
DFA minimization: from Brzozowski to Hopcroft

Pedro Garćıa, Damián López and Manuel Vázquez de Parga

Departamento de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia

{pgarcia,mvazquez,dlopez}@dsic.upv.es

Abstract

Minimization of automata is a classic problem in Computer Sci-
ence which is still studied nowadays. In this paper, we first propose
a polynomial minimization method directly derived from Brzozowski’s
algorithm, and second, we show how the consideration of some effi-
ciency improvements on this algorithm lead to obtain an algorithm
equivalent to Hopcroft’s.

Keywords: DFA minimization; Brzozowski algorithm; Hopcroft algo-
rithm

1 Introduction

Many computer applications, from text processing or image analysis to lin-
guistics among others, consider the computation of minimal automata in
order to obtain efficient solutions. The problem of automata minimization
is a classic issue in Computer Science, which, still nowadays, arouse interest.

The minimization of deterministic finite automata is based on the com-
putation of the coarsest equivalence relation which fulfills that, any pair of
equivalent states p and q have the same final/non-final status, and, for any
given symbol, the states reached from p and q with that symbol are also
equivalent. The computation of such relation is equivalent to the computa-
tion of the Nerode’s equivalence relation for the language that accepts the
automaton to be minimized.

The majority of the methods that compute the above mentioned rela-
tionship follow one of two different approaches. On the one hand, some
methods check every pair of states to test if they are equivalent or not [1, 2].
On the other hand, some other methods iteratively refine an initial (trivial)
partition of the set of states into final and not final states [3, 4, 5]. Among
these algorithms, the algorithm by Hopcroft is of special interest, because it
is the algorithm with the best time complexity (O(n log n), where n stands
for the number of states of the input automaton).

1

The minimization algorithm proposed by Brzozowski [6] is usually set
appart from the rest [7, 8]. Despite its worst-case exponential time com-
plexity, this very concise and elegant algorithm is based on two well-known
automata constructions and its implementation is very straightforward. Es-
sentially, the algorithm computes the automaton D(R(D(R(A)))), where
D(A) computes the determinization of A by the well-known subset con-
struction and R(A) is the reverse automaton of A.

The paper by Champarnaud et al. [7] can be seen as a first attempt
to relate Brzozowski’s algorithm with other minimization methods. The
authors propose an algorithm that compute the first step of Brzozowski
algorithm (the computation of D(R(A))) has, take into account the set of
states of the resulting automaton to sequentially split the trivial partition
of the set of states of A. This, exponential in the worst case algorithm, is
interesting because relates Brzozowski algorithm in a, so to speak, Hopcroft
framework.

In this paper we study the relationship among these two minimization
algorithms. We show that, in fact, the computation carried out by both
Brzozowski and Hopcroft is, in essence, the same. We also show that it
is possible to define algorithms in the space among both algorithms, also
with good time complexity. The paper is structured as follows. Section 2
summarizes the notation used in this work; Section 3 recalls the Brzozowski
minimization algorithm in terms that allow us to propose in Section 4 a
derived algorithm with polynomial time complexity. Section 5 recalls the
algorithm by Hopcroft and the essential results used by Berstel et al. in
their proof of termination and correctness [9]. Section 6 show that some
efficiency improvements on the algorithm proposed in Section 4 lead to an
algorithm equivalent to Hopcroft’s.

2 Notation and definitions

A finite automaton is a 5-tuple A = (Q,Σ, δ, I, F), where Q is a finite set of
states, Σ is an alphabet, I ⊆ Q is the initial set of states, F ⊆ Q is the set
of final states and δ : Q × Σ → P(Q) is the transition function, which can
also be seen as δ ⊆ (Q × Σ × Q). The transition function can be extended
in a natural way to Σ∗. Given an automaton A, we say it is accessible if,
for each q ∈ Q, there exists a string x such that δ(q0, x) = q. An automaton
is called deterministic (DFA) if, for every state q and every symbol a, the
number of transitions δ(q, a) is at most one, and it has only one initial state
q0. A DFA is said to be complete whenever the number of transitions δ(q, a)
is just one. In the following we will consider only complete and accessible
DFA.

Given a DFA A = (Q,Σ, δ, q0, F) that accepts a language L, the reverse
automaton is defined as the automaton R(A) = (Q,Σ, δr, F, {q0}), where

2

q ∈ δr(p, a) if and only if δ(q, a) = p. Given any language L, we will denote
the reverse language by Lr. For any automaton A = (Q,Σ, δ, I, F) it is
known that the automaton A′ = (P(Q),Σ, δ′, I, F ′), where F ′ = {P ∈
P(Q) : P ∩ F 6= ∅} and δ′(P, a) = ∪p∈P δ(p, a) is a DFA equivalent to A.
Let us denote the accesible (trimmed) version of A by D(A).

A partition of a set Q is a set {P1, P2, . . . , Pk} of pairwise disjoint non-
empty subsets of Q such that Q = ∪1≤i≤kPi. We will refer to those subsets
as blocks, and we will denote with B(p, π) the block of π which contains p.
A partition π1 is refined by π2 (π1 is coarser than π2) if each class in π2 is
contained in some class in π1. We will denote this π2 ≤ π1.

Let π1 and π2 be two partitions of Q, the coarsest partition which refines
both π1 and π2, and we will denote it π1 ∧ π2. The classes of this partition
are the non empty sets in P1 ∩ P2, where P1 ∈ π1 and P2 ∈ π2.

Let us denote the size of a set Q by |Q|. Let us also denote by P(Q)
the power set of Q. In order to reduce the notation, for any P ⊆ Q, we will
denote the complementary of P in Q by PQ, or P whenever this omission
do not lead to confusion.

Given an automaton A = (Q,Σ, δ, q0, F), let P,R ⊂ Q and a ∈ Σ. Let
us refer to (P, a) as a splitter and also denote by (P, a)|R the split of the set
R into the following sets:

R′= {q ∈ R : δ(q, a) ∈ P} = δ−1(P, a) ∩ R

R′′ = R′
R= {q ∈ R : δ(q, a) 6∈ P} = R − R′

and it is interesting to be noted here that (P, a)|R = (P , a)|R. Whenever
δ−1(P, a)∩R = ∅ or δ−1(P, a)∩R = R we will say that (P, a) does not split
R and we will denote it by (P, a)|R = R.

3 Brzozowski’s algorithm

The algorithm proposed by Brzozowski [6] computes the minimal DFA
equivalent to any non-deterministic automaton A. The process consist of
compute the automaton A′ = D(R(D(R(A)))). Following result is the key
to prove the correctness of this algorithm.

Proposition 1 (Brzozowski) Given a DFA A = (Q,Σ, δ, q0, F) that ac-
cepts a language L, then D(R(A)) is the minimal DFA that accepts the
language Lr.

Despite the fact that, it is possible the size of D(R(A)) to be exponential
with respect to |Q|, we describe below the way Brzozowski’s method obtains
the minimal DFA for a given automaton.

In the following, we will only consider the case when the input to the
algorithm is a complete DFA A = (Q,Σ, δ, q0, F) for a given language L.

3

Let D(R(A)) = (R,Σ, δdr, F, F ′) be the trimmed automaton obtained using
the reverse and determinization constructions described above. Note that
R ⊆ P(Q) and F ′ = {P ∈ R : q0 ∈ P}. Let us also define, for every state
q ∈ Q, the set Rq = {P ∈ R : q ∈ P}. The proposition below proves a
valid construction for the minimal DFA for A. The terms used in the proof
will be useful in the remains of the paper.

Proposition 2 Let A = (Q,Σ, δ, q0, F) be a DFA that accepts a given
language L and let R ⊆ P(Q) denote the set of states of the automa-
ton D(R(A)). The minimal DFA for A is equal up to isomorphism to
A′ = (Q′,Σ, δ′, q′0, F

′) where:

• Q′ = {Rq : q ∈ Q}

• q′0 = Rq0

• F ′ = {Rq : q ∈ F}

• δ′(Rp, a) = Rδ(p,a)

Proof. We will see that the construction proposed is equivalent to the
output of the method by Brzozowski.

It is easy to see that each states of the D(R(D(R(A)))) automaton is an
element in P(R); the initial state of this automaton is Rq0

; and the final
states are those P ∈ P(R) such that F ∈ P.

We prove now that the definition of the set of final states is consistent.
Let p be a state in A such that δ(p, a) = q, and let P be a state in D(R(A))
such that q ∈ P . We recall here that δdr is the transition function of the
automaton D(R(A)). First, note that δdr(P, a) ⊇ δ−1(q, a) ∋ p. Second, let
us denote the set P = {P ∈ R : δ−1(q, a) ⊆ P} ⊇ Rp (the set of states of
the automaton D(R(D(R(A)))) which contain δ−1(q, a), which is included
into Rp). Finally, taking into account the set P, it can be seen that there is
a relationship among the transition function of the automaton R(D(R(A)))
(δ−1

dr) and the transition faction of the automaton D(R(D(R(A)))) (δ′):

δ′(P, a) =
⋃

P∈P

δ−1
dr (P, a) = Rq

This relationship is also hold when the set Rp is considered instead of P,
because, on the one hand P ⊆ Rp, and, on the other hand

⋃

P∈Rp

δ−1
dr (P, a) ⊇

Rq, thus, it is fulfilled that:

δ′(Rp, a) =
⋃

P∈Rp

δ−1
dr (P, a) = Rq

which proves that δ′(Rp, a) = Rδ(p,a). This last result, together with the fact
that the final states in the automaton D(R(D(R(A)))) are those P ∈ P(R)

4

that F ∈ P, imply that F ′ = {Rq : q ∈ F}, which proves the correctness
of the definition.

�

Please note that |Q| ≥ |Q′|, that is, those states p and q such that
Rp = Rq are equivalent and lead to a reduction of the automaton. In a
more formal way, let us define the function ϕ : Q → Q′ as ϕ(q) = Rq. This
function defines a surjective homomorphism ϕ : A → A′, where kerϕ defines
the Nerode’s equivalence over A. That is, for p, q ∈ Q, p ∼L q if and only if
ϕ(p) = ϕ(q). Following proposition is a direct derivation from this.

Proposition 3 Let A = (Q,Σ, δ, q0, F) be a DFA that accepts a language
L and let R the set of states of D(R(A)). For each pair of sates p, q ∈ Q,
p ∼L q if and only if, for all P ∈ R, it is fulfilled that p ∈ P ⇔ q ∈ P .

There are several ways to compute this, Brzozowski’s algorithm is one
of them, but other authors use this same approach. For instance, Lombardy
and Sakarovich [10], and Polak as well [11], build a matrix M with rows
indexed by the states in R and the columns indexed by the states in Q,
where, for each (P, q) ∈ R × Q:

M(P, q) =

{

1 if q ∈ P

0 otherwise

those states with the same column are equivalent. This is a direct result from
the way the authors obtain the universal automaton for a given language.

Another related result is due to Champarnaud et al. [7], where obtain
the same equivalence relation using the split operation.

It seems quite clear that both approaches can be seen as a variation of
Brzozowski’s algorithm, both with the same drawback, that is, their expo-
nential time complexity in the worst case (the automaton D(R(A)) can be
exponentially bigger with respect to A). We now prove that the computation
of πL does not need the whole computation of D(R(A)).

4 A polynomial algorithm

Let A = (Q,Σ, δ, q0, F) a DFA that accepts the language L. Any E ⊂ Σ∗

defines a partition πE over Q where, for all p, q ∈ Q, B(p, πE ,) = B(q, πE)
if and only if, for every e ∈ E, is fulfilled that, δ(p, e) ∈ F if and only if
δ(q, e) ∈ F . In the following we will refer to this set as a set of experiments.
Note that, for any E ⊂ Σ∗, it is fulfilled that L(A) ⊆ L(A/πE).

We now extend the previous definition to consider those sets of experi-
ments able to obtain the partition induced by Nerode equivalence.

5

Definition 4 Given a DFA A = (Q,Σ, δ, q0, F), a set of experiments E ⊂
Σ∗ for A is defined to be complete if and only if, for every pair of states p
and q such that RA

p 6= RA
q , there exists e ∈ E such that δ(p, e) ∈ F if and

only if δ(q, e) 6∈ F .

Example 5 Let us consider the DFA in Figure 1:

1 2 3 4

5

a, b a, b a

b

a, b

a, b

Figure 1: Automaton example.

Given that λ distinguish the final state from the other states. Note that
there are different complete sets of experiments. Among others, some of
these sets are:

{

{λ, a, a2, a3}, {λ, a, ba, ba2}, {λ, a, aba, a2}, . . .
}

The property below is a direct consequence of previous definitions

Property 6 Given a DFA A = (Q,Σ, δ, q0, F) and E ⊂ Σ∗ a complete set
of experiments for A. It is fulfilled that L(A) = L(A/πE). Furthermore,
A/πE is equal up to isomorphism to the minimal DFA for L(A).

Proof. Note that, by definition, a complete set of experiments contains
strings to distinguish all the distinguishable states. Thus, for each pair of
states p, q, it is fulfilled that B(p, πE ,) = B(q, πE) if and only if RA

p = RA
q ,

that is, πE = πL. �

We note here that, for any DFA A = (Q,Σ, δ, q0, F) with n states, it
suffices n − 1 strings (a complete set of experiments with size n − 1) in
the worst case, to refine the initial partition in order to distinguish all the
states of A. Taking into account the automaton in Example 5, note that
both {λ, a, a2, a3} and {λ, a, ba, ba2} are complete sets of experiments, but
the first one is suffix closed. Proposition 7 proves that, for each automaton,
there always exist a suffix closed set of experiments.

Proposition 7 Let A = (Q,Σ, δ, q0, F) be a DFA and E a set of experi-
ments for A. Let a ∈ Σ and e ∈ E be such that ae 6∈ E and πE∪{ae} = πE.

6

If there exists y ∈ Σ∗ such that πE∪{yae} refines πE, then there exists an
experiment e′ ∈ E such that πE∪{ye′} = πE∪{yae}.

Proof. Let p, q ∈ Q be the pair of distinguishable states that cannot be
distinguished with ae but such that yae distinguishes them. In more formal
terms, p and q are such that δ(p, yae) ∈ F and δ(q, yae) 6∈ F . From this
follows that δ(δ(p, y), ae) ∈ F and δ(δ(q, y), ae) 6∈ F . Let us denote δ(p, y) =
p′ and δ(q, y) = q′, thus, δ(p′, ae) ∈ F implies δ(q′, ae) 6∈ F .

Note that πE∪{ae} = πE, which means that there is an experiment e′ ∈
E such that δ(p′, e′) ∈ F and δ(q′, e′) 6∈ F , that is, an experiment that
distinguishes p′ and q′. Therefore, δ(p, ye′) ∈ F if and only if δ(q, ye′) 6∈ F
and πE∪{ye′} = πE∪{yae}. �

In other words, Proposition 7 proves that, given a set of experiments
E, an experiment e ∈ E and a symbol a ∈ Σ, if ae does not refine the
partition induced by E, then any refinement induced by strings in Σ+ae can
be obtained by some other strings in Σ+E. This implies that is possible
to discard any experiment such that ae is one of its suffixes. As a direct
consequence of previous proposition, following corollary proves a condition
for a suffix-closed set of experiments to be complete.

Corollary 8 Let A = (Q,Σ, δ, q0, F) be a DFA and E a suffix-closed set of
experiments for A. If πE = πE∪{ae} for all a ∈ Σ and e ∈ E, then E is a
complete set of experiments.

Proposition 9 For any automaton A = (Q,Σ, δ, q0, F), there exists a suffix
closed complete set of experiments E with size bounded by n − 1 where n
denotes the number of states of A.

Proof. We will prove the proposition by induction on the number of
strings in E.

Let E0 = {λ}, suffix-closed and bounded by n−1. The set of experiments
E0 produces the trivial partition πE0

= {F,Q − F}. If L(A) = L(A/πE0
)

then the proposition is proved.
If L(A) 6= L(A/πE0

) then let Ek = {e0 = λ, e1, . . . , ek} be a suffix-
closed set of experiments such that πEi+1

refines πEi
for 1 ≤ i ≤ k. If

L(A) 6= L(A/πEk
), then Corollary 8 proves that there exists a ∈ Σ and an

experiment ej ∈ Ek to obtain Ek+1 = {e0, λ, e1, . . . , ek, aej} suffix-closed and
such that πEk+1

refines πEk
., We finally note that it suffices n− 1 strings in

the worst case, to refine the initial partition in order to distinguish all the
states of A. �

Let us note here that, given a set of experiments E for an automaton
A = (Q,Σ, δ, q0, F), any e ∈ E produces a partition of Q in two blocks:
Qe = {p ∈ Q : δ(p, e) ∈ F} and Q−Qe. Let us denote such partition with
πe, then:

πL =
∧

e∈E

πe

7

Let us also note that Qe can be seen as a state of D(R(A)), the only one
that fulfills that δdr(F, er) = Qe.

In the following, we propose an efficient minimization algorithm for DFA
using the same approach by Champarnaud cited above. To do so, we first
establish a bijection among a suffix closed complete set of experiments for
an automaton A and a set of states in the automaton D(R(A)). We prove
that such set of states can be reached in D(R(A)) using a prefix closed set
of strings. It is known that the partition πL can be obtained using at most
n − 1 states. Our algorithm is based on these facts to minimize A without
the need of computing the whole set of states of D(R(A)).

Definition 10 Let us consider a DFA A = (Q,Σ, δ, q0, F) and a set S ⊆
P(Q). We define the equivalence relation induced by the set S , and thus,
we say that p ≡S q if and only if, for all P ∈ S , it is fulfilled that p ∈ P ⇔
q ∈ P .

Definition 11 We say that S ⊆ P(Q) is a complete set of states for a
DFA A = (Q,Σ, δ, q0, F) if and only if, for any given p, q ∈ Q, if RA

p 6= RA
q ,

then there exists a set P ∈ S such that p ∈ P if and only if q 6∈ P .

Following proposition is direct consequence of previous definitions.

Proposition 12 Given a DFA A = (Q,Σ, δ, q0, F), if S ⊆ P(Q) is a
complete set of states, then ≡S induces the partition πL.

The next proposition can be seen as a consequence of Proposition 3.

Proposition 13 (Brzozowski) Given a DFA A = (Q,Σ, δ, q0, F) and
R ⊆ P(Q) the set of states of D(R(A)). The set R is a complete set
of states for A.

Example 14 Let us consider the DFA in Figure 1. The states of the
D(R(A)) automaton are:

R = {{4}, {3, 4}, {2, 3, 4}, {2, 4}, {1, 2, 3, 4}, {1, 2, 4}, {1, 3, 4}, {1, 4}}

and A is already minimal. We note here that R is a complete set of states.
Although not stated in this way, this is the key of Brzozowski’s work on
automata minimization.

We also show below some complete sets of experiments E for the au-
tomaton and their corresponding sets SE.

E SE

{λ, a, a2, a3} {{4}, {3, 4}, {2, 3, 4}, {1, 2, 3, 4}}
{λ, a, ba, ba2} {{4}, {3, 4}, {2, 4}, {1, 3, 4}}
{λ, a, aba, a2} {{4}, {3, 4}, {1, 3, 4}, {2, 3, 4}}

8

For each P ∈ R, let us denote in the sequel with xP the first string in
canonical order such that δdr(F, xP) = P .

Definition 15 We say that a set of states S is prefix-closed if the set
{xr

p : P ∈ S)} is suffix-closed.

Proposition 16 Let S ⊆ R be a complete set of states for a DFA A. The
set ES = {xr

P : P ∈ S } is a complete set of experiments for A.
Proof. For each pair p, q ∈ Q such that RA

p 6= RA
q there exists a set

P ∈ S where p ∈ P if and only if q 6∈ P .
Note that δdr(F, xP) = P , therefore, δ(p, xr

P) ∈ F if and only if δ(q, xr
P) 6∈

F . Therefore, ES is a complete set of experiments for A. �

Proposition 17 For any given DFA A = (Q,Σ, δ, q0, F), there exists a
prefix-closed complete set of states for A whose size is bounded above by
|Q| − 1

Proof. Proposition 9 states that there exists, for any automaton A, a
suffix-closed set of experiments E whose size is at most |Q| − 1. Therefore,
SE is a prefix-closed complete set of states, whose size is bounded above by
|Q| − 1. �

The argument used in the proof of Proposition 17 allows to carry out
the minimization of a DFA using a partial determinization of the reverse
automaton, in which those states that do not refine the current partition are
rejected. This method of minimization by partial reverse determinization
(PRD) is depicted in Algorithm 4.1. We show below an example of run.

Example 18 Let us consider the DFA in Figure 2. Table 1 depicts the
behaviour of the algorithm. Each row in the table summarizes an iteration.
The information shown for each iteration consist on: the splitter took into
account; the waiting set; and the partition obtained (whenever it was modified
with respect to the previous one).

The algorithm considers initially the trivial partition of final and non-
final states π = {{2, 3, 4, 6, 7}, {1, 5, 8, 9, 10}}, and updates the set L with
the pairs ({2, 3, 4, 6, 7}, a) for each a ∈ Σ. In this run we will follow a
breath-first extraction criterion.

The algorithm considers in each iteration a splitter to refine the current
partition. For instance, in iteration 2 the algorithm considers the splitter
({2, 3, 4, 6, 7}, b). Therefore, the set δ−1({2, 3, 4, 6, 7}, b) = {1, 4, 5, 6} guide
the refinement of the partition to obtain the following one:

π = {{2, 3, 7}, {4}, {6}, {1, 5}, {9}, {8, 10}}

and the update of the waiting set L lead to the set:

L = {({1, 2, 3, 4, 5, 7, 9}, a), ({1, 2, 3, 4, 5, 7, 9}, b), ({1, 4, 5, 6}, a), ({1, 4, 5, 6}, b)}

9

0
π {{2, 3, 4, 6, 7}, {1, 5, 8, 9, 10}}
L {({2, 3, 4, 6, 7}, a), ({2, 3, 4, 6, 7}, b)}

1
(S, a) ({2, 3, 4, 6, 7}, a)
π {{2, 3, 4, 7}, {6}, {1, 5, 9}, {8, 10}}
L {({2, 3, 4, 6, 7}, b), ({1, 2, 3, 4, 5, 7, 9}, a), ({1, 2, 3, 4, 5, 7, 9}, b)}

2
(S, a) ({2, 3, 4, 6, 7}, b)
π {{2, 3, 7}, {4}, {6}, {1, 5}, {9}, {8, 10}}

L

{

({1, 2, 3, 4, 5, 7, 9}, a), ({1, 2, 3, 4, 5, 7, 9}, b),
({1, 4, 5, 6}, a), ({1, 4, 5, 6}, b)

}

3
(S, a) ({1, 2, 3, 4, 5, 7, 9}, a)
π {{2, 7}, {3}, {4}, {6}, {1, 5}, {9}, {8, 10}}

L

{

({1, 2, 3, 4, 5, 7, 9}, b), ({1, 4, 5, 6}, a), ({1, 4, 5, 6}, b),
({1, 2, 4, 5, 7, 9}, a), ({1, 2, 4, 5, 7, 9}, b)

}

4
(S, a) {1, 2, 3, 4, 5, 7, 9}, b)

L

{

({1, 4, 5, 6}, a), ({1, 4, 5, 6}, b),
({1, 2, 4, 5, 7, 9}, a), ({1, 2, 4, 5, 7, 9}, b)

}

5
(S, a) ({1, 4, 5, 6}, a)
L {({1, 4, 5, 6}, b), ({1, 2, 4, 5, 7, 9}, a), ({1, 2, 4, 5, 7, 9}, b)}

6
(S, a) ({1, 4, 5, 6}, b)
π {{2}, {7}, {3}, {4}, {6}, {1, 5}, {9}, {8, 10}}

L

{

({1, 2, 4, 5, 7, 9}, a), ({1, 2, 4, 5, 7, 9}, b),
({2, 3}, a), ({2, 3}, b)

}

7
(S, a) ({1, 2, 4, 5, 7, 9}, a)
L {({1, 2, 4, 5, 7, 9}, b), ({2, 3}, a), ({2, 3}, b)}

8
(S, a) ({1, 2, 4, 5, 7, 9}, b)
L {(({2, 3}, a), ({2, 3}, b)}

9
(S, a) ({2, 3}, a)
π {{2}, {7}, {3}, {4}, {6}, {1}, {5}, {9}, {8, 10}}
L {({2, 3}, b), ({1}, a), ({1}, b)}

Table 1: Run of PRD algorithm when the input is the automaton in Figure
2. Note that the table does not show the last iterations (that completely
process the waiting set) because the partition is not further modified. Note
also that the partition is shown only when it is modified

10

Algorithm 4.1 A minimization algorithm by partial reverse determiniza-
tion (PRD)

Require: A DFA A
Ensure: The minimal DFA equivalent to A
1: Method
2: π = {F, Q − F}
3: S = F
4: L = {}
5: for all a ∈ Σ do
6: L = Append(L , (S, a))
7: end for
8: while L 6= {} do
9: Extract (S, a) in L

10: Delete (S, a) from L

11: π′ = π
12: for all B ∈ π which is refined by (S, a) do
13: (B′, B′′) = (S, a)|B
14: Substitute in π the block B for B′ and B′′

15: end for
16: if π 6= π′ then
17: for b ∈ Σ do
18: L = Append(L , (δ−1((S, a), b))
19: end for
20: end if
21: end while
22: Return (A/π)
23: End Method.

The last modification of the partition is carried out by the consideration
of the splitter ({2, 3}, a). Note that δ−1({2, 3}, a) = {1}, that leads to obtain
the partition:

π = {{2}, {7}, {3}, {4}, {6}, {1}, {5}, {9}, {8, 10}}

which is not further modified by the algorithm.

We note that, as opposed to the method proposed by Champarnaud in
cite, PRD algorithm does not need to compute completely the automaton
D(R(A)). As it is proposed, PRD algorithm is a variant of Brzozowski
algorithm but with time complexity bounded by O(k · n2), where k denotes
the number of symbols and n the number of states of the automaton.

11

1

2

3

4

5

6

7

8

9 10

a

b

a

b

b

a

a

b

a

b

b
a

b
a

a, b

a

b

b

a

Figure 2: Automaton example.

5 Hopcroft’s algorithm

The most time efficient algorithm known to minimize automata is due to
Hopcroft [4]. A careful implementation of this algorithm lead to a wost
case time O(k · n · logn). Many papers are devoted to describe this method
[12, 13, 14, 15, 9], in spite of that, no clear relationship among Hopcroft and
Brzozowski has been described so far.

Hopcroft’s method is outlined in Algorithm5.1. Briefly, the algorithm
maintains a waiting set L of splitters to consider in the refinement of the
current partition π. Usually, the pair (π,L) is referred to as a configuration
of the algorithm. Note that the algorithm does not fix any order to extract
an element from L .

The clever choice of the smallest set obtained in each refinement is the
key to achieve the, best up to now, time complexity of a DFA minimization
method. In [9], Berstel et al. give a proof of the correctness and termination
of the algorithm. The proof takes into account the following lemma:

Lemma 19 (Hopcroft) Let P be a set of Q, and let π = P1, P2 be a
partition of P . For any R ⊂ Q and a ∈ Σ, it is fulfilled that:

(P, a)|R ∧ (P1, a)|R = (P, a)|R ∧ (P2, a)|R = (P1, a)|R ∧ (P2, a)|R

and prove a condition that is fulfilled in every configuration of any run of
Hopcroft’s algorithm. The following proposition enunciates the condition.

Proposition 20 (Berstel [9]) Let (π,L) be a configuration in some ex-
ecution of Hopcroft’s algorithm on an automaton A. For any P ∈ π, any

12

Algorithm 5.1 Hopcroft’s DFA minimization algorithm.

Require: A DFA A
Ensure: The minimal DFA equivalent to A
1: Method
2: π = {F, Q − F}
3: S = the smallest of the sets F and Q − F
4: L = {}
5: for all a ∈ Σ do
6: L = Append(L , (S, a))
7: end for
8: while L 6= {} do
9: Extract (S, a) in L

10: Delete (S, a) from L

11: for B ∈ π such that B is refined by (S, a) do
12: (B′, B′′) = (S, a)|B
13: Substitute in π the block B for B′ and B′′

14: Update L by substituting any (B, a) for (B′, a) and (B′′, a)
15: C = the smallest of the sets B′ and B′′

16: for all a ∈ Σ do
17: L = Append(L , (C, a))
18: end for
19: end for
20: end while
21: Return (A/π)
22: End Method.

subset R of a class of π and a ∈ A, one has

(P, a)|R ≥
∧

(S,a)∈L

(S, a)|R

These results imply that the partition output by Hopcroft’s algorithm
cannot be refined, and therefore is the Nerode partition of the input au-
tomaton. For further details we refer the interested reader to [9].

6 A modification of PRD algorithm

Algorithm 4.1 takes into account some states in R to refine the initial (triv-
ial) partition of the states. It is worth to be noted here that, for any
P ∈ R considered in this process, in the general case, not all the states
in P are relevant to refine the current partition, thus, it is possible to mod-
ify the algorithm in order to consider just those relevant states. For instance,
let us consider the partition π = {{1, 2, 5}, {3, 4, 6}, {7, 8}}, and the split-
ter {1, 2, 7, 8}. Note that the partition is refined and that the new one is

13

Algorithm 6.1 A modification of PRD algorithm.

Require: A DFA A
Ensure: The minimal DFA equivalent to A
1: Method
2: π = {F, Q − F}
3: S = the smallest of the sets F and Q − F
4: L = {}
5: for all a ∈ Σ do
6: L = Append(L , (S, a))
7: end for
8: while L 6= {} do
9: Extract (S, a) in L

10: Delete (S, a) from L

11: S = ∅
12: for all B ∈ π which is refined by (S, a) do
13: (B′, B′′) = (S, a)|B
14: if B′ 6= ∅ and B′′ 6= ∅ then
15: Update L by substituting any (B, a) for (B′, a) and (B′′, a)
16: C = the smallest of the sets B′ and B′′

17: S = S ∪ C
18: end if
19: end for
20: if S 6= ∅ then
21: for b ∈ Σ do
22: L = Append(L , (S, b))
23: end for
24: end if
25: end while
26: Return (A/π)
27: End Method.

π = {{1, 2}, {5}, {3, 4, 6}, {7, 8}}. The modification we refer above implies
to consider the set of relevant states (the set {1, 2} in this case) instead of
the whole set.

Another modification that can be considered consist on, once a block is
known to be refined, to select from the split result, the smallest set obtained.
In the previous example, it leads to consider the set {5} instead of the set
{1, 2}. Both modification to PRD algorithm are summarized in Algorithm
6.1.

Following example illustrates the behaviour of this revised version of
PRD algorithm.

Example 21 Let us consider again the DFA in Figure 2. Table 2 depicts

14

the behaviour of the algorithm.
The algorithm considers initially the trivial partition of final and non-

final states π = {{2, 3, 4, 6, 7}, {1, 5, 8, 9, 10}}, and updates the set L with
the pairs ({2, 3, 4, 6, 7}, a) for each a ∈ Σ. In this run we follow a random
criterion to extract the splitter.

Note, for instance, that iteration 1 considers the splitter ({2, 3, 4, 6, 7}, a).
Therefore, the set δ−1({2, 3, 4, 6, 7}, a) = {1, 2, 3, 4, 5, 7, 9} guide the refine-
ment of the partition to obtain the following one:

π = {{2, 3, 7}, {4}, {6}, {1, 5}, {9}, {8, 10}}

In this situation, previous version of PRD algorithm included the pairs
({1, 2, 3, 4, 5, 7, 9}, a) and ({1, 2, 3, 4, 5, 7, 9}, b) into the waiting set L . In
this version, the algorithm considers that the blocks {2, 3, 4, 6, 7} and {1, 5, 8, 9, 10}
are splitted. The smallest sets obtained by the split operations are {8, 10}
and {6}, which are joined to obtain the pairs ({6, 8, 10}, a) and ({6, 8, 10}, b)
that update the waiting set L .

The last modification of the partition is carried out by the consideration
of the splitter ({2, 3}, a). Table 2 does not show the remaining iterations
because the partition is not further modified.

It is worth to be noted that the modified version of PRD algorithm is
closely related with Hopcroft’s algorithm. The main difference lies in how
the split of a block is considered to further refine the partition. In this sense,
Hopcroft’s algorithm, for each block splitted, considers the smallest set ob-
tained. The algorithm we propose, considers the union of these sets instead
of using them independently. Following lemma proves that the refinement
of a partition does not change when the sets are united.

Lemma 22 Let A = (Q,Σ, δ, I, F) be a DFA. Let P,P1, P2 ⊂ Q be such
that P1 ⊂ P and P2 ∩ P = ∅. For any R ⊂ Q and a ∈ Σ, it is fulfilled that:

(P, a)|R ∧ (P1, a)|R ∧ (P2, a)|R = (P, a)|R ∧ (P1 ∪ P2, a)|R

Proof. The result of the split (P, a)|R is the set {S, SR} where S =
δ−1(P, a) ∩ R.

Note that, on the one hand, (P, a)|R ∧ (P1, a)|R = {R1, R
′
1} where R1 ∪

R′
1 = S, and on the other hand, (P, a)|R ∧ (P2, a)|R = {R2, R

′
2} where

R2 ∪ R′
2 = RS. Therefore:

(P, a)|R∧(P1, a)|R∧(P2, a)|R = {R1, R
′
1, R2, R

′
2} = (P, a)|R∧(P1∪P2, a)|R

�

To prove the correctness of Algorithm 6.1, we will follow an approach
similar to the one by Berstel in [9], where Proposition 23 plays the role of
Proposition 20 in the proof of Hopcroft’s algorithm.

15

0
π {{2, 3, 4, 6, 7}, {1, 5, 8, 9, 10}}
L {({2, 3, 4, 6, 7}, a), ({2, 3, 4, 6, 7}, b)}

1
(S, a) ({2, 3, 4, 6, 7}, a)
π {{2, 3, 4, 7}, {6}, {1, 5, 9}, {8, 10}}
L {({2, 3, 4, 6, 7}, b), ({6, 8, 10}, a), ({6, 8, 10}, b)}

2
(S, a) ({6, 8, 10}, b)
π {{2, 3, 4, 7}, {6}, {1, 5}, {9}, {8, 10}}

L

{

({2, 3, 4, 6, 7}, b), ({6, 8, 10}, a),
({9}, a), ({9}, b)

}

3
(S, a) ({9}, b)
π {{2, 3, 4}, {7}, {6}, {1, 5}, {9}, {8, 10}}

L

{

({2, 3, 4, 6, 7}, b), ({6, 8, 10}, a),
({9}, a), ({7}, a), ({7}, b)

}

4
(S, a) {2, 3, 4, 6, 7}, b)
π {{2, 3}, {4}, {7}, {6}, {1, 5}, {9}, {8, 10}}

L

{

({6, 8, 10}, a), ({9}, a), ({7}, a),
({7}, b), ({4}, a), ({4}, b)

}

5
(S, a) ({4}, b)

L

{

({6, 8, 10}, a), ({9}, a), ({7}, a),
({7}, b), ({4}, a)

}

6
(S, a) ({6, 8, 10}, a)
π {{2}, {7}, {3}, {4}, {6}, {1, 5}, {9}, {8, 10}}

L

{

({9}, a), ({7}, a), ({7}, b),
({4}, a), ({3}, a), ({3}, b)

}

7
(S, a) ({7}, a)
π {{2}, {7}, {3}, {4}, {6}, {1}, {5}, {9}, {8, 10}}

L

{

({9}, a), ({7}, b), ({4}, a),
({3}, a), ({3}, b), ({1}, a), ({1}, b)

}

Table 2: Run of PRD algorithm when the input is the automaton in Figure
2. We do not show the remaining iterations (that completely process the
waiting set) because they do not modify the partition. The table shows the
partition only when it is modified

16

Proposition 23 Given any execution of Algorithm 6.1, let π0, π1 . . . denote
the sequence of partitions of the set of states obtained. Let also Li denote
the waiting set once obtained πi and let the set Ci = {Bj ∈ πj : 0 ≤ j ≤ i}.
For any a ∈ Σ it is fulfilled that:

πi ∧
∧

(S,a)∈Li

(S, a)|Q = πi ∧
∧

B∈Ci

(B, a)|Q

Proof. We will prove the proposition by induction on the sequence of
partitions obtained by Algorithm 6.1.

Initially, π0 = {F,Q − F} and L0 = {(T, a) : a ∈ Σ} where T is the
smallest set of F and Q − F . Note that:

π0 ∧ (T, a)|Q = π0 ∧ (T, a)|Q ∧ (Q − T, a)|Q

because π0 ∧ (T, a)|Q = π0 ∧ (Q − T, a)|Q.
Let us suppose that the proposition fulfills for i ≤ k. Let the configura-

tion of the algorithm be (πk,Lk) and let (S, a) ∈ Lk be the splitter to be
considered.

Note that S = P1 ∪ P2 ∪ . . . ∪ Pr where Pi ∈ πm for 1 ≤ i ≤ r, and for
some m ≤ k. Note also that, for every i, there exists P ′

i ∈ Ck such that
Pi ⊂ P ′

i and Pj ∩ Pi = ∅ for j 6= i. Lemma 22 implies that:

πk ∧ (P ′
i , a)|Q ∧ (Pi ∪ Pj , a)|Q = πk ∧ (P ′

i , a)|Q ∧ (Pi, a)|Q ∧ (Pj , a)|Q

and therefore:

πk ∧ (Pi ∪ . . . ∪ Pr, a)|Q = πk ∧ (P1, a)|Q ∧ . . . ∧ (Pr, a)|Q

thus, we will study, without loss of generality, the case of just one P ∈ Ck.
Let then be πk+1 = πk ∧ (P, a)|Q. Two situations arise:

On the one hand, it is possible that, the splitter does not refine any
block, that is, (S, a)|B = B for each block B ∈ πk. Then, πk+q = πk and the
algorithm ends and fulfill the proposition.

On the other hand, (S, a) refine the partition, let us then define the set:

Bk = {B ∈ πk : (P, a)|B 6= B}

note that these are the new blocks to take into account in the minimization
process. More formally:

πk+1 = (πk − Bk) ∪ {(P, a)|Bi : Bi ∈ Bk}

Let Bi = Bi1 ∪ Bi2 for each Bi ∈ Bk. Let us also assume that |Bi1| ≤
|Bi2|. Thus:

πk+1 ∧
∧

(S,a)∈Lk+1

(S, a)|Q = πk ∧
∧

(S,a)∈Lk

(S, a)|Q ∧
∧

Bi∈Bk

(Bi, a)|Q

17

by induction hypothesis we have this equals:

πk ∧
∧

B∈Ck

(B, a)|Q ∧
∧

Bi∈Bk

(Bi, a)|Q

and, by Lemma 19 it equals also:

πk ∧
∧

B∈Ck

(B, a)|Q ∧
∧

Bi∈Bk

(Bi1, a)|Q ∧ (Bi2, a)|Q

and therefore:

πk+1 ∧
∧

(S,a)∈Lk+1

(S, a)|Q = πk ∧
∧

B∈Ck+1

(B, a)|Q

�

Corollary 24 Given any execution of Algorithm 6.1, let (π0,L0), (π1,L1) . . .
denote the sequence of configurations obtained. For each partition obtained
πi and each B ∈ πi, it is fulfilled that:

πi ∧ (B, a)|Q ≥ πi ∧
∧

(S,a)∈Li

(S, a)|Q

Following Proposition provide the correctness and termination proofs for
Algorithm 6.1.

Proposition 25 Algorithm 6.1 computes the Nerode’s equivalence πL.
Proof. Note that, once obtained πL the waiting set L is empty and

thus, for each B in the partition obtained π:

π ∧ (B, a)|Q ≥ π

�

Please, note that both Algorithm 6.1 and Hopcroft’s have the same time
complexity. In fact both algorithms are the same.

7 Conclusions

In this paper we show that two very dissimilar in the beginning algorithms,
carry out in fact very similar computations.

Both algorithms have important features that make them interesting.
The most important feature of Hopcroft’s algorithm is its time complexity
(in fact it is the most efficient algorithm known). Brzozowski’s algorithm
is very concise and elegant and, despite its worst case time complexity, has
a very straightforward implementation. We show how some computations

18

carried out by Brzozowski’s algorithm can be avoided to obtain, so to speak,
a polynomial version of Brzozowski algorithm. The consideration of some
efficiency improvements on this algorithm lead to obtain an algorithm equiv-
alent to Hopcroft’s.

We note that, as a byproduct, we also show that it is possible to propose
other minimization algorithms between the space among these two classical
algorithms. These new proposals may achieve good performance in some
circumstances.

References

[1] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley Publishing Company,
1979.

[2] M. Almeida, N. Moreira, and R. Reis. Incremental DFA minimisation.
In Michael Domaratzki and Kai Salomaa, editors, CIAA, volume 6482
of Lecture Notes in Computer Science, pages 39–48. Springer, 2010.

[3] E. F. Moore. Gedanken experiments on sequential machines. In C. E.
Shannon and J. Mc-Carthy, editors, Automata Studies. Princeton Uni-
versty Press, 1956.

[4] J. E. Hopcroft. An n log n algorithm for minimizing states in a finite
automaton. Technical report, Stanford, CA, USA, 1971.

[5] D. Wood. Theory of Computation. John Wiley & sons, 1987.

[6] J.A. Brzozowski. Canonical regular expressions and minimal state
graphs for definite events. Mathematical Theory of Automata, pages
529–561, 1962. MRI Symposia Series, Polytecnic Press, Polytecnic In-
stitute of Brooklyn.

[7] J-M. Champarnaud, A. Khorsi, and T. Paranthoën. Split and join for
minimizing : Brzozowski´s algorithm. Technical report, Czech Techni-
cal University of Prague, 2002. Proceedings of the Prague Stringology
Conference 2002 (PSC’02).

[8] B. Watson. A taxonomy of finite automata construction algorithms.
Technical report, Computing Science, 1993.

[9] J. Berstel, L. Boasson, O. Carton, and I. Fagnot. Automata: from Math-
ematics to Applications, chapter Minimization of automata. European
Mathematical Society. (arXiv:1010.5318v3). To appear.

19

[10] S. Lombardy and J. Sakarovitch. Star height of reversible languages
and universal automata. LNCS, 2286:76–90, 2002. Proceedings of the
5th LATIN conference.

[11] L. Polák. Minimalizations of NFA using the universal automaton. Int.
J. Found. Comput. Sci., 16(5):999–1010, 2005.

[12] D. Gries. Describing an algorithm by hopcroft. Acta Informatica, 2:97–
109, 1973.

[13] A. Aho, J. E. Hopcroft, and J. D. Ullman. The design and analysis of
computer algorithms. Addison-Wesley Publishing Company, 1974.

[14] N. Blum. A O(n log n) implementation of the standard method for
minimizing n-state finite automata. Information Processing Letters,
57:65–69, 1996.

[15] T. Knuutila. Re-describing an algorithm by hopcroft. Theoretical Com-
puter Science, 250:333–363, 2001.

20

