
concretamente a los Espacios de Complejidad Dual.



Asymmetric Norms and the Dual Complexity Spaces

One of the recent advances in Computer Science was due to the possibility of
establishing a mathematical model that account the distance between algorithms
and programs when they are analyzed in terms of their computational complexity
(complexity distance), where computational complexity is interpreted in terms of
running time, for example.

In the last decade, several authors have done a big effort in obtaining a robust
mathematical theory, which was a useful tool that played, in this context, a similar
role that normed linear spaces have played in different scientific areas.

In the context of Computational Complexity, it is shown that Asymmetric Normed
Linear Spaces constitute a very satisfactory model. This thesis is focused in the
study of the properties of these spaces, similarly to the classical properties that
are studied in the case of normed linear spaces. Thus, we have studied separation
properties of asymmetric normed linear spaces, obtaining in particular a charac-
terization of Hausdorffness; we have obtained a satisfactory theory of bicompletion
for these spaces; we have analyzed compactness on finite dimensional asymmet-
ric normed linear spaces; we have studied conditions under which an asymmetric
norm defined on an algebraically closed subset of a linear space can be extended
to the whole space and we have analyzed the structure of the dual space and the
weak topologies associated to it. Finally, we have applied our theory to Computer
Science, specifically to the so-called Dual Complexity Spaces.



Normes Asimetriques i els Espais de Complexitat Dual

Des del punt de vista de la Ciencia de la Computacié, un avang recent ho ha
constituit l'establiment d’un model matematic que done compte de la distancia
entre algoritmes i programes, quan sén analitzats des de l'optica de la complexi-
tat computacional, entenent per complexitat, per exemple, la mesura del temps de
computacié.

En I"iltima decada s’han dut a terme notables esforcos per a elaborar una teoria
matematica robusta que gaudisca, en certa mesura, de bones propietats i constituisca
una eina que, en aquest context, jugue un paper analeg al que els espais vectorials
normats han jugat en diversos ambits de la ciencia i la tecnologia.

En el cas de la complexitat computacional, es demostra que un model molt sa-
tisfactori ho constitueix el dels espais vectorials de norma asimetrica. En la tesi
que es presenta, realitzem un estudi general de les propietats dels esmentats espais,
en analogia amb les propietats que classicament s’estudien en els espais vectorials
normats. Aixi, hem estudiat les propietats de separacié dels espais vectorials de
norma asimetrica, obtenint una caracteritzacié d’aquells espais que sén Hausdorff;
hem obtingut una teoria satisfactoria de la bicompletacié de dits espais; també hem
realitzat un estudi de la compacitat en els espais vectorials de dimensi6 finita; hem
determinat condicions baix les quals una norma asimetrica definida en un conjunt
algebraicament tancat d’un espai vectorial pot ser estesa a tot I’espai i hem analitzat
I’estructura de I'espai dual i les topologies debils associades. Finalment, hem aplicat
els resultats obtinguts al camp de la Ciencia de la Computacié, més concretament
als Espais de Complexitat Dual.
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Chapter 1

Introduction

1.1 Asymmetric topology

In the last decade several authors have successfully applied some asymmetric struc-
tures of Topological Algebra and Functional Analysis to problems in Approximation
Theory and Theoretical Computer Science.

In particular, locally convex cones and quasi-norms (or asymmetric norms, in our
context) on cones and linear spaces provide efficient tools to study several questions
in sign-sensitive approximation theory ([13]), in obtaining general theorems of Hahn-
Banach type ([4], [27], [56], [57]), to characterize the structure of (semi-)Chebyshev
sets ([6], [42]), and to measure complexity distances between programs or algorithms
([46]). Furthermore, the notions of fractal semigroup, partial metric monoid and
weightable invariant quasi-metric semigroup provide useful frameworks to construct
theoretical models for some computational processes that appear in a natural way
in programming languages (see, for instance, [7], [16], [17], [45], etc).

These facts have motivated, in part, an increasing interest in the research of
such kind of structures and the applications of the asymmetric basic notions (quasi-
uniformities and quasi-metrics) on which are supported, to various classical mathe-
matical theories: hyperspaces (e.g. [26], [31], [58]), function spaces (e.g. [10], [40],
[55]), fixed point theory (e.g. [20], [51]), topological algebra, of course (e.g. [4], [2],
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(3] [5], [30], [35], [41]), etc.

In this direction, the important review by H.P.A. Kiinzi “Nonsymmetric dis-
tances and their associated topologies: About the origin of basic ideas in the area
of asymmetric topology”([29]), provides an exhaustive list of references related to
these topics.

Talking about Nonsymmetric or Asymmetric Topology, there are two basic refer-
ences: the book of Murdeshwar and Naimpally ([37]) and the book of Fletcher and
Lindgren ([19]).

Let us recall that Smyth studied in [53] some concepts of the theory of quasi-
uniform spaces in connection with problems from Theoretical Computer Science
and proposed quasi-metric and quasi-uniform spaces as a generalization of cpo’s and
metric spaces as used in denotational semantics. One of the important things was
his idea about reworking the basic notions involving limits and completeness in order
to accommodate the theory to examples in Computer Science. He introduced the
concepts of S-Cauchy filter and S-completability in quasi-uniform spaces that have
been very useful in the applications of asymmetric topology.

In [51], M. Schellekens introduced the notion of “complexity distance 7. He de-
fined the complexity space in order to develop a topological foundation for the com-
plexity analysis of programs and algorithms. His complexity spaces are weightable
and thus, belong to the class of S-completable quasi-uniform spaces. In this seminal
paper, he illustrated the applicability of his theory via the complexity analysis of
“Divide and Conquer”algorithms and presented a new proof, based on the Banach
fixed point theorem, of the fact that mergesort has asymptotic average running time.

But probably, one of the most influencing papers that has inspired our research
is due to Romaguera and Schellekens [44]. In it, the authors introduce the notion
of Dual Complexity Space and study its quasi-metric properties. The main results
obtained are the Smyth-completeness of the complexity space and the compactness
of closed complexity subspaces which possesses a complexity lower bound. In [47],
Romaguera an Schellekens show that the structure of quasi-normed semilinear space
provides a suitable setting to carry out an analysis of the dual complexity space.

Our aim in this thesis is to develop a systematized theory of asymmetric normed
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linear spaces, applying our methods and results to obtain a mathematical model for
the dual complexity space in the framework of Theoretical Computer Science. This
kind of structures will provide a robust mathematical model in the sense that we
can obtain several properties following the classical scheme on normed linear spaces.
In this sense, our work extends the theory of normed linear spaces to the case of
lack of symmetry.

Thus, in Chapter 2 we present a characterization of those asymmetric normed
linear spaces which are Hausdorff and show that it is possible, under reasonable
conditions, to obtain a procedure in describing an symmetric normed linear space
as a direct sum of a Hausdorff subspace and a “purely non Hausdorft” subspace. In
Chapter 3, we present a satisfactory theory of bicompletion for asymmetric normed
linear spaces obtaining that each asymmetric normed linear space has a unique
bicompletion up to isometric isomorphism. In Chapter 4 we extend the classical
results about compact sets on finite dimensional normed spaces to the asymmetric
case. We prove the equivalence between T} separation axiom and normability in the
finite dimensional case and thus between T} and T5 separation axioms; we also prove
that the Heine-Borel Theorem characterizes finite dimensional asymmetric normed
linear spaces that satisfies T, axiom. Chapter 5 is devoted to study conditions
under which we can extend an asymmetric norm which has been defined on an
algebraically closed subset of a linear space (the notion of algebraically closed set
is defined below) to the corresponding linear span. In Chapter 6 we define the
dual space of an asymmetric normed linear space and in Chapter 7 we present some
different weak and weak™ topologies that can naturally be defined because of the lack
of symmetry. In particular we give an asymmetric version of the celebrated Alaoglu
Theorem. Finally in Chapter 8 we make use of this mathematical background to
the applied context of the dual complexity space ([44]) and extend our study to
algorithms and programs that have exponential running time.

A precedent of our study, in the realm of (para)topological linear spaces may
be found in “Estructuras Topoldgicas no Simétricas y Espacios Bitopolégicos 7, by
Carmen Alegre (Thesis, Universidad Politécnica de Valencia, 1994).
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1.2 Preliminaries and basic notions

1.2.1 Quasi-Uniformities and quasi-metrics

Our basic reference for quasi-uniformities and quasi-pseudo-metric is [19].

A quasi-uniformity on a set X is a filter Y/ on X x X which satisfies:

i) AcU, forall U € U.

ii) Given U € U exists V € U such that V2 C U,

where A = {(z,z) : x € X}and V? = {(z,2) € XxX : exists y € X such that (z,y) €
V. (y,z) € V} The members of U are called entourages.

The filter U, formed for all sets of the form U™! = {(z,y) € Xx X : (y,z) € U},
where U € U, is a quasi-uniformity on X called the conjugate quasi-uniformity of

U.

A quasi-uniform space is a pair (X,U) such that X is a (nonempty) set and U is
a quasi-uniformity on X.

If U is a quasi-uniformity on a set X, the coarsest uniformity on X finer than U
will be denoted by U*, i.e. U* = UV U™". This uniformity is called the supremum
of the quasi-uniformities ¢ and U ~!.

Every quasi-uniformity & on X generates a topology T(U) on this set. A neig-
borhood base for each point x € X is given by {U(x) : U € U} where U(x) = {y €
X :(z,y) e U}

A quasi-uniformity U on X is called bicomplete if U* is a complete uniformity on
X. In this case we say that (X,U) is a bicomplete quasi-uniform space.

A bicompletion of a quasi-uniform space (X,U) is a bicomplete quasi-uniform
space (Y,V) such that (X,U) is quasi-isomorphic to a T(V*)-dense subset of Y.
It was proved in [11] and in [50] (see also [19]) that every Tj quasi-uniform space
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(X,U) has a unique (up quasi-uniform isomorphism) 7 bicompletion (X,U). Then

(X.U) is called the bicompletion of (X,U). Moreover (X, U~1) = (X, (U)™) and
(X,Us) = (X, UvuU-1).

In our context a quasi-metric on a set X is a nonnegative real valued function d
on X x X such that for all x,y,z € X:

(i) d(z,y) = d(y,z) =0 < x =y, and

(i) d(z,y) < d(z,2) + d(z,y).

A quasi-metric space is a pair (X, d) such that X is a (nonempty) set and d is a
quasi-metric on X.

Each quasi-metric d on X generates a T topology T'(d) on X, which has as a
basic open sets the d-balls By(x,r) ={y € X : d(z,y) < r} where z € X and r > 0.

Each quasi-metric d on X induces a metric d® on X defined by d*(z,y) =
max{d(z,y),d " (z,y)} for all z,y € X, where d~! is the conjugate quasi-metric
of d:d Y (x,y) =d(y,z) for all z,y € X.

A quasi-metric d on X induces a quasi-uniformity U; on X with basic entourages
of the form {(z,y) : d(z,y) < 27"}, for every z € X and n =1,2,3, .. ..

A quasi-metric d on X is called bicomplete if the quasi-uniformity Uy is bicom-
plete, i.e. if d® is a complete metric.

A. Di Concilio ([12]) and S. Salbany ([50]) have independently proved that, sim-
ilarly to the quasi-uniform case, each quasi-metric space (X, d) has a unique (up to
isometry) quasi-metric bicompletion.

Results on bicompletion of some interesting asymmetric structures in topological
algebra may be found in [34], [35] and [30].
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1.2.2 Asymmetric norms

In the sequel the letters R, R™, w and N will denote the set of real numbers, of non-
negative real numbers, of nonnegative integer numbers and positive integer numbers,
respectively.

Let X be a linear space. We say that a function ¢ : X — R™ is an asymmetric
norm on X if for all x,y € X and a € R*:

(i) ¢(z) = q(—z) =0 if and only if x = 0.
(i) gq(ax) = aq(z).

(iil) g(z +y) < q(x) +q(y).

The pair (X, q) is called an asymmetric normed linear space. Asymmetric norms
are called quasi-norms in [18], [4] and [42].

The function ¢7' : X — RT defined by ¢~!(z) := ¢(—x) is also an asymmetric
norm. The function ¢* : X — RT given by the formula ¢*(z) := maz{q(x), ¢ (z)}
is a norm on X.

An asymmetric norm ¢ induces a quasi-metric d, by mean of the formula:

dq(xay) =q(y — x), T,y € X.

Hence, if ¢ is an asymmetric norm on X, the sets

V(0) :={x € X : q(x) < €}, e >0,

form a fundamental system of neighbourhoods of zero for the topology 7'(d,) gen-
erated by d,. In the same way the translated sets V. (y) = y + V¢(0), form a funda-
mental system of neighbourhoods of y for all y € X. It follows from the definition
that V.(y) = Bq,(y,€). In case of ¢ is a norm, the sets

B(0) :={zx € X : q(z) < €}, e>0.
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form a fundamental system of neighbourhoods of zero for the topology generated by
d

.
We denote by V. <(0), the set:
Ve<(0) :={x € X : q(x) <€}, e >0,
and in the same way, in case of we are working with a norm, we will use the notation

B.<(0) :=={zx € X : q(x) < €}, €e>0.

Of course, the set B.<(0) is usually denoted by B.(0) or simply Byx. We will
indicate the (asymmetric) norm on the space under consideration by a superscript
if necessary. It is not easy to choose a satisfactory notation due to the nature of
different subjects involved in this work. Of course, some other different notations
to the one selected here could be more appropriated.

In the sequel we will also refer to T'(d,) as the topology generated by g.

A seminorm on a (real) linear space X is a nonnegative real valued function p on
X that satisfies

i) plz+y) <pl@) +ply), 7,y € X,
and
ii) p(azx) = |a|p(z), z € X and a € R.
The seminorm p is a norm if p(x) = 0 implies x = 0.

Now, let us introduce the notion of algebraically closed space. An algebraically
closed space M (ac-space for short) is a subset of a (real) linear space X which
is closed with respect to the sum on X and with respect to the product by non
negative scalars, i.e.

r+ye M, forevery x,y e M

and

ax € M forevery x € M and a € R™.
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In particular, 0 € M.
Clearly every linear space can be considered as an ac-space.

An asymmetric seminorm on an ac-space M is a function ¢ : M — R* such that
for all x,y € M and a € R*:

1) q(ax) = aq(z).

2) q(z+y) <qz)+q(y).

then, we say that the couple (M, q) is an asymmetric seminormed ac-space; more-
over, if the function ¢ satisfies the following property,

3) for every x € M such that —x € M, then ¢(z) = ¢(—x) = 0 if and only if
xz =0,

then it is called an asymmetric norm on M. In this case, we say that the couple
(M, q) is an asymmetric normed ac-space. This definition is the reasonable restric-
tion to ac-spaces of the notion of an asymmetric norm on a linear space.

In our context a semilinear space on RT will be an ordered triple (F,+,+) such
that (E,+) is an Abelian monoid (i.e. an Abelian semigroup with neutral element)
and - is a function from R* x E to E such that for all z,y € F and a,b € RT :
a-(b-x)=(ab) -z, (a+b)-x=(a-x)+(b-x),a - (r+y)=(a-z)+ (a-y), and
l-z=ux.

Observe that every semilinear space is a cone in the sense of Keimel and Roth
[27].1t is clear that every ac-space is a semilinear space.

An asymmetric normed semilinear space is a pair (F, gr) such that F'is a (nonempty)
subset of an asymmetric normed linear space (F,q), where gr denotes the restric-
tion of the asymmetric norm ¢ to F', and (F,+ |, - |r) is a semilinear space, i.e. an
ac-space in this context (compare [43], [46]).



Chapter 2

Separation properties in
asymmetric normed linear spaces

2.1 Introduction

Our aim in this chapter is to study the separation properties in asymmetric normed
linear spaces. We say that an asymmetric normed linear space (X, ¢q) is Hausdoff if
the topology T'(d,), generated by the quasi-metric d,, is Hausdorff. It is well known
that each quasi-metric generates a T topology, and then every asymmetric normed
linear space is Ty. However, asymmetric normed linear spaces are not Hausdorff in
general. Of course, if ¢ is a norm the space satisfies this property. However, the
most common (non trivial) example of asymmetric norm -the one that is defined in
a normed linear lattice (E, ||.||, <) as ¢(x) = ||z V 0]|- does not generate a Hausdorff
topology (see [4]). In Section 2.2 we will show an easy procedure to construct ex-
amples of asymmetric normed linear spaces which are Hausdorff. Another example,
of a different nature to the one given here can be found in Example 4.7 of [2]. We
also characterize those asymmetric normed linear spaces which are Hausdorff. This
characterization motivates the notion of a purely non Hausdorff asymmetric normed
linear space which is introduced here. As an application we show in Section 2.3 that
each asymmetric normed linear space can be written, under reasonable conditions,
as a direct sum of a Hausdorff asymmetric normed linear space and a “purely non
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Hausdorff” asymmetric normed linear space.

Definitions and results on general topology used in this chapter can be found in
[11]. The reader can find the basic properties about Banach lattices that are needed
in [33]. The main results of this chapter have been published in [22].

We denote by A and V the usual operations in a lattice. If 1 < p < oo, we write
|||, for the p-norm of a sequence of real numbers z = (z;);en,

s 1
lzll, = (D lal?)7.
i=1

2.2 Hausdorff asymmetric normed linear spaces

It is well known that the norm of a normed space obviously defines a Hausdorff
topology. This is not the case when for instance we consider a normed linear lattice
(E,||-]l, <) and the asymmetric normed linear space (E,q) defined by mean of the
asymmetric norm ¢(z) = ||z V 0||. As we indicated in Section 2.1, the space (E, q)
is not Hausdorff. Thus, the first question that appears in a natural way is if each
Hausdorff asymmetric normed linear space -or at least each Hausdorff asymmetric
normed linear lattice- is isomorphic to a normed space. The following example shows
that this is not the case. We construct an asymmetric normed linear space that is
Hausdorft but is not isomorphic to a normed space.

Example 2.1 Consider the linear lattice (Ey, <) defined by all sequences of real
numbers that are different from zero only in a finite set of indexes endowed with its
natural order, and let qy : Eg — R be the function defined by

qo(x) = [lz v Ol[1 + [z A O]z

We prove that this function is in fact an asymmetric norm. Since x = xV0+x A0
for all © € Ey, we have that ¢o(x) = go(—2) = 0 if and only if z = 0. Obviously it
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is also positively homogeneous. We just need to show that it satisfies the triangle
inequality.

First note that for a pair of elements z,y € Ey, (x +y) V0 <z V0-+yVO0. For
each 1 < p < oo, the norm properties related to the order operations of the normed
lattices (Ep, |.|[p, <) (see Chapter I, Vol.II, in [33]) leads to the inequality

Iz +y) VOll, < [z VOl + [ly V Of|-

The following equalities are also satisfied for every x € Ey and each 1 < p < o0
(Chapter I, Vol.II, in [33]),

[z AOllp =l = (@ AO)lp = | = (=((=2) VOl = [| = 2V O]

Then

go(z +y) = [[(z +y) VOl + |(z +y) AOll2 = [[(z +y) VOll1 + [|(=2 — y) VOl <

= [l v Olly + [ly VOl + || =2 VOl + [ =y V Oll2 = go(2) + qo(y)-

We have shown that (Ep, qp) is an asymmetric normed linear space.

Note that (Ey, qo) is a Hausdorff space since for every = € Ej, the norm ||.||],

given by |||z]|| :== ||z V O]]2 + ||z A 0|2 is equivalent to ||.||2, and |||z]|| < go(x). This
means that the open balls defined by ¢y are contained in the open balls defined by
the norm |||.||| on Ey, and then (Ey, qy) is a Hausdorff space. The proof of the fact

that (FEo, qo) is not isomorphic to any normed space will be shown as a consequence
of the last result of this section.

Before to study the 75 separation axiom in asymmetric normed linear spaces, we
are going to give a simple characterization of the T} separation axiom:
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Proposition 2.1 Let (X,q) be an asymmetric normed linear space and T(d,) the
topology generated by the quasi-metric d,. Then T'(d,) is T1 if and only if q(y) # 0,
for each y € X\{0}

Proof. Suppose that q(y) # 0 for every y € X\{0}. Let z,y € X such that
dy(z,y) = 0. Then ¢(x —y) =0, so x = y. Conversely, suppose that 7'(d,) is T} and
let y € X\{0}. Then d,(0,y) >0, i.e. g(y) > 0. B

Definition 2.1 Let (X, q) be an asymmetric normed linear space. We define the
function |.||; : X — RT by the formula

zllq == infaex{q(z1) +q(z1 — 2)}, r e X.

Lemma 2.1 |.||; is a seminorm on X. Moreover, it is the supremum of all semi-
norms p that satisfy

p(z) < q(z), r e X.

Proof. First we define on X the function ¢g(x) = min{q(z),q(—z)}. ¢o(.) is homo-
geneous, since for every x € X and a € R,

¢o(ax) = min{q(az), g(—ax)} = min{aq(x), aq(—x)} = apo(x),

if @ is nonnegative, and

¢olax) = min{q((—a)(=2)), ¢((=a)z)} = (=a)po(2),
if a is negative. In particular, ¢o(z) = ¢o(—x) for every z € X.

Now let us consider the convexification ¢ of the function ¢y in X, which is defined

by
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¢(x) = inf{>_ o(z;) : x = sz}

It can be easily checked that ¢ is a seminorm on X. Moreover, a direct conse-
quence of its definition is that ¢ is the supremum seminorm p satisfying p(z) < g(x)
for every x € X. Therefore we just need to prove that ¢ = ||.||,.

Let x € X and € > 0 and consider a representation = )" | x; of x such that

Z do(7i) < o(x) +e.

Let us define the sets ST ={x € X : ¢(z) < ¢(—z)} and S~ ={r € X : ¢(—2) <
q(z)}. Note that either ST or S~ can be an empty set. Then there is a natural
number k£, 1 < k < n such that, without loss of generality, we can order the elements
{z;:i=1,...,n} of the above representation of z as follows,

+ —
X1y T €857, Thals -y Ty €57

Then, if we denote by x, the sum Zle x; we obtain

¢(z) +e2 ZQ(xZ> + Z (=) = Q(Z ;) +q(— Z Ti) 2

This proves that ¢(x) > ||z||, for every € X. For the converse take an element
z € X. For each z; € X we obtain

q(z1) + q(r1 — ) > ¢o(11) + ¢o(r — 1) > @(2),
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since z7 and = — z; obviously define a particular representation of z. Then |z, >
¢(zx) for every x € X. This concludes the proof. B

Theorem 2.1 Let (X,q) be an asymmetric normed linear space. The following
statements are equivalent:

1) [|llq is @ norm on X.
2) (X, q) is a Hausdorff space.
3) (X,q7") is a Hausdorf space.

Proof. 2) — 1). By Lemma 2.1, we just need to prove that ||z||, = 0 implies = 0.
If ||z||, = O, there is a sequence (z,)nen in X such that

dlan) + alen =) <

for all n € N. Then lim,, . ¢(z,) = 0 and lim,,_., ¢(x,, — x) = 0, which means that
x and 0 are limits of the sequence (z,)nen. Since the space (X, q) is Hausdorff, the
limit of each sequence is unique, and then z = 0.

1) — 2). Let z,y € X, x # y. Since ||.||; is a norm, there exists an ¢ > 0 such
that € < ||z — y||,- Consider the following basic neighbourhoods of x and y for the
topology generated by g on X,

Vé(x):{zEX:q(z—:v)<§} , V;(y):{ZEX:q(z—y)<§}.

Then Ve(z) C B!'”q(:c) and Ve(y) C B!’”q(y). Since B!'”"(:C) and B!'Hq(y) are
2 2 2 2
disjoint sets, Ve (z) and Ve (y) are disjoint too, and we obtain the result.

The equivalence of 2) and 3) is obvious.
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Remark 2.1 Note that the argument given in the proof of 1) — 2), actually shows
that (X, q) is Hausdorff whenever ||.|| < q for any norm ||.|| on X.

In our context, two asymmetric normed linear spaces (X, qx) and (Y,qy) are
called isomorphic if there are a linear bijection T, T : (X,qx) — (Y, qy) and two
positive constants K7 and K5 such that

Kigx(z) < gy (T(2)) < Kyqx(z), © € X.

Theorem 2.2 An asymmetric normed linear space (X, q) is isomorphic to a normed
linear space if and only if there is a constant K > 0 such that q(x) < K||z||, for
every x € X.

Proof. Suppose that there is a constant K > 0 that satisfies the above conditions.
First note that in this case ¢°(z) < K||z|, for all # € X, since ||.||; = ||.[[;-1- The
following inequalities hold for each x € X,

q(z) < ¢°(x) < K|jzfly < Kq(x).

In particular, this implies that ||.||, is a norm since ¢® so is. To prove the isomorphy
it suffices to compare the neighbourhoods of zero defined by the norms ¢°, ||.||, and
the asymmetric norm ¢. Let € > 0. The following inclusions are direct consequences
of the above inequalities and prove that (X, q), (X, |.]|;) and (X, ¢°) are isomorphic.

Ve (0) € BYl(0) € BE(0).

It remains to show that if (X, ¢) is isomorphic to a normed space, then there is a
constant K such that the inequality ¢(x) < K||z||, holds for every z € X. If (X, q)
is isomorphic to the normed space (Y, ||.||) via a linear map 7 : Y — X, the formula
||li(x)|| induces a norm on X. Thus, it is sufficient to consider the case that there is
a norm .|| on X such that (X, q) and (X, ||.||) are isomorphic. In this case, there
are constants K; and K5 such that
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K, BI(0) c vi(0) c K,B!"0).

We can directly conclude that for every x € X the inequalities

Ky Hlzll < fllly < g(e) < Kyl

hold, since K, '||.|| is a norm and ||.||, is the supremum norm satisfying ||z < ¢(x)
for all z € X. We finally obtain the inequality q(z) < K||z||,, for K = K; 'K, and
forallz e X. R

To finish this section, let us show that the space (Ey,qy) given in Example 2.1
is not isomorphic to any normed space (Ejy, ||.||). Straightforward calculations show
that in this case ||z||4, = ||z VOll2 + ||z A O]|2, ||.]l4 is equivalent to ||.||2, and g¢§(x) is
exactly ||.||;. The condition for (Fjy, ¢o) to be isomorphic to a normed space given in
the above theorem would imply that ¢° and ||.||, are equivalent. But this is not true,
since ||.||1 and ||.||2 are not equivalent in Ej. Note that the construction provides
more examples of the same situation just by replacing the norms ||.||; and ||.||2 by
|||l and ||.||s respectively for any 1 <r < oo and 1 < s < o0, 1 # s.

2.3 The canonical decomposition of an asymmet-

ric normed linear space

Let (X, ¢) be an asymmetric normed linear space. In this section we show that it is
always possible to find an asymmetric normed linear subspace (Xy, ¢) of (X, ¢) which
is not Hausdorff and satisfies the following property: if X is a linear subspace of X
such that X; N Xy = {0}, then (X3, ¢) is Hausdorff. In fact, we obtain a standard
procedure to describe -under reasonable conditions- an asymmetric normed linear
space as a direct sum of a Hausdorff subspace and a “purely non Hausdorff” subspace.

Definition 2.2 Let (X, q) an asymmetric normed linear space. We say that (X, q)
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is a purely non Hausdorff space if X = {0} or for every x € X\{0} there is a
sequence (Ty)nen in X that converges simultaneously to x and to 0.

An easy example of a purely non Hausdorff space is (R, u), where u(z) =z V 0.

Another one is the linear lattice Ej given in Example 2.1 endowed with the
lattice asymmetric norm ¢(z) = ||z V 0]o. If z € X it can be easily checked that
the constant sequence x, = x A 0 satisfies that ¢(z, — ) = ¢(—(z vV 0)) = 0 and
q(z,) = 0 for every n. Obviously, if (X, ¢) is a non trivial Hausdorff space it is not
a purely non Hausdorff space. Example 2.1 provides then a space which does not
satisfy this property.

Definition 2.3 Let (X, q) be a asymmetric normed linear space. The kernel of the
seminorm ||.||, will be called the purely non Hausdorff kernel of (X, q), i.e.

Ker|ly ={z € X : ||lz/[, = 0}.

Obviously, (Ker||.||,, ¢) is a purely non Hausdorff asymmetric normed linear sub-
space of (X, q) (see 2) — 1) in the proof of Theorem 2.1). It is clear that the purely
non Hausdorff kernel of a purely non Hausdorff asymmetric normed linear space
is the whole space, and is {0} when the space is Hausdorff. In other case, follow-
ing standard techniques of Functional Analysis we can consider the quotient normed
space (X/Ker||.||g, ||.]|9), whose elements are the classes [z] = {y € X : [[z—y]|, = 0}
and the norm is defined by [|[z]||) := inf{]|z|, : z € [z]}.

The following lemma can be found without proof in Proposition 4.1 in [18].

Lemma 2.2 Let (X,q) and (Y, g) be asymmetric normed linear spaces. A linear
map f:(X,q) — (Y, g) is continuous if and only in there is a constant K such that
g(f(x)) < Kq(z) for every xz € X.

Proof. Let x € X and consider the neighbourhood V.(f(x)) ={y € Y|g(y— f(z)) <
€}. We just need to prove that the neighbourhood f(Ve (7)) = {f(2)|q(z — z) <
- <

w1 C Ve(f(2)). But for every y = f(2) € f(Ve(2)), 9y = f(2)) = g(f(z — 2))
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Kq(z—x) < K4 = e. This proves that the inequality gives a sufficient condition for
continuity. A similar argument for the neighbourhood Vi(f(x)) proves the converse
implication. W

We can define the linear maps

i (Xq) = (Xl by i) =,

and

P(X ) = (X/Ker| o 119, by Pla) = [2).

That they are continuous follows from the above lemma.

Proposition 2.2 Given an asymmetric normed linear space (X, q) we have:
1) (Ker||.lq,q) is a purely non Hausdorff closed subspace of (X, q).

2) Let X be a linear subspace of (X, q). Suppose that X, N Ker|.||, = {0}. Then
(X1,q) is a Hausdorff space.

Proof. 1) {[0]} is a closed subset of (X/Ker|.||,]-][7) since it is a normed space.
It is easy to check that the linear maps i and P are continuous, and then (P o) is
continuous too. Thus (P oi)~!([0]) = Ker||.||, is a closed subset of (X, q).

2) Consider two elements xz,y € X, © # y. Then x — y does not belong to
Ker||.|lq, and (P oi)(x —y) # [0]. Thus ||[z] — [y][|2 > 0, and we can find two dis-
joint balls of (X/Ker||.[l,, 119, B((2]) and BM7([y)). Since g(x) > ||[]]| and
q(y) > |l[y]ll3, the basic neighbourhoods V.(z) and V,(y) are disjoint. W

Let us define the function ¢ : X/Ker||.||; — R* by ¢°([z]) := inf.epjq(z). Since
z € [z] if and only if there is a t € Ker||.||, such that © — ¢ = 2, we also have the

formula ¢"([z]) = in fieker.),a(z — t).
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Proposition 2.3 (X/Ker|.||,, ¢") is a Hausdor{f asymmetric normed linear space.

Proof. Tt is clear that the function ¢° defines an asymmetric norm on X/Ker||.||,. By
Remark 2.1 it is sufficient to prove that there is a norm ||.|| such that ¢°([z]) > ||[z]]|.
But obviously ¢°([z]) > inf.cq|l 2|l = ||[a:]||2 [ |

Note that for an asymmetric normed linear space (X, q) the set of continuous
linear maps f : (X,q) — (X,q) does not define a linear space in general. For
example, let us consider the identity map I : (X,q) — (X, q). It is obviously a
continuous linear map. However, the map —I defined by (—1)(z) = —x is continuous
if and only if ¢ is equivalent to a norm, since ¢(—z) < Kq(x) for all x € X implies
q(—2) < Kq(x) < K?q(—x). Moreover, if f: X — X is a linear map, the condition
q(f(x)) < Kyq(x) does not imply ¢((I — f)(z)) < Kyq(x). An easy counterexample
is f(z) = 2.

If X is linear subspace of X, a linear map @ : X — X; is called a projection if
Q(z) = x for each x € X;.

Definition 2.4 An asymmetric normed linear subspace (Xi,q) of (X,q) is called
complemented if there is a continuous projection @ : X — X1 such that (I — Q) is
continuous too.

A consequence of Lemma 2.2 is that a subspace (X7, ¢) is complemented if and
only if there exists a projection @) : X — X; and a constant K > 0 satisfying
maz{Q(r), (I — Q)(x)} < Kq(x) for every x € X.

Theorem 2.3 Let (X, q) be an asymmetric normed linear space. Then the following
statements are equivalent:

1) (X,q) is isomorphic to a direct sum of the purely non Hausdorff subspace
(Ker|.llq,q) and a Hausdorff subspace (Xo, q) which is isomorphic to the asymmetric
normed linear space (X/Ker||.|l4,q%).

2) (Kerl|.|l4,q) is complemented.
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Proof. 1) — 2) is obvious. Let us show 2) — 1). There exist a projection @) and a
constant K such that maz{Q(z), (I — Q)(z)} < Kq(x) for every x € X. Thus the
map (I — Q) : X — X is well defined and it is continuous. We will denote by X
the subspace (I — Q)(X).

Let us show that we can factorize (I—Q) through the quotient space (X/Ker||. |4, ¢°).
The quotient map P : (X,q) — (X/Ker|.||4,¢°) is continuous, since obviously
¢°([z]) < q(x) for every z € X.

Now, note that Ker|.|, = Ker(l — Q). If x € Ker|.||4, then Q(z) = x. Thus
r—Q(x) = (I—-Q)(x) =0,and x € Ker(I—@). On the other hand, if x—Q(z) = 0,
Q(z) = x and then x € Ker||.|,. We define the linear map S : (X/Ker||.|, ¢°) —
(Xo,q) by S([z]) = (I — Q)(x). In fact, it is well defined since, if y € [z], there is an
element ¢ € Ker||.||, such that y —z = ¢, and then (I — Q)(y) = (I — Q)(t + z) =
t=Qt) + - Q)x) = (I -Q)(x).

To prove that S is continuous, consider an element [z] € X/Ker|.||,. We show
that ¢(S([z])) < K¢°([z]). Take t € Ker|.||,- Since ¢(z — Q(z)) < Kq(z) and
Q(t) = t the following inequalities hold.

¢(r = Qx)) = q(z =t = Q(z) + Q1)) = ¢((x — 1) = Qr — 1)) < Kq(z —1).

Therefore, ¢(S([2])) = q(a—Q(x)) < Kinfiexer.,q(x—t) = Kq°([z]). Moreover,
since Q(z) € Kerl|.||, we get ¢°([z]) < q(S([z])). S is an injection, since S([z]) =
S([y]) implies x —y = Q(x — y) € Ker||.||,, and then [z] = [y]. Thus, S defines an
isomorphism between (X/Ker||.||,,¢°) and an asymmetric normed linear subspace
(Xo,q) of (X, q). Then (Xy, q) is a Hausdorff space by Proposition 2.3.

Let us consider the product space Xy x Ker||.||, endowed with the asymmetric
norm ¢, (o, 1) = q(xo) + q(x1). We just need to show that the map f : (X,q) —
(Xo x Ker||.||q,q1) defined by f(x) = ((I — Q)(x),Q(x)) is an isomorphism. We

have the following inequalities.

q(x) < q((I = Q)(x)) + ¢(Q(2)) = ¢ (f(2)) < 2K¢(x), r € X.
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Moreover, if f(z) = f(y), we obtain that z — Q(x) = y — Q(y) and Q(x) = Q(y).

Then x = y and the map f is an injection. Since it is surjective by the definition of
Q, we get the result. W

Let us finish this chapter with an easy example of the above canonical decompo-
sition. Consider the linear lattice R%. Let {e;}%, denote the set of vectors of the
canonical basis of R*. Consider the asymmetric norm

4 4
a(> " ie) = 10O Xied) VOlla + [[(Mer + Agez) A O]y

i=1 i=1

Theorem 2.3 can be applied to the asymmetric normed linear space (R*, ¢). In this
case, Ker||.||, = span{es, e4}, the purely non Hausdorff asymmetric normed kernel is
(span{es, es}, |[(Ases+ Aseq) VO||2) and the projection is Q(Zle Aiei) = Azez+ ey
The quotient (R*/Ker||.||4,¢") is isomorphic to the asymmetric normed linear space
span{ey, e} endowed with the asymmetric norm

q*()\lel + )\262) = H()\lel + )\262) V 0”2 + H()\161 -+ )\262) N OHl

The direct sum of span{ej,es} and span{es,es} with the corresponding asym-
metric norm

4
§<Z )\161) = q*()\lel + )\262) + H()\geg + )\464) V OHQ,

i=1

is clearly isomorphic to (R, q).
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Chapter 3

The bicompletion of an
asymmetric normed linear space

3.1 Introduction

The main purpose of this chapter is to obtain a satisfactory theory of bicompletion
for asymmetric normed linear spaces. Although our study should be seen as a new
contribution to the development of the theory of asymmetric norms (compare [18],
3], [4], [13] , [38]), actually it is motivated, in great part, for the recent applications
of these structures to the analysis of the so-called dual complexity space ( [43], [44],
[46]). Furthermore, the dual complexity space is a (semilinear) subspace of a certain
biBanach space (see Example 3.2 in Section 3.2).

See [12], [19] and [50] for a general theory of bicompletion. The main results of
this chapter have been published in [21].

Let (X, q) be an asymmetric normed linear space. Let us recall that the asym-
metric norm ¢ induces, in a natural way, a quasi-metric d, on X, defined by
dy(z,y) = q(y — z) for all z,y € X. If the quasi-metric d, is bicomplete, we say
that (X, q) is a biBanach space.
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The following is a first simple but useful instance of a biBanach space (see also
Example 3.2 in Section 3.2).

Example 3.1 Let (R,+,-) be the (usual) Fuclidean linear space. For each x € R
define u(z) = x V0. Then w is an asymmetric norm on R such that u® is the
FEuclidean norm. Therefore (R, ) is a biBanach space.

3.2 The bicompletion

Definition 3.1 An isometric isomorphism from an asymmetric normed linear space
(X, qx) to an asymmetric normed linear space (Y, qy) is a linear map f: X — Y
such that gy (f(z)) = qx(x) for allx € X.

Note that if f is an isometric isomorphism from the asymmetric normed linear
space (X, gx) to the asymmetric normed linear space (Y, gy ), then f is an isomet-
ric isomorphism from the normed linear space (X, ¢%) to the normed linear space
(Y, q5) and hence f is injective.

Definition 3.2 Two asymmetric normed linear spaces (X, qx) and (Y, qy) are said
to be isometrically isomorphic if there is an isometric isomorphism from X onto Y.

Definition 3.3 Let (X, q) be an asymmetric normed linear space. We say that a
biBanach space (Y, qy) is a bicompletion of (X, q) if (X, q) is isometrically isomor-
phic to a subspace of (Y, qy) that is dense in the Banach space (Y, q5).

We will prove that each asymmetric normed linear space (X, g) has a bicomple-
tion (X, ¢) such that any bicompletion of (X, g) is isometrically isomorphic to (X, q).
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Thus the biBanach space ()Af ,q) will be called the bicompletion of (X, q). Further-
more (X, q) provides the standard completion of (X, q) when (X,q) is a normed
linear space.

Let (X, q) be an asymmetric normed linear space. Denote by X the set of all
Cauchy sequences in the normed linear space (X, ¢%).

Define an equivalence relation R on X as follows: For each z := (Zn)nen and
Y = (Yn)nen in X put

xRy < lim, .o ¢*(z, — yn) = 0.

Denote by X the quotient X/R. Thus X = {[z] : © € X}, where as usual
[z] ={y € X : 2Ry} for all z € X.

For each z := (z,)neny and ¥ := (Yn)nen in X and each a € R define
T+y = (wn‘l’yn)neN» a-r = (axn)neNy [x]'f'[y] = [x+y] and a- [I] = [ax]

Then we have the following result whose straightforward and essentially known
proof is omitted.

Lemma 3.1 Let (X,q) be an asymmetric normed linear space. Then (X,+,) is a
linear space.

Let (X, q) be an asymmetric normed linear space. For each x := (z,),en in X ,
let

QN(['I]) = lim,, ‘J(wn>

We first observe that if y € [z], then ¢([z]) = q([y]). Indeed, ¢([z]) = lim,, . q(z,,) <
limy, oo ¢(zn, — yn) + limy, 0o ¢(yn). Since lim,, .o q(x, — y,) = 0, it follows that
(x]) < d(y). Similarly we show that () < a([z]).
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Next we observe that g([z]) is a nonnegative real number. Indeed, since (z,,)nen is
a Cauchy sequence in (X, ¢°), for each € > 0 there is ny € N such that ¢(z,, —z,,) < ¢
for all n,m > ng, so q(x,) — q(x,,) < € for all n,m > ngy, and thus (q(z,))nen is a
Cauchy sequence in RT. Consequently lim,, ., ¢(x,) exists and is finite.

Therefore we may define a function §: X — R given by §([z]) = lim,_oo q(z,)
for all x € X. We will show that actually ¢ is an asymmetric norm on X such that
(X, q) is a biBanach space.

Lemma 3.2 Let (X,q) be an asymmetric normed linear space. Then the following
statements hold:

(1) § is an asymmetric norm on X.
(2) (X,q) is a biBanach space.

(3) (X,q) is isometrically isomorphic to a subspace of ()Z',@) that is dense is the
Banach space (X, (q)*).

Proof. (1): As we have observed above ¢ is a nonnegative real valued function on

X.

Let # := (Zn)nen be an clement of X such that ([z]) = §(—[z]) = 0. Then
limy, 00 ¢(xy,) = limy, 00 ¢(—x,,) = 0, s0 lim,,—, ¢°(,,) = 0, and hence [z] = [0].

Now let z := (Zn)nen be an element of X and let @ € RT. Then g(a - [z]) =

q(la - z]) = lim, .o q(az,) = alim, . q(r,) = aq([z]).

Finally let 2 := (2,)nen and y := (y,)nen bet two elements of X. Then §([z] +
[y]) = 5([$+y]) = limy, o Q(xn+yn) < limy, oo Q(xn)+limn—>oo Q(yn) = 67([90])+q~([y])

We have shown that ¢ is an asymmetric norm on X.
(2): It is well known (see [12], [50]) that the bicompletion of the quasi-metric space

(X, d,) is the quasi-metric space (X, d}), where X* = {[z] : x is a Cauchy sequence
in the metric space (X, (dg)®)}, do([z], [y]) = limy_oo dg(2n, yn) for all [z], [y] € X,
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and for each Cauchy sequence x := (2, )nen in (X, (d,)*), [2] = {y := (Yn)nen : ¥ is
a Cauchy sequence in (X, (d,)*) and lim, o (dy)*(zn, yn) = 0}.

It immediately follows that X® = X and d = dg on X. Therefore (X,q) is a
biBanach space.

(3): For each x € X denote by T the constant sequence x, z, ..., x, ..

Since (X?,d}) is the bicompletion of (X, d,), i(X) is dense in (X, (q)?), where i
denotes the map from X into X defined by i(z) = [Z] for all z € X (recall that for
each € X, [Z] consists of all sequences in X which converges to z in the normed
linear space (X, ¢%)).

Since for each z € X, q(i(z)) = q([z]) = q(z), in order to show that (X, q) is
isometrically isomorphic to (i(X),q |;x)) it remains to see that i is linear. Indeed,
given z,y € X and a,b € R, we have i(ax + by) = [amy] =la-T+b- -y =
a-[Z]+b-[g=a-i(x)+b-i(y).

The proof is complete.l

Lemma 3.3 Let (X,qx) be an asymmetric normed linear space and (Y,qy) a
biBanach space. If there is an isometric isomorphism f from a linear subspace
Aof X toY and A is dense in the normed linear space (X, q%), then f has a unique
isometric isomorphism extension to X.

Proof. For each © € X\ A pick a sequence (x,,)nen in A such that lim, . ¢% (z —
x,) = 0. Since the sequence (x,)nen associated to z € X\ A4, is a Cauchy sequence
in the normed linear space (X, ¢%), (f(2n))nen is a Cauchy sequence in the Banach
space (Y, ¢35 ), so it converges to a point z* € Y.

Define f*: X — Y by f*(z) = f(z) forall z € A and f*(z) = 2* for all x € X\ A.

Observe that the definition of f* is independent of the choice of sequences (x, ) en-
Indeed, if (z,,)nen and (Y, )nen are sequences in A that converge to a point x € X'\ A
with respect to the norm ¢%, and denote by z* and y* the limit points in (Y, ¢} ) of
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(f(xn))nen and (f (Yn) )nen, respectively, we deduce that lim,, .o ¢5-(f (z,) — f(yn)) =
0, since f is an isometric isomorphism on A and lim,_. ¢%(z, — y,) = 0. So, by
the triangle inequality, * = y*.

Next we show that f* is an isometric isomorphism on X. Let x € A. Then
gy (f*(x)) = qv(f(x)) = gx(z). Now let = € X\A. Let (z,)nen be a sequence in
A such that lim, . ¢%(z — z,) = 0. Then, for each ¢ > 0, ¢y (f*(2)) = gv(z*) <
qy (f(z,))+e = qx(x,)+e eventually. Therefore, for each e > 0, gy (f*(x)) < gx(x)+
2¢. Similarly we show that for each ¢ > 0, gx(z) < gy (f*(x)) + 2¢. Consequently
qy (f*(z)) = gx(x) for all z € X.

Furthermore f* is linear on X. Let z,y € X and a,b € R. We only consider
the case that x,y € X\A (recall that f is linear on A). Let (z,)neny and (¥n)nen
be sequences in A that converge to x and y respectively in the normed linear space
(X, q%)- Then (az,,+by,)nen converges to ax+by with respect to g%, so by definition
of f*, (f(ax,+by,))nen converges to f*(azx+ by) with respect to ¢§. Since f is linear
on A, the sequence (af(x,) 4+ bf(yn))nen converges to f*(ax + by) with respect
to ¢y On the other hand, by definition of f*, (f(z,))nen converges to f*(z) and
(f(yn))nen converges to f*(y) with respect to g5-. So ((af(z,)+bf(yn))nen converges
to af*(x) + bf*(y) with respect to ¢5-. Therefore f*(ax +by) = af*(z) +bf*(y). We
conclude that f* is linear on X.

Finally, suppose that f’ is another isometric isomorphism extension of f to X.
Let 2 € X\ A and let (z,),en be a sequence in A that converges to x with respect
to q%. Then

limy, oo (g5 (f*(2) = f*(20)) = limp—oo (g5 (f'(z) — ['(zn)) = 0.
Since f*(z,) = f'(x,) = f(x,) for all n € N, it follows that f*(z) = f'(z). So f*

is unique.l

Lemma 3.4 Any bicompletion of an asymmetric normed linear space (X, q) is iso-
metrically isomorphic to (X, q).

Proof. Let (Y, qy) be a bicompletion of (X, q). Since X is dense in the Banach
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space (Y, ¢5) and by Lemma 3.2 (3), there is an isometric isomorphism f from (X q)
to (X, q), it follows from Lemma 3.3 that f has a (unique) isometric isomorphism
extension f* to (Y, qy). It remains to show that f*:Y — X is an onto map. Actu-
ally, this fact follows from standard arguments. Indeed, let x be an arbitrary point
of X. Since f(X) is dense in (X, (§)*), there is a sequence (zp)nen in X such that
(@(z — f(x0)))* — 0. Thus (f(22))nen is a Cauchy sequence in (X, (§)*). Since f* is
an isometric isomorphism, (x,),en is a Cauchy sequence in (Y, ¢ ). Let y € Y such
that ¢35 (y — z,,) — 0. Then (q(f*(y) — f*(z,)))® — 0, so f*(y) = . This completes
the proof.l

From the above lemmas we immediately deduce the following

Theorem 3.1 Fach asymmetric normed linear space (X,q) has a unique bicom-
pletion (up to isometric isomorphism). Moreover if (X, q) is a normed linear space,
then its bicompletion is the standard completion of (X, q).

An application of Theorem 2.1 which is related to the bicompletion of a Hausdorff
asymmetric normed linear space is given in Proposition 3.1 below.

It must be keep in mind Definition 2.1 as well as the results of Lemma 2.1 and
Theorem 2.1. Let us recall that if (X, ¢) is an asymmetric normed linear space, || ||,

is defined by:

zllg == infeex{a(z1) + q(z1 — x)}, reX.

Proposition 3.1 The bicompletion of a Hausdorff asymmetric normed linear space
18 Hausdorff.

Proof. Let (X,q) be a Hausdorff asymmetric normed linear space. Denote by
(X, ) the bicompletion of (X, ¢) and by (X . [|.||;") the completion of the normed
space (X, [|.||,) (see Theorem 2.1).

Since, by Lemma 2.1, |[z]|, < ¢() for all z € X, then every Cauchy sequence in
(X, ¢°) is a Cauchy sequence in (X, |[.|[,), so X C )?H.”q.Therefore (X, I, 1) is a

normed subspace of ()A(/”,”q, 11115
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Since |||, = limy, oo [|2n]|, for all 2 := [(2,)nen] € )AfH_”q and ¢(z) = lim,, o q(z,)
for all  := [(n)nen] € X, it follows that [z]l,; < q(z) whenever x € X. Conse-

quently the topology induced on X by ¢ is a Hausdorff topology by Remark 2.1.
This completes the proof. Il

We finish the chapter by applying Theorem 3.1 to the dual complexity space.
The notation and terminology in the following example correspond to the ones used
in Chapter 8.

Example 3.2 The dual complexity space ([44]) is the pair (C*,de+), where

C* = {f €[0,00) : Y22, 27 f(n) < o0},

and de~ 1s the quasi-metric defined on C* x C* by

de-(f,9) = 2220 27"[(9(n) = f(n)) v 0].

It is shown in [46] (see also [43]) that C* is the positive cone of the biBanach
space (B*,q), where B* = {f € R¥ : Y 27" | f(n) |< oo}, the operations +
and - (product by a real scalar) are defined in the usual pointwise way, and q is the
asymmetric norm defined on B* by q(f) =Y.~ 27" (f(n) V 0) for all f € B*.

On the other hand, denote, as usual, by l; the set of infinite sequences x : =
(Zn)new of real numbers such that Y . | z, |< 0.

It is well known that (11,]| . ||1) is a Banach space, where || . ||1 is the norm on

defined by || x ||,=>"""y | @ | for all x €l;.
We will split the norm || . ||1 as follows:

For each © € R, let x* be the nonnegative real number x V 0. For each x : =

(Tn)new € b define x* := (] )new and q(x)+ = [IXF(;, de. q(x)4 = 32070 (2)-
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It is immediate to show that q. is an asymmetric norm on ly such that the norm
(g4)° is equivalent to || . ||1. Furthermore (B*,q) and (li,q+) are isometrically
isomorphic.

Now let D ={f € B*: f is eventually constant}.

Clearly (D, +,-) is a linear subspace of (B*,+,-). So (D,q | D) is an asymmetric
normed linear space. Moreover D is dense in (B*,q%). Indeed, given g € B* and
e > 0 there is n. € N such that Y77 27" | g(n) |< /2. Let f € D defined by
f(n) =g(n) forn=0,...,n. — 1, and f(n) =¢/2 for n > n.. Then

Yom02 " g(n) = f(n) [= 2202, 27" [ 9(n) = f(n) [<

Do 27 g(n) [ +3502,. 27 | f(n) [<e.

We conclude that D is dense in the Banach space (B*,(q)*). By the above theorem
(B*,q) is the bicompletion of (D, q | D).

In particular, let DY ={f € D: f(n) >0 for alln € w}. Thus D" is the positive
cone of D. Since the dual complezity space C* is closed in the complete metric space
(B*,(d,)?) and (B*,d,) is bicomplete, (C*,d,
([44]), which is clearly the bicompletion of (D*,d,

c+) s a bicomplete quasi-metric space

D).
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Chapter 4

Compactness and finite dimension
in asymmetric normed linear
spaces

4.1 Introduction

The aim of this chapter is to extend the results about compact sets on finite dimen-
sional normed spaces to the case of asymmetric normed linear spaces. In Section
4.2 we introduce the set theoretical arguments that allows to a general description
of compact sets of an asymmetric normed linear space. In Section 4.3, we focus
our attention in the finite dimensional case to reproduce the classical results of the
normed spaces theory. In particular, we prove that a 77 asymmetric normed linear
space is finite dimensional if and only if the unit ball is compact for the topology
generated by the asymmetric norm ¢ (Theorem 4.2). Following the terminology
given in Chapter 1, we denote by V) < the unit ball in the asymmetric normed linear
space (X, ¢) and Bj < the unit ball in the normed linear space (X, ¢°), this will be
done via the compactness of V; < in the supremum norm ¢°. In fact, we will prove
the equivalence between T; separation axiom and normability in the case of finite
dimensional asymmetric normed linear spaces and thus between 77 and T, separa-
tion axioms. The T; separation axiom in the general case of asymmetric normed
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linear spaces has been studied in [22]. We also prove that the Heine-Borel Theorem
characterizes finite dimensional asymmetric normed linear spaces that satisfies the
T, axiom (Theorem 4.3). The general situation for nonnecessarily 73-spaces is also
explored.

Basic references about quasi-metrics and asymmetric norms are [4],[18], [42], [44]
and [50]. We use standard notation. Definitions and results on general topology can
be found in [11].

4.2 Compact sets in asymmetric normed linear

spaces

In this section we describe the compact sets of any asymmetric normed linear space.
In particular, given a compact set in (X, ¢°), we give a way to construct compact
sets in X for the topology generated by q.

Definition 4.1 Let (X, q) be an asymmetric normed linear space and v € X. We
define the set 0(x) as:

O(x) ={z € X :dy(z,2) = q(z — x) = 0}.

In particular

0(0) ={z € X :d,(0,2) = q(z) = 0}.
Observe that 6(z) is the closure of {z} in (X,q71).

Lemma 4.1 Given a subset A of an asymmetric normed linear space (X,q), we
have that

| o) = A+ 6(0),

T€EA
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where

A+000)={ze X z=a+y,x € Aand y € 6(0)}.

Proof. Let z € |J,.4 0(x). Then there exists an € A such that ¢(z — z) = 0.
This implies that z —x =y, y € 6(0) and then we can express z as z = x +y. Thus

Uyea0(x) € A+ 6(0).

Now, let w € A+ 60(0). Then there exists an z € A and an element y € 6(0) such
that w = z + y and also w — x = y. Then ¢(w — ) = q(y) = 0, so w € §(x) and
w € U,e4 0(x). This implies that A+ 6(0) C U, 0(x). B

Lemma 4.2 Let (X, q) be an asymmetric normed linear space and x € X. Then

Ve(w) = Ve(x) +60(0).

Proof. V.(xz) C V.(z)+ 0(0) since 0 € §(0) and every x € V.(x) can be written as
x=uz+0.

Let z € Vi(x) + 0(0). Then there exists an y € V.(z) and w € 6(0) such that
z =19y +w. Then

g(z—z)=qly+w—1)<qly—2)+qw) <e+0=c

As a consequence, z € V (z) and V.(z) + 6(0) C V(z). B

Lemma 4.3 Let (X, q) be an asymmetric normed linear space and A C X an open
set. Then

A=A+6(0).
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Proof. Tt is obvious that A C A + 6(0).

Let z € A4 6(0). Then we can express z as z = x +y where z is in A and y is an
element of A(0). Since A is an open set, there exists an € > 0 such that V,(z) C A.
Taking into account that by Lemma 4.2 V,(z) = V.(x) + 6(0), we conclude that z is
in A. N

Lemma 4.4 Given a family {A; : i € I} of sets in (X, q), then

i +6(0)) = (U AZ-) +6(0).

i€l el

Proof. If x € | J;c;(A;+6(0)), there exists some ¢ € [ satisfying that € A;+6(0),
then * = z; + z with z; € A; and 2z € 0(0). Thus z; € |

(Uier 4:) +6(0).

If 2 € (U,c; Ai) +6(0) there exists an z; € A; and z € 6(0) such that z = z; + 2
and then z is in (J,.,(A; +60(0)). B

e Ai and 2z is in

Let (X, ¢) an asymmetric normed linear space endowed with the topology T'(d,)
generated by g. A subset M C X is said to be compact if it is compact considered
as a subspace of X with the induced topology, that is, M is compact with respect
to the topology T'(d,)|um-

Proposition 4.1 Let (X, q) be an asymmetric normed linear space and K C X.
Then K is compact respect to the topology generated by q if and only if K + 6(0) is
compact for the same topology.

Proof. We first prove the part “if”. Let be {A; : i € I} an open cover of K. By
Lemma 4.3 we have that
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Then by Lemma 4.4

K +6(0) C | A; +6(0).

i€l

Since K is compact, there exists a finite subcover of K, {A; : j € J C I, J finite}
such that K C (J;c; A;. Then applying Lemma 4.4 we obtain that K + 6(0) C
U,es(A; +6(0)). This implies that K + 6(0) admits a finite subcover {A; + 0(0) :
je€Jcl, Jfinite} and thus K + 6(0) is a compact set.

Conversely, if K +6(0) is compact, given an open cover of the set K, {A; : i € I},
the family {A4; + 6(0) : ¢ € I} is an open cover of K + #(0) and this set admits a
finite subcover {A; +0(0) : j € J C I, J finite}. Then by Lemma 4.4, K 4+ 6(0) C
Ujes 4 +0(0) that implies K C (J;c; A; and thus {A4; : j € J C I, J finite} is a
subcover of K obtained from the open cover {A; : i € I'}. Hence, K is compact. B

Corollary 4.1 Given a subset Ky such that Ky C K+46(0), if K+6(0) is a compact
set and Ko+ 60(0) = K + 60(0) then K is also compact.

Note that if K is a compact set in (X, ¢°), then K + 0(0) is a compact set in
(X, q).

4.3 Compactness and finite dimension

Let us recall the following well known result.

Lemma 4.5 Let (X,| - ||) be a finite dimensional normed linear space, with base
{e1,€e9,...,e,}. Then, a sequence (zy)ren in X converges to x = A\je; + Ageg+ ...+
Anen if and only if the i-co-ordinate sequence of (xy)ren converges to \;, with respect
to the Fuclidean norm, i =1,...,n.

We generalize this classical result to asymmetric normed linear spaces as follows.
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Theorem 4.1 Let (X, q) be a finite dimensional Ty asymmetric normed linear space,

with base {e1,eq,...,e,}. Then, a sequence (zy)ren n X converges to x = Ae; +
Ao€s + ...+ A\ye, with respect to q if and only if the i-co-ordinate sequence of (xy)ken
converges to \;, with respect to the Fuclidean norm, i =1,...,n.

Proof. First suppose that the i-co-ordinate sequence of (xj)reny converges to \;,
with respect to the Euclidean norm, ¢ = 1,...,n. Given a positive real number
M > 0 and an € > 0 there is a &}, such that when k& > & then

€

Let ko = max{k} : i =1,...,n}. Then, if k > ko,

glor =) <D al(@n)i = A) <D ()i = ) < D M|(ze)s — Mif < e.

=1 =1 i=1

where we have used the fact that ¢® is a norm equivalent to the Euclidean norm
with constant M.

Suppose now that (x)ren is a sequence in X that converges to 0 with respect to
q (if (xx)ken converges to x respect to ¢, the sequence (z; — x)ren converges to 0),
but for some ng € 1,...,n the co-ordinate sequence ((Ag)n, )ken is N0t convergent to
0 with respect to the Euclidean norm, where

T = ()\k)lel + ()\k)geg + ...+ ()\k)nen
for each k£ € N.

We may assume that there is a constant r > 0 such that |(Ag),,| > r for all K € N.

For each k € N put My = max{|(\x); : @ = 1,...,n}. Define a sequence (y)ren
by yx = z /My, for all k € N. Then
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o) = q](\j:) _ q(sz)j

for all £ € N, so (yx)ren converges to 0 with respect to g.

Now observe that there exists a co-ordinate sequence of (yx)ren that has a co-
ordinate subsequence which consists only of terms —1 or 1. Denote this subsequence
by ((Ak;)m)jen where m € {1,...,n}. Consider the corresponding subsequence
(Yk,)jen of (Yr)ren and its first co-ordinate sequence ((Ag;)1)jen. Then ((Ax;)1);en has
a convergent subsequence. Continuing this process to the n-th co-ordinate sequence,
we obtain a subsequence (yg,)ien Of (yr)ren Which has each co-ordinate sequence
convergent since the m-th co-ordinate subsequence consists only of terms —1 or 1.
So by the preceding lemma (yy, )ien converges to a point y # 0 with respect to the
norm ¢°. Since q(y) < q(y — yx,) + q(yx,) for all I € N, it follows that ¢(y) = 0 so
y = 0, a contradiction.

We conclude that each co-ordinate sequence ((A;);)gen converges fori =1,...,n.

Finally, if the sequence (zy)ren converges to x with respect to ¢, then the se-
quence (xy — x)gen converges to 0 with respect to ¢g. So the i-co-ordinate sequence
((xk)i — (z)i)ken converges to 0. Hence the i-co-ordinate sequence ((xy);)ren con-
verges to the i-co-ordinate (x);. This concludes the proof. B

Definition 4.2 An asymmetric normed linear space (X,q) is called normable if
there is a norm ||.|| on the linear space X such that the topologies T'(dq) and T'(d) )
coincide on X.

Corollary 4.2 Let (X,q) be a finite dimensional Ty asymmetric normed linear
space. Then (X, q) is normable by the norm q¢°.

Proof. Let (zr)ren be a sequence in X that converges to a point x with respect
to ¢. By Theorem 4.1 and Lemma 4.5, (zy)ren converges to x with respect to the
norm ¢°. W
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In particular observe that, because of Corollary 4.2, the 77 separation axiom
implies the T5 separation axiom in the finite dimensional case.

Theorem 4.2 The unit ball of a Ty asymmetric normed linear space (X, q) is com-
pact if and only if (X, q) is finite dimensional.

Proof. Suppose firstly that Vi < is a compact set of (X, ¢). Then V; < is compact
in (X, ¢°) by the preceding corollary. Since By < C Vj < and By < is closed in (X, ¢°)
it follows that B < is compact in (X, ¢°). Hence (X, ¢*), and thus (X, ¢), are finite
dimensional.

Conversely, let {e1,es,...,e,} be a base of (X, q). For each x € X set

r=A(z)er + Aa(x)es + ... + \(x)ey,.

Thus we have defined n functions A; : X — R, which are clearly linear functions
on X.

By Theorem 4.1, each \; is continuous from (X, ¢q) to R endowed with the Eu-
clidean norm, so there exist n constants M; > 0,M; € R, ¢ =1,...,n such that

INi(z)| < Mig(z), i=1,...,n, forall z € X.

Now let (zx)ren be a sequence in Vi <. Then |N;j(x)| < M;i=1,...,n, k€ N.
Hence, the first co-ordinate sequence (Ai(xy))gen has a convergent subsequence.
The corresponding co-ordinate sequence (Az(zy))reny has also a convergent subse-
quence. Continuing this process, we obtain a subsequence (z,)jen of (T )ren,
which has each co-ordinate sequence convergent. Therefore (z;)jen converges to
some y € X with respect to the norm ¢° by Theorem 4.1. Since g(zy,) < 1 and
q(y) — q(xx;) < q(y — x,) for all j € N, it follows that ¢(y) < 1. We conclude that
V1 < is a compact set of the normed space (X, ¢°) and by the preceding corollary it
is a compact set of (X,q). B
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Remark 4.1 The above proof is doing following the customary scheme but there
18 an straightforward argument to deduce the result from classical theorems. This
comes from the observation that all asymmetric norms on a Ty finite dimensional
linear space are equivalent. It was shown in Chapter 2, Proposition 2.1 that an
asymmetric normed linear space is Ty if and only if q(x) # 0 for all x € X\{0}. Let
(X, q) be a finite dimensional asymmetric normed linear space and ¢° the supremum
norm as usual. Then the restriction of q to the unit sphere of (X, q°) does not attain
zero because q is a continuous function in (X, q°). Thus, it is bounded below, and
so q and q° are equivalent.

Theorem 4.3 Let (X, q) be a finite dimensional asymmetric normed linear space.
Then (X, q) is normable if and only if each compact set is closed.

Proof. Suppose that (X, ¢) is not normable. Then it is not Hausdorff by Corollary
4.2, so there exist a sequence (z,)nen in X and two points z,y € X with x # y such
that x,, — z and x, — y with respect to the topology T'(d,). Since K = {z} | J{xz,
n € N} is compact in (X, q) and y € K — K, K cannot be closed.

The converse is well-known H

Note that, in a finite dimensional linear space, every compact set is bounded and
hence this theorem provides a version of the Heine-Borel Theorem for asymmetric
normed linear spaces.

The case in which (X, ¢) is only a T} finite dimensional asymmetric normed linear
space is actually more complex. Let us now give a characterization for this situation.

Definition 4.3 Let (X, q) be an asymmetric normed linear space. We say that V; <
15 right-bounded if there exists a real constant r > 0, such that

rVi< C Bi<+ 9(0>

Proposition 4.2 Let (X, q) be a Ty finite dimensional asymmetric normed linear
space such that Vi < is right-bounded . Then V) < is compact.
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Proof. Bj < is the unit ball of the normed space (X, ¢*). Since X is finite di-
mensional, B; < is compact. Let {A4;, ¢ € I} be an open cover of Vi < in T'(d,).
Since By < C By < +6(0) C Vi<, then {By<()A4;, ¢ € I} is an open cover of B <
in T'(dys)|p, .. There exists a finite subcover {B; <(A4;, j =1,---,n} of B < in
T(dys)|B, .- Then By < +6(0) C Uj_, (Bi<NA4;) +6(0) € Uj_, A; +0(0). But V; <
is right-bounded, so 7V; < C Uj_; A; +0(0) C Uj_, A; by Lemma 4.3. Then rV} <
is compact. Taking into account that the function f(x) = rz is continuous for the

topology T'(d,), it is obvious that V; < is compact. B
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Chapter 5

Extensions of asymmetric norms
to linear spaces

5.1 Introduction

In Chapter 1 we introduced the notion of algebraically closed space.

An easy example of an ac-space is the positive cone C,, of the finite dimensional
space R™. For instance,

Cy = {(331,1’2) € R? . 1 > 0,29 > 0}

defines an ac-space.

The aim of the present chapter is to obtain conditions under which it is possible
to extend an asymmetric norm defined on an ac-space M to the corresponding linear
span span{M}. Our motivation is that a great part of asymmetric normed linear
spaces that appear in applied contexts are in fact extensions of asymmetric norms
defined on ac-spaces (see [24] and [44]). For example, the natural definition of the
dual of an asymmetric normed linear space X (see Chapter 6) provides an asymmet-
ric normed ac-space. In Section 5.2 we characterize those asymmetric seminorms
defined on an ac-space M that can be extended at least to an asymmetric seminorm
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q on span{M }. However, note that in general such an extension does not lead to an
asymmetric norm on span{M}, since we cannot assure that the separation axiom
(q(x) = q(—x) = 0 if and only if x = 0) is satisfied. For example, the asymmetric
seminorm ¢, defined on Cy as ¢a((x1,22)) = 21 can be extended to the function g,

62((1'1,%'2)) = T Zf xr1 > 0,

and Gy((z1,x2)) = 0 otherwise. It is clear that G, does not satisfy the separation
axiom of the definition of the asymmetric norm, although ¢, is an asymmetric norm
on 02.

This motivates the study of extensions satisfying the separation axiom. In Section
5.3 we characterize when this condition is also satisfied, under the assumption that
such an extension exists. Section 5.4 is devoted to the application of these results to
the particular case of the increasing asymmetric seminorms that appear in several
interesting applied frameworks.

The main results of this chapter have been published in [23].

5.2 Extensions of asymmetric seminorms defined

on ac-spaces

Let M be an ac-space and let X = span{M}. In this section we develop a con-
structive technique to obtain extensions of an asymmetric seminorm ¢ from M to
X. Two basic functions are needed in order to construct the extension. The first
one is q. The second function that is needed is another asymmetric seminorm py
on M. It is clear that the inversion map i(z) = —z defines a linear isomorphism
i+ X — X such that i(M) = —M = {—x € X : x € M} and then —M is also an
ac-space. Thus we can use pg in order to define an asymmetric seminorm p on —M
as p(z) := po(—z) for every z € —M.

The following definition gives the canonical construction of an asymmetric semi-
norm from ¢ and p. Note that each element x € X can be decomposed as a sum
r = x1 + T9, where x1 € M and z9 € —M.
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Definition 5.1 Let g and p be asymmetric seminorms on the ac-spaces M and —M ,
respectively. We define the function g, , induced by the couple (q,p) by mean of the
eTpression

q;,p(‘r) - an{Q(xl) +p(l’2) MRS M7 T2 € —M,J] =T1 +l’2}

for every x € X.
It is easy to prove that g, defines an asymmetric seminorm on X.

Definition 5.2 Let g be an asymmetric seminorm on the ac-space M. We say that
an asymmetric seminorm q* defined on X is an extension of q if the restriction of
q* to M coincides with q, i.e. ¢*|y = q.

The asymmetric seminorm g , is closely related to the possible extensions of ¢ to
X. For instance, consider the positive cone C;. of a Kothe function space (E, || ||, <).
A Kothe function space is a Banach lattice of functions with its natural order (see
[33]). If (Q,%, 1) is a complete o-finite measure, a Banach space F consisting of
equivalence classes, modulo equality almost everywhere of locally integrable real
valued functions is called a Kéthe function space if the following conditions hold.

1) If |f(w)] < g(w)| a.e. on Q, with f measurable and g € E, then f € E and
1A < 1lgll-

2) For every o € ¥ with p(o) < oo, the characteristic function y, of o belongs
to E.

An easy example of such a space is a (real) Hilbert space of integrable functions
Lo(v), where v is a finite measure.

If E is a Ko6the function space, it is easy to see that the function r(x) := ||z V 0|
defines an asymmetric norm. In fact, the definition of r is given by the evaluation
of the norm of the positive part of the function. This construction provides a broad
class of examples of asymmetric normed linear spaces of the type (E,r). The reader
can find information about related examples in [4] and [18].
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It is easy to see that the positive cone (C,r) is an asymmetric normed ac-space.
Now consider the trivial seminorm p;(z) = 0 defined on —C';.. A direct calculation
shows that ¢, |c, = r. Another extension of r to E is the norm || [|. It is also
easy to prove that || || is equivalent to g ,,, where pao(z) := [|x A O|| = ||z|| for every
x € —Cy. Moreover, q; . |c, =T

The example above shows that we can find different extensions of an asymmetric
seminorm defined on an ac-space M to the linear space X. In fact, the asymmetric
normed linear spaces (£, ¢y, ) and (E,q;,,) are different from a topological point
of view. (F,q;,,) is a Hausdorff space (it is in fact a biBanach space). However,
it can be easily proved that gy, does not define a Hausdorff topology on E ([22]).
Anyway, the existence of such an extension cannot be assured in general. The
following theorem characterizes the asymmetric seminorms defined on ac-spaces M
which can be extended to span{M}, in terms of their moduli of asymmetry.

Definition 5.3 Let q be an asymmetric seminorm on the ac-space M. We define
the modulus of asymmetry of q as the real function ®, : M — R given by the formula

®y(7) = sup{q(y) —qly+z):y € M}

for every x € M.
Note that ®,(x) = ¢(—x) if ¢ is a norm on X.

Theorem 5.1 Let q be an asymmetric seminorm on the ac-space M. Then:

1) There exists an extension of q to X if and only if there is an asymmetric
seminorm p on —M such that

() < p(—x) for every x € M.

2) Such an extension can be obtained as the asymmetric seminorm g , induced
by the couple (q,p).
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Proof. The proof is a direct consequence of the properties of the asymmetric semi-
norm ¢, .. It is defined on the whole linear space span{M}. Then we just need to
show that its restriction to M is exactly ¢. It is clear that ¢; (z) < q(z) for every
x € M, since

infiq(z1) +p(x2) 121 € M,wp € =M, 2 = 21 + 22} < q(2) + p(0) = q(x).

On the other hand, consider an element x € M, an ¢ > 0 and a decomposition
T = x1 + x9, where 1 € M and zo € —M, that satisfies

q(z1) + p(x2) < q () + €

Then we obtain the following inequalities using the condition given in 1) for ®,.
Qgp(x) + € > qla1) + p(x2) = q(x — 22) + p(22) 2

> q(x — o) +sup{a(y) —a(y —z2) : y € M} > gz —22) +q(2) — gz — 22) = g(2).
Thus, ¢} (v) = q(z) for every x € M, since the above inequalities hold for each
e > 0.

For the converse, consider an extension ¢* of ¢ to span{M?}. Then for every
x,y € M,

qz+y) +q(—2) =@ +y)+q(~2) > q"(y) = q(y),

since x +y € M. Now let us define on —M the asymmetric seminorm p = ¢*|_y,
and fix x € M. We obtain for every y € M the inequality

p(—=2) > q(y) — q(z +y).

Then
p(—x) > &, (x) for every x € M.

2) is a direct consequence of the constructive procedure used in the proof of 1).
|

The next example shows that it is possible to find asymmetric seminorms defined
on ac-spaces that cannot be extended to the corresponding linear span. According
to Theorem 5.1 we just need to show that there is not any seminorm satisfying
the required property. In fact, it is enough to find an element x € M such that
() = oo.
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Example 5.1 Consider the positive cone S, of the lattice Ry whose elements are the
sequences of real numbers (z,)nen that are non zero only for a finite set of indezes,
with the usual order. Sy is obviously an ac-space. Let us define the asymmetric
norm q, on Sy as follows. Consider the canonical basis of RY, {e, : n € N}. Then
for every T = (xn)nen, if there is no A € RT such that T = Ae,, for any n € N, we

define
q+ (T) = Z L
n=1

and gy (Ae,) := An otherwise.

It is easy to prove that ¢, is an asymmetric norm on S,. However, the element e;
satisfies that ®,, (e;) = oo since

®q, (1) = sup{q(y) —qler +7) : 7 € Sy} > sup{q(en) — qler +e,) :n €N} =

= sup{n —2:n € N} = c0.

Then there is no asymmetric seminorm p on —M satisfying p(—ei) > @4, (e1).
Moreover, note that this conclusion does not depend on the separation properties of
the space (C'y,qy). It is easy to see that ¢, (T) = 0 implies T = 0 in the above ex-
ample. However, an easy change of the definition of ¢, would lead to an asymmetric
seminorm which does not satisfy this separation property but does not admit an
extension yet. The conditions required for the characterization of extensions that
are asymmetric norms are different that the ones that assures the existence of the
extension. The next section is devoted to study these conditions.

5.3 Extensions of asymmetric norms

Definition 5.4 Two asymmetric seminorms q and p given on the ac-spaces M and
—M respectively, define a compatible couple (q,p) if the extension qy,p €rists and
satisfies that q; ,|v = q and q; | v = p.
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Note that any extension ¢ , of an asymmetric seminorm ¢ can be obtained by
means of a compatible couple. It is enough to replace the seminorm p by py =
qypl-ar- A direct computation shows that ¢ , = ¢, . Thus we can use compatible
couples without loss of generality.

Definition 5.5 Consider an asymmetric seminormed ac-space (M, q) that admits
an extension by means of the compatible couple (q,p). We define the set Mq,p as the
closure of M on the seminormed space (span{M},(q;,)*). Moreover, we say that

the ac-space M s closed if M = M.

For each element y € HW there exists a sequence (x,,),en such that y € lim,, o 2,
where the limit is computed with respect to the seminorm (g; )®. Then we can ex-

tend the asymmetric seminorm ¢ to M, in the following way. Note that for each
nenN

(@) (@ —y) > @ p(xn—y) >, (2n) — ¢, (y)
and
(05,)° (@0 —y) = 5,y — 70) > ¢, (Y) — ¢ p(Tn)-

Then it is clear that lim, ... q; ,(¥,) = ¢, ,(y). Taking into account that ¢} |» = g,
we obtain that the following (topological) extension of ¢ is well defined.

Definition 5.6 Let (M, q) be an asymmetric seminormed ac-space and let (q,p) be
a compatible couple. Then we define the (topological) extension q for each y € M,
by means of the formula

q(y) := lim q(z,),

n—oo

where (xp)neny C M satisfies that y € lim, o x,.

Lemma 5.1 Let (M,q) be an asymmetric seminormed ac-space and let (q,p) be a

compatible couple. Then (M, ,,q) is an asymmetric seminormed ac-space.

Proof. Consider two elements Z,7 € M,,. Then there are sequences (x,)neny C M
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and (Yn)nen C M such that

lim (¢, ,)*(z, —T) =0,

Tim_g(z,) = q(T),
Tim (q;,)*(yn —¥) = 0,and

Tim q(yn) = (7).
Then

lim qg (20 +yn =T =) < lim g5, (zn —T) + lim q;,(yn —7) = 0.

n—oo n—oo n—oo

This means that 7 +y € M,,, since x,, +y, € M for every n € N. It is also
possible to prove that lim, .. q(z, +yn) = ¢, (T +7) in the same way. Finally,

7T +7) < lim g(w,) + lim g(yn) =9(T) +7(@)-
The proof for the products AZ, where A € Rt and Z € M, is similar.

Consider a compatible couple (g, p). Then we can define the corresponding closed
ac-space M, endowed with the asymmetric seminorm g. Since (¢;,)° is a seminorm,

gp = —Mgp. Thus, we can also con-

sider the closed ac-space —M,, endowed with the asymmetric seminorm p. Clearly,

the ac-space (—M), , is also closed and (—M)

X = span{M} = span{M,,}. Moreover, the definition of the extension ¢}, implies
4y, = 45+ This argument shows that the separation properties that are satisfied by
¢z 5 are also fulfilled by g; ,. Therefore, we can suppose that ¢ and p are seminorms
defined on the closed ac-spaces M and —M of (X, (¢;,)®) in the following theorem.
In the general case, the condition that will be required in order to assure that the
separation axiom holds for extensions will be obtained as a direct consequence.

Theorem 5.2 Let (q,p) be a compatible couple of asymmetric norms on the closed
ac-spaces M and —M respectively. Then the following are equivalent.

1) ¥(z) := max{q(z),p(—x)} = 0 implies x = 0 for every x € M.
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2) The extension q , defined by (q,p) is an asymmetric norm.

Proof. Let us show that 1) implies 2). Suppose that for an element z € X we
have ¢} (z) = 0 and ¢; ,(—x) = 0. Then, as a consequence of the definition of the
extension g, there are sequences (x,)neny C M and (Y )neny C —M such that

(x — Tp)peny € =M,  lim ¢(z,) =0, lim p(z —z,) =0,

and
(=% = ynJnen C M, lim g(—2 —y,) =0,  lim p(y,) = 0.
Let us define the sequence (z,)neny € M, z, := x, — y,. Since for every n € N,

—r+ 2z, = —x — (Y, — T,) € M, we have that

q(—z + zn) < q(wn) + q(—2 — yn)

and
p(z — zn)) < p(x — 20) + p(Yn),
we deduce that lim, ., ¢(—z + 2,) = 0 and lim,, ., p(x — z,) = 0. Moreover, since

Qgplar = q and qg [ = p, we get

q(—r + zp) = q; (=2 + 2,),

and
P(x = 2n) = (T — 20).
Then
(= + 2) = (g0,)" (—2 + 2),
and

lim (q; ,)* (2, — ) = 0.

Therefore x € M since M is closed, and ¢ (z) = (q;,)°(z) = 0. Then an appli-
cation of 1) gives 2). For the converse we just need to note that ¢ = (¢} ,)°|m-
|

Corollary 5.1 Let (q,p) be a compatible couple of asymmetric norms on the ac-
spaces M and —M . Then the following conditions are equivalent, and imply that
Qyp 1S an asymmetric norm:
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1) For every x € My, (¢;5)*(x) = 0 implies x = 0.

. :
2) @5 is an asymmetric norm.

5.4 Applications. Extensions of increasing asym-

metric seminorms

To finish this chapter we apply the results of Section 5.2 and Section 5.3 to a
particular case. We define a class of asymmetric seminorms that satisfy an increasing
condition. Our definition is motivated by the fact that many asymmetric norms that
have been used in applied contexts belong to this class.

Definition 5.7 Let q be an asymmetric seminorm defined on an ac-space M. We
say that q is an increasing asymmetric seminorm if for every pair x,y € M, q(z) <

q(z +y).

Note that this property implies a strong restriction on the value of ¢(x) for the
elements € M that satisfy that x and —z belong to M, since ¢(z) < g(z+(—x)) =
q(0) = 0. In particular if M is a linear space, ¢ = 0. However, we can find a lot
of examples of subsets of Banach lattices that satisfy this property. In particular,
the restriction of the norm to an ac-space contained on the positive cone of a Kothe
function space satisfies this condition (see [33] for the definition of the Kéthe function
space). Moreover, the dual complexity space introduced in [44] (see also [24], [51])
satisfies this property too.

Corollary 5.2 Let q be an increasing asymmetric seminorm on an ac-space M.
Then the extension g, exists for each asymmetric seminorm p defined on —M.

Proof. Since ¢ is increasing, it is obvious that ®,(z) = sup{q(y) — qly +z) : y €
M} < 0 for every x € M. Then it is clear that each asymmetric seminorm p

on —M satisfies p(—x) > ®,(x). An application of Theorem 5.1 gives the result.
|
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Corollary 5.2 is true even in the trivial case p = 0. Moreover, consider a normed
lattice (E, || ||, <). Then the canonical asymmetric norm on E is defined as qo(y) :=
|ly vV 0| for every y € E (see [4] and [18]). If we define M as the positive cone of
E and q(z) := [|z]| for every x € M, it can be easily proved that qo(y) = ¢; ,(y) for
every y € E = span{M}, where p = 0.

Corollary 5.3 Let q be an increasing asymmetric seminorm on an ac-space M that
satisfies that for every x € M, q(x) = 0 implies x = 0. Let p be an asymmetric
seminorm on —M . Then the extension q , exists and defines an asymmetric norm
if M s closed.

The proof of the above result is a direct consequence of Corollary 5.2 and Theorem
5.2. We can use the last result in order to extend the asymmetric norm ¢qq defined on
the normed lattice E. For instance, Corollary 5.3 can be applied to each ac-space M
contained in the positive cone of a Kothe function space (F, ||.||, <). The properties
of this class of normed lattices imply that the asymmetric seminorm ¢ defined as
the restriction of ||.|| to M is increasing (see [33], p. 28). (Since the elements of
M are positive functions, we have that |f| < |f + g| for every f,g € M, and then
Il < IIf + gll)- Moreover, z = 0 if and only if ¢(x) = 0 for every z € M. If p is
an asymmetric seminorm defined on —M such that M is an ac-space, the extension
q,, is an asymmetric norm. Of course, this is also true if p = 0. In this case, the
asymmetric norm ¢ , is the natural extension of go.
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Chapter 6

The dual space of an asymmetric
normed linear space

6.1 Introduction and preliminaries

Our aim in this chapter is to introduce and study the dual space (X*, ¢*) of an
asymmetric normed linear space (X, ¢). We observe that, in contrast to the classical
theory, it is not a linear space in general. However, we prove that if X and Y are
asymmetric normed linear spaces, then the space LC(X,Y) of all continuous linear
maps from X to Y can be endowed with the structure of an asymmetric normed
semilinear space. From this result it follows that (X*,¢*) is a biBanach semilinear
space. We also define the bidual space (X**, ¢**) and prove that (X, q) is isomet-
rically isomorphic to an asymmetric normed linear space that is an algebraically
closed subset of X**.

We will give again some basic definitions presented in Chapter 1 because the
introduction of the notion of extended asymmetric norm.

If X is a linear space, A an algebraically closed subset of X and B a subset of A
that is algebraically closed in X, then we say that B is an algebraically closed subset
of A.
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Here, we will consider extended asymmetric norms. They satisfy the usual axioms,
except that we allow ¢(x) = oo.

We will also consider extended quasi-metrics (we allow d(z,y) = o0). If d is
an extended quasi-metric on a set X, then the function d~! is also an extended
quasi-metric on X and the function d® is an extended metric on X.

The notions of extended asymmetric normed semilinear space and bicomplete ex-
tended quasi-metric are defined in the obvious manner.

It is well known that an extended quasi-metric d on X induces a Ty topology as
in the usual case.

If (X,q) is an extended asymmetric normed linear space such that the induced
extended quasi-metric d, is bicomplete, we will say, as in the usual case, that (X, ¢)
is a biBanach space ([21],[24], [46]).

If A is an algebraically closed subset of X (i.e a semilinear space) such that the
restriction of d, to A is bicomplete, we will say that (A, q) is a biBanach semilinear
space.

As we will see in Chapter 8, asymmetric normed (semi)linear spaces and other
related structures provide suitable tools in some fields of Theoretical Computer
Science and Approximation Theory, respectively (see [42], [46], [51], [56], etc.).

6.2 Spaces of continuous linear functions

Given two asymmetric normed linear spaces (X, q) and (Y,p), we will denote by
LC*(X,Y) the linear space of all continuous linear maps from the normed linear
space (X, ¢°) to the normed linear space (Y, p®).

According to the classical theory, (LC*(X,Y),(¢°);) is a normed linear space,
where (¢°) is the norm on LC*(X,Y’) defined by

(¢°),(f) = sup{p’(f(2)) : ¢*(x) < 1},
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for all f € LC*(X,Y). Furthermore (LC*(X,Y),(¢°);) is a Banach space whenever
(Y, p®) is so.

In order to obtain a satisfactory generalization of the theory of duality to the
asymmetric setting, we will denote by LC(X,Y’) the set of all continuous linear
maps from the asymmetric normed linear space (X, ¢) to the asymmetric normed
linear space (Y, p).

First we will establish that LC'(X,Y") is an algebraically closed subset of LC*(X,Y).
This will be done with the help of the following result, that has been introduced in
Lema 2.2 (see Proposition 4.1 in [18]) and, using the notation of this chapter, can
be written as follows.

Lemma 6.1 Let (X,q) and (Y,p) be two asymmetric normed linear spaces and let
f: X =Y be alinear map. Then f € LC(X,Y) if and only if there is a constant
M > 0 such that p(f(x)) < Mq(z) for all x € X.

Proposition 6.1 Let (X, q) and (Y,p) be two asymmetric normed linear spaces.
Then, every continuous linear map from (X, q) to (Y, p) is continuous from (X, q~ 1)

to (Y,p~1). Hence LC(X,Y) C LC*(X,Y).

Proof. Let f € LC(X,Y). Then there is M > 0 such that p(f(z)) < Mq(x) for
all z € X. Thus

p~ (f(@)) = p(=f(2)) = p(f(—2)) < Mq(—z) = Mq ™' ().

Therefore f is continuous from (X,¢™') to (Y,p™') by Lemma 6.1, and, con-
sequently it is continuous from (X,p®) to (Y, ¢®). We conclude that LC(X,Y) C
LC*(X,Y).!

Corollary 6.1 Let (X, q) and (Y,p) be two asymmetric normed linear spaces. Then
LC(X,Y) is an algebraically closed subset of LC*(X,Y). Hence LC(X,Y') is a semi-
linear space.
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The next simple example shows that in contrast to the classical theory, LC(X,Y)
is not a linear space in general, and justifies the importance of considering semilinear
spaces in order to construct a satisfactory dual theory in this context.

Example 6.1 Let I be the identity function on R. Clearly I is a continuous linear

map from (R, w) into itself. However, it is clear that —I is not continuous. It follows
that LC(R,R) is not a linear space. Hence LC(X,Y) # LC*(X,Y), in general. We
also observe that for x < 0, u(—z) = —x, so sup{u(—=z) : u(z) < 1} = oc.

Theorem 6.1 Let (X, q) and (Y,p) be two asymmetric normed linear spaces. For
each f € LC*(X,Y) set

q,(f) = sup{p(f(z)) : q(z) < 1}.

Then the following assertions hold:

(1) q; is an extended asymmetric norm on LC®(X,Y), and (¢°); < (q;)° on
LO*(X,Y).

(2) The restriction of q; to LC(X,Y) is an asymmetric norm.
(3) LC(X,Y) is a closed subset of (LC*(X,Y), (q;)%).

(4) If (Y,p) is a biBanach space, then (LC*(X,Y),q;) is a biBanach space and
(LC(X,Y),qy) is a biBanach semilinear space.

Proof. (1) Clearly ¢;(0) = 0.

Let f € LC*(X,Y) be such that ¢;(f) = ¢;(—f) = 0. Then p(f(z)) = p(—f(z)) =
0 whenever ¢(z) < 1. Hence f(x) = 0 whenever ¢(z) < 1. Now, if x € X verifies

q(z) > 1 we obtain
T

@ = fs) =0
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Therefore f(z) =0 for all z € X.

It is easy to see that for f,g € LC*(X,Y) and r € R* we have

q(rf)=rq(f) and g (f+g) <q(f)+q(9).

We conclude that g is an extended asymmetric norm on LC®(X,Y’) (Example
6.1 above shows that “extended” cannot be omitted in our assertion).

Next we show that (¢°)% < (g;)® on LC*(X,Y).

Let f € LC*(X,Y).Given ¢ > 0 there is x € X such that
(@°)5(f) < p*(f(x)) + €. Assume without loss of generality that ¢°(z

if p*(f(x)) = p(f(x)), we obtain

< 1 and

q°(z)
) = q(z). Then,

(@) (f) <p(f(z) +e < q(f) +e
Otherwise, p*(f(z)) = p(—f(x)), so
(@) (f) <p(=f(z)) +e < g(=f) +e
Consequently (¢*); < (¢;)* +e. Thus (¢°)% < (¢2)* on LC*(X,Y).

(2) By virtue of statement (1) it suffices to show that for each f € LC(X,Y),
qy(f) < co. But this is clear because, by Lemma 6.1, for each f € LC(X,Y) there
is M > 0 such that p(f(x)) < Mq(z) for all x € X, and hence ¢;(f) < M.

(3) Let f € LC*(X,Y) be such that there is a sequence (f,)nen in LCO(X,Y)
which converges to f in (LC*(X,Y), (¢})*). We will show that there is M > 0 such
that p(f(x)) < (M + 1)g(x) for all z € X, and thus f € LC(X,Y).

Choose ng € N such that ¢;(f — f,,) < 1. Since f,, € LC(X,Y), there is M > 0
such that p(fp,(z)) < Mq(zx) for all x € X.

Let x € X. If g(z) # 0. Then

p<ﬂ@j£ﬂ@>—p<u—ﬁm§%y)g@u—nJ
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Hence

p(f(2) = p(fao () < @ (f = fao)a(z) < q(z).

So
p(f (@) < p(fuo(®)) + q(z) < (M + 1)g(z).

If g(x) = 0, for each ¢ > 0 choose n. € N such that ¢;(f — f,.) < e. Since
P(fn.()) = 0 we obtain

p(f(@)) = p(f(2)) = p(fn. () < p((f = fn)(@)) < qp(f = fu.) < e

Therefore p(f(z)) = 0.

We have shown that f € LC(X,Y), and consequently LC(X,Y) is closed in
(LC*(X,Y),(qy)®). (Note that actually we have proved the more general fact that
LO(X,Y) is closed in (LC*(X,Y), (¢;)")).

(4) Let (fn)nen be a Cauchy sequence in the extended normed linear space
(LC*(X,Y),(gy)?). It immediately follows that for each z € X, (fu(¥))nen is a
Cauchy sequence in the Banach space (Y,p®). Thus we can construct a map f :
X — Y, where for each z € X, f(z) is the limit point of the sequence (f,,(2))nen in
the Banach space (Y, p°).

On the other hand, since by (1), (¢°)5 < (g;)?, it follows that (f,)nen is a Cauchy
sequence in the Banach space (LC*(X,Y), (¢%)5), 80 (fn)nen converges to some g €
LC*(X,Y). Hence (f,(x))nen converges to g(x) in the Banach space (Y, p®) for all
x € X. Consequently g = f.

Next we show that actually (f.)nen converges to f in (LC*(X,Y), (q;)°).

Indeed, let € > 0. Then there is ng € N such that (¢;)*(fn — f,,) < &/2 for all
n,m > ng. Choose an arbitrary point z € X such that g(z) < 1. There is m > ng
such that p*(f(x) — f(z)) < €/2. Therefore for each n > ny we have

p((f = fu)(@) = P (f2) = ful2)) < p°(f(2) = fu(2)) + 1 (f (@) = ful@))
< (Qp) (fn_fm) <é&.

wlm%
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We deduce that for each n > ng, (¢;)°(f — fu) < ¢, and thus (LC*(X,Y),q;) is
a biBanach space.

Finally, since by (3), LC(X,Y) is closed in the extended Banach space (LC*(XY), (¢;)°),
it follows that (LC(X,Y),q;) is a biBanach semilinear space.l

Remark 6.1 Let us observe that if in the above theorem (Y,p) is a normed linear
space, then gy is an extended norm on LC*(X,Y) and thus (¢°), < q,. Hence the
topology induced by q; is finer than the topology induced by (¢°), on LC*(X,Y).
We show that actually these topologies do not coincide in general. Indeed, for each
n € Nlet f, : R — R given by f,(x) = —x/n. Then f, is linear and continuous
with respect to the Euclidean norm. Furthermore f, — 0 with respect to the usual
norm of uniform convergence because sup{|—xz/n| : |z| < 1} = 1/n for all n € N.

Nevertheless we have sup{|—z/n| : u(z) <1} = oo for alln € N.

Next we discuss the preservation by (LC(X,Y'), g;) of properties as Hausdorffness,
complete regularity and normability.

We say that an extended asymmetric normed linear space (X, q) is Hausdorff
(resp. completely regular) if the topology induced by ¢ is Hausdorff (resp. com-
pletely regular).

Proposition 6.2 Let (X, q) and (Y,p) be two asymmetric normed linear spaces.
If (Y, p) is Hausdorff, then (LC*(X,Y), q;) is Hausdorff.

Proof. Let f,g € LC*(X,Y) such that f # g. Then there is xo € X with f(zq) #
g(xg), and we may assume without loss of generality that g(z) < 1. Let € > 0 such
that By, (f(20),€) N Ba,(g(20),€) = 0. It follows that By . (f,€) N By, (g,¢) = 0. We
conclude that (LC*(X,Y),q;) is a Hausdorff space.l ’ ’

Since Hausdorffness is a hereditary property we obtain the following.
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Corollary 6.2 Let (X,q) and (Y,p) be two asymmetric normed linear spaces. If
(Y,p) is Hausdorff, then (LC(X,Y),qy) is Hausdorff.

We do not know if the preceding corollary remains valid when “Hausdorft” is
replaced by “completely regular”. However, for normable asymmetric normed linear
spaces we will obtain a positive result.

The natural extension of normability to the class of extended asymmetric normed
linear spaces is the following. An (extended) asymmetric normed linear space (X, q)
is called normable if there is a norm ||.|| on the linear space X such that the topologies
T(d,) and T'(dj.) coincide on X.

In Chapter 2 were obtained examples of Hausdorff asymmetric normed linear
spaces that are not normable. Next we give an easy example of an asymmetric
normed linear space which is not a normed linear space but is normable.

Example 6.2 Let k be a positive real number different from 1 and let q be the
function defined on R by

)=z ifx >0 and q(z)=k(—z) ifz <O.
It is routine to check that q is an asymmetric norm on the Euclidean linear space

R. Clearly q is not a norm.

Furthermore the ball Bq,(0,e) is the open interval | — e/k,e[. We deduce that the
topology T'(d,) coincides with the Euclidean topology on R.

Note that if k < 1, ¢° is exactly the Fuclidean norm on R, and if k > 1, ¢°(z) =
k| x| forall z € R.

Lemma 6.2 Let (X, q) be an extended asymmetric normed linear space. If (X, T(d,))
is a topological group, then (X, q) is normable.

Proof. Let (x,)nen be a sequence in X and x € X such that x, — x with re-
spect to T'(d,). Then —z, — —x with respect to T'(d,). Hence ¢(z, — x) — 0 and
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q¢(—x, + ) — 0,50 ¢°(x,, — ) — 0. We have shown that T'(d,) = T'(ds) on X.
It immediately follows that (X,T(d,)) is a topological linear space that admits a
bounded and convex neighborhood of 0. Hence (X, ¢) is normable ([49]).H

Proposition 6.3 Let (X, q) and (Y,p) be two asymmetric normed linear spaces.
If (Y, p) is normable, then (LC*(X,Y),qy) is normable.

Proof. By Lemma 6.2 it suffices to show that (LC*(X,Y),T(d,;)) is a topolog-
ical group. Indeed, choose an arbitrary ¢ > 0. Since (Y,p) is normable, we have
T(dy) = T(dy-1) = T(dp) and thus there exists 6 > 0 such that B,-1(0,0) €

p
B4,(0,6/2). Then, an easy computation shows that Bd<q*)71(075) S By, (0,¢).

Therefore T'(dy) C T'(d(g,.)-1). Similarly we prove that T'(d(g:)-1) C . Hence

C T(d,.)
(LC*(X,Y),T(d,,.)) is a topological group. We conclude that (LC*(X,Y),q;) is
normable.ll

6.3 The dual space of an asymmetric normed lin-
ear space

Given an asymmetric normed linear space (X, ¢q) let
X ={f:(X,¢°) — (R,].]) : fis linear and continuous},
and let
X*={f:(X,q9) — (R,u) : f is linear and continuous}.
Then X** is a linear space.

Note that f € X* if and only if it is a linear and upper semicontinuous real-valued
function on (X, q).

By Corollary 6.1, X* is an algebraically closed subset of X**, and thus it is a
semilinear space. Moreover, by Theorem 6.1, ¢ is an extended asymmetric norm
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on X** such that the restriction of ¢ to X* is an asymmetric norm, where

0.(f) = sup{f(x) V0 :q(x) <1},
for all f € X**. In the following ¢ will be simply denoted by ¢*.

Observe that (X**, ¢*) is a biBanach space and that (X*, ¢*) is a biBanach semi-
linear space, by Theorem 6.1.

If (X,q) is an asymmetric normed linear space, then the pair (X*, ¢*) is called
the dual space of (X, q).

It is interesting to observe that actually we have
¢"(f) = sup{f(z) : q(z) < 1},
for all f € X**.

Example 6.1 above shows that X* is not a linear space in general. Since the space
of this example is finite dimensional, we next present an example of an infinite di-
mensional asymmetric normed linear space (X, ¢) for which X* is not a linear space.
Proposition 3.4 in [18] provides more examples.

Example 6.3 Consider the asymmetric normed linear space (ly,q5) defined by the
sequences (X\;)2, that belong to the Hilbert space ly and the asymmetric norm

g5 (M) = [1(X: V 0) 2, (Ai)i2y € la,

where [|[(M)]|2 := (350, INl?) V2. An easy computation applying the definition leads
to the representation of the dual space l5 as the set

5= {(pa)2y - s =0, ||(1) |2 < 00}

Fach element = (p;)32, € I3 defines a linear and upper semicontinuous function
fu by the formula
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ful(N)) = Zui&-, (M)i2y € Lo

Thus, we can identify the function f, with the element p. Moreover, a straight-
forward calculation shows that in this case the restriction of the asymmetric norm
(g3)* to the algebraically closed subset I of 15* is given by the expression

(g3) () = (ZM?)W, ()32, € 13.

Furthermore, (I5%, (¢5)*) 4s a biBanach space and (I3, (g5)*) is a biBanach semi-
linear space by Theorem 6.1.

Given an asymmetric normed linear space (X, ¢), we denote by leg the unit ball
of the dual space (X*,¢%), ie. VX ={f e X*: ¢ (f) <1}.

The following somewhat surprising identification of V1X< will be useful at the last

part of this section.

Proposition 6.4 Let (X,q) be an asymmetric normed linear space. Then
Vs ={fex=:¢"(f) <1} and X*={f€ X" :q'(f)<oo}.

Proof. Let f € leg Then ¢*(f) <1 and f € X** because X* C X**.

Now let f € X** such that ¢*(f) < 1. We want to show that f(z) < ¢(x) for all
x € X. Indeed, fix x € X. We will distinguish two cases.

Case 1. ¢(x) = 0.

Suppose f(z) > 0. Choose r > 0 such that r f(z) > 1. Put y = ra. Then ¢(y) = 0.
Since ¢*(f) < 1t follows that f(y) < 1. However f(y) = rf(x) > 1, a contradiction.
Therefore f(z) < 0.
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Case 2. ¢(z) > 0.

Then we obtain

—f(a) = f(ﬁ) <qg(f)<t,

and thus f(z) < q(z).
From Lemma 6.1 it follows that f € X*, so f € V/X.

Now let f € X** such that ¢*(f) < oco. Then the function ¢ = f/¢*(f) is in
X** and ¢*(g) = 1. Therefore g € V;X.. We conclude that f € X*. The proof is
complete.l

Lemma 6.3 ([4/, [18]). Let (X,q) be an asymmetric normed linear space, let A
be an algebraic closed subset of X and let g be a linear and upper semicontinuous
real-valued function on A. Then there exists a linear and upper semicontinuous real-
valued function f on X such that f |a= g and ¢*(f) = ¢ |a (9).

Lemma 6.4 Let (X,q) be an asymmetric normed linear space. Then for each
xo € X there is f € ViC such that f(x0) = q(x0).

Proof. If q(zo) = 0, the function f = 0, satisfies obviously the requirements.

Suppose then that ¢(zg) > 0.Consider the algebraically closed subspace of X,
span{xo} . Let g :span{xo} — R given by g(axg) = aq(xq) for all @ € R. Clearly g
is linear. Furthermore g is upper semicontinuous on (span{o}, q |span{z,}). Indeed,
let (a,)nen be a sequence in R and a € R such that ¢(a,zo — axg) — 0. If a,, < a
eventually, we have g(a,zo) — g(axy) = (a, — a)q(zo) < 0 eventually, and hence
g(anxy) — glazy), in (R, u), obviously. Otherwise, we may assume without loss of
generality that a,, > a eventually. Then, we have ¢(a,x¢ — axy) = (a, — a)q(zo)
eventually, so (a, — a)q(z¢) — 0,and hence g(a,z9) — g(azy) with respect to the
Euclidean norm on R.

Therefore, we may apply Lemma 6.3, and thus ¢ has an extension to a linear and
upper semicontinuous real-valued function f such that
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q*(f) = sup{g(z) : = € span{xo} and q(z) < 1}.

Hence f(x¢) = g(xo), so f(zo) = q(zo). Furthermore, it is clear for the definition
of g that

¢"(f) = sup{ag(xs) : a > 0 and ag(ay) < 1}.

Thus ¢*(f) < 1. This completes the proof.l

Theorem 6.2 Let (X,q) be an asymmetric normed linear space. Then for each
x € X,

q(z) = sup{f(x) : f € Vi< }.
Proof. Fix x € X. If ¢(x) = 0, then f(z) < 0 for all f € VX0 because f(x) <
Mgq(x) for some M > 0. Consequently 0 = sup{f(z) : f € V;X} = q(x).
If g(z) > 0, then for each f € V1X§, we obtain

1 T .
W=y s =L

and thus f(z) < g(x). Therefore

sup{f(z) : f € Vi<} < q(x).

On the other hand, by Lemma 6.4 there exists fo € V;'X such that fo(z) = ¢(x).
Hence

g(x) < sup{f(x): f € Vi}.

This completes the proof.l
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It is a classical result that each normed linear space X is isometrically isomorphic
to a closed linear subspace of its bidual X**. In the rest of this section we discuss
the corresponding situation for asymmetric normed linear spaces.

Let (X, ¢) be an asymmetric normed linear space. By analogy with the notion of
the dual X* of X, introduced above, we define the following sets.

X ={p: (X, (¢")*) — (R,[.]) : ¢ is linear and continuous},

and

X ={p: (X** ¢*) — (R,u) : ¢ is linear and continuous}.

Then X** is a linear space and X** is an algebraically closed subset of X***.
Now for each ¢ € X** set

7" (p) = sup{p(f) - ¢*(f) <1}

Then (X**,¢*) is an asymmetric normed semilinear space, which will be called
the bidual space of (X,q).

Given two asymmetric normed semilinear spaces (X, ¢) and (Y, p), a linear map f :
X — Y such that p(f(x)) = q(z) for all = € X, is called an isometric isomorphism
from (X, q) to (Y. p).

Observe that every isometric isomorphism is a one-to-one map.

Two asymmetric normed linear spaces (X, q) and (Y, p) are called isometrically
isomorphic if there exists an isometric isomorphism from (X, q) onto (Y, p).

Theorem 6.3 Let (X,q) be an asymmetric normed linear space. For each x € X
let @, : X** — R defined by

pa(f) = flx),  feX™,
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and let (X)) ={¢, : x € X}. Then the following statements hold.
(1) p(X) is a linear space which is algebraically closed in X**.

(2) (e(X),q™) is an asymmetric normed linear space isometrically isomorphic to
(X, q).

(3) (p(X),q**) is a biBanach space if (X, q) is so.

Proof. (1) We first prove that ¢(X) is a subset of X*™*. Fix zq € X. Let f,g €
X and a,b € R. Then

Oao(af +0g) = (af +bg)(xo) = af(xo) + bg(wo) = ae,(f) 4 bpwy(9)-

Hence ¢, is a linear function.

Now let (f,)nen be a sequence in X** that converges to a function f in (X** ¢*).
Given € > 0 there is n. € N such that ¢*(f, — f) < ¢ for all n > n..

If g(xo) = 0 it follows that f,(zo) — f(zo) < € for all n > n..

If q(xo) > 0 it follows that

for all n > n.. So f,.(zo) — f(x0) < eq(xo).

We deduce that (f,,(zo))nen converges to f(xg) in (R, u), and thus ¢,, is contin-
uous from (X**,¢*) to (R, u). Consequently ¢,, € X**. Hence ¢(X) C X**.

Next we show that ¢(X) is a linear space. Let z,y € X and a,b € R. Then, for
each f € X**,

(CLSO:E + b@y)(f) = a%%:(f) + bgoy(f) = af(m) + bf(y) = f(ax + by) = ¢am+by<f)-

So ap, + by, € p(X). It immediately follows that ¢(X) is a linear space and it
is algebraically closed in X**.
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(2) From (1) we obtain that (¢(X),¢*™) is an asymmetric normed linear space.

Next we prove that (X, q) and (p(X),¢™) are isometrically isomorphic. Define
amap V: X — ¢(X) by U(z) = ¢, for all z € X. Then V¥ is linear because for
x,y € X and a,b € R we obtain

U(ax + by) = Qagrby = a9y + by, = aV(x) + bW (y).

Clearly, ¥ is an onto map.

Given x € X, we have by Proposition 6.4 and Theorem 6.2,
q(z) = sup{f(x) : f € X** and ¢*(f) < 1}
= sup{p.(f) : f € X*" and ¢*(f) < 1} = ¢ (¢a) = ¢ (¥ ().

(3) If (X,q) is a biBanach space, it is obvious by (2) that (¢(X), ¢**) is also a
biBanach space.ll

Remark 6.2 Although it does not follow the idea proposed above to constructing the
bidual of an asymmetric normed linear space (X, q), there is a temptation to give an
alternative and apparently more simple notion of biduality, working directly on the

set of all linear and upper semicontinuous real-valued functions defined on (X*,q*).
Thus we define

(X*)* ={p: (X*,¢*) — (R, u) : ¢ is linear and continuous}.

Since span{(X*)*} is clearly a linear space and (X*)* is an algebraically closed
subset of it, we deduce that ((X*)*, (¢*)*) is an asymmetric normed semilinear space,
where

(q")"(p) = sup{e(f) : ¢"(f) < 1},

for all p € (X*)*.
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Now, for each v € X let oy x+ be the restriction to X* of the function ¢, con-
structed in Theorem 6.3 (thus @, x+(f) = f(x) for all f € X*), and let o(X)|x- =
{pa1x+ : © € X}. Then, as in the proof of Theorem 6.3, we obtain that (¢(X)x+, (¢*)")
is an asymmetric normed linear space isometrically isomorphic to (X,q). Hence
((X),¢™) and (p(X)x+, (¢")*) are isometrically isomorphic.
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Chapter 7

Weak topologies on asymmetric
normed linear spaces

7.1 Introduction

The use of the structure of the dual space is one of the main tools of the theory of the
locally convex spaces, since it leads to the definition of the weak topologies for the
spaces as a consequence of the properties of the space of the (real) continuous linear
maps. In this chapter we show how we can construct weak topologies in the context
of the asymmetric normed linear spaces, and we present several results related to
the basic properties of these topologies.

7.2 Preliminary results

The proof of the following result was given essentially in Chapter 6.

Proposition 7.1 Let (X, q) be an asymmetric normed linear space. The dual space
X* is an ac-closed subset of X** and (¢°)*(f) < ¢*(f) for every f € X*. Moreover,

q* is an asymmetric norm on X*. In particular, this means that of f € X* and

—f € X", ¢*(f) = ¢"(=f) = 0 implies f = 0.
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The following pointwise boundedness property can be obtained directly. In fact,
it is the main idea in the proof of Proposition 7.1. For every f € X* and every
r € X, we have:

—q(=2)q*(f) < f(z) < q(z)q"(f).

Proposition 7.2 gives a representation of the linear span of X* which will be used in
the following section.

Proposition 7.2 Let (X, q) be an asymmetric normed linear space and X* its dual
space. Then

span{ X"} ={f e X" : f=fi—fo, i, L €X'} = X" - X".
Proof. Let f € span{X*}. Then we can write f as
= Z%‘gz‘— Z QiGis
i=1 i=n+1

where n,m € N, m > n, and for every ¢ = 1,...,m q; is a non negative real number
and g; € X™.

Since X * is algebraically closed, the functions f; = """ | a;g; and fo = > " 1 Qi
are in fact elements of X™*. [ |

Therefore, X* — X* is a linear subspace of X**. Moreover, in the following
section we show that the equality between these linear spaces gives conditions for
the coincidence of several weak topologies.

7.3 Weak topologies on X

The first definition of weak topology that we give for the asymmetric normed linear
space (X, q) is induced when the linear functionals of X* are considered as elements
of X**.
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Definition 7.1 We define the weak topology for X, denoted by Tyearq, as the one
that has as a basis of neighborhoods of 0 the following subsets. For every natural
number n, each finite sequence f1,..., f, € X* and each € > 0, we define

Wep  5,0):={zeX:|filzx) <e..|fulx)] <e}

A basis of neighborhoods for an element y € X is obtained by translations of these
neighborhoods, 1.e.

WELfl:“'vfﬂ (y) = y + We’flr“vfn (0)'

Note that each neighborhood of y can be written as

Wepry) ={z e X [filz —y)l <& .. [fulz —y)| <€}

We can consider the asymmetry of the norm on the original space (X, q) to define
two different topologies that are coarser than Teqkq-

Definition 7.2 The weak positive topology for X (weak+ topology for short), de-
noted by Tyeaks, 1S the one that has as a basis of neighborhoods of O the following
subsets. For every natural number n, each finite sequence f1,..., fn, € X* and each
e >0, we define

We—j_fh...,fn(()) = {33 €X: fl(x) <, 7fn(x) < 6}'

As in the case of the weak topology, a basis of neighborhoods for an element y € X
15 obtained by

Wﬁ—f—fl,ann (y) = y + W:—fl,...,fn (0)

In this case, each neighborhood of y can be written as

W:f17...7fn<y) = {JI €X: fl(x - y) < €, ,fn(fl,’ — y) < 5}‘
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Definition 7.3 The weak negative topology for X (weak— topology for short), de-
noted by Tyeak—, 1S the one that is defined by the basis of neighborhoods of 0 given by
the following subsets. For every natural number n, each finite sequence fi, ..., f, €
X* and each € > 0, we define

W 0 0)={reX:—fi(z) <e ..~ fulr) <€}

A basis of neighborhoods for an element y € X is given by

We,_fl,..,,fn <y> =Y + 6,_f1,..‘,fn (0)’

which can also be defined as

Wejfl,...,fn(y) ={reX:—filr—y) <e..,—falx —y) <€}

Note that the continuity properties of a function f € X* with respect to the
topologies defined above can be characterized by mean of the study of the continuity
in 0, since they are invariant by translations.

We can also consider the weak topology on X induced by the elements of the
dual of the normed space (X, ¢%). We will denote it by Tyeakqs-
Theorem 7.1 The following relations between the topologies defined on X by the
asymmetric norm q and the dual space X* hold.

1) Tweakq 1S coarser than Tyeakqs -

2) Tweak+ 15 coarser than the topology T'(d,) generated by q .

3) Tweak+ ANA Tyeak— are coarser than Tyeakq-

4) Tweakqg = Tweak+ V Tweak— -

5) If X** = X* — X*, then Tyeakq = Tweakqs -

Proof. The statement 1) is obvious. To prove, 2), consider a neighborhood
WJ,rfh...,fn(O) of Tyeaksr- Then there are positive constants My, ..., M,, such that

€
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filx) < M;q(z) for every x € X and each f;, i = 1,...,n. We just need to con-
sider the ball Vﬁ(O)7 where M is the maximum of the constants M;, 1 = 1,...,n,
since for every x € Ve (0) and i = 1,...,n

filz) < Miq(z) < Mq(z) < e.

The statement 3) is just a consequence of the definitions, since for every z € X
and each function f € X* we have f(z) < |f(z)| and —f(z) < |f(z)]. The same
inequalities show 4), since

W:’“f(()) NW0)={r e X : —f(z) <e f(z) <e} =W;(0)

for every € > 0 and f € X*, and the same argument can be used to construct the
neighborhoods Wy, . 1. (0) as We+f1 h
f17 ) fn € X"

-----

{r € X : |f(z)| < €}, where f; € X** for every i = 1,...,n. Then we can find
functions f;1, fie € X* for each f;, i« = 1,...,n, such that f; = f;1 — fi2. Since
|fi(x)] < |fia(x)| + | fia(x)] for each i = 1,...,n and every x € X, we obtain that

Wﬁ,f1,17~--,fn,1 (0) N W57f1,27-~~7fn,2 (0> C Wes,fl ..... fn (0)7
which gives the result. [ ]

Let us show that, contrarily to the classical case, T'(d,) can be weaker than Tyeqkq-
Consider the space (R?, ¢5), where g5 ((z,y)) = /(2 V 0)2 + (y V 0)2. It is clear that
(R?)* is defined by the positive cone of R? (with respect to the usual order) with the
Euclidean norm, and each element of the dual space of (R?, ||.||2) can be written as

a difference of two elements of (R?)*. Thus, we have that the Tweakq = Tweakqs- DINCE
the weak and the norm topology coincide for finite dimensional normed spaces,
we obtain T'(dys) = Tweakq- However, it is clear that there is no ball of (R? ¢3)
contained in the unit ball of R? (endowed with the Euclidean norm), since the set
{\M=1,-1) : A € R"} is contained into every ball V,(0), ¢ > 0 for the topology
generated by ¢, . Therefore, in this case T(d,) is weaker than T,ecakq-

Proposition 7.3 Let (X, q) be an asymmetric normed linear space. Then
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1) The weak topology is the coarsest that makes continuous all linear functionals
mn X*.

2) The weak+ topology is the coarsest that makes upper semicontinuous all linear
functionals of X*.

3) The weak— topology is the coarsest that makes lower semicontinuous all linear
functionals of X*.

Proof. 1) If f € X* and € > 0, we just need to consider the neighborhood of 0, W, s
to show that f is continuous, since x € Wy, |f(z)| < €, implies f(x) € (—¢,€). To
see that it is the coarsest, it is enough to take into account that W, ((0) = {z € X :
|f(z)] <€} = f~1((—¢,€)), and then these sets must be contained in every topology
such that all the functions f € X* are continuous. Since the single neighborhoods
as W, £(0) define a subbases for T,cqrq, We obtain the result.

2) The proof is similar for the topology Tyear+. In this case, we just need to
consider an upper semicontinuous function f € X* as a continuous function f :
X — (R,u). A basic neighborhood of 0 in (R,u) is (—oo,€) for an € > 0. It is
clear that f(W[;) C (—00,¢), and then we obtain the upper semicontinuity of f. A
similar argument that the one of 1) gives that 7.1 is the coarsest topology that
satisfies this condition for every function f € X*. The proof of 3) follows the same
lines. |

7.4 Weak topologies on X*

As in the case of the asymmetric normed linear space (X, q), we can give several
definitions for the space (X*,¢*). In this section we present these notions and we
show that the definitions of Section 7.3 lead to the same topology when we adapt
them to the dual space X*. We restrict our attention to the case of the weak™
topologies, i.e. the topologies induced by X on X*. Therefore, in this section we
are interested in the (pointwise) topologies generated by the elements of X when we
consider them as functions acting on X*.
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Definition 7.4 We define the weak™ topology for X*, denoted by Tweaks, as the one
that has as a basis of neighborhoods of 0 the following subsets. For every natural
number n, each finite sequence x1,...,x, € X and each € > 0, we define

Wearwn(0) = A{f € X7 |f(x)| <o [f(n)] < €}

A basis of neighborhoods for a function g € X™* is obtained by translations of these
neighborhoods, 1.e.

W:m,...,xn (g) =g + W:acl,..‘,xn <O>

It is obvious that we get in this way a translation invariant topology. In the same
way, we can define the weak™® positive topology, denoted by Tyearss, On the space
X* (the weak*+ topology for short) as in the case of the weak topologies for X. In
this case, this would be the one that has the following neighborhoods of 0. For each
finite subset of elements x4, ...,x, € X and each € > 0, we define

Wew, (0) ={f € X" f(z1) <€ .., fan) <€}

The translations of these sets W'Y (g) = g+ Wy} . (0), define a fundamental

€,L1 s T €,1 5oy X

system of neighborhoods of g for every g € X*.

We can also define the weak* negative topology, denoted by Tyear«—, with the
following neighborhoods of 0. If =1, ..., z, are elements of X and ¢ is a positive real

number, we define W (0) as

W e (0) i ={fe X" —f(x1) <e, ..., —fwn) < e}

Although the definitions above seems to give different topologies, it is easy to
prove that these topologies are in fact the same. Hence,

Tweakx — Tweakx+ — Tweakx—
on every dual X* of an asymmetric normed linear space (X, ¢q).

To see this, it is enough to take a neighborhood of 0 for the weak* topology as
W ,(0). Then we can consider W _,(0), and it is clear that W7, (0) = W/} _,(0).

€,2,— €,2,—X
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Since these sets define a subbases of the weak™® topology, the equivalence is proved.
Therefore, this is a consequence of the linearity of X.

In the same way, we can consider the linearization X* — X* of the dual space
X* and extend the definition of the topologies to this new space. This leads to the
following definition.

Definition 7.5 We define the pc-weak™ topology, denoted by Tpe—weaks, to the topol-
oqy induced by X on X*—X*, i.e. the one that has as neighborhoods of g € X* — X*
the sets

W 9) ={f e X" = X" [(f = g)(w)] <& ., [(f —g)(za)| <},

for every finite set of elements x1,...,x, of X.

The notation pc-weak™ is due to the obvious fact that this topology is exactly
the topology of the pointwise convergence (“pc ”for short).

Note that, in this case, we do not define the neighborhoods of an element g € X*—
X* as translations of the neighborhoods of 0. However, we have also a translation
invariant topology, since

Wi e (9) =g+ W5 ..(0).

€,T1 55T €,T1 5003 T

for every g and every neighborhood of 0.

We could give other definitions of pointwise topologies on X*— X* that are related
to the topology Tpe—weak« but taking into account the asymmetry of the space X*,
following the definition of the dual topologies for X. As in the case of T eqr«, the
definition of the corresponding positive topology by mean of neighborhoods of g as

WIET 2 (@) ={f € X" = X" (f —g)(@1) <e,..(f — g)(wn) <€}

for every finite set of elements x4, ..., z,, of X leads to the topology Tpc—weaks-

Remark 7.1 [t is interesting to note that the topology Tyears does not coincide on
X* with the topology Tpe—weakx When we restrict it to the space X*. It is easy to
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prove that Tyeaks 15 finer than the restriction Tpe—weaks| X ™, but the converse is not
true in general. The neighborhoods of an element g € X™* for Tyears are translations
of neighborhoods of 0 in X*. This means that

Wearwn @) =9+ Wy 0,(0) =

={feX": f-ge X" |(f -9 @) <e...[(f—9g)(za)| <€}
However, the restriction to X* of the corresponding neighborhood of g € X* for

Tpc—weaks i8

wre ()X =g+ L ()X =
={f e X" |(f - 9)(@)| < &, [(f — 9)(@n)| < €}

which are not in general the same sets, since X* is not in general a linear space. In
fact, Tweaks 1s translation invariant, but this is not the case for Tpe—yeaks| X* . The
following example illustrates this fact.

Example 7.1 Consider the linear space RY of sequences of real numbers (\;) that
are different of O only for a finite subset of co-ordinates. We define the asymmetric
normed linear space Iy as the pair (R, q1), where g, is the asymmetric norm defined
by

@1 (X)) == 1A VO) s,

where ||.||1 is the usual 1-norm, i.e., for every (\;) € RY,
1D =D Al
i=1

The dual of this space can be directly computed by using the lattice properties of
the space RY with the usual order and the well-known duality between the space of
summable sequences [; and the space of bounded sequences [,,. Since for this kind
of asymmetric norms, the continuous functions are exactly the positive continuous
functions for the original norm in the lattice (in this case ||.||1) (see [4]), we obtain
that (I])* is exactly the positive cone of I,,. Now, consider the constant sequence
(1,1,1,...) € (I{)* and the corresponding neighborhood defined by the element
(1,0,0,0...) € I,

:(1’070“_)<(1, 1, ) - {()\1/) E loo . )\1 Z 1,Z 6 N,)\l - 1 < E} -
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- (17 ].7 ]_, ) + Wei(l’o’o)(((), 0, O, )

However, the restriction to (I{)* of the neighborhood of (1,1,1,...) for Tpe_weaks« 18
Weioo)((1, 1) ={(N) €l : X 20,4 € N, [A; — 1] < e}

which can not be written as the translation of any neighborhood of 0 of Tpe—weaks|(17)*.
Then, note that every neighborhood of (1,1,1,...) for the weak™ topology have all
its co-ordinates greater or equal to 1. But every neighborhood for 7,c_eqr« contains
an element that have all its co-ordinates equal to 0 after a finite number of non-zero
co-ordinates, since the neighborhoods are defined by finite sets of sequences that has
finitely many non-zero co-ordinates.

We are interested in the pc-weak™® topology, since it leads to a good weak re-
flexivity relation for asymmetric normed linear spaces as we will show in the next
section. However, Tp._year« 1S the topology that really acts as a weak™® topology for
the linearization of the dual space X*, as the following proposition shows.

Proposition 7.4 The pc-weak™ topology is the coarsest topology which makes con-
tinuous the functionals x : X* — X* — R, defined by x(f) := f(x) for every x € X.

Proof. First we show that every functional defined by an element x € X on X*—X*
is continuous for Tpc_yeqr«- Let € > 0 and consider the neighborhood of zero in R
given by (—¢,¢). Take the neighborhood W25 (0) := {f € X* — X* : |f(x)] < €}.
It is clear that x(WP*(0)) C (—¢,¢€), and then the function is continuous. On the
other hand, each topology 7 that makes continuous the map z(f) := f(z) satisfies
that z7'((—e€,€)) € 7. Since z7'((—¢,€)) = WP(0) and the pe-weak* topology is
the coarsest topology generated by the neighborhoods {W?25*(0) : » € X'}, we obtain
the result. |

7.5 The Alaoglu theorem for asymmetric normed

linear spaces

Let (X,q) be an asymmetric normed linear space and let Bf(;* = {f € X*:
(¢°)*(f) < 1}. Then, the celebrated Alaoglu theorem states that BiC is compact
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for the weak™ topology on X**. Here we will show that the unit ball V1XS is compact
for the pc-weak™ topology on X*. In fact, we present two proofs of this result. The
proof of the following lemma can be found in Chapter 6 (see Proposition 6.4).

Lemma 7.1 Let (X, q) be an asymmetric normed linear space. Then Vi, C B{C .

Theorem 7.2 Let (X, q) be an asymmetric normed linear space. Then leg s com-

pact in X* with respect 10 Tpe—weaks|x* -

Proof. Let (fa)aca be a net in les Since VlXS C Bf(; and Bf(; is compact
for the weak™ topology by Alaoglu Theorem, there is a subnet (fa,)aca of (fa)aca,
which converges to a function f € Bys+ with respect to the weak* topology on X**.
Thus f is linear. Moreover, for z € X and € > 0 there is )y such that for A > )\,
|f(z) = fa,(2)| < e. Since by Theorem 6.2, f,,(x) < g(z) for all A € A, we obtain

f(x) <e+ fa(x) < e+q(2),

for all A > A¢. Hence, f(z) < ¢(x). Consequently f is continuous from (X, q) to
(R,u) and ¢*(f) < 1. We conclude that f € V;X.. Therefore V;X is compact with
x+.l

respect t0 Tpe—weaks

Remark 7.2 Theorem 7.2 admits a direct proof without using explicitly Alaoglu’s
Theorem as we show in the following.

Indeed, let x € X. The interval [—q(—z), q(x)] is a compact subset of (R,].|). For
each function f € V. we have, by Theorem 6.2, that f(x) € [—q(—x),q(z)] for
every x € X.

Now, consider the product space H := e x|—q(—x),q(x)] endowed with the prod-
uct topology. We can identify each function f & leg* with its range (f(z)).ex € H.

Moreover, a direct argument shows that the restriction of the product topology to the
following subset of H,
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{(f(@))eex : f € VIS,

coincides with the pc-weak™ topology of VIXS (see the classical proof of Alaoglu The-
orem in [9] or [59]).

As a consequence of Tychonov’s theorem, the product space H endowed with its
product topology is compact. Now we just need to prove that {(f(x))sex : f € Vi<
15 a compact subset of the product space. In order to do this, we will prove that it is
closed. Fix the elements x,y € X. Let us define the function ¥,, : H — R as

oy (f) i= f(2) + fly) — flx+y), feH.

This function is obviously continuous for the product topology, since its definition
only depends on a finite subset of elements of X -in fact, two-. Ifa € R and x € X,
we can define in the same way the function

Pou(f) = af(x) — flaz), feH,

that is also continuous. Now we define the set

A= (Neyex VoL ({01) N (Naerpex @y s ({0})).

It is a closed subset, since it is the intersection of a family of closed subsets.
Moreover, A is clearly the representation of the unit ball VX2 via the range (f(2))zex
of each function f. Therefore VIXS* s compact.

7.6 Applications. Reflexivity of Hausdorff asym-

metric normed linear spaces

In this section we prove that the dual of the topological space X* — X* endowed
with the pc-weak™® topology is the original space X when the asymmetric normed
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linear space X is Hausdorff. We generalize in this way the classical result for the
weak™ topology of normed spaces. We have shown that each element x € X defines
a continuous map x : X* — X* — R when we consider the pc-weak™ topology on
X* — X*. Thus, we just need to show that the functionals defined in this way are
the only ones.

First, it is interesting to declare that there are asymmetric normed linear spaces
that are Hausdorff and are not normable (see Chapter 2 or [22]). For normed spaces,
Theorem 7.1 is already known (see for example Ch.IIT of [9]). An easy example of
an asymmetric normed linear space that is Hausdorff but not normable is Example
2.1.

Theorem 7.3 Let (X,q) be a Hausdorff asymmetric normed linear space. Let ¢
be a linear functional on X* — X* which is continuous with respect to the pc-weak*
topology of X*. Then it can be identified with an element x € X, i.e. there is an
element © € X such that ¢(f) = f(x) for every f € X* — X*.

Proof. By Proposition 7.4, we know that all the functionals defined by mean of the
elements of X are continuous with respect to the pc-weak® topology of X* — X*.
Thus, we just need to prove that we can find an element x € X for every functional
¢ X* — X* — R satistying the required property. Since ¢ is continuous, for every
€ > 0 there is a 6 > 0, and elements z1, ..., z,, such that, if f € W (0), then

0,1,y Ty

|o(f)] < e. This means that the conditions |f(z1)| < 0,..., |f(z,)] < 6 implies
[o(f)] <e.

Now suppose that the first r elements, r < n, of zq,...,x, define a basis. Let
us show that, if f € X* — X* and all the images f(z1),...,f(x,) are equal to 0,
then ¢(f) = 0. Suppose that f is a non zero element of X* — X* and satisfies the
above condition for the elements x1, ..., z,. The linearity of f shows that f(z;) =0
also for the rest of the elements of the sequence z1, ..., x,. Then, it belongs to the
neighborhood Wg ixn (0), and for each A € R the element \¢ also belongs to this
subset. But then, if ¢(f) # 0, there is a A such that |¢p(Af)| = |[Ao(f)| > €, which
contradicts the continuity of ¢.

Consider the finite dimensional subspace S of X generated by the elements
1, ...,x.. Since X is Hausdorff, Corollary 4.2 shows that S is isomorphic to a
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normed space, and then we can find linear functionals f; on S such that f;(z;) =1
if ¢ = 7, and 0 otherwise, which are continuous with respect to the topology induced
by q. By the Hahn-Banach Theorem for asymmetric normed linear spaces obtained
in [4], we can extend these functionals to the whole space X. We denote them by

f,w Z — 1, 7T

Take an element g € X* — X*, and define the linear functional

g =9- gl@)f e X —X".

i=1

It is equal to 0 in S, since for each x;, j = 1,...,r, we have
o(w5) = a(a) = 0@ Fu(as) = gle) — a(a) = 0.
i=1
Then, ¢(¢') = 0, and
o0) = 30 0@)olF) = o3 asr).
i—1 i=1

where a; = ¢(f,), i = 1,...,7. This gives the result, since ¢ is determined by the
element ) ' a;z;. [ |
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Chapter 8

Sequence spaces and asymmetric
norms in the theory of
computational complexity

8.1 Introduction and preliminaries

Our purpose in this chapter consists in developing a robust mathematical model for
the theory of computational complexity of algorithms and programs in the context
of Theoretical Computer Science, by using the mathematical background of the
preceding chapters

In [51] M. Schellekens introduced the complexity (quasi-metric) space as a part of
the development of a topological foundation for the complexity analysis of programs
and algorithms. In particular, he presented some applications of this theory to the
complexity analysis of Divide&Conquer algorithms.

The complexity space ([51]) is the pair (C,dc), where

C = {f € (0,001 : Y237, 27(1/ £ (n)) < o0},

and d¢ is the quasi-metric defined on C x C by
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de(f, ) = 20 2 (55 — 1) V 0]

The dual complexity space was introduced in [44], where several quasi-metric
properties of the complexity space which are interesting from a computational point
of view are obtained via the analysis of its dual. Some motivations for the use of the
dual space instead of the original complexity space are given in [44] p. 313. In par-
ticular, the structure of an asymmetric normed semilinear space provides a suitable
setting to develop a consistent theory for the analysis of the dual complexity space
([46]) and, by other hand, the dual has a definite appeal, since in this context, it has
a minimum 1 which corresponds directly to the minimum of semantics domains.
Moreover the dual complexity space can be directly used for the complexity anal-
ysis of algorithms where the running time of computing is the complexity measure
(compare [51] Section 4, and [44] page 313).

The dual complexity space ([44]) is the pair (C*, dc+), where

€ = {f €[0,00)* : 02 27" f(n) < o0},

and de- is the quasi-metric defined on C* x C* by

de-(f,9) = 220202 "[(9(n) = f(n)) v 0.

As is noted in [44], the inversion map ¥ : C* — C is an isometry from (C*,d¢-)
to (C, dc)

Following M. Schellekens ([51], Section 4), the intuition behind the complexity
distance between two functions f,g € C is that de(f, g) measures relative progress
made in lowering the complexity by replacing any program P with complexity
function f by any program () with complexity function g. Let f,g € C*. As
de<(f,9) = de(1/f,1/g), we deduce that de«(f, g) measures relative progress made
in lowering the complexity by replacing g by f. In particular de«(f,g) = 0, with
f # g, can be interpreted as g is “more efficient” than f.

Anyway, there are some algorithms which are time exponential. Several of these
problems lead to a complexity analysis that cannot be performed using the dual
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complexity space. In fact, as the reader can check, an algorithm with running
time (’)(\2/—%) generates the function f given by f(n) = 2"/y/n for all n € N, which
obviously does not belong to the dual complexity space C* ([1] page 312). However,
this function belongs to a generalized (p-norm) version of the dual complexity space
(see Examples 8.1 and 8.2 below).

Motivated, in part, by this kind of examples, we here define and study several
properties of the asymmetric normed linear space ([, ||.||+,) and the so-called dual
p-complexity space (see Section 8.3 for definitions), which can be used for the com-
plexity analysis of several exponential time algorithms. In particular the asymmetric
norms defined on these duals provide a suitable interpretation in terms of running
time. We observe that the dual p-complexity space is isometrically isomorphic to
the positive cone of ([, ||.]|+,) and show strong completeness (in the sense of [48])
of the dual p-complexity space. Finally a compactness result for upper bounded
subsets of the dual p-complexity space is stated.

On the other hand, there is in the last years a renewed interest in automata
of infinite objects due to their intimate relation with temporal and modal logics
of programs. Thus, E.A. Emerson and C.S. Jutla ([14]) have successfully applied
complexity of tree automata to obtain optimal deterministic exponential time algo-
rithms in some important modal logics of programs, where by an exponential time
algorithm we mean an algorithm with running time O(2°), such that P(n) is a
polynomial with P(n) > 0 for all n. This running time corresponds to the function
f given by f(n) = 2P for all n, which does not belong to any dual p-complexity
space whenever P(n) > n.

In Section 8.4 and subsequent we show that the supremum asymmetric norms that
one can define in a natural way on certain sequence algebras provide an efficient tool
to study those complexity functions that generate exponential time algorithms. In
this direction, we construct a very general class of asymmetric normed linear spaces
whose positive cones constitute a suitable setting for extending Schellekens’ idea of
complexity distance to the measure of improvements in complexity of exponential
time algorithms. Furthermore, these positive cones are biBanach semialgebras which
are isometrically isomorphic to the positive cone of the biBanach space (loo, [|-|4 o)
where ||x[| = sup{z, V0 :n € w} for each X := (7,)new € loo. Schellekens proved
in [51] that Divide & Conquer algorithms induce contraction maps on the complexity
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space. In the last section, we will show that this fact also follows from our approach.

The main results of this chapter have been published in [24].

8.2 Some asymmetric norms on sequence spaces
It is proved in [46] that the dual complexity space is a semilinear subspace of an
asymmetric normed linear space whose induced quasi-metric is bicomplete.

Let us now give some definitions for sequence spaces.

For 1 < p < oo, we will denote by [, the set of infinite sequences x : = (2, )nen Of
real numbers such that >~ | z, |[P< oo.

It is well known that (I, ||.||,) is a Banach space, where || . ||, is the norm on [,
defined by || x ||,=(>_02, | #a P)/P for all x €L,

We will split the norm || . ||, as follows:

For each z € R, let 2" be the nonnegative real number x V 0.

Fix p € [1,00). For each x: = (¥;)new € [, define x := (27} )new and [|x[|,, =
It i
Il = (O (=))V.
n=0

We will show that |||, is an asymmetric norm on I, such that the norm (||.[|,,)°
is equivalent to ||.|| - To this end the following well-known relations will be useful.

Lemma 8.1 For x := (Ty)new € lp, ¥ = (Yn)new € I, and a € R the following
statements hold:

(a) x =x" = (=x)T;

(b) (ax)* = axt;
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(c) (xn+yn)t <t +yt forallnew.

Proposition 8.1 (compare [18] Theorem 3.1). For each p € [1,00), is an

asymmetric norm on l.

o/

Proof. Fix p € [1,00).Let x: = (zn)new € I, such that [x[|,, = [|-x|,, = 0.
Then x* = (—x)" = 0 and by Lemma 8.1 (a), x = 0. On the other hand, it is clear
that [|0]|,, = 0.

Now let a € RT, x: = (2p)new € I, and y : = (Yn)new € I, Then

(@)l 1, = (@)™, = allx]|,,, by Lemma 8.1 (b).

Finally,

I +yly, = [+ 3)"]], < ool +4)?) Y7 by Lemma 8.1 (c), so

I+ vl < Iyl < I+ lly ™l = 11, + Iyl =

Corollary 8.1 For each p € [1,00), (I, ||.||,,) is an asymmetric normed linear
space.

Proposition 8.2 For each p € [1,00), (|Ix[|,,)* <[ x [[,< Ix]l, + I=xI,, when-
ever X € [,

Proof. Fix p € [1,00). Let x : = (2,)new € l,. Then, it is clear that
(Il = max{ll, |-, } < [,
Finally, by Lemma 8.1 (a), we obtain

Il = f|x* = (=) "], < ll=* ], + [|(=)"]

=l + -,
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Corollary 8.2 For eachp € [1,00), (||l ,)* < I, < 2(|[.I[,)° Therefore (|.]|,,)°
and |.||, are equivalent norms in 1,,.

Corollary 8.3 For each p € [1,00), (I, [|.l|,,) is a biBanach space.

Following [46], set B* = {f € R¥ : >~ /27" | f(n) |< oo}. Note that the dual
complexity space C* is the positive cone of B*. Furthermore it is clear that [ C B*.

If for each f,g € B* and each a € R we define f + g and a - f in the usual
pointwise way, then (B*,+,-) is a linear space (on R), and we deduce that (B*,¢)
is an asymmetric normed linear space, where ¢(f) =" 27" f(n)* for all f € B*

([46]).

It is proved in [46] Theorem 1, that actually (5%, ¢) is a biBanach space, for which
C* is a semilinear subspace closed in the Banach space (B*, ¢%).

In order to obtain a general theory which implies the possibility of extending the
notion of dual complexity for any p > 1, we introduce the following class of spaces.

For each p € [1,00) set
By ={feR: 37,27 [f(n)])F <oo}.

If for each f, g € B, and each a € R we define f+g and a- f in the usual pointwise
way, then it easily follows that (B, +,-) is a linear space.

Now denote by ¢, the nonnegative real valued function defined on B, by

0 (f) = (3200 (277 f(n)F)P) P,

For each f € B let x5 := (27" f(n))new- Then x; € [, and we have

a(f) = [IxF ]l
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Since, by Proposition 8.1, is an asymmetric norm on [,, then ¢, is an

-l
asymmetric norm on B, and consequently (Bj,q,) is an asymmetric normed linear
space.

Observe that, in particular, (B, ¢;) is exactly the biBanach space (B*, q) defined
above.

The above simple but useful relationship between g, and |||, actually permits
us to show that (By,q,) and (I, [|.||,,) are isometrically isomorphic as our next
result shows. (Let us recall that two (asymmetric) normed linear spaces (X, gx)
and (Y, qy) are isometrically isomorphic if there is a linear map F from X onto Y
such that ¢y (F(x)) = gx(z) for all z € X.)

Fix p € [1,00). Define a map ¢ : B; — [, by the rule:

(0(f))(n) =27"f(n).

for all f € By and n € w. Thus ¢(f) = xs, where x; is the element of I, defined
above. We then have the following result.

Proposition 8.3 ¢ is a linear bijection between (By,q,) and (I, ||.||,,) such that

Qp(f> = H¢<f>||+p fO’I” all f € B;

Proof. We first show that ¢ is onto. Indeed, let x = (z,,),e, be an element of [,.
Define f € R“ by f(n) = 2"z, for all n € w. Then f € B; since

(o | 27f(n) )P = (202 |2 [1)VP = ]|, -

Furthermore (¢(f))(n) = z, for all n € w, so ¢(f) = x.
Clearly ¢ is one-to-one and hence it is a bijection.

On the other hand, since for each f,g € B, and each a,b € R we have
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((af +bg))(n) = 27"(af (n) + bg(n)) = ag(f(n)) + bp(g(n))

whenever n € w, we deduce that ¢(af + bg) = ad(f) + bop(g), and thus ¢ is linear.

Finally, for each f € B; we have

oA 4 = x4l = a0(F)-

The proof is complete. B

Corollary 8.4 (B;,q,) and (Iy, ||.||l,,) are isometrically isomorphic.

Corollary 8.5 (B;,q,) is a biBanach space.

8.3 The dual p-complexity space

For each p € [1,00) consider the biBanach space (B}, q,) defined in the preceding
section and set

Cr={f€B;: f(n)>0foralln e w}

The restriction of the asymmetric norm g, to C; will be also denoted by g, if no
confusion arises. Then, the proof of the following result is straightforward and so is
omitted.

Proposition 8.4 For eachp € [1,0), (C;, q¢p) 1s an asymmetric normed semilinear
space which is closed in the Banach space (Bj, (q,)°).
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In the following the asymmetric normed semilinear space (Cy,g,) will be called
the dual p-complexity space.

As in the case p = 1 (see Section 1), the fact that dg,(f,g) = 0, with f # g,
can be interpreted as g is more efficient than f. Furthermore g,(f) = d,, (0, f) mea-
sures relative progress made in lowering complexity by replacing f by the ”optimal”
complexity function 0, assuming that the complexity measure is the running time
of computing, of course.

Example 8.1 Consider the World Series Odds problem. Suppose two teams, A
and B are playing a match to see who is the first to win n games. Let P(i,j) be
the probability that if A needs i games to win, and B needs j games , that A will
eventually win the match. To compute P(i,j) it can be used a recursive algorithm
in two variables with running time O (2" /\/n)(see [1] page 312, for more details).
As we indicate in Section 1 this running time induces the function f € C; for every
p > 2, given by f(0) = 0 and f(n) = 2"/\/n for all n € N. Obviously f ¢ C; for
p<2

Example 8.2 Suppose a problem with running time O(2") (see [1]). In case we
had always the same number of processors than the size of the instance of such a
problem, say m, the running time is reduced to O(2"/n) in the ideal case of 100%
parallel processing efficiency. As in Example 8.1 the situation leads to a function
f €C; for every p > 1, given by f(0) = 0 and f(n) = 2"/n for alln € N. Obviously

fé¢c.

Note that the natural definition of the asymmetric norm for the case of running
time O(2"/n) would be the "infinite” version of ¢, i.e. ¢oo(f) = sup{27"f(n):n €
w}. This case will discuss later in this chapter.

In Proposition 8.5 below we extend Proposition 8.3 and Corollary 8.4 to the dual
p-complexity space and the positive cone of [,,.

For each p € [1,00) denote by [ the positive cone of I,. Thus

Lr={x":x€el,}.
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It is immediate to see that ({;,].||,,) is an asymmetric normed semilinear space
which is closed in the Banach space (I, (||.||,,)®), where the restriction of ||.||,,, to
[y is also denoted by |||, -

Furthermore, it is clear that the restriction to C; of the map ¢ : B, — [, defined
in Section 2, is a linear bijection between the dual p-complexity space (C*, ¢,) and
the positive cone (I}, [|.||,,) which preserves asymmetric norms.

Hence, considering the notion of an isometric isomorphism between asymmetric
normed semilinear spaces, we deduce from the above observations the following re-
sult.

Proposition 8.5 For each p € [1,00), (C;,q,) and (I}, |.I|,,) are isometrically
1somorphic.

Remark 8.1 Although (C;,q,) and (I},|.l,,) are isometrically isomorphic, the
dual p-complexity space has the advantage that it allows us to interpret as con-
vergent, with respect to g, for instance programs whose computing-time is constant
(or at least it has a polynomial growth). However such programs provide series that
are clearly divergent in (LF,[.||,,). On the other hand, note that the functions con-
structed in Examples 8.1 and 8.2 are in C; for p > 2 and p > 1, respectively, but
they are not in 1.

S.G. Matthews introduced in [36] the notion of a weightable quasi-metric space
as a part of the study of denotational semantics of dataflow networks.

A quasi-metric space (X,d) is called weightable if there is a nonnegative real
valued function w on X such that

d(z,y) +w(z) = d(y, ) + w(y),

for all z,y € X. The function w is called a weighting function for d and the quasi-
metric d is called weightable.
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Both the complexity space and the dual complexity space are weightable, with
weighting functions we and we« defined by we(f) =>"2 ,27"(1/f(n)) for all f € C,
and we-(f) =02, 27" f(n) for all f € C*, respectively ([51], [44]).

Note that the weighting function we« coincides with the asymmetric norm ¢; on
Cy.

We say that an asymmetric normed (semi)linear space (E,q) is weightable if
(E,d,) is a weightable quasi-metric space.

We want to show that the dual p-complexity space is weightable only for p = 1.
To this end, we will use the following technical lemma.

Lemma 8.2 The real valued function u defined on (0,00) by u(p) = 34/7 — 217 s
strictly decreasing.

Proof. 1t suffices to see that u/(p) < 0 for all p > 0. Indeed, we have
u'(p) = p~2(2Y/Plog 2 — 3'/7log 3).

Since for each p > 0, (3/2)/? > 1 > log2/log3, it follows that 3'/Plog3 >
21/Plog 2, so u'(p) < 0 for all p > 0. W

Theorem 8.1 The dual p-complezity space is weightable if and only if p = 1.

Proof. As we have indicate above the dual (1-) complexity space is weightable.

Conversely, suppose that (C;, g,) is weightable via the weighting function w on C;.
Then for each f,g € C},

w(f) + a9 — f) =w(g) + q(f — 9),

and
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w(f) + qp(=f) =w(0) + g,(f) and w(g)+ g(—g) = w(0) + gy(g)-

Since q,(—f) = ¢p,(—g) = 0, it follows that w(0) = w(f) — ¢,(f) = w(g) —
¢y(9), and thus

@ (f) +ap(g — f) = a(9) + ¢(f — 9)-

Now define f,g : w — R* by f(n) = 2=(/P) for all n € w, and g(n) = 0 for
n odd and g(n) = 2"~™P) for n even. Clearly f,g € C, with q,(f) = 21/7 and
¢ (g) = (4/3)1/P. Moreover, q,(g — f) = 0 and ¢,(f — g) = (2/3)"/?. So we obtain
21/P = (4/3)Y/P + (2/3)Y/? and, hence, 2V/P31/P = 21/P(21/P 4 1) ie. 3V/P —2U/P =1
By Lemma 8.2, this equality only holds when p = 1. We conclude that (C;,q,) is
weightable only for p=1. B

Remark 8.2 [t is known that (B, q,) is not weightable ([46]). This observation,
joint with Theorem 8.1 and the obvious fact that every subspace of a weightable
quasi-metric space is weightable, shows that for each p > 1, the biBanach space
(B5, qp) is not weightable.

The theory of Smyth completable quasi-metric spaces provides an efficient setting
to give a topological foundation for many kinds of spaces which arise naturally in
several fields of Theoretical Computer Science ([36], [44], [46], [51], [53], [54], etc.).

A quasi-metric space (X, d) is Smyth completable if and only if every left K-
Cauchy sequence in (X, d) is a Cauchy sequence in (X, d*) ([32], [52]). (Let us recall
that a sequence (x,)nen in (X, d) is left K-Cauchy ([39]) provided that for each
e > 0 there is k € N such that d(z,,z,,) < ¢ whenever k <n < m.)

A quasi-metric space (X, d) is Smyth complete if and only if every left K-Cauchy
sequence in (X, d) has a T'(d®)-limit point ([32], [52]).

It immediately follows that a quasi-metric space is Smyth complete if and only if
it is bicomplete and Smyth completable.
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It was proved in [28] that every weightable quasi-metric space is Smyth com-
pletable, so every weightable bicomplete quasi-metric space is Smyth complete.

We say that an asymmetric normed semilinear space (F, q) is bicomplete (Smyth
complete) if (E,d,) is a bicomplete (Smyth complete) quasi-metric space.

Combining Corollary 3.2 with the second statement of Proposition 8.4, we obtain
that the dual p-complexity space is bicomplete. In particular, the dual (1-) com-
plexity space is Smyth complete because it is weightable. However, it is possible
to prove that for each p > 1, the dual p-complexity space is Smyth complete. Ac-
tually, we will show that it admits a stronger kind of completeness, namely, strong
completeness in the sense of [48].

A filter F on a quasi-metric space (X, d) is called a Cauchy filter if for each n € N
there is € X such that By(x,27™) € F ([19]).

A quasi-metric space (X, d) is called strongly complete if every Cauchy filter on
(X, d) has a T'(d*)-cluster point ([48]).

Several properties of strongly complete quasi-metric spaces were discussed in [48].
In particular, every strongly complete quasi-metric space is Smyth complete, but the
converse does not hold.

Let u be the upper quasi-metric on R defined by u(r) = r VvV 0, r € R. Then
we can define the quasi-metric up of pointwise convergence as the quasi-metric on
R¥ x R¥ given by up(f,g) =Y ooy 2 " min{1,u(f(n), g(n))} for all f,g € R¥ x R¥.

Theorem 8.2 For each p € [1,00), the dual p-complexity space (Cy,qp) is strongly
complete.

Proof. Fix p € [1,00). Let F be a Cauchy filter on (Cy,q,). Then, for each k € N
there is a fr € C; such that Fy, € F, where Fy = {f € C; : q,(f — fr) < 273}

Therefore, for each f € F},

D onco(27(f(n) = fa(n))F)P < 27,
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so f(n) < filn) +2"3 for all f € F; and n € w.

Denote by K the compact space [[7- [0, fi(n) 4+ 2"7%], and by F'N K the closure
of FNK in K for all FF € F. (Note that for each F' € F, FN K # 0 because
FCK)

Next we show that for each '€ F, (FNK)N (e, Fx N K) # 0.

Indeed, fix ' € F. For each k € N there is g, € F'N (ﬂleFj),so (gk))ken 1S a
sequence in F; C K and, thus, it clusters to some g € K with respect to T'((up)®).
Therefore g € (FNK) N (Npey Fr N K).

In particular, it follows from the above observation that (,—, ), N K is a nonempty
compact subset of K, so the filter base {(F N K)N (N~ Fr N K) : F € F} clusters
to some h € (N, Fi N K with respect to T'((up)®). (Note that h(n) > 0 for all
new).

Now we want to show that i € C; and that F clusters to h with respect to the
metric induced by the norm (g,)°. Thus (C;, g,) will be strongly complete.

Suppose that h ¢ C;. Then, for each j € N there is an m; € w such that
GP < SO (27"h(n))P. Since h € Fy N K, there exists g; € Fy such that | h(n) —
gj(n) |< 27 for n =0,1,...,m;. So h(n) < g;(n) + 277 for n =0,1,...,m;, and thus

3P < 302027 (gi(n) +279))7 < 30027 (gi(n) + 0i(n)))” = (ap(g; + v5))7

where v; is the constant function in C; defined by v;(n) = 277 for all n € w. Hence

J< %(9]’ + Uj) < QP(gj) + qP<Uj> = QP(QJ') +2707D < %(gj) +1

for all j € N. Since q,(g; — f1) < 272, it follows that g,(g;) < q,(f1) +27°. So, for
each j € N,

J<q(fi)+ (1 +27%),

which contradicts the fact that g,(f1) < co. Consequently h € C;.
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Finally, we will prove that F clusters to h with respect to the metric induced by

(gp)°

Fix k € Nand I’ € F. Since h and fj are in C;, there is ng € N such that

1) S, @y <2 ad S @) <29,

On the other hand, since h € F'N Fy N K, there is f € F' N F}, such that

Yonlo (27 [f(n) = h(n)|)P < 272,

We want to show that ¢5(f —h) < 27",

To this end, let A, f; and f’ be the functions in C; defined by h'(n) = h(n),

fi.(n) = fe(n) and f'(n) = f()whenevernzno,andh’(): I(n) = f'(n) =0
whenever n < ny.

Note that, by the inequalities (1), it follows that g,(h’) < 272 and q,(f;) < 273"
Furthermore q,(—h') = ¢,(—f;) = 0 because A'(n) > 0 and fi(n) > 0 for all n € w.

Then, we have

(Zn 7m< "(f = h)(n)* )p)l/p =q@(f = 1) < q(f) + @(=h) =g (f'),

and, on the other hand,

(' = fi) = (0l @7 (f = f) () )P < qp(f — fir) <2778

So

G (f) < qp(fh) +273% < 278k 1 93k < 92k

Therefore
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0(f —h) = (3222, (27(f — h)(n)t)P)1/e
= (220:61(241“ —h)(n)*)P + Zzozno(gfn(f — h)(n)T)P)p

< (2_2kp + (qp(f/>>p)1/p < (2—2kp + 2—2k:p)1/p < 27k,

It remains to show that g,(h — f) < 27

Observe that g,(h' — f') < q,(I') + ¢(—f') = q,(h') < 27?*. Thus

ap(h = f) = (205 27" (h = )P + 320, (27" (h = f)(n) "))

< (272kp + (qp(h/ o f/))p)l/p < (272kp + 272kp)1/p < 29—k
We conclude that (g,)*(f — h) < 27%. Hence (C}, ) is strongly complete. B

For an arbitrary Tychonoff topological space X we denote, as usual, by C,(X)
the space of all continuous real valued functions on X with the topology of pointwise
convergence.

The celebrated Grothendieck theorem ([25]) states that if X is a Tychonoff count-
ably compact space and A is a subset of C,(X) such that every infinite subset of
A has a limit point in C,(X), then the closure of A is compact in C,(X). Asanov
and Velichko ([8]) have obtained the following generalization of Grothendieck’s the-
orem: if X is a Tychonoff countably compact space, then the closure in C,(X)
of every bounded subset A of C,(X) is compact. In our next theorem we extend
Asanov-Velichko’s theorem to the dual p-complexity space (C;, ).

Following [47], a subset A of a topological space X is called upper bounded if

every upper semicontinuous real valued function on X is upper bounded on A.

Lemma 8.3 ([47]). A subset A of a quasi-metrizable space X is upper bounded if
and only if every sequence in A has a cluster point in X.
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Theorem 8.3 Let A be an upper bounded subset of the dual p-complexity space
(Cy, qp). Then the closure of A in (C},(qy)~") is compact in (C;, (qp)°).

Proof. Denote by A the closure of A in (C}, (g,)™"). Let (fi)ren be a sequence in
A. Then there is a sequence (gi)xen in A such that (g,) ' (gx — fx) — 0. By Lemma
8.3, there are a subsequence (gi, ) jen of (gx)ren and a g € C; such that g,(gr; —g) — 0.
Hence q,(fx, —g) — 0. Then, the filter generated by {{fx, : 7 > m} : m € N} is
a Cauchy filter on (C;,qp), and by Theorem 8.2, there is f € C; which is a cluster
point of (fi;)jen, and thus of (fi)ren, in (C;, (g,)*). Obviously f € A. We conclude
that A is compact in (C;, (g,)°). B

Corollary 8.6 Let A be an upper bounded subset of the dual p-complexity space
(Cyap). Then the closure of A in (Cy,(qp)°) is compact in (C;, (qp)°)-

8.4 The supremum asymmetric norm on sequence

algebras

In the precedent sections we have seen that the complexity analysis of algorithms
with running time O(2"/n"), 0 < r < 1, cannot be performed via the dual complexity
space. This is the reason because we have introduced ([24]) the so-called dual p-
complexity space (p > 1), which provides, for p > 1, an appropriate framework to
discuss complexity functions generating this kind of algorithms. In particular, it has
been shown that the dual p-complexity space is an asymmetric normed semilinear
space which is isometrically isomorphic to the positive cone of (I, ||.||+p)-

Here, motivated by the work of E.A. Emerson and C.S. Jutla ([14]) we present
the precise context that will be used in order to obtain a robust mathematical model
for discussing those complexity functions that generate exponential time algorithms.

We start by recalling some pertinent concepts.

By an algebra we mean a linear space E (on R) with a binary (multiplicative)
operation that is commutative, has identity element and satisfies for all z,y,z € F
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and a € R the following conditions: z(yz) = (xy)z, z(y + 2) = zy + zz, and
a(zy) = (ar)y = (ay)z.

A (n asymmetric) normed algebra is an algebra £ with a (n asymmetric) norm
||.|| satisfying [|zy| < ||z|||ly|| for all 2,y € E. By a Banach algebra is meant a
normed algebra that is also a Banach space, and by a biBanach algebra is meant an
asymmetric normed algebra that is also a biBanach space.

As usual we denote by [, the algebra consisting of all bounded infinite sequences
of real numbers.

It is well known that (I, ||.||,) is @ Banach algebra for the usual multiplication
operation on lo,, where ||| is the supremum norm on I, i.e. ||x| = sup{| z, |:
n € w} for all X := (,)new € loo-

As in the [,-case (see Section 8.2) we may split the norm ||.||_, as follows:

For each X : = (#p)new € I define [|x]|, . = [|x*||
n e w}.

o s 1l [[X|| o = sup{z, VO :

It is immediate to see that |||, is an asymmetric norm on /.

In addition, we have the following facts.

Proposition 8.6 (||.[[,..)° = |l./lo o7 lw.

Proof. Let X := (Ty)new € loo- It is clear that [[x||, . < |x[| and [[-x[| | <

1%l -

On the other hand, for each € > 0 there is k € w such that

Xl < et [an [= e+ (@ V(=ar) < e+ (%]l 1o V II=%4o0)-

We conclude that (||x||,.)* =[x, .-H
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Corollary 8.7 (I, |.||1o) s a biBanach space.

Example 8.3 Note that (I, ||.|| o) i a not an asymmetric normed algebra. In-
deed, let X 1= (Tp)new € loo with v, = —1 for all n. Clearly ||xx|| = 1. However

Bl 40 = O-
For each polynomial P(n), with P(n) > 0 for all n € w, define
Bhmy oo ={f €R”: sup{27F) | f(n) |: n € w} < oa}.

It easily follows that B};(n) 1 a linear space for the usual pointwise operations.

Observe that, in particular, B}, .. = (\p(uysn Br(n),co: and Cy C By C By, , for all
p=> 1L

Now define a binary operation * on B}(n)m as follows: For each f,g € B}(n),oo
let f x g be the element of B};(n)m given by the rule

(f*9)(n) =277 f(n)g(n).

An easy computation shows that, equipped with the operation x, B;’(n),oo is an

algebra with identity element the function e : w — R given by e(n) = 2P™ for all
n.

Next denote by gp(n),« the nonnegative real valued function defined on B}Z(n)
by

,O0

qp(n),00(f) = sup{2FM f(n)* :n € w}.
For each f € By, ., let x; := (27P™ f(n)),en. Then x; € [, and we have

QP(n),oo(f) = ||Xf||+oo
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Since |||, o is an asymmetric norm on Iy, it follows that gp(,) o is an asymmetric
norm on B}Z(n) - and consequently (B}(n) > AP(n),00) 18 an asymmetric normed linear
space.

We will show that this space is isometrically isomorphic to (Is, |||/ )

To this end define a map ¢ : B}S(n)m — ls by the rule:

(6(f))(n) =277 f(n),

for all f € By,
defined above. We then have the following result. (Let us recall that a map ¢ from

and n € w. Thus ¢(f) = x;, where x; is the element of [

,O0

an algebra X to an algebra Y is a homomorphism provided that ¢ is a linear map
such that p(xy) = ¢(x)p(y) for all z,y € X).

Proposition 8.7 ¢ is a bijective homomorphism between (Bp,,) . 4P(n),00) and (loo, [|-|] 4 o)
such that qpm).co(f) = 10()ll o0 for all | € B oo
Proof. We first show that ¢ is bijective.

Suppose that ¢(f) = ¢(g). Then 277 f(n) = 2=PMg(n) for all n € w, so f = g.
Thus ¢ is one-to-one.

Now let X := (2,)ncw € loo. Then the function f defined by f(n) = 27z, for
all n € w, satisfies ¢(f) = x. Hence ¢ is onto.

We conclude that ¢ is bijective.

In order to see that ¢ is an homomorphism, let f,g € B};(n)’oo and let a,b € R.
Then

d(af +bg)(n) = 27" (af (n) + by(n)) = ag(f)(n) + bé(g)(n),
for all n € w. Therefore ¢ is linear.

Moreover ¢(f * g)(n) = 2" (f x g)(n) = 272" f(n)g(n) = &(f)(n)d(g)(n) for
all n € w, and thus ¢(f x g) = o(f)o(g).
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We have shown that ¢ is a homomorphism.

Finally, given f € Bj;,(n)’oo we obtain

160N 00 = %41l 400 = @P@m).00(f),

which concludes the proof.l

Corollary 8.8 (Bp,) o, 4P(n),00) and (lss, |||l o) are isometrically isomorphic.

Corollary 8.9 (B}E(n)m, qP(n),0) @5 a biBanach space.

8.5 The supp(,-complexity space

By a semialgebra we mean a semilinear space £ (on R™) with a binary (multi-
plicative) operation that is commutative, has identity element and satisfies for all
x,y,z € E and a € RT the following conditions: z(yz) = (zy)z, z(y + z) = 2y + xz,
and a(zy) = (ax)y = (ay)z.

By an asymmetric normed semialgebra we mean an asymmetric normed semilin-
ear space (F,|.||) such that F is a semialgebra satisfying ||zy|» < ||z|z ||y|| for
all z,y € F. If, in addition, (F|.||s) is a biBanach semilinear space, we say that
(F,||.|l ») is a biBanach semialgebra.

Two asymmetric normed semialgebras (X, ||.|| ) and (Y, ||.||y) are called isomet-
rically isomorphic if there is a map ¢ from X onto Y such that for all x,y € X and

a,b € R, p(ax + by) = ap(r) + bp(y), v(ry) = p(x)p(y) and [|z|y = [[e()]y -

Next we obtain a simple but crucial example of an asymmetric normed semialge-
bra.

Denote by [f the positive cone of [, i.e. [Z = {xt:x € l,}.
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It is immediate to see that (IZ, ||.|[,.,) is an asymmetric normed semilinear space
which is closed in the Banach space (I, (||.|[)%), where the restriction of |||,
to [, is also denoted by |||/ . -

Clearly I, is a semialgebra and for each x, y € IZ, we have ||xy ||, o < [IX]| o [|¥]l100
(compare 8.3).

Consequently, we obtain the following result.

Proposition 8.8 (I%,.||,.,) is a biBanach semialgebra.

For each polynomial P(n), with P(n) > 0 for all n € w, consider the biBanach
space (B}S(n)m, dpP(n),0) constructed in the preceding section and let

Chimyoo = 1S € By oo : F(1) > 0 for all n € w}.

The restriction of the asymmetric norm gp(y) s to C}Z(n)m will be also denoted
by gp(n),c if no confusion arises. Similarly, the restriction of the multiplication
operation x to C};(n)’oo is also denoted by *. Therefore C;‘,(n)m is a semialgebra for
the operation *.

— Iy, defined
before, is a bijective homomorphism between the asymmetric normed semialge-

It is clear that the restriction to C}';(n) « Of the map ¢ : B}Z(n)

oo

bra (Ch, sos AP(n),00) and the positive cone (1L, ||| ) which preserves asymmetric
norms.

As a consequence of these observations and Proposition 8.8 we have the following
result.

Proposition 8.9 (Cp,) ..+ 4P(n),c0) and (I3, ||.|| ) are isometrically isomorphic biBanach
semialgebras, and hence Cp,,y . s a closed subset of the Banach space (Bp,,) oos (qP(n),00)*)-
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In the following the biBanach semialgebra (C}(H)W,QP(WOO) will be called the
SUp p(n)-complexity space.

Remark 8.3 Observe that, in particular, C;, ., = ﬂp(n)>n Chnyor and C5 & €
for all p > 1. Furthermore, if P(n) > n for all n € w, the identity element e of
the semialgebra C;;(n),oo does not belong to any C, p > 1, (recall that e is defined by

e(n) = 2P for all n € w, and we have apn),(€) = 1.)

Remark 8.4 If P(n) < Q(n) for alln € w, then Cp,,y ., € i) 0 @ 4Q(n) 00 (f) <
QP(n),oo(f) Jorall f € C;(n),oo-

Next we show that the (complexity) quasi-metric induced by the asymmetric norm
qP(n),0c also provides a suitable interpretation of the functions in sup p(,)-complexity
space.

Let f be a function from w to R*. As usual, a function ¢ : w — R™ is said to be
in the class O(f(n)) if there is ¢ > 0 such that g(n) < cf(n) for all n € w.

Let f € Cp, . and let g be in class O(f(n)). Then g < cf, for some ¢ > 0.
Obviously g € C;;(n),oo‘

o [f ¢ <1, we have g < f, and hence

qu(n),oo(fa g) = QP(n),oo(g - f) = 0.

Thus, as in the case of the dual p-complexity space, condition dqmn)m( f,9) =0
(with f # g), agrees with the fact that g is more efficient than f on all inputs.
Furthermore qp(n) oo (f) = dyp,, .. (0, f) measures relative progress made in lowering

complexity by replacing f by the “optimal” complexity function 0, assuming that
the complexity measure is the running time of computing.
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o If ¢ > 1, then

arm).o(9 = f)

= Sup{2 PO ((g(n) = f(n)) v 0)) : n € w}
sup{27 P (c —1)f(n) : n € w}

(¢ = 1)gpm),0o(f),

QP(n),OO(g) - qp(n),oo(f)

IN

and consequently

qp(n),oo(g) < CgP(n),oo(f) and qu(n),oo (fa g) < (C - 1)qu(n),oo (07 f)

The following example shows that unfortunately the sup p(,)-complexity space is
not Smyth completable, hence not Smyth complete.

Example 8.4 Let P(n) be a polynomial (with P(n) > 0 for all n € w). Define a
sequence (fi)rew by fr(n) =0 forn =0,1, ...k, and fi(n) = 2P™ forn > k. Clearly
Ji € Cpyy 0 for all k € w (actually each f, is in class O(2Fm)).

Then
gy oo (fis fir1) = sup{27 7 ((fra (n) — fr(n)) v 0)} =0,

d

for all k € w. Hence (fi)kew is a left K-Cauchy sequence in (Cp 0P (ny.ce)"

n),00?

However, for each j, k € w with j > k, we have

gpon oo (fis fi) = sup{27 P ((fr(n) — f3(n)) V0)} = L.

Therefore (C};(n)m, qP(n),0) @5 not Smyth completable.

8.6 Contraction maps

It is known that for applications the complexity space (C,dc) is typically restricted
to functions which range over positive integers which are power of a given integer b
(see Section 6 of [51]).
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Let a,b,c € N with a,b > 2, let n range over the set {V* : k € w} and let h € C.
A functional @ corresponding to a Divide & Conquer algorithm in the sense of [51],
is typically defined by

c ifn=1

(@(f)(n) = af(n/b) + h(n) it ne {b*: ke N,

We recall that this functional intuitively corresponds to a Divide & Conquer
algorithm which recursively splits a given problem in a subproblems of size n/b and
which takes h(n) time to recombine the separately solved problems into the solution
of the original problem.

It was proved in Theorem 6.1 of [51], that ® is a contraction map for de with
contraction constant 1/a. This result was extended in Section 4 of [44] to the dual
complexity space (Cy, dy, ), where the corresponding functional ®* is given, for h € C,

by

(@*(f))(n) = e o
n
ﬁﬁ?fﬁ% if ne {0k €N}.

A slight modification of the proof of Theorem 6.1 of [51] shows that such a result
also follows in the realm of any dual p-complexity space. We conclude the chapter

by obtaining an extension of Theorem 6.1 of [51] to the supp(,)-complexity space
when P(n*t1) > P(n*) for all n, k € w.

Under the above assumptions, define

C;;(n),oo | b,c:={f : f is the restriction to arguments n of the form v*, k € w, of
f" € Chny oo such that f'(1) =1/c}.

Observe that each f € C}Z(n)’oo | b,c can be considered as an element of C;(n)m,
by defining f(n) = 0 whenever n ¢ {b* : k € w}. Thus, if for each f € Chnyoo0 | b, c,
®*(f) is defined as above, we obtain the following.



112 SEQUENCE SPACES AND ASYMMETRIC NORMS IN THE THEORY OF...

Proposition 8.10 Let f,g € Cy, o, | b,c. Then @*(f),2*(g) € Cpy o | byc, and

Ty (¥ (), 9" (0)) < i, (1. 0).

Proof. Tt is easy to check that ®*(f), ®*(g) € Chny.oo0 | b, c. Furthermore

ypiy o (7 (f), @7(9))

— ap 2 F™ gln/b) — f(n/b)
- ((a+g(”/b)h(n) a+ f(n/b)h(n)) vo)

ne{bk:keN}
< sup 2P0 (a(g(n/b) S Y 0)
" nef{vh:keN} a?
< L oswp 27O ((gln) = ) VO) = i, (F9)

Q4 pe{bh:kew}

This completes the proof.ll
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