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Concern for man and his fate must

always form the chief interest of all

technical endeavors. Never forget this in

the midst of your diagrams and equations.

Albert Einstein
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Abstract

In the last decade, mobile cellular networks have experienced a major growth

and progress due to a change in the way today’s society creates, shares and

consumes information. The enormous impact and penetration of mobile

phone services on the society, as well as the introduction of a large vari-

ety of multimedia and data services, has lead to a spectacular growth of the

traffic volume carried by these type of networks. This trend will continue

in the coming years as new applications are continuously appearing with

higher QoS and bandwidth requirements. However, current mobile cellular

networks have to face strong bandwidth limitations due to the scarcity of

frequencies in the radio spectrum. Thus, these new requirements have es-

tablished new challenges for the telecommunication industry. It is necessary

to manage an increasing number of demanding services together with the

scarcity of the spectrum in order to offer services that meet the user needs in

an efficient and economical manner. In this context, the radio resource man-

agement arises as a key strategy to deal with those network requirements.

Specifically, the admission control is a key mechanism to efficiently use the

available radio resources, while providing the required QoS guarantees for

all users.

This work aims at designing and evaluating admission control policies

implemented in mobile cellular networks that support different bearer ser-

vices. Moreover, this thesis is a contribution to the development of models

that evaluate different admission control policies in the challenging context

introduced by the forthcoming 4G networks. Thus, in this thesis, the design
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and evaluation of admission control policies is tackled for current and forth-

coming cellular networks. In the first part of the thesis, the development

of admission control policies for current mobile cellular networks is stud-

ied, while in the second part of the thesis, novel admission control policies

are proposed to overcome the challenges introduced by forthcoming mobile

networks, such as Long Term Evolution networks or Cognitive Radio tech-

nologies.
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Resum

Durant els darrers anys les xarxes mòbils cel·lulars han experimentat un con-

siderable creixement degut al nou mode en que la societat crea, comparteix

i consumeix informació. L’enorme impacte i penetració dels serveis mòbils

telefònics en la societat, així com la introducció d’una amplia varietat de nous

serveis de dades i serveis multimèdia, han portat a un creixement espectac-

ular del volum de tràfic transportat per aquest tipus de xarxes. Aquesta

tendència es mantindrà en els pròxims anys ja que constantment van apa-

reixent noves aplicacions que demanden major qualitat de servei i ample

de banda. Tot i així, les xarxes mòbils cel·lulars actuals tenen fortes lim-

itacions en quant a amples de banda, degut a l’escassetat de freqüències en

l’espectre radioelèctric. Amb tot, aquests nous requeriments estableixen nous

reptes per a la industria de les telecomunicacions. És necessari gestionar un

nombre creixent de serveis que demanden una elevada quantitat de recursos

conjuntament amb l’escassetat de l’espectre radioelèctric per a oferir serveis

que satisfacin les necessitats dels usuaris de un mode eficaç i econòmic. Dins

d’aquest context, la gestió dels recursos ràdio es presenta com una estratègia

clau per a fer front a les característiques pròpies d’aquestes xarxes. Concre-

tament, el control d’admissió es un mecanisme clau per utilitzar eficientment

els recursos radio disponibles, proporcionant al mateix temps les garanties

de qualitat de servei requerides a tots els usuaris.

El present treball es centra en el disseny i avaluació de polítiques de con-

trol d’admissió implementades en xarxes mòbils cel·lulars multiservei que

transporten diferents serveis portadors. D’altra banda, la present tesis també
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és una contribució al desenvolupament de models amb els que avaluar di-

ferents polítiques de control d’admissió dins del desafiant context introduït

per les xarxes 4G de pròxima aparició. En la primera part d’aquesta tesis es

tracta l’implementació de polítiques de control d’admissió per a xarxes uti-

litzades actualment, mentre que en la segona part d’aquesta tesis es proposen

polítiques de control d’admissió innovadores amb l’objectiu de fer front als

nous reptes introduïts per les xarxes de pròxima aparició, tal com les xarxes

Long Term Evolution o les de tecnologia Cognitive Radio.
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Resumen

Durante los últimos años las redes móviles celulares han experimentado un

considerable crecimiento y desarrollo debido al nuevo modo en que la so-

ciedad crea, comparte y consume información. El enorme impacto y pene-

tración de los servicios móviles telefónicos en la sociedad actual, así como la

introducción de un amplio abanico de nuevos servicios de datos y servicios

multimedia, han llevado a un crecimiento espectacular del volumen de trá-

fico transportado por este tipo de redes. Esta tendencia se mantendrá en los

próximos años ya que constantemente van apareciendo nuevas aplicaciones

que demandan mayor calidad de servicio y ancho de banda. Sin embargo,

las redes móviles celulares actuales tienen fuertes limitaciones de ancho de

banda debido a la escasez de frecuencias en el espectro radioeléctrico. Así,

estas nuevas necesidades establecen nuevos retos para la industria de las tele-

comunicaciones. Es necesario gestionar un creciente número de servicios que

demandan elevadas cantidades de recursos, conjuntamente con la escasez del

espectro radioeléctrico, para ofrecer servicios que satisfagan las necesidades

de los usuarios de un modo eficaz y económico. Dentro de este contexto,

la gestión de los recursos radio se presenta como una estrategia clave para

hacer frente a las características especiales de estas redes. Concretamente, el

control de admisión es un mecanismo clave para utilizar eficientemente los

recursos radio disponibles, proporcionando al mismo tiempo las garantías de

calidad de servicio requeridas para todos los usuarios.

El presente trabajo se centra en el diseño y evaluación de políticas de con-

trol de admisión implementadas en redes móviles celulares multiservicio que

xiii



transportan diferentes servicios portadores. Además, la presente tesis es una

contribución al desarrollo de modelos con los que evaluar diferentes políticas

de control de admisión en el desafiante contexto introducido por las redes 4G

de próxima aparición. En la primera parte de esta tesis se trata el desarrollo

de políticas de control de admisión para redes utilizadas actualmente, mien-

tras que en la segunda parte de esta tesis se proponen políticas de control de

admisión novedosas con el objetivo de hacer frente a los retos introducidos

por las redes de próxima aparición, tales como las redes Long Term Evolution

o las de tecnología Cognitive Radio.
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Chapter 1

Introduction

During the last years, mobile cellular networks have witnessed an enormous

growth in the carried traffic volume mainly due to two reasons. First, the

high penetration of mobile phone services in the society, and second, 3G net-

works and forthcoming 4G networks have established a new paradigm with

a variety of services which have different Quality of Service (QoS) require-

ments and traffic characteristics. This trend will continue in the coming years

as mobile systems are expected to support a larger variety of multimedia ser-

vices that are carried over different bearer services. Unlike wired networks,

current mobile wireless networks have to face strong bandwidth limitations

due to the scarcity of frequencies in the radio spectrum. Therefore, the main

challenge for the telecommunication industry is to offer services that meet

the user needs in an efficient and economical manner.

In order to increase the capacity of the mobile networks, the geographical

reuse of frequencies by means of the use of the cellular architecture has been

established [HR97]. This architecture has become very efficient to this date,

but it is not enough to face the development paradigm that is expected in

this type of networks due to the tremendous growth of mobile telecommu-

nications services. Moreover, this architecture entails some problems such

as the high economical cost associated to its development or the additional

1
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complexity introduced by the terminal mobility. Users move from one cell to

another and the continuity of active sessions must be guaranteed.

Taking into account the limited bandwidth together with the user’s mo-

bility and the requirements of the new services, different mechanisms will

be needed to provide a certain degree of QoS in mobile cellular networks.

The performance parameters that define the QoS can be considered at two

levels: packet-level and session-level. The packet-level QoS corresponds to the

correct transmission of packets of data. Some parameters used to describe

the packet-level QoS are for example, the maximum delay, the variability

of the delay or jitter, loss, the throughput, etc. In order to deal with these

QoS requirements, efficient medium access protocols and packet scheduling

schemes as well as bandwidth reservation must be in place. The session-level

QoS corresponds to connection establishment and management of the con-

nectivity and continuity of services in a mobile cellular network. Although

the QoS is a global concept that must be provided at every level, this work is

focused on the session-level.

In order to provide an acceptable level of QoS to the subscribers, one of

the main issues that must be considered is the Radio Resource Management

(RRM) which is the set of mechanisms needed to have an efficient use of the

available radio resources [PRSADG05]. An important mechanism for RRM is

the Admission Control (AC). In this context, the AC is a key mechanism in

the design and operation of multiservice mobile cellular networks to maxi-

mize the network usage while providing the QoS guarantees to all ongoing

sessions in the system. The admission controller decides if a session is ad-

mitted to the cell or not. It bases its decisions on the availability of resources

considering the resources needed to guarantee the QoS of the new session

and the already accepted sessions. These decisions are more complex due

to the limited bandwidth and the terminal mobility. This work is funda-

mentally based on the development and evaluation of models to study the

performance of AC policies, and on the design of such AC policies.

Modeling and evaluation of RRM in mobile cellular networks have been
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Chapter 1. Introduction

widely studied for 2G and 3G technologies, but technologies like Long Term

Evolution (LTE) developed by the 3rd Generation Partnership Project (3GPP)

or the future 4G of mobile cellular networks introduce new challenges in

the design of AC policies. These technologies increase the capacity and

bit rate of mobile cellular networks by employing Orthogonal Frequency-

Division Multiple Access (OFDMA) and using Adaptive Modulation and

Coding (AMC) [3GP10a]. This means that different Modulation and Cod-

ing Schemes (MCSs) can be used at different points in time depending on

the signal quality. One of the most dominant factors in the reduction of the

transmitted signal power is the pathloss, which is linked to the distance be-

tween the transmitter and the receiver. As a consequence, data can be sent to

users at different bit rates, which are determined by the MCSs used, as they

move around in a cell. Therefore, in order to maintain a service with a fixed

bit rate the number of resource units that a user needs is time-varying, while

in 2G models the number of resources needed is considered a fixed amount.

It is for example possible that at one point in time there is sufficient capacity

to provide the desired bit rate to all users while at another point in time,

without having accepted new users in the system, the cell capacity can drop

below the required amount due to the varying number of resources needed.

The varying of this cell capacity might influence the decision taken by the

AC policy. Thus, it is important when designing AC policies in 4G networks

to take this fact into account.

Moreover, due to the new paradigm established by the forthcoming 4G

networks, reducing the cell size has become a hot topic introducing the novel

concept of femtocells [CAG08] [CHS08]. The main trend in these new tech-

nologies to increase the system capacity is to reduce the cell size without

deploying more infrastructure, which is achieved by using femtocells. These

are data access points designed for indoor usage to improve the indoor data

and voice coverage and reduce the traffic managed by the macrocell network.

This new concept has also introduced some challenges related to the RRM

and the AC mechanisms needed to guarantee the QoS requeriments, which

makes it necessary to adapt the current AC algorithms and develop new ones.

3
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Despite the fact that many efforts have been made on the development of

AC policies and the characterization of mobility patterns of terminals in mul-

tiservice mobile cellular networks, the gain in efficiency is still insufficient.

Hence, the Cognitive Radio (CR) technology [DAR03] has been proposed.

Today’s cellular mobile networks are characterized by fixed spectrum as-

signment policies. A study by the Federal Communication Commission

(FCC) Spectrum Task Force [Com02] showed high temporal and geographic

variations in the spectrum utilization, these variations range from 15% to

85% in the bands below 3 GHz. Most of the spectrum that could be reason-

ably utilized for communications is licensed and these licenses are allocated

for very long periods of time. As a result, the spectrum allocation itself

is nowadays rigid and the spectrum is underutilized which makes neces-

sary a new communication paradigm to exploit the existing wireless spec-

trum opportunistically [AAFS04]. Current research efforts in this field are

devoted to the study of technologies that enable dynamic spectrum access.

The CR technology has been proposed as a concept that provides the abil-

ity to detect idle frequencies that are not occupied by licensed users and

enables non-licensed users to use these idle bands in an opportunistic man-

ner [MGM99, ALVM08, PPPMB09, MBPPP12]. Additional functionalities are

required for licensed and non licensed users to share the licensed spectrum

band and therefore, an efficient channel sharing strategy and an AC policy

should be in place for secondary users when QoS guarantees for them are

required.

1.1 Thesis objectives

This work aims at designing and evaluating AC policies implemented in

multiservice mobile cellular networks that support both real-time and non-

real-time traffic. It is also a contribution to the development of models that

evaluate different AC policies in the challenging context introduced by forth-

coming 4G networks, such as the OFDMA based networks, the femtocell
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Chapter 1. Introduction

concept or the CR technology. To that end, the lines of work which have been

developed in this thesis are the following:

• Characterization of the flow duration and handover probability of non-

real-time traffic in mobile cellular networks.

• Design and evaluation of different AC policies, considering the compu-

tational cost of their configuration, the robustness against overloads of

traffic, and the insensitivity to distributions which model the system.

• Study of analytical models in order to evaluate AC policies in forth-

coming networks such as OFDM based networks and femtocell deploy-

ments.

• Design of optimal AC policies for non-licensed users in CR networks.

Similarly, simulation models have been developed in order to validate the

modeling assumptions made in the analytical models.

1.2 Thesis structure

This thesis is structured in 10 chapters, of which the first two chapters are

introductory, the last chapter concludes the thesis and the rest of chapters

are structured in two parts. The first part includes four chapters related

to multiservice mobile cellular networks and the second part includes three

chapters that aim to study the AC in forthcoming mobile networks.

Specifically, in Chapter 2 we introduce a model of a cellular mobile net-

work from the traffic perspective, that will be used along the thesis. The

most common assumptions done when modeling this type of networks are

detailed and the state of the art related to AC techniques and methodologies

is described.

The first part of the thesis includes four chapters that study current prob-

lems in multiservice cellular networks. In Chapter 3 the non-real-time traffic

5
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is studied in order to find a model to characterize the flow duration and

handover probability of elastic users. In Chapter 4 the computational cost of

different algorithms used to design the parameters of trunk reservation AC

policies is evaluated. Later, in Chapter 5, the robustness and efficiency of dif-

ferent AC policies is studied and compared in different multiservice mobile

cellular scenarios. Next, in Chapter 6, we study the reversibility of the con-

tinuous time Markov chain which models the system generated by different

AC policies, and the insensitivity of its stationary distribution to the channel

holding time distribution.

The second part of the thesis analyzes the AC challenges introduced by

forthcoming mobile networks, such as the 4G networks. In Chapter 7, AC

in OFDMA based mobile cellular networks is studied. A model is presented

and validated, and then it is used to evaluate some proposed AC policies.

Next, in Chapter 8, the femtocell concept is considered. A model to study

the activity profile in the femtocells is presented and an AC policy for macro-

cell users is evaluated. In Chapter 9, a cognitive radio scenario is evauated

where different strategies to rent the resources from the licensed network

are applied. In addition, an optimal AC policy for a given cost function is

proposed.

Finally, Chapter 10 summarizes the conducted work in this thesis. The

main contributions and conclusions are highlighted and the possible future

lines of work are suggested .
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Chapter 2

Cellular model

In this chapter, we introduce a model of a cellular mobile network from the

traffic perspective, that will be used along the thesis. The assumptions done

in this thesis when modeling the cellular network are detailed and the state

of the art related to AC techniques and methodologies is described.

In the mobile cellular systems, the service area is divided in smaller areas

named cells. Each of them is assigned a certain number of frequencies and

is covered by a Base Station (BS), which enables the communication of the

users who are in the cell with the rest of the network. The main idea under

the cellular concept is the reuse of frequencies, i.e., the same frequencies

allocated to a cell can be reused in other different cells.

The users roam around the service area moving from one cell to other.

The signal transmitted between the Mobile Terminal (MT) and the BS be-

comes weak when the MT is far from the BS due to the signal attenuation.

At a given point the signal power can be too low to assure a reliable commu-

nication and it is necessary to connect the MT to a closer BS which provides

better service. The mechanism used to manage the continuity of the service

in progress when a MT moves from one cell to another is named handover

and must be transparent to the user. To ensure the continuity of communica-

tions when a mobile terminal moves from one cell to another, i.e., a handover

7
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occurs, adjacent cells overlap with each other. The mobility of users adds

more complexity to the operation of the cellular network since the QoS of

all new and ongoing sessions must be provided considering that during the

session lifetime a MT can change its location. This means that the AC policy

must guarantee that the required resources are available in the destination

cell where the MT moves to. The most common approach used by the AC

policy to guarantee the continuity of the service is giving priority to the han-

dover requests by using the resource reservation. The basic idea is to reserve

a certain number of resources for requests with higher priority and admit

requests with lower priority only if the amount of free resources exceeds the

number of reserved resources.

When mobile cellular systems are analyzed, a common approach is to

consider homogeneous traffic, i.e., the offered traffic by new sessions is equal

in all cells and the arrival and departure rate of handovers are also equal in all

cells. Then, in a homogeneous cellular system, the system performance can

be evaluated considering only one isolated cell [OR01]. When the scenario

under consideration is not homogeneous and presents hot-spots, for example

scenarios with big supermarkets or densely populated streets, a multicell

approach is more appropriate [BBP01] since the offered traffic in each cell

can have high variations from one cell to another. In this thesis, we consider

homogeneous scenarios and therefore, we evaluate the system performance

considering one isolated cell.

2.1 Teletraffic random variables

In order to model appropriately a mobile cellular network, random variables

are generally used to describe the most important magnitudes that are asso-

ciated with the cellular environment. These magnitudes are: the inter-arrival

time for new and handover request, the session duration, the cell residence

time and the channel holding time. For the sake of the tractability of the

model, particularly if it is an analytical model, the general trend is to assume

8
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Chapter 2. Cellular model

that all random variables are exponentially distributed.

1. Inter-arrival time.

For new requests, if the inter-arrival times are independent and iden-

tically distributed (iid) according to an exponential distribution, the

arrival process is of Poisson type. Considering a Poisson arrival pro-

cess for new request is the most accepted assumption in the literature.

Nevertheless, the infinite population, which is inherent to the Poisson

arrival process, has been questioned in [BB97]. However, this study is

based on field measurements in a Public Access Mobile Radio (PAMR)

network. A PAMR is a wireless network which does not have the same

characteristics than a mobile cellular network since the PAMR networks

provide services for a limited number of users.

For handover request, the studies to validate the exponential assump-

tion are not unanimous. Chlebus and Ludwin [CL95] show that the

arrival process for handover traffic is Poisson when the process for new

arrival requests is Poisson and the blocking phenomena is not consid-

ered. They conclude that the Poisson assumption for handover traffic is

a reasonable approximation. Sidi and Starobinski [SS97] also conclude

that the Poisson assumption is reasonable for homogeneous traffic be-

tween a large number of cells. Rajaratnam and Takawira [RT01] show

that the Poisson assumption for handover traffic may not be appro-

priate when the terminal mobility is high. Orlik and Rappaport [OR01]

showed that small differences are found between Poisson handover traf-

fic and non-Poisson, specially for heavy loads. In the light of these

studies and taking into account that we consider homogeneous traffic

in our model and non-extreme user mobility patterns, we consider a

Poisson arrival process for handover requests.

2. Cell residence time, channel holding time and session duration.

The Cell Residence Time (CRT) is the time that a MT spends inside a

cell. The Channel Holding Time (CHT) is the time a MT occupies the

9
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resources of a given cell. Clearly, the CHT is given by he minimum

value of the CRT and the session duration. The CRT depends on the

cell geometry and the user mobility pattern, while the session duration

depends on the specific applications. The statistical characterization of

CRT and CHT have been widely studied in the literature.

For CHT, in [ZD97] the authors show that if the session duration is

considered exponentially distributed, then the CHT can be approxi-

mated by the exponential distribution. Many distributions have been

studied in different works for the CHT, such as the lognormal [JL96],

the deterministic negative exponential and the Gamma [RT01], a lin-

ear combination of lognormal distributions [BJ00] or a phase-type dis-

tribution [CNI04], but there is no unanimity about the validity of the

exponential assumption. In [XT03], the exponential assumption is pre-

sented as a good approximation, while the results in [HSSK02] show

some situations with significant divergences.

For CRT, a series of empirical studies in [HSSK01, HSSK02] and ref-

erences therein, show that CRT and CHT have self-similar properties.

In [ZD97] the authors conclude that the CRT can be described by a

gamma distribution. More recent studies [ZBA09] indicates that the

lognormal distribution is a reasonable assumption. In [Mac05], the au-

thors show that if the new and handover sessions are treated equally,

the system performance is insensitive to the distribution of the CRT and

session duration.

2.2 Streaming and elastic traffic

Mobile systems support a large variety of services which demand different

QoS requirements. Depending on the QoS demanded, applications have to

be carried by bearer service classes with different characteristics. The traffic

generated by the applications can be mainly classified in two different groups,

namely, elastic traffic and streaming traffic [BR03].
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Chapter 2. Cellular model

1. Streaming traffic requires a minimum transfer rate in order to work prop-

erly as well as some time related requirements such as bounded delay

and jitter. It corresponds to real-time services such as voice or stream-

ing video.

2. Elastic traffic has loose time requirements and its transfer rate can be

adapted to the available resources. It is generated by applications that

support the transfer of data traffic, such as web navigation, or file trans-

fers, i.e., non-real time services. The data traffic is bursty, i.e., sometimes

the data transmission rate is idle, while at other times it might be very

high, appearing sudden traffic peaks. Thus, an elastic session can gen-

erate several traffic flows, i.e, several sequences of data packets.

Elastic flows are generally transported over TCP which takes care of

rate adaptation and bandwidth sharing among the different flows. If

the total traffic demand of elastic flows exceeds the available capacity

some flows might be aborted due to impatience. Flow impatience can

arise from human impatience or because TCP of higher-layer protocols

interpret that the connection is broken. Abandonments due to impa-

tience are useful to cope with overload and serve to stabilize the system

but, this phenomenon will have a negative impact on the efficiency be-

cause capacity is wasted by non-completed flows [BR03]. Hence, an AC

policy should be enforced for elastic traffic [BR03].

In the light of the above arguments, it seems logical to give priority to

streaming traffic and leave elastic traffic use the remaining resources, reserv-

ing a small quantity of resources for elastic traffic to prevent starvation in

case of overload of streaming traffic.

2.3 Admission control

Although different mechanisms can be implemented to manage the radio

resources, such as queuing [HR86] or reducing the transmission rate when it
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is necessary [LNH96], the most common approach is to use AC policies to

limit the access to a certain number of resources depending on the priority

of the arrival session. Such schemes where introduced in the mid 80’s [PG85]

and since then a great deal of variants, generalizations and improvements

have been proposed. The aim of any AC algorithm is to achieve the best

possible QoS using the available resources.

A classical scheme for resource sharing is the Complete Sharing (CS) policy,

which admits a request provided there are enough free resources units avail-

able in the system. This leads to share the resources indiscriminately, i.e., it

is equivalent to implement no AC. Another classical scheme is the Complete

Partitioning (CP) policy, which statically divides the resource units among the

service classes allowing each class the use of its allocated resources, i.e, the

resources are not shared as each service class uses its portion of resources.

AC policies can be classified according to three different points of view:

the type of information used to take admission decisions, the method em-

ployed to adjust the parameters, and the general structure of the model.

Different AC strategies have been proposed which differ in the available

information that is needed to decide on the acceptance or rejection of user’s

requests. The most common approach bases the admission decision on the

local state of the cell at which the AC operates. In general such informa-

tion consists on the number of ongoing sessions in the cell or the quantity

of resources being used, either aggregated or detailed by the service class.

Another approach bases the admission decision on some kind of information

obtained from the state of neighboring cells, mobility of terminals, history-

based patterns, etc. With this information the future handovers can be pre-

dicted. Several works that study AC based on movement prediction can be

found in the literature [HF01, YL02, SK04, MBGGP08, GG09, MBPPP12].

When an AC is designed, two methods can be followed in order to ad-

just the parameters. The first and most common approach is heuristic, i.e., a

new AC policy is proposed and then it is evaluated by comparing its perfor-

mance to the performance of previously existing AC policies [DS02, PCG05].
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Chapter 2. Cellular model

The second approach consists in formulating the admission problem as an

optimization problem. The optimization problem has to be defined accu-

rately in order to find the optimal AC policy among the possible AC policies,

so that the system performance goal is maximized. The optimization prob-

lem is often formulated using the framework of Markov Decision Processes

(MPD) or Semi-Markov Decision Processes (SMDP) [Ros70, PCG03]. Alterna-

tively, other optimization methods can be employed, such as linear program-

ming [PCG03], genetic algorithms [YR97], hill-climbing [GRMBP05] or reinforce-

ment learning [PGGMCG04, GGMBP07, GG09].

Finally, the AC policies can be classified in three different families with

respect to their general structure [GMF08]:

1. Product-form policies.

The decision to accept a session depends only on the number of re-

sources occupied by the ongoing sessions of the same class [GRMBP04].

The AC policies from this family produce a Markov process whose

stationary state distribution can be computed as the product of the

marginal distributions of each class, subject to a normalization constant.

The product-form policies show a lower computational complexity at

the cost of a reduced capacity and generally are insensitive to the CHT

distribution [GRMBP05, MBPBM11]. Some product-form policies have

been proposed in the literature. For example, the policy Integer Limit

(IL) which limits the number of resources that a flow can occupy at

one time [Ive87]. In [CLW95] the Upper Limit and Guaranteed Minimum

(ULGM) policy is described, where each flow has a dedicated number

of resources and competes for a common portion of resources. The pol-

icy Fractional Limit (FL) is presented in [LA95], which is similar to IL

policy but the number of resources allocated is a fractional number.

2. Trunk reservation policies.

The decision to accept a session depends on the number of free re-

sources units in the system [RTN97]. These policies outperform product-
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form policies in terms of system capacity, defined as the maximum ag-

gregated offered traffic that the system can handle while meeting cer-

tain QoS requirements [GRMBP05]. However, trunk reservation policies

do not produce a product-form stationary distribution and higher pre-

cision is required when the optimal configuration is determined with

respect to product-form policies. Therefore, the computational complex-

ity required to numerical evaluations is also higher.

Trunk reservation policies constitute the most common approach to give

priority to certain flows. For a single service scenario, two trunk reser-

vation policies named Guard Channel (GC) and Fractional Guard Channel

(FGC) are optimum for common QoS objective functions [RTN97]. The

GC policy was introduced in [HR86], where a static reserve of a certain

number of resources was made for handover requests. In the FGC pol-

icy [RTN97], a fractional reservation is set by means of probabilistic ad-

mission decisions, thus allowing a finer adjustment of the policy. A gen-

eralization of GC to the multiservice scenario, Multiple Guard Channel

(MGC) policy, was proposed in [CC97] and [LLC98], and the FGC was

extended to the multiservice scenario, Multiple Fractional Guard Channel

(MFGC), in [HUCPOG03a]. The main difference between single service

and multiservice schemes is that while in the former there is only one

admission threshold, in the later several admission thresholds are set,

one for each service class. Other variations of trunk reservation policies

have been proposed afterwards, such as the adaptive trunk reservation

policies, which implement adaptive reservation of resources depending

on the network load [GRDBMBP05, DGRP05, MBGRDB+09].

3. General Stationary policies.

For single service scenarios the optimum AC policy belongs to the fam-

ily of trunk reservation policy [RTN97, Bar01]. However, these optimality

results cannot be extended to their counterparts in multiservice scenar-

ios [BC02, PCG03], where the optimum AC policy belongs to Stationary

policies or to Ramdomized Stationary (RS) policies [Ros70, GMF08]. For
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Stationary policies, the admission decision depends on the current state

of the system, which is expressed as the number of sessions of each

service class in progress. In the RS policies, the decision also depends

on a random component. The solutions provided by RS policies in gen-

eral outperform the previous families in terms of system capacity and

are considered as upper bounds in comparative studies [PCG03]. Note

that, both product-form and trunk reservation policies are subclasses of

the family of RS policies, where the decision depends, respectively, on

the number of resources occupied by the sessions of the same service

class, and the total quantity of resources occupied in the system, but

not on the quantity of resources occupied by each service class.
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Chapter 3

Elastic traffic characterization

3.1 Introduction

The teletraffic analysis of mobile networks, as well as the design of precise

mobility models, play an important role in the network dimensioning and

resource planning [FC02]. In this context, a good knowledge of the mobility

characteristics of terminals is important for research and system design is-

sues, for instance, knowing the probability of handover or the number of han-

dovers that a session will execute is useful for resource dimensioning [Zha10].

Accurate models are required in order to appropriately characterize the mo-

bility of terminals.

For streaming traffic, specifically voice traffic, the CHT and the CRT dis-

tributions have already been widely studied [BJ00, HSSK01, CNI04, Mac05,

ZBA09] (see Section 2.1). In [GLZ07], the session duration distribution is

studied in a GSM system. The handover probability for streaming traffic

has been also studied in [FC02] where the session duration and the CRT

follow a general distribution with a rational Laplace transform. The results

for CRT considering streaming traffic can be extended to the case of elastic

traffic, but the results for session durations in the aforementioned works are
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not applicable to data applications. Modeling the elastic flow duration and

handover related metrics for elastic traffic is qualitatively different and more

complex than modeling their streaming traffic counterparts, as the duration

of an elastic flow is heavily dependent on the network load. Despite the enor-

mous surge in volume and economical relevance of mobile data traffic caused

by the introduction of smartphones [CJP+11], to the best of our knowledge,

such type of studies have not been carried out for elastic flows so far.

In this chapter, we aim at obtaining the distribution of both the flow du-

ration and the number of handovers an elastic user has to go through. To

make the model more realistic and of broader application, we consider im-

patient elastic users and a generic AC policy. As the flow duration of elastic

flows in mobile networks depends on the network load, its complexity comes

from the fact that, unlike streaming sessions, it depends on the load of the

cells visited along a flow life time. Thus, it is reasonable to consider that

the flow duration is composed of a number of phases with different rates

given by the network load. We assume exponentially distributed sojourn

times in each phase for elastic flows and exponentially distributed CRT and

CHT for streaming traffic. That can be modeled by a phase-type (PH) distri-

bution [Neu81]. Thereby, we start by constructing a Continuous-Time Markov

Chain (CMTC) from which we derive the PH distribution for the duration of

the flow and, from this, the distribution of the number of handovers. We

provide exact results under the assumption that both flow sizes (in bits) and

the CRT are exponentially distributed. Then, the model is extended by in-

troducing an approximate technique to deal with more realistic distributions

of the CRT and the flow size. We apply the obtained model to determine

the handover probability under different CRT distributions and validate the

results by simulation. This work resulted into the publication in [BMPMB12].

This chapter is structured as follows. In Section 3.2, we describe the sce-

nario and the CTMC which models the system under study. Then, we derive

the flow duration distribution of elastic flows and the handover related met-

rics. In Section 3.3, we compare the results obtained with the analytical model

with simulation results. Finally, Section 3.4 concludes the chapter.
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Chapter 3. Elastic traffic characterization

3.2 Analytical model

3.2.1 System model

We consider the homogeneous case where all cells are statistically identical

and independent. Consequently the global performance of the system can

be analyzed focusing on a single cell. Each cell has a total of C resource

units, each of them has a capacity of R bits per second. The system offers Ns

different Service Classes (SCs) that carry streaming traffic and Ne SCs that

carry elastic traffic. Thus, the total number of SCs is N = Ns + Ne, where by

i = 1, . . . , Ns we refer to streaming SCs and by i = Ns + 1, . . . , N to elastic

SCs. Elastic flows use the capacity not occupied by streaming traffic. To avoid

starvation, the system reserves 1 resource unit for elastic traffic. For each SC,

new and handover arrivals are distinguished, so that there are N SCs and 2N

arrival types.

For the sake of mathematical tractability we make the common assump-

tions of Poisson arrival processes for all SCs and exponentially distributed

session durations and CRTs for streaming SCs. Let λn
i (λh

i ) be the arrival rate

for new (handover) streaming sessions or elastic flows of the ith SC. Let µd,s
i

and µr,s
i be the rates of the session duration and the CRT of the ith streaming

SC, 1 ≤ i ≤ Ns. Hence, the CHT in a cell for a streaming SC is exponentially

distributed with rate µs
i = µd,s

i + µr,s
i . For streaming SCs, a request of the

ith SC consumes bi resources, bi ∈ N. The system state is described by the

N-tuple x = (x1, . . . , xN), where xi is the number of ongoing streaming ses-

sions or elastic flows of the ith SC, regardless of whether they were initiated

as new or handover arrivals. The number of resources occupied at state x by

streaming traffic is:

b(x) =
Ns

∑
i=1

xibi.

We model elastic traffic at the flow level and ignore interactions at the

packet level (scheduling, buffer management, etc.). The flow content is then

viewed as a fluid that is transmitted as a continuous stream with rate changes
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occurring only at streaming sessions or elastic flows arrivals and departures.

An elastic flow of the ith SC is assumed to be rate-limited either by termi-

nal capabilities or because it is bottlenecked at the radio link. We denote its

maximum bandwidth by rM
i . Also, elastic flows require a minimum band-

width denoted by rm
i . This can be guaranteed by an appropriate AC policy.

We assume that flow sizes are exponentially distributed with mean L (bits).

Let µM
i = rM

i /L and µm
i = rm

i /L (in flow/s) be the maximum and minimum

service rates of an ith SC flow. Without lost of generality, we consider in this

work that all the elastic SCs have the same minimum service rate µm and

hence, the maximum number of flows in the system is

nM =

⌊
C · R

rm

⌋

. (3.1)

For elastic flows of the ith SC, the CRT is here assumed to be exponentially

distributed with rate µr,e
i . However, we extend the model for other distribu-

tions in Section 3.2.2 and validate this assumption in Section 3.3.

Without loss of generality, we consider that flows are ordered in increasing

value of their rate limits rM
i . The total number of elastic flows in the system

in state x is denoted by

c(x) =
N

∑
i=Ns+1

xi.

Let us define µd,e
i (x) as the service rate, i.e. the rate of the flow duration, of

the ith SC flow at state x and

V (x) = (C− b(x))
R

L

as the available aggregated service rate at state x. Flows share the available

resources fairly according to the following rule.

For i = Ns + 1,

µd,e
i (x) = min

(

µM
i ,

V (x)

c(x)

)

, (3.2)
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Chapter 3. Elastic traffic characterization

while for i > Ns + 1,

µd,e
i (x) = min



µM
i ,

V (x)−∑
i−1
j=Ns+1 xjµ

d,e
j (x)

∑
N
j=i xj



 . (3.3)

Clearly, in (3.3) the bandwidth that a SC cannot use because it reached its

rate limit is used by other SCs with higher rate limit.

Flows become impatient and might leave the system due to a very low

throughput. The patience time at state x is modeled by an exponential distri-

bution with rate:

βi(x) = β1
i

(

µM
i

µd,e
i (x)

− 1

)

+ β0
i , (3.4)

where β1
i is a scaling factor that relates the throughput degradation and the

patience rate and β0
i is a factor that determines the patience rate when a flow

is served at its maximum rate. When the service rate of the ith SC is less than

its maximum, its patience rate increases when the service rate decreases.

We consider a non-preemptive AC policy. A streaming session or elastic

flow is accepted if there are enough free resources to support it and if, after

acceptance, all ongoing elastic flows obtain a service rate equal or bigger than

their minimum µm. We denote by an
i (x) (ah

i (x)) the probability of accepting

a new (handover) arrival of the ith SC in state x. Clearly, the system can

be modeled as a CTMC, specifically as a multidimensional birth and death

process with state space,

W :=

{

x : xi ∈ N;
Ns

∑
i=1

xibi ≤ C− 1; µd,e
i (x) ≥ µm

i

}

. (3.5)

As an example, Fig. 3.1 shows the transition diagram of the CTMC that

models a system where Ns = 1, Ne = 1. Note that transitions from states

with j = 0 or k = 0 to states j− 1 or k− 1, respectively, are not possible. For

clarity, the notation has been simplified writing an
i , ah

i β2 and µd,e
2 instead of

an
i (x), ah

i (x), β2(x) and µ(x)d,e
2 , respectively.
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j, k
an

1 λn
1 + ah

1λh
1

j(µr,s
1 + µc,s

1 )

an
2 λn

2 + ah
2λh

2

k(µr,e
2 + β2 + µd,e

2 )

j, k + 1

j + 1, k

j, k− 1

j− 1, k

Figure 3.1: Transition diagram of the CTMC with SC=2. The state (j, k) obeys
0 ≤ j ≤ ⌊(C− 1)/b1⌋ and 0 ≤ k ≤ nM.

If the state x′ represents the state achieved by the system after a state tran-

sition and qxx′ is the transition rate from x to x′. The stationary distribution

π (x) of this CTMC can be obtained by solving the global balance equations

and the normalization equation,

π(x) ∑
∀x′∈W

qxx′ = ∑
∀x′∈W

qx′xπ(x′) ∀x ∈ W , (3.6)

∑
∀x∈W

π(x) = 1. (3.7)

From now on we will refer to this CTMC as the original CTMC.

3.2.2 Duration of elastic flows and handover metrics

In the system under study, the duration of an elastic flow is composed of a

number of exponentially distributed phases with different rates. Thus, the

elastic flow duration follows a PH distribution, (see Appendix C.1.2). A PH

distribution defines the time until absorption in an Absorbing Markov Pro-

cess (AMP) [Neu81], where an absorbing state is a state which is impossible

to leave. It is commonly represented by a pair (α, S), where matrix S de-
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j, k
an

1 λn
1 + ah

1λh
1j(µd,s

1 + µr,s
1 )

an
2 λn

2 + ah
2λh

2

(k− 1)(µd,e
2 + µr,e

2 + β2)µd,e
2 + β2

π′(p, m− 1)µr,e
2

A

j, k + 1

j + 1, k

j, k− 1

j− 1, k

p, m

Figure 3.2: Transition diagram of the AMP for SC=2. State A is the absorbing
state, 0 ≤ j, p ≤ ⌊(C− 1)/b1⌋, 1 ≤ k, m ≤ nM and (p, m) 6= (j, k).

fines transition rates among the transient states, and vector α the probabilities

that the process is started in any of the states. The transition rates from the

transient states to the absorbing state is defined by vector τ, which satisfies

τ = −S1, where 1 is a column vector of 1s.

A different AMP is defined for each elastic SC i, PH(αi, Si). It contains

the states that might be visited by a tagged elastic flow of the ith SC until

it abandons or terminates successfully. The AMP must consider that flows

might be handed over multiple times to adjacent cells. We assume that the

tagged flow has a normal progression and therefore, it is never blocked. The

state spaceW ′ of the AMP of the ith SC is defined by:

W ′i := {x ∈ W , xi > 0}. (3.8)

The initiation vector probabilities αi is derived from the stationary probabil-

ities π(x) of the original CTMC considering that the state space is restricted

toW ′i. As an example, Fig. 3.2 shows the AMP associated to the elastic flows

of a system with Ns = 1, Ne = 1. State A represents the absorbing state

and it is visited when the tagged flow abandons or ends. The dashed circle

(p, m) represents a set of states composed of all the feasible states that can

be reached immediately after the tagged flow is handed over to an adjacent
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cell, i.e, (p, m) represents any state where (p, m) 6= (j, k) and m 6= 0. The

probability π′(p, m− 1) is used to take into account the state that the target

cell is in immediately before the handover and it is obtained from the sta-

tionary distribution of the original CTMC {π(x)} after removing the blocking

states and then re-normalizing. Finally, note also that the transitions to states

(j, k− 1), where k− 1 = 0 are not possible.

When a flow is initiated as a handover request, it spends all the CRT as an

active flow. Let Td and Tr be random variables that denote the duration and

CRT of an elastic flow, respectively. At this point, no assumptions are made

regarding the distributions of these random variables. When a flow enters a

cell as a handover request, it is handed over again if Td is longer than Tr, and

therefore the probability Ph that it is handed over again is determined by

Ph = 1− P(Td < Tr) =

= 1−
∫ ∞

0
P(td < Tr) fd(td)dtd =

= 1−
∫ ∞

0
(1− Fr(td)) fd(td)dtd ,

(3.9)

where Fr is the distribution function of Tr, and fd stands for the probability

density function of Td.

When a flow is initiated as a new request, it does not spend all the CRT

as an active flow. Let T̂r be the residual life of the CRT of a flow [HLL04], i.e.,

the time elapsed since a flow is initiated until the terminal leaves a cell, (see

Fig 3.3). Thus, when a flow is initiated as a new request, it is handed over

when Td is longer than T̂r. Then, the handover probability of sessions which

enter the cell as new requests, P̂h, has the same expression as in (3.9), but

substituting Fr by the distribution function of the residual CRT, F̂r. From the

residual life theorem [Ros85], the probability density function of the residual

life of a CRT, f̂r(t), is given by:

f̂r(t) =
1

E[Tr]
[1− Fr(t)] , (3.10)
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Tr − T̂r T̂r

Entry HandoverConnection

Figure 3.3: Residual life of the CRT

and therefore,

F̂r(t) =
∫ x

0

1
E[Tr]

[1− Fr(t)]dt. (3.11)

Finally,

P̂h = 1−
∫ ∞

0
(1− F̂r(td)) fd(td)dtd. (3.12)

Let Ni be the random variable given by the number of handovers executed

by an elastic flow of SC i during its lifetime. Its distribution is given by:

P[Ni = n] =







P̂h
i (1− Ph

i )(Ph
i )

(n−1) n > 0

1− P̂h
i n = 0.

(3.13)

Then, Ni follows a geometric distribution with mean

E[Ni] =
P̂h

i

(1− Ph
i )

.

In the system under study, the flow duration follows a PH distribution

and therefore, the probability density function of the CRT is given by (see

Appendix C.1.2):

fd(t) = αie
tSi τi. (3.14)

As a particular case, if we consider exponentially distributed CRT, from (3.10)

we have:

f̂r(t) = µr,e
i [1− (1− e−µr,e

i t)] = µr,e
i e−µr,e

i t = fr(t)

and hence,

F̂r(t) = Fr(t) = 1− e−µr,e
i t. (3.15)
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Therefore, when the CRT is considered exponentially distributed, the proba-

bilities of handover for elastic flows of SC i, P̂h
i and Ph

i have the same value

and from (3.9), (3.14) and (3.15) we have:

P̂h
i = Ph

i = 1−
∫ ∞

0
e−µr,e

i td αie
tdSi τidtd =

= 1− αi

∫ ∞

0
e−td(µ

r,e
i I−Si)dtdτi =

= 1− αi(µ
r,e
i I − Si)

−1τi ,

(3.16)

where I is the identity matrix.

3.3 Validation of the analytical model

In this section the analytical results are compared with simulation results in

order to validate the correctness of the analytical model and the assump-

tions of exponential distributions for CRTs and flow sizes. For the simula-

tion, we choose the lognormal distribution, as it models more realistically the

CRT [ZBA09] and the fow size [ZSXX11].

We consider, unless otherwise indicated, a system with parameters indi-

cated in Table 3.1. The notation has been simplified writing µr,e, P̂h, Ph and N

Table 3.1: Definition of system parameters.

Parameter Value Parameter Value

Ns 2 Ne 1
C 10 R 100
L 200 b [1, 2]

λn [0.008, 0.012, 5] µd,s [0.008, 0.01]
µr,s [0.004, 0.006] rm

3 50
rM

3 500 β0
3 0

β1
3 1
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instead of µr,e
3 , P̂h

3 , Ph
3 and N3 respectively. The values of the arrival rates for

handover arrivals, λh, are calculated by simulating a system with the same

parameters than the analytical model under study in each case.

In Fig. 3.4 and Fig. 3.5, the evolution of the handover probability, both P̂h

and Ph, with µr,e are shown. Curves labeled with ‘Exp’ correspond to analytic

results considering exponentially distributed CRTs and obtained using (3.16).

Curves labeled with ‘Logn Ph’ and ‘Logn P̂h’ are obtained considering ex-

ponentially distributed CRTs to determine (α, S), and then using lognormal

distributions and their residual distributions to model the CRT when comput-

ing Ph and P̂h from (3.9) and (3.12) respectively, as explained in Section 3.2.2.

Its mean is set to 1/µr,e, while its Coefficient of Variation (CV1 ) is set to 1

in Fig. 3.4 and to 0.5 and 2 in Fig. 3.5. Curves corresponding to simulation

results are labeled with ‘SR’. They are obtained by considering a multi-cell

scenario with a central cell and two outer rings of cells, which make a total

19 cells. Upon CRT termination, terminals select a neighbor cell with equal

probability. We consider wraparound to avoid abnormal terminations at the

edges. For more details see Appendix D.2. For these simulations, the random

variable T̂r for the residual life of the CRT has to be generated from its distri-

bution function F̂r. For that, we use the method known as acceptance-rejection

method. For more details about this method, see also Appendix D.2.

Observe the excellent agreement between the analytical and simulation

results, i.e. they practically overlap. We conclude that the PH distribution

models appropriately the flow duration, even when the CRT are lognormally

distributed. We can also see that in both Fig. 3.4 and 3.5, Ph and P̂h increase

with µr,e as expected, because the CRT decreases as the rate increases. In

Fig. 3.4, also as expected, Ph and P̂h decrease as rM
3 increases. This is because

the higher rM
3 is, the earlier the flow transfer will terminate.

Results in Fig. 3.6 show the evolution of the distribution of N (number of

handovers) with µr,e for lognormally distributed CRTs with CV = 1. Analyt-

ical results, obtained using (3.13), are represented using lines, while simula-
1The Coefficient of Variation (CV) of the random variable X is defined as the ratio of the

standard deviation σX to the mean E[X] , i.e., CVX = σX/E[X]
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Figure 3.4: Handover probability as function of µr,e, CV = 1.
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Figure 3.5: Handover probability as function of µr,e for bM
3 =500, CV = 0.5

and CV = 2.
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Figure 3.6: Probability of having n handovers as function of µr,e.

tions results are represented only by markers at the evaluated points. Clearly,

when the mobility increases, i.e. µr,e increases, P[N = n], n ≥ 1, increases,

while P[N = 0] decreases. That is, as the mobility increases it is more prob-

able that a flow executes 1 or more handovers, while it is less probable that

executes 0 handovers. Note that the curve for n = 1, first increases with µr,e

and then decreases. This is because, the higher µr,e is, the less likely that a

flow executes exactly 1 handover and the more likely that it executes more

than 1.

Fig. 3.7 shows the impact of the flow size distribution on the distribution

of N, for lognormal CRT times with CV = 1. Analytical results, represented

by lines, are obtained considering an exponential flow size distribution and

using (3.13). Simulation results, represented only by markers at the evalu-

ated points, are obtained considering a lognormal flow size distribution with

CV = 2. Note that when the flow size is exponentially distributed, the mem-

oryless property for the flow size holds and, after a handover, the residual

flow size maintains the original distribution. However, when the flow size
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Figure 3.7: Probability of having n handovers as function of µr,e. Lognormal
flow size distribution, CV = 2.

distribution is lognormal, the residual flow size does not maintain the orig-

inal distribution after a handover, i.e. handover probabilities depend on the

number of previous handovers. This fact has been taken into account in the

simulation model. Results in Fig. 3.7 show an excellent agreement between

the analytical and simulation results. As expected, the agreement is closer for

low mobility scenarios (low µr,e). That is, when the number of handovers ex-

perienced is 0 or close to 0, the difference in the residual distributions of the

flow size has no impact. However, in high mobility scenarios, the proposed

model is still able to capture with high precision the handover performance

of the elastic flows.

3.4 Conclusions

We studied the flow duration distribution for elastic traffic in cellular net-

works and obtained handover related metrics, such as the distribution of the
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number of handovers a flow has to go through. To make the model more

realistic and of broader application, we considered impatient elastic users, a

generic admission policy that guarantees a minimum rate for elastic flows,

and scenarios where CRTs and flow sizes were modeled by different distri-

butions.

The flow duration was characterized by a PH distribution and the prob-

abilities of the first and successive handovers were determined. We provide

exact results under the assumption that both flow sizes and CRTs are ex-

ponentially distributed. Then, the model was extended by introducing an

approximate technique to deal with more realistic distributions of the CRT

and the flow size. We used lognormal distributions because, as suggested

in the literature, they model realistically both CRTs and flow sizes. Note

the modeling approach can be used with any other distribution. Results

obtained by the proposed technique were validated by simulation and very

close agreement was found.

We conclude that the proposed method models appropriately the flow

duration and handover performance under rather general assumptions.
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Chapter 4

Optimal design of the MFGC policy

4.1 Introduction

Efficient AC policies must be used to optimize the resource utilization and

fulfill QoS constraints in multiservice mobile networks. Dropping a session

in progress is generally considered to have a more negative impact from the

users’ perception than blocking a new session. What is actually done is re-

serving resources for potential future handover requests. In this sense, AC

policies consider that handover sessions have higher priority than new re-

quests and therefore, one of the key goals is to minimize the handover block-

ing probability. Moreover, the goal of a network service provider is to max-

imize revenue by improving network resource utilization. This is achieved

by maximizing the carried traffic, i.e. by keeping the blocking probabilities

for new sessions low. When more resources are reserved for handover re-

quests (lower handover blocking probability), more new sessions are blocked.

Therefore, the main challenge in the design of an efficient AC policy is to bal-

ance these two conflicting requirements.

In a single service scenario, the GC and the FGC trunk reservation poli-

cies are known to be optimal under different criteria [RTN97, Bar01] (see Sec-
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tion 2.3). However, these results cannot be extended to their counterparts in

multiservice scenarios [BC02, PCG03, GRMBP05], the MGC and the MFGC

policies [HUCPOG03b]. In [BC02], it is shown that the optimal AC policy

(with respect to a certain cost function) in multiservice scenarios belongs to

the wider family of RS policies [Ros70, Ros95]. In spite of that, the MFGC

policy is still an efficient AC policy when compared to product-form poli-

cies [GRMBP04, GRMBP05]. In the MFGC policy, the policy parameters con-

trols the number of resources that each SC can access. The optimal parameter

setting maximizes the carried traffic that the system can handle while meet-

ing certain QoS requirements. High precision is required when determining

this optimal configuration and therefore, computing the optimal parameter

setting is computationally costly [CC97]. As a consequence, in large systems

with a high number of SCs the computational complexity of adjusting these

parameters could be intractable.

The design of the optimal configuration of MFGC policy is typically based

on an iterative analysis procedure that adjusts the configuration parameters

of the MFGC to maximize the offered traffic that the system can handle while

meeting certain QoS objectives. In [PMCG05] a methodology to determine

the exact parameter values of the MFGC policy is proposed, including some

speed up suggestions, but its computational cost is prohibitive for practi-

cal systems. In [CPVAOG04], an approximation based on the Kaufman and

Roberts (K&R) recursion is proposed to compute the parameters of the MFGC

policy. Although the computational cost greatly is reduced, no indication is

provided about its precision. In [BM07], a new procedure to determine the

parameters of the MFGC policy is proposed. It is an enhancement of the one

proposed in [PMCG05] that uses the approximation based on the K&R re-

cursion to quickly approximate to the surroundings of the solution and then

a modified version of [PMCG05] is developed to achieve the final solution.

Henceforth, we refer to the algorithm proposed in [PMCG05] as PMC, to the

approximation based in K&R as CVO and to the methodology in [BM07] as

BGMP. In this chapter, an algorithm to determine the optimal parameters of

MFGC, which is based on a modified version of the adaptive AC proposed
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in [GRDBMBP07], is proposed. Then, it is compared the computational cost

necessary to obtain the optimal configuration of the MFGC policy using the

CVO approximation, the PMC, the BGMP and the adaptive algorithms. This

work resulted into the publication in [BMGRPMB08].

The policy MFGC has been proposed to deal with only streaming traffic

since the elastic traffic uses the capacity not occupied by streaming traffic,

and only the streaming SCs are competing directly for the resources. Thus,

in this chapter, only SCs which carry streaming traffic are considered in order

to find the optimal configuration of the MFGC parameters.

This chapter is structured as follows. First, in Section 4.2 the system model

and the QoS objectives are described. In Section 4.3, the aforementioned al-

gorithms are briefly described and the adaptive algorithm is presented. Some

results and conclusions are discussed, respectively, in Sections 4.4 and 4.5.

4.2 System model and MFGC policy definition

We consider that all the SCs in the system carry streaming traffic. The system

model and the streaming traffic characterization are the same as in the system

model described in Section 3.2. Each cell has a total of C resource units.

The system offers N different streaming SCs, where for each SC, new and

handover arrivals are distinguished, so that there are N SCs and 2N arrival

types.

For the sake of mathematical tractability we make the common assump-

tions of Poisson arrival processes for all SCs and exponentially distributed

session durations and CRTs for streaming SCs. Let λn
i (λh

i ) be the arrival rate

for new (handover) streaming sessions of the ith SC. We define the aggre-

gated arrival rate as

λT = ∑
1≤i≤N

λn
i , (4.1)
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where if fi is the fraction of λT that corresponds to SC i,

λn
i = fiλ

T , 0 ≤ fi < 1, ∑
1≤i≤N

fi = 1. (4.2)

We refer to the maximum offered rate that the network can handle while

meeting certain QoS requirements as λT
max.

Let µd,s
i and µr,s

i be the rates of the session duration and the CRT of the

ith streaming SC, 1 ≤ i ≤ N. Hence, the CHT in a cell for a streaming SC is

exponentially distributed with rate µs
i = µd,s

i + µr,s
i . A request of the ith SC

consumes bi resource units, bi ∈ N. The system state is described by the N-

tuple x = (x1, . . . , xN), where xi is the number of ongoing sessions of the ith

SC, regardless they were initiated as new or handover arrivals. The number

of resources occupied at state x is denoted by b(x) = ∑
N
i=1 xibi.

The system can be modeled as a CTMC, specifically, as a multidimensional

birth and death process with state space,

W :=

{

x : xi ∈ N;
N

∑
i=1

xibi ≤ C

}

.

In order to describe the session-level QoS in multiservice mobile cellular

networks, the most common parameters used are: new session blocking proba-

bility, Pb,n
i , which is the probability that a new request of SC i is not accepted

in the system, and the handover blocking probability, Pb,h
i , which is the proba-

bility that a handover request of SC i is not accepted in the destination cell.

The coefficients an
i (x) and ah

i (x) denote the probabilities of accepting a

new and a handover arrival of SC i respectively, and π(x) is the stationary

distribution. Then, the new session and handover blocking probabilities for

SC i, respectively, are obtained as

Pb,n
i = ∑

x∈W
(1− an

i (x))π(x),

Pb,h
i = ∑

x∈W
(1− ah

i (x))π(x).
(4.3)
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Chapter 4. Optimal design of the Multiple Fractional Guard Channel policy

We consider that the QoS requirements are given in terms of upper-bounds

for the new session blocking probability, Bn
i , and the handover blocking prob-

ability, Bh
i .

If the system is in statistical equilibrium, the rate at which handover ses-

sions enter the cell is equal to the rate at which handover sessions exit the

cell. Then, handover arrival rates are related to the new session arrival rates

and the blocking probabilities [LMN94] through the expression:

λh
i =

µr,s
i

µr,s
i + µd,s

i

(

(1− Pb,n
i )λn

i + (1− Pb,h
i )λh

i

)

,

and therefore,

λh
i = λn

i

(1− Pb,n
i )

µd,s
i /µr,s

i + Pb,h
i

. (4.4)

The blocking probabilities depend on the handover arrival rates and hence

in (4.4), λh
i is not explicitly defined. Since the MFGC policy will be designed

so that the blocking probabilities will be very close to their upper-bounds,

instead of using (4.4) we use the expression:

λh
i = λn

i

(1− Bn
i )

µd,s
i /µr,s

i + Bh
i

. (4.5)

MFGC policy

A brief definition of the MFGC policy is given here. Two parameters are

associated with SC i: tn
i and th

i for new and handover arrivals, respectively.

Henceforth, we use the superscript (n, h) to refer to the corresponding param-

eters for new or handover arrivals, for example, tn,h
i means tn

i or th
i . These

parameters are real numbers in the interval [0, C]. In order to decide on the

acceptance of a request of SC i, upon an arrival the number of resources that

will be occupied if it is accepted is compared with the corresponding thresh-

old tn,h
i depending on whether the request is a new or a handover arrival.
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The following decisions can be taken:

b(x) + bi







≤ ⌊tn,h
i ⌋ accept

= ⌊tn,h
i ⌋+ 1 accept with probability tn,h

i − ⌊t
n,h
i ⌋

> ⌊tn,h
i ⌋+ 1 reject.

(4.6)

The policy parameters tn,h
i control the number of resource units that a

SC can access. Thus, the coefficients an
i (x) and ah

i (x) can be determined as

follows:

an
i (x)







= 1 if b(x) + bi ≤ ⌊tn
i ⌋

= tn
i − ⌊tn

i ⌋ if b(x) + bi = ⌊tn
i ⌋+ 1

= 0 if b(x) + bi > ⌊tn
i ⌋+ 1,

(4.7)

ah
i (x)







= 1 if b(x) + bi ≤ ⌊th
i ⌋

= th
i − ⌊th

i ⌋ if b(x) + bi = ⌊th
i ⌋+ 1

= 0 if b(x) + bi > ⌊th
i ⌋+ 1.

(4.8)

On average, the maximum number of resource units that a new and a

handover arrival of SC i can utilize are, respectively, tn
i and th

i . The optimal

parameters maximize λT under given QoS requirements. Since the parame-

ters tn,h
i have an impact not only on the QoS perceived by SC i but also on the

QoS perceived by the rest of SCs, the adjustment of the threshold parameters

tn,h
i is not simple.

4.3 Parameter configuration

4.3.1 Previous algorithms

The optimal design of the MFGC policy maximizes the total offered traffic,

λT , that the system can handle while meeting the QoS objectives.

The capacity optimization problem can be formally stated as follows
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Chapter 4. Optimal design of the Multiple Fractional Guard Channel policy

Given: C, bi, fi, µd,s
i , µr,s

i , Bn
i , Bh

i ; i = 1, . . . , N

Maximize: λT by finding the appropriate MFGC parameters tn
i and

th
i ; i = 1, . . . , N

Subject to: Pb,n
i ≤ Bn

i , Pb,h
i ≤ Bh

i ; i = 1, . . . , N

Let us introduce the 2N-tuple pmax = (Bn
1 , . . . , Bn

N , Bh
1 , . . . , Bh

N) as the

upper-bound vector for the blocking probabilities.

In order to find the optimal tn,h
i and λT

max, the PMC algorithm [PMCG05]

proceeds as follows. The algorithm has a main part (Algorithm pmc), where

λT is assigned an initial value. It is checked if a set of values for tn,h
i that fulfill

the QoS requirements exists by calling the procedure sMFGCpmc, where the

set of tn,h
i are initialized with small values. If this set exists, λT is increased

and if not, it is decreased, first with big steps and later with smaller steps.

The procedure sMFGCpmc is called again until a λT
max is found.

Algorithm:

(λT
max,topt)=pmc(pmax, f , µd,s, µr,s, b, C)

Procedure:

(ok,t)=sMFGCpmc(pmax, λn, µd,s, µr,s, b, C)

The procedure sMFGCpmc does, in turn, call another procedure (pro-

cedure MFGCpmc) that calculates the blocking probabilities by solving the

balance equations. Thus, at each new value of tn,h
i for a given λT a CTMC,

specifically a multidimensional birth and death process, has to be solved. In

PMC algorithm, the stationary distribution equations (3.6) and the normal-

ization equation (3.7) are solved by using the Gauss-Seidel method. Solving

this process is the most computationally expensive part of the algorithm. The

computational cost grows enormously when the number of resource units

or/and the number of different SCs is high [CC97].

To face these computational limitations the CVO numerical approximation

is proposed in [CPVAOG04]. It consists of converting the multidimensional
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process to a one-dimensional process where the system state is defined by

b(x), the total number of resource units occupied. Henceforth, let us refer to

b(x) as k. Then, the stationary distribution of k given by q(k) can be generated

recursively by the equation:

N

∑
i=1

an
i (k− bi)λ

n
i + ah

i (k− bi)λ
h
i

µd,s
i + µr,s

i

biq(k− bi) = kq(k), (4.9)

where an
i (k) and ah

i (k) are the probabilities of accepting a new session or a

handover of SC i, respectively, that arrives in state k. With this stationary

distribution the blocking probabilities can be obtained alternatively by:

Pb,n
i =

C

∑
r=0

(1− an
i (r))q(r),

Pb,h
i =

C

∑
r=0

(1− ah
i (r))q(r),

(4.10)

and the procedure MFGCpmc of the PMC algorithm will be faster. This re-

cursion is only an approximation, since the model does not take into account

some reservations [SG00] and the final results may not be accurate. As shown

later, the accuracy of this approximation is poor. Therefore, a new algorithm

(BGMP algorithm) is proposed in [BM07] that uses the CVO approximation,

among other modifications, to improve the PMC algorithm.

An enhancement of the PMC algorithm is possible by initializing the value

of the parameters tn,h
i and the aggregated call arrival rate λT as close as

possible to the optimal values. So, in BGMP algorithm, in a first step tn,h
i and

λT are initialized with the values obtained using the CVO approximation. In

the second step, these results are the initial values and the multidimensional

birth and death process is solved by using the Gauss-Seidel method. Thus,

the cost of the PMC algorithm is reduced considerably. In this second step,

the initial interval of λT will be narrower, therefore the search of the optimal

λT can be faster. Moreover, in each evaluation of each new λT the initial

values of tn,h
i are the calculated values in the previous evaluation. These
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Chapter 4. Optimal design of the Multiple Fractional Guard Channel policy

changes improve the algorithm since less multidimensional birth and death

processes have to be solved. For more details about the PMC and the BGMP

algorithms see Appendix B.1.

4.3.2 Adaptive scheme

The adaptive scheme presented in this work is based on the adaptive scheme

proposed in [GRDBMBP07] and operates in coordination with the Multiple

Guard Channel (MGC) policy. In the MGC policy, one threshold parameter

for new arrivals, ln
i and another for handover arrivals lh

i , are associated to

each SC i, where ln
i , lh

i ∈ N. We use ln,h
i to refer to the corresponding ln

i

or lh
i . Upon a new (handover) arrival, the MGC policy takes the following

decisions:

b(x) + bi







≤ ln,h
i accept

> ln,h
i reject.

(4.11)

Therefore, ln
i (lh

i ) is the number of resources that a new (handover) arrival of

SC i can access. In practice, we can assume without loss of generality that the

QoS objective for SC i can be expressed as

Bn,h
i =

cn,h
i

on,h
i

,

where cn,h
i , on,h

i ∈ N. Then it is expected that if Pn,h
i = Bn,h

i the SC i will

experience, in average, cn,h
i rejected requests and on,h

i − cn,h
i admitted requests,

out of on,h
i offered requests. For example, if the QoS objective for SC i is

Bn
i = 1/100, then cn

i = 1 and on
i = 100.

It seems intuitive to think that the adaptive scheme should adjust the

threshold parameters on the required direction if the perceived QoS is dif-

ferent from its QoS requirements, and not change the threshold parameters

of those arrival SCs which meet their QoS requirements. Therefore, given

that the MGC policy deploys integer values for its threshold parameters, a
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probabilistic adjustment each time a request is processed is proposed in the

following way. First of all, we choose an arrival type that, for simplicity, we

assume that it is the new arrival of SC i = 1, which is the SC with the lowest

priority.

1. For new arrivals of SC i ∈ [2, N] and handover arrivals of SC i ∈ [1, N]:

• If accepted, do {ln,h
i ← (ln,h

i −∆l)} with probability 1/(on,h
i − cn,h

i );

• If rejected, do {ln,h
i ← (ln,h

i + ∆l)} with probability 1/cn,h
i , where

∆l ∈ N is the adjustment step for the thresholds parameters.

2. For new arrival of SC i = 1:

• If accepted, do {λT ← (λT + ∆λ)} with probability 1/(on
1 − cn

1 );

• If rejected, do {λT ← (λT − ∆λ)} with probability 1/cn
1 , where

∆λ ∈ R is the adjustment step for the λT .

The thresholds ln,h
i of high priority are adjusted independently from each

other according to whether their requests are accepted or rejected. If a lot

of requests of new or handover arrivals of SC i are rejected, it can be that

ln,h
i ≥ C. In this case, ln

1 is decremented. Thus, new arrivals of SC 1 do not

control their own threshold ln
1 but control their QoS like the other SCs by

adjusting λT . When Pn
1 > Bn

1 = cn
1 /on

1 , λT is decremented and if all objectives

are fulfilled, λT is incremented.

Therefore, under stationary traffic if Pn,h
i = Bn,h

i , in average, ln,h
i is in-

creased by ∆l and decreased by ∆l every on,h
i offered requests, i.e. its mean

value is kept constant. The optimal MFGC threshold parameters, tn,h
i , corre-

spond to this average value of ln,h
i . Note also that in the operation of this sim-

ple scheme no assumption has been made concerning the arrival processes

or the distribution of the session duration and CRT.
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Chapter 4. Optimal design of the Multiple Fractional Guard Channel policy

Table 4.1: Definition of systems A and B.

System A System B

N 2 4
b [1, 2] [1, 2, 4, 6]

µd,s [1/180, 1/300] [1/300, 1/300, 1/300, 1/300]
µr,s [1/900, 1/1000] [1/300, 1/300, 1/300, 1/300]
Bn [0.02, 0.02] [0.05, 0.04, 0.03, 0.02]
Bh [0.01002, 0.00668] [5.0251, 4.0161, 3.009, 2.004]10−3

4.4 Numerical evaluation

In this section we make a comparative evaluation of the CVO approxima-

tion when it is used to solve the balance equations in the PMC algorithm,

the BGMP algorithm and the adaptive method, in terms of accuracy and nu-

merical complexity given as the computational cost in seconds necessary to

compute the optimal parameter setting of the MFGC policy using an Intel

Pentium IV HT 3,4GHz.

For numerical examples we have considered two systems: i) System A

with two streaming SCs (N = 2), and parameters from [PMCG05]; ii) System

B with four streaming SCs (N = 4) and parameters from [BS97]. The param-

eters of system A and B are defined in Table 4.1. For system A, the fraction

of the aggregated rate that corresponds to each SC i is fi = [0.8, 0.2] and for

system B, it is given by

fi = f̂i/F̂ where f̂i = φi−1, φ = 0.2, F̂ = ∑ f̂1.

In Table 4.2, the results obtained in system A are shown with C = 50 and

C = 100. In each column, it is shown the parameter setting that maximizes

λT while meeting QoS requirements and this λT
max. The computational cost

in seconds necessary to compute these parameters is also shown in the last

column T(sec). Each column defines the results obtained using the indicated
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Table 4.2: Parameter computation for system A.

C = 50 C = 100
CVO BGMP Adapt. CVO BGMP Adapt.

tn
1 43.83 44.91 44.82 93.32 94.27 93.62

tn
2 48.76 48.93 48.88 98.67 98.58 97.90

th
1 45.09 45.88 45.84 94.82 95.42 94.77

th
2 49.88 49.94 49.90 99.88 99.61 98.94

λT
max 0.146 0.151 0.150 0.336 0.345 0.339

T(sec) 11 343 511 32 3265 956

algorithm. In the column CVO, the CVO approximation is used to solve the

balance equations in the PMC algorithm. When the Gauss-Seidel method

is used to solve the balance equations, the PMC algorithm has quite higher

computational cost to achieve similar results as algorithm BGMP. For C = 50,

the computational cost of the PMC algorithm with the Gauss-Seidel method

is 2433 sec and for C = 100, it is 27018 sec.

Once the parameter setting and the λT
max are computed, in order to verify

that the QoS requirements are fulfilled, the new session and handover block-

ing probabilities, Pb,n
i and Pb,h

i , under this design can be calculated by solving

the balance equations of the system using the Gauss-Seidel method. Table 4.3

contains the relative error (%) value of the blocking probabilities calculated

using the parameter design and the λT
max from each method, in relation to

the upper-bounds for the new session and handover blocking probabilities,

Bn
i and Bh

i . Thus, the error expressions of new session and handover blocking

probabilities for SC i are given, respectively, by

errorn
i =

Pb,n
i − Bn

i

Bn
i

, errorh
i =

Pb,h
i − Bh

i

Bh
i

.

Negative errors refer to blocking probabilities lower than the objectives. Oth-

erwise, if the error is positive, the blocking probabilities obtained are higher

than the upper-bounds.
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Table 4.3: System A errors (%).

C = 50 C = 100
CVO BGMP Adapt. CVO BGMP Adapt.

Pb,n
1 −2.98 −0.06 −0.90 −7.63 −0.22 −0.29

Pb,n
2 −45.96 −0.01 −0.37 −52.43 −0.51 −0.59

Pb,h
1 −19.34 −0.17 −1.17 −24.68 −0.68 −0.96

Pb,h
2 −55.63 −0.59 −3.46 −64.24 −0.01 −5.10

Table 4.4: Parameter computation for system B, C = 50.

CVO BGMP Adapt.

tn
1 39.47 40.06 39.77

tn
2 40.93 41.55 41.26

tn
3 43.59 44.55 43.78

tn
4 46.40 46.81 46.52

th
1 43.83 43.94 43.66

th
2 45.14 45.22 44.90

th
3 47.56 47.54 47.24

th
4 49.97 49.85 49.69

λT
max 0.078 0.079 0.078

T(sec.) 38 325446 2298

The results presented indicate that the CVO approximation is not an ac-

curate method to compute the parameters since the blocking probabilities

calculated using the parameters obtained do not adjust to the objectives. In

terms of computational cost, the CVO approximation is the fastest method.

The BGMP algorithm gives good results but it can entail a high computational

cost if the number of resource units is high. The adaptive method achieves

good precision and although its computational cost is higher than using the

BGMP algorithm when the system has few resource units, it is faster than the

BGMP algorithm when the number of resource units is high.
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Table 4.5: System B errors (%), C = 50.

CVO BGMP Adapt.

Pb,n
1 3.54 −0.10 −0.22

Pb,n
2 3.52 −0.55 −0.42

Pb,n
3 −0.13 −0.67 −0.08

Pb,n
4 −4.57 −0.56 −0.31

Pb,h
1 −19.64 −0.39 −0.56

Pb,h
2 −22.64 −0.37 −0.03

Pb,h
3 −28.95 −0.52 −0.01

Pb,h
4 −40.14 −0.45 −4.52

Similarly, in Tables 4.4 and 4.5, the same results for system B are showed.

For this system, the design using the PMC algorithm together with the Gauss-

Seidel method is not computationally tractable. The results show that the

computational cost when the CVO approximation is used is very low but

the results are not accurate since some relative errors in Table 4.5 are high

and some errors are positive, which means that the QoS requirements are

not fulfilled for all the SCs with the parameter design computed with this

approximation. We can also see that although the BGMP algorithm is very

accurate, it has the highest computational cost. The computational cost of the

adaptive algorithm is between the other two algorithms and the computed

parameter design adjusts very accurately the blocking probabilities to the

QoS requirements.

4.5 Conclusions

In this chapter, we have compared several algorithms used to design the op-

timal parameter configuration for the MFGC policy in order to maximize the

offered traffic that the system can handle while meeting certain QoS require-

ments. For large systems, i.e. systems with a large number of resource units
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and/or various SCs, the design of the MFGC policy can become computa-

tionally intractable, therefore it is crucial to choose a suitable method when

designing these types of AC policies.

We have observed that for large systems, the PMC algorithm using the

Gauss-Seidel method presents very accurate results but its computational

cost can be prohibitive, while using the CVO approximation is very fast but

it does not adjust to the QoS requirements. We have also observed that the

BGMP algorithm presents good results, but its computational cost can be very

high when the number of SCs in the system is considerably high. For large

systems, the adaptive method achieves good precision and its computational

cost is between the PMC algorithm using the CVO approximation and the

BGMP algorithm.
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Chapter 5

AC policies for time-varying traffic

scenarios

5.1 Introduction

As we have shown in Chapter 4, in large systems the computational com-

plexity of computing the optimal parameter setting of MFGC policy can be

intractable. Moreover, after the design phase, this parameter configuration

is static. Then, it is reasonable to expect that this AC policy may have poor

performance when the offered traffic is time-varying and overload intervals

appear when some SCs exceed the expected offered traffic. We can find these

scenarios, for instance, in public cellular networks that support emergency

services after a disaster [BF01], or in general, in networks that support high

levels of congestion, where there are high priority SCs that can generate high

demands of resource units. In this context, the main problem is to provide a

reasonable QoS to the different SCs under high unexpected overloads. There-

fore a fair, efficient and robust AC is needed.

A fair and efficient AC avoids that the different characteristics of the SCs

results in a very unfair resource allocation. Robustness is a key aspect for an

effective resource sharing. It is the ability to respond to statistical fluctuations,
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which are inevitable even with good traffic forecasts. It is also the adaptability

in an overloaded scenario where the arrival rates are higher than the expected

values considered in the design of the AC policy. For instance, the CP and

the CS policies are two extreme cases. Under the CP policy, when some SCs

have an arrival rate higher than the expected but the overall traffic is light

the resources are underutilized since each SC has its nominal allocation and

can not utilize more resources, even when there are free resources in the

resources allocated to other SCs. The CS policy presents the opposite case:

when some SCs are overloaded, they can overwhelm all the others since the

resources are shared indiscriminately.

In this chapter, the Virtual Partitioning (VP) policy [MZ96] is studied and

compared with the MFGC policy. The VP policy can adapt to the fluctuations

of the system using different static parameter configurations depending on

whether one or some of the SCs are in overload. As a result a good balance

between efficiency, fairness and robustness is obtained [BM98]. The perfor-

mance of this policy has been studied in previous papers [BM98, MRW98,

YMW+04, SNW08], but the authors consider either networks without mobil-

ity or mobile cellular networks that support only streaming traffic. In this

chapter, we present a new design of the VP policy for multiservice mobile

cellular networks which support elastic and streaming traffic. This work re-

sulted into the publication in [BMPMB10b].

In the next section, the system model is presented and a basic definition

of VP policy is described. In Section 5.3, the new design of the VP policy

is described. In Section 5.4, the performance of the new proposed VP pol-

icy design and the performance of MFGC policy are compared. Section 5.5

concludes the chapter.

5.2 System model and VP policy definition

The system model and the traffic characterization are the same as those in

Section 3.2. Each cell has a total of C resource units, each of them has a
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Chapter 5. Admission control policies for time-varying traffic scenarios

capacity of R bits per second. The system offers Ns streaming SCs, Ne elastic

SCs and N = Ns + Ne total SCs. Elastic flows use the capacity not occupied

by streaming traffic. To avoid starvation, the system reserves 1 resource unit

for elastic traffic. For each SC, new and handover arrivals are distinguished,

so that there are N SCs and 2N arrival types.

For the sake of mathematical tractability we make the common assump-

tions of Poisson arrival processes and exponentially distributed CRT for all

SCs and only for streaming SCs, exponentially distributed session durations.

A request of the ith SC consumes bi resource units, bi ∈ N. For elastic traffic,

the ith elastic SC can be served at a maximum rate, µM
i , and all the SCs must

be served at least with a minimum rate, µm. The system state is described by

the N-tuple x = (x1, . . . , xN), where xi is the number of ongoing streaming

sessions or elastic flows of the ith SC. The number of resources occupied at

state x by streaming SCs is denoted by b(x). For elastic traffic, the session

duration at state x is modeled by an exponential distribution with rate µd,e
i (x)

defined in (3.2) and (3.3) and the patience time at state x is modeled by an

exponential distribution with rate βi(x) defined in (3.4). The system can be

modeled as a multidimensional birth and death process with state space W
defined in (3.5).

Remember that an
i (x) and ah

i (x) are the coefficients which define the AC,

and π(x) is the stationary distribution of the system. In order to describe

the QoS, for streaming traffic we use the new session blocking probability,

Pb,n
i , and the handover blocking probability, Pb,h

i , defined in 4.3. Again, we

consider that dropping a session in progress has a more negative impact from

the users’ perception than blocking a new requested session, and therefore

handover sessions have higher priority than new sessions. For elastic SCs,

other parameters are also used to describe the QoS. In a cell, the abandonment

probability, Pa
i , is the probability that an elastic flow of SC i is aborted due to

impatience, where i = 1 + Ns, . . . , N, and it is given by:

Pa
i =

1

λn
i (1− Pb,n

i ) + λh
i (1− Pb,h

i )
∑

x∈W
xiβi(x)π(x). (5.1)

53



Chapter 5. Admission control policies for time-varying traffic scenarios

If all flows were let into the system, the abandonment probability may be

considered a good and sufficient performance indicator. However, if there is

some type of access restriction, both abandonment and blocking should be

taken into account for characterizing the system performance. In the latter,

relying only on the abandonment probability may lead to inappropriate con-

clusions since a low value for Pa
i can be obtained by simply using a more

restrictive AC, which obviously entails a high value of the blocking proba-

bilities. Therefore, we define the success completion probability Pc
i which repre-

sents the probability that a flow of SC i is not blocked and it does not leave

the system due to impatience before being served.

In order to calculate Pc
i , it is necessary to know the handover probability

for elastic flows, Ph
i . This parameter was studied in Chapter 3, and when

the CRT is considered exponentially distributed, it is defined in (3.16). Let

us define P′ as the probability that in a cell, a session which has arrived

after a handover terminates successfully in the cell or undergoes a successful

handover to other cell. For the sake of brevity and clarity in the following

expressions, let P̄ be the complementary probability of P, P̄ = 1− P, where

P can be any of the probabilities referred here. Then, we define the success

probability Pc
i as:

Pc
i = P̄b,n

i P̄a
i (P̄h

i + Ph
i P′), (5.2)

where P′ is given by:

P′ = P̄b,h
i P̄a

i (P̄h
i + Ph

i P′) = P̄b,h
i P̄a

i P̄h
i + P̄b,h

i P̄a
i Ph

i P′,

and solving for P′,

P′ =
P̄b,h

i P̄a
i P̄h

i

1− P̄b,h
i P̄a

i Ph
i

. (5.3)

Substituting (5.3) in (5.2),

Pc
i = P̄b,n

i P̄a
i P̄h

i +
P̄b,h

i P̄a
i P̄h

i

1− P̄b,h
i P̄a

i Ph
i

Ph
i P̄b,n

i P̄a
i

54



i

i

i

i

i

i

i

i

Chapter 5. Admission control policies for time-varying traffic scenarios

Pc
i = P̄b,n

i P̄a
i P̄h

i

(

1 +
P̄b,h

i P̄a
i Ph

i

1− P̄b,h
i P̄a

i Ph
i

)

.

And finally,

Pc
i =

(1− Pb,n
i )(1− Pa

i )(1− Ph
i )

1− (1− Pb,h
i )(1− Pa

i )Ph
i

. (5.4)

The QoS requirements are given in terms of upper-bounds for the new

session blocking probability, Bn
i , and the handover blocking probability, Bh

i ,

and by lower-bounds of success completion probabilities, Bc
i .

If the system is in statistical equilibrium, the handover arrival rates for

streaming traffic are related to the new session arrival rates through the ex-

pression (4.5) in Section 4.2.

Virtual Partitioning Policy

The basic definition of VP policy [BM98] is given for networks that handle

only streaming traffic and when mobility is not considered. The VP policy

protects SCs against overload in the system by giving, indirectly, lower prior-

ity to SCs with arrival rates higher than forecasts. At the time of design, each

SC is allocated a nominal capacity Ci, where ∑
N
i=1 Ci ≥ C. The SCs which are

using less than their nominal capacity are given higher priority. Conversely,

the SCs that are exceeding their nominal capacity are given lower priority.

The priority mechanism is implemented by a variant of the trunk reserva-

tion technique. Hence, while all the SCs are underloaded, the resources are

shared indiscriminately, but when a SC is overloaded it is forced to back off

if an underloaded SC needs its allocated resources. In fact, when the traffic is

light VP policy behaves as the CS policy and when the system is overloaded

VP policy tends to the CP policy.

The basic definition of VP policy takes the following decisions:

b(x) + bi







≤ C− ti(xi) accept

> C− ti(xi) reject,
(5.5)
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where the parameter ti(xi) of SC i may be interpreted as the parameter that

introduces the trunk reservation mechanism, but in this case this parameter

is dynamic and changes depending on the following rule:

ti(xi) =







si if bixi + bi ≤ Ci

ti if bixi + bi > Ci,
(5.6)

where si ≤ ti. Hence, ti(xi) represents the resources that SC i cannot occupy

when it is considered overloaded, and hence they determine the degree of

isolation between SCs when the system is overloaded.

5.3 VP in Multiservice mobile cellular Networks

In this section the performance of the VP policy handling streaming and elas-

tic traffic in a multiservice mobile cellular scenario is studied. Since mobility

and multiservice networks are considered, the AC policy must take decisions

distinguishing the different SCs and also the type of arrivals, new sessions or

handovers. In order to simplify the design of the VP in multiservice mobile

cellular networks, we first define a modified version of VP policy for stream-

ing traffic (VPS) in Section 5.3.1. Next, a modified version of VP policy for

elastic traffic (VPE) is defined in Section 5.3.2. Finally, we propose a new

VP scheme (VPC) in Section 5.3.3 based on a combination of VPS, VPE and

FGC [RTN97] policies for multiservice mobile cellular networks that support

streaming and elastic SCs.

5.3.1 Streaming traffic: VPS policy

The objective of the VPS policy is to make a distinction among the different

streaming SCs and not between the types of arrivals, i.e. new or handover

arrivals. Therefore, only one type of arrivals is considered. Both types of

arrivals are considered in the design of the VPC policy in Section 5.3.3.
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At the time of design, each streaming SC is allocated a nominal capacity

Ci. Streaming SCs which are using less than their Ci are given higher priority

and otherwise, they are given lower priority. If x′ = x + ei, where ei denotes

a vector with a 1 on the i-th position and 0’s elsewhere, the VPS policy takes

the following decisions when an arrival of streaming SC i = 1, · · · , Ns occurs:







accept if







b(x) + bi ≤ C− ti(xi)

µd,e
j (x′) ≥ µm for j = Ns + 1, · · · , N

reject otherwise,

(5.7)

where b(x) is the number of resources occupied at state x by streaming traffic,

bi is the resources consumed by a request of the streaming SC i and µd,e
i (x) is

the service rate for elastic SC i in state x. The parameter ti(xi) is defined as in

the original VP policy in (5.6), and represents the resources that the streaming

SC i cannot occupy when it is using more resources than its nominal capacity.

Henceforth, to simplify the design we consider si = 0 ∀i [BM98]. As it can

be clearly seen, the VPS policy controls the priority of the streaming SC that

wants to connect to the cell depending on its load. It also controls that after

the acceptance of this streaming SC i the new service rates for all elastic SCs

are still higher than the minimum required, otherwise the request is rejected.

Parameter design for Streaming Traffic

In order to design a VPS policy that provides a trade-off between efficiency

and robustness against overloads, the nominal capacity Ci and the ti param-

eters must be carefully chosen.

The nominal capacity, Ci, is the parameter which decides when the stream-

ing SC i is overloaded. We define Ci as the minimum bandwidth that lets

fulfill the QoS requirements of SC i in an isolated system, where only arrivals

of SC i exist. From the nominal capacities, we consider that the total capacity

of the system is C = ∑
Ns
i=1 Ci.
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The ti parameters represent the resources that the SC i cannot occupy

when it is overloaded. If the ti parameters are high the VP policy tends to a

CP policy and otherwise, the VP policy tends to a CS policy. In order to avoid

a complex design of these parameters, which may entail high computational

cost as it happens with the optimal parameter design of MFGC policy, an

expression for the ti parameters of VPS policy is chosen in a simple way by

using heuristics. When studying the ti parameter for streaming SC i, it is

logical to think that when λn
j or bj of the SCs j 6= i are high, we need to

reserve more resources for SCs j and therefore, the parameter ti should be

higher. When the CHT of the SC i is low, i.e. µs
i = µd,s

i + µr,s
i is high, sessions

of SC i occupy resources during shorter times, therefore ti should be lower

for higher µs
i . Taking into account these facts and studying the blocking

probabilities Pb,n
i when some SCs are overloaded for different values of the

system parameters, the proposed expression for the ti parameter by using

heuristics is:

ti =

√

3
2

C
1

Ciµ
s
i
∑
j 6=i

λn
j bj i = 1, · · · , Ns. (5.8)

The square root
√

C appears as the economy of scale does not grow lin-

eally with the total number of resources.

5.3.2 Elastic traffic: VPE policy

The objective of the VPE policy is to make a distinction among the differ-

ent elastic SCs and not between the types of arrivals, i.e. new or handover

arrivals. Therefore, only one type of arrivals is considered. Both types of

arrivals are considered in the design of the VPC policy in Section 5.3.3.

At the time of design, each elastic SC is allocated a nominal number of

flows nm
i that will be detailed below. Elastic SCs which have less than their nm

i

flows in the system are given higher priority and otherwise, they are given

lower priority. The VPE policy takes the following decision when an arrival
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of elastic SC i = Ns + 1, · · · , N occurs:







accepted if







b(x) < C

µd,e
j (x′) ≥ µm + ti(xi) for j = Ns + 1, · · · , N

rejected otherwise,

(5.9)

where the parameter ti(xi) changes depending on the following rule:

ti(xi) =







si if xi + 1 ≤ nm
i

ti if xi + 1 > nm
i .

(5.10)

where si ≤ ti. As it can be clearly seen, the VPE policy controls the priority

of the elastic SC that wants to connect to the cell depending on its load. It

also controls if there are resources not occupied by streaming traffic.

Remember that nm
i is the allocated nominal number of flows of elastic SC

i. Thus, for elastic traffic, these parameters ti(xi) represent the bandwidth

that the elastic SC i cannot use when there are more flows of the SC i in

the system than its nominal number of flows, nm
i . Hence, they determine

the degree of isolation between SCs when the system is overloaded. From

now on, to simplify the design we consider si = 0 ∀i [BM98]. Notice that

for i = 1, · · · , Ns, ti is expressed in number of units of resources and for

i = Ns + 1, · · · , N, ti is expressed in flows per second.

Parameter design for Elastic traffic

As it is made for streaming traffic, the nominal number of flows nm
i and the

ti parameters for elastic traffic must also be carefully chosen. Remember that

an elastic flow of the ith SC has a maximum bandwidth, rM
i , and all the

elastic flows require a minimum bandwidth, rm. Remember also that fi is the

fraction which corresponds to SC i of the aggregated arrival rate, λT , defined

in (4.1) in Section 4.2.
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The nominal number of flows, nm
i , is the parameter which decides when

the elastic SC i is overloaded. We consider an isolated system where only

arrivals of SC i exist and calculate the minimum bandwidth which lets fulfill

the QoS requirements, i.e. Pa
i ≤ Ba

i . Then, we define nm
i as the maximum

number of flows of the elastic SC i served at rM
i in this isolated system.

The ti parameters for elastic traffic correspond to the bandwidth that SC i

can not access if it is overloaded. Again, an expression for the ti parameters

of VPE policy is chosen in a simple manner and low computational cost

by heuristics. It is logical to think that for higher rM
i , flows of SC i occupy

resources during a shorter time and therefore, a lower ti parameter is needed.

Moreover, elastic SCs share all the available capacity and if the arrival rate

of the elastic SC i is very high in relation with the others, ( fi >> f j where

j 6= i), it will use more shared resources and hence, the parameter ti should be

higher to protect the other SCs. Taking into account these facts and studying

the success completion probabilities Pc
i when some SCs are overloaded for

different values of the system parameters, the proposed expression for ti

parameters by using heuristics is:

ti = 2
rm

L

√

C · R · fi

rM
i

i = Ns + 1, · · · , N. (5.11)

where R is the capacity in bits per second of one resource unit and L is the

mean in bits of the flow size distribution.

5.3.3 VPC policy

In this section, we consider multiservice mobile cellular networks, which can

handle streaming and elastic traffic and for each SC, new and handover ar-

rivals are distinguished. The failure of a handover session is highly undesir-

able but reserving channels for handover traffic could increase blocking prob-

abilities for new requests. Hence, for streaming traffic a trade-off between

the two QoS measures is needed. It has to be decided whether to combine

60



i

i

i

i

i

i

i

i

Chapter 5. Admission control policies for time-varying traffic scenarios

new and handover sessions in a unique flow or not. As new and handover

arrivals of the same SC have different QoS requirements (Bh
i << Bn

i ), aggre-

gating both types of arrivals into the same flow would be highly inefficient.

But at the same time they cannot be managed as independent flows since

λn
i and λh

i are related and undergo the same overloads. However, for elastic

traffic, new and handover arrivals can be considered as an unique flow since

the abandonment probability does not depend on whether the flow arrived

at the system as new or handover request.

We propose the VPC policy, which is a combination of VPS, VPE and

FGC [RTN97] policies in order to deal with the special characteristics of these

networks. For streaming traffic, the different SCs are distinguished by using

the VPS policy and new and handover arrivals by the FGC policy. For elastic

traffic, only the different SCs are distinguished by using the VPE policy.

The FGC policy is the single service version of the MFGC policy defined

in (4.6). Handover arrivals are always accepted and new session arrivals have

an associated parameter hi ∈ R that controls their acceptance through:

bixi + bi







≤ ⌊hi⌋ accept

= ⌊hi⌋+ 1 accept with probability hi − ⌊hi⌋
> ⌊hi⌋+ 1 reject.

(5.12)

where, remember xi is the resources occupied by the ith streaming SC and bi

is the resources consumed by one streaming SC i.

At the time of design, each streaming SC is allocated a nominal capacity

Ci and the parameter hi, and each elastic SC a nominal number of flows nm
i .

The VPC policy takes different decisions depending on whether the arrival is

either streaming or elastic traffic.

1. Streaming traffic

The VPC policy is represented in Fig. 5.1 and works as follows: The

handover arrivals of the SCs which do not fulfill the VPS restrictions

are rejected; otherwise they are accepted.
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VPS(ti)
AHi

R

VPS(ti + di)Ni

R

Cd2

Cd1 A

FGC(hi) A

R

Hi: Handover request
Ni: New request

A: Accepted request
R: Rejected request

Cd1: SC i overloaded
Cd2: SC i underloaded

Figure 5.1: AC for multiservice mobile cellular networks for streaming traffic
(VPC).

New arrivals of SCs which do not fulfill VPS restrictions are rejected.

Note that for new arrivals we add the parameter di = Ci − hi to the

VPS parameter ti. If the new arrival passes VPS restrictions the system

verifies the following conditions:

• Condition Cd1: The SC i is overloaded and it is in the case:

bixi + bi > Ci,

b(x) + bi ≤ C− (ti + di).

Therefore, despite the fact that SC i is overloaded the new arrival

of SC i is accepted because the overall traffic in the system is light.

However, accepting all the new arrivals could be harmful for han-

dover arrivals of the same SC and hence, di resources are reserved

for handover arrivals of SC i.
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• Condition Cd2: The SC i is underloaded and it is in the case:

bixi + bi ≤ Ci,

b(x) + bi ≤ C.

Therefore, the FGC policy is applied with the corresponding pa-

rameter hi to decide on the acceptance of the new arrival of SC i in

order to protect the handover arrivals of SC i.

2. Elastic traffic

If the arrival is of an elastic SC, VPE is applied considering new and

handover arrivals as a unique flow.

Parameter design

The nominal capacity of each streaming SC i, Ci, the FGC policy parameter

of each streaming SC i, hi, the nominal number of elastic flows of each elastic

SC i, nm
i , and the ti parameters, must be carefully chosen.

For streaming traffic, the values of Ci and hi are calculated considering

that each streaming SC is isolated from the other SCs. Thus, we consider

Ns single service scenarios with only one SC where new session and han-

dover arrivals are possible. An AC policy is needed to provide the QoS

requirements of new and handover arrivals. In this case, handover arrivals

are always admitted and new arrivals are accepted or rejected depending on

the FGC policy with parameter hi ∈ R. Given the system parameters, for

each single service scenario we search the minimum value of Ci for which a

value of hi exists so that Pb,n
i ≤ Bn

i and Pb,h
i ≤ Bh

i . Then, Ci is the minimum

number of resources that fulfills objectives, and the chosen hi are determined

by adjusting the Pb,h
i under Bh

i and the Pb,n
i between Bn

i and 1% under Bn
i .

The parameters ti where i = 1, · · · , Ns have the same expression than in the

VPS policy (5.8), but it is extended to mulitiservice mobile cellular networks
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considering the handover arrivals:

ti =

√

3
2

C
1

Ciµ
s
i
∑
j 6=i

(λn
j + λh

j )bj i = 1, · · · , Ns (5.13)

For elastic traffic, the value of nm
i is calculated by considering that each

elastic SC is isolated from the other SCs. Thus, we consider Ne single service

scenarios. In this case, the new session and handover arrivals have the same

QoS requirements and hence, they have the same treatment in the system. We

follow the same approach to calculate nm
i as in the VPE policy in Section 5.3.2.

The parameters ti, where i = Ns + 1, · · · , N, have the same expression as in

the VPE policy defined in (5.11).

Once the parameters are determined, we can study the aggregated system

which supports all streaming and elastic SCs and new sessions and handover

arrivals. We consider a system with a total number of resources given by the

sum of the nominal capacities obtained for streaming SCs, C = ∑
Ns
i=1 Ci. Due

to the economy of scale, the streaming SCs do not use all the resources all

the time in order to fulfill the QoS requirements, and elastic SCs can use the

resources that streaming SC are not using.

5.4 Numerical evaluation

In this section, the performance of the VPC policy is studied and compared

with other policies in scenarios with overloaded traffic. The performance of

the VPC policy for streaming traffic is compared with that of the MFGC pol-

icy and for elastic traffic is compared with that of the CS policy. In scenarios

where streaming and elastic traffic exist, we compare the policy with a com-

bination of the MFGC and the CS policies. That is, a request of streaming

traffic is accepted if the requirements of the MFGC policy are fullfilled and

if after accepting the streaming request, all elastic flows still receive a service

rate higher than their minimum µm, otherwise it is rejected. The require-
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ments of the MFGC policy are given by the parameters tn
i for new sessions or

th
i for handovers. A request of elastic traffic is accepted if after accepting the

elastic flow, the service rates of all elastic flows are higher than the minimum,

otherwise it is rejected.

The MFGC policy has been chosen for streaming traffic because it is com-

monly found in the literature and because of its flexibility. However, its de-

sign requires high precision and its computational cost can be prohibitive for

some practical systems, (Chapter 4). On the contrary, the VPC policy that we

propose is configured with low computational cost.

We evaluate the performance of the policies proposed in this section for

different degrees of overload. We consider that both new and handover ar-

rivals are overloaded in the same degree. If λ̂n
i and λn

i are the overloaded

arrival rate and the arrival rate defined by forecasts of SC i, respectively, the

overload ∧ is defined as the traffic that exceeds the expected traffic expressed

as a percentage of the traffic forecasts, i.e.:

∧(%) =

∑
i

(
λ̂n

i − λn
i

)

∑
i

λn
i

100. (5.14)

For the numerical examples we consider three different systems: i) System

S, with only streaming SCs; ii) System E, with only elastic SCs; iii) System C,

with both streaming and elastic SCs.

Table 5.1: Definition of system S parameters.

Parameter Value Parameter Value

λT 30 f [0.8, 0.2]
µr,s [0.5, 0.5] µd,s [0.5, 1]
b [1, 2] Bn [0.02, 0.01]

Bh [0.004, 0.002]
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Figure 5.2: Ratios for streaming SC 1 as function of the overload undergone
by SC 2 in system S.

The system parameters of system S with N = Ns = 2 are detailed in

Table 5.1. The obtained nominal capacities are C1 = 62 and C2 = 28 and

C = 90. The parameter setting of the VPC policy is: i) FGC parameters,

h1 = 60.08 and h2 = 25.46; ii) VP parameters, t1 = 3.36 and t2 = 13.12. The

optimal configuration of the MFGC policy for C = 90 is: tn = [86.46, 88.48]

and th = [88.46, 89.92] and the maximum offered traffic is λT
max = 35.44.

Results in Fig. 5.2 show the ratio of blocking probabilities to the objectives

of SC 1, i.e. Pb,n
1 /Bb,n

1 and Pb,h
1 /Bb,h

1 , when SC 2 has different degrees of

overload. The ratios are calculated for both policies, the VPC and the MFGC.

A ratio higher than 1 means that the QoS requirements are not fulfilled. For

the VPC policy, the objectives are always fulfilled for these overloads. We can

see that the blocking probabilities are lower than objectives. This is an effect

of the economy of scale that appears when all the resources, dimensioned

considering the nominal capacities of SC 1 and SC 2, are shared. For the

MFGC policy, the maximum overload supported fulfilling objectives for new

session arrivals is ∧ = 82% and for handover arrivals is ∧ = 76%.
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Figure 5.3: Ratios for streaming SC 2 as function of the overload undergone
by SC 1 in system S.

Results in Fig. 5.3 show the same ratios for SC 2, i.e. Pb,n
2 /Bb,n

2 and

Pb,h
2 /Bb,h

2 , when SC 1 has different degrees of overload. The ratios are calcu-

lated for both policies, the VPC and the MFGC. The results show that the VPC

policy achieves lower ratios than the MFGC policy. For VPC policy, the max-

imum overload supported fulfilling objectives for new arrivals is ∧ = 48%

and for handovers arrivals is ∧ = 63%. For the MFGC policy, the maximum

overload supported fulfilling objectives for new arrivals is ∧ = 23% and for

handovers arrivals is ∧ = 24%. For overloads of ∧ = 100% and handover

arrivals, which is the arrival type with the worst ratios, the achieved ratios

for the MFGC policy are 11.12 times the achieved ratios for the VPC polciy.

The system paremeters of system E with N = Ne = 2 are detailed in

Table 5.2. Since we do not consider streaming flows in this system, the total

number of resources is calculated as the sum of the minimum number of

resources needed to fulfill QoS requirements for each isolated system of the

different SCs. Thus, when SC 1 is isolated 44 resources are needed to fulfill

QoS requirements and when SC 2 is isolated we need 45 resources. The
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Table 5.2: Definition of the system E parameters.

Parameter Value Parameter Value

λT 5 f [0.8, 0.2]
λh 0.5λn µr,e [0.25, 0.25]
R 100 kbps rm 200 kbps

rM [1000, 1500] kbps L 100 kbits
β0 [0, 0] β1 [1, 1]
Bc [0.99, 0.999]

total number of resources is then, C = 44 + 45 = 89. The obtained nominal

number of flows are nm
1 = 4 and nm

2 = 3. The parameter setting of the VPC

policy is: t1 = 9.05 and t2 = 3.70.

Results in Fig. 5.4 show the ratio of the lower-bounds of success comple-

tion probabilities of SCs 1 to the achieved success completion probabilities

(Bc
1/Pc

1) when SCs 2 has different degrees of overload, and the same ratio

for SCs 2 (Bc
2/Pc

2) when SCs 1 has different degrees of overload. The ratios

are calculated for both policies, the VPC and the CS. The results show that

the QoS requirements are not fulfilled for very high overloads. The gain of

using VPC policy instead of the CS policy is noticeable for overloads higher

than ∧ = 500%. For SC 2, which has the worst ratio, the ratio for CS policy

is 1.57 times higher than the ratio for the VPC policy when the overload is

∧ = 1900%, i.e. the λ̂n
1 = 20λn

1 . We can conclude that in a system with only

elastic SCs, the overload is not a critical feature.

The system paremeters of system C with N = 3 SCs, where 2 SCs carry

streaming traffic, Ns = 2, and 1 SC carries elastic traffic, Ne = 1, are detailed

in Table 5.3. The obtained nominal capacities are C1 = 10 and C2 = 10,

therefore C = 20, and the nominal number of flows is nm
3 = 1. The parameter

setting of the VPC policy is: i) FGC parameters, h1 = 8.26 and h2 = 9.19; ii)

VP parameters, t1 = 1.47, t2 = 1.30 and t3 = 2.53. The optimal parameter

setting of the MFGC policy for a total capacity C = 20 is: tn = [15.53, 17.40]

and th = [17.23, 18.97] and the maximum offered traffic is λT
max = 5.44.
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Figure 5.4: Ratios for elastic SCs as function of the overload in system E.

Table 5.3: Definition of the system C parameters.

Parameter Value Parameter Value

λT 3 f [0.6, 0.3, 0.1]
b [1, 2] µd,s [0.5, 1]

µr,s [0.5, 0.5] µr,e 0.25
R 100 kbps rm 200 kbps

rM
3 500 kbps L 100 kbits

β0
3 0 β1

3 1
Bn [0.02, 0.01] Bh [0.004, 0.002]
Bc

3 0.99
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Figure 5.5: Ratios for streaming SC 1 as function of the overload undergone
by SC 2 and 3 in system C.

Results in Fig. 5.5 show the ratio of blocking probabilities of SC 1 to the

objectives, Pb,n
1 /Bb,n

1 and Pb,h
1 /Bb,h

1 , when SCs 2 and 3 support the same over-

load ∧(%). The ratios are calculated for both policies, VPC and MFGC. For

the VPC policy, the objectives are always fulfilled for these overloads. We can

see again that the blocking probabilities are lower than objectives because of

the economy of scale. For the MFGC policy, the maximum overload sup-

ported fulfilling objectives for new arrivals is ∧ = 198% and for handovers

arrivals is ∧ = 182%. For overloads of ∧ = 250% and new arrivals, the ratio

for the MFGC policy is 10 times the ratio for VPC.

Results in Fig. 5.6 show the ratio of blocking probabilities of SC 2 to the

objectives, Pb,n
2 /Bb,n

2 and Pb,h
2 /Bb,h

2 , when SCs 1 and 3 are overloaded with

the same overload ∧(%). The results show that the VPC policy achieves

lower ratios than MFGC policy. For the VPC policy, the QoS requirements

for new arrivals are fulfilled for these overloads and the maximum overload

supported fulfilling objectives for handover arrivals is ∧ = 235%. For the

MFGC policy, the maximum overload supported fulfilling objectives for new
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Figure 5.6: Ratios for streaming SC 2 as function of the overload undergone
by SC 1 and 3 in system C.

arrivals is ∧ = 143% and for handover arrivals is ∧ = 140%. For overloads of

∧ = 250% and handover arrivals, the ratio for the MFGC policy is 5.83 times

the ratio for the VPC policy.

Finally, results in Fig. 5.7 show the ratio of the lower-bound of success

completion probabilities of SC 3 to the achieved success completion proba-

bilities, Bc
3/Pc

3 , when SCs 1 and 2 are overloaded. The ratios are calculated

for both policies, VPC and MFGC. The VPC policy can support overloads of

∧ = 172% fulfilling objectives, while the MFGC policy can support ∧ = 122%

of overload. However, the ratios achieved for both policies are lower than for

streaming traffic, showing that overloads are not as critical as for streaming

traffic since elastic SCs can adapt their rate to the system load variability.

These figures confirm that the VPC policy is more robust than the MFGC

policy when some SCs exceed the expected offered traffic. Observing the

results obtained for streaming traffic in systems S and C, we can see that

system S, which has higher aggregated arrival rates than system C, supports
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Figure 5.7: Ratios for elastic SC 3 as function of the overload undergone by
SC 1 and 2 in system C.

lower degrees of overloads. Thus, as we can expect, the AC policy is more

critical in systems with high aggregated arrival rates. The results obtained

for elastic traffic in systems E and C show that the AC policy is less critical

for elastic traffic than for streaming traffic. However, by implementing an AC

policy for elastic traffic avoids wasting capacity by non-completed sessions

due to impatience when the elastic flows compete with other elastic flows

(system E) or with streaming sessions (system C).

5.5 Conclusions

In this chapter we have studied a new design method for the VP policy

which integrates streaming and elastic traffic and considers mobility. The

performance of the proposed policy, called VPC policy, has been studied and

compared to that of the MFGC policy under overloaded scenarios in order to

evaluate the robustness of both policies.
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Chapter 5. Admission control policies for time-varying traffic scenarios

The results show that the VPC policy is more robust than the MFGC pol-

icy under overload conditions since the VPC policy protects better a given

SC against overloads of the other SCs and at the same time all SCs fulfill

objectives under normal conditions. Moreover, the design of the parame-

ters of the VPC policy has lower computational cost than the optimal MFGC

policy design. We have observed that for streaming traffic, the AC policy

is more critical in systems with high aggregated arrival rates and therefore,

the advantage of using the VPC policy instead of the MFGC policy is more

noticeable. For elastic traffic the AC policy is not as critical as for streaming

traffic when the system is overloaded since elastic SCs can adapt their rate

to the variability of the system load. However, an AC policy avoids wasting

bandwidth because of abandonments and hence, the VPC policy achieves

better success completion probabilities than the CS policy when the system

is overloaded, which is more noticeable for high overloads.
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Chapter 6

Reversibility and AC policies

6.1 Introduction

As it has been pointed out in previous chapters, for streaming traffic in cellu-

lar mobile networks two important QoS measures are the fraction of new

session and handover arrivals that are blocked due to the lack of enough free

resources. As handover blocking is more annoying than new session block-

ing for subscribers, efficient AC strategies can be used to reject new sessions

in order to reserve resources for future handovers, while minimizing the im-

pact on the blocking rate of new sessions. As also pointed out in previous

sections, conventional trunk reservation AC policies lead to CTMC whose

state-space cardinality grows very quickly with the number of channels and

SCs supported. Then, determining the stationary distribution and parame-

ters derived from it, like new and handover probabilities, might become an

unfeasible task.

Besides the efficiency or the computational cost necessary to analyze the

CTMC obtained from the AC policy, an important property when study-

ing AC policies is the reversibility of the CTMC which models the system.

If the CTMC is reversible, the stationary distribution is insensitive to the
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CHT, in the sense that it depends on the CHT distribution through the mean

only [Bon06].

In this chapter, we propose a probabilistic AC policy for multiservice mo-

bile cellular networks which supports different SCs and provides differen-

tiated treatment to each arrival type (new or handover). The CTMC that

models the system is reversible and its stationary distribution has a product-

form, which greatly simplifies its computation. In addition, the CTMC ob-

tained using the AC policy proposed is insensitive to the CHT distribution.

On the contrary, trunk reservation policies do not lead to reversible and in-

sensitive CTMC unless some restrictions are imposed. An interesting feature

of the proposed policy is that the resource sharing among SCs, and between

new and handover calls of the same SC, can be controlled independently.

This study has been motivated in part by the study presented in [STKC09],

although we obtain results different from the ones derived there. This work

resulted into the publication in [MBPBM11].

In the next section we present and prove the reversibility and insensitivity

properties of the proposed policy. In Section 6.3 we present examples of AC

policies that lead to both reversible and non-reversible CTMC. In Section 6.2

we study the insensitivity property of the proposed policy, the MFGC policy

and the VPC policy. Finally, Section 6.5 concludes the chapter.

6.2 Reversible and insensitive AC policy

We consider a cellular network with C resource units that supports N SCs.

Only streaming SCs are considered. Since new and handover requests are

distinguished, the system handles 2N arrival types. The new and handover

arrivals of the ith SC occur according to a Poisson process with rates λn
i and

λh
i , respectively. We assume that the CHT is exponentially distributed, with

rates µn
i and µh

i for new and handover arrivals of the ith SC. As shown below,

this assumption on the CHT has no impact on the results.

If bi is the number of resource units required to set up a session of the ith
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SC, the maximum number of ongoing sessions of the ith SC (either initiated

as new or handover) in the system is given by Mi = ⌊C/bi⌋. Let xn
i and xh

i

be the number of ongoing calls of the ith SC, 1 ≤ i ≤ N, initiated as new or

handover requests, respectively. The system state is described by the N-tuple

x =
(

xn
1 , . . . , xn

N , xh
1 , . . . , xh

N

)

.

For the ith SC, let us define the vectors of probabilities ci and di as:

ci = [ci (0) , ci (1) , . . . , ci (Mi − 1) , 0] ,

di = [di (0) , di (1) , . . . , di (Mi − 1) , 0] ,
(6.1)

where 0 ≤ ci (m) , di (m) ≤ 1, and 0 ≤ m ≤ (Mi − 1).

At state x, an arrival of the ith SC will be accepted depending on the

following AC policy:

• New arrival→ Accepted with probability an
i (x) = ci(xn

i )di(xn
i + xh

i ).

• Handover arrival→ Accepted with probability ah
i (x) = di

(

xn
i + xh

i

)

.

Note that the resource sharing between SCs can be controlled by config-

uring di, while the resource sharing between arrival types of the same SCs

by configuring ci.

The number of resource units occupied in state x, b(x), is given by:

b(x) =
N

∑
i=1

(

xn
i + xh

i

)

bi. (6.2)

Then, the system can be modeled as a reversible CTMC with state space

S :=
{

x : xn
i , xh

i ∈ N; b(x) ≤ C
}

. (6.3)

From now on, we refer to it as CTMC {x(t)}t≥0. We prove its reversibility

by showing that the so called arrival and service processes of an equivalent

queuing network are reversible [Bon06].
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Consider a queuing network with 2N nodes, no waiting facilities (i.e. we

consider a loss network) and no internal routing, where new arrivals of the

ith SC are offered to node i and handover arrivals of the ith SC are offered

to node i + N. Assume Poisson arrivals from outside the network with rates

λi = λn
i for new arrivals and λi+N = λh

i for handover arrivals, and ex-

ponentially distributed services with rates µi = µn
i and µi+N = µh

i . Let

x′ =
(

x′1, . . . , x′2N

)
be the vector whose jth component gives the number of

ongoing sessions at node j, 1 ≤ j ≤ 2N. In state x′, an arrival to node j is

accepted with a probability given by:

aj(x′) =







cj(x′j)dj(x′j + x′j+N) if 1 ≤ j ≤ N

dj−N(x′j−N + x′j) if N + 1 ≤ j ≤ 2N.
(6.4)

In addition, admission decisions are subject to the capacity constraint given

by the condition b(x′) ≤ C.

We consider that after service completion at node j in state x′, a session

is routed to node k with probability pjk(x′) = 0 (i.e., there is no internal

routing), and leaves the network with probability pj(x′) = 1. Additionally,

γj(x′) is the effective arrival rate to node j in state x′, which takes into account

the impact of the admission policy, and it is given by:

γj(x′) = aj(x′)λj. (6.5)

Then, the transition rates for the CTMC {x′(t)}t≥0 are given by:







q(x′, x′ + ej) = γj(x′), if b(x′ + ej) ≤ C

q(x′, x′ − ej) = µj(x′)pj(x′) = x′jµj

q(x′, x′ − ej + ek) = x′jµj pjk(x′) = 0, k 6= j

(6.6)

where ei is a 2N-dimensional vector with component i set to 1 and 0 else-

where. The CTMC {x′(t)}t≥0 that describes the dynamics of the queuing

network is the same as the CTMC {x(t)}t≥0 which describes the multiservice
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Chapter 6. Reversibility and admission control policies

mobile cellular system under study.

For the considered queuing network, if there is a positive function Φ that

satisfies

Φ(x′) = Φ(x′ + ej)µj(x′ + ej) = Φ(x′ + ej)(x′j + 1)µj , (6.7)

∀j, 1 ≤ j ≤ 2N, and ∀x′ ∈ S , then the service process is reversible [Bon06].

Condition (6.7) is met by the function:

Φ(x′) =
2N

∏
j=1

1

x′j! µ
x′j
j

. (6.8)

Likewise, if there is a positive function Λ that satisfies

Λ(x′)γj(x′) = Λ(x′ + ej), (6.9)

∀j, 1 ≤ j ≤ 2N, and ∀x′ ∈ S , then the arrival process is reversible [Bon06].

Condition (6.9) is met by the function

Λ(x′) =
2N

∏
j=1

λ
x′j
j

N

∏
i=1

αi(x′i)βi(x′i + x′i+N), (6.10)

where

αi(u) =
u−1

∏
k=0

ci(k),

βi(u) =
u−1

∏
k=0

di(k).

Thus, the stationary distribution of the CTMC {x′(t)}t≥0 that describes

the dynamics of the considered queuing network becomes

π(x′) = π(0)Λ(x′)Φ(x′), x′ ∈ S\{0}, (6.11)
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where π(0) is obtained by normalization [Bon06].

Equivalently, we obtain the stationary distribution π(x) of the original

CTMC {x(t)}t≥0 as:

π(x) = π(0)
N

∏
i=1

xi−1

∏
r=0

di(r)
xn

i −1

∏
s=0

ci(s)
(ρn

i )
xn

i

xn
i !

(ρh
i )

xh
i

xh
i !

, (6.12)

where

ρn
i =

λn
i

µn
i

, ρh
i =

λh
i

µh
i

and xi = xn
i + xh

i .

Then, the blocking probabilities can be determined by

Pb,n
i = 1− ∑

x∈S
ci(xn

i )di(xn
i + xh

i )π(x),

Pb,h
i = 1− ∑

x∈S
di(xn

i + xh
i )π(x) ,

(6.13)

where ci(Mi) = di(Mi) = 0 as defined in (6.1).

When both the arrival and service processes are reversible, then the queu-

ing network process {x′(t)}t≥0, and therefore {x(t)}t≥0, are also reversible.

In addition, their stationary distributions are insensitive, in the sense that they

depend on the session duration distribution at each node through the mean

only. In other words, when arrivals follow Poisson processes, all key per-

formance indicators obtained from the stationary distribution, like blocking

probabilities, are independent from all traffic characteristics beyond the traf-

fic intensity [Bon06].

6.3 Reversibility of trunk reservation policies

The CTMC {x′(t)}t≥0 defined in Section 6.2, which models the queuing net-

work, is reversible if the Kolgomorov criterion is met for all possible loops of

the transition diagram [Kol36, Nel95]. From the loop shown in Fig. 6.1, the
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Chapter 6. Reversibility and admission control policies

following condition is obtained:

ai(x′ + ej)

ai(x′)
=

aj(x′ + ei)

aj(x′)
. (6.14)

As explained in Section 2.3, the multiple guard channel policies in mobile

networks are threshold type policies inside of the family of trunk reservation

policies. For them, the probabilities aj(x′) are given by:

aj(x′) =







1 if b(x′ + ej) ≤ tj

0 otherwise,
(6.15)

The parameter tj is the maximum number of channels that type j arrivals

have access to. Then, type-j arrivals see a system limited to tj channels and

are accepted depending on the occupation at arrival time. It is not difficult to

show that condition (6.14) requires that tj = t ∀j where 1 ≤ j ≤ 2N, i.e., all

SCs share the same threshold. As a consequence, no differentiated treatment

can be provided, neither among SCs, nor between new and handover arrivals

of the same SC. In fact, the policy degenerates into a CS policy.

If a trunk reservation policy is used, full bidirectional connectivity be-

tween adjacent states of the CTMC may be lost and therefore the detailed

balance equations would not hold. As detailed balance is a necessary condi-

(x′ + ej)
λiai(x′+ej) //

µj(x′+ej)

��

(x′ + ei + ej)
µi(x′+ei+ej)

oo

µj(x′+ei+ej)

��
(x′)

λjaj(x′)

OO

λiai(x′) // (x′ + ei)

λjaj(x′+ei)

OO

µi(x′+ei)
oo

Figure 6.1: Transition diagram loop of a queuing network.
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Figure 6.2: Transition diagram of a single service scenario.

tion for reversibility [Nel95], then the CTMC would not be reversible. As a

consequence, the CTMC that models the multiservice system, which is con-

structed with processes that are not reversible, yields a non-reversible pro-

cess [Nel95]. For illustrative purposes, Figure 6.2 shows the state diagram of

the CTMC modeling a one-cell system enforcing a trunk reservation policy.

The system parameters are: N = 1, C = 4 and b1 = 1. Then, a new arrival

is accepted if xn
1 + xh

1 < 3, and rejected otherwise. While handover arrivals

are always accepted if free resources are available. Note that bidirectional

connectivity is lost for the adjacent states (0, 3) ⇋ (1, 3), (1, 2) ⇋ (2, 2) and

(2, 1) ⇋ (3, 1).

Thus, trunk reservation policies do not lead to reversible CTMCs unless

further restrictions are imposed. As an example, the Thinning Scheme I pro-

posed in [Fan03], which includes the guard channel and the fractional guard

channel schemes as special cases, requires that ∀i, k, 1 ≤ i, k ≤ N, bi = 1 and

µn
i = µh

i = µn
k = µh

k . These conditions make the multidimensional CTMC to

degenerate into a one dimensional birth and death process, which is known
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to be reversible and for which a product-form solution exists.

Although classical trunk reservation policies are not reversible, we can

obtain reversible policies based on them. Under trunk reservation policies,

the acceptance of an arrival in the system depends on the total system occu-

pation, i.e. the coefficients aj(x′) depend on x′. However, if the acceptance of

an arrival in the system is a function of the total number of active sessions,

b(x′) given by:

b(x′) =
N

∑
i=1

(x′i + x′i+N),

the coefficients aj(b(x′)) depend on b(x′), and then, a new family of reversible

policies can be obtained.

Let us define

δ(m) =
aj(m)

aj(m− 1)

ϕj = aj (0)

M = b(x′).

Then, the arrival rate to the jth node in state x′ can be defined as:

γj(x′) = λjaj(M) = λj ϕj

M

∏
m=1

δ(m). (6.16)

The conditions (6.8) and (6.9) are met, respectivelly, by the functions:

Φ(x′) =
2N

∏
j=1

1

(x′j! µ
x′j
j )

(6.17)

Λ(x′) =
2N

∏
j=1

(λj ϕj)
x′j

M

∏
m=1

δ(m)M−m. (6.18)

Therefore, the CTMC that models the queuing network being consid-

ered, and therefore the associated multiservice mobile cellular network, is
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reversible and its stationary distribution

π(x′) = π(0)
2N

∏
j=1

(ρj ϕj)
x′j

x′j!

M

∏
m=1

δ(m)M−m , (6.19)

where ρj = λj/µj, is insensitive to the CHT distribution.

6.4 Numerical evaluation

In this section, for illustrative purposes, we study the performance of the AC

policy defined in Section 6.2. We compare the blocking probabilities of the

different arrival types obtained by analytical results with results obtained by

simulation when several CHT distributions are considered.

Remember that the admission probabilities are given by:

an
i (x) = ci(xn

i )di(xn
i + xh

i ),

ah
i (x) = di

(

xn
i + xh

i

)

.

We now define ci and di by:

ci(k) =







Ad
i if 0 ≤ kbi < Ki ,

Au
i if Kj ≤ kbi < Mibi ,

di(k) =







Dd
i if 0 ≤ kbi < Ci ,

Du
i if Ci ≤ kbi < Mibi .

(6.20)

Note that when Ad
i = Dd

i = 1 and Au
i = Du

i = 0, the resource sharing

between the SCs can be controlled by configuring {Ci}, while the resource

sharing between arrival types of the same SCs by configuring {Ki}. This pol-

icy is a subclass of the one defined in Section 6.2, and therefore all previous

results apply.
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Table 6.1: Definition of system parameters.

Parameter Value Parameter Value

N 2 C 30
K1 7 K2 6
C1 20 C2 30
λn [1/20, 1/50] λh [1/25, 1/55]
µn [1/100, 1/5] µh [1/300, µh

2 ]
b [1, 6]

Then, if we consider Ad
i = Dd

i = 1 and Au
i = Du

i = 0, the AC policy takes

the following decision:

• A new arrival of ith SC in state x is accepted with probability Ad
i Dd

i = 1,

if xn
i bi < Ki and (xn

i + xh
i )bi < Ci, and rejected otherwise.

• A handover arrival of ith SC in state x is accepted with probability

Dd
i = 1, if (xn

i + xh
i )bi < Ci, and rejected otherwise.

The system that we study is defined by the parameters in Table 6.1. The

parameter µh
2 is chosen to achieve that the traffic offered by handover arrivals

of the SC 2, ρh
2, is within the interval 0.1 ≤ ρh

2 ≤ 5.0, where ρh
2 is given by:

ρh
2 = λh

2/µh
2.

For the proposed AC policy, we compare the blocking probabilities of

the different arrival types obtained by equation (6.13), where the distribu-

tion in (6.12) is used, with those obtained by simulation when the session

duration is modeled by other distributions than the exponential distribution,

such as Erlang, hyper-exponential, lognormal and bounded Pareto distribu-

tions defined in Appendix C.1. For more information about the simulation

environment see Appendix D.2.

The parameters of these distributions are adjusted to achieve the same

mean as for the analytical model. In the case of the hyper-exponential the
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Figure 6.3: Hyper-exponentially distributed session duration with CV = 4.

CV is set to be CV = 4, for the Erlang distribution CV = 0.25, for the log-

normal distribution CV = 1 and for the bounded Pareto distribution we set

the shape factor to k = 2.001, the maximal value to H = 105 and adjusted the

minimal value (L) accordingly to achieve the desired mean, obtaining CVs in

the interval [1.51, 2.33].

We obtain that the values of the blocking probabilities calculated with

the analytical model are inside of the confidence intervals obtained from the

simulation results for a level of confidence of 99%. The relative error, defined

as the radius of the confidence interval divided by the blocking probability

value, is lower than 5.5% for the hyper-exponential distribution, and lower

relative errors, below 3%, are obtained for the other distributions. The re-

sults confirm the insensitivity property and the correctness of the stationary

distribution of the CTMC defined in (6.12).

In Fig. 6.3, continuous line curves are obtained using the analytical model

while simulation results are represented only by markers at the evaluated
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Table 6.2: MFGC and VPC relative errors for different distributions (%).

MFGC VPC

Hyp Erl Log Par Hyp Erl Log Par

Pb,n
1 3.54 2.43 38.77 39.11 1.39 0.70 11.32 11.88

Pb,n
2 1.06 1.01 27.88 29.25 0.94 0.62 34.17 35.51

Pb,h
1 4.60 5.90 38.32 38.53 7.89 9.37 28.57 27.08

Pb,h
2 0.73 1.10 31.25 32.93 0.84 0.63 41.25 42.54

points. The simulation results are obtained considering the hyper-exponential

distribution with CV = 4 for the session duration distribution. We can

see that simulation results overlap the analytical results. As expected the

proposed AC policy protects more the handover arrivals, which have lower

blocking probabilities. We can also see that SC 2 has higher blocking proba-

bilities since one session of SC 2 uses a high number of resources b2 = 6.

In order to show that the trunk reservation policies do not lead to insen-

sitive CTMCs unless further restrictions are imposed, we compare the results

obtained analytically when MFGC and VPC are applied and the session du-

ration is exponentially distributed, with those obtained by simulation with

the distributions and CV defined before. We obtain that the blocking prob-

abilities calculated with the analytical model are not inside the confidence

intervals of the simulation results for a level of confidence of 99%. In this

case, we define the relative errors as the difference between the analytical

and the mean of the simulation results divided by the mean of the simula-

tion result. The percentage of relative errors for the hyper-exponential (Hyp),

the Erlang (Erl), the lognormal (Log) and the bounded Pareto (Par) distri-

butions are shown in table 6.2 for a system with ρh
2 = 2. The percentages

confirm that the CTMC obtained when the MFGC or the VPC policies are

considered is not insensitive to the session duration distribution.
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6.5 Conclusions

In this chapter, we propose an AC policy and prove that the CTMC that

models the multiservice mobile cellular system that implements this AC pol-

icy is reversible. We also prove that trunk reservation policies do not lead to

reversible CTMCs unless further restrictions are imposed.

In addition, the stationary distribution of the CTMC enforcing the pro-

posed AC policy under study is insensitive to the session duration distri-

bution, in the sense that it depends on the session duration distribution at

each node through the mean only. In other words, when arrivals follow Pois-

son processes, all key performance indicators obtained from the stationary

distribution, like blocking probabilities, are independent from all traffic cha-

racteristics beyond the traffic intensity. We show some results that confirm

this insensitivity property. We also show some results that confirm that the

CTMC obtained when the MFGC or the VPC policies are considered is not

insensitive to the distribution of the session duration distribution.
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Chapter 7

AC in OFDMA based mobile cellular

networks

7.1 Introduction

Forthcoming mobile cellular networks based on Orthogonal Frequency-Division

Multiple Access (OFDMA), such as the Long Term Evolution (LTE) networks

defined by the 3rd Generation Partnership Project (3GPP) or the next 4G net-

works, have been developed in order to face the unprecedented growth in

the data-traffic volume experienced during the recent years in mobile cellular

networks. In order to enhance the capacity of these OFDMA based networks,

a technique called Adaptive Modulation and Coding (AMC) is employed. This

technique allows different Modulation and Coding Schemes (MCSs) to be used

in order to maximize the network performance. The idea is to use the most

appropriate MCS depending on the signal quality and the interference re-

ceived by a user at a certain point in time and space. Therefore, the data

between a user and the BS can be sent at different rates as the user moves

around depending on the position of the user in the cell. As a consequence,

the number of resources that a user needs to guarantee its QoS requirement

depends on the received signal quality and the position of the user. There-
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fore, the total capacity of a cell, i.e., the total throughput achieved in the cell,

is time-varying and depends on the position and the QoS requirements of

each user.

The varying capacity has an impact on the QoS experienced by users. If

users move towards zones with lower signal quality, the total capacity of the

cell can be insufficient to serve all users, even when no more users have been

accepted to the cell. Therefore, these networks introduce new challenges in

the frame of RRM and specifically in the AC that controls which sessions are

allowed to connect to the cell. The AC policies implemented in such systems

become a key mechanism to guarantee the required QoS.

Analytical models for studying AC in cellular networks have already been

widely studied in the literature, but most of them do not consider the vari-

ation of the cell capacity due to user movement. Remember for example

[RTN97] and [GRMBP05], where the efficiency of several AC policies in cellu-

lar networks, where the cell capacity is assumed to be constant, is studied.

In a more recent work, an AC policy is also suggested in [AJ09], where

users requesting admission are gradually admitted by limiting the new user’s

throughput until the user is fully integrated in the system. An analytical

model considering varying cell capacity is described in [KGG10], three AC

policies for capacity-varying networks are discussed in [SR01] and an AC

policy that takes into account the mobility of the users is proposed in [EC05].

However, the validity of the mobility assumptions made in the analytical

models of these works is not discussed there.

Studying the effects of considering a varying cell capacity in wireless net-

works by using simulations has already been done in several publications and

projects. In [JHJ05], an AC policy for Worldwide Interoperability for Microwave

Access (WiMAX) is proposed and evaluated. In [SSB10], a self-optimisation

AC policy for LTE is studied. Moreover, several algorithms that optimize the

parameters of AC policies have been evaluated by simulation in several pa-

pers [PB05, SNBH00, SSB10, HHS04] and projects, such as SOCRATES [soc],

MONOTAS [mon] and E3 [e3].
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Chapter 7. Admission control in OFDMA based mobile cellular networks

The contributions of the work presented in this chapter are the proposal of

an analytical model to study the AC in mobile cellular networks considering

varying cell capacity and the validation of the mobility assumptions in the

analytical model by using simulations. We identify the cases and the reason

why both models differ. We also propose a static and a dynamic AC and

study their performance using the analytical model proposed. This work

resulted into the publications in [SBMS+11, SBMS+ed].

This chapter is structured as follows. In the next section, we describe the

new characteristics introduced by the AMC technique. In Section 7.3, the

proposed static and dynamic AC policies and the analytical models to study

their performance are presented. In Section 7.4, the numerical results are

discussed and validated by comparing them with simulations for both AC

policies. Section 7.5 concludes the chapter.

7.2 Adaptive modulation and coding

In this work we consider the implementation of the AMC technique as it is

made in LTE, but the same principles can also be applied to other network

technologies. The AMC technique implemented in LTE networks defines 15

different MCSs. In order to obtain them, different code rates are combined

with 3 modulation schemes (16-QAM, 64-QAM, QPSK). The MCS is deter-

mined by the signal quality and the interferences received by the MT, i.e., the

Signal to Interference Ratio (SIR) will determine the MCS used in the transmis-

sion between an MT and the BS. The theoretical maximum bitrate for each

MSC can be calculated based on the modulation scheme and the coding rate,

and then, the minimum SIR which is needed to be able to use a certain MCS

can be determined from the attenuated Shannon bound in (7.17), [3GP10b].

The coding rate determines how many bits corresponds to information

bits among the total number of bits transmitted, which include the Forward

Error Correction (FEC) bits. The modulation scheme determines how these

bits are converted to a signal. The FEC bits are used for controlling errors
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Figure 7.1: Lines of equal interference surrounding a site.

in data transmission over noisy channels or channels with interference. For

low signal strength, more FEC bits are needed per information bit. In mobile

cellular networks, the transmitted signal strength and hence the SIR depend

on several factors but one of most dominant factors in their reduction is the

path loss, which is produced by the spatial dispersion and depends on the

distance between transmitter and receiver. Therefore, the SIR perceived by a

MT, and thus also the MCS used, depend on the distance between the MT

and the BS. In Figure. 7.1, the lines with equal SIR for a site surrounded by

a given number of interfering sites are represented. We can see that the lines

are cycles around the BS. As a consequence, the number of resources which

are needed to send a certain number of bits towards a user depends on the

position of the user.

In systems based on OFDMA like LTE, the frequency domain is divided

into non-overlapping subchannels which occupy a bandwidth of 180kHz.

The time domain is divided into slots of 1ms. These subdivisions in time

and frequency, generally referred to as Resource Blocks (RBs), are the small-

est time-frequency units that can be assigned to a user and correspond to

a set of twelve adjacent subcarriers and seven OFDM symbols [NV08]. We

assume that each of these RBs contains 84 symbols, resulting in a symbol rate
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Chapter 7. Admission control in OFDMA based mobile cellular networks

of 84000 Bd per subchannel. The number of RBs needed by a user depends

on the position of the user, and thus, it changes as the user moves around.

As pointed above, the total cell capacity turns out to be time-varying.

In this work, we assume an optimal use of the available resources. The

RBs are only left unused if there is no data to transmit. Otherwise, if the

users require more RBs than the available ones, the available RBs are divided

among the users proportionally to the number of RBs that they require. The

cell capacity is estimated based on the technique described in [JHJ05]. Let rk

be the required bitrate by user k and bk be the number of bits that can be sent

in a single RB. The average number of RB per second that are needed by user

k, nk, and the total number of resources needed to serve all users with their

required bitrates, R, are given by:

nk =
rk

bk
, R = ∑

k

nk = ∑
k

rk

bk
. (7.1)

Suppose RA is the available number of RBs per second in the cell. Then,

the cell capacity C can be estimated as follows:

C =







RA

R ∑
k

rk if R < RA

∑
k

RA

R
bknk =

RA

R ∑
k

rk if R ≥ RA

(7.2)

Note that if the required number of RBs per second is smaller than the

available number of RBs per second (R < RA), each user is given the bitrate

it requires and the unused RBs are considered as if they would be propor-

tionally used for all users by multiplying with the term RA
R . If there are

insufficient RB (R ≥ RA), since the available number of resources is divided

among the users proportionally to the number of RBs they require, a user k

will receive nk
R RA RBs.
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Z. . .1

ǫ2

γ1

ǫZ

γZ−1

Figure 7.2: Zones with transition rates.

7.3 System description and analytical model

In order to model that time-varying cell capacity, we consider a single cell that

is divided into Z concentric rings called zones, where zone 1 is the outermost

zone (see Fig. 7.2). Only one, real-time, SC is considered. Although for our

purposes it is not of great importance which traffic direction is considered, we

consider only the downlink traffic direction. Denote by ρi the bits transmitted

per RB to a user in zone i (ρ1 < ρ2 < · · · < ρZ). The cell has RA RB available

per second and an active user requires a bitrate of rk = r bits per second to

fulfill its QoS requirements. Therefore, the number of RB per second that a

user needs to achieve its required bitrate r in zone i is:

si =
r

ρi
.

We consider that once a user is accepted in the system it cannot be ex-

pelled. If a user changes the zone where it is served, it will remain in the

system even when more RBs than the available resources RA are needed, i.e.,

we consider a non-preemptive AC policy. This issue will be discussed below

in the subsections devoted to the AC policy.

For the sake of mathematical tractability we make the common assump-

tions that new sessions arrive according to a Poisson process with rate λ and
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Chapter 7. Admission control in OFDMA based mobile cellular networks

session durations are exponentially distributed with rate µ. Assuming uni-

formly distributed traffic, if AT is the total area of the cell and Ai is the area

corresponding to zone i (i.e. AT = ∑i Ai), we can consider that the arrival

rate for new sessions in zone i is λi = Ai
AT

λ. The zone residence time, i.e

the time that a user stays in a certain zone before entering another one, is

also assumed to be exponentially distributed with rate ǫi + γi, where ǫi is the

rate for transitions from zone i to zone i − 1, i = 2, . . . , Z and γi is the rate

for transitions from zone i to zone i + 1, i = 1, . . . , Z − 1 (see Fig. 7.2). We

assume that users start their sessions inside the cell and do not leave the cell

until their session is finished.

In order to evaluate the performance of the analytical model, two perfor-

mance measurements are defined: the total blocking probability (PT) and the

low QoS probability (PQoS). The total blocking probability is the probability

that a session, which arrives at any zone of the cell, is blocked by the AC.

The low QoS probability is the fraction of time that active users experience a

low QoS, i.e. the bitrate they receive is lower than r due to the time-varying

cell capacity.

We first present a static AC with fixed policy parameters and the analyt-

ical model used to evaluate its performance. Then, we present a dynamic

AC which optimizes the policy parameters and an extension of the analyti-

cal model developed for the static AC policy, which is used to evaluate the

performance of the dynamic AC policy.

7.3.1 Static AC policy

In order to guarantee an acceptable QoS (i.e., an acceptable bitrate) for the

users which are in the system, the acceptance of new arrivals is controlled

by an AC policy. Let f ∈ [0, 1] denote the AC threshold that determines

which fraction of resources has to be available for new sessions in order to be

accepted by the AC policy. A new session is accepted if after accepting the

session there would still be more than (1− f )RA RBs available.

97



Chapter 7. Admission control in OFDMA based mobile cellular networks

Remember that R is the total number of resources needed to serve all users

with the required bitrate r defined in (7.1). Upon the arrival of a new session

the system compares with f RA the number of RBs that will be needed to

serve all the users at bitrate r if its arrival is accepted. Therefore, to decide

on the acceptance of a new session in zone i, the following decisions can be

taken:

R + si







≤ f RA accept

> f RA reject
(7.3)

Once a user is admitted to the system we assume that it cannot be expelled

before its session ends. If a user makes an outward zone-transition, it can

happen that more RBs than the available are needed (R > RA), since users

need more RB in the destination zone than in the origin zone to maintain

their bitrate. In this case, all users share the available RBs proportionally to

the amount they requested. Thus, all users will receive a lower bitrate than

the required r and hence, all users will be served with a lower QoS.

We model the proposed system with the static AC policy using a multidi-

mensional CTMC, where the system state vector is described by the Z-tuple

x = (x1, . . . , xZ), where xi represents the number of users in zone i. Let M

be the maximum number of active users which can be present in the system.

Since the highest number of bits which can be transmitted per RB corre-

sponds to users in zone Z, M is determined by the maximum number of

users accepted in this zone when there are no active users in the other zones:

M =

⌊
f RA

sZ

⌋

.

Thus, the set of feasible states is thus given by:

Ws :=

{

x : xi ∈ Z;
Z

∑
i=1

xi ≤ M

}

. (7.4)
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Figure 7.3: Transition diagram of the bi-dimensional model.

The total number of RBs that are needed per second to serve all users at the

required bitrate r at state x is represented by

R(x) =
Z

∑
i=1

xisi.

The function ai(x) denotes whether a new session which arrives in zone i

when the system is in state x is accepted by the AC policy or not. The value

ai(x) = 1 means that the session is accepted and ai(x) = 0 means that the

session is blocked.

As an example, figure 7.3 shows a CTMC for Z = 2, i.e., for a system with

two zones (i = 1, 2) and therefore one incoming rate γ1 and one outgoing

rate ǫ2. For clarity, the notation has been simplified as ai(x) = ai. If we

define phases as the number of users in zone i = 2 and levels as the number

of users in zone i = 1, we can study the model as a finite level-dependent

QBD process [Neu81] with M + 1 levels, where level h (h = 0, . . . , M) has
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M + 1− h phases. Therefore, we can construct the transition rate matrix Q

with a block-tridiagonal form, see (7.5). The first row of blocks corresponds

to level h = 0, the second row of blocks to level h = 1, etc. Blocks Qh
1

correspond to transitions between phases in level h, blocks Qh
0 to transitions

from level h to level h + 1 and blocks Qh
2 to transitions from level h to level

h− 1.

Q =














Q0
1 Q0

0 0 0 0 · · ·
Q1

2 Q1
1 Q1

0 0 0 · · ·
0 Q2

2 Q2
1 Q2

0 0 · · ·
. . .

. . .
. . .

· · · 0 0 QM−1
2 QM−1

1 QM−1
0

· · · 0 0 0 QM
2 QM

1














(7.5)

Note that the different blocks of Q have different sizes for different levels

h. The total size of the transition rate matrix Q for Z = 2 is:

MS,2
T =

M

∑
h=0

M + 1− h =
M2 + 3M + 2

2
.

In the case of Z = 3 zones, we can define a layered-level structure com-

posed of phases and 2 level layers. Phases are defined as the number of users

in zone i = 3, low-levels as the number of users in zone i = 2 and high-lev-

els as the number of users in zone i = 1. The model is a three-dimensional

level-dependent finite QBD process where the transition rate matrix Q again

follows the structure of (7.5). Moreover, the block matrices Qh
0 , Qh

1 and Qh
2

are also constructed with a block-tridiagonal form, see (7.6), (7.7) and (7.8).

Qh
1 =









Ah,0
1 Ah,0

0 0 · · ·
Ah,1

2 Ah,1
1 Ah,1

0 · · ·
. . .

. . .
. . .

· · · 0 Ah,M−h
2 Ah,M−h

1









(7.6)
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Qh
0 =









Bh,0
1 0 0 · · ·

Bh,1
2 Bh,1

1 0 · · ·
. . .

. . .

· · · 0 0 Bh,M−h
2









(7.7)

Qh
2 =









Ch,0
1 Ch,0

0 0 · · ·
0 Ch,1

1 Ch,1
0 · · ·

. . .
. . .

· · · 0 Ch,M−h
1 Ch,M−h

0









(7.8)

Note that the blocks inside the matrices have different sizes for different

levels h and l. Blocks Ah,l
1 correspond to transitions between phases inside

high-level h and low-level l, blocks Ah,l
0 correspond to transitions from low-

level l to low-level l + 1 inside high-level h and blocks Ah,l
2 correspond to

transitions from low-level l to low-level l − 1 inside high-level h. Blocks Bh,l
1

correspond to transitions from high-level h to high-level h + 1 with low-level

l, blocks Bh,l
2 correspond to transitions from high-level h to high-level h + 1

and from low-level l to low-level l − 1. Blocks Ch,l
1 correspond to transitions

from high-level h to high-level h − 1 with the same low-level l and blocks

Ch,l
0 correspond to transitions from high-level h to high-level h− 1 and from

low-level l to low-level l + 1. For more details see Appendix B.2.1. The total

size of the transition rate matrix Q is:

MS,3
T =

M

∑
h1=0

M−h1

∑
h2=0

M− h1 + 1− h2 =

=
2M3 + 12M2 + 22M + 12

12
.

This block design can be generalized to any number of zones Z by con-

structing matrix blocks inside matrix blocks with Z− 1 different level layers.

To solve the level-dependent finite QBD Markov process and obtain the
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stationary distribution π(x) we use the Linear Level Reduction (LLR) algo-

rithm [LR99]. Basically, this algorithm has two stages. First, the state space

is reduced by removing one high-level at each step until there is a Markov

process on the last high-level left. That Markov process is solved and the sta-

tionary distribution vector is constructed in the second stage by adding back

one high-level at each step. More details are shown in Appendix C.2. Note

that despite the transition rate matrices being large, their sparseness makes

the computations feasible.

Let us denote by Pi the blocking probability for new arrivals in zone i and

the total blocking probability in the system by PT . Then:

Pi = ∑
x∈Ws

(1− ai(x))π(x), (7.9)

PT =
∑

Z
i=1 λiPi

λ
. (7.10)

Let I(x) denote the indicator function which takes the value 1 when

R(x) > RA and otherwise it takes the value 0. The low QoS probability

is then given by:

PQoS = ∑
x∈Ws

I(x)π(x). (7.11)

7.3.2 Dynamic AC policy

We also propose a dynamic AC policy, which tunes the parameter f of the

AC policy. The goal of this policy is to dynamically adapt the parameters of

the AC policy to changes of the environment. When for instance the load is

high, more resources will be reserved for ongoing sessions, whereas when

the load is low, more new sessions will be admitted to the cell.

This dynamic AC policy, at certain time instances, checks the current load

of the system and the parameter f will be updated based on this load. If at
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the time instances the load is checked, the load is high, f will be lowered

in order to reserve more resources for ongoing sessions while blocking more

new sessions. If, on the other hand, the load is considerably low, meaning

that only little resources are in use, f will be raised in order to allow more

new sessions to the system and have a higher resource utilization.

The load is considered to be high when there are insufficient resources

available to serve all sessions in the cell with their required bitrate r, i.e.,

when R > RA. The load is considered to be considerably low when the total

number of resources that are in use is less than a certain fraction, g, of the

available resources for new sessions, i.e., when R < f gRA. The fraction g

is a system parameter with a predefined value. The raising and lowering of

f is done in discrete, evenly sized steps denoted by the parameter ∆ f . The

parameter f is also bounded by a lower and upper limit, denoted fm and

fM respectively. The number of different discrete values that f can take is

denoted by n f . The upper limit of f is fM = fm + (n f − 1)∆ f .

The algorithm that decides whether f is raised or lowered is given by:

R







> RA f ← max( f − ∆ f , fm)

< f gRA f ← min( f + ∆ f , fM)

otherwise leave f unchanged.

(7.12)

In order to decide on the acceptance of a new session in zone i, the same

decisions than in (7.3) are taken, but considering that the parameter f can be

different for different arrivals.

The system with the dynamic AC policy is also modeled using a multi-

dimensional CTMC. In this case the stationary distribution is described by

the (Z + 1)-tuple x = (x1, . . . , xZ, f ). In this stationary distribution vector, xi

represents the number of users in zone i and f represents the value of the

AC threshold which can take the values fm, fm + ∆ f , fm + 2∆ f , . . . , fM. The

intervals between two optimizations, i.e., the intervals after which Eq. (7.12)

is checked and the appropriate action is taken, are considered to be exponen-

tially distributed with mean 1/η.
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As with the static AC policy, the highest number of bits that can be trans-

mitted per RB is achieved in zone Z. Also, the maximum number of active

sessions in the system, M, is determined by the maximum number of sessions

accepted in zone Z when there are no active users in the other zones and the

AC threshold is equal to its upper limit, i.e. f = fM. The set of feasible states

is thus given by:

Wd :=
{

x : xi ∈ Z,
Z

∑
i=1

xisZ ≤ fMRA;

f ∈ { fm, fm + ∆ f , . . . , fM}
}

.

(7.13)

We use the same system parameters and make the same assumptions as

when the static AC policy is used.

Again, we can study the model as a finite level-dependent QBD process.

In the case of Z = 3 zones, the model is a four-dimensional level-dependent

finite QBD process where the transition rate matrix Q follows the structure of

(7.5). But in this case, we define a layered-level structure composed of phases

and 3 level layers, where the phases are defined as the value of f , low-levels

as the number of users in zone i = 3, medium-levels as the number of users

in zone i = 2 and high-levels as the number of users in zone i = 1. Thus, the

block matrices Qh
0 , Qh

1 and Qh
2 also follow the block design defined in ((7.6)),

((7.7)) and ((7.8)). Moreover, the matrices Ah,m
0 , Ah,m

1 and Ah,m
2 follow again

a block design, as defined in ((7.14)), ((7.15)) and ((7.16)) respectively, where

p = h + m. For more details see Appendix B.2.2.

Ah,m
1 =










Dh,m,0
1 Dh,m,0

0 0 · · ·
Dh,m,1

2 Dh,m,1
1 Dh,m,1

0 · · ·
. . .

. . .
. . .

· · · 0 D
h,m,M−p
2 D

h,m,M−p
1










(7.14)
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Ah,m
0 =










Eh,m,0
1 0 0 · · ·

Eh,m,1
2 Eh,m,1

1 0 · · ·
. . .

. . .

· · · 0 0 E
h,m,M−p
2










(7.15)

Ah,m
2 =










Fh,m,0
1 Fh,m,0

0 0 · · ·
0 Fh,m,1

1 Fh,m,1
0 · · ·

. . .
. . .

· · · 0 F
h,m,M−p
1 F

h,m,M−p
0










(7.16)

Note that Ah,m
0 and Ah,m

2 are not square matrices. The total size of the

transition rate matrix Q is:

MA,3
T =

M

∑
h1=0

M−h1

∑
h2=0

n f (M− h1 + 1− h2) =

= n f ·
2M3 + 12M2 + 22M + 12

12
.

This block design can be generalized to any number of zones Z by con-

structing matrix blocks inside matrix blocks with Z different level layers.

To solve the level-dependent finite QBD Markov process and obtain the

stationary distribution π(x) we use again the LLR algorithm.

The blocking probability Pi for new arrivals in zone i, the total blocking

probability in the system PT and the low QoS probability PQoS are again given

by (7.9), (7.10) and (7.11).

7.4 Numerical evaluation

In this section we discuss the performance results of the AC policies pre-

sented in Sections 7.3.1 and 7.3.2. We also present the results of a compara-
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tive study between results obtained with the analytical model and results ob-

tained with a simulation model. This study is performed in order to evaluate

the assumptions made in the analytical model of exponentially distributed

service durations and transition rates between zones in comparison to more

realistic modeling assumptions. In the simulation, users move around with

a certain velocity and distance traveled in a single leg of the mobility model.

Sessions are generated according to a Poisson process with arrival rate λ.

The duration of a session is, unlike in the analytical model, chosen from a

lognormal distribution as this distribution models the duration of sessions

more realistically [GLZ07]. For more details about the simulation model see

Appendix D.1.

7.4.1 Parameter setting

The parameters that are fed into the analytical and simulation models are

based on the evaluation scenarios described in [NGM08]. The carrier fre-

quency is chosen to be 2 GHz, the pathloss model that is associated with this

frequency is

L = 37.6 log10(D) + 128.1,

where D is the distance between the BS and the MT. The operating bandwidth

is 5 MHz which means that there are 25 subchannels of 180 kHz (plus guard

band), resulting in 25000 RB per second.

The bitrate that can be achieved at a certain distance D from the BS can

be calculated as follows. Using the attenuated Shannon bound [3GP10b], the

minimum SIR that is needed to achieve the bitrate corresponding to a MCS

can be calculated according to:

SIRi = 2
βi
α − 1, (7.17)

where βi is the bitrate per Hertz in zone i and α is the attenuation factor

which is 0.6 [3GP10b].
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Considering the pathloss model from [NGM08] mentioned above, not tak-

ing noise into account and assuming that for every direction the interference

comes from a single source at a distance Ds2s from the BS with the same

transmit power (PTx) as the BS, an expression for the SIR (in the logarithmic

domain) at a given distance from the BS (D) can be constructed:

SIR = PTx − LS − (PTx − LI) = LI − LS

= 37.6 log10(Ds2s − D) + 128.1

− (37.6 log10(D) + 128.1)

= 37.6 log10

(
Ds2s

D
− 1
)

(7.18)

where LS is the path loss of the signal and LI the path loss of the interference.

And therefore, from (7.18) the radius Di of zone i, given the SIR can be

calculated:

Di =
Ds2s

10
SIRi
37.6 + 1

. (7.19)

By combining (7.17) and (7.19) the radius of a zone can be calculated

given the bitrate per Herzt of the MCS. In Table 7.1, the different MCSs,

the corresponding efficiency, bitrate per Hertz achieved, SIR and radii are

shown. The efficiency represents the number of information bits which can

be sent per symbol. By multiplying the efficiency with the symbol rate per

Hertz the theoretical maximum bitrate per Hertz achieved can be calculated.

Remember that our system has a symbol rate of 84000 Bd per subchannel and

one subchannel corresponds to 180 kHz.

Ideally, 15 zones should be considered, each corresponding to a single

MCS. We consider that the distance between two BSs is 500 m, which is

related to cells in urban environments. As the cell border itself coincides

with the circle on which the SIR is 0 dB, the cell border is in the middle and

therefore the radius of zone 1 is 250 m. Inside the cell, 10 different MCSs are

distinguished. Since using all 10 different MCSs would produce too much

computational overhead, the cell was instead divided in 3 zones with equal
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Table 7.1: The different MCSs used by LTE [3GP10a].
Modulation Efficiency bit/s/Hz SIR Radius (m)

1 QPSK 0.1523 0.0711 -10.6766 329
2 QPSK 0.2344 0.1094 -8.7063 315
3 QPSK 0.3770 0.1759 -6.4710 298
4 QPSK 0.6016 0.2807 -4.1668 281
5 QPSK 0.8770 0.4093 -2.1861 266
6 QPSK 1.1758 0.5487 -0.5309 254
7 16-QAM 1.4766 0.6890 0.8521 243
8 16-QAM 1.9141 0.8932 2.5682 230
9 16-QAM 2.4063 1.1229 4.2477 271

10 64-QAM 2.7305 1.2742 5.2610 210
11 64-QAM 3.3223 1.5504 6.9862 197
12 64-QAM 3.9023 1.8211 8.5716 186
13 64-QAM 4.5234 2.1109 10.1942 174
14 64-QAM 5.1152 2.3871 11.6918 164
15 64-QAM 5.5547 2.5922 12.7824 156

areas (i.e. the size of each zone is 1
3 of the size of the cell), where the number

of bits per RB of zone i denoted be ρi, i = 1, 2, 3, is obtained considering the

different MCSs inside the zone, i.e. it is the weighted average number of bits

per RB of the areas that overlap with the corresponding zone i.

We model the traffic as a fluid flow with a bitrate of 128 kbit/s for scenar-

ios involving only the static AC policy and 256 kbit/s for scenarios involving

the dynamic AC policy. Unless otherwise indicated, the speed of the users

is set to v = 30 km/h, the distance traveled by users d = 30 m, the aver-

age duration of a session is 1/µ = 300 s, the average time between arrivals

1/λ = 3 s and the static AC policy parameter f = 1. For the dynamic AC

policy, the parameter ∆ f is set to 0.1 and fm and fM are set to 0.54 and 1

respectively. This means that the value of f can take the values 0.5, 0.6, 0.7,

0.8, 0.9 and 1. The mean optimization interval 1/η is set to 60 s. The value of

the optimization threshold g is set to 0.8.

The rates ǫi and γi that are used in the analytical model only depend on
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Table 7.2: Model parameter summary
Parameter Symbol Value

BS-to-BS distance Ds2s 500 m
Available resources RA 2500 RB/s
Traffic source rate r 128 kbit/s

256 kbit/s
Mean session duration 1/µ 300 s
Mean session i/a time 1/λ 3 s
AC threshold f 1
Optimisation threshold g 0.8
Minimum AC threshold fm 0.5
Maximum AC threshold fM 1
AC threshold step ∆ f 0.1
User velocity v 30 km/h
Mobility distance d 30 m
Mean optimisation interval 1/η 60 s
Radius zone 1 D1 250 m
Relative area zone 1 a1 33 %
Bits/RB zone 1 ρ1 154.81
Radius zone 2 D2 204.12 m
Relative area zone 2 a2 33 %
Bits/RB zone 2 ρ2 349.87
Radius zone 3 D3 144.33 m
Relative area zone 3 a3 33 %
Bits/RB zone 3 ρ3 466.59

the velocity, the distance traveled in a single leg of the mobility model and

the size of the zones. In order to determine these transition rates, simulations

with only one user were executed. In these simulations a single user walks

around without starting any sessions. Each time the user crosses the border

of a zone, the event is recorded and at the end of the simulation, the mean

transition rates are calculated. A summary of all model parameters is given

in Table 7.2.
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Figure 7.4: Blocking probability for various mean session inter-arrival times.

7.4.2 Numerical results

In this section, the analytical model is validated using simulations. Also, the

numerical results obtained with both AC policies, the static and the dynamic,

are analyzed and compared.

Validation of the analytical model

In this section, the analytical model is validated comparing the results ob-

tained with the analytical model with the results obtained by simulations. In

this subsection, we compare results using the static AC policy.

Results in Fig. 7.4 show the blocking probabilities PT as a function of the

mean session inter-arrival time (1/λ). The results obtained using the analyti-

cal model are represented using lines while the results of the simulations are

represented using only markers. As expected, increasing the mean inter-ar-

rival time causes the blocking probabilities PT to decrease. That is because

when the mean inter-arrival time is low, more sessions will be started in a

110



i

i

i

i

i

i

i

i

Chapter 7. Admission control in OFDMA based mobile cellular networks

2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Session inter−arrival time

Lo
w

 Q
oS

 p
ro

ba
bi

lit
y 

(P
Q

oS
)

 

 

Analytical
Simulation

Figure 7.5: Low QoS probability for various mean session inter-arrival times.

shorter amount of time. As there are only a fixed number of resources avail-

able, this will cause more sessions to be blocked by the system resulting in

a higher blocking probability. When the inter-arrival time is high, fewer ses-

sions will be blocked. As can be seen, the results obtained with the analytical

model and the simulations are very similar.

Also the low QoS probability PQoS obtained with the analytical model and

with the simulations are very similar as can be seen in Fig. 7.5. As with the

blocking probabilities, the QoS is worse when the session inter-arrival time is

low than when the session inter-arrival time is high. That is a consequence of

the varying cell capacity. Remember that the AC threshold is set to 1 in this

section, therefore the system will be filled up until all the RBs are occupied.

A different number of resources is needed depending on the position of the

users, users move around the cell and a user cannot be expelled out the sys-

tem once accepted. If users tend to move to outermost zones, it can happen

that more resources are needed than when the users were accepted and the

system will no longer be able to fulfill the QoS requirements of all users.
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Figure 7.6: Blocking probability for various mean session durations.
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Figure 7.7: Low QoS probability for various mean session durations.
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Figure 7.8: Blocking probability per zone for various mean session durations.

In Fig. 7.6 the total blocking probability when the mean session duration

is varied is shown. When the session duration is longer, it means that user

occupy resources longer times and hence, more sessions will be blocked. For

the same reason the low QoS probability is higher when the session duration

is longer as can be seen in Fig. 7.7. Here, the results of the analytical model

and the simulations are again very similar in both figures.

In Fig 7.8, the blocking probabilities of the individual zones (P1, P2 and

P3) are shown. Again lines correspond to the results of the analytical model

and markers to the results of the simulations. As can be seen in this figure

the analytical and simulation results for the individual zones again match

very accurately, meaning that the analytical model is also accurate for the

individual zones and not only for the entire cell.

Although the results obtained with the analytical and simulation models

fit very well, there are cases in which the results of the analytical model and

the simulations can differ. Some parameters have been studied and it has

been found that there are some deviations when the distances traveled by
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Figure 7.9: Blocking probability for various distances traveled by users in a
single leg.

users in a single leg of the random walk mobility model (d) are either very

short or very long in comparison to the radii of the zones. An example of this

can be seen in Fig. 7.9, where the distance is varied between 1 m and 512 m

(note that the cell radius is 250 m). As can be seen, the differences between

the results obtained from the analytical model and the simulations are similar

when the distance d lies between 10 m and 100 m. When d is either shorter

or longer the deviations between both models become bigger.

In the case of short d, users remain at nearly the same location. Thus,

the users which are close to the border of a zone will cross the border of the

zone many times, while the users which are further away from the border

will likely finish their session before they make a transition. In the case of

long d, the distance that is traveled by users is bigger than the radii of the

zones. Thus, users will cross the zones more than once before choosing a new

direction. The time between entering a zone and leaving it again is bounded

by the minimum and maximum distances that can be traveled in a zone in

a straight line, divided by the velocity of the users. Therefore, the distance

114



i

i

i

i

i

i

i

i

Chapter 7. Admission control in OFDMA based mobile cellular networks

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

Duration

P
ro

ba
bi

lit
ie

s 
(%

)
Distribution for 1 m

 

 

Simulation
Exponential

0 20 40 60 80 100 120
0

2

4

6

8

10

Duration

P
ro

ba
bi

lit
ie

s 
(%

)

Distribution for 32 m

 

 

Simulation
Exponential

0 20 40 60 80
0

5

10

15

20

25

30

Duration

P
ro

ba
bi

lit
ie

s 
(%

)

Distribution for 512 m

 

 

Simulation
Exponential

Figure 7.10: Distribution of time spent in zone 2 before going to zone 1.

traveled in a zone in a straight line will have an influence on the distribution

of the transition times from one zone to another.

Results in Figure 7.10 show the distribution of the time that users spend in

zone 2 before going to zone 1. The times are measured in simulations where

the distance traveled in a single leg are respectively 1 m, 32 m and 512 m.

The plots also contain the pdf of the exponential distribution that is used in

the analytical model to model the time that a user stays in that zone, i.e., the

pdf of an exponential distribution with mean 1/ǫ2. As can be seen in the

figures, the distribution of the times resembles the exponential distribution

best when the traveled distance is around 30 m.
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Figure 7.11: Blocking probability for various AC thresholds f .

Analysis of the static AC policy

In this section we briefly evaluate the static AC policy using the developed

analytical model and simulations. In Fig. 7.11, the total blocking probability

for various values of the AC threshold f is shown. As can be seen, the

blocking probability decreases as the AC threshold increases as expected.

It’s clear that when the AC threshold increases, more new sessions will be

allowed to the cell, causing the blocking probability to decrease.

In Fig. 7.12, the low QoS probability is shown as function of the AC thresh-

old. The AC policy should prohibit the QoS from ever becoming bad, but as

the cell capacity varies over time a certain amount of the cell capacity should

be reserved as a buffer in order to avoid situations wherein the QoS becomes

bad. As we can see in this figure, the QoS remains good until f reaches a

value of more than 80 %. When f is higher than this value, the varying cell

capacity causes that the cell capacity can drop below the required capacity re-

sulting in a low QoS. This shows the effects of the time-varying cell capacity

on the QoS experienced by the active users.
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Figure 7.12: Low QoS probabilities for various AC thresholds f .

Analysis of the dynamic AC policy

In this section we use both the analytical and simulation models to examine

the performance of the dynamic AC policy. The total blocking probability

and the low QoS probability are plotted as function of the session duration

and the inter-arrival time. The results obtained with the dynamic AC policy

are compared with the results obtained with the static AC policy for various

values of the AC threshold f in order to assess the benefits of the dynamic

AC policy relative to a static one. The different values of f that are considered

for the different static AC policies are f ∈ {0.5, 0.7, 0.9, 1}.

Results in Fig. 7.13 show the total blocking probability for both the dy-

namic AC policy and the static AC policy for various values of f . For short

session durations the behavior of the dynamic AC policy tends to the static

AC policy with a high AC threshold, while for long session durations, the

dynamic AC policy tends to the static AC policy with low AC thresholds.

The reason why that happens is because when the session duration is short

the system is less loaded and more new sessions can be accepted in the sys-
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Figure 7.13: Total blocking probability for various session durations for the
dynamic AC policy.
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Figure 7.14: Low QoS probability for various session durations for the dy-
namic AC policy.
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Figure 7.15: Total blocking probability for various inter-arrival times for the
dynamic AC policy.

tem without being detrimental to active sessions, thus the AC threshold can

be higher. When the session duration is longer, the system is more loaded

and the AC threshold is more restrictive with new arrivals.

When looking at the low QoS probability shown in Fig. 7.14, the dynamic

AC policy shows a even more optimized behaviour. When the static AC

policy is implemented, the low QoS probability rises as the session duration

becomes longer. However, the low QoS probability of the dynamic AC policy

has a maximum at a mean session duration of 120 s and decreases again

for longer session durations. That can be explained as follows: in case the

session duration is relatively short, high loads are unlikely and the dynamic

AC policy will raise the threshold f to a high value. In the case that the

load does become too high (i.e. R > RA), it will take the dynamic AC policy

longer to react to this situation as the threshold f should be lowered starting

from a high value, while if the load is higher, the threshold will already have

a lower value and the algorithm will react swifter.
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Figure 7.16: Low QoS probability for various inter-arrival times for the dy-
namic AC policy.

The total blocking probability and the low QoS probability are also shown

as function of the session inter-arrival time in Figures 7.15 and 7.16. A sim-

ilar kind of behavior can be observed. The trend in these plots is however

reversed as long inter-arrival times mean that the load is lower, while long

session durations mean that the load is higher. The benefits of using a dy-

namic AC policy can be clearly seen again in these figures. For instance, in

Fig. 7.15, the total blocking probability of the static AC policy for long ses-

sion inter-arrival times and low values of f is much higher than that of the

dynamic AC policy. Meanwhile, in Fig. 7.16, the low QoS probability of the

dynamic AC policy stays low for short session inter-arrival times in contrast

to the static AC policy with f = 0.9 or f = 1.

Although the suitability of a dynamic AC policy depends on the prop-

erties which have to be optimized, like maximal resource utilization or high

QoS for active users, using a dynamic AC policy clearly has benefits over a

static one.
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Chapter 7. Admission control in OFDMA based mobile cellular networks

7.5 Conclusions

In this chapter, we present an analytical model which models the time-vary-

ing cell capacity of OFDMA based mobile cellular networks, such as LTE

networks. The cell capacity in these systems changes over time as user move-

ment causes the signal quality and thus the MCS to change over time. The

time-varying cell capacity in this chapter is modeled by dividing a cell in

multiple concentric zones in which a certain bitrate can be achieved when

sending data to users in that zone. By assuming that the times between

users changing from one zone to another are distributed according to an ex-

ponential distribution and the session duration is exponentially distributed,

the system can be modeled using a CTMC. In order to verify these assump-

tions, results obtained with the analytical model in various scenarios were

compared to simulation results which were obtained from a simulator that

models the user mobility and the session duration more realistically. Results

show that the analytical model captures the user mobility very accurately and

that the assumption of exponentially distributed session durations yields also

accurate resutls.

The developed models were also used to investigate the performance of a

static AC policy and a dynamic AC policy which optimizes the parameter of

this AC policy. The results obtained from this study show that using a policy

that optimizes the parameters of the AC policy has better performance than

using fixed parameters.

The analytical model developed here can be further used to evaluate other

AC policies and study system design issues such as resource dimensioning.

The model can also be extended with handovers to and from neighboring

cells. This can be done by considering transitions to and from the outermost

zones coming from and going to outside the cell.
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Chapter 8

AC in femtocells

8.1 Introduction

As it has been pointed in previous sections, during the recent years, the high

penetration of mobile-phone services into the society has lead to an unprece-

dented growth in the data-traffic volume. This trend will continue in the

coming years, as mobile systems are expected to support a larger variety of

multimedia services. Unfortunately, the current networks’ features are not

enough to face this development paradigm. Moreover, according to recent

surveys [Man08], the traffic which is expected to produce the bulk of the

network load will mainly occur indoor. In this context, the novel concept of

femtocells [AGECR10, CAG08] has emerged to increase both network capac-

ity and indoor coverage.

Femtocells are small coverage areas, created by low-power base stations

called Femtocell Access Points (FAPs) for providing indoor services. They

are owned and installed by the users. As a result, they benefit both users

and operators. Users improve their QoS, while operators can manage the

growth of traffic without the need to construct new network infrastructures.

Moreover, the FAPs send the backhaul data over the Internet to the cellular
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operator network, thus allowing operators to release resources from the BS

for other macrocell users. However, the deployment of femtocells introduces

several technical challenges [LPVdlRZ09].

From the perspective of the femtocell connectivity rights, two types of

users are defined:

• Femtocell Users (FUs):

Group of subscribed users registered in the femtocell, which can always

connect to the femtocell, i.e., they are the rightful users. They are de-

termined by the femtocell owner and usually belong to the femtocell

owner, their family or friends.

• Macrocell Users (MUs):

Non-subscribed users that are not registered in the femtocell. Depend-

ing on the type of AC implemented at the femtocell, they will be al-

lowed to connect to the femtocell or not.

One of the performance-limiting factors in femtocell deployments is the

cross-tier interference between the macrocell and the femtocell [Cla07]. This

problem has been widely addressed in the literature and many approaches

have been proposed to cope with it, which involve the use of power con-

trol [JMMY09, LQK09] or advanced spectrum management techniques [CA09,

SHLK09]. Moreover, the radio interference can be managed by allowing

strong macrocell interferers to connect and acquire some level of service in

femtocells [dlRVLPZ10]. A key mechanism for operators to provide different

levels of priority to FUs and MUs is the AC policy. Thereby, the femtocell

has the ability to control which user can have access to it. For this, three AC

modes exist [dlRVLPZ10, GMP09]:

• Closed access mode:

Only a subscribed subset of users (FUs), defined by the femtocell owner,

can access to the femtocell. A normal service is expected to this subset
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Chapter 8. Admission control in femtocells

of users. Any user that is not part of this subset (MUs) cannot connect to

the femtocell, unless an emergency call is needed and no other accept-

able cells are available. This model is referred to as Closed Subscriber

Group (CSG) cell by the 3GPP.

• Open access mode:

All users of the operator can make use of any femtocell. In that sense,

when this AC policy is applied there are not differences between FUs

and MUs. All users are treated equally from an access perspective and

also from a charging perspective in the femtocell.

• Hybrid access mode:

A limited number of the femtocell resources are available to all users,

while the rest are only available to FUs. Users which are not subscribed

to the femtocell can acquire some level of service on the femtocell, but

the femtocell may also provide the ability to give preferential treatment

to subscribed (FUs) over non-subscribed (MUs) users. Thereby, ses-

sions from non-subscribed users may be preempted or rejected in favor

of a subscribed user session. Alternatively, non-subscribed user ses-

sions may be handed over to the macrocell. In addition to that, sub-

scribed users may also get preferential charging in comparison with

non-subscribed users to the femtocell. This model is referred to as hy-

brid cell by the 3GPP.

Several studies can be found in the literature which compare open and

closed access modes for femtocell networks [NV, XCA10]. On the one hand,

in the open access mode, the number of dropped sessions due to cross-tier

interference between macrocells and femtocells can be reduced by allowing

the most harmful interfering MUs to connect to the femtocell. On the other

hand, the closed access mode does not entail security and sharing concerns,

and it is more preferred by femtocell customers because they own and install

the FAPs in their private environments. The hybrid access mode is pro-

posed [DR09, LYS10] as a trade-off between open and closed access modes,

125



Chapter 8. Admission control in femtocells

where the access control has to be carefully chosen depending on the scenario

under study and the customer profile.

In this chapter, we develop an analytical model of the FU activity profile

to study which and how many channels are the best to be operated in open

access mode. Our model assumes that the FUs have priority over the MUs

since the femtocell customers are the owners of the FAPs. In our study, if an

MU is connected to the femtocell while an FU is in need of the resources used

by the MU, the MU will vacate the channel. Hence, our work incorporates

the fact that the MUs connect to the femtocell transparently to FUs. To the

best of our knowledge, a preemptive and non-resume access control policy

for MUs has not been considered in the existing works which study open,

close and hybrid access modes.

The study of the hybrid access mode proposed in this chapter allows to

identify which channels are the best option for MUs depending on the Signal

to Interference Noise Ratio (SINR) experienced by users on each channel and

the amount of time an FU is using these channels. The results motivate the

need for novel resource management schemes which dynamically adapt the

set of channels operating in open access mode depending on the network

conditions. This work resulted into the publication in [BMPGEMB12].

This chapter is structured as follows. In the next section, we describe the

system model to study the activity profile of FUs. In Section 8.3, we derive

expressions for several performance parameters for MUs from the model in

Section 8.2. In Section 8.4, we discuss and compare the numerical results.

Finally, Section 8.5 concludes the chapter.

8.2 Femtocell user activity profile model

In this section, we present a model of the FU activity profile. We consider a

single femtocell with C available channels, from which Cm ≤ C are operated

in Open Access (OA) mode. Each channel experiences different signal and

interference levels and therefore the data rate achieved in each channel is
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different. The data rate on channel i is Ri bit/second. We consider that one

specific channel has the same average radio characteristics, e.g. SINR, for all

users (FUs and MUs) and these are static during the period of time under

consideration.

Depending on if the traffic carried by user applications is streaming or

elastic, the transmission with higher bitrates has a different impact on the

user perception. In case of elastic traffic, the session duration depends on

the data rate received, and high data rates entail shorter session durations.

In case of streaming traffic, the session duration only depends on the user

behavior, and high data rates entail better QoS perception. We consider that

FUs generate streaming traffic, but the model could be extended to the case

of elastic traffic.

8.2.1 System Model

We model the activity profile of FUs using a multidimensional CTMC. The

system state vector x is described by the C-tuple x = (x1, . . . , xC), where xi

represents the state of channel i, taking value 0 when channel i is idle and 1

when channel i is used by an FU, (we say it is busy). We consider that one

FU session uses one channel, therefore the number of FUs connected to the

femtocell at state x is represented by:

N(x) =
i=C

∑
i=1

xi. (8.1)

Due to the fact that the number of femtocell users is small, to consider

infinite user population would not be accurate. We consider a finite user

population with M FUs. The arrival rate λ at state x is thus given by

λ(x) = (M− N(x))λ f , (8.2)

where λ f refers to the arrival rate for one idle FU.
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Incoming FUs access the channels by following an order, namely, FUs

access the channels by choosing the most preferred channel among all the

available idle channels in the femtocell. The most preferred channel (i = 1)

is the channel having the highest data rate, while the least preferred channel

(i = C) is the channel having the lowest data rate. If there are no idle channels

in the femtocell, i.e., all of them are occupied by FUs, an incoming FU is

blocked out of the femtocell. For the sake of mathematical tractability, we

consider exponentially distributed session durations for FUs with a mean

1/µ.

We consider that MUs generate packets with a fixed size L = LH + LD bits,

where LH and LD are, respectively, the header and payload lengths. The MUs

use the channels operated in OA mode not used by FU traffic. We consider

that the MUs are in saturation, i.e., there are always MUs waiting for free

channels. Therefore, for this study, it is not relevant which channels the MUs

choose first when they access the femtocell. Upon an FU arrival, MUs vacate

the channel chosen by the FU and the MU packet that is being transmitted

is interrupted and lost, i.e., we consider a preemptive and non-resume AC

policy. One can think that a higher number of femtocell resources operated

in OA mode entails a higher throughput achieved by the MUs, but when

MUs access a higher number of channels, MU transmissions are more likely

to be interrupted by FUs arrivals, and therefore the throughput achieved by

MUs can be lower. It is under study in this work how many channels and

which channels are assigned as OA mode to MUs.

Let x′ represent the state achieved by the femtocell after a state transition

and qxx′ be the transition rate from x to x′. The transition matrix Q when

the states are lexicographically sorted can be easily obtained by using the

transitions qxx′ .

The state transitions of the CTMC under study occur when a new FU

session connects to the femtocell or when any FU session is finished. The

state transitions are shown in Fig. 8.1, where ei is a C-dimensional vector

with a 1 on the i-th position and 0’s elsewhere.
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x
xCµ

...

λ(x)

xiµ. . .x1µ

x− ei

x− eCx + ek

x− e1

Figure 8.1: Transitions of the CTMC which models the FU activity profile.

• Arrival of an FU session:

The FU session will connect to the kth channel where k = min{i | xi = 0}

and thus x′ = x + ek. In this case, the transition rate is qxx′ = λ(x)

defined in (8.2). If xi = 1 ∀i the arrival is blocked.

• Termination of an FU Session:

When an FU session which is using the ith channel terminates, the state

achieved by the femtocell is x′ = x− ei. In this case the transition rate

is qxx′ = xiµ.

Note that in state x only one transition can occur due to an arrival of an

FU, while up to N(x) different transitions can occur when an FU finishes

its service. The size of the infinitesimal generator Q is 2C, but since we are

considering households, C is supposed not to take high values, thus, the

problem is computationally tractable. The vector of the stationary distribu-

tion, denoted by π, is obtained by solving the global balance equations and

the normalization equation given by:

π(x) ∑
∀x 6=x′

qxx′ = ∑
∀x′ 6=x

qx′xπ(x′),

∑
∀x

π(x) = 1.
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8.2.2 Characterization of Idle and Busy Periods

Our goal is to characterize the time intervals when an arbitrary channel is

used by an FU (busy period, Bi) and the time intervals when an arbitrary

channel is not used by any FU (idle period, Ii). Therefore, the busy period

Bi corresponds to the CHT of FUs in channel i, which is exponentially dis-

tributed with rate µ for all channels. The idle period Ii corresponds to the

period of time spent in the set of states with xi = 0. Hence, the duration

of an idle period Ii is composed of a number of phases with exponentially

distributed duration. Hence, the idle period follows a PH distribution, which

defines the time until absorption (xi → 1) in an AMP [Neu81], and it is repre-

sented by PH(α, S). Remember S is the transition matrix which contains the

transition rates between the states, and α is the initial state probability vector.

For each channel i, a different AMP is denoted as PH(αi, Si). The AMP

is initiated when channel i becomes idle and the absorption occurs when it

becomes busy again. Therefore, the matrix Si is obtained from Q by removing

the rows and the columns corresponding to the states where channel i is busy.

The probabilities αi are the normalized probabilities of initiating the process

at each of the states where xi = 0, given by:

αi =
1

∑
∀πxi=1

πxi=1Qxi=1,x′i=0
πxi=1Qxi=1,x′i=0 (8.3)

where πxi=1 is a row vector with the probabilities of the busy states and

Qxi=1,x′i=0 is a matrix with transition rates from busy states with xi = 1 to

idle states with xi = 0.

The distribution function corresponding to the idle period of channel i is

the distribution function of PH(αi, Si) which is (see Appendix C.1.2):

FIi
(t) = 1− αie

tSi 1, (8.4)

where 1 is a vector of ones.
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The average time in which channel i is idle corresponds to the mean time

until absorption in the PH(αi, Si) distribution, and it is given by

Ii = E[PH(αi, Si)] = −αiS
−1
i 1. (8.5)

Once the FU activity profile is modeled, the expression for some MU per-

formance parameters can be calculated as it is shown in the next section.

8.3 Performance Metrics for macrocell users

According to the model presented in Section 8.2, MUs see the femtocell as

a set of channels with different radio characteristics and different FU activ-

ity profiles. In this section, we derive the analytical expressions for several

performance parameters for MUs, such as the MU throughput, the interrup-

tion probability due to an FU arrival or the consumed energy per bit of data

successfully transmitted, by starting from the model defined in Section 8.2.

From (8.4), the probability that at least n packets of length L, correspond-

ing to nL bits, are transmitted during the idle period Ii of the channel i is:

pi(n) = P

(

Ii ≥
nL

Ri

)

= 1− FIi

(
nL

Ri

)

= αie
nL
Ri

Si 1 (8.6)

where Ri is the data rate on channel i.

The maximum achievable throughput for MUs in the channel i denoted

by γi, is defined as the average successfully transmitted data bits during an

idle period divided by the total average time of idle plus busy periods. The

average number of successfully transmitted data bits in channel i denoted by

Di, is given by

Di = LD

∞

∑
n=1

pi(n) =

= LDαi

(
∞

∑
n=0

(

e
L

Ri
Si

)n

− 1

)

1,
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and finally,

Di = LDαie
L

Ri
Si

(

I − e
L

Ri
Si

)−1

1, (8.7)

where I is the identity matrix and LD refers to the payload length. From

(8.5), (8.7) and knowing that the busy period Bi is exponentially distributed

with mean 1/µ, the throughput γi for the channel i is given by:

γi =
Di

Ii + Bi

=

LDαie
L

Ri
Si

(

I − e
L

Ri
Si

)−1

1

−αiS
−1
i 1 + 1/µ

. (8.8)

The total achievable throughput denoted by γT , is the sum of the achiev-

able throughputs in the Cm channels operated in OA mode. If OA represents

this set of channels, γT is:

γT = ∑
∀i∈OA

γi. (8.9)

During an idle period of time there are Φi = Di/LD successfully trans-

mitted packets on the channel i and one packet interrupted by an FU arrival.

The probability that an MU packet is interrupted on the channel i, denoted

by ξi is given by

ξi =
1

(Φi + 1)
. (8.10)

The global MU interruption probability denoted by ξG, is obtained by

dividing the sum of interrupted transmissions per time unit of each channel

operated in OA mode by the total transmissions per time unit in the same

channels. The number of transmitted packets per time unit on the channel i

is (Φi + 1)/(Ii + Bi). And, therefore the global MU interruption probability

is given by

ξG =
1

∑
∀j∈OA

Φj + 1

I j + Bj

∑
∀k∈OA

Φk + 1
Ik + Bk

ξk,
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From (8.8) and (8.10),

ξG =
1

γT
LD

+ ∑
∀j∈OA

1
I j + Bj

∑
∀k∈OA

1
Ik + Bk

.

And finally, from (8.5)

ξG =

∑
∀k∈OA

1

−αkS−1
k 1 + 1/µ

γT
LD

+ ∑
∀j∈OA

1

−αjS
−1
j 1 + 1/µ

. (8.11)

The consumed energy per successfully transmitted data bit on the channel

i for MUs, denoted by Ebi, is computed as the energy consumed by the MUs

when they are transmitting plus the energy consumed due to the channel

monitoring, when channel i is occupied by an FU. Thus, its average value is

given by

Ebi =
PTX Ii + PsBi

LDΦi

, (8.12)

where PTX is the FAP average transmission power, Ps is the average power

consumed to monitor which channels are occupied by FUs, and remember

LD stands for the payload length and Φi refers to the successfully transmitted

packets in channel i.

The total average consumed energy per successfully transmitted data bit,

denoted by Eb, results from weighting the average energy consumed Ebi per

successfully transmitted data bit on each channel i operated in OA mode by

the corresponding fractions of throughput in each channel i. This leads to:

Eb = ∑
∀i∈OA

γi

γT
Ebi. (8.13)
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8.4 Numerical evaluation

In this section, first the parameter setting of the system is defined. Then, the

throughput and the interruption probability achieved considering different

set of channels operated with OA mode are shown. Later, the throughput

achieved considering different combinations of the SINR experienced by the

channels are compared. Finally, the influence of the average session duration

in the performance of the system and the consumed energy per successfully

transmitted bit is studied.

8.4.1 Parameter Setting

In this subsection, we define the values of the parameters considered in

the model. Remember that in commercial systems based on OFDMA, such

as LTE, the frequency domain is divided into non-overlapping subchannels

which occupy a bandwidth of 180kHz called Resource Blocks (RBs). The

time domain is divided into slots of 1ms. These RBs, are the smallest time-

frequency units that can be assigned to an user and correspond to a set of

twelve adjacent subcarriers and seven OFDM symbols [NV08].

As previously pointed out, each channel experiences different SINR levels

and therefore the data rate achieved for the MUs in each channel is consid-

ered to be different for each channel. In Table 8.1, the different data rates per

RB are detailed depending on the experienced SINR levels [BFDL+09]. Here

we assume that a channel corresponds to a RB. We consider a femtocell with

C = 8 channels. Unless otherwise stated, the data rates achieved by each of

the 8 channels are the eight highest rates in Table 8.1. Other combinations

have been tried and the results are qualitatively the same.

Since we consider a system with finite population, the offered FU traffic

(in Erlangs) to the system denoted by ρ f , is given by:

ρ f =
∑
x

(M− N(x))λ f π(x)

µ
. (8.14)
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Table 8.1: Data rates achieved per RB as function of the SINR [BFDL+09]

# SINR (dB) Ri (in kbit/s/RB)
1 SINR ≥ 22.05 792.00
2 19.91 ≤ SINR < 22.05 715.96
3 17.78 ≤ SINR < 19.91 640.30
4 15.64 ≤ SINR < 17.78 565.27
5 13.50 ≤ SINR < 15.64 491.22
6 11.37 ≤ SINR < 13.50 418.75
7 9.23 ≤ SINR < 11.37 348.69
8 7.09 ≤ SINR < 9.23 282.26
9 4.96 ≤ SINR < 7.09 221.00
10 2.82 ≤ SINR < 4.96 166.64
11 0.68 ≤ SINR < 2.82 120.73
12 −1.45 ≤ SINR < 0.68 84.09
13 −3.59 ≤ SINR < −1.45 56.54
14 −5.73 ≤ SINR < −3.59 36.93
15 −7.86 ≤ SINR < −5.73 23.60
16 −10 ≤ SINR < −7.86 14.85
17 SINR < −10 0.00

The offered FU traffic can also be expressed as:

ρ f = M
1/µ

1/λ f + 1/µ
= M

λ f

λ f + µ
. (8.15)

Unless otherwise stated, the arrival rate per idle FU is chosen to be λ f =

12.5 s−1, the average channel holding time is 1/µ = 10 ms, the packet header

length is LH = 500 bits and the total packet size is L = 4 kbits. The FU

population is M = 8. The offered FU traffic as function of these values

is ρ f = 0.5. The FAP average transmission power is PTX = 10 dBm and

the average transmission power consumed to monitor which channels are

occupied by FUs is Ps = 0 dBm.
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8.4.2 Numerical Results

In this subsection, we compare the MU maximum achievable throughput

and the interruption probability obtained when the channels operated in OA

mode have the highest data rate, i.e. i = 1, . . . , Cm and when they have the

lowest data rate, i.e. i = C + 1− Cm, . . . , C.

In Figures 8.2 and 8.3, the MU maximum achievable throughput γT from

(8.9) for different sets of open channels operated in OA mode is shown as

a function of the packet size L. We can see that for the same value Cm of

channels operated in OA mode, higher throughputs are achieved when the

OA channels have the lowest data rate (Fig. 8.2) than when they have the

highest data rate (Fig. 8.3). This can be explained as follows. The FUs use

first the channels with the highest data rate and therefore there are more

interruptions which reduce the contribution of these channels to the total

throughput, despite having higher data rates. When Cm is small and the OA

channels are the channels with the lowest data rates (Fig. 8.2), having one

more OA channel leads to higher gains. When Cm is high, the gain of having

one more OA channel is smaller because this channel is used by an FU with

a higher probability. This effect is more significant for high L as longer MU

packets experience more interruptions. The opposite occurs when the OA

channels have the highest data rate (Fig. 8.3). Regarding the influence of the

packet size, the achievable throughput has a maximum for a given L. This

is due to the fact that for a smaller packet size L, more header information

is transmitted, and for longer packet size L, there are more interruptions.

Notice that when Cm is higher, this maximum throughput is achieved for

smaller L in Fig. 8.2 and for higher L in Fig. 8.3.

The interruption probability ǫG obtained from (8.11) is shown in Fig. 8.4

and 8.5. It can be clearly seen that when the OA channels are the channels

with the highest data rate (Fig 8.5) the interruption probability ǫG is higher

than when the channels with the lowest data rate are chosen (Fig. 8.4). This

happens because FUs use first channels with the highest data rates and hence,

these channels experience more interruptions.
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Figure 8.2: Maximum achievable throughput γT in Mbps. OA channels with
the lowest data rates.
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Figure 8.3: Maximum achievable throughput γT in Mbps. OA channels with
the highest data rates.
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Figure 8.4: Interruption probability ǫG. OA channels with the lowest data
rates.
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Figure 8.5: Interruption probability ǫG. OA channels with the highest data
rates.
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Figure 8.6: Maximum achievable throughput γT in Mbps for MU vs. Cm for
different sets of data rates R(1) and R(2).

We can see that for this scenario, choosing the channels with the low-

est data rate has better results but for other scenarios different results may

be obtained. In Fig. 8.6, results considering different sets of data rates for

each channel are shown. We consider R(1) as the set of data rates defined

in Section 8.4.1 and R(2) are the set of data rates with values from Table 8.1

corresponding to rows #1, 3, 5, 7, 10, 12, 14 and 16 . We have R
(1)
8 = 0.356R

(1)
1

and R
(2)
8 = 0.019R

(2)
1 . For R(1), it is better to operate in OA mode the chan-

nels with the lowest data rate. However, for R(2), the channels with the

highest data rate yield better performance. This can be explained as follows.

When the difference of data rates among channels is significant, the data rate

achieved in the worst channels is too small, and it is better to access the best

channels with higher data rates, despite having more interruptions.

When the set of channels operated in OA mode have the highest data

rate, the performance only has better results when the difference of data rates

among channels is very significant (R(2)). Since common scenarios does not
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Figure 8.7: Maximum achievable throughput γT in Mbps for MU vs. Cm for
different µ.

present these asymmetrical data rates, from now on R(1) is considered, and

the set of channels operated in OA mode are considered to be the channels

with the lowest data rate.

In Fig. 8.7, we show the maximum achievable throughput γT for MUs

defined in (8.9) for different session durations while the offered traffic to the

system ρ f from (8.15) is kept constant. Even though ρ f is kept constant, γT is

higher when µ is small. For small µ the FUs are using the same channel for

longer time. The system varies more slowly, there are less interruptions and

therefore, the γT is higher. The opposite effect occurs for high µ. The FUs are

using and releasing channels faster, the MUs experience more interruptions

and therefore γT is lower. It can be seen that the number of Cm channels

reaches a point at which considering one more channel operated in OA mode

does not contribute to increase the throughput γT . This happens because

the best channels are occupied and released continuously by the FUs, thus

making these channels useless for MUs.

140



i

i

i

i

i

i

i

i

Chapter 8. Admission control in femtocells

1000 2000 3000 4000 5000 6000 7000
3.5

4

4.5

5

5.5

6

6.5

7

7.5
x 10

−7

E
[E

b]

L(bits)
 

 

C
m

=1

C
m

=2

C
m

=3

C
m

=4

C
m

=5

C
m

=6

C
m

=7

C
m

=8

Figure 8.8: Consumed energy per successfully transmitted data bit Eb (J/bit)
vs. L for different Cm.

In Fig. 8.8, the average consumed energy Eb per successfully transmitted

data bit for MUs defined in (8.12) is shown. We can see that given a number of

channels operated in OA mode Cm, there is a value of L which makes the Eb

minimum. This happens because when small packet sizes L are considered,

more energy is consumed by the header bits. On the other hand, when long

L is considered, there are more interruptions and more energy is consumed

by bits of packets that are not successfully transmitted. Note that the values

of L which make Eb minimum, are close to the values of L for which the γT

is maximum, as shown in Fig. 8.2. Regarding the influence of the number

of channels operated in OA mode, Cm, given a value of L, the value of Eb

first decreases with Cm, reaches a minimum and then increases again. This

happens because for small Cm, the transmission of a bit takes longer since the

OA channels have low data rates. For high Cm, more interruptions occur and

more power is wasted, despite having high data rates.
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8.5 Conclusions

In this chapter, we study a hybrid access control mode in femtocell networks.

We consider a preemptive and non-resume access control policy for the MUs.

Different data rates for each channel are considered depending on the SINR

experienced by the users. We model the FU activity profile by a CTMC and

we assess several performance parameters for MUs such as the maximum

achievable throughput γT or the average consumed energy Eb per success-

fully transmitted data bit. We compute how many channels and which chan-

nels are the best channels to be operated in open access mode.

The results show that, if the SINR levels experienced by the users in each

channel are comparable, and thus, the data rates achieved by the users in

each channel are comparable too, the best channels to be operated in open

access are the channels with the lowest data rates. Otherwise, if the data

rates achieved by the best channels are significantly higher than the data

rates achieved by the worst channels, it is better to operate the channels with

the highest data rates in open access mode. In addition, we show that there

is an optimal packet size for MU packets which maximizes the throughput

γT and minimizes the average consumed energy Eb per successfully trans-

mitted data bit. We also demonstrate that for short session durations, the

number of channels operated in open access reaches a point at which having

more channels operated in open access does not entail any gain to the MU

throughput. These results motivate the need for novel resource management

schemes which can dynamically adapt the set of open access channels to the

channel conditions.
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Chapter 9

AC in cognitive radio networks

9.1 Introduction

Many works have been devoted to AC policies and the mobility characte-

ristics of terminals in the forthcoming 4G networks, but the scarcity of fre-

quencies in the radio spectrum is still a hot topic. Today’s cellular mobile

networks are characterized by fixed spectrum assignment policies where the

spectrum usage is concentrated on certain portions of the spectrum. Most

of the spectrum which could be reasonably utilized for communications is

licensed and these licenses are allocated for very long periods of time. As

a result, a large portion of the assigned spectrum is used sporadically and

that fact leads to an imbalance between the spectrum scarcity and spectrum

underutilization. A study by the Federal Communication Commission (FCC)

Spectrum Task Force [Com02] showed high temporal and geographic vari-

ations in the spectrum utilization, these variations range from 15% to 85%

in the bands below 3 GHz. Although the fixed spectrum assignment pol-

icy generally served well in the past, the new paradigm of mobile cellular

networks strains the effectiveness of the traditional spectrum policies and

makes necessary to implement efficient methods to make use of the spec-

trum. The challenging task is how to efficiently use and share the radio spec-
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trum, and thus the current research efforts in this field are devoted to the

study of technologies that enable dynamic spectrum access. The Cognitive

Radio (CR) [DAR03, MGM99, Hay05, C.-08, ALVM08, PPPMB09, MBPPP12]

technology has been proposed as a concept which provides the ability to de-

tect idle frequencies of a Primary Network (PN) which are not occupied by

the Primary Users (PUs) and enables non-licensed users or Secondary Users

(SUs) to use these idle bands in an opportunistic manner.

The CR technology improves the inefficient usage of the existing spectrum

by allowing the PN to rent a specific number of channels to a Secondary Net-

work (SN). The access of the SUs to the licensed bands must not interfere with

the PUs. If an SU is using a licensed channel and a PU needs that channel, the

SU undergoes a a spectrum handover, i.e., it vacates the channel and searches

an idle channel among the channels which an SU can occupy. If there are not

idle channels, the session of the SU is interrupted and aborted. Thus, the CR

technology allows the PN obtain profit from its unused spectrum without

comprising the services of the PUs.

This type of network imposes several challenges due to the interferences

created between PUs and SUs, the diverse QoS requirements of applications

and the necessity of guarantee seamless communications of the SUs regard-

less of the appearance of PUs. As a consequence new functionalities are

required in order to manage the rented channels of the PN appropriately.

Among others, an efficient channel sharing strategy, which decides which

channels are rented and how the PUs and the SUs have access to them, and

an AC policy for SUs should be in place.

In this chapter we consider a PN which rents only a set of channels and a

SN which has a number of dedicated channels and can use opportunistically

the rented set of channels of the PN. A similar scenario is proposed in [S.-09]

but, among other assumptions, the PN rents all its channels and it does not

consider any dedicated band for PUs. A SU can be blocked when it arrives

at the system depending on the decision of the AC policy. If the SU is being

served in a rented channel, it can be aborted when the PUs need their rented
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Chapter 9. Admission control in cognitive radio networks

channels. We propose different channel sharing strategies and we also obtain

the optimal AC policy for each strategy depending on how much harmful is

considered the forced termination of an ongoing SU session compared with

blocking a new SU session. In order to find this optimal AC policy we use

the theory of Markov Decision Processes (MDPs) [How60, Bel57, Ros70]. This

work resulted into the publication in [BMPMB10a].

The rest of the chapter is organized as follows. In Section 9.2 the system

model and three different channel sharing strategies between PUs and SUs

are described. In Section 9.3, the MDP theory is described and applied to find

an optimal AC policy under a given cost function, which is also proposed in

this section. In Section 9.4 some numerical results are described and some

concluding aspects are presented in Section 9.5.

9.2 System model and channel sharing strategies

In this section, the general system model of the CR network under study is

presented. Next, three different channel sharing strategies are proposed and

the specific analytical models used to evaluate their performance characteris-

tics are presented.

9.2.1 System model

We consider a CR network with a PN and a SN. The PN has Cp channels

which only PUs can occupy and Cr rented channels which can be occupied

by SUs when they are idle. Thus, the total number of channels that the PUs

have access to is Cp +Cr. Additionally, the SN has Cs dedicated channels that

only can be occupied by SUs. Thus, the total number of channels that the SUs

have access to is N = Cs + Cr. If an SU is using a rented channel and a PU

needs that channel, the SU vacates the channel and searches an idle channel

among the channels that an SU can occupy. If there are not idle channels

among the channels the SU has access to, the session of the SU is aborted.
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We make the common assumptions of Poisson arrival processes and expo-

nentially distributed random variables for session durations. The arrival rate

for primary (secondary) users is λp (λs) and the service rate of primary (sec-

ondary) users is exponentially distributed with rate µp (µs). The system state

is described by the vector x, where the definition of each vector dimension

depends on the channel sharing strategy chosen. We consider that PUs have

total priority over SUs which are using channels of the PN, and therefore a

PU only is blocked when under its arrival all the channels of the PN are oc-

cupied by PUs. Under an arrival of an SU, its acceptance depends on the AC

implemented for SUs. The function as(x) denotes whether a new session of

an SU is accepted by the AC policy or not when the system is in state x. The

value as(x) = 1 means that the session is accepted and as(x) = 0 means that

the session is blocked. We use different finite QBD Markov processes [Neu81]

for each channel sharing strategy to model the occupation of channels of PUs

and SUs in the system. Next, we describe the three different channel sharing

strategies proposed.

9.2.2 Channel sharing strategies

Strategy 1

The SN has a set of Cs dedicated channels which can be only used by SUs.

The PN has a set of Cp + Cr channels, of which Cr channels are rented and

can be available to SUs. The channels available to SUs are not a fixed set,

i.e., any channel of the set of the PN can be rented to SUs with the restriction

that SUs cannot use more than Cr channels of the PN at the same time. This

strategy is represented in Fig. 9.1. Incoming PUs choose the first channel not

occupied by PUs, considering that channel 1 is the most preferred channel

and channel Cp +Cr is the least preferred channel. Incoming SUs occupy first

their dedicated channels and if there are not available dedicated channels,

SUs choose the first channel not occupied among the rented channels of the

PN, choosing first the least preferred channels for PUs.
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Figure 9.1: Strategy 1: Access of SUs to the PN

In this case, the system state vector is described by the 2-tuple x = (xp, xs),

where xp represents the total number of PUs in the PN and xs represents the

total number of SUs in the system, SN and PN. So that, the set of feasible

states is thus given by

W1 := {x : xp, xs ∈ N; xp + xs ≤ Cp + Cr + Cs;

xp ≤ Cp + Cr; xs ≤ Cs + Cr}.
(9.1)

Notice that when a PU arrives to the system, an SU session can be aborted

due to the acceptance of the PU if the system is in the set of states given by

D1 := {x ∈ W1; xp + xs = Cp + Cs + Cr; xs > Cs}. (9.2)

As an example, Figure 9.2 shows the transition diagram of the CTMC

which models a system where Cp = 2, Cs = 1 and Cr = 2. For clarity, the

notation has been simplified as as(x) = as. The transition due to an aborted

SU is represented for the diagonal transitions from state (2, 3) to (3, 2) and

from state (3, 2) to (4, 1).

If we define levels as the number of PUs in the system, xp, and phases

as the number of SUs in the system, xs, we can study the model as a fi-

nite level-dependent QBD process with Cp + Cr + 1 levels where levels with

xp = 0, · · · , Cp have Cs + Cr + 1 phases and levels with xp = Cp + i where

i = 1, · · · , Cr have Cs + Cr + 1− i phases. Therefore we can construct the
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Figure 9.2: Transition diagram for strategy 1.

transition rate matrix Q1 with a block-tridiagonal form, see (9.3). The first

row of blocks corresponds to level xp = 0, the second row of blocks to level

xp = 1, etc., where blocks A
xp

1 correspond to transitions among phases in

level xp, blocks A
xp

0 to transitions from level xp to level xp + 1 and blocks A
xp

2

to transitions from level xp to level xp − 1.

Q1 =















A0
1 A0

0 0 0 0 · · ·
A1

2 A1
1 A1

0 0 0 · · ·
0 A2

2 A2
1 A2

0 0 · · ·
. . .

. . .
. . .

· · · 0 0 A
Cp+Cr−1
2 A

Cp+Cr−1

1 A
Cp+Cr−1
0

· · · 0 0 0 A
Cp+Cr

2 A
Cp+Cr

1















(9.3)
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Notice that the first Cp + 1 levels has the same phases, and thus:

A
xp

1 = A0
1 where xp = 1, · · · , Cp ,

A
xp

0 = A0
0 where xp = 1, · · · , Cp − 1 ,

A
xp

2 = xp · A1
2 where xp = 2, · · · , Cp ,

(9.4)

where A0
1, A0

0 and A1
2 are (Cs + Cr + 1) square matrices.

The matrices A
Cp+i
1 are (Cs + Cr + 1 − i) square matrices. The size of

A
Cp−1+i
0 is (Cs + Cr + 2 − i) × (Cs + Cr + 1 − i) and the size of A

Cp+i
2 is

(Cs + Cr + 1− i)× (Cs + Cr + 2− i). For more details, see Appendix B.3.

To solve the level-dependent finite QBD Markov process and obtain the

stationary distribution π(x), we use again the LLR algorithm defined in Ap-

pendix C.2. From the values of the stationary distribution and the state spaces

W1 from (9.1) and D1 from (9.2), the blocking probability for SUs Pb
s , defined

as the probability that an SU session which arrives to the system is blocked,

and the dropping probability for SUs Pd
s , defined as the probability that a

PU session which arrives to the system causes an SU session abortion, can be

calculated as follows:

Pb
s = ∑

x∈W1

(1− as(x))π(x), (9.5)

Pd
s = ∑

x∈D1

π(x). (9.6)

Strategy 2

The SN has a set of Cs dedicated channels which can be only used by SUs.

The PN has a set of Cp dedicated channels only available for PUs and a set

of Cr rented channels which can also be used opportunistically by SUs, thus

the total number of channels in the PN is Cp + Cr. The rented channels are a

fixed set of channels. The access of SUs to the PN is represented in Fig. 9.3.

Incoming PUs choose the first channel no occupied by PUs, considering that
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Figure 9.3: Strategies 2 and 3: Access of SUs to the PN

channel 1 is the most preferred channel and channel Cp + Cr is the least

preferred channel. Incoming SUs occupy first their dedicated channels and

if there are not available dedicated channels, SUs choose the channels not

occupied among the set of Cr rented channels of the PN, choosing first the

least preferred channels for PUs. In this strategy we consider that there is no

repacking for PUs, i.e. if a PU is using one of the Cr rented channels and one

of the Cp dedicated channels of the PN becomes idle, the PU remains in the

rented set of channels despite having idle channels in the dedicated set.

The system state vector is described by the 3-tuple x = (xp, xr, xs), where

xp represents the number of PUs in the dedicated channels of the PN, xr rep-

resents the number of PUs in the rented channels of the PN, and xs represents

the total number of SUs in the system, i.e. in the PN and the SN. So that, the

set of feasible states is thus given by

W2 := {x : xp, xr, xs ∈ N; xp + xr + xs ≤ Cp + Cr + Cs;

xp ≤ Cp; xr ≤ Cr; xr + xs ≤ Cs + Cr}.
(9.7)

Notice that when a new PU arrives to the system, an SU session can be

aborted due to the acceptance of the PU if the system is in the set of states

given by

D2 := {x ∈ W2; xp + xr + xs = Cp + Cs + Cr; xs > Cs}. (9.8)
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A 3-dimensional finite QBD Markov process is used to model the system.

We define high-levels as xp, low-levels as xr and phases as xs. Then, the QBD

process has Cp + 1 high-levels where all of them have Cr + 1 low-levels and

each low-level xr has Cs +Cr + 1− xr phases. Therefore, we can construct the

transition rate matrix Q2 with a block-tridiagonal form, see (9.9). The first

row of blocks corresponds to high-level xp = 0, the second row of blocks to

high-level xp = 1, etc., where blocks B
xp

1 correspond to transitions among

low-levels in high-level xp, blocks B
xp

0 to transitions from high-level xp to

high-level xp + 1 and blocks B
xp

2 to transitions from high-level xp to high-

level xp − 1.

Q2 =















B0
1 B0

0 0 0 0 · · ·
B1

2 B1
1 B1

0 0 0 · · ·
0 B2

2 B2
1 B2

0 0 · · ·
. . .

. . .
. . .

· · · 0 0 B
Cp−1
2 B

Cp−1

1 B
Cp−1
0

· · · 0 0 0 B
Cp

2 B
Cp

1















(9.9)

All the high-levels have the same state transitions but the last high-level

xp = Cp due to SUs forced terminations, then:

B
xp

1 = B0
1 where xp = 1, · · · , Cp − 1 ,

B
xp

0 = B0
0 where xp = 1, · · · , Cp − 1 ,

B
xp

2 = xp · B1
2 where xp = 2, · · · , Cp .

(9.10)

Likewise, the matrices B0
1 and B

Cp

1 have a block-tridiagonal form, where

the first row of blocks corresponds to low-level xr = 0, the second row of

blocks to low-level xr = 1, etc., where blocks in the main diagonal correspond

to transitions among phases, blocks in the upper diagonal to transitions to

lower low-levels and blocks in the lower diagonal correspond to transitions

to higher low-levels. For more details, see Appendix B.3.
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To solve this finite QBD Markov process and obtain the stationary distri-

bution π(x) we use again the LLR algorithm. From the values of the station-

ary distribution and the state spaces W2 from (9.7) and D2 from (9.8), the

blocking probability for SUs Pb
s and the dropping probability for SUs Pd

s can

be calculated as follows:

Pb
s = ∑

x∈W2

(1− as(x))π(x), (9.11)

Pd
s = ∑

x∈D2

π(x). (9.12)

Strategy 3

This strategy is similar to strategy 2 but using repacking for PUs., i.e. if a PU

is using one of the Cr rented channels and one of the Cp dedicated channels of

the PN becomes idle, the PU leaves the channel that was using and occupies

the channel in the dedicated set of channels which became idle. The access

of SUs to the PN is also represented in Fig. 9.3.

The system state vector is described by the 3-tuple x = (xp, xr, xs), where

again, xp represents the number of PUs in the dedicated channels of the PN,

xr represents the number of PUs in the rented channels of the PN and xs

represents the total number of SUs in the system. So that, the set of feasible

states is thus given by:

W3 := {x : xp, xr, xs ∈ N; xp + xr + xs ≤ Cp + Cr + Cs;

xp ≤ Cp; xr + xs ≤ Cs + Cr;

xr ≤ Cr; xr = 0 ⇐ xp < Cp}.
(9.13)

When a new PU arrives to the system, an SU session can be aborted due to

the acceptance of the PU if the system is in the set of states given by:

D3 := {x ∈ W3; xr + xs = Cs + Cr; xs > Cs}. (9.14)
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The repacking occurs if a PU session which is served in the dedicated chan-

nels terminates its service in the set of states:

R3 := {x ∈ W3; xp = Cp; xr 6= 0}. (9.15)

Again, a 3-dimensional finite QBD Markov process is used to model the

system. We define high-levels as xp, low-levels as xr when xp = Cp, otherwise

there are not low-levels, and phases as xs. Then, the QBD process has Cp + 1

high-levels where only the high-level xp = Cp has Cr + 1 low-levels each

one with Cs + Cr + 1− xr phases. The high-levels xp 6= Cp have Cs + Cr + 1

phases. Therefore we can construct the transition rate matrix Q3 with a block-

tridiagonal form, see (9.16). The first row of blocks corresponds to high-level

xp = 0, the second row of blocks to high-level xp = 1, etc., where blocks

C
xp

1 correspond to transitions among low-levels in high-level xp = Cp and

among phases in xp 6= Cp, blocks C
xp

0 corresponds to transitions from high-

level xp to high-level xp + 1 and blocks C
xp

2 to transitions from high-level xp

to high-level xp − 1.

Q3 =















C0
1 C0

0 0 0 0 · · ·
C1

2 C1
1 C1

0 0 0 · · ·
0 C2

2 C2
1 C2

0 0 · · ·
. . .

. . .
. . .

· · · 0 0 C
Cp−1
2 C

Cp−1

1 C
Cp−1
0

· · · 0 0 0 C
Cp

2 C
Cp

1















(9.16)

Clearly, All the high-levels have the same state transitions but the last

high-level xp = Cp due to SUs forced terminations, then:

C
xp

1 = C0
1 where xp = 1, · · · , Cp − 1 ,

C
xp

0 = C0
0 where xp = 1, · · · , Cp − 2 ,

C
xp

2 = xp · C1
2 where xp = 2, · · · , Cp − 1 .

(9.17)
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Likewise, the matrix C
Cp

1 has a block-tridiagonal form, where the first row

of blocks corresponds to low-level xr = 0, the second row of blocks to level

xr = 1, etc., where blocks in the main diagonal correspond to transitions

between phases, blocks in the upper diagonal to transitions to lower low-

levels and blocks in the lower diagonal correspond to transitions to higher

low-levels. For more details, see Appendix B.3.

In order to obtain the stationary distribution π(x), we use again the LLR

algorithm. From the values of the stationary distribution and the state spaces

W3 from (9.13) and D3 from (9.14), the blocking probability for SUs Pb
s and

the dropping probability for SUs Pd
s are given by

Pb
s = ∑

x∈W3

(1− as(x))π(x), (9.18)

Pd
s = ∑

x∈D3

π(x). (9.19)

In addition, the repacking rate denoted by κ is defined as the number

of PU ongoing sessions per second which being served in the rented set of

channels leave these channels and finish their service in the dedicated set of

channels of the PN. Knowing the state space R3 from (9.15), κ is given by

κ = ∑
x∈R3

Cpµpπ(x). (9.20)

9.3 Markov decision processes and optimal AC poli-

cies

In this section, we describe in general terms the MDP theory applied in order

to find an optimal AC policy given a cost function. Next, we present the

specific optimization problem under study and the cost function considered

to obtain the corresponding optimal AC policy.
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9.3.1 Markov decision processes

The Markov process theory assumes that the system, the states and the transi-

tions are given in advance. The problem is to find the stationary probabilities

of the system and then deduce interesting performance parameters, such as

blocking probabilities or dropping probabilities. However, in some scenarios

the behavior of the system is not defined in advance. The possible actions

made in a state such as accept or reject an arrival or the transitions from one

state to another, are not defined in advanced and depend on some choices

defined by the operation policy. This type of process is called Markov De-

cision Process (MDP) [Ros70] and the problem is to find an optimal policy

that depends on a given objective function, such that the expected revenues

are maximized or the expected costs are minimized, it does not matter which

problem is formulated. From now on, we consider the problem of minimiz-

ing the expected costs given by the objective function.

The theory of MDPs studies decision problems when the stochastic be-

havior of the system can be defined as a Markov process. It combines Dy-

namic Programming [Bel57] and Markov process theory [How60]. In MDPs,

when the system is in a state, a decision can be made, which may incur an

immediate cost and, in addition, affects next transitions. Under Markovian

assumptions, the action to be chosen in each state depends only on the state

itself, and generally, a policy (optimal or not) defines for each state the action

to be chosen. The action associated with each state determines the transition

probabilities of the next transitions and these probabilities depend only on

the state. Hence, each policy defines a different Markov process. The solution

of the problem is to find the Markov process which has minimum average

cost. The MDPs are classified in discrete time and continuous time decision

processes. From now on, we consider continuous time MDPs.

When the system is in state x, an action αx which belongs to the set Ax,

αx ∈ Ax, has to be chosen among all possible actions in state x. The action

chosen in each state x among the set of possible actions is defined by the

policy a, then αx = αx(a). Action αx(a) incurs an immediate cost γx(αx(a)).
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If the cost is stochastic, the value of γx(αx(a)) denotes its mean. At the next

instant, the system moves into a new state y with a transition rate denoted by

qxy(αx(a)) which depends on the action chosen in state x. Since the transition

rates do not depend on how the state x has been reached, time homogeneous

systems are considered, where γx(αx(a)) and qxy(αx(a)) do not depend on

the time. The cost γx(αx(a)) and the transition rates qxy(αx(a)) are functions

of the policy a and of the state x. For brevity, we will denote them by γx(a)

and qxy(a).

Given the policy a, the transition rates qxy(a) are fixed and the Markov

process has a stationary distribution πx(a). Then, the average cost γ(a), i.e.

the expected cost rate, is given by:

γ(a) = ∑
x

πx(a)γx(a). (9.21)

Now, the objective is to find the optimal policy a∗, which minimizes the

average cost and therefore:

γ(a∗) ≤ γ(a), ∀a. (9.22)

Since the definition of a policy is discrete, a discrete optimization problem

has to be solved. The average cost can be calculated for each possible policy,

but the solution is not quite straightforward and some systematic approach

is needed. Several approaches have been introduced in the literature, such as

policy iteration, value iteration or linear programming approaches. We will

focus on the policy iteration approach. Let us introduce first the Howard’s

equation which determines the problem to be solved by the policy iteration

approach.

Howard’s equation

The value of γ(a) is the average cost rate under policy a. Let Vx(t, a) be the

expected cumulative cost in the interval (0, t) (integral of the cost rate over
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time), when the system starts from state x. Then, the relative value vx(a) of

state x, given by

vx(a) = lim
t→∞

(Vx(t, a)− t · γ(a)) , (9.23)

denotes how much greater the expected cumulative cost over an infinite time

horizon is in comparison with the average cumulative cost when the system

starts from the initial state x.

The relative values of states vx(a), for a given policy a satisfy the Howard’s

equations [How60]:

γx(a)− γ(a) + ∑
y 6=x

qxy(a)(vy(a)− vx(a)) = 0, ∀x (9.24)

where the policy a explicitly determines the transition rates qx,y(a), and then

vx(a) and γ(a) can be determined by solving these equations.

Note that only the differences vy(a)− vx(a) appear in the equation (9.24).

If the same constant is added to the relative values of all states x, vx(a), the

equation remains satisfied. The relative values will be determined up to an

undetermined additive constant. Hence, we can arbitrarily set, for example,

v1(a) = 0. The number of unknown vx(a) is one less the number of equations,

but the average cost rate γ(a) is also unknown and thus, there are as many

equations as unknown variables.

Note also that the solution γ(a) obtained from the Howard’s equation is

the same as the average cost rate obtained by (9.21). This can be seen clearly

by multiplying the Howard equation by πx(a) and summing all the Howard

equations given by each state x. For simplicity when showing the equations,

we omit the dependence on the policy a in the proof.

∑
x

γxπx − γ ∑
x

πx + ∑
x

πx




∑

y 6=x

qxyvy −
=−qxx
︷ ︸︸ ︷

∑
y 6=x

qxy vx




 = 0,
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∑
x

γxπx − γ ∑
x

πx + ∑
x

πx

(

∑
y

qxyvy

)

= 0,

∑
x

γxπx − γ ∑
x

πx

︸ ︷︷ ︸

=1

+∑
y

(

∑
x

πxqxy

)

︸ ︷︷ ︸

=0

vy = 0,

finally,

∑
x

γxπx − γ = 0, (9.25)

and (9.25) is the same as (9.21).

Policy iteration

The policy iteration approach can be divided in two stages.

• Evaluation Stage (ES)

The policy iteration is started with an initial policy a and the relative

values vx(a) and the average cost rate γ(a) are calculated from the

Howard’s equation.

• Improvement Stage (IS)

The initial policy can be improved by choosing the action αx in each

state as follows:

αx = min
α

{

γx(α)− γ(a) + ∑
y 6=x

qxy(α)(vy(a)− vx(a))

}

. (9.26)

After the choices made in the improvement stage a new policy a′ is de-

fined. Then, new values of vx(a′) and γ(a′) can be calculated from the

Howard’s equation in the next evaluation stage and a new policy can be de-

termined in the improvement stage. This iteration is continued until nothing

changes. The idea is that the decision made in state x minimizes the expected

cost by considering the immediate cost of the action and its influence on the
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next transition, but from that point on assuming that all the decisions are

made considering the old policy. We can summarize the process as follows:

a0
ES→ v(a0),γ(a0)

IS→ a1
ES→ v(a1), γ(a1)

IS→ a2 · · ·
· · · until an+1 = an.

(9.27)

Finally, the optimal policy is obtained a∗ = an. Generally, the police iteration

converges quickly.

9.3.2 Optimal AC policy

The AC policy implemented for SUs has not been defined yet. Remember

that the function as(x) determines whether a new SU session is accepted

or not when arrives to the system depending on the state of the system in

that moment. When the stochastic behavior of the system can be described

as a Markov process, the MDP theory can be applied to study sequential

decision problems. Thus, for each channel sharing strategy described in the

previous section, we can determine a different optimal AC policy for SUs

under a given cost rate function modeling the systems as MDPs. We consider

stationary deterministic Markovian policies, which define the next decision

based only on the current state.

In the MDP theory when a decision is made (accepting or not a new SU)

the system is penalized with some immediate cost. In our system, the opti-

mization problem is formulated as the minimization of the average cost rate

per time unit. If as(x) is the AC policy, we denote the average cost rate by

γ(as) and consider the problem of finding the policy a∗s that minimizes γ(as),

which we name the optimal policy. From the perception of users, dropping

a session in progress is generally considered to be more harmful than block-

ing a new session. But blocking too many new SU sessions decreases the

efficiency of the CR network since the benefits given by allowing SUs to rent

channels from the PN are not exploited. The main goal of an efficient AC

policy for SUs is then, to find a trade-off between these two conflicting re-
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quirements. Thus, the cost structure has been chosen so that the cost rate

represents a weighted sum of loss rates for new blocking SUs and for ongo-

ing SUs whose service is aborted by the arrival of a PU that needs the rented

channels used by the SU.

Let I(x) denote the indicator function which takes the value 1 when all

the channels of the PN are occupied, with at least one of these channels

being occupied by an SU, and all the secondary dedicated channels are also

occupied, otherwise it takes the value 0. In other words, I(x) indicates in

which states an SU, which is renting channels from the PN, is dropped from

the system under an arrival of a PU due to the lack of other idle channels in

the system. It can be written as:

I(x) =







1 if x ∈ D
0 otherwise,

(9.28)

where D is the state space which corresponds to D1, D2 or D3 defined

in (9.2), (9.8) and (9.14) respectively, depending on the channel sharing strat-

egy 1, 2 or 3 considered.

Considering all the facts pointed out above, the cost rate at state x under

policy as(x) can be defined as:

γx(as) = (1− as(x))λs + wλp I(x), (9.29)

where, remember, as(x) = 1 when the new SU session is accepted and 0

otherwise, and w is a weight that determines how much harmful it is to abort

an ongoing session of an SU compared with blocking a new session of an SU.

The first part of the equation refers to the cost associated with blocking a

new SU session and the second part is associated with dropping an ongoing

SU session due to an arrival of a PU when there are not idle channels (states

given by I(x)).

Once the cost rate function is defined, the AC optimization problem can

be conducted applying the MDP theory. The relative values of state x, vx(as),
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and the average cost rate, γ(as), can be calculated solving the system of equa-

tion defined by the Howard’s equations (9.24), setting vx1(as) = 0, where x1

is (0, 0) for strategy 1 and (0, 0, 0) for strategies 2 and 3. Then, the policy iter-

ation approach summarized in expression (9.27) can be applied. We choose

as the initial AC policy the CS policy and from that point, the AC policy is

improved step by step according to the cost rate function, until the AC policy

remains the same in two consecutive steps.

9.4 Numerical evaluation

In this section we study the variation of the optimal AC policy for different

values of the weight of the cost rate function, w, and the blocking and drop-

ping probabilities for SUs (Pb
s and Pd

s respectively) as a function of different

system parameters.

For the numerical examples we consider, unless otherwise indicated, a

system where the PN has 11 channels, of which 6 are exclusively dedicated

to PUs, Cp = 6, and 6 channels can be used opportunistically by SUs, Cr = 5.

In addition, the SN has 2 dedicated channels for SUs, Cs = 2. For PUs, the

arrival rate is λp = 3.2 and the service rate µp = 0.5. For SUs, the arrival rate

is λs = 1.8 and the service rate µs = 1.25. The weight which defines the cost

rate function is set to w = 5. A summary of all model parameters is given in

Table 9.1.

Table 9.1: Definition of system parameters.

Parameter Value Parameter Value

Cp 6 Cs 2
Cr 5 w 5
λp 3.2 µp 0.5
λs 1.8 µs 1.25
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Figure 9.4: Optimal AC policy for strategy 1.

Results in Fig. 9.4 show the optimal AC policy for strategy 1 under the

cost rate function defined in (9.29) for different values of the weight w, which

determines the cost of dropping an ongoing SU session compared with block-

ing a new SU session. Each figure corresponds with one value of the weight,

w = 1, w = 5 and w = 10. The possible states which the system can take are

given by the number of PUs (x axis) and SUs (y axis) and they are indicated

by markers. Under a new SU arrival, when the optimal AC policy is applied

a new SU session is accepted if the system is in the states inside the shady

area and indicated by circles. The CS policy is also indicated in this figure

considering also strategy 1. When the CS policy is applied, a new SU session

is accepted as long as there are available channels. The states where a new SU
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session is accepted under CS policy are the states inside the area indicated by

the dotted line. As expected, for higher values of w, a forced termination of

an ongoing SU session is considered more harmful and thus, not accepting a

new SU can be better for a given set of states despite being available channels

for it. Therefore, the optimal AC policy is more restrictive with the new SUs

and the shady area is smaller for higher w.

It is worth noting that the strategies 1 and 3 are equivalent when the

blocking probability for SUs, Pb
s , and the dropping probability for SUs, Pd

s ,

are calculated. This is because SUs see the same system in terms of chan-

nel occupancy for both strategies due to the repacking mechanism imple-

mented in strategy 3. In the figures plotted from now on, results for the

three strategies are shown, but strategy 1 and strategy 3 overlap, and they

are considered as one line. The differences between these two strategies lies

in interference and management aspects more than in these performance re-

sults. The three-dimensional analytical model for strategy 3 is more complex

than the two-dimensional analytical model of strategy 1, however, it is still

interesting since it allows us to calculate exclusive parameters of strategy 3

like the repacking rate κ.

In Fig. 9.5 and 9.6, the blocking probability, Pb
s , and the dropping proba-

bility, Pd
s , respectively, for SUs are shown as a function of the weight w. The

results are displayed for the optimal AC policy for strategies 1 and 3 in a

solid line, the optimal AC policy for strategy 2 in a dashed line and the CS

policy for strategy 1 in a dotted line. As expected, the results for the CS

policy do not depend on w. The results obtained considering strategies 1, 2

and 3 have a staircase shape due to the dependency of the optimal AC policy

with the value of the weight w. Also as expected, SU blocking and dropping

probabilities have opposite behavior. For higher w, Pb
s is higher and Pd

s is

lower. Moreover, when w is very low means that dropping a SU session has

not a high cost and therefore the CS policy and the optimal AC policy, both

for strategy 1, have the same results. Notice also that the differences between

strategy 2 and the other two strategies is higher for lower values of w. From

now on, we consider w = 5.
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Figure 9.5: SU blocking probability as a function of w.
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Figure 9.6: SU dropping probability as a function of w.
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Figure 9.7: SU blocking probability as a function of Cr.
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Figure 9.8: SU dropping probability as a function of Cr.
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In Fig. 9.7 and 9.8, Pb
s and Pd

s , respectively, are shown as a function of the

number of rented channels of the PN, Cr. Again, the results are displayed

for the optimal AC policy for strategies 1 and 3 in a solid line, for strategy 2

in a dashed line and the CS policy for strategy 1 is shown in a dotted line.

We can see that the CS policy for strategy 1 has lower Pb
s and higher Pd

s than

the optimal AC for strategy 1. This is because the optimal AC policy takes

into account the cost of dropping an ongoing SU session and considers that

is more optimal to block more SU sessions in order to decrease Pd
s . We can

also see that strategy 2 has lower Pb
s and higher Pd

s than the other strategies.

This is logical since for strategy 2, clearly there are more SU blocked because

the PUs are using the rented channels despite the fact that these PUs may

have idle channels in their dedicated set of channels. Since there are more

blocked SUs, there will be less SUs in the system and Pd
s is lower. Moreover,

the difference between these strategies is lower for high values of Cr since

the system is less loaded and the channel sharing strategy is not as crucial

as for more loaded systems. Regarding the variation of the probabilities as a

function of Cr, we can observe that it exists a value for which Pd
s is maximum.

This can be explained as follows. When Cr is small the system has high load

and having one more rented channel leads to higher Pd
s because the system

accept more SUs and therefore, more SU sessions can be aborted. But at some

point having one more rented channel leads to a system with lower load since

PUs have the same arrival rate and less interruptions occur despite accepting

more SUs.

In Fig. 9.9 and 9.10, Pb
s and Pd

s , respectively, are shown as a function of

the arrival rate for PUs, λp. We can see that for strategy 1, 2 and 3 the

lines have abrupt changes, this phenomenon appears because the optimal

AC policy changes for different values of λp. The behavior of the system can

be explained similarly to the behavior reflected in Figures 9.7 and 9.8. When

λp is low, the system has low load and increasing λp leads to higher Pb
s and

Pd
s because the system is longer in blocking states. When λp is very high, the

system is very loaded and increasing λp leads to block so many new arrivals

that Pd
s is lower because there are few SUs in the system.
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Figure 9.9: SU blocking probability as a function of λp.
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Figure 9.10: SU dropping probability as a function of λp.
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Notice that when the optimal AC policy is applied, the value of Pd
s is 0

from a given value of λp. This is because the optimal AC policy decides not

to accept SUs in the rented channels from this value of λp, as it is not worth

renting channels because the number of aborted SUs is very high. However,

the CS policy does not take this fact into account.

In Fig. 9.11 and 9.12, the probabilities Pb
s and Pd

s , respectively, are shown

as a function of the arrival rate for SUs, λs. We can see that the plots have

abrupt changes, especially the line for strategies 1 and 3. This is because

the optimal AC policy varies for different λs. Strategies 1 and 3 have lower

SU blocking probabilities and higher dropping probabilities than strategy 2

because in strategy 2 there are dedicated PU channels underutilized. Strategy

2 has dropping probabilities lower than strategies 1 and 3 because less SUs

are accepted in the rented channels of the PN, the dedicated channels of the

PN are less loaded and then, the system is shorter in the states where SUs

have higher risk of being aborted.
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Figure 9.11: SU blocking probability as a function of λs.
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Figure 9.12: SU dropping probability as a function of λs.

As it was pointed out before, strategies 1 and 3 are equivalent in terms of

idle channels since SUs find the same idle channels when they arrive in the

system due to the repacking mechanism implemented in strategy 3. However,

some parameters like the repacking rate κ of PUs defined in (9.20), can be

studied only for strategy 3.

In Fig. 9.13, the repacking rate experienced by PUs when strategy 3 is

applied, κ, is shown as a function of the service rate of PUs, µp. We can see

that κ first increases with µp, reaches a maximum and then decreases again

to 0. This can be explained as follows. If µp is low, PUs occupy channels

longer and the system is more static. Then, less PUs which are using rented

channels are reallocated to dedicated channels of the PN as the dedicated

channels are not released very often. On the other hand, if µp is high, PUs

are in the system shorter and the system is very dynamic. Then, less PUs

which are using rented channels are reallocated to dedicated channels of the

PN as the rented channels are released very quickly. Actually, for highly

dynamic systems with very high µp the repacking rate κ tends to 0.
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Figure 9.13: PU repacking rate for strategy 3 as a function of µp.

9.5 Conclusions

In this chapter, different channel sharing strategies between licensed or pri-

mary users and non-licensed or secondary users for CR networks are studied.

Furthermore, a method to obtain an optimal AC policy for each strategy with

respect to a cost function is presented.

The results show that strategies 1 ans 3 have equivalent results for block-

ing and dropping probabilities for SUs since SUs see the same system in

terms of channel occupancy for both strategies. The differences between

these two strategies lies in interference and management aspects more than

in these performance results. Strategy 2 has higher blocking probabilities and

lower dropping probabilities than strategies 1 and 3.

Regarding the optimal AC policy, it is more restrictive when the forced

termination of an ongoing SU session is considered more harmful, i.e. when

the weight w of the cost rate function is higher. In this case, strategies 1, 2 and

3 are more similar to each other. For low values of w the optimal AC policy

170



i

i

i

i

i

i

i

i

Chapter 9. Admission control in cognitive radio networks

tends to a CS policy. When the optimal AC policy is applied and the primary

network has a high traffic load of PUs, the optimal AC policy may decide not

to accept SUs in the rented channels because the number of aborted SUs can

be too high if they are accepted.

We also conclude that there is a value of rented channels for which the

network becomes underloaded and higher values of Cr yield lower values

of blocking and dropping probabilities for SUs. However, it will also entail a

higher number of spectrum handovers for SUs, and thus a higher operational

cost which means that renting channels of the primary network would have

a higher economic cost for the secondary network. For future works, this

fact can be studied in order to find a trade-off between the values of blocking

and dropping probabilities and the operational cost produced by the spectral

handovers.
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Chapter 10

Conclusions

In the last decade, mobile cellular networks have experienced a major growth

and progress due to a change in the way today’s society creates, shares and

consumes information. This fact has lead to an enormous increment of users

and has opened the way to a wide technological market. 3G and forthcoming

4G networks have introduced a wide variety of services with different traffic

characteristics and new applications are continuously appearing with higher

QoS and bandwidth requirements. In addition, mobile cellular networks have

to face strong bandwidth limitations due to the scarcity of frequencies in the

radio spectrum. These new technologies have established new challenges in

order to manage an increasing number of demanding services together with

the scarcity of the spectrum. In this context, the radio resource management

arises as a key mechanism to deal with that network characteristics. Specifi-

cally, the AC mechanism is a key aspect to efficiently use the available radio

resources providing the required QoS guarantees.

In this thesis, the design and evaluation of AC policies was studied for

current and forthcoming cellular networks. The first part of the thesis dealt

with the implementation of AC policies in order to enhance the current mo-

bile cellular networks. To this end, an appropriate traffic characterization

was necessary. The characterization of the CRT, the CHT and the session
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duration of streaming traffic has been widely studied in the literature, but

this type of studies have not been carried out for elastic traffic so far. In

Chapter 3, we proposed a model based on the phase-type distribution to

characterize the flow duration and the handover probability of the elastic

traffic. We found that the proposed model appropriately models the flow

duration and the handover probability under general assumptions. Next, in

Chapter 4, we compared several algorithms to design the parameter setting of

the trunk reservation policy MFGC. Although the adaptive method achieves

lower computational cost than the other algorithms studied, we can con-

clude that the computational cost necessary to design the conventional trunk

reservation AC policies grows very quickly with the number of channels and

SCs supported. Thus, determining parameters like the new and handover

blocking probabilities, might become an unfeasible task. Moreover, after the

design phase, the parameters of trunk reservation policies are static, which

leads to AC policies with poor robustness. In Chapter 5, the robustness of

AC policies under traffic overloads was studied. We proposed a new AC pol-

icy based on the VP policy for multiservice mobile cellular networks, which

integrates streaming and elastic traffic. We found that this policy in addition

to having a lower computational cost, it is also more robust against traffic

overloads than conventional trunk reservation policies. Finally, in Chapter 6,

we proved that trunk reservation policies do not lead to reversible and in-

sensitive CTMC unless further restrictions are imposed and we proposed an

AC policy, whose associate CTMC is reversible and insensitive to the CHT

distribution.

The second part of this thesis dealt with proposing, designing and eval-

uating AC policies for the forthcoming mobile networks, such as the 4G

networks. These networks introduce new technologies, such as the AMC

technique, the femtocell concept or the CR technology. In all of them, the

implementation of an appropriate AC policy is a hedging strategy in order

to manage efficiently the available resources. In chapter 7, a mathemati-

cal model was presented to evaluate AC policies in OFDM based networks,

which use the AMC technique. We validated this model by comparing its
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results with simulations results. Moreover, we propose a dynamic AC policy,

which optimizes its parameters. The dynamic AC policy was evaluated and

compared to a static AC policy and we concluded that the dynamic policy

outperforms a static policy. However, in order to manage the ever-increasing

traffic load, it is also necessary to increase the network capacity. To this end, it

is proposed the concept of femtocell. In chapter 8 an AC policy for femtocells

was studied and designed. We showed that the most appropriate AC policy

for users which are not subscribed to the femtocell depends on the SINR ex-

perienced by each channel and hence on the AMC used. Finally, resource

management with dynamic spectrum access was also studied in Chapter 9.

An optimal AC policy for secondary users is proposed. The results showed

that renting channels from the primary network can be more or less conve-

nient for the secondary network depending on the scenario and the traffic

characteristics of the primary network.

Different extensions of the studies in this thesis can be identified, for ex-

ample, the use of the proposed models to evaluate other AC policies. In addi-

tion to these extensions, we can point out some possible lines of future work

based on the results obtained in this thesis and considering the evolution of

mobile access networks. The new way that today’s society consumes infor-

mation leads to a cellular architecture increasingly complex. The traffic which

is expected to produce the bulk of the network load will mainly occur indoor.

Given that the current structure of urban areas is based on a vertical pattern,

a vertical multi-layer architecture is getting more and more attractive. More-

over, the introduction of multimedia applications and smart-phones lead to

an enormous economical relevance of mobile cellular networks, appearing an

enormous variety of operators. In this context, the smallcell concept emerges

as a more and more popular concept to combine the necessity for increasing

the indoor coverage and develop a vertical multi-layer architecture operated

by different companies. This new architecture establishes new challenges for

the design of AC policies. The AC policy has to decide on the acceptance

of a request and in which layer is served. Moreover, the acceptance decision

should also be based on information such as the economical cost. Further-
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more, the handover management is also more complex. The cells are smaller

and, in addition to the normal horizontal pattern, they are also structured

in a vertical multi-layer pattern. Therefore, the network undergoes more

handovers which can be in the horizontal or the vertical dimension. These

challenges motivate the need for novel resource management schemes in or-

der to deal with an architecture with both horizontal and vertical dimensions

and with a competitive economical market. Thus, the future work will be

focused on extending the models developed in this thesis to networks with

these characteristics.
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Appendix A

Abbreviations and acronyms

3GPP 3rd Generation Partnership Project

AMC Adaptive Modulation and Coding

AMP Absorbing Markov Process

BGMP Algorithm proposed in [BM07]

BS Base Station

CHT Channel Holding Time

CP Complete Partitioning

CR Cognitive Radio

CRT Cell Residence Time

CTMC Continuous-Time Markov Chain

CV Coefficient of Variation

CR Cognitive Radio

CS Complete Sharing

CVO Approximation based on K&R proposed in [CPVAOG04]

DCA Dynamic Channel Allocation

FCA Fixed Channel Allocation

FCC Federal Communication Commission

FEC Forward Error Correction

FGC Fractional Guard Channel
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FL Fractional Limit

GC Guard Channel

HCA Hybrid Channel Allocation

IL Integer Limit

K&R Kaufman and Roberts recursion

LTE Long Term Evolution

LLR Linear Level Reduction

NGMN Next Generation Mobile Networks

MCS Modulation and Coding Scheme

MDP Markov Decision Process

MGC Multiple Guard Channel

MFGC Multiple Fractional Guard Channel

MT Mobile Terminal

OFDMA Orthogonal Frequency-Division Multiple Access

PMC Algorithm proposed in [PMCG05]

PH Phase Type

PN Primary Network

PU Primary User

QAM Quadrature Amplitude Modulation

QBD Quasi Birth and Death Process

QoS Quality of Service

QPSK Guadrature Phase-Shift Keying

RRM Radio Resource Management

RS Ramdomized Stationary

RB Resource Block

SAC Session Admission Control

SC Service Class

SIR Signal to Interference Ratio

SMPD Semi-Markov Decision Process

SON Self-Optimizing Networks

SN Secondary Network

SU Secondary User
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TDMA Time Division Multiple Access

ULGM Upper Limit and Guaranteed Minimum

VP Virtual Partitioning

VPC Virtual Partitioning for cellular networks

VPE Virtual Partitioning for elastic traffic

VPS Virtual Partitioning for streaming traffic

WiMAX Worldwide Interoperability for Microwave Access
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Algorithms and matrix definitions

B.1 PMC and BGMP algorithms

In this appendix, the steps followed by the PMC and BGMP algorithms are

shown with more detail.

• PMC Algorithm

The PMC algorithm is described in two stages called: Algorithm and

Procedure. In Algorithm a initial value for λT is assigned, then in Proce-

dure, it is checked if there is a set of values for tn,h
i that fulfill the QoS

requirements. If this set exists the λT is increased and if not it is de-

creased, first with big steps and later with smaller steps. The Procedure

is called again until a λT
max is found with a precision given by ǫ1.

Algorithm:

(λT
max,topt)=pmc(pmax, f , µd,s, µr,s, b, C)

ε1 :=< precision >; L := 0; U :=< high value >

(ok, t) := sMFGCpmc(pmax, U f , µd,s, µr,s, b, C)

atLeastOnce:=FALSE;

while ok do

185



Appendix B. Algorithms and matrix definitions

L := U ; tL := t ; atLeastOnce:=TRUE ; U := 2U

(ok, t) := sMFGCpmc(pmax, U f , µd,s, µr,s, b, C)

end while /* it makes sure that U > λT
max */

repeat

λ := (L + U)/2

(ok, t) := sMFGCpmc(pmax, λ f , µd,s, µr,s, b, C)

if ok then L := λ; tL := t; atLeastOnce:=TRUE;

else U := λ

until (U − L)/L ≤ ε1 AND atLeastOnce

λT
max := L; t := tL

In the Procedure the set of tn,h
i are initialized with small values and

it is checked if there is a value of the parameters tn,h
i that fulfill QoS

probabilities. If it exists, the optimal set is searched. The optimal set

is found when all the blocking probabilities are lower than the QoS

requirements but as close as possible to them. This proximity is given

by the precision ǫ2. The blocking probabilities are calculate by another

procedure where the balance equations are solved.

Procedure:

(ok,t)=sMFGCpmc(pmax, λn, µd,s, µr,s, b, C)

ε2 :=< precision >; δ :=< small value >

t := (δ, δ, . . . , δ)

p := MFGCpmc(t, λn, µd,s, µr,s, b, C)

repeat

canConverge:=TRUE; i := 1;

repeat

if p(i) > pmax(i) then

t′ := t; t′(i) := C

p′ := MFGCpmc(t′, λn, µd,s, µr,s, b, C)

if p′(i) > pmax(i) then

canConvege:=FALSE;
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else

L := t(i); U := C

repeat

t(i) := (L + U)/2

p := MFGCpmc(t, λn, µd,s, µr,s, b, C)

if p(i) > pmax(i) then L := t(i)

else U := t(i)

until (1− ǫ2)pmax(i) ≤ p(i) ≤ pmax(i)

end if

end if

i := i + 1

until (i > 2N) OR ( NOT(canConverge))

if canConverge then

if p(i) ≤ pmax(i) ∀i then

ok:=TRUE; exit:=TRUE;

else exit:=FALSE;

else ok:=FALSE; exit:=TRUE;

until exit

• BGMP algorithm.

The BGMP algorithm is described in three stages called: Initialization,

Algorithm and Procedure. In Initialization, first the parameters tn,h
i and λT

are obtained using the CVO approximation (s = 1) and then, the opti-

mal parameters are obtained accurately solving the balance equations

(s = 2).

Initialization:

(λT
max,topt)=Initial(pmax, f , µd,s, µr,s, b, C)

λT
0 :=< high value >; δ :=< small value >

t0 := (δ, δ, . . . , δ); s = 1;

(λT
0 , t0) := bgmp(λT

0 , t0, pmax, f , µd,s, µr,s, b, C, s)

s = 2;

(λT
max, topt) := bgmp(λT

0 , t0, pmax, f , µd,s, µr,s, b, C, s)
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In Algorithm, as in the VPO algorithm, it is checked if a set of param-

eters tn,h
i that fulfill QoS objectives exists. The initial interval of λT is

narrower than for the VPO algorithm, therefore the search of λT
max can

be faster.

Algorithm:

(λT
max,topt)=bgmp(λT

0 , t0, pmax, f , µd,s, µr,s, b, C, s)

ε1 :=< precision >; L := λT
ini ; U := L

(ok, t) := sMFGCbgmp(pmax, U f , t0, µd,s, µr,s, b, C, s)

atLeastOnce:=FALSE;

if ok then

while ok do

L := U ; tL := t ; atLeastOnce:=TRUE ;

if s==1 then U := 2U

else U := 1.1 ∗U

(ok, t) := sMFGCbgmp(pmax, U f , t0, µd,s, µr,s, b, C, s)

end while /* it makes sure that U > λT
max */

else

while not(ok) do

U := L ; tL := t ; atLeastOnce:=TRUE ;

L := 0.9 ∗U

(ok, t) := sMFGCbgmp(pmax, U f , t0, µd,s, µr,s, b, C, s)

end while /* it makes sure that L < λT
max */

end if

repeat

λ := (L + U)/2

(ok, t) := sMFGCbgmp(pmax, λ f , t0, µd,s, µr,s, b, C, s)

if ok then L := λ; tL := t; atLeastOnce:=TRUE;

else U := λ

until (U − L)/L ≤ ε1 AND atLeastOnce

λT
max := L; t := tL
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In the Procedure, the initial values of tn,h
i will not be the same small

initial values for each evaluation but they will be the calculated values

in the previous evaluation. Note that depending on the value of s the

MFGCbgmp will calculate the blocking probabilities by using the CVO

approximation (s = 1) or by solving the balance equations (s = 2).

Procedure:

(ok,t)=sMFGCbgmp(pmax, λn, tn,h, µd,s, µr,s, b, C, s)

ε2 :=< precision >; t := tn,h

p := MFGCbgmp(t, λn, µd,s, µr,s, b, C, s)

repeat

canConverge:=TRUE; i := 1;

repeat

if p(i) > pmax(i) then

t′ := t; t′(i) := C

p′ := MFGCbgmp(t′, λn, µd,s, µr,s, b, C, s)

if p′(i) > pmax(i) then

canConvege:=FALSE;

else

L := t(i); U := C

repeat

t(i) := (L + U)/2

p := MFGCbgmp(t, λn, µd,s, µr,s, b, C, s)

if p(i) > pmax(i) then L := t(i)

else U := t(i)

until (1− ǫ2)pmax(i) ≤ p(i) ≤ pmax(i)

end if

end if

if p(i) < 0.99pmax(i) then

L := 0.9t(i); U := t(i)

repeat
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t(i) := (L + U)/2

p := MFGCbgmp(t, λn, µd,s, µr,s, b, C, s)

if p(i) < 0.99pmax(i) then U := t(i)

else L := t(i)

until (1− ǫ2)pmax(i) ≤ p(i) ≤ pmax(i)

end if

i := i + 1

until (i > 2N) OR ( NOT(canConverge))

if canConverge then

if p(i) ≤ pmax(i) ∀i then

ok:=TRUE; exit:=TRUE;

else exit:=FALSE;

else ok:=FALSE; exit:=TRUE;

until exit

B.2 Matrix definitions for OFDMA based networks

B.2.1 Static AC policy

In this appendix the matrices of the system with the static AC policy are

described for Z = 2 and Z = 3. The whole analytical model for this case is

described in Section 7.3.1. Remember that the function ai(x) denotes whether

a session that arrives in zone i when the system is in state x is accepted

by the AC policy or not, ai(x) = 1 means that the session is accepted and

ai(x) = 0 means that the session is blocked. For clarity, the notation has

been simplified as ai(x) = ai. The block matrices that were not described in

Section 7.3.1 are listed below. In these matrices p = h + l and the values of δi

equal the opposite of the sum of the other elements of the same row to make

the elements of each row of the transition rate matrix Q sum to 0.
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• For Z = 2, the matrices are given by:

Qh
1 =









δ0 a2λ2 0 · · ·
µ δ1 a2λ2 · · ·
. . .

. . .
. . .

· · · 0 (M− h)µ δM−h









(B.1)

where the size of Qh
1 is (M + 1− h)× (M + 1− h).

Qh
0 =









a1λ1 0 0 · · ·
ǫ2 a1λ1 0 · · ·
. . .

. . .

· · · 0 0 (M− h)ǫ2









(B.2)

where the size of Qh
0 is (M + 1− h)× (M− h).

Qh
2 =









µ hγ1 0 · · ·
0 2µ hγ1 · · ·

. . .
. . .

· · · 0 (M− h)µ hγ1









(B.3)

where the size of Qh
2 is (M− h)× (M + 1− h).

• For Z = 3, the matrixes are given by:

Ah,l
1 =












δ0 a3λ3 0 0 · · ·
µ δ1 a3λ3 0 · · ·
0 2µ δ2 a3λ3 · · ·

. . .
. . .

. . .

· · · 0 0 (M− p)µ δM−p












where the size of Ah,l
1 is (M + 1− p)× (M + 1− p).
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Ah,l
0 =












a2λ2 0 0 · · ·
ǫ3 a2λ2 0 · · ·
0 2ǫ3 a2λ2 · · ·

. . .
. . .

· · · 0 0 (M− p)ǫ3












where the size of Ah,l
0 is (M + 1− p)× (M− p).

Ah,l
2 =









lµ lγ2 0 0 · · ·
0 lµ lγ2 0 · · ·

. . .
. . .

. . .

· · · 0 0 lµ lγ2









where the size of Ah,l
2 is (M + 1− p)× (M + 2− p).

Bh,l
1 =









a1λ1 0 0 · · ·
. . .

. . .

· · · 0 0 a1λ1

· · · 0 0 0









(B.4)

where the size of Bh,l
1 is (M + 1− p)× (M− p).

The matrix Bh,l
2 is a diagonal matrix where the values of the diagonal

are equal to lǫ2 and its size is (M + 1− p)× (M + 1− p).

Ch,l
1 =









hµ 0 0 · · ·
0 hµ 0 · · ·

. . .
. . .

· · · 0 hµ 0









(B.5)

where the size of Ch,l
1 is (M + 1− p)× (M + 2− p).

The matrix Ch,l
0 is a diagonal matrix where the values of the diagonal

are equal to hγ1 and its size is (M + 1− p)× (M + 1− p).
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B.2.2 Dynamic AC policy

When the dynamic AC policy described in Section 7.3.2 is considered, the

analytical model has one more level and hence one more block level than

the analytical model with the same number of zones Z, for the static AC

policy (see Section 7.3.2). The functions t1(x) and t2(x) denote whether the

parameter f must be changed or not when the system is in state x according

to the f -optimization algorithm in Eq. (7.12). When t1(x) = 1 and t2(x) = 0

means that the parameter f must be increased, t1(x) = 0 and t2(x) = 1

means that the parameter f must be decreased and t1(x) = 0 and t2(x) = 0

means that f does not change. Note that t1(x) and t2(x) cannot be 1 at the

same time. For clarity, the notation has been simplified as t1(x) = t1 and

t2(x) = t2. Remember that n f is the number of the different discrete values

that f can take and the intervals after which the optimization is performed

are exponentially distributed with mean 1/η. Also remember that p = h+m.

The block matrices for Z = 3 that were not described in Section 7.3.2 are

listed below. Again, the values of δi equal the opposite of the sum of the

other elements on the same row to make the elements of each row of the

transition rate matrix Q sum to 0.

Dh,m,l
1 =












δ0 t1η 0 0 · · ·
t2η δ1 t1η 0 · · ·
0 t2η δ2 t1η · · ·

. . .
. . .

. . .

· · · 0 0 t2η δn f












where the size of Dh,m,l
1 is n f × n f . Note that Dh,m,l

1 does not depend on the

levels, i.e. it is equal for all the (h, m, l) levels.

The matrices Dh,m,l
0 , Dh,m,l

2 , Eh,m,l
1 , Eh,m,l

2 , Fh,m,l
1 and Fh,m,l

0 are diagonal

matrices with size n f × n f ; the values on the diagonal are a3λ3, lµ, a2λ2, lǫ3,

mµ and mγ2 respectively. Then, the matrix Ah,m
1 is a square matrix of size

n f (M+ 1− p)× n f (M+ 1− p), the size of Ah,m
0 is n f (M+ 1− p)× n f (M− p)
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and the size of Ah,m
2 is n f (M + 1− p)× n f (M + 2− p).

Bh,m
1 =


















a1λ1 0 0 · · ·
0 a1λ1 0 · · ·

. . .
. . .

· · · 0 0 a1λ1

· · · 0 0 0

· · ·
...

...
...

· · · 0 0 0


















where the number of rows with all elements 0 is n f and the size of Bh,m
1 is

(n f (M + 1− p))× (n f (M− p)).

The Matrix Bh,m
2 is a diagonal matrix where the values of the diagonal are

mǫ2 and its size is (n f (M + 1− p))× (n f (M + 1− p)).

Ch,m
1 =












hµ 0 0 0 0 · · · 0

0 hµ 0 0 0 · · · 0
. . .

. . .
. . .

. . .

· · · 0 hµ 0 0 · · · 0

· · · 0 0 hµ 0 · · · 0












where the number of columns with all elements 0 is n f and the total size of

Ch,m
1 is (n f (M + 1− p))× (n f (M + 2− p)).

The matrix Ch,m
0 is a diagonal matrix where the values of the diagonal are

hγ1 and its size is (n f (M + 1− p))× (n f (M + 1− p)).

B.3 Matrix definitions for CR technology

In this appendix the matrices of the system defined for the CR technology are

described. The whole analytical model for this case is described in Section

9.2. Remember that the function as(x) denotes whether an SU session that
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arrives to the system when the system is in state x is accepted by the AC

policy or not, as(x) = 1 means that the session is accepted and as(x) = 0

means that the session is blocked. For clarity, the notation has been simplified

as as(x) = as. The block matrices that were not described in Section 9.2 are

listed below. In these matrices the values of δrow equal the opposite of the

sum of the other elements of the same row to make the elements of each row

of the transition rate matrices Q1, Q2 and Q3 sum to 0.

• Strategy 1

The matrices are given by:

A0
1 =









δ0 asλs 0 · · ·
µs δ1 asλs · · ·
. . .

. . .
. . .

· · · 0 (Cs + Cr)µs δCs+Cr









The matrix A0
0 is a diagonal matrix where the values of the diagonal are

equal to λp.

The matrix A1
2 is a diagonal matrix where the values of the diagonal are

equal to µp.

A
Cp+i

1 =









δ0 asλs 0 · · ·
µs δ1 asλs · · ·
. . .

. . .
. . .

· · · 0 (Cs + Cr − i)µs δCs+Cr−i









A
Cp−1+i
0 =












λp 0 0 · · ·
0 λp 0 · · ·

. . .
. . .

· · · 0 0 λp

· · · 0 0 0











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A
Cp+i
2 = (Cp + i)









µp 0 · · · 0 0

0 µp · · · 0 0
. . .

. . .
...

0 0 · · · µp 0









• Strategy 2

The matrices are given by:

B0
1 =









B0
1,1 0 0 · · ·

B1
1,2 B1

1,1 0 · · ·
. . .

. . .
. . .

· · · 0 BCr
1,2 BCr

1,1









B
Cp

1 =









B0
1,1 B0

1,0 0 · · ·
B1

1,2 B1
1,1 B1

1,0 · · ·
. . .

. . .
. . .

· · · 0 BCr
1,2 BCr

1,1









where

Bxr
1,1 =









δ0 asλs 0 · · ·
µs δ1 asλs · · ·
. . .

. . .
. . .

· · · 0 (Cs + Cr − xr)µs δCs+Cr−xr









Bxr
1,2 = xr









µs 0 · · · 0 0

0 µs · · · 0 0
. . .

. . .
...

0 0 · · · µs 0








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Bxr
1,0 =












λp 0 0 · · ·
0 λp 0 · · ·

. . .
. . .

· · · 0 0 λp

· · · 0 0 λp












The matrices Bxr
1,1 are square matrices with size (Cs + Cr − xr + 1) ×

(Cs + Cr − xr + 1). The sizes of matrices Bxr
1,2 are (Cs + Cr − xr + 1)×

(Cs +Cr − xr + 2) and the sizes of matrices Bxr
1,0 are (Cs +Cr − xr + 1)×

(Cs + Cr − xr).

The matrix B0
0 is a diagonal matrix where the values of the diagonal are

equal to λp.

The matrix B1
2 is a diagonal matrix where the values of the diagonal are

equal to µp.

• Strategy 3

The matrices are given by:

C0
1 =









δ0 asλs 0 · · ·
µs δ1 asλs · · ·
. . .

. . .
. . .

· · · 0 (Cs + Cr)µs δCs+Cr









The matrix C0
0 is a diagonal matrix where the values of the diagonal are

equal to λp.

The matrix C1
2 is a diagonal matrix where the values of the diagonal are

equal to µp.

The sizes of C0
1 , C0

0 and C1
2 are (Cs + Cr + 1)× (Cs + Cr + 1).

Regarding the matrix C
Cp

1 of high-level Cp , we have that C
Cp

1 = B
Cp

1 .
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And finally,

C
Cp−1
0 =












λp 0 0 0 0 · · · 0

0 λp 0 0 0 · · · 0
. . .

. . .
. . .

. . .

· · · 0 λp 0 0 · · · 0

· · · 0 0 λp 0 · · · 0












C
Cp

2 = Cp


















µp 0 0 · · ·
0 µp 0 · · ·

. . .
. . .

· · · 0 0 µp

· · · 0 0 0

· · ·
...

...
...

· · · 0 0 0


















.
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Mathematical tools

C.1 Random variable distributions

C.1.1 General distributions

Below you will find a brief review of the distributions considered in this

work.

• Lognormal distribution

If the parameters denoted µn and σn are respectively the mean and

standard deviation of the variable’s natural logarithm, the distribution

function of the lognormal distribution is given by:

F(x) =
1
2
+

1
2

erf

[

ln(x)− µn
√

2σ2
n

]

, (C.1)

where erf is the error function:

erf(x) =
2√
π

∫ x

0
e−t2

dt.
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The mean and the standard deviation of the lognormal variable are

respectively given by:

m = e

(

µn+
σ2

n
2

)

and σ =

√
(

eσ2
n − 1

)

e2µn+σ2
n . (C.2)

The Coefficient of Variation, CV, is given by:

CV =
σ

m
=

√

eσ2
n − 1. (C.3)

• Hyper-exponential distribution.

The hyper-exponential distribution consists of two exponential distri-

butions with rates aν and ν/a where a > 1. The probability that the

random variable takes on the form of each exponential distribution is

respectively a/(1− a) and 1/(1 + a). The distribution function of the

hyper-exponential distribution is given by:

F(x) =
a

1− a

(
1− e−aνx

)
+

1
1 + a

(

1− e−
ν
a x
)

. (C.4)

The mean and the standard deviation are respectively given by:

m =
1
ν

and σ =
1
ν

√

2
(

a +
1
a
− 3

2

)

. (C.5)

The CV is given by:

CV =
σ

m
=

√

2
(

a +
1
a
− 3

2

)

> 1. (C.6)

• Erlang distribution

The Erlang distribution consists of the sum of n ∈ N
+ independent

exponential variables with rate nν each one. The distribution function
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of the Erlang distribution is given by:

F(x) =

∫ nνx
0 tn−1e−t

(n− 1)!
. (C.7)

The mean and the standard deviation are respectively given by:

m =
1
ν

and σ =
1

ν
√

n
. (C.8)

The CV is given by:

CV =
σ

m
=

1√
n
< 1. (C.9)

• Pareto distribution

The Pareto distribution is defined by two parameters, the minimum

value xm > 0 and the shape k > 0. The distribution function of the

Pareto distribution is given by:

F(x) = 1−
( xm

x

)k
for x ≥ xm. (C.10)

The mean an the standard deviation of the Pareto variable are respec-

tively given by:

m =
kxm

k− 1
and σ =

√

x2
mk

(k− 1)2(k− 2)
, (C.11)

where if k ≤ 1, the mean does not exist and if k ≤ 2, the standard

deviation does not exist. The CV is given by:

CV =
σ

m
=

1
√

k(k− 2)
, (C.12)

where k > 2.
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• Bounded Pareto distribution

The bounded Pareto distribution is defined by three parameters, the

shape k > 0 as in the standard Pareto distribution, the minimal value, L,

and the maximum value, H. The distribution function of the bounded

Pareto distribution is given by:

F(x) =
1− Lkx−k

1−
(

L
H

)k
. (C.13)

The mean an the standard deviation of the bounded Pareto variable are

respectively given by:

m =
Lk

1− L
H

k
·
(

k

k− 1

)

·
(

1
Lk−1 −

1
Hk−1

)

k 6= 1, (C.14)

and

σ =

√
√
√
√

Lk

1− L
H

k
·
(

k

k− 2

)

·
(

1
Lk−2 −

1
Hk−2

)

k 6= 2, (C.15)

C.1.2 Phase type distributions

Phase type (PH) distributions provide a versatile framework to extend many

simple results on exponential distributions to more complex models, being

these models still computationally tractable. The idea is to model random

time intervals based on the method of states [Neu81], i.e., these distribu-

tions are composed by a number of exponentially distributed phases. Thus,

the resulting Markovian structure can be exploited to simplify the analytical

analysis. If a general case is considered, a PH distribution defines the time

until absorption in a Markov process with an absorbing state, i.e., an Ab-

sorbing Markov Process (AMP) [Neu81]. An absorbing state is defined as a

state which is impossible to leave. Then, a Markov process is absorbing if it
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has at least one absorbing state. In a AMP, a state which is not absorbing is

called transient and from every transient state, is must be possible to reach

an absorbing state, not necessarily in one step. Absorption occurs when the

absorbing state is reached.

From now on, we consider that the process only has one absorbing state.

If the first states are transient and the last state is the absorbing state, the

generator or transition matrix, G, associated to the AMP with n transient

states has the following canonical form

G =

[

S τ

0 0

]

,

where the matrix S is an n × n matrix with the transition rates among the

transient states, the vector τ is a column vector of size n with the transition

rates from the transient states to the absorbing state and the vector 0 is a

column vector of 0s with size n.

As G is the transition matrix of a Markov Process, it satisfies

Gii < 0, τi ≥ 0, Gij,≥ 0 1 ≤ i 6= j ≤ n

and clearly, the vector τ satisfies

τ = −S1, (C.16)

where 1 is a column vector of 1s.

In order to define appropriately an AMP, it is also necessary to know the

initial probability vector, α, which represents the probabilities that the process

starts in any of the transient states. Hence, the vector α is a row vector of size

n. If α0 is a scalar and corresponds to the probability that the system starts in

the absorbing state, we have

α0 + α1 = 1.
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It is usually assumed that α0 is 0 and a PH distribution is normally repre-

sented by the pair (α, S).

Distribution and moments [Neu81]

The cumulative distribution of a random variable X that is PH(α, S) is

Fs(x) = 1− αexS1 x ≥ 0, (C.17)

and the probability density function is

fs(x) = αexSτ x > 0, (C.18)

where the matrix exponential eX is a n× n matrix given by the power series

eX = ∑
n≥0

1
n!

Xn.

Finally, the k-th moment of the PH(α, S) is given by

E[Xk] = k!α(−S−1)k1 k ≥ 1. (C.19)

Therefore, the mean of a PH(α, S) distribution is

E[X] = α(−S−1)1 (C.20)

C.2 Level-dependent finite QBDs: LLR algorithm

A QBD process is a CTMC where the state space can be divided into lev-

els, and levels can be divided into phases. The process is restricted in level

jumps only to its nearest neighbors. From one state, the process only can

jump to states with one more level or one less level. Inside the same level
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the jumps are unrestricted, i.e., the jumps in the phase dimension is not re-

stricted. When the transitions of the QBD process are dependent of the level,

it is called level-dependent or inhomogeneous QBD process. Moreover, when

the number of levels is finite, the QBD process is called finite QBD process.

Thus, a level-dependent finite QBD process with M levels has a transition

rate matrix, Q, of the form:

Q =














Q0
1 Q0

0 0 0 0 · · ·
Q1

2 Q1
1 Q1

0 0 0 · · ·
0 Q2

2 Q2
1 Q2

0 0 · · ·
. . .

. . .
. . .

· · · 0 0 QM−1
2 QM−1

1 QM−1
0

· · · 0 0 0 QM
2 QM

1














(C.21)

In order to determine the stationary distribution, several algorithms may

be followed. We have chosen the Level Linear Level Reduction (LLR) al-

gorithm because its simplicity, its stability and its applicability to a large

number of cases.

The LLR algorithm is adapted from Gaver, Jacobs and Latouche [GJL84]

method and it consists of the two following stages:

1. Stage 1

In the first stage the state space is reduced progressively by removing

one level at each step until the Markov process on the last M level

is left. The matrices R and U play an important role in this method.

These matrices are a generalization of the counterpart matrices for the

discrete-time case described in [Neu81]. In our continuous-time case,

the matrices Uk are defined as follows:

U0 = Q0
1
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and

Uk = Qk
1 + Qk

2 (−Uk−1)
−1Qk−1

0 , 1 ≤ k ≤ M.

The matrices Rk are described as follows:

Rk = Qk
2 (−Uk−1)

−1, 1 ≤ k ≤ M.

The first stage of the LLR algorithm obtain these matrices using succes-

sively iterations:

1: U ← Q0
1

2: for l = 1, 2, . . . , M

3: Rl ← Ql
2(−U)−1

4: U ← Ql
1 + RlQl−1

0

5: end for

2. Stage 2

In this second stage, first, the Markov process that corresponds to the

M level is solved. Next, the stationary vector is constructed by adding

back one level at each step. Finally, the stationary vector is normalized.

If the vector 1 is a column vector of 1’s, the second stage of the algorithm

is as follows:

6: solve πM from πMU = 0; πM1 = 1

7: for l = M− 1, . . . , 0

8: πl ← πl+1Rl

9: end for

10: π ← 1/(π1)π
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Simulations tools

D.1 OPNET discrete-event simulator

In order to verify the mobility and session duration modeling assumptions

made in the analytical model in Chapter 7 and to verify the results obtained

with this analytical model, simulations that model the mobility and the ses-

sion duration of the users more realistically are performed. In the simula-

tions, sessions are generated according to a Poisson process with the same

arrival rate that the analytical model. The duration of a session is, unlike

in the analytical model, chosen from a lognormal distribution as this dis-

tribution more realistically models the duration of sessions [GLZ07]. The

lognormal parameters are chosen such that this lognormal distribution has

the same mean and variance as the exponential distribution considered in the

analytical model.

When a session is generated, it is placed uniformly in the cell and is sub-

jected to the AC policy. If it is admitted to the cell, it starts moving around.

Users move around according to a random walk mobility model [CBD02].

This means that when a session is started, it chooses a direction φ (in ra-

dians) uniformly distributed in the interval [0, 2π[ and starts moving in the
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chosen direction at a fixed velocity v. After the user has traveled over a fixed

distance d, it again chooses a direction and starts moving in the newly chosen

direction. This is repeated until the session finishes and the user is removed

from the system. When a user reaches the boundary of the cell, it bounces

against the circular edge and continues its path in the reflection direction.

Thus, the residence time in each zone is not modeled using random distri-

butions. Instead, transitions between zones occur when a user crosses the

border of a zone. The session blocking probability is calculated by counting

the total number of generated sessions and the number of sessions that are

dropped by the AC and dividing the latter by the former. The low QoS prob-

ability is calculated by recording the time that the system has a low QoS and

dividing it by the total simulation time.

In the simulation model of the dynamic AC policy, the optimization al-

gorithm, when enabled, will check the load at regular time instances which

are multiples of the mean of the exponential distribution that models the

time between two optimizations. At these time instances, the test of the al-

gorithm that decides whether the AC threshold is raised or lowered will be

performed and, if necessary, the appropriate action will be taken. In contrast

to the analytical model, the simulation model uses fixed optimization inter-

vals; this is because fixed-length intervals are more commonly used in reality

than exponentially distributed ones.

D.2 C++ discrete-event simulator

In order to verify the results obtained with the analytical models for multi-

service mobile cellular networks presented in this work, simulations are per-

formed to model more realistically the random variable distributions used

in these analytical models. The simulation model is implemented using a

C++ discrete event simulation environment. The model mimics the real sys-

tem behaviour and therefore it is completely independent from the analytical

model.
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In these simulations, the results are obtained by considering a multi-cell

scenario with a central cell and two outer rings of cells, which make a total

of 19 cells. Upon cell residence time termination, terminals select a neighbor

cell with equal probability, i.e. each one with probability 1/6. We consider

wraparound to avoid abnormal terminations at the edges. In the simula-

tions, sessions are generated according to a Poisson process with the same

arrival rate that in the analytical model. The parameters of the distributions

which model the random variable distributions under study, such as the cell

residence time, are chosen such that this distribution has the same mean as

the exponential distribution considered in the analytical model and different

coefficient of variation, CV, defined in the corresponding section.

The blocking probabilities for new (handover) sessions are calculated as

the number of new (handover) sessions initiated in the cell which are not

accepted divided by the total number of new (handover) sessions initiated as

new (handover) in a cell. The first handover probability is computed as the

number of flows initiated as new in a cell that execute a handover, divided

by the total number of flows initiated as new in a cell. The probability of

handover beyond the first one is computed as the number of flows initiated

as handover in a cell that execute another handover, divided by the total

number of flows initiated as handover in a cell. The probability that an user

performs n handovers before finishing its service in the system is computed

as the number of flows that execute exactly n handovers divided by the total

number of flows initiated in the system, i.e, the fraction of flows that complete

successfully or abandon that execute exactly n handovers. Note that we do

not count those flows that are forced to terminate upon a handover failure,

nor those blocked at initiation time.

In order to generate a random variable which follows the residual life

distribution of the cell residence time, a random variable has to be generated

knowing its distribution function. There are several methods to generate a

random variable from its distribution function. We use the method known as

acceptance-rejection method, which is explained below.
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Acceptance-rejection method

We want to generate a random variable T̂r from its distribution function F̂r(t),

which has a probability density function f̂r(t). This method can be applied if

there is another probability density function g(t) so that the ratio f̂r(t)/g(t)

is bounded by a constant c > 0, that is:

f̂r(t) < cg(t) ∀t.

If g(t) exists, this method follows these steps:

1. Generate x with density g(x).

2. Generate u uniformly distributed in [0, cg(x)].

3. If u ≤ f (x), set t = x ("accept"). Otherwise go back to step 1, ("reject").

In our problem, the probability density function is:

f̂r(t) =
1
m

[1− Fr(t)] ,

where m = E[Tr] is the mean of the CRT. Clearly, this function is bounded by

the constant 1/m. Therefore, f̂r(t) can be bounded by a rectangle with height

1/m and g(t) = 1/(c ·m) where we choose a value of c = 25.
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