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ABSTRACT

The Finite Element Method has become one of the most powerful and
widely used techniques to find approximate solutions of differential equations
governing many types of engineering problems.

Optimization processes of mechanical components require that the infor-
mation of the gradients (sensitivity) of the magnitudes of interest is calculated
with sufficient accuracy. The aim of this master thesis is to develop a module
for calculation of shape sensitivities with geometric representation by NURBs
(Non-Uniform Rational B-Splines) for a program created to analize linear elas-
tic problems, solved by FEM using 2-D cartesian meshes independent of ge-
ometry, Cartesian Grid-FEM, looking at a future 3-D implementation.

First, it has been implemented, through graphical interface, the ability to
create NURB geometric entities, which have become in recent years in the most
used geometric technology in the field of engineering design. Such curves are
very suitable for modeling all types of surfaces and can accurately represent
conic sections, i.e., circles, cylinders or spheres, among others, that could not
be represented with the geometric representation technique so far implemented
based on splines.

Secondly, theory on calculation of shape sensitivities, for standard FEM,
has been adapted to an environment based on cartesian meshes independent
of geometry, which implies, for instance, the need to implement new methods
of velocity field generation, which is a crucial step in this kind of analysis.
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The results show that the use of NURB curves involve significant decrease
of geometrical error during FE calculation, and that the calculation module
implemented is able to create several alternative velocity field giving back good
results in different sensitivities analyses.

Key words: Cartesian Grid-FEM, sensitivity analysis, velocity
field, NURBs

vi
Department of Mechanical and Materials Engineering

Research Centre in Vehicles Technology



Shape Sensitivity Module with Exact Geometrical Representation

Master Thesis

RESUMEN

El Método de los Elementos Finitos se ha convertido en una de las técnicas
más potentes y más ampliamente utilizadas para encontrar soluciones aprox-
imadas de las ecuaciones diferenciales que rigen numerosos tipos problemas
ingenieriles.

Los procesos de optimización de forma en componentes mecánicos requieren
que la información de los gradientes (sensibilidades) de las magnitudes de in-
terés esté calculada con suficiente precisión. En este sentido, en esta tesis
de máster, ha sido desarrollado un módulo de cálculo de sensibilidades de
forma con representación geométrica mediante NURBs (Non-Uniform Ratio-
nal B-splines) para un programa de análisis de problemas elásticos lineales,
resueltos mediante el MEF dentro de un entorno de mallados cartesianos 2-D
independientes de la geometria, Cartesian Grid-FEM, con vistas a una futura
implementación 3-D.

En primer lugar, se ha implementado, a traves de interfaz gráfica, la posi-
bilidad de crear entidades geométricas tipo NURB, que se han convertido en los
últimos años en la tecnología gráfica más usada en el campo del diseño en inge-
niería. Este tipo de curvas son muy adecuadas para el modelado de todo tipo
de superficies y pueden representar exactamente secciones cónicas, es decir,
circunferencias, cilindros o esferas entre otras, que no podían ser representadas
con la técnica de representación geométrica hasta ahora implementada basada
en el uso de splines.

En segundo lugar, se ha adaptado la teoría existente en MEF estándar sobre
el cálculo de sensibilidades de forma, a un entorno basado en mallas cartesianas
independientes de la geometría, lo que implica, por ejemplo, la necesidad de
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implementación de nuevos métodos de creación del campo de velocidades, que
es un paso crucial en este tipo de análisis.

Los resultados obtenidos muestran que la utilización de curvas tipo NURB
suponen la disminución significativa del error geométrico durante el cálculo de
EF, y que el módulo de cálculo implementado es capaz de crear diversas alter-
nativas de campo de velocidades dando muy buenos resultados en la obtención
de las sensibilidades.

Palabras clave: Cartesian Grid-FEM, análisis de sensibilidades,
campo de velocidades, NURBs
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RESUM

El Mètode dels Elements Finits s’ha convertit en una de les tècniques més
potents i més àmpliament utilitzades per a trobar solucions aproximades de les
equacions diferencials que regixen nombrosos tipus problemes en enginyeria.

Els processos d’optimització de forma en components mecànics requerixen
que la informació dels gradients (sensibilitats) de les magnituds d’interés estiga
calculada amb suficient precisió. En este sentit, en esta tesi de màster, ha sigut
desenrotllat un mòdul de càlcul de sensibilitats de forma amb representació
geomètrica per mitjà de NURBs (Non-Uniform Rational B-splines) per a un
programa d’anàlisi de problemes elàstics lineals, resolts per mitjà del MEF dins
d’un entorn de malles cartesians 2-D independents de la geometria, Cartesian
Grid-FEM, amb vista a una futura implementació 3-D.

En primer lloc, s’ha implementat, a través d’interfície gràfica, la possibilitat
de crear entitats geomètriques tipus NURB, que s’han convertit en els últims
anys en la tecnologia gràfica més usada en el camp del disseny en enginyeria.
Este tipus de corbes son molt adequades per al modelatge de qualsevol tipus
de superfícies i poden representar exactament seccions còniques, és a dir, cir-
cumferències, cilindres o esferes entre altres, que no podien ser representades
amb la tècnica de representació geomètrica fins ara implementada basada en
l’ús de splines.

En segon lloc, s’ha adaptat la teoria existent en MEF estàndard sobre
el càlcul de sensibilitats de forma, a un entorn basat en malles cartesianes
independents de la geometria, la qual cosa implica, per exemple, la necessitat
d’implementació de nous mètodes de creació del camp de velocitats, que és un
pas crucial en este tipus d’anàlisi.
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Els resultats obtinguts mostren que la utilització de corbes tipus NURB
suposen la disminució significativa de l’error geomètric durant el càlcul d’EF, i
que el mòdul de càlcul implementat és capaç de crear diverses alternatives de
camp de velocitats donant molt bons resultats en l’obtenció de les sensibilitats.

Paraules clau: Cartesian Grid-FEM, anàlisi de sensibilitats, camp
de velocitats, NURBs
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1. INTRODUCTION

The Finite Element Method (FEM) has become one of the most powerful
techniques and is widely used to find approximate solutions of differential equa-
tions governing engineering problems. Specifically, this master thesis focuses
on 2-D optimization problems with exact representation of the geometries, gov-
erned by the linear elasticity equations, using FEM to determine the sensitivity
of the quantities of interest.

The FE program developed at Department of Mechanical and Materials
Engineering (DIMM) uses meshes independent of the geometry. In order to
get this the program is implementated following the philosophy of the Gen-
eralized Finite Element Method (GFEM), section 1.1. With GFEM we will
have two meshes, an approximation mesh, which is a mesh that covers the
original domain and is used for the construction of the approximation basis,
and an integration mesh intended for numerical evaluation of all integrals. In
addition the elements are disposed following a cartesian grid pattern to reduce
the computational cost generated usually during optimization processes.

In the last years a new concept known as Isogeometric Analysis has gained
prominence. This new approach seeks to eliminate the barriers between en-
gineering design and Finite Element Analysis where a fundamental step is to
focus on one, and only one, geometric model, which can be utilized directly
as an analysis model, or from which geometrically precise analysis models can
be automatically built. This is a huge task and it needs to reconstitute the
entire process of design. Previous investigations around the world of the iso-
geometric concept have been proven very successful. Backward compatibility
with existing design and analysis technologies is attainable. So there is inter-
est in both the computational geometry and analysis communities to embark
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1.1. Generalized Finite Element Method

on isogeometric research, and this is the main motivation why this master’s
thesis is an approach to this novel concept. In section 1.2 we will present the
basic concepts of Isogeometric Analysis and a detailed explanation of NURBs
technology, which is the most widely used in engineering design.

As said, this master thesis will focus on optimization problems. Ones of
the most popular optimization methods are the gradient-based methods, based
on the calculation of derivatives (sensitivities). To achieve these gradients, a
sensitivity analysis with respect to design variables is necessary, and in our case
this design variables are defined by the analyst and describe the geometry of the
component to be optimized. In section 1.3 will present the theory concerning
the calculation of shape sensitivities to lay the foundations on which we will
implement the calculation module.

1.1. Generalized Finite Element

Method

Over the last decades the Finite Element Method (FEM) has gone through
great development due to its versatility, robustness and fexibility being gener-
alized into a branch of applied mathematics for numerical modeling of physical
systems in a wide variety of engineering disciplines. At this time there has been
a great effort to increase efficiency and reliability of the analyses performed by
FEM, as evidenced by the large number of publications.

FEM is now in its mature phase, so the progress in this area is spreading
into other different concepts for the development of new codes for solving
problems in a faster, easier and more accurate way.

Recently several methods for solving boundary problems have become pop-
ular attempting to eliminate the necessity of using a mesh. These methods are
based on, implicitly or explicitly, using a partition of the unity on the domain
to ensure continuity of the approximation. Examples of such methods are

2
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The Element-free Galerkin Methods by Belytschko, The hp-Clouds Method by
Duarte and Oden, and Reproducing Kernel Particle Methods by Liu.

These methods, in the purest form, get rid completely of the standard FEM
and propose replacing the traditional finite element code for a new structure.

These methods have had limited success because they have not dealt satis-
factorily with the problem of numerical integration of the equations. Although
these are methods without mesh, at the end a mesh is required for integration.
This integration mesh can be difficult to adapt to the curved contours making
very difficult to control the error of numerical integration.

In addition, several meshless methods also require special techniques to im-
plement the essential boundary conditions, as the Lagrange multipliers method
which shows arising stability problems.

Generalized Finite Element Method, hereinafter GFEM, was introduced
in 2000 by T. Strouboulis, I. Babuška and K. Copps[4] as a combination of
standard FEM and the Partition of Unity Method (PUM).

The standard FEM meshes cannot be adapted properly to the contour of
the domain. GFEM development, as an extension of the classical method,
can increase the accuracy of the solution of engineering problems in complex
domains.

The main feature of Strouboulis’ proposal is a combination of robust nu-
merical integration and special refinement of elements, which works well with
almost any mesh and any domain.

A major contribution of Babuška and Strouboulis is the implementation
of GFEM as combination of standard FEM and the partition of unity, with
the ability to introduce special enrichment functions in the approximation,
for example in corners, voids or inclusions, which significantly increase the
accuracy of the GFEM solution.

According to the authors, GFEM can be classified into three categories
according to the relation between the approximation mesh and the domain
geometry:

• GFEM I. The approximation mesh is a classical finite element
mesh for the entire domain which subsequently will provide
special functions at points where the behavior is known. Fig-
ure 1.1a

• GFEM II. The approximation mesh is a classical finite element
mesh for a modified domain that includes the original internal

Universitat Politècnica de València
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domains, and it is obtained from the original domain by the
removal of several parts of the boundary and addition of new
contours. Figure 1.1b

• GFEM III. The approximation mesh is a mesh that covers the
original domain and have no common borders with the geome-
try. This is the type of meshes used in the program developed
in the Department of Mechanical and Materials Engineering
(DIMM) and on which developments are implemented. Figure
1.1c

The basic ideas of this method to be able to analyze complex geometries
with low computational cost are:

• Meshes independent of the domain.

• Local enrichment of the approximation by special functions.

1.1.1. Meshes Independent of the Domain

FEM always uses a mesh which we call finite element mesh, for the con-
struction of the approximation and the numerical integration of the stiffness
matrix, loads vector, etc. The finite element mesh is often built by subdivid-
ing the domain into a set of triangular subdomains and/or non-overlapping
curvilinear quadrilaterals which are called elements and have to satisfy several
distortion and connection constraints between neighbors.

GFEM uses two meshes. One called approximation mesh, which is used
for the construction of the approximation basis, and one corresponding to the
integration mesh constructed using each element of the approximation mesh
separately and is intended for numerical evaluation of all integrals. Figure 1.2
shows an example of approximation mesh and its corresponding integration
mesh.

The approximation mesh needs to satisfy only the requirement of covering
completely the problem extension, as shown in figure 1.2a, while the integration

4
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(a) GFEM mesh Type I. (b) GFEM mesh Type II.

(c) GFEM mesh Type III.

Figure 1.1: Diferent types of GFEM meshes.
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(a) Approximation mesh.
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(b) Integration mesh.

Figure 1.2: CG-FEM mesh example.

mesh is obtained by the special refinement of each element of the approximation
mesh separately, taking into account the local geometry of the domain as shown
in figure 1.2b. For this special refinement the Delaunay triangulation is used,
which creates subdomains and intersections depending on the curvature of the
edge crossing the elements.

As said, the program developed at DIMM uses meshes independent of the
geometry, but in addition the elements are disposed following a cartesian grid
pattern as seen in figure 1.2a in order to achieve significant computational
savings, absolutely necessary for instance in optimization analysis, where iter-
ative analyses are required leading to considerable data flows. From now on
this program will be referred as Cartesian Grid-FEM (CG-FEM).

6
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1.1.2. Local Enrichment of the

Approximation by Special Functions

This feature allows the addition of special functions of interest within the
construction of the approximation. A choice for these functions are the so-
called handbook functions, which reflect the local known character of the solu-
tion inside the domain, near a border, in the vicinity of a crack, an inclusion or
a cavity, etc. These functions are defined as exact analytic solution of sample
problems, which are formulated using the known local information of the dif-
ferential equation, of the contour local geometry, boundary conditions, loads,
material properties, etc. which can be determined a priori.

These functions are incorporated into the existing basis of the standard
FEM to build a increased space that forms the GFEM approximation. The
addition of a small selection of guide functions to the standard FEM basis can
lead to a significant improvement in the accuracy of the computational solution
while maintaining the existing structure of FEM.

An example of these functions are the functions that represent singural
behaviour obtained analytically from the local asymptotic expansion in the
vicinity of the tip of a crack.

The development and use of this library of local enrichment functions is
within future research lines, and will not be used in this master’s thesis.
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1.2. Exact Geometrical

Representation

1.2.1. The Need for Isogeometric Analysis

It was not long ago that the design drawings were passed to stress analysts
and the interaction between designer and analyst was simple and direct. De-
signers now generate Computer Aided Design (CAD) files and these must be
translated into analysis-suitable geometries, meshed and input to large-scale
Finite Element Analysis (FEA) codes. This task is far from trivial and for
complex engineering designs is now estimated to take over 80% of the overall
analysis time, and engineering designs are becoming increasingly more com-
plex. Engineering design and analysis are not separate endeavors. Design of
sophisticated engineering systems is based on a wide range of computational
analysis and simulation methods, such as structural mechanics, fluid dynam-
ics, acoustics, electromagnetics, heat transfer, etc. Design speaks to analysis,
and analysis speaks to design. However, analysis-suitable models are not au-
tomatically created or readily meshed from CAD geometry. Although not
always appreciated in the academic analysis community, model generation is
much more involved than simply generating a mesh. There are many time
consuming, preparatory steps involved.

The anatomy of the process has been studied and it is settled that mesh
generation accounts for about 20% of overall analysis time, whereas creation
of the analysis-suitable geometry requires about 60%, and only 20% of overall
time is actually devoted to analysis per se. The 80/20 modelling/analysis ratio
seems to be a very common industrial experience, and there is a strong desire
to reverse it, but so far little progress has been made, despite enormous effort to
do so. The integration of CAD and FEA has proven a formidable problem. It
seems that fundamental changes must take place to fully integrate engineering
design and analysis processes.

8
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Recent trends taking place in engineering analysis and high-performance
computing are also demanding greater precision and tighter integration of the
overall modeling-analysis process. We note that a finite element mesh is only
an approximation of the CAD geometry, wich we view as “exact”. This approx-
imation can in many situations create errors in analytical results. Automatic
adaptative mesh refinement has not been as widely adopted in industry as one
might assume from the extensive academic literature, because mesh refinement
require access to the exact geometry and thus seamless and automatic commu-
nication with CAD, which simply does not exist. Without accurate geometry
and mesh adaptivity, convergence and high-precision results are impossible.

Deficiencies in current engineering analysis procedures also preclude suc-
cesful application of important pace-setting technologies, such as design opti-
mization. The benefits of design optimization have been largely unavailable to
industry. The bottleneck is that to do shape optimization the CAD geometry-
to-mesh mapping needs to be automatic, differenciable, and tightly integrated
with the solver and optimizer. This is simply not the case as meshes are
disconnected from the CAD geometries from which they were generated.

It is apparent that the way to break down the barriers between engineering
design and analysis is to reconstitute the entire process, but at the same time
maintain compatibility with existing practices. A fundamental step is to focus
on one, and only one, geometric model, which can be utilized directly as an
analysis model, or from which geometrically precise analysis models can be
automatically built. This will require a change from classical finite element
analysis procedure based on CAD representations. This concept is referred as
Isogeometric Analysis (IGA), and it was introduced by Hughes et al.,[5].

Here are the reasons why the time may be right to transform design and
analysis technologies: initiatory investigations of the isogeometric concept have
been proven very successful. Backward compatibility with existing design and
analysis technologies is attainable. There is interest in both the computational
geometry and analysis communities to embark on isogeometric research. Sev-
eral workshops at international meetings have been held and several very large
multi-institutional research projects have begun in Europe. In particular IN-
SIST (Integrating Numerical Simulation and Geometric Design Technology)
is a EU Marie-Curie Initial Training Network project where the Universitat
Politècnica de València is a partner institution. This project focus on the de-
velopment of the next generation design/simulation methods based on IGA.
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The idea is to use the same functions that are used to approximate CAD mod-
els to approximate the unknown fields for engineering analysis and simulation.
The key outcome of this research is a system/methodology that allows the
analysis, simulation and design of engineering products in a more efficient way
by extending the isogeometric analysis concept of Hughes and co-workers.

There is an inexorable march toward higher precision and greater real-
ity. New technologies are being introduced and adopted rapidly in design
software to gain competitive advantage. New and better technologies can be
built upon and influence these new CAD technologies. There are a number
of candidate computational geometry technologies that may be used in IGA.
The most widely used in engineering design are NURBs (Non-Uniform Ratio-
nal B-splines), the industry standard (see, Rogers[6] and Piegl and Tiller[7]).
The major strengths of NURBs are that they are convenient for free-form sur-
face modeling, can exactly represent all conic sections, and therefore circles,
cylinders, spheres, ellipsoids, etc., and that there exist many efficient and nu-
merically stable algorithms to generate NURBs objects.

NURBs are obiquitous in CAD systems, representing billions of dollars in
development investment. One may argue the merits of NURBs versus other
computational geometry technologies, but their preeminence in engineering
design is indisputable. As such, they are the natural starting point to intro-
duce exact representation technology in the code developed at DIMM, so the
next section will be focused in how NURBs technology was originated, detail-
ing previous technologies to be able to achieve a large understanding of its
characteristics.

1.2.2. From Bézier Curves to NURBs

As said before one of the most popular CAD representation is the NURB
curves. To get to know this type of curve, we need to have a good understand-
ing of Bézier and B-spline curves since these hold the basis of NURBs.

There are an abundance of interesting aspects to this topic of curves and
surfaces, and this section will primarily focus on the different ways to use,
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implement and efficiently evaluate them, so the theory behind these curves
will be explained from a programmers viewpoint and it will serve as excellent
material for people entering the field of polynomial curves and surfaces in
computer graphics.

Over the last two decades the scene of computer graphics has literally
exploded with progress in all directions; the arrival of dedicated 3-D hardware,
computer generated animation and faster computers to name a few key events.

One of these directions focus on displaying smooth curves and surfaces,
suitable for modeling landscapes, faces and other topologies of interest. De-
velopment of NURBs began in the 1950’s by engineers who were in need of a
mathematically precise representation of free-form surfaces like those used for
ship hulls, aerospace exterior surfaces, and car bodies, which could be exactly
reproduced whenever technically needed. Prior representations of this kind of
surfaces only existed as a single physical model created by a designer.

The pioneers of this development were Pierre Bézier who worked as an
engineer at Renault, and Paul de Casteljau who worked at Citroën, both in
France. Bézier worked nearly parallel to de Casteljau, neither knowing about
the work of the other. Paul de Casteljau came up with the simple idea of
iterating afine combinations of polygon meshes to obtain smooth surfaces suit-
able for modeling car chassis, while Pierre Bézier worked on the intersection
of partial cylinders to achieve the same goals. Both versions produced equal
curves, but due to that Bézier published the results of his work, the average
computer-graphics user today recognizes splines, which are represented with
control points lying off the curve itself, as Bézier splines, while de Casteljau’s
name is only known and used for the algorithms he developed to evaluate
parametric surfaces. Because of their increased power and flexibility, B-splines
curves and surfaces, where ’B’ stands for basis, rapidly followed. In the late
1960’s it became clear that Non-Uniform Rational B-splines, or NURBs, are a
generalization of Bézier curves.

1.2.2.1. Bézier curves

A Bézier curve, which is a special case of a NURB curve, is determined
by a control polygon, such as shown in figure 1.3. Because the Bézier basis is

Universitat Politècnica de València

Máster in Mechanical and Materials Engineering
11



1. INTRODUCTION

1.2. Exact Geometrical Representation

also the Bernstein basis, several properties of Bézier curves are immediately
known. For example:

Figure 1.3: A Bézier curve and its control polygon.

• The basis functions are real.

• The degree of the polynomial defining the curve segment is one less than
the number of control polygon points.

• The curve generally follows the shape of the control polygon.

• The first and last points on the curve are coincident with the first and
last points of the control polygon.

• The tangent vectors at the ends of the curve have the same direction as
the first and last polygon spans, respectively.

• The curve is contained within the convex hull of the control polygon,
i.e., within the largest convex polygon defined by the control polygon
vertices. In figure 1.3, the convex hull is shown by the polygon and the
dashed line.

• The curve exhibits the variation-diminishing property. Basically, this
means that the curve dos not oscillate about any straight line more often
than the control polygon.

• The curve is invariant under an affine transformation.
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Mathematically, a parametric Bézier curve is defined by

P (t) =
n
∑

i=0

BiJn,i(t) 0 ≤ t ≤ 1 (1.1)

where Bi stands for each point in the control polygon and the Bézier, or Bern-
stein, basis or blending function is

Jn,i(t) =

(

n

i

)

ti(1− t)n−i (0)0 ≡ 1 (1.2)

with

(

n

i

)

=
n!

i!(n− i)!
0! ≡ 1 (1.3)

so Jn,i(t) is the ith nth-order Bernstein basis function. Here, n, the degree of
the Bernstein basis function and thus the polynomial curve segment, is one less
than the number of points in the Bézier polygon. The vertices of the Bézier
polygon are numbered from 0 to n, as shown in figure 1.3.

Figure 1.4 shows the blending functions for several values of n. Notice the
symmetry of the functions. Each of the blending functions is of degree n.

Paying attention to this blending functions we can see how the first point
on the Bézier curve and on its control polygon are coincident, and similarly
occurs with the last point. Furthermore, it can be shown that for any given
value of the paramenter t, the summation of the basis functions is precisely
one; that is

n
∑

i=0

Jn,i(t) = 1 (1.4)

1.2.2.1.1. Matrix representation of Bézier curves

The equation for a Bézier curve expressed in matrix form is

P (t) = TMB = FB (1.5)

Here F = [Jn,0 Jn,1 Jn,2 . . . Jn,n] and the matrix BT = [B0 B1 B2 . . . Bn]
contains the geometry of the curve.
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Figure 1.4: Bézier/Bernstein blending functions. (a) Three polygon points,
n = 2; (b) four polygon points, n = 3; (c) five polygon points, n = 4; (d) six
polygon points, n = 5.

The specific matrix forms for low values of n are of interest. For instance,
for four control polygon vertices (n = 3), the cubic Bézier curve is given by

P (t) =
[

(1− t)3 3t(1− t)2 3t2(1− t) t3
]









B0

B1

B2

B3









(1.6)
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Collecting the coefficients of the parameter terms allows rewriting this as

P (t) = TMB = [1 t t2 t3]









1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1

















B0

B1

B2

B3









(1.7)

It is possible to find a generalized representation of this matrix, but as
Bézier curves are not the main geometrical tool of this thesis, then we will
focus in the matrix representations for B-splines, and this one will also be
valid for Bézier curves.

1.2.2.2. B-spline curves

From a mathematical point of view, a curve generated by using the vertices
of a control polygon is dependent on some interpolation or approximation
scheme to establish the relationship between the curve and the control polygon.
This scheme is provided by the choice of basis function. As noted in section
1.2.2.1, the Bernstein basis produces Bézier curves generated by equation (1.1).
In the last section we discovered some serious drawbacks with Bézier curves
due to two characteristics of the Bernstein basis:

• No real local control. The value of the blending function Jn,i(t) given by
equation (1.2) is non-zero for all parameter values over the entire curve.
Because any point on a Bézier curve is a result of blending the values of
all control vertices, a change in one vertex is felt throughout the entire
curve.

• Strict relation between curve degree and number of control points. Then
the only way to increase the degree of the curve is to increase the number
of vertices, and, conversely, the only way to reduce it is to reduce the
number of vertices.

There is another basis, called the B-spline basis, which contains the Bern-
stein basis as a special case. This basis is generally non-global. The non-global
behavior of B-spline curves is due to the fact that each vertex Bi is associated
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with a unique basis (support) function. Thus, each vertex affects the shape
of a curve only over a range of parameter values where its associated basis
function is non-zero.

In general it can be stated that B-spline curves requires more computation
than Bézier curves, but are far more flexible and pleasing to work with, which
is the reason why they have become part of almost every serious graphics de-
velopment environment. The only real drawback compared to the Bézier curve
is that the underlying mathematics can be quite troublesome and intimidating
at first.

1.2.2.2.1. B-spline curve definition

Letting P (t) be the position vector along the curve as a function of the
parameter t, a B-spline curve is given by

P (t) =
n+1
∑

i=1

BiNi,k(t) tmin ≤ t < tmax, 2 ≤ k ≤ n+ 1 (1.8)

where the Bi are the coordinates vectors of the n+1 control polygon vertices,
and the Ni,k are the normalized B-spline basis functions.

For the ith normalized B-spline basis function of order k (the order de-
fines the number of nearby control points that influence any given point on
the curve), the basis functions Ni,k are defined by the Cox-de Boor recursion
formulas. Specifically

Ni,1(t) =

{

1 xi ≤ t < xi+1

0 otherwise
(1.9)

and

Ni,k(t) =
(t− xi)Ni,k−1(t)

xi+k−1 − xi
+

(xi+k − t)Ni+1,k−1(t)

xi+k − xi+1
(1.10)

The values of xi are elements of a knot vector satisfying the relation xi ≤
xi+1 (see 1.2.2.2.3). The parameter t varies from tmin to tmax along the curve
P (t). The convention 0

0 = 0 is adopted.
Formally, a B-spline curve is defined as a polynomial spline function of

order k (degree k − 1), because it sarisfies the following two conditions:
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• P (t) is a polynomial of degree k − 1 on each iterval xi ≤ t < xi+1.

• P (t) and its derivatives of order 1, 2, . . . , k−2 are all continuous over the
entire curve.

1.2.2.2.2. Properties of B-spline curves

Because a B-spline basis is used to describe a B-spline curve, several prop-
erties in addition to those already mentioned are immediately known:

• The sum of the B-spline basis functions for any parameter value t is

n+1
∑

i=1

Ni,k(t) ≡ 1 (1.11)

• Each basis function is positive or zero for all parameter values, that is
Ni,k ≥ 0.

• Except for first-order basis functions, k = 1, each basis function has
precisely one maximum value.

• The maximum order of the curve equals the number of control polygon
vertices. The maximum degree is one less.

• The curve exhibits the variation-diminishing property. Thus, the curve
does not oscillate about any straight line more often than its control
polygon oscillates about the line.

• The curve generally follows the shape of the control polygon.

• Any affine transformation is applied to the curve by applying it to the
control polygon vertices; i.e., the curve is transformed by transforming
the control polygon vertices.

• The curve lies within the convex hull of its control polygon. The con-
vex hull properties of B-spline curves are stronger than those for Bézier
curves, due to for a B-spline curve of order k (degree k − 1), a point on
the curve lies within the convex hull of k neighbouring points instead of
the whole control polygon.
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1.2.2.2.3. Knot vectors

As explained before, a B-spline curve consists of segments formed evalu-
ating intervals. The join points between these segments are called knots, and
play a fundamental role in the understanding of this kind of curve. Equations
(1.9) and (1.10) clearly show that the choice of knot vector has a significant
influence on the B-spline basis functions Ni,k(t) and hence on the resulting
B-spline curve. The only requirement for a knot vector is that it satisfies the
relation xi ≤ xi+1; i.e., it is a monotonically increasing series of real numbers.
Fundamentally, two types of knot vector are used, periodic and open, in two
flavors, uniform and non-uniform.

In an uniform knot vector, individual knot values are evenly spaced.

[0 1 2 3 4]

In practice, uniform knot vectors generally begin at zero and are incre-
mented by 1 to some maximum value, or are normalized in the range between
0 and 1, i.e., equal decimal intervals, for example

[0 0.25 0.5 0.75 1]

For a given order k, periodic uniform knot vectors yield periodic uniform
basis functions for which

Ni,k(t) = Ni−1,k(t− 1) = Ni+1,k(t+ 1) (1.12)

Thus, each basis function is a translate of the other, as figure 1.5 illustrates.
An open uniform knot vector has multiplicity of knot values at the ends

equal to the order k of the B-spline basis function. Internal knots are evenly
spaced. Some examples using normalized increments are

k = 2 [0 0
1

4

1

2

3

4
1 1]

k = 3 [0 0 0
1

3

2

3
1 1 1]

k = 4 [0 0 0 0
1

2
1 1 1 1]
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Figure 1.5: Periodic uniform B-spline basis functions, with [X] =
[0 1 2 3 4 5 6], n+ 1 = 4, k = 3.

For this type of knot vector the basis functions can be as shown in figure
1.6. When the number of control polygon vertices is equal to the order of
the B-spline basis and an open uniform knot vector is used, the B-spline basis
reduces to the Bernstein basis. Hence, the resulting B-spline curve is a Bézier
curve.

Non-uniform knot vectors may have either unequally spaced and/or mul-
tiple internal knot values. They may be periodic or open as well. Figure 1.7
shows several non-uniform B-spline basis functions for order k = 3. Notice
the symmetry of the basis functions in (a) and (b) and how that symmetry
is lost for the non-uniform basis functions in (c) to (e). Notice also that for
multiple knot values within the knot vector a cusp occurs in one of the basis
functions. Furthermore, in (d) and (e) notice the shift of the location of the
cusp corresponding to the change in location of the multiple knot value in the
knot vector. Here we encounter another clever feature of the B-spline curves;
several disjoint segments can be made from one knot vector and a set of control
points by introducing discontinuities.
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Figure 1.6: Open uniform B-spline basis functions, with [X] =
[0 0 0 1 2 2 2], n+ 1 = 4, k = 3.

1.2.2.2.4. B-spline basis functions

Because the Cox-de Boor formula (equations (1.9) and (1.10)) used to cal-
culate B-spline basis functions is a recursion relation, a basis function of a
given order k depends on lower-order basis functions down to order 1. For a
given basis function Ni,k, this dependence forms a triangular pattern given by

Ni,k

Ni,k−1 Ni+1,k−1

Ni,k−2 Ni+1,k−2 Ni+2,k−2
...

. . .

Ni,1 Ni+1,1 Ni+2,1 · · · Ni+k−1,1

Figure 1.8 shows the buildup of the higher-order basis functions Ni,3 from
lower-order basis functions. We can see in how figure 1.8c repeats the third-
order basis functions of figure 1.6 for completeness. Notice how the range
of non-zero basis function values spreads with increasing order. The basis
function is said to provide support on the interval xi to xi+k
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Figure 1.7: Non-uniform basis functions for n+ 1 = 5, k = 3 compared to the
open uniform basis shown in (a).
(a) [X] = [0 0 0 1 2 3 3 3];
(b) [X] = [0 0 0 0.4 2.6 3 3 3];
(c) [X] = [0 0 0 1.8 2.2 3 3 3];
(d) [X] = [0 0 0 1 1 3 3 3];
(e) [X] = [0 0 0 2 2 3 3 3].
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Figure 1.8: Periodic basis function buildup with [X] = [0 1 2 3 4 5 6], n +
1 = 4. (a) k = 1; (b) k = 2; (c) k = 3.
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We can compare these basis functions with the ones illustrated in figure
1.9. Notice the significantly different results are obtained when using periodic
uniform or open uniform vectors. In particular, note that for open uniform
vectors a complete set of basis functions is defined for the entire parameter
range; i.e.,

∑

Ni,k(t) = 1 for all t, 0 ≤ t ≤ n− k + 2

1.2.2.2.5. Matrix representation of B-spline curves

The equations for B-spline curves can be expressed in a matrix form similar
to those for Bézier curves. General matrix representations for uniform B-splines
are avaliable in the literature, usually representations for non-uniform B-spline
curves have been presented by evaluating the Cox-de Boor recursive function or
using knots insertion algorithms. These methods are not efficient enough since
we must repeatedly execute the recursive algorithms as we want to calculate
the points of the B-spline curves.

In the same way as seen for Bézier curves, the polynomial space spanned
by the B-spline basis can be converted into the piecewise polynomial repre-
sentation spanned by the power basis so that the matrix representation for
B-spline curves is always possible. There are some situations where it may
be advantageous to generate the coefficients of each of the polynomial pieces,
e.g., when we have to evaluate the curve at a large number of points. Explicit
matrix forms would make it easier and faster because polynomial evaluation is
more efficient in a power basis.

Very few papers have been published in this area. Choi et al.[8] gave the
computation method for the coefficient matrix for B-splines, but the coefficient
matrix is represented by a recursive procedure not an analytical explicit one.
Liu and Wang[9] presented an analytical explicit representation based on the
computation of divided difference and the Marsden identity. They claim these
methods to be faster than the rest, but that needs some more time to be
proved since the algorithms once implemented do not work as expected. Due
to the lack of good explicit algorithms to create coefficient matrices for all B-
splines, we chose to implement a library of matrices for every type of curve. In
Qin[10] examples of matrices for symbolic computation are presented, so Bézier
curves, uniform B-splines and non-uniform B-splines could be represented only
by picking the right matrix. Bézier curves and uniform B-splines have uniform
knot vectors and this means that the length of every span is the same thus the
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Figure 1.9: Periodic basis function buildup with [X] = [0 0 0 1 2 2 2], n +
1 = 4. (a) k = 1; (b) k = 2; (c) k = 3.
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matrices will be identical. In the case of non-uniform B-splines the matrices
depend on the knot vector, so they have to be calculated for each problem.
Anyway expresions for matrices up to degree four have been implemented,
what allow us to be able to create most of the curves. Now the matrices will
be shown but a example of manipulation can be found in section 2.2.

Bézier curves

M1 =

[

1 0
−1 1

]

M2 =





1 0 0
−2 2 0
1 −2 1





M3 =









1 0 0 0
−3 3 0 0
3 −3 3 0
−1 3 −3 1









M4 =













1 0 0 0 0
−4 4 0 0 0
6 −12 6 0 0
−4 12 −12 4 0
1 −4 6 −4 1













(1.13)

where the index in the M indicates the polynomial degree of the curve.
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Uniform B-spline curves

M1 =

[

1 0
−1 1

]

M2 =
1

2!





1 0 0
−2 2 0
1 −2 1





M3 =
1

3!









1 0 0 0
−3 3 0 0
3 −3 3 0
−1 3 −3 1









M4 =
1

4!













1 0 0 0 0
−4 4 0 0 0
6 −12 6 0 0
−4 12 −12 4 0
1 −4 6 −4 1













(1.14)

We can observe how the matrices for non-uniform B-splines are the same
for Bézier curves but with a different scaling depending on the curve degree.

Non-uniform B-spline curves

M1(i) =

[

1 0
−1 1

]

M2(i) =









ti+1−ti
ti+1−ti−1

ti−ti−1

ti+1−ti−1
0

−2(ti+1−ti)
ti+1−ti−1

2(ti+1−ti)
ti+1−ti−1

0
ti+1−ti

ti+1−ti−1
−(ti+1 − ti)

(

1
ti+1−ti−1

+ 1
ti+2−ti

)

ti+1−ti
ti+2−ti








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M3(i) =











(ti+1−ti)
2

(ti+1−ti−1)(ti+1−ti−2)
1−m1,1 −m1,3 · · ·

−3m1,1 3m1,1 −m2,3 · · ·
3m1,1 −3m1,1 −m3,3 · · ·
−m1,1 m1,1 −m4,3 −m4,4 · · ·

· · · (ti−ti−1)
2

(ti+2−ti−1)(ti+1−ti−1)
0

· · · 3(ti+1−ti)(ti−ti−1)
(ti+2−ti−1)(ti+1−ti−1)

0

· · · 3(ti+1−ti)
2

(ti+2−ti−1)(ti+1−ti−1)
0

· · · m4,3
(ti+1−ti)

2

(ti+3−ti)(ti+2−ti)















(1.15)

where the index i is meant to indicate the number of non-empty span in the
non-uniform B-spline.

1.2.2.2.6. B-spline curve derivatives

The derivatives of a B-spline curve at any point on the curve are obtained
by formal differentiation. Specifically, recalling equation (1.8), i.e.

P (t) =

n+1
∑

i=1

BiNi,k(t)

the first derivative is

P ′(t) =
n+1
∑

i=1

BiN
′
i,k(t) (1.16)

while the second derivative is

P ′′(t) =
n+1
∑

i=1

BiN
′′
i,k(t) (1.17)

Here, the primes denote differentiation with respect to the parameter t.
The derivatives of the basis functions are also obtained by formal differen-

tiation. Differentiating equation (1.10) once yields
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N ′
i,k(t) =

Ni,k−1(t) + (t− xi)N
′
i,k−1(t)

xi+k−1 − xi
+

+
(xi+k − t)N ′

i+1,k−1(t)−Ni+1,k−1(t)

xi+k − xi+1
(1.18)

Note from equation (1.9) that N ′
i,1(t) = 0 for all t. Consequently, for k = 2

equation (1.18) reduces to

N ′
i,2(t) =

Ni,1(t)

xi+1 − xi
+

Ni+1,1(t)

xi+2 − xi+1
(1.19)

Differentiating equation (1.18) yields the second derivative of the basis
function

N ′′
i,k(t) =

2N ′
i,k−1(t) + (t− xi)N

′′
i,k−1(t)

xi+k−1 − xi
+

+
(xi+k − t)N ′′

i+1,k−1(t)− 2N ′
i+1,k−1(t)

xi+k − xi+1
(1.20)

Here, note that both N ′′
i,1 = 0 and N ′′

i,2 = 0 for all t. Consequently, for
k = 3 equation (1.18) reduces to

N ′′
i,3(t) = 2

(

N ′
i,2(t)

xi+2 − xi
+

N ′
i+1,2(t)

xi+3 − xi+1

)

(1.21)

Figure 1.10 shows several B-spline basis functions and their first and second
derivatives for k = 4. Notice that for k = 4 each B-spline basis function
is described by piecewise cubic equations, the first derivatives by piecewise
parabolic equations and the second derivatives by piecewise linear equations.
The third derivative, if shown, would be described by discontinuous constant
values.
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Figure 1.10: B-spline basis functions and their first and second derivatives,
k = 4, n = 6. (a) Basis functions; (b) first derivative; (c) second derivative.

1.2.2.3. Non-Uniform Rational B-spline curves
(NURBs)

Rational curve descriptions, such as rational Bézier curves or conic sections
are well known in the literature, but the current discussion is limited to ratio-
nal B-spline curves. This curves provide a single precise mathematical form
capable of representing the common analytical shapes, i.e., lines, planes, conic
curves including circles, free-form curves and so on, that are used in computer
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graphics and computer aided design. Due to this, NURB curves and surfaces
are the standard for curve and surface description in computer graphics.

A rational B-spline curve is the projection of a non-rational (polynomial) B-
spline curve defined in four-dimensional (4-D) homogeneous coordinate space
back into three-dimensional (3-D) physical space. Specifically

P (t) =
n+1
∑

i=1

Bh
i Ni,k(t) (1.22)

where the Bh
i s are the four-dimensional homogeneous control polygon vertices

for the non-rational four-dimensional B-spline curve. Ni,k(t) is the non-rational
B-spline basis function previously given in equations (1.9) and (1.10). The term
“Non-Uniform” declares the knot vector type as seen in section 1.2.2.2.3. This
knot vectors are chosen due to their ability to represent discontinuities and to
vary the influence of control points along the curve.

The homogeneous coordinates are used to described a point in the projec-
tive space, and knowing that the weights cannot have value 0, then this is a
proper representation to interpret the geometrical meaning of NURBs.

Projecting back into three-dimensional space by dividing through by the
homogeneous coordinate yields the rational B-spline curve

P (t) =

∑n+1
i=1 BihiNi,k(t)

∑n+1
i=1 hiNi,k(t)

=
n+1
∑

i=1

BiRi,k(t) (1.23)

where the Bis are the three-dimensional control polygon vertices for the ratio-
nal B-spline curve and the

R(t) =
hiNi,k(t)

∑n+1
i=1 hiNi,k(t)

(1.24)

are the rational B-spline basis functions. Here, hi ≥ 0 for all values of i. Figure
1.11 illustrates clearly this projection between spaces.

1.2.2.3.1. Characteristics of NURBs

Rational B-spline basis functions and curves are a generalization of non-
rational B-spline basis functions and curves. Thus, they carry forward nearly
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Figure 1.11: A circle in R
2 constructed by the projective transformation of a

piecewise quadratic B-spline in R
3. (a) Projective transformation of “projective

control point” Bw
i yields control point Bi. Weight wi is the z-component of Bw

i .
(b) Projective transformation of the B-spline curve Cw(ξ) yields the NURB
curve C(ξ).

all the analytic and geometric characteristics of their non-rational B-spline
counterparts. In particular:

• Each rational basis function is positive or zero for all parameter values,
i.e., Ri,k(t) ≥ 0.

Universitat Politècnica de València

Máster in Mechanical and Materials Engineering
31



1. INTRODUCTION

1.2. Exact Geometrical Representation

• The sum of the rational B-spline basis functions for any parameter value
t is one, i.e.

n+1
∑

i=1

BiRi,k(t) ≡ 1 (1.25)

• Except for first-order basis functions, i.e., k = 1, each rational basis
functions has precisely one maximum.

• A rational B-spline curve of order k (degree k − 1) is Ck−2 continuous
everywhere.

• The maximum order of the rational B-spline curve is equal to the number
of control polygon vertices.

• A rational B-spline curve exhibits the variation-diminishing property.

• A rational B-spline curve generally follows the shape of the control poly-
gon.

• For hi > 0, a rational B-spline curve lies within the union of convex hulls
formed by k succesive control polygon vertices.

• Any projective transformation is applied to a rational B-spline curve by
applying it to the control polygon vertices; i.e., the curve is invariant
with respect to a projective transformation. Note that this is a stronger
condition than that for a non-rational B-spline, which is only invariant
with respect to an affine transformation.

From equations (1.11) and (1.24), it is clear that when all hi = 1, Ri,k(t) =
Ni,k(t). Thus, non-rational B-spline basis functions and curves are included as
a special case of rational B-spline basis functions and curves. Furthermore, it
is easy to show that an open rational B-spline curve with orden equal to the
number of control polygon vertices is a rational Bézier curve. For the case of
all hi = 1, the rational Bézier curve reduces to a non-rational Bézier curve.
Thus, both rational and non-rational Bézier curve are included as special cases
of rational B-spline curves.

Because rational B-splines are a four-dimensional generalization of non-
rational B-splines, algorithms for degree elevation, subdivision and curve fitting
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of non-rational B-spline are valid for rational B-splines by applying them to
the four-dimensional control vertices.

The effect of the homogeneous coordinates h on the rational B-spline basis
is shown in figure 1.12 and the resulting curves are presented in figure 1.13.

1.2.2.3.2. Derivatives of NURB curves

The derivatives of rational B-spline curves are obtained by formal differen-
tiation of equations (1.23) and (1.24). Specifically

P ′(t) =
n+1
∑

i=1

BiR
′
i,k(t) (1.26)

with

R′(t) =
hiN

′
i,k(t)

∑n+1
i=1 hiNi,k

−
hiNi,k

∑n+1
i=1 hiN

′
i,k

(

∑n+1
i=1 hiNi,k(t)

)2 (1.27)

where N ′
i,k(t) can be evaluated as shown in equation (1.18) for B-splines. Eval-

uating these results at t = 0 and t = n− k + 2 yields

P ′(0) = (k − 1)
h2
h1

(B2 −B1) (1.28)

P ′(n− k + 2) = (k − 1)
hn
hn+1

(Bn+1 −Bn) (1.29)

which shows that the direction of the slope is along the first and last polygon
spans, respectively. Higher-order derivatives are obtained in a similar manner.

1.2.2.3.3. Conic sections

As mentioned previously, rational B-spline curves are used to represent all
the conic sections. Furthermore, they provide a single mathematical descrip-
tion capable of blending the conic sections into free-form curves. Because the
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Figure 1.12: Rational B-spline basis functions for n + 1 = 5,k = 3 with open
vector [X] = [0 0 0 1 2 3 3 3], [H] = [1 1 h3 1 1]. (a) h3 = 0; (b) h3 = 1

4 ;
(c) h3 = 1; (d) h3 = 5.
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conic sections are described by quadratic equations, it is convenient to first con-
sider a quadratic rational B-spline (k = 3) defined by three polygon vertices
(n+ 1 = 3), with knot vector [X] = [0 0 0 1 1 1]. Writing this yields

P (t) =
h1N1,3(t)B1 + h2N2,3(t)B2 + h3N3,3(t)B3

h1N1,3(t) + h2N2,3(t) + h3N3,3(t)
(1.30)

which, in fact, is a third-order rational Bézier curve (see figure 1.14). Now
assuming h1 = h3 = 1 and varying h2 it is possible to obtain different conic
curves as

h2 = 0 a straight line results;

0 < h2 < 1 an elliptic curve segment results;

h2 = 1 a parabolic curve segment results;

h2 > 1 a hyperbolic curve segment results.
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Figure 1.13: Rational B-spline curves for n + 1 = 5,k = 3 with open vector
[X] = [0 0 0 1 2 3 3 3] and [H] = [1 1 h3 1 1].

Figure 1.14: Conic sections defined by rational B-spline (Bézier) curves. (a)
Straight line, h2 = 0; (b) elliptic, h2 =

1
4 ; (c) parabollic, h2 = 1; (d) hyperbolic,

h2 = 3.
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1.3. Shape Sensitivity Analysis

1.3.1. Introduction to Shape Sensitivities

Calculation

1.3.1.1. Optimal structural design

By definition, in a given problem, optimization seeks the best solution
among the alternatives. For a given system, optimization is to improve its
constitution in order to achieve the best behaviour and maximum performance.

Regarding mechanical systems, optimization is a process of conception
which, generally, will be focused in the following three aspects:

• Determining dimensions, geometry, materials, and topology
of the system.

• Verification of certain conditions such as mechanical strength
of the system, ways of manufacturing, etc.

• Determination not only of an acceptable system, but an opti-
mal design.

Although at first glance an optimal structural design process sounds com-
plicated, most magnitudes that characterize a structure are quantifiable, such
as displacements, strains, stresses, etc. Therefore it is possible to develop a
mathematical model to study the optimal structural design problem.

In fact, the optimal structural design problem can be stated as a mathe-
matical problem of a real function with several variables and constraints that
could be solved by mathematical programming techniques.

The approach of this problem requires the following steps:
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1. To specify the dimensional parameters, geometric or any oth-
ers, that define the structure by a vector composed of these
parameters called vector of design variables

a = {a1, a2, ..., an}T (1.31)

where n is the number of design variables.

2. To express conditions which must verify the structure by the
so-called inequality constraints gj (i.e. the stresses are kept
below a certain value) or equal hk (i.e. two dimensions are
equal), by equations of type

gj(a) ≤ 0 j = 1, ...,M

hk(a) = 0 k = 1, ..., L
(1.32)

3. To state, mathematically, the target to be achieved. For ex-
ample, if one wants to obtain a structure as light as possible
the objective will be to minimize the mass thereof. In general
the objective is represented by a scalar which is a function of
the design variables, taking the form

minf(a) (1.33)

where f(a) is called objective function.

Consequently, the optimal structural design problem will consist in solving
the following mathematical programming problem:

minf(a)

gj(a) ≤ 0 j = 1, ...,M

hk(a) = 0 k = 1, ..., L

a = {a1, a2, ..., an}T (1.34)
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There are many algorithms for solving the optimization problem presented
in the above equation, but in one form or another, most of them are based on
the following iterative formula

aq = aq−1 + α∗S(a)q (1.35)

In the above equation

q is the iteration number.

S(a)q is the search direction vector.

α∗ is called the motion parameter, or step size.

The physical interpretation of the last sum is that S(a)q is a direction vector
that defines the optimal way in which design variables a must simultaneously
vary, and α∗ represents how we move in the direction of the vector S(a)q.
Together, the term α∗S(a)q represents the perturbation value ∆a to be made
in the design of this iteration. The difference between diverse optimization
algorithms lies in how to select the search direction S(a)q, and determine the
value of α∗. The vast majority of optimization algorithms require that gradient
information is available.

The gradient is a vector where each of its components corresponds to the
partial derivative of first order of the function considered with respect to each
one of the design variables

∇f(a) =

{

∂f

∂a1
,
∂f

∂a2
, ...,

∂f

∂an

}T

(1.36)

Geometrically, the gradient vector of a function defines the direction in
which it grows more rapidly.

1.3.1.2. Importance of shape sensitivities calculation

In optimal structural design, sensitivity analysis is the calculation of the
derivatives of structural response (displacements, stresses, natural frequencies,
etc.) with respect to design variables.
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The initial development of sensitivity analysis focused on design variables
of size, such as thickness or cross-sectional areas of structural components.
However, for many structural problems, it was necessary to consider shape as
design variable. This is particularly important in optimal design of machine
components. In this master’s thesis, research will be focused on the analysis
of sensitivities in shape design and thus, the design variables that describe the
geometry of the component to be optimized.

The usefulness of sensitivity analysis on design optimization problems is
evident as explained above. In general, the information of gradients of objec-
tive functions and constraints is needed to address the problem of structural
optimization using mathematical programming techniques based on gradient
by coupling the analysis stage to the optimization stage. Furthermore, the
efficiency of optimization procedures is based on mathematical programming
techniques depending largely on the accuracy and computational cost of sen-
sitivities calculation.

The calculation of sensitivities also has other applications: if the component
is modified slightly, instead of solving a new problem, sensitivities can be used
to extrapolate the structural response, the calculation cost is reduced without
sacrificing too much accuracy. This approach can be used in a computer-aided
engineering and interactive design (Santos et al.[11][12]).

In multilevel optimization techniques, the problems treated are often large,
with many design variables and constraints. In this case we can split the prob-
lem into several levels, so that each subproblem involves a minimum number
of design variables and constraints. These subproblems can be solved indepen-
dently by standard algorithms. Since the design variables of a subproblem are
presented as a set of parameters of one of the subproblems, coordination of
the solutions can be made by the sensitivity with respect to these parameters
(Vanderplaats and Yoshida[13], Zhang[14], Twu and Choi[15][16]).

Another application of sensitivity analysis, different from those discussed
above, is the proposed by Kang and Kwak[17]. These authors propose a tech-
nique for optimal positioning of nodes of a mesh to obtain the minimum pos-
sible error with a fixed number of nodes. According to these authors, this
type of techniques, that were the subject of numerous studies in the 1970’s
and early 1980’s, had a very limited practical use due to the complexity of the
proposed optimization processes linked to the poor performance of computers
of that time. Kang and Kwak propose a new technique for optimal positioning
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of nodes using sensitivity analysis. To achieve their aim, the authors use the
nodal coordinates as design variables. Using this technique the meshing of the
domain is avoidable in the successive steps of the shape optimization process.

1.3.2. Sensitivity Analysis by FEM

There are a huge number of references in the field of sensitivity analysis
in shape design. There are basically two different approaches, continuous and
discrete, each one having advantages and disadvantages.

Continuous approach. This approach is based on the differen-
tiation of the elasticity equations. For shape design vari-
ables, it is used the concept of material derivative of con-
tinuous mechanics to relate changes in the structural shape
with the structural characteristics. Using the continuous ap-
proach expressions for sensitivities are obtained depending on
the structural response (displacements, stresses, strains, etc.)
and other parameters, that can be obtained from the problem
solution by finite element analysis or another technique. In
this approach, the sensitivity analysis usually is performed by
post-processing of the finite element solution, thereby facili-
tating the definition of an independent module of sensitivity
analysis. Methods based on this approach can be subdivided
into:

Boundary methods if they use only the results ob-
tained on the boundary for the calculation of sen-
sitivities and

Domain methods if information from the entire do-
main is utilized.

Discrete approach. In this approach, a discretized structural model
is the starting point, obtained by deriving the equations needed
for design sensitivity analysis. Discrete methods are the first
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that were used, initially applying the version of finite differ-
ences. The analytical discrete methods are commonly used,
performing simultaneously sensitivity analysis operations with
finite element analysis.

Within the scope of this approach we can include the following
methods:

Finite Differences. Is the most direct way of calculating the
derivative with respect to design variables and is based on
the introduction of a small perturbation ∆am to evaluate
its effects. An example can be obtained starting from the
equation defining a finite element elastic problem:

Ku = f (1.37)

Pre-multiplying both terms by K−1 and differentiating
with respect to design variable am it is possible to get an
approximation of the value of du

dam
.

du

dam
=

d
(

K−1f
)

dam
≈ ∆

(

K−1f
)

∆am
=

u(am +∆am)− u(am)

∆am
(1.38)

Where ∆am is the small perturbation of the correspond-
ing design variable.

Discrete semi-analytical and analytical method. This ap-
proach lies in obtaining expressions for calculation based
on the discretized behaviour equation. From equation
(1.37), its derivative with respect to any design variable
am is given by

∂K

∂am
u+K

∂u

∂am
=

∂f

∂am
(1.39)

then, rearranging, yields

K
∂u

∂am
=

∂f

∂am
− ∂K

∂am
u (1.40)

The terms ∂f
∂am

and ∂K
∂am

represent the sensitivity of the
applied forces and stiffness matrix with respect to design
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variables. A pseudo-load can be considered, defined by
the entire term in the right side of the equation above,
which can be written

K
∂u

∂am
= fpsm (1.41)

The difference between the semi-analytical and analytical
method is that the evaluation of pseudo-load vectors is
performed by finite differences in the first and analytically
in the second.

Relations between the two approaches can be found in Yang and Botkin[18]
and a comparison between them in Haftka and Barthelemy[19] and Salmenjoki
and Neittanmäki[20].

There is another method, described by Masmoudi et al.[21], for the calcu-
lation of sensitivities by the FEM. This procedure is called automatic differ-
entiation method. The basic idea of this method is: if you have a function
defined by your program (in C, Fortran, etc.) so that it is a composition of
basic operations (x, /, +, −, sin, cos,...) the term that defines its deriva-
tive can be calculated automatically using a few basic rules of differentiation.
The advantage of this method is that the value of the derivative obtained is
accurate.

To perform the automatic differentiation can be:

• Process source code with Fortran (using a sort of pre-compiler)
and generate a new one.

• Redefining the operators x, +, −, and so on. This possibility
can be found in programming languages like C++, ADA,...
Using this method, each time an operation is performed also
its derivative is calculated and subsequently the two values
are stored.

When using the automatic differentiation in all calculations, the computa-
tional cost and space required for data storage rises substantially. However,
Masmoudi and his collaborators have shown that it is only necessary to per-
form the automatic differentiation during calculation of the elementary stiffness
matrices and load vectors on each element.
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The next section will describe the discrete analytical approach of sensitiv-
ities calculation as it is the best suited to the calculation by the FEM without
introducing additional discretization errors. A detailed explanation of this ap-
proach and a comparison between different methods of continuous and discrete
approaches can be found at Ródenas[22].

1.3.2.1. Discrete analytical method

The previous section described the general approach of semi-analytical and
analytical methods. As discused the basic equation for the calculation of dis-
placement sensitivities by a discrete method is:

K
∂u

∂am
=

∂f

∂am
− ∂K

∂am
u = fpsm

As mentioned earlier in the semi-analytical discrete method the value of
the vectors fps is evaluated by finite differences.

The analytical discrete method consist in to obtaining analytical expres-
sions of the sensitivities of the external forces and stiffness matrix, and using
the above equation to obtain the displacement sensitivities. From these sensi-
tivities other response magnitudes are calculated.

1.3.2.1.1. Stiffness matrix derivative

Let us consider the formulation of isoparametric continuous 2-D and 3-D
elements. The stiffness matrix of the element is given by

ke =

∫

Ωe

BTDB|J|dΩ (1.42)

where

Ωe is the domain in local element coordinates,

B is the nodal strains-displacements matrix,
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D is the stiffness matrix that relates stresses with strains. In linear
elasticity and under isotropic behaviour this matrix depends
only on the material characteristics,

|J| is the determinant of the matrix J, representing J the Jacobian
matrix of transformation of the global element coordinates x,
y, z to the local ξ, η, τ .

Thus, considering that the derivative of D with respect to design variables
is zero

∂ke

∂am
=

∫

Ωe

[

∂BT

∂am
DB+BTD

∂B

∂am

]

|J|dΩ +

∫

Ωe

[

BTDB
∂|J|
∂am

]

dΩ (1.43)

The first integral on the right side of the above equation can be simplified
by considering the relation

∂BT

∂am
DB =

[

BTD
∂B

∂am

]T

(1.44)

The symmetrized form of a matrix M is calculated as half the sum of itself
plus its transpose MS = [M+MT ]/2. It is possible to write therefore

∂BT

∂am
DB+BTD

∂B

∂am
=

(

BTD
∂B

∂am

)T

+BTD
∂B

∂am
= 2

[

BTD
∂B

∂am

]

S

(1.45)

yielding

∂ke

∂am
=

∫

Ωe

[

2

[

BTD
∂B

∂am

]

S

|J|+BTDB
∂|J|
∂am

]

dΩ (1.46)

Considering the expression for calculating the symmetrized form of a ma-
trix, the above equation can be rewritten in a manner analogous to equation
(1.42).

∂ke

∂am
= 2

[
∫

Ωe

BTDB̄|J|dΩ
]

S

(1.47)
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with

B̄ =
∂B

∂am
+B

|J|′m
2|J| where |J|′m =

∂J

∂am
(1.48)

Then it is only necessary to calculate two new terms: ∂B
∂am

and |J|′m
|J| .

In what follows it is assumed that the derivatives of the nodal coordinates,
(xi, yi, zi), with respect to design variables are known.

∂

∂am
{xi, yi, zi} = Vm (xi, yi, zi) (1.49)

Being Vm the so-called velocity field. In a later section the issue of its
evaluation will be discussed.

Calculation of |J|′m/|J|

The main aim is to evaluate the value of |J|′m
|J| . This scalar can be generated

directly without evaluating the value of the derivative of the Jacobian matrix
determinant, ∂J

∂am
, explicitly. This derivative can be written as

∂|J|
∂am

=
∑

j

∑

k

∂|J|
∂Jjk

∂Jjk
∂am

(1.50)

Performing a expansion term by term of ∂|J|
∂Jjk

can be demonstrated that

∂|J|
∂Jjk

= J−1
jk |J| (1.51)

Pointed by J−1
jk the component (k, j) of the inverse Jacobian matrix. Sub-

stituting the above equation in the expression of ∂|J|
∂am

yields

∂|J|
∂am

=
∑

j

∑

k

J−1
jk |J|∂Jjk

∂am
(1.52)

and rearranging

|J|′m
|J| =

∑

j

∑

k

J−1
jk

∂Jjk
∂am

= trace

(

J−1 ∂|J|
∂am

)

(1.53)
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Therefore, obtaining the expression in parenthesis in the above equation,

evaluating the value of |J|′m
|J| is easy.

The Jacobian matrix J establishes the relation between global coordinates
x, y, z and the natural or local coordinates ξ, η, τ .

J =















∂x

∂ξ

∂y

∂ξ

∂z

∂ξ
∂x

∂η

∂y

∂η

∂z

∂η
∂x

∂τ

∂y

∂τ

∂z

∂τ















(1.54)

Considering isoparametric elements, coordinates transformation is performed
by the shape functions of element

{x y z} =
∑

i

Ni(ξ, η, τ) {xi yi zi} (1.55)

and the Jacobian matrix is calculated as

J =
∑

i







Ni,ξ

Ni,η

Ni,τ







{xi yi zi} (1.56)

with the comma, after the subscript, indicating the corresponding derivative.
Applying the chain derivation rule, the derivative of the Jacobian matrix

with respect to the design variables is

∂|J|
∂am

=
∑

i







Ni,ξ

Ni,η

Ni,τ







∂

∂am
{xi yi zi}+

∑

i

∂

∂am







Ni,ξ

Ni,η

Ni,τ







{xi yi zi} (1.57)

If the shape functions of the element depend on the geometrical parameters,
all terms should be evaluated. However, if the shape functions are not depen-
dent on the geometric properties, as is the case, this equation is simplified,
resulting

∂|J|
∂am

=
∑

i







Ni,ξ

Ni,η

Ni,τ







∂

∂am
{xi yi zi} (1.58)
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Using isoparametric formulation, the interpolation functions N are ex-
pressed in terms of natural coordinates of the element (ξ, η, τ). Thus, the
derivatives with respect to the global coordinates are evaluated as







Nk,x

Nk,y

Nk,z







= J−1







Nk,ξ

Nk,η

Nk,τ







(1.59)

Then, premultiplying the expression of ∂|J|
∂am

times J−1 and considering the
above equation, yields

J−1 ∂J

∂am
=

∑

i







Ni,x

Ni,y

Ni,z







∂

∂am
{xi yi zi} (1.60)

Therefore it is possible to calculate the scalar |J|′m
|J| directly without evalu-

ating ∂|J|
∂am

.

Calculation of ∂B/∂am

The matrix B, which relates deformations with the nodal displacements of
the element, involves the derivatives of the shape functions of the element, Nk,
with respect to the global coordinates, namely

B = LN (1.61)

Being L the differential operator matrix, which relates the displacements
with deformations and N the shape functions matrix. Assuming arrangement
of the degrees of freedom of the element by coordinate directions, the matrix
B has the form

B =

















N1,x N2,x N3,x . . . 0 0 0 . . . 0 0 0 . . .
0 0 0 . . . N1,y N2,y N3,y . . . 0 0 0 . . .
0 0 0 . . . 0 0 0 . . . N1,z N2,z N3,z . . .

N1,y N2,y N3,y . . . N1,x N2,x N3,x . . . 0 0 0 . . .
0 0 0 . . . N1,z N2,z N3,z . . . N1,y N2,y N3,y . . .

N1,z N2,z N3,z . . . 0 0 0 . . . N1,x N2,x N3,x . . .
















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Taking into account the expression of the derivatives with respect to the
global coordinates, equation (1.59), the derivative with respect to the design
variable am of the derivatives of shape functions with respect to the local
coordinates is

∂

∂am







Nk,x

Nk,y

Nk,z







=
∂

∂am



J−1







Nk,ξ

Nk,η

Nk,τ









 =
∂J−1

∂am







Nk,ξ

Nk,η

Nk,τ







+ J−1 ∂

∂am







Nk,ξ

Nk,η

Nk,τ







(1.62)
Whereas the shape functions do not depend on the design variables, it

yields

∂

∂am







Nk,x

Nk,y

Nk,z







=
∂J−1

∂am







Nk,ξ

Nk,η

Nk,τ







(1.63)

J−1 is not obtained explicitly, thus in principle not a direct expression can
be obtained for ∂J−1

∂am
. However, using the identity

∂J−1

∂am
J+ J−1 ∂J

∂am
= [0] (1.64)

leads to the expression for ∂J−1

∂am
, which is

∂J−1

∂am
= −J−1 ∂J

∂am
J−1 (1.65)

Thus, the equation (1.63) is

∂

∂am







Nk,x

Nk,y

Nk,z







= −J−1 ∂J

∂am
J−1







Nk,ξ

Nk,η

Nk,τ







(1.66)

Substituting equation (1.59) in the equation above

∂

∂am







Nk,x

Nk,y

Nk,z







= −J−1 ∂J

∂am







Nk,x

Nk,y

Nk,z







(1.67)
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1.3.2.1.2. Derivative of the equivalent forces vector

The equivalent force vector at nodes, f , can be formed by assembling the
equivalent nodal forces f e of the elements. Such equivalent forces on elements
may come from point forces, volumetric forces, forces distributed over the
surface of the element and equivalent forces induced by initial deformation or
stresses.

In general the sensitivity with respect to design variables of the nodal
equivalent forces on each element will have two terms, one dependent on the
variation of the force (punctual, volumetric,...) with respect to design variables
and the second depends on derivatives such as ∂x/∂am. In the first case the
expression defining the dependence of the force acting with respect to the
design variables must be held. In the second case, the derivatives needed have
been calculated previously in the section corresponding to the stiffness matrix.

1.3.2.1.3. Stresses derivatives formulation

Let us consider the general expression for the calculation of stresses in
continuous isoparametric elements

σ = DBue (1.68)

Being ue the vector of nodal displacements of element e. Taking the deriva-
tive with respect to the design variable am, it yields

∂σ

∂am
= DB

∂ue

∂am
+D

∂B

∂am
ue (1.69)

Where all terms on the right can be evaluated using the development of
the preceding sections.

1.3.2.2. Velocity field

In sensitivity analysis it is intended to find the change in the magnitude
of response (displacements, stresses, etc.) with respect to design variables. In
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case of shape design problems, the position of the material points depends on
the design variables. Defining a as the vector of design variables, the position
of an arbitrary point of the domain will be a function of the form p = p(a).

As a prelude to the calculation of sensitivities, it is necessary to define
how to vary the position of material points of the domain in relation to the
design variables, i.e. the sensitivity of the coordinates of the particles. This
sensitivity can be interpreted as a velocity field, which for an arbitrary design
variable am is defined as:

Vm =
∂p

∂am
(1.70)

Thereafter, the letter V will be used to describe the velocity field when
considering a single design variable in the problem analyzed.

The shape variation can be defined based on the variation of the contour
thereof. If one considers, for the two-dimensional case, the contour by curves
parametrized Ψ(s,a), the calculation of the velocity field on the boundary is
simple, and can be expressed as

VΓm =
∂Ψ(s,a)

∂am
(1.71)

Where the function Ψ represents the parameterized equation of the con-
tour. The problem is to define the velocity field inside the domain, because
usually an expression relating the coordinates of material points with the de-
sign variables is not avaliable.

Considering the problem discretized by finite elements, in general, interpo-
lation of the velocity field within each element is performed using the shape
functions. Therefore remains to be determined the method used to define the
velocity field discretized at the nodal points.

The nodal points located at the boundary are not a big problem, since it
is possible to calculate the sensitivity of its coordinates with respect to design
variables using the above equation for the corresponding value of the parameter
s. The calculation of the velocity field for internal nodes, is usually based on
the defined contour, and it is possible to use different approaches to their
determination.

Universitat Politècnica de València

Máster in Mechanical and Materials Engineering
51



1. INTRODUCTION

1.3. Shape Sensitivity Analysis

1.3.2.2.1. Requirements for the velocity field

Choi and Chang show an interesting study about the determination of the
velocity field to be used in shape sensitivity analysis. This article presents
the theoretical and practical requirements demanded of the velocity field in
standard FEM.

Theoretically the velocity field must

• have the same regularity as the displacements field and

• depend linearly on the variation of the design variables.

The variety of practical applications in which the velocity field can be used
may also require:

• to maintain the topology of the original finite element mesh;

• to provide boundary nodes in finite elements located on the
geometric boundary for any shape variations;

• to use a mathematical procedure which ensures the linear de-
pendence of the movements of the finite element nodes with
respect to modifications of the design variables;

• to produce a non-distorted finite element mesh;

• to be related naturally to the design parameters of CAD mod-
els;

• to be efficient and general.

Theoretical requirements

It can be shown that the velocity field has to be as regular as the displace-
ments field of the structure. For 2-D and 3-D elasticity problems, it requires,
therefore, continuity C0 for the velocity field with integrable first derivatives.
This requirement is satisfied when using the shape functions of finite elements
to interpolate the velocity field.

The requirement for linear dependency of the velocity field with respect to
the design variables derived from the sensitivity design theory. Let us suppose

52
Department of Mechanical and Materials Engineering

Research Centre in Vehicles Technology



Shape Sensitivity Module with Exact Geometrical Representation

Master Thesis

a geometrical variable corresponding to the displacement of a geometric point
located at position p1. This requirement means that if, for example, the point
p1 is moved a distance δb1 = 1 in direction x producing a velocity at a internal
node i of the domain Vi(xi)) then the node has to move kVi(xi)) along the
same direction when the point p1 to move kδb1 = k (k 6= 0) in direction x.

Practical requirements

As shown, the velocity field is subject to only two theoretical requirements:
regularity and linear dependency with respect to the design variables, so that
the utilization of any velocity field that would meet these requirements, and
with the exact values of displacements, stresses, etc., would provide the exact
solution in the calculation of sensitivities. However, since for most problems
there is no analytical solution, hence FEM is used to find an approximate
solution, different velocity fields provide different sensitivity results.

Previously it was shown that different applications can also impose certain
practical requirements to the velocity field such as mesh topology, nodes on
the boundary or the velocity field linearity and the generated mesh quality.

To change the number of finite elements in the design process is not prac-
tical for determining the nodal displacements and stresses in elements. There-
fore, using a mesh generator that provides a different topology in the model
design with each disturbance will not be practical for determining the velocity
field.

If the velocity field is used to generate the mesh in the new design, the
contour nodes must lie on the geometrical boundary, which is necessary, in
addition to the requirement of linear dependence, to impose restrictions on
the movement of contour nodes. An easy way to get the contour nodes re-
maining on the geometrical boundary is to define the position of these so their
parametric location on the boundary is the same in both the original and the
perturbed designs.

Once the velocity field has been determined on the contour of the compo-
nent by which it is possible to evaluate the new position of the contour nodes,
it has to be determined the new position of the nodes within the domain. Be-
cause of the requirement of linear dependency, the internal nodes cannot be
moved arbitrarily. Subsequently various methodologies to obtain the velocity
field inside the domain will be described.
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If the finite element mesh is generated by a velocity field, is very important
that this field is regular since the existence of distorted elements produces
inaccurate results.

1.3.2.3. Methods to obtain the velocity field in
conventional FEM

The following sections describe the most common methods used in practice
to obtain the velocity field. Beckers and Zhang[28], Zhang[14] and Choi and
Chang[29] present comparative studies of some of the methods that will be set
out below.

1.3.2.3.1. Finite differences

A first approach could be to use a finite difference method. If pj is the
position of a node and pj + ∆pj the position of the same node considering a
disturbance of a design variable ∆am then the value of the velocity field in the
node can be evaluated by the expression

Vmj
≈ (pj +∆pj)

∆am
=

∆pj

∆am
(1.72)

However, this would require that the original mesh and the disturbed one
were similar, considering topology, and to be effective they should respect the
numbering of generated nodes.

Yang and Fiedler[30] show a method of calculating the velocity field using
finite differences which, in a conceptually simple way, respects the topology of
the mesh and the numbering of nodes. The procedure is called the boundary
shape functions method.

The method consists in defining the position of the nodes on the contour by
a parametric function with the appropriate shape functions depending on the
design variables. The position of the contour nodes in the perturbed model is
evaluated by the same shape functions, so that nodes on the boundary maintain
the same parametric position in both cases. To determine the position of
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internal nodes the Laplacian smoothing technique, discussed later, is used.
The evaluation of the velocity field is done by finite differences.

But Choi and Chang[29] argue that using this method linear dependency of
the velocity field with respect to design variables cannot be mantained since,
as indicated, there is no mathematical rule that relates the modifications of the
design variables with the velocity field in the previous domain, indicating in
addition, that the Laplacian smoothing technique is ineffective for generating
meshes.

1.3.2.3.2. Structured meshes

In methods of structured mesh generation it is used some type of structuring
which allows to easily define the position of the nodes within the domain based
on the contour nodes.

For example, in the isoparametric method (Iman[31]), domain is subdi-
vided into “superelements”, generating within each of them the finite element
mesh based on interpolation functions. In the transfinite method, which can
be considered a generalization of the previous, domain is subdivided into sim-
ple subdomains (triangular or quadrilateral), defined in a parametrical way
depending on each subdomain boundary curves. In this case, the position of
the generated nodes inside each subdomain is a function of the position of
the contour nodes of such subdomain. As required for the formulation of the
position of internal nodes based on the contour nodes coordinates, the defi-
nition of the velocity field is very simple (it is based on the derivation of the
position equations). The method is simple, computationally efficient and the
results from sensitivities calculation of the structural response are accurate.
However, structured mesh generation methods have certain limitations, which
are mainly due to excessive stiffness of the generation method itself. In general
it is complicated to refine the mesh in the desired areas and, therefore, these
generation methods are ineffective in h-adaptive FE processes.
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1.3.2.3.3. Exact differentiation of nodal coordinates

The velocity of a point in the position p of coordinates (x, y) is the deriva-
tive of these coordinates with respect to design variables:

Vm = (Vmx Vmy) =

(

∂x

∂am

∂y

∂am

)

=
∂p

∂am
(1.73)

Whichever the mesh generator used, the position of the nodes within the
domain is based on the position of the contour nodes, being possible to trace the
relationship between any internal node with the nodes of the domain bound-
ary. The velocity field in the contour nodes is known and an exact analytical
expression can be obtained. It is possible to derive the equations that deter-
mine the position of a node inside the domain with respect to design variables,
this derivative will be eventually function of the velocity field in the contour
nodes. This way, the velocity field that provides the mesh generator used will
be obtained analytically. Since in the evaluation of the position derivative
of nodes with respect to design variables is performed accurately without the
need to define a value of disturbance associated to the calculation using a finite
difference method, the field obtained fulfills the linearity requirement.

This evaluation method of the velocity field would be integrated in the
mesh generation module and have a reduced computational cost. It would be
possible to use automatic differentiation software to generate automatically
the source code needed for implementation.

1.3.2.3.4. Contour adjacent elements method

The contour adjacent elements method was proposed by Bennett and Botkin[32].
This method considers that velocity field is zero throughout the domain except
the subdomain defined by the elements that define the boundary. At the nodes
of these elements which are located on the contour the velocity field is known
and in the internal side corner nodes is assumed that the velocity field is zero,
and the internal intermediate side nodes are interpolated from the previous
nodes. It is sometimes considered more of a single layer of elements to define
the velocity field.
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The method is very general, i.e. can be applied to any problem regardless
of the mesh generator type used. An advantage may also be considered that
the number of elements involved in the calculation of sensitivities is very low
and therefore the process is computationally inexpensive. The main drawback
is that the accuracy of the structural response sensitivity obtained with this
velocity field is reduced appreciably.

1.3.2.3.5. Physical approach using FE

Knowing the boundary sensitivity with respect to the design variables, it
can be considered as a contour displacement. Calculating the response to this
contour displacement, it yields a displacement field throughout the domain
that can be considered as the velocity field associated with the disturbance
of the contour (Belegundu et al.[33]). The problem to solve is similar to the
original FE but with modified boundary conditions.

The method defined involves a relative high computational cost, although
provides a continuous velocity field for the entire domain, and accuracy of
the response sensitivities obtained is good. As outlined Zhang et al.[34], the
method is general, i.e. can be applied to any problem, regardless of the mesh
generator used, even with unstructured mesh generators.

1.3.2.3.6. Laplacian method

Regarding to triangular mesh generation, in order to improve the quality
of the elements, the method for nodes reposition can be the Laplacian method.
The purpose of this method is to relocate the internal nodes displacing them
to the centroid of the polygon defined by its neighboring nodes.

pi =
1

Ni

Ni
∑

k=1

pk (1.74)

Being Ni the number of neighboring nodes of node i and pk the positions
of of these nodes. Generally an iterative procedure is applied, repositioning
nodes gradually to get them to verify the above equation with a defined error.
This method is, for example, used by Bujeda and Oliver[35].
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This method is called the analogy of the spring. It can be assumed that
each side element is a spring connecting two nodes. The force produced by
each spring is proportional to the length thereof.

In case of calculating the velocity field of the internal nodes, a similar
approach can be followed. Denoting by Vi the sensitivity of the nodal coor-
dinates with respect to a design variable, the Laplacian scheme is to calculate
the vector Vi for each internal node so as to verify the equation

Vi =
1

Ni

Ni
∑

k=1

Vk (1.75)

The equilibrium problem solution posed by the analogy of the spring is
simpler than solving the elastic problem that would arise using the physical
approach by FE.

This method, applicable only to the case of triangular elements, defines a
velocity field throughout the domain and, hopefully, that will not degrade the
accuracy with which the structural response sensitivities are computed. The
method is applied iteratively, and is quite computationally efficient.

1.3.2.3.7. Domain triangulation method

In unstructured mesh generation methods, the generation of internal nodes
is based broadly on the contour nodes. However, the relations used to define the
internal nodes, although they may be simple, progressively involve all contour
nodes. This means that to calculate the position sensitivity of an internal
node, in general, it should be considered its relation with a large number of
contour nodes. For this reason, the direct methods that can be used efficiently
in the case of structured meshes become ineffective.

An alternative is to use some method to divide the domain into subregions
containing the finite element nodes. If these subregions are defined only from
the boundary nodes, it would be possible to interpolate the velocity field from
the field on the boundary, which is known. To do this Rodenas[22] proposed
to use the domain triangulation obtained from one of the first steps of the
Delaunay Triangulation. The process for obtaining the velocity field in internal
nodes can be summarized in the following steps:
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1. Subdivision of the domain into subregions.

2. For each node, find the subregion to which it belongs and
calculate its local coordinates (associated with the subregion).

3. To interpolate the velocity field from the boundary of the sub-
region.

In order that the process is computationally efficient, it is important that
both the division into subregions and the interpolation within each subregion
to be effective.
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1.4. Objectives and Overview

After these introductory sections we can understand the potential of the
Finite Element Method when dealing optimization problems and the great
expectatives generated by the Isogeometric Analysis because the utilization of
technologies able to represent exact geometries. With this background we can
divide the work to be done in this master thesis into two important tasks:

1. A primary goal will be to create an interface to create NURB objects,
thus to work with exact geometric models given by the NURB bound-
ary representation of the domain. This tool joined to proper numerical
integration will allow to eliminate the geometrical error in FEM. In 2-D
problems the utilization of this type of curves is not a big step forward due
to the huge spectrum of efficient algorithms developed since FEM origin
thereof. But this work is the first step to gain enough understanding to
approach the 3-D problem where remain the real applications and where,
as pointed in section 1.2.1, a lot of funding is being invested. The use
of the classical polynomial approximation of the solution is maintained,
preserving the classical FE convergence properties and allowing a seam-
less coupling with standard FE on the internal domain (in elements not
affected by the NURB boundary representation).

2. The second goal will be the adaptationof the theory of shape sensitiv-
ity analysis to an non-standard FE code such as CG-FEM developed at
DIMM. The aim is to offer an efficient tool to run shape sensitivity analy-
sis of different geometries. As explained in section 1.3.2.2, the generation
of a proper velocity field is not trivial, so due to the special characteristics
of the cartesian meshes, despite of adapting existing methods, innovative
ways to obtain such velocity fields will be needed.

It is possible to note that each task has a significant impact on their own,
but the union of both will bring an improvement in the results as showed in
the section on numerical results.
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2. IMPLEMENTATION OF

NURB CURVES

This part of the master thesis was developed in collaboration with Professor
Stéphane Bordas and his team in the Institute of Mechanics and Advanced
Materials at the University of Cardiff. His extensive experience in the field of
the Isogeometric Analysis and NURBs, and its great research reputation were
very important in order to the achieve the goals of this thesis.

2.1. Creating NURB Curves

In this section we show how to create NURB objects for the most com-
mon geometric entities, such as lines or arcs. For these simple entities some
parameters can be predefined as the knot vector, polynomial degree or the ma-
trix representation of the basis functions. So in the graphical interface of the
program developed at DIMM we have created the necessary options to inter-
actively create these entities. This section will focus on theoretical aspects of
the creation of the curves as the practical aspects of the interface are available
in the User’s Manual (A).
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2.1. Creating NURB Curves

2.1.1. NURB Lines

The first thing the user will have to do is create the points that the NURB
needs to be created. In the case of the straight line we need two points, the
start point and the final one. The information generated during the creation
to characterize the NURB is:

• Knot vector: [0 0 1 1]

• Order: 2

• Spline degree: 1

• Weights: [1 1]

• Matrix representation: M(2) =

[

1 −1
0 1

]

2.1.2. NURB Arcs and Circumferences

In order to create an arc it will be necessary to specify the start and end
points and, in addition, the centre of the circumference and direction to be
followed by the curve, i.e. whether the direction of rotation clockwise or the
opposite. In the event that the initial and final point meet, the algorithm will
interpret that the user needs to create a circle thereby creating a complete
circle.

• Knot vector: [0 0 0 1 1 1]

• Order: 3

• Spline degree: 2
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• Weights:
[

1 1√
2
1
]

• Matrix representation: M(3) =





1 0 0
−2 2 0
1 −2 1





The circumferences may also be created by choosing the direction of the
curve. This detail will be of great importance in order to create the contour
with the curves because as criterion for assigning material the program will
assign it to the area to the left of the curve following the sense of creation.
This way it is possible to define voids within a geometry.

• Knot vector: [0 0 0 0.25 0.25 0.5 0.5 0.75 0.75 1 1 1]

• Order: 3

• Spline degree: 2

• Weights:
[

1 1√
2
1 1√

2
1 1√

2
1 1√

2
1
]

• Matrix representation: M(i) =





1 0 0
−2 2 0
1 −2 1



 M(j) =





0 0 0
1 0 0
0 0 0





where i = {3, 5, 7, 9} and j = {4, 6, 8}

2.1.3. Global Interpolation of Point Data

with NURBs

In the previous sections it was shown how to construct NURB representa-
tions of common and relatively simple entities such as lines or arcs of circum-
ference. These entities can be specified with only a few data items, e.g., initial
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(a) Example of NURB line. (b) Example of NURB arc.

(c) Example of NURB circumference.

Figure 2.1: Basic NURB entities created with the interface.
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and final points, center and direction. Moreover the few data items uniquely
specify the geometric entity. In this point we enter the realm of free-form
curves. We study fitting of NURBs to an arbitrary set of points and deriva-
tives. There are two types of fitting: interpolation and approximation. In
interpolation we construct a curve which satisfies the given data precisely, e.g.,
the curve passes through the given points and assumes the given derivatives
at the described points. In approximation we construct curves which do not
necessarily satisfy the given data precisely, but only approximately.

In our program we implement interpolation fitting since we are interested
in creating curves capable of following exactly the input point patterns in
addition to interpret derivatives in the extremes of the curve. These derivatives
will be important in order to satisfy simmetry conditions in our problems and
to satisfy some minimal continuity in closed contours. The main problem in
fitting is that given data never specifies a unique solution, thus there can be
many NURBs wich can interpolate the same set of data points.

Input to a fitting problem generally consist of geometric data, such as
points and derivatives. Output is a NURB curve, i.e., control points, knots and
weights. Furthermore, the degree p must be input to ensure proper continuity.
Usually a quadratic or cubic curve will likely yield a curve with the desired
continuity. Very little have been published on setting the weights in the fitting
process. Most often, all weights are simply set to 1.

Most fitting algorithms fall into one of two categories: global or local. With
a global algorithm, a system of equations or an optimization problem is set up
and solved. If the given data consists of only points and derivatives, and if the
control points are the only unknowns (degree, knots and weights have been
preselected), then the system is linear and hence easy to solve. If knots are
also system unknowns, then the resulting system is nonlinear. Local algorithms
are more geometric in nature, constructing the curve segment-wise, using only
local data for each step. These algorithms are usually computationally less
expensive than global methods, although achieving desired levels of continuity
at segment boundaries is not a trivial task. Having this information we choose
to implement a global interpolation algorithm with first derivatives defined in
the extremes.
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2.1.3.1. Global curve interpolation to point data

Suppose we are given a set of points Qk, k = 0, . . . , n, and we want to
interpolate these points with a pth-degree nonrational B-spline curve. If we
asign a parameter value, uk, to each Qk, and select an appropiate knot vector
U = {u0, . . . , um}, we can set up the (n+1)×(n+1) system of linear equations

Qk = C(uk) =

n
∑

i=0

Ni,p(uk)Pi (2.1)

The control points, Pi, are the n + 1 unknowns. Let r be the number of
coordinates in the Qk. Note that this method is independent of r; equation
(2.1) has one coefficient matrix, with r right hand sides and, correspondingly,
r solution sets for the r coordinates of the Pi. The problem of choosing the uk
and U remains, and their choice affects the shape and parametrization of the
curve. For choosing the uk we use the most widely used method, based on the
chord length. Let d be the local chord length

d =

n
∑

k=1

|Qk −Qk−1| (2.2)

Then u0 = 0, un = 1 and

uk = uk−1 +
|Qk −Qk−1|

d
k = 1, . . . , n− 1 (2.3)

To spot the knot inside the knot vector it is recommended to use the
following technique of averaging with

u0 = . . . = up = 0

um−p = . . . = um = 1

uj+p =
1

p

j+p−1
∑

i=j

ui j = 1, . . . , n− p

(2.4)

In order to use derivative vectors as input data we follow the same pattern
presented above. The difference is that each derivative gives rise to one ad-
ditional knot and control point, and hence to one additional linear equation.

66
Department of Mechanical and Materials Engineering

Research Centre in Vehicles Technology



Shape Sensitivity Module with Exact Geometrical Representation

Master Thesis

Again let Qk, k = 0, ..., n, be points, and assume that D0 and Dn are the first
derivative vectors at the start point and end point of the curve, respectively.
We want to interpolate this data with a pth-degree curve

C(u) =
n+2
∑

i=0

Ni,p(u)Pi (2.5)

As before, compute the uk, k = 0, ..., n using equation (2.3). Then set
m = n+ p+ 3 and obtain the m+ 1 knots by

u0 = . . . = up = 0

um−p = . . . = um = 1

uj+p+1 =
1

p

j+p−1
∑

i=j

ui j = 0, . . . , n− p+ 1

(2.6)

Then we will define the two additional equations of the derivatives at the
endpoints given by

−P0 + P1 =
up+1

p
D0

−Pn+1 + Pn+2 =
1− um−p−1

p
Dn

(2.7)

Inserting equations (2.7) into equation (2.6) as the second and next to last
equations, respectively, yields an (n+ 3)× (n+ 3) banded linear system.

After this theoretical explanation we can see in figures 2.2a and 2.2b diferent
results depending on the data input. In the graphical interface we can choose
between two options depending if we want to create an interpolation curve with
the derivatives defined at the initial and end points or without them. Now we
can see the differences.
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(a) Interpolation without first derivatives specified.

(b) Interpolation with first derivatives specified (180o at
start and end).

Figure 2.2: Comparison between the two different types of interpolation curves.
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2.2. NURBs-Mesh Intersection

One of the major drawbacks observed by using cartesian meshes indepen-
dent of the geometry is the evaluation of its intersection with the various
geometric entities. Although the mesh is formed only by straight lines, so the
task of processing the flow of information related to the intersections is a great
computational effort.

Traditionally in the case of standard splines, the intersection with the mesh
is based on the calculation of the roots of the equality between the cubic
equation of the curve and the constant corresponding to one of the cartesian
coordinates as a function of the orientation of the element side evaluated.
Assessing the curves and the sides to intersect in a normalized manner, the root
intersections must be within the normalized range [0, 1]. In case of imaginary
roots, negative or out of range, we interpret that the intersections are not valid
or they do not exist.

The case of calculation of intersections with NURBs will be based on the
procedure used for splines. Although NURBs are rational curves, intersecting
with straight lines implies that we can transform the NURBs rational expres-
sion in a non-rational polynomial expression, and therefore the roots (inter-
section points) will be evaluated using the standard procedure. Below we will
expose the calculation procedure schematically.

Let us remember the expression to define a NURB:

P (t) =

∑n+1
i=1 BihiNi,k(t)

∑n+1
i=1 hiNi,k(t)

where B are the coordinates of the control points, N are the shape functions
and h the weights for each point.

As we have seen this expression can be expressed in matrix form. If we
represent each section of the NURB by standard parameter u being t ∈ [ti, ti+1)
the range that defines each one of them, then we can define

u =
t− ti

ti+1 − ti
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Then we can write the matrix representation of a NURB as

P (j, u) =
U(u)M(j)B(j)h(j)

U(u)M(j)h(j)

where U =
{

1 u u2 . . . ud
}

, M(j) the coefficient matrix corresponding to the
span j, B(j) the coordinates of the control points that influence the span j
and h(j) the weights for these control points. In what follows we will assume
that the number of spans is one for simplicity.

This expression can be expressed in the same way for each of the compo-
nents, so that

Px(u) =
U(u)MBxh

U(u)Mh

Py(u) =
U(u)MByh

U(u)Mh

The next step will be to equalize these expressions to the constant coor-
dinates corresponding to each side, then the vertical sides are equal to the
coordinate x and the horizontal are equal to the coordinate y. To continue the
process we assume that we are going to intersect a horizontal side, so we have
the constant coordinate y. We will have then:

yside =
U(u)MByh

U(u)Mh

as the coordinate is constant, the rational equation can be transformed into a
non-rational polynomial so that

yside (U(u)Mh) = U(u)MByh

and rearranging

0 = U(u)MByh− yside (U(u)Mh)

so we get a polynomial with degree equal to the degree of the NURB, and we
can get the roots uroots easily.

Once we have obtained these roots, we must do some checkouts in order
to obtain only valid roots. To begin, we must discard the imaginary roots,
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negative or which are outside of the normalized range [0, 1]. Once this is done,
we will evaluate the missing coordinate of the NURB, following the example
of the horizontal side and assuming we will have a valid root uroot

Px =
U(uroot)MBxh

U(uroot)Mh

Once we have both coordinates of the intersection we can assess whether
the intersection is valid, because it is possible that the intersection is within
the range of the NURB but outside of range of the side. We evaluate then the
position that would occupy the intersection within the side

tside =
Px − xstart
xstart − xend

so if tside /∈ [0, 1] we can assume that the actual intersection between curve
and side does not occur and we can proceed to evaluate the next side of the
element.

To clarify the concepts we will see an example. In this example we define a
quarter of a cylinder where the two arcs are defined with NURBs. To illustrate
the process we take the lower right element, see figure 2.3a. The procedure
will be explained below, and it will be extrapolated to any element and any
curve. So we are going to analyze which are the intersections of the element
colored in red with the outer arc of the cylinder.

Let us recall the characteristics of the NURB arc:

• Knot vector: kt = {0 0 0 1 1 1}

• Order: 3

• Spline degree: 2

• Weights: h =
{

1 1√
2
1
}

• Matrix representation: M(3) =





1 0 0
−2 2 0
1 −2 1




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(a) Problem domain. (b) Detail of the element and side number-
ing.

Figure 2.3: Problem domain and example of element to intersect.

We need the coordinates of the control points to finish the definition of the

curve being B =

[

5 5 0
0 5 5

]

, where the first row is the component x and the

second the component y.
As the arcs have only a non-empty span that reaches the entire curve, we

just have to use matrix of basis functions for the whole process.
We select an element. To find the intersection of an element, all sides are

intersected with the curve. To achieve this, a loop following the side numbering
is performed as depicted in figure 2.3b.

We start with side number one. In figure 2.4a we can see the coordinates
of the extremes of this side. Comparing the coordinates we can find out which
one is constant, thus becoming the target for intersection. For this side the
goal will be y = −0.27. Once we have this data we can begin to apply the
equations given above as follows

−0.27 =
U(u)MByh

U(u)Mh
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(a) Detail of side number 1. (b) Detail of side number 2.

Figure 2.4: Coordinates of the first two sides to intersect.

taking U =
{

1 u u2
}

, M =





1 0 0
−2 2 0
1 −2 1



, By = {0 5 5} and h =
{

1 1√
2
1
}

we obtain

−0.27 =
28.2843u− 8.2843u2

1− 0.5858u+ 0.5858u2

−0.27 + 0.1582u− 0.1582u2 = 28.2843u− 8.2843u2

0 = 0.27 + 28.1261u− 8.1261u2

calculating the roots of this equation we obtain

u1 = 3.4708 u2 = −0.0096

As we can see one of the roots is negative and the other is outside the range
of intersection, thus both of them have to be ruled out and it is assumed that
there are no intersections between this side and the NURB. For all other sides
will carry out the same procedure.
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We continue along the side number two. In figure 2.4b we can see the
coordinates of the extremes of the side. For this side the goal will be x =
20.2727. Once we have this data we can begin to apply the equations given
above as follows

20.27 =
U(u)MBxh

U(u)Mh

taking U =
{

1 u u2
}

, M =





1 0 0
−2 2 0
1 −2 1



, Bx = {5 5 0} and h =
{

1 1√
2
1
}

we obtain

20.2727 =
20− 11.7157u− 8.2843u2

1− 0.5858u+ 0.5858u2

20.2727− 11.8755u+ 11.8755u2 = 20− 11.7157u− 8.2843u2

0 = 0.2727− 0.1597u+ 20.1597u2

calculating the roots of this equation we obtain

u1 = 0.004− 0.1162i u2 = 0.004 + 0.1162i

Both are imaginary roots thus we assume that there are no intersections
between this side and NURB.

We resume along the side number three. In figure 2.5a we can see the
coordinates of the extremes of the side. For this side the goal will be y = 4.8657.
Once we have this data we can apply again the equations given above as follows

4.8657 =
U(u)MBxh

U(u)Mh

taking U =
{

1 u u2
}

, M =





1 0 0
−2 2 0
1 −2 1



, By = {0 5 5} and h =
{

1 1√
2
1
}

we obtain

4.8657 =
28.2843u− 8.2843u2

1− 0.5858u+ 0.5858u2
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(a) Detail of side number 3. (b) Detail of side number 4.

Figure 2.5: Coordinates of the last two sides to intersect.

4.8657− 2.8502u+ 2.8502u2 = 28.2843u− 8.2843u2

0 = −4.8657 + 31.1345u− 11.1345u2

calculating the roots of this equation we obtain

u1 = 2.6301 u2 = 0.1662

The first root is outside the range [0, 1], but the second can be a candidate
for intersection because it exist at least within the NURB. Now we have to
check if it is also found on the side

tside =
Px(u2)− xstart
xend − xstart

Evaluating the nurb at u = u2 and using the side coordinates shown at
figure 2.4a then

tside =
19.3991− 20.2727

15.1370− 20.2727

obtaining
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tside = 0.1701

Thus confirming the existence of a real intersection between the side num-
ber three and the NURB.

Finally the next number four. In figure 2.5b we can see the coordinates of
the extremes of this side. For this side the goal will be y = 15, 137. Once we
have this data we can to apply the equations given above as follows

15.137 =
U(u)MBxh

U(u)Mh

taking U =
{

1 u u2
}

, M =





1 0 0
−2 2 0
1 −2 1



, Bx = {5 5 0} and h =
{

1 1√
2
1
}

we obtain

15.137 =
20− 11.7157u− 8.2843u2

1− 0.5858u+ 0.5858u2

15.137− 8.8671u+ 8.8671u2 = 20− 11.7157u− 8.2843u2

0 = 4.863− 2.8487u− 17.1513u2

calculating the roots of this equation we obtain

u1 = −0.622 u2 = 0.4559

As we can see one of the roots is negative so it is automatically discarded,
and the other belongs to the NURB and should be independently verified.

tside =
Py(u2)− ystart
yend − ystart

Evaluating the NURB at u = u2 and using the side coordinates shown at
figure 2.5b then

tside =
13.0717− 4.8657

−0.27− 4.8657

yielding
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tside = −1.5979

Which places the intersection outside the range [0, 1] of the side of the
element.

After completing the loop of intersection for the four sides of an element, we
proceed to evaluate the characteristics of intersections found, such as the curve
to which they belong, the element to which the side belongs, the side num-
ber, the global intersection coordinates, the parametric coordinates of curves,
among other magnitudes that will be useful for handling. It must be said that
the intersection process is more complex than the explained in this section, but
we have chosen not to go into details to illustrate in a clear way the intersection
of NURBs with cartesian meshes.
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3. IMPLEMENTATION OF

THE SENSITIVITIES

CALCULATION MODULE

The second part of this master’s thesis focuses on developing a module for
calculation of sensitivities for the program subject of development at DIMM.
This chapter will detail the process followed towards the implementation of
this module, but will not go into details of previous developments that have
been the subjects of other works.

For a better contextualization of this work two annexes are attached to
it, a User’s Guide (see appendix A) which details the operation of the entire
program so that any user will be able to run analysis with the program after
studying these documents, and a Programmer’s Guide (see appendix B) where
it can be found detailed descriptions of the data structures created during the
development of this module.

The development procedure will be presented in the same order as the
program performs the analysis so that the user can go along relating the con-
cepts in the sections to come in a sequential way. The essential points of the
development are:

1. Definition of design variables.

2. Calculation of a velocity field on the boundary by finite dif-
ferences.

3. Interpolation of the velocity field in the domain.
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4. Creation of alternative velocity fields.

5. Calculation of the matrix of stiffness sensitivity of the ele-
ments.

6. Assembly of the global matrix of stiffness sensitivity.

7. Calculation of shape sensitivities.

8. Results analysis.

3.1. Sensitivity Analysis in the

Scope of GFEM

3.1.1. Adapting the Sensitivities Calculation

As seen in section 1.1 the main feature of GFEM is the possibility of using
meshes independent of the geometry. In this aspect CG-FEM is significantly
different from the standard FE method but, regarding the theoretical devel-
opment necessary for the calculation of sensitivities, the expressions presented
in section 1.3.2.1 do not need any adaptation to implement them into the
program. The only principle that will have to be observed at the time of
the calculations is that the numerical integrals at boundary elements will be
evaluated on the subdomains formed by the triangulation, and not the entire
element as they will be the only areas of these elements that contribute to the
global stiffness of the component.

This situation will not occur when defining the velocity field required for
analysis. As shown in figure 1.2, the integration mesh used in GFEM has
elements intersected with the contour, leading to internal and external nodes
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needed to be assigned an appropriate velocity field satisfying the boundary
conditions imposed.

3.1.2. Evaluation of Different Methods of

Generation of the Velocity Field

In section 1.3.2.3 some of the commonly used methods of obtaining velocity
fields in a standard FE were discussed. Some of these methods are not applica-
ble to obtaining the velocity field in GFEM due to the particular characteristics
of the meshes.

Among the methods that cannot be used directly because they are based
on a standard FE mesh generator are:

• Methods based on structured meshes.

• Exact differentiation of nodal coordinates.

• Laplacian method.

• Domain triangulation method.

Finite differences will not be used in the problem domain neither since,
as mentioned, it is difficult to ensure the linearity of the field obtained with
respect to design variables. In our case, the finite differences are used to
evaluate the velocity field at the intersections between the contour and the
calculation mesh.

Despite this drawbacks, two of the methods used in standard FEM, could
be adapted to an GFEM environment with some modifications. This is the case
of the Physical Approach, where we will need to set and solve a equivalent load
case to evaluate the velocity field. The computational cost can be argueable
but the quality of the results is out of discussion. Another method candidate
to be adapted would be the Contour Adjacent Elements Method, this method
applied to sensitivities analysis consists in creating a velocity field only in the
contour adjacent elements. In GFEM, it is possible to follow this idea taking
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into account the existence of external nodes, but in any case the idea is the
same.

3.2. Definition of Design Variables

As said before, the purpose of calculating shape sensitivities is based on
obtaining derivatives with respect to some variables chosen by the analyst that
we call design variables.

The aim in shape sensitivities is to calculate variations in displacements due
to changes in the contour of the geometry, so one can assume that the design
variables will be variations in geometric parameters, coordinates x or/and y,
of points or curves from the contour of the geometry subject of study. These
variations allow further investigation of the velocity field in a simple way.

In this work has been established that the design variables are specified in
a function, where users input the points of the geometry to be modified. Also
they must specify the increment to introduce in these variables, ∆am to let the
calculation of the velocity field on the boundary by finite differences. These
displacements are stored in the global variable “SensAnaGlob” (see Program-
mer’s Guide B.3.1), so that they can be easily retrieved and evaluated in any
stage of the procedure.

In the example of the cylinder subjected to internal pressure the outer
radius can be chosen as design variable, so that the coordinates of the points
which form the outer contour of the cylinder will be modified. To achieve this
∆am is added to the coordinates of these points.

Figure 3.1 shows the original and deformed geometry after applying a dis-
placement ∆am to the external contour L2.
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(a) Original geometry. (b) Deformed geometry.

Figure 3.1: Comparison between the original geometry and the deformated
produced by ∆am.

3.3. Calculation of a Velocity Field

on the Boundary by Finite

Differences

The step prior to sensitivity analysis is to define how to vary the position
of material points of the domain in relation to the design variables. This can
be interpreted as a velocity field that is necessary to calculate in all active
nodes in the mesh. Then first of all a velocity field will be calculated on the
boundary and then interpolated to the rest of the domain.

To calculate the velocity field on the boundary we use finite differences since
it is a direct and simple method to evaluate the derivative of a magnitude with
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respect to design variables. This calculation is performed on all points and
intersections of the contour as follows

du

dam
≈ ∆u

∆am
=

u(am +∆am)− u(am)

∆am
(3.1)

To do finite differences on the boundary, the coordinates of the points of the
original geometry will be subtracted from the modified one and the result will
be divided by the gradient introduced in the definition of the design variable
∆am.

The first step is to calculate a new geometry for each design variable using
the points modified by the design variables. To recalculate the geometry a
function previously coded will be used. In order to know the new coordinates
of the boundary points we will use a local parameter of the curves. This
parameter t marks the position of the intersections on the curve to which it
belongs, so that the value 0 is assigned to the beginning of the curve and
the value 1 to the end, being all intersections in this range. Assuming that
these relative positions remain unchanged, due to a differential resizing, the
topology of the curves will remain the same, and this parameter will be common
for the geometries, either the deformed by the design variables or the original
geometry. There is a function implemented where for a specified curve and the
vector of parametric values t of all intersections on the curve, the output are
the coordinates x and y of the intersections evaluated.

After this process the velocity field will exist at all intersections of the
geometry, which will be useful for the rest of the domain. To store this in-
formation will be used the same data structure that the program had used to
store the information of the intersections (“ElmInt”, see Programmer’s Guide
B.1.1), so they will be easily accessible.

84
Department of Mechanical and Materials Engineering

Research Centre in Vehicles Technology



Shape Sensitivity Module with Exact Geometrical Representation

Master Thesis

3.4. Interpolation of the Velocity

Field in the Domain

This is the most important step in the development because the effective-
ness of the calculation module depends largely on it. As we have seen in
section 1.3.2.2.1, the velocity field does not change the result of sensitivities
from the theoretical point of view but it does from a practical point, because of
the existence of a finite element discretization, so this field must satisfy some
restrictions: continuity and linearity.

As discussed before, modules like the one implemented in this work have
been successfully developed within the scope of the standard FEM. Their ve-
locity field generators, made use of meshing tools as used in the FEM for
generating a suitable velocity field. But, as seen in section 3.1, some of the
methods presented would not be effective in an environment of cartesian meshes
because, on one hand, they do not use a mesh generator like in the standard
FEM, and furthermore, an independent cartesian mesh geometry have almost
always nodes outside of the geometry and they also need to have assigned a
velocity field for the calculation and to fulfill the boundary conditions, since
this nodes are active during the process.

Because of this difficulty it was necesary to propose a method of velocity
field generation that is sufficiently efficient from the computational point of
view as well as capable of generating velocity fields with the sufficient quality
to ensure that results during the calculation of the shape sensitivities are close
to the exact solution.
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3.4.1. Weighting Distances Interpolation

and Contour Patches

This generation method is the sum of two routines, one for internal nodes
(figure 3.2a) and one for external nodes (figure 3.2b). For internal nodes the
information on the intersections of the contour is the only necessary. For the
external nodes the data from the internal nodes of the boundary elements is
also necessary.

(a) Internal nodes. (b) External nodes.

Figure 3.2: Quarter of cylinder example to define internal and external nodes.

3.4.1.1. Internal nodes

This part of the interpolation is based on obtaining an interpolation quadri-
lateral making use of the velocity field information contained on the contour.

So the first step is to find intersections which share coordinates with the
target node to be interpolated, or at least they should be close (figure 3.3).
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Secondly, the distance between these points and the target node is calcu-
lated this way

dix = xi − xp

diy = yi − yp

Di =
√

d2ix + d2iy

(3.2)

Figure 3.3: {1, 2, 3, 4} the points picked to interpolate at target node T .

and weighted based on the inverse of these distances

Pi =

1

Di
n
∑

i

1

Di

(3.3)
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This will result an increasing weight of the contour closest to the node.
Then taking into account all the points considered, the velocity field for a
node will be

Vp = PVc (3.4)

where P is the vector with the weights for each point and Vc is the vector with
the velocity field from each point of the interpolation quadrilateral.

For special problems such as fracture mechanics problems, with singular
points, this strategy is very interesting, since in these problems the velocity field
is focused in the vicinity of singularities and it is important that these areas
have more influence on the outcome than others. In the case of a crack under
tension the difficulty lies in the characteristics of the velocity field imposed on
the boundary, where the velocity field vanishes on all sides of the geometry
except the side with the crack tip (figure 3.6b).

3.4.1.2. External nodes

After the previous steps we have available velocity field on the boundary
of the geometry and on internal nodes. Now comes the problem of assigning
value of the velocity field to the external nodes.

In this case, an extrapolation from the information calculated so fat would
be an efficient option. To accomplish this task it was decided to set polynomial
surfaces using the information belonging to the points that influence the target
nodes.

So for any external node, we identify the elements to which it belongs ,
and from these elements we take the information of the velocity field of their
internal nodes and at intersections (figure 3.4a). Finally, using as basis of
interpolation this information, we create a polynomial surface by least squares
fitting with which we are able to assign a value of the velocity field to the
external nodes (figures 3.4b and 3.4c).

The decision of using patches of elements rather than individual elements
was taken since with overlapping surfaces the discontinuities between elements
are lower than with individual surfaces, so ultimately errors in the calculation of
sensitivities are reduced. It can be assumed that it is more accurate to generate
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(a) Detail of participants during
patch generation.

(b) 3-D picture of the polynomial surface over this
patch.

(c) All patches for that mesh.

Figure 3.4: Different perspectives from the patch generation process.
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surfaces at refined elements, since the data source will be more localized and
more likely it will meet the boundary conditions closely (figure 3.5). Increasing
the polynomial degree can be unwise because the fit of these polynomials may
require undesirable curvatures.

Figure 3.5: Patch generation for a finer mesh.
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(a) Velocity field for the quarter cylinder problem.

(b) Velocity field for the crack secuence problem.

Figure 3.6: Velocity fields generated with the technique based on weighting
distances and contour patches.
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3.4.2. Interpolation in Refinement

Processes

In refining processes there will be division of elements for better a discreti-
sation in certain areas in order to reduce the error of FE. With this refinement,
which may be uniform or adaptive, new nodes are generated, and in each new
iteration a velocity field has to be assigned to them.

To perform this new interpolation and starting from the advantage that
the values of a higher-level meshes remain the same, since the position of the
nodes in the mesh is constant, we will project the information to meshes of
lower levels instead of creating a new interpolation for all nodes.

A drawback is that for boundary elements this procedure do not seem the
most appropriate because it would project information far from the optimal
since, as mentioned above, to assign the velocity field to the external nodes, an
extrapolation is performed, and this extrapolation is not exact. This informa-
tion that would be acceptable in a higher-level mesh would not be that good
for a refined mesh as it might appear new nodes near the boundary generating
distortions if they receive projected information directly.

3.4.2.1. Internal elements

For those elements whose nodes are found within the domain the infor-
mation will be projected from parent elements to children elements. This
projection is immediate and effective as the elements keep their position and
topology in cartesian meshes, and only will be required a interpolation that
will be obtained using the isoparametric shape functions, valid for all internal
elements.
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3.4.2.2. Contour elements

For these elements, and given the importance of information they contain,
the process of calculation will be more delicate. Due to the refinement, new
nodes appear and some of them will be usually closer to the contour of the
upper mesh. This allows us to obtain a more precise information on these
nodes. The method chosen will be identical to the one used for this type of
element in the upper grid so that the internal nodes are calculated by inter-
polation based on weighted distances, while the external will be extrapolated
from the information obtained in the internal nodes and the contour infor-
mation as mentioned above. The difference is that the information used to
be extrapolated to these nodes is updated with each iteration allowing us to
amend the value of the velocity field in these nodes (figure 3.7).

(a) First mesh of an analysis. (b) Second mesh of an analysis.

Figure 3.7: Comparison between the patches in different meshes of the same
analysis.

3.4.2.3. Interpolation in hanging nodes

In the adaptive refinement processes where new meshes are the result of
the subdivision into four sub-elements, a series of border nodes between ele-
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ments appear preventing the continuity of the solution. These nodes are called
hanging nodes and they must be taken into special consideration to ensure the
continuity of the displacement field.

To ensure continuity, usually constraint equations called Multi Point Con-
straint (MPC) are applied over hanging nodes, whose displacements are func-
tion of the parent nodes of the corresponding side. Parent nodes are those
nodes on the side which were there before the subdivision. The necessary
restrictions that must be met to ensure the continuity is that, as for the dis-
placement field, the velocity field in the hanging nodes is the velocity field
interpolation using the shape functions of the parent nodes particularized in
the target node.

3.4.3. Alternative Velocity Fields

3.4.3.1. Physical approach method

As discussed in section 1.3.2.3.5, this method is used to obtain velocity
fields of high quality, but paying a high computational cost. It is based on
the definition of a load case which emulates the velocity field through the FE
solution. As mentioned, this velocity field has the computational cost associ-
ated with the creation of a new stiffness matrix that includes the respective
boundary conditions, but the result is among the best that can be obtained
due to its nature.

In the chapter devoted to numerical results, the quality of such fields will
be verified. In figure 3.8, despite the apparent similarity of both fields, the
field calculated by the physical approach has higher quality.

The high computational cost mentioned is related to the resolution of the
system of equations Ku = f . This is usually solved with the Gaussian elimina-
tion with pivoting that is very efficient in MATLAB, but with if the number of
degrees of freedom increases in a linear pattern, then the computational cost
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does it in an exponential way, so this option is bad for analysis with a huge
number of degrees of freedom, and this is the case of complicated problems.

During the implementation of this method we tested different strategies to
reduce this cost. An interesting option is the utilization of iterative solvers.
These solvers can be configured to run until a specified tolerance or even can
receive a initial solution to speed up the search of a new one. To carry out
these test we use different iterative solvers such as the Generalized Minimum
Residual Method (GMRES), the Minimum Residual Method (MINRES) or
the Conjugate Gradients Squared Method (CGS). In our case we used the
CGS method with preconditioner. The test showed good results but not good
enough to beat method explained above, then we tried to input a initial so-
lution of velocity field coming from the previous iteration. A very interesting
thing happens doing this step, because with only one iteration we get a proper
velocity field, and in this case the computational cost was the third part of
the Gaussian elimination cost. But the drawback of this is the time consumed
getting the initial solution, because is necessary a projection of information
from a previous mesh to the actual, and this step takes a lot of time.

As conclusion, we can say that for little problem there is no better method
than the Gaussian elimination, but for complicated problems with huge amounts
of degrees of freedom the projection of information plus the utilization of iter-
ative solvers is a good option to be studied.

3.4.3.2. Contour adjacent elements method

With this method we consider that the velocity field is zero throughout the
domain except the subdomain defined by the elements that intersect with the
boundary. In our case we will calculate the velocity field as if only contour
elements exist, so the procedure is reduced to evaluating the internal nodes
of these elements by weighting distances and the external nodes by creating
polynomial patches, the same way used for the refinement analysis but instead
of projection information to the internal nodes, then we set the velocity field
to zero.

Usually only a layer of internal nodes will be evaluated, but it has been
implemented the option of choosing the thickness of this layer, by defining the

Universitat Politècnica de València

Máster in Mechanical and Materials Engineering
95



3. SENSITIVITIES CALCULATION MODULE

3.4. Interpolation of the Velocity Field in the Domain

(a) Velocity field generated with the technique based on weighting
distances and contour patches.

(b) Velocity field generated using the physical approach.

Figure 3.8: Comparison between two different velocity field generators.
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proportion of empty velocity field we want in our domain. There are some
interesting results regarding this the chapter of numerical results (4.1.5).

3.4.3.3. Analytical velocity fields

Analytical velocity fields are often used to assess the quality of non-analytical
fields, performing as benchmarks. These fields are defined as functions and usu-
ally they are specific for each problem which is not a good option if what we
need is to solve a generic problem. But for some special cases, such as some
problems of fracture mechanics where there are singularities, it can be useful.

For instance, for a problem where a crack tip is defined as a singular point,
it will suffice to find this point and assign the velocity field in an analytical
way, since as we have seen, the velocity field in this type of problem is defined
only within the crack tip sorroundings. To illustrate this we compare in figure
3.10 the velocity field calculated above for the crack secuence problem with an
analytical Plateau function.

3.5. Calculation of ∂K
∂am

3.5.1. Evaluation of ∂ke

∂am

At this stage of the development, and after obtaining a velocity field of
quality in all active nodes of the calculation mesh, we will calculate the sen-
sitivity of the stiffness matrix ∂ke

∂am
of each of the active elements of the mesh,

which are the basis for calculation of sensitivities.

Universitat Politècnica de València

Máster in Mechanical and Materials Engineering
97



3. SENSITIVITIES CALCULATION MODULE

3.5. Calculation of ∂K
∂am

Figure 3.9: Velocity field in boundary elements for two meshes of different
level.
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(a) Velocity field generated with the technique based on weighting
distances and contour patches.

(b) Velocity field generated analytically.

Figure 3.10: Comparison between two different velocity field generators.
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As we saw earlier we start from the equation that defines a linear elastic
problem with FE:

Ku = f

and differentiating with respect to any design variable am

∂K

∂am
u+K

∂u

∂am
=

∂f

∂am

where ∂K
∂am

is

∂K

∂am
=

ne
∑

e=1

∂ke

∂am

where ne the number of active elements of the mesh.
One of the advantages of using cartesian meshes independent of the ge-

ometry is the reutilization of information without the necessity of repeating
previous calculations. In a mesh of these characteristics calculating the stiff-
ness matrix is based on the shape of the element, and all elements with the
same size have the same stiffness matrix. This happens with all the internal
elements for which it is only necessary obtain a stiffness matrix that will be
common to them all, and will be scaled for smaller internal elements of refined
meshes.

For the contour elements, however, each element has a different shape after
the intersection with the boundary, which implies the need to evaluate one to
one, although the number of these elements compared with those of the whole
mesh is low.

However, to calculate the sensitivity of the stiffness matrix cannot be ap-
plied because the same principles because the value of the velocity field at the
nodes of the element is necessary, and these values may be variable across the
domain or part of it, which although there are many elements with the same
topological characteristics, their sensitivity value for the stiffness matrix will
be different due to the influence of the velocity field.

All the above assumes that the calculation of these derivatives cannot be
done in parallel with the calculation of the stiffness matrices, because the
number of elements to calculate may not be the same. Thus, expressions seen
in previous sections will be created using a proper numeration to prevent re-
calculated elements in following meshes.
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The first step of the routine will calculate J−1 ∂J
∂am

J−1 ∂J

∂am
=

∑

i







Ni,x

Ni,y

Ni,z







∂

∂am
{xi, yi, zi}

We know that the matrix B is an matrix ordination of the shape functions
derivatives for each node of the element with respect to local coordinates. This
derivative will be

∂

∂am







Nk,x

Nk,y

Nk,z







= J−1 ∂J

∂am
=

∑

i







Nk,x

Nk,y

Nk,z







The next step is the calculation of |J|′m
|J| which as discussed above is not

necessary to evaluate previously |J|
∂am

, so doing some operations and simplifing

|J|′m
2|J| = trace

(

J−1 ∂J

∂am

)

These elements can compose B̄

B̄ =
∂B

∂am
+B

|J|′m
2|J|

and subsequently

∂ke

∂am
= 2

[
∫

Ωe

BTDB̄|J|dΩ
]

S

being the sensitivity of the stiffness matrix of each element evaluated.

3.5.2. Assembly

This assembly itself is to be held in parallel with the assembly of the global
stiffness matrix as problems of displacements and sensitivities have the same
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number of dof, and therefore the same overall size of the matrices to introduce
in the equation systems.

3.6. Calculation of the Shape

Sensitivities

As in the assembly of matrices, solving the system of equations is performed
within the same routine for solving the problem of displacement, as there are
several conditioning parameters of matrices common to both procedures.

Recall that the basic equation for the calculation of sensitivity of displace-
ment by a discrete method is:

K
∂u

∂am
=

∂f

∂am
− ∂K

∂am
u = fpsm

thus clearing

∂u

∂am
=

∂f

∂am
− ∂K

∂am
uK−1

where K and ∂K
∂am

are the global stiffness and stiffness sensitivity matrices

respectively, and have been calculated in the prior step. And ∂f
∂am

considered
null value because it assumes that the applied forces will not change with the
introduction of a disturbance of differential order.
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3.7. Analysis of Results

When analyzing and interpreting the results of an FE analysis we use mag-
nitudes such as displacements or stresses. These magnitudes by themselves
are familiar and intuitive enough to understand their numerical value. By
contrast, the displacements sensitivities are not a quantity whose value alone
can provide sufficient information to the analyst, besides representing a more
abstract concept than displacements or strains.

To solve this problem we need an global magnitude that allow us to assess
the quality of our analysis. At first, the possibility of using the energy norm of
the sensitivities would seem appropriate to assess the sensitivity analysis but
as the physical interpretation of this parameter is difficult, we have chosen the
sensitivity of the energy norm squared, that is directly related to the strain
energy.

The sensitivity of the energy norm squared will help us to evaluate the
quality of the velocity field introduced during the process, and it will be useful
to know the accuracy of the calculations by comparing this value with the value
obtained from the analytical solutions of the problems analyzed, when known.
In this master’s thesis we have used examples that have known analytical
solutions to be able to evaluate the goodness of the development.

It has been implemented a graphical interface that will allow us to obtain
graphs of several features, within the scope of the sensitivities in order to better
interpretation of the information obtained from the calculation module object
of this project.

3.7.1. Calculation of Sensitivities in Stresses

In optimization processes it is desirable to calculate the stresses and sen-
sitivities of mechanical components, this way we could foresee the stress gra-
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dients as a function of the design variables, so that for example safety factors
could be adjusted during design.

Considering the general expression for the calculation of stresses in contin-
uous isoparametric elements

σ = DBue

Since ue is the vector of nodal displacements in the element e. Taking the
derivative with respect to the design variable am, yields

∂σ

∂am
= DB

ue

∂am
+D

B

∂am
ue

Where all terms on the right side can be evaluated using the expresions of
the preceding sections.

3.7.2. Sensitivity of the Energy Norm

Squared

As mentioned the energy norm is a global parameter that is commonly used
to find the error resulting from the utilization of FE discretizations. The same
concept can be applied to the sensitivities, so we have a global magnitude that
will allow us to make comparisons with exact solutions of the problems to be
analyzed if they have exact solution of course.

Following a similar procedure than the used to obtain the expression of the
energy norm for the displacements, then for the sensitivities

χm =

ne
∑

∫

Ωe

σ
TD−1

(

2

(

∂σ

∂am

)

+
σ

|J|
∂ |J|
∂am

)

|J| dΩe (3.5)

and we can easily evaluate all available information.
An alternative way to obtain this parameter is presented below. From

equation that defines a linear elastic problem with FE:
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Ku = f

and multiplying both sides by the displacement vector u

uKu = fu (3.6)

where both terms correspond to twice the strain energy Π. Now if derived in
respect of the design variable it yields

∂

∂am
(uKu) = f

∂u

∂am
+

f

∂am
u (3.7)

as ∂f
∂am

is equal to 0 and uku is the the energy norm squared, we conclude that

χm = f
∂‖u‖2
∂am

(3.8)

After many simulations we have verified the equivalence between the two
expressions so for simplicity of implementation and speed of calculation the
latter option have been chosen to evaluate the sensitivity of the energy norm
squared.

3.7.2.1. Velocity field quality constant

The displacement field u obtained by means of the FEM is only an ap-
proximation to the exact displacement field due to the approximate nature of
the method. The error of the solution associated to the FE discretization can
be termed FEM discretization error. The sentitivity analysis results evaluated
through the FEM are also affected by the discretization error associated to the
FE model. Therefore a technique to evaluate the sensitivity discretization er-
ror should be defined. The following definition of relative error in sensitivities
can be used to compare the error in sensitivities with the error in energy norm
in relative terms:

η(χm)ex =

√

∣

∣

∣

∣

e(χm)ex
χmex

∣

∣

∣

∣

(3.9)
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The relationship between the discretization error in energy norm and the
so-called sensitivity discretization error must be investigated.

Considering

e(χm)ex =
∂

∂am

(

‖uex‖2 − ‖ufe‖2
)

=
∂

∂am

(

‖e(χm)ex‖2
)

(3.10)

From Ródenas et al.[36] we have that the discretization error in energy
norm in the h version of the FEM, for uniform refinements and for adaptive
refinements can be expressed as

‖e(u)ex‖ ≈ CN− 1
2
min(p,λ) = CN− 1

2
c (3.11)

where N is the number of degrees of freedom, p is the degree of the poly-
nomials used for the interpolation of displacements, λ is a constant which
characterizes the degree of the singularities and C is a positive constant for
a given domain and a given degree p, therefore C is neither a function of the
element size nor a function of N. Thus, considering the equations above:

e(χm)ex =
∂‖e(u)ex‖2

∂am
≈ ∂(C2N−c)

∂am
= 2C

∂C

∂am
N−c = 2CCmN−c (3.12)

In this equation Cm represents the variation of C with respect to the design
variable am. Note that Cm is not a function of N . Then replacing:

e(χm)ex
‖e(u)ex‖2

≈ 2CCmN−c

C2N−c
=

2Cm

C
= Rm (3.13)

This expression shows that, in the absence of errors other than the dis-
cretization error, the error in the sensitivity of the squared energy norm (sensi-
tivity discretization error) and the squared error in energy norm (discretization
error in energy norm) will both be related by the constant Rm.

This relationship between the two types of errors can be used as an indicator
quality of the results of the generation of the velocity field. In the chapter
of numerical results we will use it to evaluate the goodness of the different
methods implemented in this thesis.
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3.7.2.2. Stress Intensity Factor

In problems of Linear Elastic Fracture Mechanics (LEFM), the Stress In-
tensity Factor (SIF) is the parameter that characterizes the stress field near
a crack tip. This parameter is vital to assess the maximum allowable stress,
critical crack size, fatigue life of a component with cracks, etc.

There are several methods for obtaining this parameter, some of which are
conceptually identical to the procedure used in this work to evaluate the shape
sensitivities, in fact, the quantity called energy relaxation rate G is the variation
of potential energy of a component as a function of the crack size growth.
Assuming that the crack size is our design variable, then G is proportional to
the square of the sensitivity of the energy norm.

To demonstrate this statements we will suppose a crack in Mode I, so that
the SIF to consider is the one corresponding to this mode.

The energy relaxation rate G for a two-dimensional LEFM problem can be
defined as:

G = −dΠp

da
=

dΠ

da
(3.14)

where

Πp is the total potential energy, in the case where the load remains
constant, is equal to the strain energy changed of sign (Πp =
−Π), and

a is the length of the crack.

Since the energy norm squared is equal to twice the strain energy (‖u‖2 =
2Π) it follows:

G =
1

2

d ‖u‖2
da

(3.15)

If as mentioned, we take the crack length as a design variable, then the
energy relaxation rate G and the sensitivity of the energy norm squared χm

will be related by:

G =
1

2
χm (3.16)
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On the other hand, the energy relaxation rate G and the SIF KI are related
by the following expression:

KI =
√
E′G (3.17)

where E′ = E in plane stress and E′ = E/
(

1− ν2
)

for plane strain, where E
is the elasticity modulus and ν is the Poisson ratio.
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4. NUMERICAL RESULTS

This chapter will show the analyses performed to evaluate the proper be-
havior of the program developed and the accuracy of the results. There have
been analyzed two problems with known exact solution, which will demon-
strate, first, the proper operation of the velocity field generation routines and,
secondly, that the calculation of the shape sensitivities is performed with a
sufficient precision to obtain information with enough quality.

For proper evaluation of the results we will evaluate the sensitivity of the
energy norm squared (section 3.7.2), the relative error of the same magnitude
and the quality constant (section 3.7.2.1) for each one of the velocity fields
generated, thus having sufficient data to discuss the quality of the results.

4.1. Cylinder Under Internal

Pressure

For this problem we will analize the model of a 1/4 of cylinder, imposing the
appropriate boundary conditions. Figure 4.1 shows the data of the problem.

In the sensitivity analysis of this example is considered only one design
variable corresponding to the outer radius of the cylinder, thus taking am = b.
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4.1. Cylinder Under Internal Pressure

Figure 4.1: Model of cylinder subjected to internal pressure.

The exact solution is given by the following expressions, in which for a
coordinate point (x, y) is considered

r =
√

x2 + y2

θ = arctg
(y

x

)

k =
b

a

• Radial displacements:

ur =
p(1 + ν)

E(k2 − 1)

[

(1− 2ν)r +
b2

r

]

(4.1)

• Stresses in cylindrical coordinates:

σr =
p

k2 − 1

(

1− b2

r2

)

; σt =
p

k2 − 1

(

1 +
b2

r2

)

(4.2)
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• Stresses in Cartesian coordinates:

σx = σr · cos2(θ) + σt · sen2(θ)
σy = σr · sen2(θ) + σt · cos2(θ) (4.3)

τxy = (σr − σt)cos(θ) · sen(θ)
(4.4)

• Strain energy (1/4 of cylinder):

Π =
1

2

∫ π/2

0
uapadθ =

π

4
a
p2(1 + ν)

E(k2 − 1)

[

(1− 2ν)a+
b2

a

]

(4.5)

• Sensitivity of the energy norm squared (1/4 of cylinder):

χ =
∂‖uex‖2
∂am

= 2
∂Π

∂am
= 2π

p2(1 + ν)

E
+

a4b(ν − 1)

(a2 − b2)2
(4.6)

• Sensitivity of the stresses in cylindrical coordinates:

∂σr
∂b

=
−η

(

k2 − 1
)

− 2b
a2

(

1− b2

r2

)

(k2 − 1)2
P

∂σt
∂b

=
η
(

k2 − 1
)

− 2b
a2

(

1 + b2

r2

)

(k2 − 1)2
P (4.7)

η =
2b

(

r − b∂r∂b
)

r3

• Sensitivity of the stresses in cartesian coordinates:

∂σx
∂b

=
∂σr
∂b

cos2(θ) +
∂σt
∂b

sen2(θ)− 2sen(θ)cos(θ)(σr − σt)
∂θ

∂b
∂σy
∂b

=
∂σr
∂b

sen2(θ) +
∂σt
∂b

cos2(θ) + 2sen(θ)cos(θ)(σr − σt)
∂θ

∂b
(4.8)

∂τxy
∂b

=
∂(σr − σt)

∂b
sen(θ)cos(θ) + (σr − σt)

(

cos2(θ)− sen2(θ)
) ∂θ

∂b
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In the expressions for the stress sensitivity with respect to the design vari-
able, the derivatives of r and θ with respect to design variable b are

∂r

∂b
=

1

r

(

x
∂x

∂b
+ y

∂y

∂b

)

∂r

∂θ
=

1

r2

(

−y
∂x

∂b
+ x

∂y

∂b

) (4.9)

In these equations the derived values of the coordinates x and y with respect
to the design variable correspond to the velocity field in each case considered.

For the data used in the model we will have to:

Π = 0.0279907814739389

‖uex‖2 = 2Π = 0.055815629478779

χ = −5.082398781807488 · 10−4

(4.10)

For this problem we will analyze the behavior of the methods of velocity
field generation in various analyses of FE. They compare the interpolation
method based on weighting distances and contour patches in its two versions:
for the whole domain and for the adjacent countour elements. Also, we use
a velocity field calculated by the physical approach of FE, and a field impost
analytically so that we can judge the goodness of the methods developed. For
all analyses simulated in this section we use NURBs geometry because, as we
will see in section 4.1.5, it is the geometry that give us better performance.
The implementation of the problem can be seen in figure 4.2. Comparisons to
be done are:

• h-adaptive refinement analysis. Linear elements.

• Uniform refinement analysis. Linear elements.

• h-adaptive refinement analysis. Quadratic elements.

• Uniform refinement analysis. Quadratic elements.

In addition, an analysis with h-adaptive refinement and linear elements
will be set up to observe the performance differences between NURBS and
standard splines.
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(a) Geometry defined by NURBs. (b) Constraints and loads imposed on
the problem.

Figure 4.2: Implementation of the problem with the graphical interface.

The following sections will examine the data from each simulation. At the
beginning of each section we will present the sequence of mesh used for the
analysis, and then we will present the data in tables that are represented by
graphics for better understanding.

Below we will describe the velocity fields used during analysis for a better
interpretation of tables and graphics.

WD+P Dom Velocity field generated by the interpolation method based on
weighting distances and contour patches in the entire domain (3.4.1). In
Adaptive processes are only the contour elements are recalculated being
projected the infomation corresponding to the internal elements (section
3.4.2).

WD+P 50VDom Velocity field generated by the contour adjacent elements
method (section 3.4.3.2), where the internal nodes of contour elements
are calculated by interpolation based on weighting of distances and exter-
nal nodes using contour patches. In refining processes we recalculate the
field in each iteration until the fraction of area occupied by the bound-
ary element is less than 50% of the total domain, being the remaining
domain zero. At this point the field is projected to the following meshes.
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With this strategy we can evaluate the influence of the thickness of such
velocity fields.

WD+P 75VDom Similar to the previous but in this analysis the goal is a
zero velocity field in more than 75%.

WD+P 90VDom Similar to the previous but in this analysis the goal is a
zero velocity field in more than 90%.

WD+P 100VDom In this analysis the contour velocity field is recalculated
at each iteration, since the goal of empty area is the 100%, there will not
exist the possibility of projection, and the field will be confined in the
contour elements.

PhysicalApproach Velocity field generated applying the physical approach
of FE(section 3.4.3.1).

Analytic An analytically Imposed velocity field (section 3.4.3.3).

4.1.1. h-adaptive Refinement Analysis.

Linear Elements

Here is an analysis consisting in an h-adaptive refinement of 8 iterations.
In each iteration the error-based refinement algorithm reduces the size of some
elements of the mesh, resulting the sequence of figure 4.3, where we have
omitted the last two meshes because are too fine.

In figure 4.4a we can see the results of the sensitivities for the domain
velocity field compared to the contour adjacent elements method with different
thickness. The value of the sensitivities is generally good, but if you look at
the figures 4.4b and 4.4c, where we see the quality constant and the error, we
can see discrepancies, and we can conclude that the best quality results and
error shown is the corresponding to the contour adjacent elements field with
only one layer of internal nodes calculated. This result is interesting because
it is the field that requires less computational cost in this group.
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A second analysis was performed to compare the analytically imposed ve-
locity field and the one obtained by the physical approach of FE, with the
in the domain interpolated velocity field and the contour adjacent elements
field. Figure 4.5a shows similar sensitivities, but when comparing the constant
quality and the error, in figure 4.5b and 4.5c, we observed that only the field
generated by the physical approach is able to match the speed of convergence
and to maintain quality constant stable.
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(a) Mesh number 1. (b) Mesh number 2.

(c) Mesh number 3. (d) Mesh number 4.

(e) Mesh number 5. (f) Mesh number 6.

Figure 4.3: Meshes used for the analysis with h-adaptive refinement and linear
elements.
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Mesh DoF WD+P Dom WD+P 50VDom WD+P 75VDom WD+P 90VDom WD+P 100VDom PhysicalApproach Analytic

1 154 −5.494062 · 10−4 −4.776593 · 10−4 −4.776593 · 10−4 −4.776593 · 10−4 −4.776593 · 10−4 −5.645259 · 10−4 −5.275401 · 10−4

2 304 −5.284512 · 10−4 −5.014658 · 10−4 −5.014658 · 10−4 −5.014658 · 10−4 −5.014658 · 10−4 −5.400868 · 10−4 −5.279645 · 10−4

3 974 −5.130275 · 10−4 −5.090423 · 10−4 −5.069892 · 10−4 −5.069892 · 10−4 −5.069825 · 10−4 −5.194096 · 10−4 −5.151546 · 10−4

4 3406 −5.093890 · 10−4 −5.082522 · 10−4 −5.081604 · 10−4 −5.081604 · 10−4 −5.081604 · 10−4 −5.112002 · 10−4 −5.101253 · 10−4

5 12522 −5.084466 · 10−4 −5.081518 · 10−4 −5.082149 · 10−4 −5.082853 · 10−4 −5.082853 · 10−4 −5.089960 · 10−4 −5.087266 · 10−4

6 47474 −5.082520 · 10−4 −5.082088 · 10−4 −5.082262 · 10−4 −5.082616 · 10−4 −5.082616 · 10−4 −5.084228 · 10−4 −5.083617 · 10−4

7 184162 −5.082189 · 10−4 −5.082102 · 10−4 −5.082279 · 10−4 −5.082418 · 10−4 −5.082476 · 10−4 −5.082874 · 10−4 −5.082705 · 10−4

8 721942 −5.082286 · 10−4 −5.082246 · 10−4 −5.082804 · 10−4 −5.082438 · 10−4 −5.082437 · 10−4 −5.082517 · 10−4 −5.082475 · 10−4

Table 4.1: Values of the sensitivity of the energy norm squared, χm.

Mesh DoF WD+P Dom WD+P 50VDom WD+P 75VDom WD+P 90VDom WD+P 100VDom PhysicalApproach Analytic

1 154 8.099781 6.016957 6.016957 6.016957 6.016957 11.074696 3.797463

2 304 3.976728 1.332840 1.332840 1.332840 1.332840 6.266120 3.880967

3 974 0.942000 0.157892 0.246070 0.246070 0.246070 2.197726 1.360541

4 3406 0.224504 0.002428 0.015624 0.015624 0.015624 0.582471 0.370970

5 12522 0.040684 0.017318 0.004905 0.008942 0.008942 0.148774 0.095766

6 47474 0.002391 0.006099 0.002675 0.004287 0.004285 0.037185 0.023987

7 184162 0.004118 0.005835 0.002345 0.000395 0.001531 0.009354 0.006033

8 721942 0.002216 0.002997 0.007979 0.000786 0.000757 0.002339 0.001507

Table 4.2: Values of the sensitivities relative error, η(χm)%.

Mesh DoF WD+P Dom WD+P 50VDom WD+P 75VDom WD+P 90VDom WD+P 100VDom PhysicalApproach Analytic

1 154 0.020252 0.015044 0.015044 0.015044 0.015044 0.027690 0.009494

2 304 0.033392 0.011192 0.011192 0.011192 0.011192 0.052616 0.032588

3 974 0.029602 0.004931 0.007732 0.007732 0.007732 0.069064 0.042755

4 3406 0.027516 0.000297 0.001914 0.001914 0.001914 0.071388 0.045468

5 12522 0.019608 0.008346 0.002364 0.004310 0.004310 0.071703 0.046163

6 47474 0.004582 0.011687 0.005126 0.008214 0.008214 0.071248 0.045963

7 184162 0.031443 0.044549 0.017908 0.003026 0.011701 0.071418 0.046062

8 721942 0.067478 0.091250 0.24291 0.023945 0.023088 0.071246 0.04589

Table 4.3: Value of the quality constant, e(χm)
‖e(u)‖2 .
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(a) Sensitivity of the energy norm squared, χm.
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Figure 4.4: Graphical representation of results for h-adaptive refinement and
linear elements.
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(c) Sensitivities relative error, η(χm)%.

Figure 4.5: Graphical representation of results for h-adaptive refinement and
linear elements.
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4.1.2. Uniform Refinement Analysis. Linear

Elements

This case is an analysis consisting in an uniform refinement of 7 iterations.
In each iteration the algorithm reduces the size of the elements one level,
resulting the sequence of figure 4.6, where we have omitted the last mesh
because is too fine.

Like in the previous analysis it is stated that the velocity field calculated
by the contour adjacent elements method with a minimum thickness is the
most effective, in figure 4.7a we can see the results of the sensitivities for the
interpolated velocity fields compared to the calculated by the physical approach
and the analytically imposed. The value of the sensitivities is generally good,
but we can see oscillations in the interpolated methods, and if you look at the
figures 4.7b and 4.7c, where we can see the quality constant and the error, we
can see differences, and only in the last meshes the contour adjacent elements
field is able to maintain a certain quality, while the domain interpolation clearly
loses quality with refinement.

A second analysis was performed to compare the performance of h-adaptive
refinement (AR in the graph) against the uniform refinement (UR in the
graph). The fields used for this are those who have given us better results
in the h-adaptive analysis: the field based on the physical approach and the
contour adjacent elements field. In figures 4.8b and 4.8c, we note that the
field calculated by the physical approach has better performance in h-adapted
meshes while the contour adjacent elements field has better results in the uni-
form meshes.
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(a) Mesh number 1. (b) Mesh number 2.

(c) Mesh number 3. (d) Mesh number 4.

(e) Mesh number 5. (f) Mesh number 6.

Figure 4.6: Meshes used for the analysis with uniform refinement and linear
elements.
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Mesh DoF WD+P Dom WD+P 100VDom PhysicalApproach Analytic

1 144 −5.615891 · 10−4 −5.087390 · 10−4 −5.486887 · 10−4 −5.385986 · 10−4

2 474 −5.254123 · 10−4 −5.083940 · 10−4 −5.498924 · 10−4 −5.353357 · 10−4

3 1674 −5.081774 · 10−4 −5.067715 · 10−4 −5.226297 · 10−4 −5.176363 · 10−4

4 6290 −5.071662 · 10−4 −5.073862 · 10−4 −5.121844 · 10−4 −5.108402 · 10−4

5 23952 −5.076153 · 10−4 −5.080208 · 10−4 −5.092634 · 10−4 −5.089159 · 10−4

6 95808 −5.076497 · 10−4 −5.081832 · 10−4 −5.084987 · 10−4 −5.084108 · 10−4

7 370270 −5.079622 · 10−4 −5.082226 · 10−4 −5.083051 · 10−4 −5.082819 · 10−4

Table 4.4: Values of the sensitivity of the energy norm squared, χm.

Mesh no DoF WD+P Dom WD+P 100VDom PhysicalApproach Analytic

1 144 10.496858 0.098205 7.958608 5.973321

2 474 3.378802 0.030338 8.195445 5.331314

3 1674 0.012293 0.288896 2.831305 1.848818

4 6290 0.211254 0.167959 0.776114 0.511634

5 23952 0.122878 0.043105 0.201399 0.133012

6 95808 0.116118 0.011143 0.050926 0.033647

7 370270 0.054616 0.003391 0.012832 0.008286

Table 4.5: Values of the sensitivities relative error, η(χm)%.

Mesh DoF WD+P Dom WD+P 100VDom PhysicalApproach Analytic

1 144 0.025420 0.000237 0.019273 0.014465

2 474 0.027205 0.000244 0.065987 0.042926

3 1674 0.000386 0.008682 0.085095 0.055566

4 6290 0.024596 0.019557 0.090371 0.059574

5 23952 0.056504 0.019821 0.092612 0.061165

6 95808 0.21264 0.020405 0.093261 0.061620

7 370270 0.397620 0.01931 0.093712 0.061910

Table 4.6: Value of the quality constant, e(χm)
‖e(u)‖2 .

122
Department of Mechanical and Materials Engineering

Research Centre in Vehicles Technology



Shape Sensitivity Module with Exact Geometrical Representation

Master Thesis

10
2

10
3

10
4

10
5

10
6

−5.35

−5.3

−5.25

−5.2

−5.15

−5.1

−5.05

−5
x 10

−4

DoF

S
en

si
tiv

ity
 o

f t
he

 E
ne

rg
y 

N
or

m
 S

qu
ar

ed

 

 

(a) Sensitivity of the energy norm squared, χm.

10
2

10
3

10
4

10
5

10
6

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

DoF

Q
ua

lit
y 

C
on

st
an

t

 

 

(b) Quality constant, e(χm)

‖e(u)‖2
.

10
2

10
3

10
4

10
5

10
6

10
−3

10
−2

10
−1

10
0

10
1

10
2

DoF

R
el

at
iv

e 
E

rr
or

 

 

WD+P Dom Q4
WD+P 100VDom Q4
PhysicalApproach Q4
Analytic Q4

(c) Sensitivities relative error, η(χm)%.

Figure 4.7: Graphical representation of results for uniform refinement and
linear elements.
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Figure 4.8: Graphical representation of results. Comparison between h-
adaptive refinement and uniform refinement.
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4.1.3. h-adaptive Refinement Analysis.

Quadratic Elements

An analysis of 8 iterations with h-adaptive refinement and quadratic ele-
ments is presented. The analysis in this case is identical to the one performed
for linear elements, but as the errors obtained are different in magnitude in
different order elements, the sequence of meshes will be the one in figure 4.9.

In figure 4.10a we can see the results of the sensitivities for the domain
velocity field compared to the contour adjacent elements fields with different
thickness. The value of the sensitivities is good overall, but with quadratic
elements figure 4.10b shows considerable discrepancies in the quality of the
velocity field. We again observe that the contour adjacent elements field with
a layer of internal nodes is still the best performing sample, but obviously the
results are worse than for linear elements.

As for the linear elements, a second analysis was performed to compare the
analytically imposed field and the one obtained by the physical approach of FE,
with the interpolated velocity fields in the domain and the contour adjacent
elements. Figure 4.11a exhibits again similar sensitivities, but when comparing
the quality constant and the error, figure 4.11b and 4.11c, we observe that
only the field generated by the physical approach is able to match the speed
of convergence and to maintain constant quality stable.
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(a) Mesh number 1. (b) Mesh number 2.

(c) Mesh number 3. (d) Mesh number 4.

(e) Mesh number 5. (f) Mesh number 6.

Figure 4.9: Meshes used for the analysis with h-refinement and quadratic ele-
ments.
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Mesh DoF WD+P Dom WD+P 50VDom WD+P 75VDom WD+P 90VDom WD+P 100VDom PhysicalApproach Analytic

1 422 −4.721919 · 10−4 −4.756240 · 10−4 −4.756240 · 10−4 −4.756240 · 10−4 −4.756240 · 10−4 −4.54212 · 10−4 −4.748285 · 10−4

2 678 −4.915466 · 10−4 −4.979000 · 10−4 −4.979000 · 10−4 −4.979000 · 10−4 −4.979000 · 10−4 −5.017343 · 10−4 −5.043357 · 10−4

3 1328 −5.059893 · 10−4 −5.055514 · 10−4 −5.066300 · 10−4 −5.066300 · 10−4 −5.066300 · 10−4 −5.077999 · 10−4 −5.079775 · 10−4

4 3966 −5.060366 · 10−4 −5.063864 · 10−4 −5.069500 · 10−4 −5.069500 · 10−4 −5.069500 · 10−4 −5.082306 · 10−4 −5.082347 · 10−4

5 13526 −5.077119 · 10−4 −5.076150 · 10−4 −5.079500 · 10−4 −5.079500 · 10−4 −5.079500 · 10−4 −5.024016 · 10−4 −5.082407 · 10−4

6 47744 −5.079089 · 10−4 −5.079623 · 10−4 −5.081511 · 10−4 −5.081831 · 10−4 −5.081831 · 10−4 −5.082398 · 10−4 −5.082401 · 10−4

7 171982 −5.081056 · 10−4 −5.081411 · 10−4 −5.082052 · 10−4 −5.082320 · 10−4 −5.082320 · 10−4 −5.082398 · 10−4 −5.082399 · 10−4

8 558504 −5.081936 · 10−4 −5.082021 · 10−4 −5.082242 · 10−4 −5.082342 · 10−4 −5.082382 · 10−4 −5.082398 · 10−4 −5.082398 · 10−4

Table 4.7: Values of the sensitivity of the energy norm squared, χm.

Mesh DoF WD+P Dom WD+P 50VDom WD+P 75VDom WD+P 90VDom WD+P 100VDom PhysicalApproach Analytic

1 422 7.092709 6.417418 6.417418 6.417418 6.417418 10.630389 6.573938

2 678 3.284527 2.034448 2.034448 2.034448 2.034448 1.280021 0.768160

3 1328 0.442818 0.528978 0.316755 0.316755 0.316755 0.086568 0.051618

4 3966 0.433493 0.364672 0.253793 0.253793 0.253793 0.001825 0.001015

5 13526 0.103873 0.122949 0.057035 0.057035 0.057035 0.000055 0.000173

6 47744 0.065122 0.054615 0.017453 0.011171 0.011171 0.000002 0.000044

7 171982 0.026418 0.019435 0.006815 0.001540 0.001540 0.0000009 0.000004

8 558504 0.009093 0.007425 0.003084 0.001108 0.000328 0.00000002 0.0000005

Table 4.8: Values of the sensitivities relative error, η(χm)%.

Mesh DoF WD+P Dom WD+P 50VDom WD+P 75VDom WD+P 90VDom WD+P 100VDom PhysicalApproach Analytic

1 422 0.24753 0.22395 0.22395 0.22395 0.22395 0.37099 0.22942

2 678 1.1775 0.72624 0.72624 0.72624 0.72624 0.45889 0.27539

3 1328 4.2825 5.1159 3.049 3.049 3.049 0.8372 0.4992

4 3966 54.1704 45.5705 31.5098 31.5098 31.5098 0.22636 0.12694

5 13526 98.5176 116.6001 52.9012 52.9012 52.9012 0.053168 0.16466

6 47744 1100.8368 922.9651 295.0375 188.5883 188.5883 0.049836 0.75656

7 171982 2217.4041 1631.1132 571.933 129.1975 129.1975 0.067403 0.37493

8 558504 649.2309 530.0219 220.1702 79.1076 23.4265 0.001808 0.037289

Table 4.9: Value of the quality constant, e(χm)
‖e(u)‖2 .
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(c) Sensitivities relative error, η(χm)%.

Figure 4.10: Graphical representation of results for h-adaptive refinement and
quadratic elements.
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(c) Sensitivities relative error, η(χm)%.

Figure 4.11: Graphical representation of results for h-adaptive refinement and
quadratic elements.
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4.1.4. Uniform Refinement Analysis.

Quadratic Elements

This case is an analysis consisting in an uniform refinement of 6 iterations.
In each iteration the algorithm reduces the size of the elements one level,
resulting the sequence of figure 4.6, where we have omitted the last mesh
because is too fine.

This analysis confirms the existing quality difference between the interpo-
lation methods with the analytically imposed field and the generated by the
physical approach, the value of the sensitivities is generally good, but if you
look at the figures 4.12b and 4.12c, we observe that the convergence rate is
lower for interpolation methods and constant quality does not remain constant.

A second analysis was performed to compare the performance of h-adaptive
refinement (AR in the graph) against the uniform refinement (UR in the
graph). The fields used for this are those who have given us better results
in the h-adaptive analysis: the field based on the physical approach and the
contour adjacent elements field. In figures 4.13b and 4.13c, we observe how for
h-adapted meshes the speed of convergence is better for both methods what is
consistent with the nature of the analysis. The quality of the fields follow the
same patterns
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Mesh DoF WD+P Dom WD+P 100VDom PhysicalApproach Analytic

1 396 −4.717300 · 10−4 −4.716800 · 10−4 −4.529500 · 10−4 −4.741024 · 10−4

2 1354 −4.877000 · 10−4 −4.998900 · 10−4 −5.018220 · 10−4 −4.998900 · 10−4

3 4890 −4.969000 · 10−4 −5.068600 · 10−4 −5.078240 · 10−4 −5.068600 · 10−4

4 18610 −5.038500 · 10−4 −5.078110 · 10−4 −5.082302 · 10−4 −5.078110 · 10−4

5 71348 −5.067200 · 10−4 −5.081400 · 10−4 −5.082408 · 10−4 −5.081400 · 10−4

6 279172 −5.074300 · 10−4 −5.082150 · 10−4 −5.082398 · 10−4 −5.082150 · 10−4

Table 4.10: Values of the sensitivity of the energy norm squared, χm.

Mesh DoF WD+P Dom WD+P 100VDom PhysicalApproach Analytic

1 396 7.183591 7.193429 10.878697 6.716824

2 1354 4.041374 1.642900 1.262765 0.758311

3 4890 2.231205 0.271501 0.081827 0.047112

4 18610 0.863741 0.084384 0.001886 0.000721

5 71348 0.299047 0.019651 0.000039 0.000048

6 279172 0.159349 0.004894 0.0000003 0.0000002

Table 4.11: Values of the sensitivities relative error, η(χm)%.

Mesh DoF WD+P Dom WD+P 100VDom PhysicalApproach Analytic

1 396 0.290900 0.291700 0.440500 0.272020

2 1354 1.434900 0.582920 0.448370 0.269290

3 4890 13.753300 1.671400 0.504420 0.290280

4 18610 438.305300 42.8263 0.958500 0.356100

5 71348 1507.798200 93.940000 0.209160 0.256930

6 279172 37528.7966 1123.8739 0.467600 0.455580

Table 4.12: Value of the quality constant, e(χm)
‖e(u)‖2 .
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(c) Sensitivities relative error, η(χm)%.

Figure 4.12: Graphical representation of results for uniform refinement and
quadratic elements.
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(c) Sensitivities relative error, η(χm)%.

Figure 4.13: Graphical representation of results. Comparison between h-
adaptive refinement and uniform refinement.
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4.1.5. Performance Comparison Between

Standard Splines and NURBs

To evaluate the effectiveness of the new type of curve, it has been proposed
an h-adaptive analysis for the cylinder problem where the inner and outer arcs
are splines, defined with different sets of points, and NURBs as shown in figure
4.14.

In figures 4.15a, 4.15b and 4.15c, we can evaluate the results in magnitudes
related to the sensitivity analysis, where we can see that despite the similarity
of values in sensitivities, the speed of convergence and the quality constant
are better in the geometry defined by NURBs. But the figure 4.15d is very
important as it shows the error in energy norm and we see how for splines the
convergence rate tends to zero as it approaches a value of error, related with
the value of geometrical error, while for the geometry defined by NURBs the
value of the convergence speed continues decreasing steadily, because this error
is minimized using isogeometric entities. Finally, in figure 4.15e a parametric
evaluation of the curves is shown so that we can observe the real value of every
outer radius. We can highlight the difference between the splines defined with
3 or 5 points and the spline defined with 9 points or the NURB. Figure 4.15f
is a zoom in to see the differences between the 9-point spline and the NURB,
verifying the geometric theory that defined the NURBs as curves that can
accurately represent conical geometries.
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(a) Problem defined with NURBs. (b) Problem defined with splines of 3
points.

(c) Problem defined with splines of 5
points.

(d) Problem defined with splines of 9
points.

Figure 4.14: Different geometries analyzed during the comparative analysis.
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Mesh DoF Spl3Pt Spl5Pt Spl9Pt NURBs

1 154 −5.311690 · 10−4 −5.279935 · 10−4 −5.272143 · 10−4 −5.275401 · 10−4

2 304 −5.294934 · 10−4 −5.284912 · 10−4 −5.277668 · 10−4 −5.279645 · 10−4

3 974 −5.158985 · 10−4 −5.152609 · 10−4 −5.150307 · 10−4 −5.151546 · 10−4

4 3406 −5.106562 · 10−4 −5.101073 · 10−4 −5.100058 · 10−4 −5.101253 · 10−4

5 12522 −5.092388 · 10−4 −5.087375 · 10−4 −5.086064 · 10−4 −5.087266 · 10−4

6 47474 −5.088701 · 10−4 −5.083680 · 10−4 −5.082404 · 10−4 −5.083617 · 10−4

7 184162 −5.087778 · 10−4 −5.082755 · 10−4 −5.081490 · 10−4 −5.082705 · 10−4

Table 4.13: Values of the sensitivity of the energy norm squared, χm, with an
analytic velocity field.

Mesh DoF Spl3Pt Spl5Pt Spl9Pt NURBs

1 154 4.511494 3.886691 3.733366 3.797463

2 304 4.181802 3.984605 3.842081 3.880967

3 974 1.506907 1.381450 1.336161 1.360541

4 3406 0.475435 0.375974 0.347468 0.370970

5 12522 0.196554 0.097925 0.072124 0.095766

6 47474 0.124009 0.025212 0.000111 0.023987

7 184162 0.105850 0.007024 0.017878 0.0060333

Table 4.14: Values of the sensitivities relative error, η(χm)%, with an analytic
velocity field.

Mesh DoF Spl3Pt Spl5Pt Spl9Pt NURBs

1 154 0.011996 0.009787 0.009299 0.009494

2 304 0.043957 0.034471 0.031801 0.032588

3 974 0.219170 0.049819 0.039607 0.042755

4 3406 0.027921 0.102750 0.034517 0.045468

5 12522 0.008494 0.038696 0.018135 0.046163

6 47474 0.005020 0.006141 4.6256 · 10−5 0.045963

7 184162 0.004218 0.001560 0.008806 0.046062

Table 4.15: Value of the quality constant, e(χm)
‖e(u)‖2 , with an analytic velocity

field.
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Mesh DoF Spl3Pt Spl5Pt Spl9Pt NURBs

1 154 3.424573 3.615845 3.655515 3.642958

2 304 0.866254 1.052567 1.100113 1.084421

3 974 0.062607 0.252497 0.307186 0.289760

4 3406 0.155048 0.033318 0.091663 0.074295

5 12522 0.210698 0.023043 0.091663 0.018893

6 47474 0.224897 0.037383 0.022049 0.0047524

7 184162 0.228465 0.034825 0.018484 0.001192

Table 4.16: Values of the energy norm squared relative error, ‖u‖2, with an
analytic velocity field.

4.2. Sequence of Collinear Cracks

To evaluate the effectiveness of the sensitivities calculation module in sin-
gular problems we are going to use the problem of a sequence of collinear
cracks. In figure 4.16 the model discussed can be seen.

In an infinite sequence of collinear cracks subjected to constant stress σ,
the exact value of Stress Intensity Factor Ki is given by equation (Kanninen
and Popelar [37]):

KI = σ
√
πa

√

2b

πa
tan

(πa

2b

)

(4.11)

The plate of infinite dimensions, is subject to a constant stress σ at their
ends. To model this boundary condition in the finite element model has been
necessary to use a c dimension (height model) large enough. It is considered
that the effect of the selected height of the crack is negligible in the upper
contour being able to assume on it a uniform stress distribution.
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(d) Relative error in enery norm, ‖u‖2.

(e) Evaluation of the outer radious. (f) Zoom of the evaluation of the outer ra-
dious.

Figure 4.15: Graphical representation of results for h-adaptive refinement and
linear elements.
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Figure 4.16: Collinear cracks model.

For the data used in the model it yields:

KI = 200

G = 0.003556444

χ = 2G = 0.007112888

(4.12)

Since the crack has a top and a bottom, the value of χ in the upper part
would be obtained when modeling both sides. However, the model used in
the numerical analysis uses only the top of the crack, so that the values of
χ obtained directly by calculating approximates to half the value displayed.
Thus the value of χ to be compared with the numerical results are:

χ = 0.003556444 (4.13)

For this problem we will analyze the behavior of the methods of generation
of the velocity field based on an interpolation of the domain and the physical
approach in FE compared with an analytically imposed field. Analytical fields
are commonly used in problems of fracture mechanics to characterize properly
the singularity located at the crack tip. In our example this field is such
a plateau function as shown in figure 3.10b. In figure 4.17 we can see the
implementation of the problem with the graphical interface.

In this section, the comparisons to be done are:
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4.2. Sequence of Collinear Cracks

• h-adaptive refinement analysis. Linear elements.

• h-adaptive refinement analysis. Quadratic elements.

(a) Geometry. (b) Constraints and loads applied on
the problem.

Figure 4.17: Implementation of the problem with the graphical interface.

4.2.1. h-adaptive Refinement Analysis.

Linear Elements

Figure 4.18 shows the sequence of meshes used for this type of analysis,
where we can see an over-refinement at the crack tip because that point has
been defined as a singularity.

Looking at the figures 4.19a and 4.19b we can see that the value of the
sensitivities and the quality constant are closely related. The field generated
by an domain interpolation shows a behavior very similar to an analytical field
while the field based on the physical approach is not able to converge to the
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exact solution because this method is not applicable to singularities as discused
in section 3.4.3.1.

In figure 4.19c we can observe the convergence of the error and it is con-
firmed that the field imposed analytically is the most effective.
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(a) Mesh number 1. (b) Mesh number 2.

(c) Mesh number 3. (d) Mesh number 4.

(e) Mesh number 5. (f) Mesh number 6.

Figure 4.18: Meshes used for the analysis with h-refinement and linear ele-
ments.
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Mesh DoF WD+P Dom PhysicalApproach Analytical

1 220 3.276746 · 10−3 3.254686 · 10−3 3.129065 · 10−3

2 598 3.487775 · 10−3 3.439581 · 10−3 3.429662 · 10−3

3 1908 3.535596 · 10−3 3.483541 · 10−3 3.523173 · 10−3

4 6734 3.546547 · 10−3 3.490775 · 10−3 3.545913 · 10−3

5 23104 3.549223 · 10−3 3.491919 · 10−3 3.551843 · 10−3

6 64974 3.549726 · 10−3 3.491807 · 10−3 3.553166 · 10−3

Table 4.17: Values of the sensitivity of the energy norm squared, χm.

Mesh DoF WD+P Dom PhysicalApproach Analytical

1 220 191.97 191.33 187.60

2 598 198.06 196.69 196.40

3 1908 199.41 197.94 199.06

4 6734 199.72 198.14 199.70

5 23104 199.80 198.18 199.87

6 64974 199.81 198.17 199.91

Table 4.18: Values of the SIF, KI.

Mesh DoF WD+P Dom PhysicalApproach Analytical

1 220 7.864526 8.484801 12.017026

2 598 1.931654 3.285931 3.564839

3 1908 0.586188 2.049868 0.935506

4 6734 0.278265 1.846469 0.296093

5 23104 0.203023 1.817452 0.129363

6 64974 0.188894 1.817452 0.092149

Table 4.19: Values of the SIF relative error, η(KI)%.

Mesh DoF WD+P Dom PhysicalApproach Analytical

1 220 0.001233 0.001330 0.001884

2 598 0.000303 0.000515 0.000559

3 1908 0.000091 0.000321 0.000146

4 6734 0.000043 0.000289 0.000046

5 23104 0.000031 0.000284 0.000020

6 64974 0.000029 0.000285 0.000014

Table 4.20: Values of the quality constant, e(χm)
‖e(u)‖2 .
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(c) SIF relative error, η(KI)%.

Figure 4.19: Graphical representation of results for h-adaptive refinement and
linear elements.
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4.2.2. h-adaptive Refinement Analysis.

Quadratic Elements

Here is an h-adaptive analysis of 6 iterations. In each iteration the size
of the elements selected is reduced by the routine of refinement resulting in a
sequence similar to the linear elements of the analysis (figure 4.18).

In figures 4.20a, 4.20b and 4.20c, it is observed that for velocity field based
on the physical approach the phenomenon that ruined the results for linear ele-
ments is repeated for quadratic elements. While the analytical field and the one
obtained by interpolation of the domain, behave similarly. Even this domain
interpolated field shows a significantly better behavior than the analytically
imposed in some meshes.

Also in figures 4.21a, 4.21b and 4.21c, wecan compare the h-adaptive anal-
ysis with the uniform refinement and it is directly observed that the quadratic
elements can obtain the same results with a smaller number of degrees of free-
dom.

With all this we can conclude that the velocity field obtained by interpo-
lation of the domain and the field imposed analytically on the singular points,
are suitable for obtaining the Stress Intensity Factor, SIF, which is a quantity
of interest in fracture mechanics problems.
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4.2. Sequence of Collinear Cracks

Mesh DoF WD+P Dom PhysicalApproach Analytical

1 594 3.486450 · 10−3 3.505231 · 10−3 3.523712 · 10−3

2 1492 3.548697 · 10−3 3.535689 · 10−3 3.552453 · 10−3

3 4250 3.555597 · 10−3 3.540432 · 10−3 3.559223 · 10−3

4 10800 3.556214 · 10−3 3.542239 · 10−3 3.555352 · 10−3

5 20696 3.556387 · 10−3 3.541255 · 10−3 3.556136 · 10−3

6 31342 3.556385 · 10−3 3.540990 · 10−3 3.556125 · 10−3

Table 4.21: Values of the sensitivity of the energy norm squared, χm.

Mesh DoF WD+P Dom PhysicalApproach Analytical

1 594 198.02 198.55 199.08

2 1492 199.78 199.42 199.89

3 4250 199.98 199.55 200.08

4 10800 199.99 199.6 199.97

5 20696 200.001 199.57 199.99

6 31342 200.001 199.56 199.99

Table 4.22: Values of the SIF, KI.

Mesh DoF WD+P Dom PhysicalApproach Analytical

1 594 1.968068 1.439996 0.920332

2 1492 0.217806 0.583568 0.112215

3 4250 0.023801 0.450204 0.078161

4 10800 0.006459 0.399403 0.030684

5 20696 0.001590 0.427069 0.008639

6 31342 0.001633 0.434532 0.008955

Table 4.23: Values of the SIF relative error, η(KI)%.

Mesh DoF WD+P Dom PhysicalApproach Analytical

1 594 0.000308 0.000225 0.000144

2 1492 0.000034 9.156 · 10−5 1.7606 · 10−5

3 4250 3.3744 · 10−6 7.0635 · 10−5 1.2263 · 10−5

4 10800 1.0135 · 10−6 6.2665 · 10−5 4.8143 · 10−6

5 20696 2.4948 · 10−7 6.7006 · 10−5 1.3555 · 10−6

6 31342 2.6535 · 10−7 6.8177 · 10−5 1.4051 · 10−6

Table 4.24: Values of the quality constant, e(χm)
‖e(u)‖2 .
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Figure 4.20: Graphical representation of results for h-adaptive refinement and
quadratic elements.
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4.2. Sequence of Collinear Cracks
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Figure 4.21: Graphical representation of results. Comparison between linear
elements and quadratic elements.
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5. SUMMARY AND

FUTURE

DEVELOPMENTS

This master thesis presents the development of a module for the calculation
of shape sensitivities with geometric representation by NURBs (Non-Uniform
Rational B-Splines) for a program created to analize linear elastic problems,
solved by FEM using 2-D cartesian meshes independent of geometry, Cartesian
Grid-FEM,

In this regard, and evaluating the results obtained, we can say that it has
been implemented successfully the tool to create NURB objects, from sim-
ple entities such as lines or arcs, to more complex interpolations of arbitrary
points input by the user. Besides this development in 2-D, it is a good start-
ing point to enter the field of Isogeometric Analysis, looking at a future 3-D
implementation.

On the other hand, with respect to sensitivities calculation module, the
theoretical bases available in the literature on the calculation of sensitivities
have been adapted properly to an environment for which they were not de-
veloped in the beginning, thus overcoming the requirements arising from the
use of cartesian meshes independent of the geometry and, on the other hand,
various methods to generate robust and efficient velocity fields have been imple-
mented as well. In general we can say that among the velocity field evaluation
techniques analyzed, which provides better results in problems with a smooth
solution is the physical approach of FE. The creation of the velocity field using
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this technique requires solving a problem with the same size of the original
problem, and that can be done by direct solver for small size problems, or
by an iterative solver for large size problems. In the latter case, the solution
can be projected easily due to the hierarchical structure of cartesian mesh,
and used as a initial vector, provides good results of sensitivities after a single
iteration, with accuracy similar to those obtained with direct solvers.

Finally, it should be mentioned that the present calculation module can
accurately estimate a magnitude of interest such as the Stress Intensity Factor
(SIF). From Fracture Mechanics we know that SIF is a key parameter in char-
acterizing the stress fields around the crack tips. Furthermore, this parameter
is vital to know the maximum stress that can support a crack and can also
be used to determine the fatigue life of mechanical components with cracks.
Taking a look of the numerical results we can say that for this kind of problem
it is convenient to use a function to impose a velocity field analytically defined
by a plateau function around the singularity.

Given the potential of program developed in the DIMM, suggest new lines
of research and development:

• Implementation of new methods of obtaining the velocity field so that
the analyst has a bigger range of alternatives.

• Implementation of a sensitivity error estimator capable of rigorously eval-
uate the calculation of sensitivities.

• Utilization of the information obtained from this calculation module to
lead shape optimization algorithms based on gradient.

• Study of the latest development in geometric technology: T-splines,
which have shown superior capabilities to NURBs in certain applications.

• Extrapolation of experience in Isogeometric Analysis to a 3-D environ-
ment that allows the ability to manipulate geometries from commercial
software.
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A. USER’S GUIDE

A.1. Application Installation

The installation requirements for this software are minimal. Due to the
design of the application, it does not require prior installation, just respect for
the original file structure.

A.2. Application Access

To access the application, the user must run MATLAB (R2009b or later
version). After completing the full initialization of MATLAB, you must place
the application root directory where the file “RunGUI.m” is, in the MATLAB
current directory (Current Directory:). Then the application from the MAT-
LAB command window using the command RunGUI.
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A.3. Main Window

Figure A.1: Access to the aplication.

After this action the application starts accessing the main window of the
program. At this time the interface comes to the foreground pulling MATLAB
to the background.

At any time we can return to MATLAB to track variables or to save the
value of the data structure after declaring these variables as global.
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A.3. Main Window

The appearance of the main window is shown in figure A.2. Through this
window you can access each of the parts of the program through the menu bar
at the top.

Figure A.2: Main window.
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A.4. Menu Bar

The main window is composed of:

Menu Bar: Located on the top to navigate through the various
submenus that provide access to each one of the modules of
the program through which it is possible modeling, solving
and analyzing the output data.

Toolbar: Located immediately below the Menu Bar provides the
standard tools for file handling, graphical areas, etc.

Graphical Area: Located in the central part of the window and
occupying most of it, facilitates the pre-process showing the
generation of geometry, applying constrains and loads.

Problem Directory: At the bottom left of the window it displays
the working directory of the application in which the file with
the data structure, loads files, constrains files, etc. are hosted.

File: Under the Problem Directory, it shows the name of the file
which stores the data structure with all information on the
current problem.

Redraw: Located at the bottom right of the window, it recalcu-
lates all geometric parameters, constrains and loads, regener-
ating the Graphical Area with the new configuration.

Close: To the right of Redraw, it closes the application perform-
ing a backup on the Current Directory with the name of the
current work followed by “. bkp”. In case of failure to set a
working directory and file name, there will be no copy.

The main window can be resized scaling the elements on it to the appro-
priate size. By default, the initial size of the window is 450x480 pixels and a
minimum size is 300x300 pixels.
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A.4. Menu Bar

At this point there will be an overview of the menu bar with their respective
submenus and functions thereof. These functions are expanded in the next
point in a practical guide following a simple example that allows us go through
the different options offered by the program.

Using the Menu Bar you can access different parts of the program, it has
the following options:

File. In this menu there are standard choices to open a new prob-
lem, to upload a file “.mat” with the data structure previously
saved with this application or to save the data structure to a
“.mat” file as well. From this menu we also have access to
the submenu Plot with options Redraw, Numbering and Con-
figuration, which are discussed in the next point, the window
Profile which allows us to track computation time of the ap-
plication and Close, which is like the Close from the main
window.

Figure A.3: Submenú File.

Pre-Processor. This menu allows access to options of pre-processing
for the problem such as the acquisition of coordinates x and
y of geometrical points from a text file “.txt” (Load Points
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A.4. Menu Bar

from File), definition of the geometry (Points and Curves),
applying constraints in points and/or curves (Constraints),
applying puntual forces, contour pressures or volumetric forces
(Loads), to use a matrix of load cases (Load Case Matrix ) and
the definition of materials (Material).

(a)

(b)

Figure A.4: Submenú Pre-Processor.

Solver. Menu Solver provides access to options of meshing and
resolutio (FEM ), selecting the type of analysis (Mode Analy-
sis), the introduction of parameters to perform topology op-
timization analysis (Topology Optimization) and finally it al-
lows us to introduce the parameters under which we perform
a sensitivity analysis. It is recommended that the definition
of geometry and materials prior to these sections.

162
Department of Mechanical and Materials Engineering

Research Centre in Vehicles Technology



Shape Sensitivity Module with Exact Geometrical Representation

Master Thesis

Post-Processor. This menu is enabled only if data is satisfacto-
rily obtained from the solver. In this case, it allows access to
the menu for post-processing of information, showing the re-
sults of intermediate calculations such as the vector of forces
or displacements of nodes in the form of vector fields (Inter-
mediate Processes), displacements in nodes (Displacements),
stresses fields (Stress), a summary of the analysis information
(Summary). Even it is possible to draw the local effectiveness
index (only for problems with exact solution) (Results Special)
and it provides graphical and numerical results of sensitivity
analysis (Sensitivity Analysis).

Help. Menu of information about the application in which we find
the About GuiSkin that opens a window with general infor-
mation and the contact of the creators.

Figure A.5: Submenú Solver.

Figure A.6: Submenú Post-Processor.
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A.5. Practical Guide

A.5. Practical Guide

To perform an exhaustive review of the application we choose to make this
practical guide, following an example of analysis as a tutorial. Although the
steps to be followed are valid for most analyses, this example will focus in the
calculation of shape sensitivities using a geometry defined with NURB entities.

In this practical guide we will show the process of analyzing a quarter of
cylinder subject to internal pressure. The type of analysis is plane strain and
the mechanical properties of the material used are those presented in figure
A.7

Figure A.7: Model of cylinder subjected to internal pressure.

The steps to be followed to develop the analysis are:

• File menu. Review of default settings of the graphical inter-
face.

• Definition of geometry.

• Application of constraints and loads.

• Definition of material and thickness of the component.
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• Definition of the design variables and the type of interpolation.

• Meshing and analysis type.

• Solving.

• Post-processing of results.

A.5.1. File Menu. Review of Default

Settings of the Graphical Interface

First, we start the application following section A.2.
From the menu File we can also access the window Numbering of Plot

submenu:

Figure A.8: Plot/Numbering window.

This window determines the elements that are displayed in the graphical
area. The default options are shown in figure A.8 and can be modified by
clicking on the corresponding check box.

The window is divided into three sectors, in order to define the options
Pre-Processor, Post-Processor and FEM :

Points. Displays the geometric points used to define the geometry.
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Curves. Displays the curves that define the contours of the com-
ponent object to the analysis.

ID. Points. Displays tags with the IDs of the points.

ID. Curves. Displays tags with the IDs of the curves.

Arrows on Curves. Displays a number of entities in the form of
an arrow on the curves of the contour defining the direction of
flow on the boundary. This is especially useful to identify in
which side of the curves the material is defined. For applica-
tion requirements, the material side always will be considered
in the left of the curve following the direction of circulation.

Forces. Displays the forces applied at points.

Pressures. Displays the pressures applied on the contour as vector
fields.

Displ. Constrains on Pts. Displays a series of symbols repre-
senting simple supports at the points where the movement has
been restricted. The program allows the restriction of a point
in both directions of the two-dimensional space separately.

Displ. Constrains on Cvs. Displays a series of symbols repre-
senting simple supports at the edges where the movement has
been restricted. The program allows the restriction in both
directions separately dimensional space.

Mesh. A preview of the approximation mesh is shown.

Calc and Plot. Displays graphical results of the intersections of
the mesh with the geometry and the triangulation of contour
elements.

ID. Intersections. Displays tags with the IDs of the intersections
of the mesh with the geometry. It is recommended not to ac-
tivate this option since the number of intersections is usually
high and the time that MATLAB uses to represent text ele-
ments is considerable.

Nodes. Displays the nodes of the mesh with points.

Active Elements. Displays the active elements of the approxi-
mation mesh.
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ID. Nodes. Displays tags with the IDs of the nodes in the mesh.

ID. Elements. Displays tags with the IDs of the elements in the
mesh.

On the other hand, we can access from the submenu Plot to the Configu-
ration displayed in figure A.9. In this window we can set several parameters
of the graphical area. By default, the values assigned are shown in figure A.9,
which can be modified as directed by the Programmer’s Guide.

All editable fields in the application are protected to prevent erroneous or
malicious insertion of inappropriate information to it.

Figure A.9: Configuration window.

In the configuration window we have the following options:

Plot Precision (dt). To define this parameter it should be men-
tioned that the geometry is defined by contours that have a
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local coordinate that runs tangentially on them called t which
takes values between 0 and 1 between each pair points. This
field defines how often we check the curves to obtain the points
that define the geometry graphically.

Margin Plot. Through this field it is possible to vary the margin
of separation between the edge of the graphical area and the
geometry. To leave this margin the distance between the two
furthest points is taken and it is scaled with this parameter.
It is recommended to vary this value between 0 and 0.2.

Margin Numberging. Defines the distance between the drawn
elements and their text labels displayed. It is recommended
to adopt values around 0.025.

Text Size. Determines the pixel size of text labels. This value is
very flexible because it depends largely on the screen resolu-
tion.

Arrow Angle (Rad). Angle in radians of the arrowheads drawn
on the contours of the component to indicate the direction in
which they are defined.

Arrow Scale Sets the size of the arrows on the contour. It is
recommended to adopt values around 0.025.

Force Field Scale. Determines the size of the arrows represent-
ing the applied forces. The size of the arrows used to repre-
sent specific forces are proportional to their value. It is rec-
ommended not to exceed the value assigned to the field Plot
Margin.

Pressure Field Scale. Define, similarly to the punctual forces,
the sizes of the vector fields of pressures applied on the con-
tour.

Spaced Pressure Field. Conceptually, this parameter is similar
to Plot Precision parameter and defines the distance on the
curve of the arrows used to represent the pressures applied on
the edges. Recommended values are between 0.05 and 0.1 for
this field.

Displacement Constrains Scale. Defines the size of the graphic
representation of the displacement restrictions applied on the
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contour in proportion to the size of the graphical area. It is
recommended not to exceed the value assigned to the field
Margin Plot.

Displacement Constrains Spaced. Conceptually, this parame-
ter is similar to Spaced Pressure Field and defines the sep-
aration distance between the symbols used to represent the
displacement restrictions. Recommended values are between
0.25 and 0.5.

Auto Scale. If this check box is checked, the graphical area is
automatically rescaled to the full extension of the component
for any modification that affects them directly, i.e., addition
or modification of points or curves, settings changes, adding
loads or constraints, etc.

Plot Geometry. If you disable this option the geometric elements,
applied loads or restrictions will not be reflected in the graph-
ical area. This may be interesting facing the implementation
of an iterative solver which is not required to redraw the ge-
ometry and other parameters for each calculation step.

Once the fields are modified, we accept the values by pressing the Apply
at the bottom right. If you want to save the changes, simply close the window
from the Close icon at the top right of the window or by pressing the Close.

It is recommended to respect the default settings until the user requires a
change in any of these fields during the process.

A.5.2. Definition of Geometry

Having reviewed the general parameters of the interface, we must define
the geometry entering the option Points and Curves from Pre-Processor, which
provides us access to the windows of points and curves definition shown in
figure A.10.
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The process must begin with the definition of points and then curves. For
the first point we define its position on the origin and the successive as shown
in figure A.11 accepting the coordinates of the points by pressing the Add/Mod.

After defining all the geometric points used to define the contour we obtain
the figure A.12.

We proceed then to generate the contour of the component with straight
lines and NURBs following the anticlockwise direction so that the material
is delimited by the geometry on the inside. As shown in figure A.10, in the

Figure A.10: Window for geometry definition.
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window Points/Curves we can find the different entities that can be generated
to create the contour of a component.

By clicking the radio buttons we can choose what type of curve we are going
to create, and depending on this choice, the application informs us about the
Format data required corresponding to the type of curve.

Before this master’s thesis the curves that could be generated were straight
lines, arcs and splines. In addition, you could use Circunf. by Lines and
Spline by Lines using a representation of the curve by small stretches of line.

(a) Point 1. (b) Point 2.

(c) Point 3. (d) Point 4.

(e) Point 5.

Figure A.11: Definition of points.
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In this work, we add new options such as NURB lines, NURB arcs, NURB
circunferences and NURB interpolation of points, with the options of defining
first derivatives, at the initial and the end point, and the curve degree.

For the present case the first line is designated as a Straight Line, and after
this we create the outer arc and so on until we close the contour. We can see
the steps shown in the next figure. After entering all the data for each line we
must input them using the button Add/Mod.

Figure A.12: Point representation after definition.
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After defining the curve of the component we will get the representation of
figure A.13 in the graphical area.

As mentioned above, the editable fields of the application are protected
so that only allows the insertion of the appropriate information for which are
designed, i.e. in case of introducing a text string, a complex number, etc. in
a field meant to store a single real number value, the program will inform us
with warning windows. In addition to these warnings, the program will be
interacting with the user at any time telling what is wrong.

Using the button Add/Mod of each zone we can also modify existing ele-
ments. In the case of points if their coordinates are modified and these are
belonging to one or more lines, the contours automatically adapt to the new
configuration also modifying loads and constraints affected by these changes.

(a) Stretch 1. (b) Stretch 2.

(c) Stretch 3. (d) Stretch 4.
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If you want to delete an entity is only necessary to select through their ID
and delete it by pressing the corresponding Delete depending on whether it is
a point or line.

After the definition of the geometry we can close the window using the
Close.

Figure A.13: Representación of the geometry.
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A.5.3. Application of Constraints and Loads

Prior to applying loads and constraints, the application needs a working
directory in which to store information about the geometry and to create files
with the constraints and loads corresponding with the problem.

Following the example, we create a folder in the root directory with the
name “Cylinder” and the problem is saved in a file under the name “Geometry.mat”
from the menu File-Save, appearing the directory and file name in the bottom
of the main window.

After selecting a workspace, you must generate files with the constraints
and loads on the contours: “press.m”, “Volforces.m”, “DisplOnCvs.m”. In the
directory tree of the program, you can find examples to learn the structure of
each one of them.

After setting these files, we proceed to the application of them opening
windows from the submenus shown in Figures A.14a and A.14b:

The moment we open one of these windows, it reminds us that the files
must be in the working directory, if you select a file out of this directory, the
program will not allow the process.

From the windows to apply constraints and loads we can search and select
the files previously edited and load them into the application.

For the correct visualization of the pressures and constraints we can mod-
ify the plotting settings from the configuration window of the graphical area
through the submenu File-Plot-Configuration assigning the appropriate values.

Finally, the result is shown in figure A.15.
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A.5.4. Definition of Material and Thickness

of the Component

The application allows us to store several materials to assign them later to
the mesh and analyze the component with different characteristics depending
on the selected material.

The materials are defined from the window material which is accessed from
the option Material from the menu Pre-Processor, shown in figure A.4. We

(a) Clicking the option On Curves.

(b) Clicking the option Pressures.

Figure A.14: Submenú Pre-Processor
.
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have to fill the fields as shown in figure A.16 and is accepted by clicking the
button Add/Mod.

Figure A.15: Representation of the constraints and loads applied.

Universitat Politècnica de València

Máster in Mechanical and Materials Engineering
177



A. USER’S GUIDE

A.5. Practical Guide

A.5.5. Definition of the Design Variables

and the Type of Interpolation

The introduction of information concerning the sensitivity analysis is per-
formed through the submenu Solver/Sensitivity Analysis/Analysis Options.
See figure A.5

This window will allow us to check the working folder in search of the file
where are defined the design variables for the problem. After selecting the
file, it is read automatically and the window will update the number of design
variables if it is the case. After this we will have the option to edit that file
with the MATLAB editor. See figure A.17

The other option available in this window is the choice of interpolation
mode for the velocity field. We can choose between the different methods im-
plemented in this master’s thesis: domain interpolation by weighting distances
and contour patches, the physical approach and we can upload an analytical
velocity field by choosing the corresponding file.

Figure A.16: Material properties window.
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Figure A.17: Sensitivity analysis properties.
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A.5.6. Meshing and Analysis Type

Before creating the mesh, we need to determine the mode of analysis that
we want to do with the window Analisys Mode 2D from the menu Solver
according to the hypothesis adopted.

Figure A.18: Analysis type selection.

In problems with exact solution, the application allows calculation in order
to determine the error in the approximation to the finite element solution. To
do this, we have to activate the check box, and then we will have to put the file
with the exact solution in the problem directory and with the specified name
“ExactPressSoluc.m”. This file is programmed similarly to the loads file but
with some differences, we can find several examples in the program folder.
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The introduction of mesh parameters is done through the mesh window,
accessed in the option h-Mesh & Solve from the submenu FEM.

Figure A.19: Meshing options window.

In the mesh window we can modify all meshing parameters available and
we can distinguish four distinct parts:

• Mesh boundaries. Top.

• Refinement options. Center.

• Element type. Bottom left.

• Load cases. Bottom right.

Universitat Politècnica de València

Máster in Mechanical and Materials Engineering
181



A. USER’S GUIDE

A.5. Practical Guide

At the moment of its opening for the first time in a particular problem, the
application allocates the mesh limits depending on the extension of the com-
ponent. These limits automatically created exceed the geometry in a certain
percentage given which guarantees the complete meshing of the component.

If these limits are modified, they are stored and displayed in the successive.
You can re-invoke the automatic limits with the button Auto of the window.

The limits can be modified manually inserting the values directly in the
fields of the top of the window or by contraction or expansion of the display
screen limits.

The contraction or expansion of the boundaries of the mesh is done by
specifying the percentage value in the appropriate field and pressing Contract
or Expand as appropriate.

In the central part of the window we can change the options related to the
refinement of the elements:

Initial Level Mesh. Indicates the highest level (“larger” elements)
to be used. Generally between 2 and 4 are good values, de-
pending on the difficulty of geometry.

Max No of Levels. Indicates the maximum level the program is
allowed to arrive. It is a way of indicating the size of the
smallest elements. The highest level in 64-bit PC is 23.

Elem Final Size. This value indicates the smallest size of element
we want, this parameter is disabled if Max No of Levels is
already indicated.

Recovery Type. Indicates the type of recovery of the stress field.
Value 10 uses the SPR technique with Conjoint Polynomials.
With value 300 the SPR-C technique with Conjoint Polyno-
mials is used.

Target Error (%). Indicates the maximum error in energy norm
accepted, when the program reaches this level ends the pro-
cess. You can set a global value for all load cases (by placing
a single value) or one for each load case, separating each one
with a space. If any of them has a negative value it will not
be considered during the h-adaptive process.

Error Reduction. Indicates the reduction percentage of the error
estimated in energy norm from one iteration to the next.
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Ref Incr Max. Specifies the maximum number of levels that an
element can be refined in one iteration.

Ref Level Max. Indicates the maximum level you can reach with
the refining h-adaptive process. Always less than Max No of
Levels.

Num Max Iter. Indicates the maximum number of iterations al-
lowed during the refining process.

In the field Load Cases, load cases are defined separated by a space.
In the window of meshing options we also specify the type of elements,

linear or quadratic.
The parameters introduced for the meshing of the problem is shown in

figure A.19.
When we have completed the definition of all parameters, we proceed to

checkout by pressing the button Mesh. If everything is correct, it activates the
check box and we may terminate the preparation of the mesh.

Any change affecting the conditions of meshing will make the state of the
check box to be disabled.

After the meshing we can see the initial mesh in the main window, see
figure A.20

A.5.7. Solving

To launch the calculation engine we must have entered all parameters cor-
rectly.

Once validated the meshing parameters, the button Solve in the mesh
window appears enabled and makes possible to launch the calculation by the
finite element method. See figure A.19.

At the end of the calculations, the program displays the following message
in figure A.21:
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Figure A.20: Initial mesh.

Figure A.21: Finish message from kernel.
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A.5.8. Post-processing of Results

The postprocessing of the results is done via the menu Post-Processor from
the menu bar. In case you have not launched the solver or may not have
successfully met the calculations, the menu is not displayed and prompt the
user with a message. Otherwise, the menu is displayed showing the options in
figure A.5:

Intermediate Processes. Here we can find the calculation of the
force vector and the calculation of the displacementsm these
two represented in vector form, to which we have access by
pressing the corresponding button the screen shown in figure
A.22.

Figure A.22: Intermediate processes window.

Nodal Displacements. The post-processing window allows to vi-
sualize the absolute nodal displacements or in each axis sepa-
rately. Figure A.23.
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Figure A.23: Displacements post-processing.

Stress. The post-processing window for the stresses allows to eval-
uate normal stresses, shear stresses and Von Mises compari-
son. Figure A.24.

Summary. Through this submenu, the application shows a sum-
mary of the analysis. Figure A.25.

Special Results. Through this submenu, the application allows
us to draw the map of the local effective index when exact
solution is available. Figure A.26.

Sensitivity Analysis. Within this submenu you can find the win-
dows that will allow us to obtain the graphs and results from
the analysis of sensitivities. Figures A.27 and A.28.
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Figure A.24: Stresses post-processing.
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Figure A.25: Summary window.

Figure A.26: Special results window.

Figure A.27: Sensitivities calculation graphs window.

188
Department of Mechanical and Materials Engineering

Research Centre in Vehicles Technology



Shape Sensitivity Module with Exact Geometrical Representation

Master Thesis

Figure A.28: Sensitivities calculation results window.
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B. PROGRAMMER’S GUIDE

This programmer’s guide will detail the structure of variables using the
program developed at DIMM. It depends on the efficiency of programming
and program capacity. Also serve as a framework for programming and that
is the link between the different calculation modules.

B.1. Modified Structures for the

Calculation of Sensitivities

B.1.1. Structure ElmInt

The structure ElmInt is dedicated to store the information relating to the
intersection points between the mesh and the geometry. The intersections are
stored for each element, all the intermediate points contained therein. The
masks used for data storage of each intersection are shown in table B.1, where
each mask value indicates the relevant matrix row. The description of the
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structure can be found in the table B.2, NElmInt indicates the total number of
elements intersected, NInPtElm indicates the number of intersection points in
one element, NCnt is the number of contours of the geometry and NInterv is the
number of intervals of intersection (number of times the element is intersected).

Mask Value Description

C_Cv 1 Curve where the intersection point is.

C_t 2 Indicates the value of local coordinate in the section of curve.

C_Elm 3 Curve where the intersection point is.

C_x 4 The value of the coordinate x of the intersection point.

C_y 5 The value of the coordinate y of the intersection point.

C_In 6 Flag indicating whether the point is internal with respect the
element.

C_On 7 Flag indicating whether the point is located on the edge of the
element.

C_Side 8 Indicates on which side (if any) the intersection point is lo-
cated.

C_tSide 9 Indicates the value of local coordinate in the side, counter-
clockwise.

C_end 10 Flag indicating whether the point is the end of the curve.

C_Sect 11 Indicates the section of the curve which the intersection lies
in.

C_Sec 12 Flag indicating whether the point is the end of a section.

C_tGl 13 Indicates the value of local coordinate in the curve.

C_Tang 14 Indicates if the intersection point is tangent to one side of an
element.

C_IntPNum 15 Number for intersection identification.

C_VFx 16 Indicates the value of the velocity field in the component x.

C_VFy 17 Indicates the value of the velocity field in the component y.

Table B.1: Masks used for storing information of the intersections.
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Field Type Size Description

Ints Structure 1×NElmInt Header structure which stores information
of the intersection of each element.

NumIntPts Int 1×1 Indicates the total number of intersection
points.

Cont2Elm Int MNES×NCnt Indicates the contours that cross through
an element.

Data Float 15×NInPtElm Matrix where the information of the inter-
section with each element is stored.

IntsInterval Int NInterv×3 For each interval, indicates the initial and
final column of the matrix that define Data
(columns 1 and 2, respectively) and asso-
ciated material (column 3).

Table B.2: Information stored for each intersection point.

B.2. Modified Structures for the

Creation of NURBs

B.2.1. Structure Geo

This variable stores geometric definitions obtained from the information
provided by the user. The data is stored as geometric entities (points, curves),
as the materials and the applied loads. Table B.3 shows the definition of every
field in the structure.
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Table B.3: Description of the subfields of the structure Geo.

Field Original value Description

Geo.Cv(i) — Substructure that stores all
components relating to curves.

Geo.Cv(i).Angles [] Row vector which contains the
initial and final angles in the
case of arcs.

Geo.Cv(i).ArrUnitVect [] Matrix 2×n containing the unit
vectors of the arrows that define
the direction of the curve.

Geo.Cv(i).ArrXYL [] Three-dimensional matrix that
contains the coordinates of each
of the arrows that define the di-
rection of the curve. In the case
of more of one arrow, the infor-
mation of each layer is arranged
in a different row.

Geo.Cv(i).CentPt [] Variable that contains the iden-
tifier of the point set as a center
in an arc.

Geo.Cv(i).CoefsX [] Array m × (n + 1) where
you store polynomial coeffi-
cients that determine the coor-
dinate x in function of the pa-
rameter t. m is the number
of polynomials that define the
curve and n is the degree. In
the case of a spline it is struc-
tured as follows: X = cx1 · t

3 +
cx2 · t

2 + cx3 · t+ cx4.

Table B.3 resumes in the next page. . .
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Continuation of the table B.3

Field Original value Description

Geo.Cv(i).CoefsY [] Array m × (n + 1) where
you store polynomial coeffi-
cients that determine the coor-
dinate y in function of the pa-
rameter t. m is the number
of polynomials that define the
curve and n is the degree. In
the case of a spline it is struc-
tured as follows: Y = cy1 · t3 +
cy2 · t

2 + cy3 · t+ cy4.

Geo.Cv(i).DerivX [] Array m × (n + 1) where you
store polynomial coefficients de-
rived from Geo.Cv(i).CoefsX,
determining the slope of the
polynomial function based on
the parameter t. m is the num-
ber of polynomials that define
the curve and n is the degree of
the polynomials derived. In the
case of a spline is structured as
follows: X ′ = 3cx1 · t2 + 2cx2 ·
t+ cx3.

Geo.Cv(i).DerivX [] Array m × (n + 1) where you
store polynomial coefficients de-
rived from Geo.Cv(i).CoefsX,
determining the slope of the
polynomial function based on
the parameter t. m is the num-
ber of polynomials that define
the curve and n is the degree of
the polynomials derived. In the
case of a spline is structured as
follows: X ′ = 3cy1 · t2 + 2cy2 ·
t+ cy3.

Geo.Cv(i).Dt [] Row vector stored values of the
parameter t in which has been
evaluated the curve to obtain
Geo.Cv(i).Trace.

Table B.3 resumes in the next page. . .
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Continuation of the table B.3

Field Original value Description

Geo.Cv(i).FormIn [] Original sequence of row data
input for curves.

Geo.Cv(i).FormOut [] Variable that stores the input
information of the curve but ob-
tained from the breakdown of it.
This variable stores the infor-
mation displayed by specifying
the ID of an existing curve.

Geo.Cv(i).IdCv 1 Variable that contains the iden-
tifier of the curve.

Geo.Cv(i).NumPts [] Number of points that define
the curve.

Geo.Cv(i).Pends [] Row vector in which are stored
the slopes of the curve. This
variable is completed only in the
case of splines defined by their
slopes and trailing.

Geo.Cv(i).Pts [] Row vector which contains the
identifiers of the different points
of the curve. These come com-
puter construction according to
the direction of the curve.

Geo.Cv(i).Radio [] Variable that stores the value of
the radius in the case of an arc.

Geo.Cv(i).Sign [] Variable that defines the direc-
tion of construction of a circu-
lar arc, positive in case of con-
structing the arch counterclock-
wise and negative if schedule.

Geo.Cv(i).Trace [] Matrix 2×n which sets out the
coordinates x and y of the
points that allow the geomet-
ric representation of the curve.
In this matrix, n depends on
the parameter mentioned above
Geo.Cnts.dt.

Table B.3 resumes in the next page. . .
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Continuation of the table B.3

Field Original value Description

Geo.Cv(i).Type 0 Curve type.

Geo.Cv(i).UnitVector [] Matrix 2×n containing the unit
vectors in the direction of the
curve at the points defined in
Geo.Cv(i).Dt.

Geo.Cv(i).Nurbs.CPts [] Matrix 2×n containing the co-
ordinates x and y of every point
belonging to the control poly-
gon.

Geo.Cv(i).Nurbs.Weights [] Vector containing the weights
asociated to every control point.

Geo.Cv(i).Nurbs.Order 0 Order of the B-spline curve,
usually is equal to the spline de-
gree plus one.

Geo.Cv(i).Nurbs.SplineDeg 0 Degree of the B-spline curve.

Geo.Cv(i).Nurbs.KnotVec [] Vector containing the knots that
define the different spans in the
B-spline.

Geo.Cv(i).Nurbs.MatBasisFuncts [] Matrix containing the basis
functions for the non-empty
spans.

Geo.Cv(i).Nurbs.dMatBasisFuncts [] Matrix containing the derivative
of the basis functions for the
non-empty spans.

Geo.Cv(i).Nurbs.UniKnotVec [] Vector containing unique values
for the knot vector.

Geo.Cv(i).Nurbs.MatSpans 0 Number of spans with matrix
associated.

Geo.Cv(i).Nurbs.NumFullSpans 0 Number of non-empty spans.
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B.3. Structures Created for the

Calculation of Sensitivities

B.3.1. Structure SensAnaGlob

The variable SensAnaGlob is used to store specific information for the cal-
culation of sensitivities. Table B.4 displays its contents.

B.3.2. Structure SensAnaIter

The variable SensAnaIter is used to store any information that changes
from iteration to iteration, thus for each calculation mesh. Table B.5 displays
its contents.
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Field Original Value Description

Param.NDesVar 0 Number of design variables de-
fined by the user.

Param.DesVarFile ’ ’ Path to the file which defines the
design variables.

Param.DesVarInc 0 Increased introduction to the
method of finite differences in the
contour.

Param.InterpType [] Type of velocity field generation
chosen.

Param.DomainType [] Type of interpolation chosen for
the velocity field in the domain.

Param.VFEmptyArea 100 Size of the empty area when using
the contour element method of in-
terpolation.

Param.AnaliticVF 0 Flag that indicates if a file with
the analytical velocity field is
loaded.

Param.LoadCaseVF 0 Flag that indicates if the load
case for sensitivities calculation
has been defined.

Param.LoadCaseSens 2 Number of the sensitivities load
case.

Param.ExacNorm — Exact energy norm of the problem
if the problem has exact solution.

Param.ExactSens — Exact sensitivity of the energy
norm squared if the problem has
exact solution.

VelField.GeoPt [] Variable that stores the position
of the points of the deformed ge-
ometry of a design variable.

VelField.NRefLinChildren [] Matrix with the linear shape
functions necessary for projection
tasks.

VelField.NRefCuadChildren [] Matrix with the quadratic shape
functions necessary for projection
tasks.

Table B.4: Information stored in SensAnaGlob.
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B.3. Structures Created for the Calculation of Sensitivities

Field Original Value Description

VelField [] Velocity field at nodes for both components
x and y.

DMatK.dKe [] Derivative of the stiffness matrix for each el-
ement, with respect to the design variables.

DMatK.dBPtG [] Derivative of the transformation matrix B at
Gauss points, with respect to the design vari-
ables.

DMatK.dBVert [] Derivative of the transformation matrix B at
vertices, with respect to the design variables.

DMatK.dJPtG [] Derivative of the Jacobian matrix J at Gauss
points, with respect to the design variables.

Plot.Vertices [] Coordinates of the element vertices to set up
the representation patches.

Plot.DisplSens [] Displacement sensitivities at element ver-
tices.

Plot.DisplSensGP [] Displacement sensitivities at Gauss points.

Plot.VelField [] Velocity field at element vertices.

Plot.VelFieldGP [] Velocity field at Gauss points.

Plot.StressSens [] Stress sensitivities at element vertices.

Plot.StressSensGP [] Stress sensitivities at Gauss points.

Results.dU [] Displacement sensitivities at degrees of free-
dom.

Results.dK 0 Global derivative of the stiffness matrix, with
respect to the design variables.

Table B.5: Information stored in SensAnaIter.
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