




Summary

This thesis mainly focuses on the robust control of nonlinear flat systems. The
main goal is to determine a family of robust controllers in order to assure
the fulfillment of a desired specifications set under parametric uncertainty
in the process. The family of robust controllers are determined with a new
approach of robust possibilistic control together with the theory of flat sys-
tems. The specifications and parametric uncertainty are established through
the intervals. Modal Interval Arithmetic and Analysis Quantified Sets Inver-
sion Algorithms are applied to find solution sets. Different problems of robust
control are solved such as: Solution sets referred to the attainable specifica-
tions by a family of controllers, as well as the determination of the maximum
uncertainty admitted by a nominal controller.

This thesis develops a new methodology of robustness analysis of con-
trollers based on differential flatness, where the use of a feedforward is re-
quired. The methodology developed is applied to different processes, espe-
cially to fed-batch bioreactors given the importance of these high density
stirred tank reactors for efficient industrial production of proteins and en-
zymes.





Resumen

Esta tesis se enfoca principalmente en el control robusto de sistemas no lin-
eales planos. El objetivo principal es determinar una familia de controladores
robustos con la finalidad de asegurar el cumplimiento de un conjunto de
especificaciones deseadas bajo incertidumbre paramétrica en el proceso. La
familia de controladores robustos se determina con un nuevo enfoque de con-
trol robusto posibilistico conjuntamente con la teoŕıa de los sistemas planos.
Las especificaciones e incertidumbre paramétrica se establecen mediante in-
tervalos. Se aplican la Aritmética Intervalar Modal y el Análisis de Algo-
ritmos de Inversión de Conjuntos Cuantificados para encontrar los conjun-
tos de soluciones. Se resuelven diferentes problemas de control robusto tales
como: Conjuntos de soluciones referidos a las especificaciones alcanzables por
una familia de controladores, aśı como la determinación de la incertidumbre
máxima admitida por un controlador nominal. En esta tesis se desarrolla
una nueva metodoloǵıa de análisis de robustez de controladores basados en
platitud diferencial, donde el uso de una pre alimentación es requerida. La
metodoloǵıa desarrollada es aplicada a diferentes procesos, espećıficamente a
bioreactores fed-batch, dada la importancia de estos reactores de alta densi-
dad de tanque agitado para la producción industrial eficiente de protéınas y
enzimas.





Resúm

Aquesta tesi es centra fonamentalment al control robust de sistemes no lineals
plans. L’objectiu principal és determinar una famı́lia de controladors robus-
tos amb la finalitat d’assegurar el compliment d’un conjunt d’especificacions
desitjades baix incertesa paramètrica al procés. La famı́lia de controladors
robustos es determina mitjançant un nou enfocament de control robust pos-
sibilistic, conjuntament amb l’ús de la teoria de sistemes plans. Les especifi-
cacions e incertesa paramètrica s’estableixen mitjançant intervals. S’apliquen
la Aritmètica Intervalar Modal i l’Anàlisi d’Algorismes de Inversió de Con-
junts Quantificats per a trobar els conjunts de solucions. Es resolen diferents
problemes de control robust tals com trobar conjunts de solucions referides
a les especificacions abastables per una famı́lia de controladors, aix́ı com la
determinació de la incertesa màxima admesa per un controlador nominal. En
aquesta tesi es desenvolupa una nova metodologia de anàlisi de robustesa de
controladors basats en planitut diferencial, on es requereix l’ús d’una pre-
alimentació. La metodologia desenvolupada s’aplica a diferents exemples de
processos per tal avaluar la seva validesa.
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1 Justification, objectives and contributions

The effective control of practical time-varying systems with parametric un-
certainties and external disturbances is one of the main topics in the study
of the design for robust control systems. The general objective in the ro-
bust control of processes is to achieve the stability and robustness of the
closed-loop system based on some suitable performance index. Generally, ro-
bust control of uncertain systems is achieved when they operate effectively
over a specified range of system variations (eg. parametric variations). This
deterministic approach contrasts sharply with many other adaptive control
schemes, in which on-line identification and global parameter convergence
properties are needed. Furthermore, no statistical information of the system
variations is required to fulfill the desired robust dynamic behavior.

This thesis develops a new approach to robust possibilistic control of
nonlinear flat systems with parametric uncertainty. The following problems
are solved for these kind of systems: 1)To determine a family of possible
controllers in which flat outputs can remain inside some specified regions, 2)
To find a space of achievable specifications for a family of controllers and 3)
To determine the maximum allowable uncertainty for a nominal controller.

These problems are addressed as Quantified Constraints Satisfaction
Problems, which involve different elements such as: a set of quantified vari-
ables (specification parameters, process parameters), a set of domains, a set
of constraints with inclusion relations and a set of algebraic functions ob-
tained from the application of the theory of flat systems. The solutions to
the previous problems are obtained through the aplication of Quantified Sets
Inversion Algorithms.

1.1 Thesis’s goals

The main objective can be subdivided into the following subgoals:

1. To find a family of control signals to ensure that the system output will
stay within a set of desired values.

2. To formulate a Quantified Constraints Satisfaction Problem (QCSP) to
find a family of controllers in order to guarantee the satisfaction of the
specifications.
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3. To formulate a QCSP to obtain solutions spaces for the attainable spec-
ifications by a family of controllers.

4. To formulate a QCSP to determine the maximum uncertainty admitted
by a nominal controller.

5. To find solution sets of state feedback controller parameters for which
robust performance holds.

6. To implement Quantified Sets Inversion Algorithms (QSIA) to get solu-
tion sets relating to the controller spaces, plant spaces and specification
spaces.

7. To establish a methodology of robust controllers design for nonlinear flat
systems.

8. To develop applications to show the validity of the approach.

1.2 Summary of the original contributions of this work

The main original contributions of this thesis are the following:

• To develop of a new methodology of robust controllers design for nonlinear
flat systems.

• To propose some Quantified Constraints Satisfaction Problems for nonlin-
ear flat systems.

• To solve main problems of robust control for nonlinear flat systems with
Quantified Sets Inversion Algorithms.

1.3 Thesis organization

The solutions suggested in this thesis are presented and explained in the
subsequent chapters which are structured as follows:

• Problem statement: Chapter 2. A subclass of invertible single-input single-
output nonlinear dynamic systems are described and the general approach
of the robust controllers design procedure is annunciated. It explains how
to reconstruct the bounding regions of state variables and controllers from
the output space. The general problems to be solved are exposed. First, the
definition of hard and soft specifications is given. Then, the general problem
of finding a family of robust controllers is presented. Other problems to
solve are exposed, such as obtaining the set of attainable specifications
by a family of controllers and problems related to the tunning parameters
of feedback controllers for trajectory tracking. Finally, a basic example is
developed.

• Preliminaries: Chapter 3. This Chapter includes a summary of the the-
ory of flat systems. It describes the most important properties of flatness,
its definition as well as differences between controllers based on differen-
tial flatness and controllers based on feedback linearization. It gives some
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examples of systems that are flat as well as systems that are not. The
Chapter summarizes flatness in the context of parametric uncertainty and
the parameterization of control signals as a function of a region of flat
outputs and its derivatives. Also, this chapter describes the process to
solve optimization problems of an objective function based on differential
flatness, and highlights the most important properties of Modal Interval
Arithmetic. Potential problems that can be solved with this arithmetic and
aspects of semantic interpretation problems in the design of robust con-
trollers. Finally, it defines the elements involved in Quantified Constraints
Satisfaction Problems.

• Approach to robust possibilistic control of nonlinear flat systems: Chapter
4. The approach of robust possibilistic control in terms of set inclusion is
described. It proposes general approaches of Quantified Constraints Satis-
faction Problems (design of robust controllers for nonlinear flat systems)
considering the uncertainties in the process. It specifies the rules that must
be met in a Quantified Sets Inversion Algorithm to get solution spaces re-
lating controllers, plants and spaces of achievable specifications. Finally,
the semantic of design for tuning the parameters of a feedback controller
are given. The controller structure based on differential flatness is obtained.
The controller parameters obtained ensure that the output of the feedback
system are inside some specification intervals.

• Applications: Chapter 5. As applications, examples to linear and nonlinear
systems are developed. For both cases, families of robust controllers and
attainable specifications by some elements of the family are obtained. The
fulfillment of specifications under parametric uncertainty are verified by
means of robustness tests.

• Conclusions and future works: Chapter 6. General conclusions and future
works are mentioned.





2 Problem statement

2.1 Introduction to the nonlinear flat systems

This thesis mainly focuses on proposing and solving different problems that
might arise in the robust control of nonlinear flat systems using a possibilistic
approach. The main objective is maintain the output of the controlled system
within a specifications region under variations of the plant parameters.

Fig. 2.1. Controlled system.

A subclass of invertible single-input single-output nonlinear dynamic sys-
tems will be considered. The system dynamic model is defined by a set of
ordinary differential equations of the form ẋ = f(ϑp, x, u), where x is the
state vector, u the control signal and ϑp the set of uncertain plant param-
eters. These systems are known as differentially flat systems. Differentially
flat systems are used in situations where it is required that the trajectory of
the system follow a desired output. When a system is flat means that we can
move from output space to the input space and viceversa, as it is indicated in
Figure 2.2. We can see in the output and input space a single point at each
end. These points represent single trajectories.

These systems have the property of admitting an algebraic equivalent
representation of the dynamic system. The control input and the state vari-
ables are reconstructed from the output and output derivatives Fliess et al.
(1995b); Sira-Ramı́rez and Agrawal (2004) as it is depicted in Figure
2.3
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Fig. 2.2. Differentially flat system.

Fig. 2.3. Algebraic equivalent representation of the dynamic system.

The flat output functions can be constructed and planned with polyno-
mial functions depending on the time and specification parameters. These
functions are derived with respect to time and from them we can reconstruct
all the variables of the system, as it is depicted in Figure 2.4. The reconstruc-
tion of state variables and control signal are commonly obtained considering
a single trajectory for the flat output, a nominal plant ϑp and a single point
of the specification parameters ϑs. The control signal obtained via inversion
or via flatness is named feedforward controller.

If the control signal (feedforward controller) is fixed to the input of the
dynamic system and the initial conditions of the system are known, then we
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Fig. 2.4. Inversion of the dynamics of the system.

can back to the output space. A representation is shown in Figure 2.5. If dur-
ing the operation of the system, there are variations in the plant parameters,
it is possible that the feedforward controller can not drive the system to the
planned trajectory. In the controller design technique based on differential
flatness, the feedforward controller is used to take the system to the planned
trajectory and to correct errors due to changes in plant parameters and errors
in the measurements, a new feedback control input is imposed such that the
dynamics associated with the error is asymptotically stable. This is achieved
through a proper selection of design parameters, properly placing in the left
half-plane of the complex plane, the roots of the characteristic polynomial
associated with the error. The controller design technique based on differen-
tial flatness is similar to the controller design technique based on feedback
linearization in the sense that in both techniques the output is derived sev-
eral times until the control signal appears as well as the procedure to set
the parameters of the feedback controller in both techniques are similar. It
should be noted that the flatness property can be combined with other con-
troller design techniques such as: sliding mode, passivity, based on Lyapunov,
backstepping, among many others.

We consider the controller design technique based on flatness together
with a possibilistic approach to determine feedback control laws that are
robust under variations of the plant parameters and ensure that the output
of the process, states and controllers are within a prespecified region. In the
following section the approach is explicated.
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Fig. 2.5. Controlled dynamical system in open-loop.

2.2 General approach of the robust controllers design
procedure

2.2.1 Basic notations

The general approach of possibilistic robust control for fuzzy plants can be
consulted in Bondia et al. (2005). The main idea is to propose a set of
hard and soft specifications for the process output in terms of intervals. For
instance, the fuzzy set depicted in Figure 2.6, it represents a specifications
set parametrized by the parameters θ̃s. The hard specification corresponds
to the core and the soft specification to the support of the fuzzy set.

In this thesis we will only focus on the two cut levels of the fuzzy specifica-
tions set: the cuts α = 0 (support) and α = 1 (core). The support corresponds
to soft specifications. That is, for any process uncertainty within a given set,
one wants to ensure that at least the soft specifications will be fulfilled. The
core corresponds to the most restricted specifications; the hard ones. One
would ideally like that these are fulfilled as far as possible.

We will use some notations and representations of the parameters as fol-
lows: ϑp is a plant parameters set, ϑ̄p is a nominal plant, ϑs is a set of
specification parameters, ϑ̄s is a fix point of specification parameters, ϑk is
a set of controller parameters, ϑ̄k is a nominal controller. So, the parame-
ters that represent sets will be represented as shaded regions and parameters
that are fixed points will be represented as a single point within a region. A
representation can be seen in Figure 2.7.
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Fig. 2.6. Specifications described as a fuzzy set.

Fig. 2.7. Shaded regions represent sets and a single point inside a region represents
a specific parameter.

In this thesis, we will consider that the specifications are valued trajectory
set in time, parametrized by θs as it is indicated in Figure 2.8.

The function that defines the specifications is smooth, continuous in time
and differentiable.

In Figure 2.9 we can see that a point ϑ̄s in the specifications space corre-
sponds to a nominal trajectory y = γy(t, ϑ̄s) in the output space.

On the other hand, a hard or soft specification ϑs represents a specifi-
cations region y = γy(t, ϑs) in the output space as it is depicted in Figure
2.10.
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Fig. 2.8. Specifications space.

Fig. 2.9. A point ϑ̄s in the specifications space corresponds to a nominal trajectory
y = γy(t, ϑ̄s) in the output space.

2.2.2 Expanding the output space

In order to maintain the trajectories of the system output inside two bounding
regions, the approach starts by expanding the output space from hard and
soft specifications. In the output space are included the polynomial functions
that define the flat output and its derivatives. The output and its derivatives
are considered as trajectories regions in time, parametrized with interval
parameters. In Figure 2.11 a representation is indicated.

2.2.3 Expanding the state and input space from output space

The next step of the approach is to obtain a bounding region for states
and control input. From hard and soft specifications we obtained the output
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Fig. 2.10. The hard or soft specifications ϑs represent trajectory regions y =
γy(t, ϑs) in the output space.

Fig. 2.11. Expanding the output space from hard and soft specifications.

space and from output space we can obtain the states and input space. These
regions are obtained considering the output space, the equivalent algebraic
representation of the dynamic system as well as a nominal plant.

In Chapter 3, we will see that if the flat output and its derivatives are
trajectories regions in time, the reconstruction of the state variables and
controllers, are trajectory regions in time. These trajectory regions are in
function of specification parameters and plant parameters. So, y = γy(t, ϑs),
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x = ϕ(t, ϑs, ϑp) and u = ψ(t, ϑs, ϑp). If ϑk = {ϑs, ϑp}, then the controllers
can be expressed as u = ψ(t, ϑk). The reconstruction of the bounding regions
of the state variables and controllers in function of specification parameters
and nominal plant is indicated in Figure 2.12.

Fig. 2.12. Reconstruction of bounding regions of state variables x and controllers
u in function of specification parameters ϑs and nominal plant ϑ̄p.

As the equivalent algebraic system is reused in different operations, on
some cases with specific parameters, on other cases with specific parameters
and parameters that represent sets, the bounding regions of the output, states
and controllers are saved to different bounding variables. The bounding region
of the output flat y = γ(t, ϑs) is saved to γy(t, ϑs), the bounding region of the
states variables x = ϕ(t, ϑs, ϑp) to γx(t, ϑs, ϑp) and the bounding region of
the controllers u = ψ(t, ϑs, ϑp) to γu(t, ϑs, ϑp). γy(t) = [γ

y
(t, ϑs), γy(t, ϑs)],

γx(t) = [γ
x
(t, ϑs, ϑp), γx(t, ϑs, ϑp)] and γu(t) = [γ

u
(t, ϑs, ϑp), γu(t, ϑs, ϑp)]

are the upper and lower limits of the bounding regions of the flat output,
state variables and controllers respectively. A representation is indicated in
Figure 2.13.

With the finality that trajectories of the process output cy, states ϕ and
controllers ψ are within its bounding regions γy, γx and γu we can expand
the parameter space of the plant ϑp to study the robustness of a feedforward
controller u = ψ(t, ϑs, ϑp). A representation is indicated in Figure 2.14. In
general cases, the plant parameters can be included in all functions cy, ϕ
and ψ. This means that a plant of the solution set is one that satisfies the
inclusion relation cy ⊆ γy∧ϕx ⊆ γx∧ϕu ⊆ γu. This specific case corresponds
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Fig. 2.13. Bounding regions of the flat output γy(t), state variables γx(t) and
controllers γu(t).

to a process output that depends on the state variables and plant parameters
y = h(x, ϑp). Other cases where the process output depends explicitly on the
state variables, control input and plant parameters y = h(x, u, ϑp) can be
consulted in Chapter 3.

Since the flat output will be in function of the state variables, there will be
an interaction of spaces between specifications, states, controllers and plants
as it is indicated in Figure 2.15.

The previous problem and others to be exposed in next sections will be
treated as Quantified Constraints Satisfaction Problems. We will use the
Modal Interval Analysis (MIA), developed by the SIGLA/X groupGardeñes
et al. (2001) and Quantified Sets Inversion Algorithms Herrero et al.
(2005); Herrero (2006), together with the property of flatness of the non-
linear systems to obtain the solution sets.

2.2.4 Phases of the robust controllers design procedure

The robust controllers design procedure is develop in two phases. The fisrt
phase is realized in open-loop. The dynamics of the system are inverted in
order to find a set of nominal feedforward. The inversion procedure is divided
in three stages. In the first stage (see Figure 2.16), the robustness of a nominal
controller under parametric uncertainty of the plant is determined such that
some specifications are fulfilled.

In the second stage (see Figure 2.17), a set of controllers that satisfy some
specifications under parametric uncertainty of the plant is determined.
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Fig. 2.14. Maximizing the space of plants to determine the robustness of a feed-
forward controller u = ψ(t, ϑs, ϑp).

Fig. 2.15. Solution set of a Quantified Constraints Satisfaction Problem.
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Fig. 2.16. First inversion stage.

Fig. 2.17. Second inversion stage.

In the third stage (see Figure 2.18), a set of attainable specifications
by some nominal controllers of the resulting family from previous stage is
determined considering variations of the plant parameters.

The different stages of the inversion procedure are realized with the equiv-
alent algebraic representation of the dynamic system as it is indicated in
Figure 2.19. We can see that in each of the stages, the base of the triangles
represents the data in which we began the inversion procedure and the ques-
tion mark located on the upper edge represents the solution spaces that will
be solved. In this thesis, the inversion procedure begins in the first stage and
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Fig. 2.18. Third inversion stage

the results of one stage are used in the following. For the general case, one
can begin at any stage and return to it.

Fig. 2.19. Stages of the first phase of the inversion procedure.

The second phase is realized in closed-loop. In this phase a robust nominal
feedforward obtained of the first phase is selected. The nominal feedforward
is fixed in the control scheme of the controlled system to track the desired
output, and an error feedback is added to correct errors due to noise or
variations of the plant parameters.



2.3 Main problems to be solved 17

The inversion procedure of the second phase consists of two stages. In the
first stage (see Figure 2.20), a set of parameters of the feedback controller
are determined such that some specifications are met under variations of the
plant parameters.

Fig. 2.20. First stage of the phase 2.

In the second stage (see Figure 2.21), the attainable specifications by
some feedback controllers are determined under parametric uncertainty of
the plant.

2.3 Main problems to be solved

The main problems to solve in the first phase are announced as follows:

1. Given hard and soft specifications y = γy(t, ϑs), one nominal plant ϑ̄p
and a nominal controller u = ψ(t, ϑ̄s, ϑ̄p) ⇒ ψ(t, ϑ̄k), determine two
regions of uncertainty of the plant (hard and soft plants) ϑp such that
some specifications are fulfilled. A representation of this supposition is
indicated in Figure 2.22.
The pre-established nominal plant will stay within the plants space.
Therefore, for the nominal controller, we are obtaining the allowable un-
certainty in the plant so that some soft (hard) specifications are fulfilled.
This first stage corresponds to study the robustness of a nominal con-
troller such that the desired output is within the specification region.
With specification intervals ϑs and one nominal plant ϑ̄p we computed
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Fig. 2.21. Second stage of the phase 2.

Fig. 2.22. Determination of addmisible uncertainty by a nominal controller u =
ψ(t, ϑ̄s, ϑ̄p), given hard and soft specifications y = γy(t, ϑs) and a nominal plant
ϑ̄p.

the desired region for the flat output γy(t) and two bounding regions for
the states γx(t) and controllers γu(t) as it is represented in Figure 2.23.
The bounding regions of the states and controllers represent operation
regions (search regions) where we may possibly find solutions. After pre-
vious step, with a point of specification ϑ̄s, we will evaluate the possible
set of plant parameters such that the process output cy is within the
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Fig. 2.23. Desired region for the flat output γy(t) and two bounding regions for
the states γx(t) and controllers γu(t).

specified region cy ⊆ γy and the constraints ϕ ⊆ γx and ψ ⊆ γu are met.
This fact is indicated in Figure 2.24.

Fig. 2.24. Considerations to determine the robustness of a nominal controller
u = ψ(t, ϑ̄s, ϑ̄p) ⇒ u = ψ(t, ϑ̄k).
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In this work, bounding regions of the states and controllers are estab-
lished as it was explained previously. But the approach can be applied
for nonlinear flat systems with input and states constraints or in cases
where the bounding regions can be given by the process control engi-
neer. The different problems to resolve in this thesis are raised with this
approach.

2. Given hard and soft specifications γy(t, ϑs) and a family of plants ϑp de-
termine hard and soft controllers u = ψ(t, ϑs, ϑp) ⇒ ψ(t, ϑk) to guarantee
the satisfaction of some hard and soft specifications for all the plants in
the family. This fact is indicated in Figure 2.25.

Fig. 2.25. Determination of hard and soft controllers u = ψ(t, ϑk) to guarantee
the satisfaction of some hard and soft specifications y = γ(t, ϑs) for all the plants
in the family ϑp.

3. Given hard and soft plants ϑp and hard and soft controllers u =
ψ(t, ϑs, ϑp) ⇒ ψ(t, ϑk), determine attainable hard and soft specifications
y = γy(t, ϑs) by some hard and soft controllers for all the hard and soft
plants ϑp. In Figure 2.26 we indicate the hard and soft specifications that
we want to find where the pre-established hard and soft specifications on
the first problem will be within the specifications space.

To verify the results, we will fix a nominal controller to the input of the
nonlinear system and we will verify if the outputs remain within the ranges of
specifications under parametric uncertainty as it is indicated in Figure 2.27.

In the second phase, the problem to solve is as follows: Given some closed-
loop hard and soft specifications y =M(t, θq) and a robust nominal controller
u∗ = ψ(t, ϑ̄k) selected from the first phase. Determine the set of hard and
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Fig. 2.26. Determination of hard and soft attainable specifications y = γy(t, ϑs)
by some hard and soft controllers u = ψ(t, ϑk) for all the hard and soft plants ϑp.

Fig. 2.27. Attainable specifications y = γy(t, ϑs) by some controllers u = ψ(t, ϑk)
under parametric uncertainty of the plant ϑp.
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soft parameters ϑc of the feedback controller u = u∗ + φ(x, ϑc, e) such that
the process output is within desired specifications y = M(t, θq) (see Figure
2.28). In this same phase some robustness tests will be performed. That is,
to verify that a feedback controller u = u∗ + φ(x, ϑc, e), will keep the output
of the process within the region of hard specifications, under soft uncertainty
of the plant.

Fig. 2.28. Robust feedback controller.

2.4 Example applied to a first-order linear system

An example applied to a first-order linear system to explain the methodology
followed in this thesis will be developed. Let us consider the following linear
dynamic system:

ẋ = −ax+ bu (2.1)

a and b are plant parameters, x the state variable and u the control input.
If we select the flat output y = x, then we can obtain the control input u and
state x as follows:

x = y ⇒ ϕ(t, y) ⇒ ϕ(t, ϑs), x = cy(t, ϑs)
ẋ = −ax+ bu
ẏ = −ay + bu
u = 1

b [ẏ + ay] ⇒ ψ(t, ϑp, y, ẏ) ⇒ ψ(t, ϑp, ϑs)

(2.2)
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We can see that the control input u (feedforward controller) is function
of the plant parameters a, b, of the flat output y and of its derivative ẏ.
The desired trajectory for the flat output can be planned with the following
function:

y = yo + (1 − yo)(1 − e−t/τ ) (2.3)

yo is a specification parameter for the flat output, τ is a specified time
constant. The time t is considered as a set of points within the interval
0 ≤ t ≤ tf , being tf the final time. Let us derive with respect to the time the
equation (2.3) to obtain ẏ because it is required in the expression of u from
equation (2.2). Thus

ẏ = (1 − yo)(
1
τ )(e

−t/τ ) (2.4)

if the equations (2.3) and (2.4) are replaced into the equation (2.2), the
control input is expressed in function of plant parameters a, b, specification
parameters yo, τ and time t as follows

u = 1
b [(1− yo)(

1
τ )(e

−t/τ ) + a(yo + (1− yo)(1− e−t/τ ))] (2.5)

We will make some notations. ϑs = {yo = [y
o
, yo], τ} contain the spec-

ification parameters. ϑ̄s = {yo = (ȳo − y
o
)/2, τ} is a point of specification,

ϑp = {a = [a, a],b = [b, b]} are uncertain intervals of the plant. ϑ̄p = {a, b}
is a nominal plant.

The regions for the flat output can be computed with ϑs and t from
equation (2.3). The equation is denoted as:

y = yo + (1− yo)(1 − e−t/τ ) ⇒ γy(t, ϑs) ⇒ γy(t) (2.6)

Now, let us specify a hard yo = [0.1, 0.15] and soft yo = [0.07, 0.2] speci-
fication, the time constant τ = 0.1, and the interval of time 0 ≤ t ≤ 1. With
these values from equation (2.6) we computed two regions for the trajectory
of the flat output γy(t). The results are indicated in Figure 2.29.

In a similar way, the bounding regions for the control input can be com-
puted with {ϑs, ϑ̄p} and t from equation (2.5). The equation is denoted as:

u = 1
b [(1− yo)(

1
τ )(e

−t/τ )+

a(yo + (1− yo)(1 − e−t/τ ))] ⇒ γu(t, ϑs, ϑ̄p) ⇒ γu(t)
(2.7)

Let us propose two bounding regions for the control input as it is indicated
in Figure 2.30.
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Fig. 2.29. Flat output regions computed from equation (2.6) with hard yo =
[0.1, 0.15] and soft yo = [0.07, 0.2] specifications, τ = 0.1 and 0 ≤ t ≤ 1.
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Fig. 2.30. Two bounding regions for the control input γu(t) with hard yo =
[0.1, 0.15] and soft yo = [0.07, 0.2] specification, τ = 0.1, 0 ≤ t ≤ 1 and nominal
plant a = 0.5, b = 1.
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Before studying the robustness of a feedforward controller u = ψ(t, ϑ̄s, ϑ̄p),
we will perform the following notation. A trajectory for the flat output can
be computed with {ϑ̄s} and t from equation (2.3). In this case, the equation
is expressed as:

y = yo + (1 − yo)(1 − e−t/τ ) ⇒ γy(t, ϑ̄s) (2.8)

In a similar way, a family of feedforward controllers u = ψ(t, ϑ̄s, ϑp) can
be computed with {ϑ̄s, ϑp} and t from equation (2.5). So, the notation cor-
responds to:

u = 1
b [(1 − yo)(

1
τ )(e

−t/τ )+
a(yo + (1− yo)(1− e−t/τ ))] ⇒ ψu(t, ϑ̄s, ϑp)

(2.9)

Let us compute the maximum permissible uncertainty by a feedforward
controller ψu(t, ϑ̄s, ϑ̄p). The problem will be solved through an interval opti-
mization approach. A representation for a general case is indicated in Figure
2.31. The approach consists in solving an optimization problem, maximizing
the plants space ϑp and verifying that cy(t, ϑs) ⊆ γy(t) ∧ ϕx(t, ϑs, ϑp) ⊆ γx(t)
∧ ψu(t, ϑs, ϑp) ⊆ γu(t). So, if all constraints are met for a particular plant
ϑp, the plant is stored in a solution set.

Fig. 2.31. Interval optimization approach to obtain the maximum permissible
uncertainty ϑp by a feedforward controller ψu(t, ϑ̄s, ϑ̄p).

The previous problem can be raised as a Quantified Constraints Satisfac-
tion Problem as follows:
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Σ∀∃ = {ϑp ∈ R|∀(t ∈ t
′
)∃(ϑs ∈ ϑ

′
s)

(cy(t, ϑ̄s) ⊆ γy(t)∧
ψu(t, ϑ̄s, ϑp) ⊆ γu(t))}

(2.10)

This equation is interpreted in the following way: Determine the maxi-
mum admissible uncertainty (ϑp) by a feedforward controller (ψu(t, ϑ̄p, ϑ̄s))

and for all t within the interval t
′
such that will ensure that some speci-

fications ∃(ϑs,ϑ′
s) are met and that the constraints will be satisfied. This

kind of expressions will be developed and explained with more details in next
chapters.

Given hard yo = [0.1, 0.15] and soft yo = [0.07, 0.2] specifications, a
nominal plant a = 0.5, b = 1, τ = 0.1, 0 ≤ t ≤ 1 and a point of specification
yo = (0.15−0.1)/2 = 0.0250 within the hard region, two regions of uncertainty
of the plant (hard and soft plants) are depicted in Figure 2.32
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Fig. 2.32. The green and red boxes represent the solution set (hard and soft
uncertainty regions). The yellow boxes are outside of the solution set and the blue
boxes are undefined.

Let us select two boxes of parameters (hard and soft plants) from Fig-
ure 2.32. For instance the hard a = [0.5, 0.51],b = [1, 1.01] and soft
a = [0.5, 0.55],b = [0.99, 1.1] plants. We can examine the equation (2.7) with
previous parameters and a fixed specification yo = (0.15 − 0.1)/2 = 0.0250
to determine the effect of the uncertain parameters in the computation of a
family of feedforward controllers. The equation (2.7) is expressed as follows:
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u = 1
b [(1 − yo)(

1
τ )(e

−t/τ )+

a(yo + (1− yo)(1− e−t/τ ))] ⇒ ψu(t, ϑ̄s, ϑp)
(2.11)

Two regions of hard and soft feedforward controllers are depicted in Figure
2.33.
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Fig. 2.33. Two regions of hard and soft feedforward controllers ψu(t, ϑ̄s, ϑp) com-
puted with hard a = [0.5, 0.51],b = [1, 1.01] and soft a = [0.5, 0.55],b = [0.99, 1.1]
plants, a fixed specification yo = (0.15 − 0.1)/2 = 0.0250, τ = 0.1 and 0 ≤ t ≤ 1.

In Figure 2.33, we can see that in stable state we obtain a family of hard
and soft nominal feedforward controllers u∗. The family of hard and soft
nominal feedforward controllers can be also computed with equation (2.2).
As in stable state ẏ = 0 and y = ȳ then

u = u∗ = 1
b [aȳ] ⇒ u∗(t, ϑp, ϑ̄s) (2.12)

Thus, with a point of specification yo = 0.0250, t = 1, τ = 0.1, ȳ =
yo + (1 − yo)(1 − e−t/τ ) = 1 and hard a = [0.5, 0.51],b = [1, 1.01] and
soft a = [0.5, 0.55],b = [0.99, 1.1] plants, from equation (2.12) we obtain the
family of hard u∗ = [0.49, 0.51] and soft u∗ = [0.45, 0.55] nominal feedforward
controllers. As we can see, the familiy of nominal feedforward controllers are
within the ranges indicated in Figure 2.33.

Let us compute the attainable specifications by some feedforward con-
trollers ψu(t, ϑ̄s, ϑ̄p). The problem will be solved in a similar way as the pre-
vious case. A representation for a general case is indicated in Figure 2.34. The
approach consists in solving an optimization problem maximizing the speci-
fications space ϑs and verifying that cy(t, ϑs) ⊆ γy(t) ∧ ϕx(t, ϑs, ϑ̄p) ⊆ γx(t)
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∧ ψu(t, ϑs, ϑ̄p) ⊆ γu(t). So, if all constraints are met for a particular specifi-
cation ϑs, the specification is stored in a solution set. As ϑs will be varied,
we will used the auxiliary specification parameter ϑss to define the region of
the flat output (as was defined previously).

Fig. 2.34. Interval optimization approach to obtain the attainable specifications
ϑs by some feedforward controllers ψu(t, ϑ̄s, ϑ̄p) (maximization of the specifications
space ϑs).

The previous problem can be raised as a Quantified Constraints Satisfac-
tion Problem as follows:

Σ∀∃ = {ϑs ∈ R|∀(t ∈ t
′
)∃(ϑp ∈ ϑ

′
p)

(cy(t, ϑs) ⊆ γy(t)∧
ψu(t, ϑs, ϑ̄p) ⊆ γu(t))}

(2.13)

This equation is interpreted in the following way: Determine the maximum
attainable specifications (ϑs) by a feedforward controller (ψu(t, ϑ̄p, ϑ̄s)) for all

t within the interval t
′
such that constraints will be satisfied under parametric

uncertainty in the plant (ϑp).
First, let us fix the values of ϑss and ϑ̄p. Thus, for the hard ϑss = {yo =

[0.1, 0.15], τ = 0.1} and soft ϑss = {yo = [0.7, 0.2], τ = 0.1} specifications
and nominal plant ϑ̄p = {a = 0.5, b = 1}, we obtain γy(t, ϑss) ⇒ γy(t),
γu(t, ϑss, ϑp) ⇒ γu(t) for 0 ≤ t ≤ 1.

Let us consider a hard ψu(t, ϑ̄p, ϑ̄s) feedforward controller with the fol-
lowing parameters ϑ̄p = {a = 0.55, b = 1.05}, ϑ̄s = {yo = 1, τ = 0.1}
and two soft ψu(t, ϑ̄p, ϑ̄s) feedforward controllers with the following values
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ϑ̄p = {a = 0.7, b = 1.3}, ϑ̄p = {a = 0.4, b = 0.84} and ϑ̄s = {yo = 1, τ = 0.1}.
From plants space indicated in Figure 2.35, we can see the location of selected
plants. The hard feedforward controller satisfies the range of hard specifica-
tions yo = [0.1, 0.18]. The first soft feedforward controller satisfies the range
of soft specifications yo = [0.1, 0.1430] and the second all the range of soft
specifications yo = [0.07, 0.2].
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Fig. 2.35. Attainable specifications by some feedforward controllers. The hard
ψu(t, ϑ̄p, ϑ̄s) feedforward controller is selected with parameters ϑ̄p = {a = 0.55, b =
1.05}, ϑ̄s = {yo = 1, τ = 0.1} and the two soft ψu(t, ϑ̄p, ϑ̄s) feedforward controllers
with values ϑ̄p = {a = 0.7, b = 1.3}, ϑ̄p = {a = 0.4, b = 0.84} and ϑ̄s = {yo = 1, τ =
0.1}.

Let us realize some robustness tests to the family of hard u∗ = [0.49, 0.51]
nominal feedforward in open-loop to verify if the output y for the system
ẋ = f(x, ϑp, u

∗) remains within the hard region y = [0.94, 1.04], under soft
ϑp = {a = [0.5, 0.55],b = [0.99, 1.1]} parametric uncertainty and initial
conditions x(0) ∈ [0.86, 1.12] for all time future t. The system in open-loop
will be controlled with the nominal feedforwards u∗ = [0.49, 0.51] introducing
at certain time instant variations of the process parameters. According to the
results presented in Figure 2.36, the solution of the system ẋ = f(x, ϑp, u

∗)
belongs to the region [0.94, 1.04] for all future time t. So, the region [0.94, 1.04]
is an invariant region with respect to the dynamical system ẋ = f(x, ϑp, u

∗)
Marquez (2003).

All the previous steps correspond to the first phase of design. In the second
phase, let us design a state feedback control law and let us determine its hard
and soft parameters such that the output is within the region of hard and
soft specifications under hard and soft uncertainty of the plant.
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Fig. 2.36. Robustness test to the family of hard u∗ = [0.49, 0.51] nominal feedfor-
ward.

From equation (2.2) the feedforward controller was obtained as follows:

u = 1
b [ẏ + ay] (2.14)

let us select the new control input v = ẏ and express the previous equation
in terms of the state

u = 1
b [v + ax] (2.15)

The closed-loop dynamics of the system can be stablished with the equa-
tion ẏ+ k(y− ȳ) = 0. Which can be made asymtotically stable by a suitable
choice of the design parameter k. Let us search the set of hard and soft
parameters to k, such that the desired specifications are met. Closed-loop
dynamics can be expressed in terms of the state variables as follows:

ẏ = −k(x− x̄) (2.16)

therefore, the state feedback control law is expressed of the following form

u = 1
b [−k(x− x̄) + ax] (2.17)

The state feedback controller can be expressed in function of the nominal
feedforward (u∗) determined with equation (2.12) of the following way
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u = u∗ + 1
b [−kx+ x̄(k − a) + ax] (2.18)

now, let us define a desired region (closed-loop reference model) in time
with the following interval function

M(t, θq) = θq1(1 − θq2exp(−θq3t)) (2.19)

we desired that the output of the feedback system is within the reference
modelM(t, θq). Where θq1 is the interval of the hard and soft speficifications,
θq2 and θq3 are intervals to fix the response speed in time of the function
M(t, θq), t is a time interval. If we define the hard θq1 = [0.94, 1.04] and
soft θq1 = [0.86, 1.12] specification and θq2 = [0.6, 1], θq3 = [0.3, 1] and
t := {t ∈ R|0 ≤ t ≤ 40} the bound interval of the hard and soft interval
function M(t, θq) is depicted in Figure 2.37.
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Fig. 2.37. Reference model M(t, θq) = θq1(1 − θq2exp(−θq3t)) with hard θq1 =
[0.94, 1.04] and soft θq1 = [0.86, 1.12] specification and intervals θq2 = [0.6, 1],
θq3 = [0.3, 1].

In Figure (2.38) we make a geometric representation of the interval op-
timization approach considering the feedback dynamic system. We applied
a nominal feedforward u∗ determined previously in the state feedback law
(2.18) and we found intervals ϑc = {[k, k]} of the feedback controller such
that the trajectory of the state variable x = μcl(t, ϑp, ϑc) is within the limits
of the reference model γy =M(t, θq).

A more formal expression can be expressed as follows:
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Fig. 2.38. Representation of the interval optimization approach considering the
feedback dynamic system.

Σ∀∃ = {ϑc|∀(t ∈ t
′
)∀(ϑp ∈ ϑ

′
p)∃(θq ∈ θ

′
q)

(x(t, ϑp, ϑc) ⊆M(t, θq)} (2.20)

When solving the previous problem, we obtained the hard k = [0.22, 1.43]
and soft k = [0.1, 1.87] intervals. Let us select three parameters within the
hard interval k = 1.4, k = 0.75 and k = 0.25 and one parameter k = 1.9 that
is outside of soft interval. In Figure 2.39 we can see that the state feedback
controller with parameters within the hard interval satisfies the specifications
under soft parametric uncertainty in the plant, and when we proved the
parameter that is outside of soft interval, the state feedback controller did
not meet the hard and soft specifications at some instants of time t.
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Fig. 2.39. Robustness test to the state feedback controller with uncertainties.





3 Preliminaries

The main objective of robust control is to develop feedback control laws that
are robust against plant model uncertainties and changes in dynamic con-
ditions. A system is robustly stable when the closed-loop is stable for any
chosen plant within the specified uncertainty set. This system has robust
performance if the closed-loop system satisfies performance specifications for
any plant model within the specified uncertainty description. The most used
robust control approaches are: H∞, theory of control based on Lyapunov and
Sliding Mode Control. A new approach to robust possibilistic control based
on flatness, using tools of Modal Interval Analysis, is developed in this the-
sis. In this Chapter different tools are presented such as: the flatness theory
under parametric uncertainty, semantics and properties from Modal Inter-
val Analysis to find solution sets, and technical issues related to Quantified
Constraints Satisfaction Problems.

3.1 Introduction

In this thesis, we will focus on the robust control of a subclass of nonlinear
systems known as nonlinear flat systems. Differential flatness is a property
of nonlinear systems which allows us to perform trajectories planning of a
system. The planning is done using some functions that define the desired
output trajectories. With mathematical manipulation one finds the state vari-
ables and control inputs in terms of the outputs and a finite number of its
derivatives. Differential flatness becomes a subject of study when the uncer-
tainty is considered in the process. Specifically the outputs are defined as
operation regions instead of unique trajectories. Since we deal with intervals,
all the obtained algebraic equations as a result of the flat systems theory
application are analyzed with tools of the Modal Interval Analysis. With the
new approach of robust possibilistic control the inverse dynamics problem is
transformed into a sets intersection problem between specifications, states,
controllers and plants.
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3.2 Differential flatness

Differential flatness has been presented in both the differential algebraic set-
ting Fliess et al. (1995b) and the differential geometric setting Fliess et
al. (1999). In both cases the motion planning issues have been addressed and
flatness has been shown to be a property which is related to the trajectories
of a system. A system of ordinary differential equations (3.1)

ẋ(t) = f(x(t), u(t)) (3.1)

It is said to be differentially flat, if there exist a set variables (denoted as
flat outputs) equal to the number of inputs such that all states and inputs
can be determined from these outputs and its derivatives. More precisely, if
the system (3.1) has states x ∈ Rn, and inputs u ∈ Rm the system is flat if
we can find outputs y ∈ Rm of the form

y = h(x, u, u̇, ..., u(p)) (3.2)

such that

x = ϕ(y, ẏ, ..., y(k))

u = ψ(y, ẏ, ..., y(k+1))
(3.3)

where f(x, u) ∈ Rn is a smooth vector field, h, ϕ and ψ are smooth
functions in open sets of Rn+m(p+1),Rm(k+1) and Rm(k+2), respectively. Also,
p and k are integer numbers. From equation (3.3) the state trajectory and
the corresponding open-loop control can be obtained directly from a simple
parametrization of the flat output. This parametrization can be performed
in order to fulfill a given control objective and/or take into account some
physical constraints on the system.

Any (full-state) feedback linearizable system is differentially flat by choos-
ing the flat output as the feedback linearizing output. Indeed, differential
flatness can be showed to be equivalent to dynamic feedback using a class of
invertible dynamic feedbacks Charlet et al. (1989); Fliess et al. (1995a);
Fliess et al. (1995c); Martin (1993); Martin et al. (2000). Hence, the
class of systems which is differentially flat is essentially the same as dynami-
cally feedback linearizable systems.

To illustrate this point of view, considering the feedback linearization
problem for a single-input single-output nonlinear control system Isidori
(1985); Nijmeijer et al. (1990)

ẋ(t) = f(x) + g(x)u
y = h(x)

(3.4)
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Suppose that the output y has relative degree n, so that the system is
full-state linearizable. If we derive the output we get:

ẏ = ḣ(x) = dh
dx

dx
dt

(3.5)

as ẋ = f(x) + g(x)u, then

ẏ = dh
dxf(x) +

dh
dxg(x)u (3.6)

The variation of the output h(x) with respect to vector field f(x) can be

indicated in terms of Lie’s derivatives as Lfh(x) =
dh(x)
dx f(x). Similarly, the

variation of the output h(x) with respect to the vector field g(x) is represented
as Lgh(x). So, we obtain the following expression to ẏ:

ẏ = Lfh(x) + Lgh(x)u (3.7)

as the output has relative degree n, and if the order of the system is
greater than one, then the control will not appear even in the expression of
ẏ. Therefore,

ẏ = Lfh(x) (3.8)

back again, we derive the output to obtain:

ÿ = d
dx [ẏ]

dx
dt = d

dx [Lfh(x)](f(x) + g(x)u)
ÿ = d

dx [Lfh(x)]f(x) +
d
dx [Lfh(x)]g(x)u

(3.9)

d
dx [ẏ]f(x) is the variation of the first derivative of output with respect

to f(x) in terms of Lie derivatives is equal to Lf ẏ. As ẏ = Lfh(x), then
Lf ẏ = LfLfh(x) = L2

fh(x) so

ÿ = L2
fh(x) + LgLfh(x)u (3.10)

on similar way, if the control input do not appears in ÿ, we continue to
derive the output until appears the control signal. In general, in nonlinear
systems with relative degree n the control signal appears on the n-th deriva-
tive of the output. So, the general expression for the n-th derivative is as
follows:

y(n) = Ln
fh(x) + LgL

n−1
f h(x)u (3.11)
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if the new control input is defined as v = y(n), the control u obtained
from the equation 3.11 is as follows:

u =
−Ln

fh(x)

LgL
n−1
f h(x)

+ 1
LgL

n−1
f h(x)

v (3.12)

by replacing u from the equation (3.12) to the equation (3.11) we verify
that satisfies y(n) = v. To verify that the dynamics of the system is trans-
formed to a linear and controllable, we set a new coordinate z in terms of the
output and its derivatives such as:

z1 = y = h(x)
z2 = ẏ = Lfh(x)
z3 = ÿ = L2

fh(x)

.

.
zn = y(n−1) = Ln−1

f h(x)

(3.13)

the transformed system is as follows:

ż1 = z2
ż2 = z3
ż3 = z4
.
.
żn = v

(3.14)

as the new coordinate z is function of the state x, we can denote it as
z = φ(x) and x = φ−1(z). That is, we can get x from z and vice versa. A
representation is depicted in Figure 3.1.

If α(x) =
−Ln

fh(x)

LgL
n−1
f

h(x)
and β(x) = 1

LgL
n−1
f

h(x)
then the control signal from

equation (3.12) can be expressed as:

u = α(x) + β(x)v (3.15)

In figure 3.2 the control scheme based on state feedback linearization is
depicted.

There are different ways to set the control input v. We will describe some
of them given that for controllers design based on differential flatness, we can
set the control input v on similar way.

A stabilizing feedback controller can be obtained by setting the control
input v = y(n) with a closed-loop characteristic polynomial as follows:
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Fig. 3.1. Coordinates z = φ(x) and x = φ−1(z).

Fig. 3.2. State feedback linearization.

y(n) + kn−1y
(n−1) + kn−2y

(n−2) + ..+ k0y = 0
v = y(n) = −kn−1y

(n−1) − kn−2y
(n−2) − ..− k0y

(3.16)

where the set of design parameters {kn−1, kn−2, .., k0} are selected such
that the close-loop characteristic polynomial has its roots appropriately
placed on the left half-plane of the complex plane s. From equation (3.13)

we saw that y(n−1) = L
(n−1)
f h(x), y(n−2) = L

(n−2)
f h(x) and y = h(x). This

means that output and its derivatives can be expressed as a transformation
function of the states. So, the equation (3.16) will be represented as φ(x, ϑc)
where ϑc = {−kn−1,−kn−2, ..,−k0}.

v = −kn−1L
(n−1)
f h(x) − kn−2L

(n−2)
f h(x)− ..− k0y︸ ︷︷ ︸

φ(x,ϑc)

(3.17)
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replacing v = φ(x, ϑc) from equation (3.17) in equation (3.15), the control
input u is expressed as follows:

u = α(x) + β(x)φ(x, ϑc) (3.18)

the control scheme based on feedback linearization to drive states to zero
is indicated in Figure 3.3.

Fig. 3.3. Control scheme based on feedback linearization to drive states to zero.

If we desired drive the system output to a set point yd then v is assigned
with the same equation (3.17) plus the additional term k0yd as follows.

v = −kn−1L
(n−1)
f h(x) − kn−2L

(n−2)
f h(x)− ..+ k0(yd − y)︸ ︷︷ ︸

φ(x,ϑc,e)

(3.19)

being the error e = (yd − y). In the control scheme depicted in Figure 3.4
the error term is within the function φ(x, ϑc, e).

Also we can use an integral control or other kind of linear controller to
maintain the output at a non-zero set point despite unmeasured disturbances
and parametric variations of the plant. In this case, the control input v can
be assigned as follows:

v = −knL(n−1)
f h(x) − kn−1L

(n−2)
f h(x)− ..+ k1(yd − y)+

k0
∫ t

0
(yd − y)dτ ⇒ φ(x, ϑc, e)

(3.20)

where k0 is an additional tunning parameter associated with the integral
term. The control scheme based on state feedback linearization with linear
controller is depicted in Figure 3.5.
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Fig. 3.4. Control scheme based on feedback linearization to drive the output to a
set point yd.

Fig. 3.5. Control scheme based on feedback linearization with linear controller to
drive ouput to a set point yd.

The control input v can be assigned also in error function as it is indicated
in equation (3.21)

v = y
(n)
d − kn(y

(n−1) − y
(n−1)
d )− k(n−1)(y

(n−2) − y
(n−2)
d )..− k1(y − yd)

(3.21)

Replacing equation (3.21) inside equation (3.15) the controller u will be-
come:
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u = α(x) + β(x)y
(n)
d︸ ︷︷ ︸

feedforward

+

β(x)(−kn(y(n−1) − y
(n−1)
d )− k(n−1)(y

(n−2) − y
(n−2)
d )..− k1(y − yd))︸ ︷︷ ︸

feedback

(3.22)

As y(n−1) = L
(n−1)
f h(x) and y(n−2) = L

(n−2)
f h(x) the previous equation

can be expressed as follows:

u = α(x) + β(x)y
(n)
d︸ ︷︷ ︸

u∗

+

β(x)(−kn(L(n−1)
f h(x) − y

(n−1)
d )− kn−1(L

(n−2)
f h(x) − y

(n−2)
d )..− k1(y − yd))︸ ︷︷ ︸

φ(x,ϑc,e)

(3.23)

The control law in equation (3.23) can be viewed as a two-degree-of-
freedom controller. The feedforward terms are the inputs that are required
to track the trajectory yd; the feedback terms are used in order to make that
the tracking error decays exponentially to zero under system uncertainty.

The equation (3.23) can be manipulated to express the control input u
only in function of the state variables, controller parameters and error as
follows:

u = β(x) [(y
(n)
d + kny

(n−1)
d + kn−1y

(n−2)
d + ..+ k1yd)︸ ︷︷ ︸

v

+

(−L(n)
f h(x) − knL

(n−1)
f h(x)− kn−1L

(n−2)
f h(x)− ..− k1y)]︸ ︷︷ ︸

φ(x,ϑc,e)

(3.24)

In this case v is fixed as follows:

v = y
(n)
d + kny

(n−1)
d + kn−1y

(n−2)
d + ..+ k1yd (3.25)

If we desire to drive the system output to a set point yd, we can set
v = k0

∫ t

0
(yd − y)dτ . So, equation 3.24 is expressed as it is indicated in

equation (3.26)
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u = β(x) [(k0

∫ t

0

(yd − y)dτ)︸ ︷︷ ︸
v

+

(−L(n)
f h(x) − knL

(n−1)
f h(x)− kn−1L

(n−2)
f h(x)− ..− k1y)]︸ ︷︷ ︸

φ(x,ϑc,e)

(3.26)

An example can be seen in appendix.
A differentially flat system is represented in terms of the flat output and

its derivatives as it was indicated in equation (3.3). The feedback controller
based on differential flatness to track a set point yd can be expressed in the
following form

u = ψ(y, ẏ, ..., y(n−2), y(n−1)︸ ︷︷ ︸
u∗

, y(n)︸︷︷︸
v

)
(3.27)

where v = yn is the new control input and u∗ = ψ(y, ẏ, ..., y(n−2), y(n−1))
the nominal feedforward. In this thesis work, v = φ(x, ϑc, e) is assigned as it
is indicated in equation (3.19). Therefore, the feedback controller (3.27) can
be expressed as:

u = u∗ + φ(x, ϑc, e) (3.28)

being ϑc = {−kn−1,−kn−2, ..,−k0}. The feedback control scheme based
on differenial flatness is depicted in Figure 3.6.

Fig. 3.6. Control scheme based on differenial flatness.

The nominal feedforward u∗ can be expressed in terms of the states u∗ =
φ(x) so:
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u = ψ(y, ẏ, ..., y(n−2), y(n−1)︸ ︷︷ ︸
u∗=φ(x)

, y(n)︸︷︷︸
v=φ(x,ϑc,e)

)
(3.29)

As we may see, the controller based on differential flatness (3.29) uses
the current state x and the desired output yd, like the controller based on
feedback linearization of equation (3.23). The difference is that the feedback
linearizing controller inverts the coupling function β(x). InVan Nieuwstadt
and Murray (1998) we may observe more details. If β(x) contains singu-
larity points the controller will not be defined in those points; this leads to
numerical problems even more if the uncertainty in the system is consider-
able. In contrast, the controller in equation (3.28) uses a scheduled gain that
can be assigned by placing properly the closed-loop roots.

Flatness is a property of a system and does not imply that one intends to
transform the system, via dynamic feedback and appropriate changes of co-
ordinates, to a single linear system Martin et al. (1997). Indeed, the power
of flatness is precisely that this one does not convert nonlinear systems into
linear ones. When a system is flat it is an indication that the nonlinear struc-
ture of the system is well characterized and one can exploit that structure in
designing control algorithms for motion planning, trajectory generation, and
stabilization.

Differential flatness can be seen as an equivalence problem between a
set of undetermined ordinary differential equations and a set of linear ones
Chelouah (1997). As a matter of fact, relations (3.3) provide respectively
the change of coordinates and the feedback control that transform (3.1) into
a trivial form (i.e., the Brunovsky canonical form). This property can be
illustrated by the following example:

Example 3.1.Consider the nonlinear model of a simple pendulum

ẋ1 = x2
ẋ2 = 1

MR2 (−bx2 −MRg sin(x1) + u)
(3.30)

The flat output can be the pendulum position y = x1. Indeed,

x1 = y
x2 = ẋ1 = ẏ
u =MR2ÿ + bẏ +MRg sin(y)

(3.31)

Therefore x = A(y, ẏ) and u = B(y, ẏ, ÿ). Setting z1 = y, z2 = ẏ and
v = y(2), the system in Brunovsky canonical form is

ż1 = ẏ = z2
ż2 = ÿ = v

(3.32)
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and the state variable and the control input are transformed to

x1 = y = z1
x2 = ẏ = z2
u =MR2v + bz2 +MRg sin(z1)

(3.33)

so x = A(z1, z2), u = B(z1, z2, v). As we appreciate from this example,
the solutions of the nonlinear system can be expressed as functions of the
solutions of a linear one in the Brunovsky canonical form and conversely, the
solutions of the linear system can be expressed as functions of the solutions
the nonlinear one. This property precisely defines the (absolute) equivalence
between systems. Another examples can be consulted in Chelouah (1997).

A variety of examples have been shown to be differentially flat, and con-
trollers based on trajectory generation by interpolation and error feedback
on the obtained trajectory have been developed. These examples include
overhead cranes Fliess et al. (1993); Fliess et al. (1995b), cars with
trailers Rouchon et al. (1992); Rouchon et al. (1993), conventional
aircraft Martin et al. (1994); Martin (1996a), induction motors Ch-
elouah et al. (1996); Martin and Rouchon (1996b), active magnetic
bearings Levine et al. (1996), chemical reactors Rothfuss et al. (1996);
Rouchon (1996) and some fed-batch bioreactors Radhakrishnan et al.
(2001); Picó-Marco (2004).

In general, a computable test for checking if ẋ = f(x, u), x ∈ Rn, u ∈ Rm

is flat, remains up to now an open problem. This means there are no system-
atic methods for constructing flat outputs. The main difficulty in checking
flatness is that a flat output y = h(x, u, ..., up) may depend on derivatives
of u of an arbitrary order p. Where this order p admits an upper bound (in
terms of n and m) that is now completely unknown Martin et al. (1997).

3.2.1 Flatness in the context of parametric uncertainty

Literature about robustness issues is abundant; however, only the result pre-
sented inCazaurang (1997) addresses the analysis of parametric robustness
of controllers based on flatness. Hagenmeyer and Delaleau Hagenmeyer
and Delaleau (2003b) demonstrated that the differentially flat systems
are linearizable by a nominal feedforward if the initial condition is known. A
methodology of robustness analysis with respect to parametric uncertainty
for exact feedforward linearization, based on differential flatness, was pre-
sented by Hagenmeyer and Delaleau Hagenmeyer and Delaleau (2003c)
for SISO flat systems.

The methodology of robustness analysis is based on a pointwise stabil-
ity analysis of the linearized tracking error system under parametric uncer-
tainties, in conjuntion with an argument for non-linear systems with slowly
varying input.
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In this thesis, the flat output and its derivatives are expressed in terms
of specification parameters. Consider the uncertain SISO non-linear system

ẋ(t) = f(ϑp, x(t), u(t)), x(0) = x0 (3.34)

with time t ∈ R, state x(t) ∈ Rn and input u(t) ∈ R. The vector field f :
Rnp ×Rn×R → Rn is smooth. The uncertainty of the plant parameters ϑp ∈
Rnp are considered as intervals. The system (3.34) is said to be differentially
flat Hagenmeyer and Delaleau (2003c) if for all ϑp exists a flat output
y(t) ∈ R, such that

y = h(x, u, u̇, ..., u(p)) (3.35)

x = ϕ(ϑp, y, ẏ, ..., y
(k)) (3.36)

u = ψ(ϑp, y, ẏ, ..., y
(k+1)) (3.37)

where h, ϕ, and ψ are smooth functions at least in an open set of
Rn+(p+1), Rnp+(k+1) and Rnp+(k+2), respectively. In the equations (3.36) and
(3.37), for every given trajectory of the flat output t 
→ y(t), the evolution
of all other variables of the system t 
→ x(t) and t 
→ u(t) is also determined
without integration of the system of differential equations. Moreover, for a
sufficiently smooth desired trajectory of the flat output t 
→ y∗(t), equation
(3.37) can be used to design the corresponding feedforward u∗(t) directly for
the nominal system parameters ϑp. The trajectory y∗ is called the nominal
trajectory, while the trajectory u∗ is called the nominal control. The family
of nominal feedforward controllers is given by

u∗ = ψ(ϑp, y
∗, ẏ∗, ..., y∗(k+1)) (3.38)

meaning to say, for each admissible nominal trajectory y∗(t), there is a
nominal feedforward u∗.

From equation (3.35), the flat output y can be obtained from the feedback
system, using current values of state variables x, control signal u and some
of its derivatives u(1), .., u(p). On the other hand, the flat output can be
constructed externally with polynomial functions. Regarding the objectives
stated in this thesis, we want to maintain the output of the controlled system
within a specified region, so, we propose an approach where the flat output
and its derivatives are defined as a region of trajectories in time parametrized
with interval parameters. Specifically, if we let that each admissible nominal
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trajectory y∗(t) and its derivatives ẏ∗(t), ..., y∗(k+1) depend on specification
parameters ϑs then

y∗ = γ(t, ϑs)
y∗(1) = γ1(t, ϑs)
.
.

y∗(k) = γk(t, ϑs)

y∗(k+1) = γk+1(t, ϑs)

(3.39)

The associated family of state variables and nominal feedforward controls
will be given by:

x = ϕ(ϑp, γ(t, ϑs), γ1(t, ϑs), ..., γk(t, ϑs))
x = ϕ(t, ϑp, ϑs)

(3.40)

u∗ = ψ(ϑp, γ(t, ϑs), γ1(t, ϑs), ..., γk+1(t, ϑs))
u∗ = ψ(t, ϑp, ϑs) ⇒ ψ(t, ϑk)

(3.41)

That is to say, that the family of controllers u∗ will be given in terms of
process parameters ϑp and specification parameters ϑs. Equation (3.41) shows
clearly that the determination of a family of robust controllers, will be subject
to guarantee the fulfillment of the specifications ϑs and the determination of
the permissible maximum uncertainty in process parameters ϑp.

We emphasize that if we use a fixed point of specification parameters
ϑ̄s and a nominal plant ϑ̄p, then, the trajectories for the desired output, as
well as its derivatives y∗, .., y∗(k+1), state variables x and control signal u∗

represent unique trajectories in time as it is indicated in Figure 3.7.
However, if ϑs and ϑp are intervals, then the output and its derivatives

y∗, .., y∗(k+1), state variables x and control signal u∗, represent regions of
trajectories in time as it is shown in Figure 3.8.

Recently, a new approach for the robustness analysis of tracking con-
trollers based on flatness and using classic interval methods was proposed by
Antritter et al. (2007). Admissible intervals for the uncertain parameters
were explicitly determined. The application of the robustness analysis was
demonstrated for a feedforward and feedback tracking controller for the Van
der Vusse type continuous stirred tank reactor.

On the other hand, differential flatness has been used to solve dynamic
optimization problems with constraints Faiz and Agrawal (2001); Rad-
hakrishnan et al. (2001); Oldenburg and Marquardt (2002). The
problems were reformulated as constrained optimization problems with alge-
braic equations instead of differential equations; to achieve this, the original
dynamic optimization problem:
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Fig. 3.7. Inversion of the dynamical system considering an single trajectory for
the flat output.

Fig. 3.8. Trajectories regions in time parametrized with interval parameters.
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min
xo,u(t)

J(x(tf ), u(tf )) subject to

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ(t) = f(x(t), u(t)), t ∈ [t0, tf ]

0 ≤ c(x(t), u(t)), t ∈ [t0, tf ]

0 ≤ cf (x(tf ), u(tf )),

0 = x(t0)− x0

(3.42)

is reformulated as the static optimization problem:

min
Y (t)

J(ϕ(Y (tf )), ψ(Y (tf ))) subject to

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 ≤ c(ϕ(Y (t)), ψ(Y (t))),

t ∈ [t0, tf ]

0 ≤ cf (ϕ(Y (tf )), ψ(Y (tf ))),

0 = x0 − ϕ(Y (t0))

(3.43)

where Y = (y∗, ẏ∗, ..., y∗(k+1)).
This thesis poses to solve the problem of robust control considering the

optimization approach based on flatness. For the first time, the constraints
are expressed in terms of set inclusion and the variables are quantified in this
type of optimization problems. Thus, the problem will be formulated as the
optimization of functions like, for instance:

Max {ϑp|ϑp ∈ [ϑp, ϑp]}

subject to

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cy(ϕx(t, ϑp, ϑs), ψu(t, ϑp, ϑs)) ⊆ γy(t), t ∈ [t0, tf ]

ϕx(t, ϑp, ϑs) ⊆ γx(t), t ∈ [t0, tf ]

ψu(t, ϑp, ϑs) ⊆ γu(t), t ∈ [t0, tf ]

ϑp ∈ [ϑp, ϑp], ϑs ∈ [ϑs, ϑs]

(3.44)

ϑs is a set specification parameters for the flat outputs. ϑp is a set of
intervals for the plants, γy(t) defines a region for flat outputs, γx(t) de-
fines bounding regions for the state variables. γu(t) defines bounding re-
gions for the control inputs. ϕx(t, ϑp, ϑs) defines interval functions of the
state variables and ψu(t, ϑp, ϑs) the interval functions of the control input.
cy(ϕx(t, ϑp, ϑs), ψu(t, ϑp, ϑs)) defines general interval functions of the system
outputs.

From equation (3.35), the system output can be set in several ways. Some
of the forms can be:
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1. The system output only depends on the state variables.

y = h(x) (3.45)

2. The system output depends on the state variables and plant parameters.

y = h(x, ϑp) (3.46)

3. The system output depends on the state variables and control input.

y = h(x, u) (3.47)

4. The system output depends on the state variables, plant parameters and
control input.

y = h(x, u, ϑp) (3.48)

5. The system output depends on the state variables, control input and its
derivatives.

y = h(x, u, u̇, ..., u(p)) (3.49)

6. The system output depends on the state variables, control input, its
derivatives and plant parameters.

y = h(x, u, u̇, ..., u(p), ϑp) (3.50)

The general interval functions of the system output cy for each of the
previous cases can be reconstructed from output space as it is indicated in
equations (3.51)-(3.56)

y = h(x) ⇔ y = cy(t, ϑs) (3.51)

y = h(x, ϑp) ⇔ y = cy(t, ϑs, ϑp) (3.52)

y = h(x, u) ⇔ y = cy(t, ϑs, ϑk) (3.53)

y = h(x, u, ϑp) ⇔ y = cy(t, ϑs, ϑk, ϑp) (3.54)

y = h(x, u, u̇, ..., u(p)) ⇔ y = cy(t, ϑs, ϑk) (3.55)
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y = h(x, u, u̇, ..., u(p), ϑp) ⇔ y = cy(t, ϑs, ϑk, ϑp) (3.56)

The constraints are formulated in general from a point of view of spaces
interaction between flat outputs, states and controllers. That is, it is made a
set inclusion relationship between the specifications space of the desired flat
outputs trajectories compared with the flat output interval functions, the
space-bound states compared with the interval functions of the states and
the space-bounded controllers compared with controllers interval functions.
The solution boxes set will be those that meet or satisfy all constraints for
all instant of time within the specified interval.

To solve global optimization problems like the one above, two approaches
can be applied to obtain ϑp Hansen et al. (2004). In outer approximation,
ϑp is approximated from the outside by a sequence of reduction of parameters
and inclusion tests ϑp1 ⊃ ϑp2 ⊃ ϑp3... ⊃ ϑp∗. Being ϑp∗ the optimal solution.
In inner approximation, ϑp is approximated from the inside by a sequence of
expansion of parameters and inclusion tests ϑp1 ⊂ ϑp2 ⊂ ϑp3... ⊂ ϑp∗.

Since one desires to ensure compliance of the specifications and constraints
with quantifiable parameters, the Modal Interval Analysis is the mathemat-
ical tool to deal with problems involving uncertainty and logical quantifiers
(universal(∀), existential(∃)).

The main characteristic of the Modal Interval Arithmetic (MIA), is that
an interval is not only seen as the bounding formed by two real numbers. The
intervals are associated with quantified predicates (quantified constrained
functions). The constrained functions can be true or false depending on the
kind of quantifiers associated with variables. For instance ∀(x ∈ [−2, 2]

′
)x > 0

is false because for all x within the interval [−2, 2] the constraint x > 0 is not
met. However ∃(x ∈ [−2, 2]

′
)x > 0 is true because it exists within the interval

[−2, 2] a set of values to x that satisfy the constraint. Instead the system of
classic intervals cannot to express the difference between universal ∀(x ∈
[−2, 2]

′
)x > 0 and existential ∃(x ∈ [−2, 2]

′
)x > 0 quantifiers Gardeñes et

al. (2001).
To explain in more detail problems that we will solve in this thesis, let

us give the following example. With relation to the optimization approach
from equation (3.44), given an interval function of the form f(ϑp, ϑk) ⊆
γ(ϑs) and a combination of quantifiers between specifications (ϑs), plants (ϑp)
and controllers (ϑk) as it is indicated in Figure 3.9, we raised the following
problems:

1. To determine the maximum admissible uncertainty (ϑp(∀)) by a nomi-
nal controller (ϑk(∃)) ensuring that some specifications are met (ϑs(∃))
and the constraints are satisfied. The considerations to solve the prob-
lem it is indicated in Figure 3.10. We consider the general case, where
the system output y = h(x, u, ϑp) depends on the state variables, plant
parameters and control input . The nominal controller is preset ϑk(∃).
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Fig. 3.9. Quantifiers in problems of inverse dynamic.

The free variable is ϑp. For the general case ϑp can be in all equations
cy, ϕ and ψ. So, a plant of the solution set is one that enforces the con-
straints cy ⊆ γy ∧ ϕ ⊆ γx ∧ ψ ⊆ γu. Finally, we will find solutions inside
specification parameters ϑs(∃). The bounding regions γy, γx and γu are
determined with a greater influence of the specification parameters ϑs
over the functions γy, γx and γu since they are considered as intervals,
while the parameters ϑp and ϑk are considered as specific points. A rep-
resentation is indicated in Figure 3.11.

2. To determine the family of controllers (ϑk(∀)) that could ensure that
some specification are met (ϑs(∃)) and the constraints are satisfied under
parametric uncertainty in the plant (ϑp(∀)). The considerations to solve
the problem is indicated in Figure 3.12. The free variable is ϑk. As in
previous problem, ϑk can be in all equations cy, ϕ and ψ. So, a controller
of the solution set is one that enforces the constraints cy ⊆ γy ∧ ϕ ⊆
γx ∧ ψ ⊆ γu. Each controller ϑk of the solution set will be robust under
variations of plant parameters ϑp(∀). The bounding regions γy, γx and
γu are determined in a similar way as in the previous case.

3. To determine the achievable specifications (ϑs(∀)) by some nominal con-
trollers (ϑk(∃)), satisfying the constraints under parametric uncertainty
in the plant (ϑp(∀)).The considerations to solve the problem is indicated
in Figure 3.13. The free variable is ϑs. As in previous problem, ϑs can
be in all equations cy, ϕ and ψ. So, a specification of the solution set
that satisfies a nominal controller ϑk is one that enforces the constraints
cy ⊆ γy ∧ ϕ ⊆ γx ∧ ψ ⊆ γu under variations of plant parameters ϑp(∀).
The bounding regions γy, γx and γu are determined by using an auxiliary
parameter ϑss as it is indicated in Figure 3.14.
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Fig. 3.10. Considerations to determine the maximum admissible uncertainty
(ϑp(∀)) by a nominal controller (ϑk(∃)) ensuring that some specifications are met
(ϑs(∃)) and the constraints are satisfied.

Fig. 3.11. Considerations to determine the bounding regions γy, γx and γu.
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Fig. 3.12. Considerations to determine the family of controllers (ϑk(∀)) that could
ensure that some specification are met (ϑs(∃)) and the constraints are satisfied
under parametric uncertainty in the plant (ϑp(∀)).

This kind of inversion from specifications to controllers and from con-
trollers to specifications with constraints and quantifiers cannot be solve of
direct form with the classic interval analysis Herrero (2006), Bondia et
al. (2006). The main reason is that with modal interval arithmetic we can
search solutions of parameters in both sides of numeric relations (equality,
inequality, inclusion) of interval functions. However, with the classic interval
arithmetic we can search solutions only on one side of numeric relations of
interval functions. When we try to solve problems that are associated with
quantifiers or modes of selection, the classical interval arithmetic is limited
because in its structure was not incorpored how to interpret the logical quan-
tifiers. It was designed to perform arithmetic operations with intervals and
outer approximations of the interval functions generally are computed.

In general, with classic interval arithmetic we can solve problems of con-
strains satisfaction of the form f(x) > 0, f(x) < 0 and f(x) = 0. For instance
we can find all the equilibrium points of a nonlinear dynamic system of the
form ẋ = f(x). As in stable state f(x) = 0 we specified a initial box of pa-
rameter Xo and we find value sets to x such that the function f(x) is near to
zero. Other potentialities of the Modal Interval Arithmetic and limitations
of the Classic Interval Arithmetic are presented in the next section.
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Fig. 3.13. Considerations to determine the achievable specifications (ϑs(∀)) by
some nominal controllers (ϑk(∃)), satisfying the constraints under parametric un-
certainty in the plant (ϑp(∀)).

Fig. 3.14. Considerations to determine the bounding regions γy, γx and γu.
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3.3 Modal Interval Analysis

3.3.1 Classic intervals and its limitations

The starting point for the interval analysis can be fixed in 1966 with the
publication of Moore’s book Moore (1966). On this book was defined that
an interval [a, a] can be identified as the set of real numbers x such that
a ≤ x ≤ a. The set of all intervals whose endings are real values is denoted
by I(R).

I(R) = {[a, a]|a, a ∈ R, a ≤ a} (3.57)

Fig. 3.15. Moore diagram.

In Moore’s diagram, depicted in figure 3.15, the set of classic intervals
are those that are within the shaded zone, or all those intervals that are on
the left of the main diagonal. Some basic arithmetic operations (+,−, ∗, /)
between intervals are defined as:

[a, a] + [b, b] = [a+ b, a+ b]

[a, a]− [b, b] = [a− b, a− b]

[a, a] ∗ [b, b] = [min(a ∗ b, a ∗ b, a ∗ b, a ∗ b),
max(a ∗ b, a ∗ b, a ∗ b, a ∗ b)]
[a, a]/[b, b] = [a, a] ∗ [1/b, 1/b] = [a/b, a/b] if 0 /∈ [b, b] and

ifa ≥ 0, a ≥ 0, b > 0, b > 0

[a, a]/[b, b] = [a/b, a/b] if 0 /∈ [b, b] and

ifa < 0, a ≥ 0, b > 0, b > 0

(3.58)
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If a = [−2, 2] and b = [3, 5] the basic arithmetic operations can be com-
puted as:

a+ b = [−2, 2] + [3, 5] = [1, 7]
a− b = [−2, 2]− [3, 5] = [−7,−1]
a ∗ b = [−2, 2] ∗ [3, 5] = [min(−2 ∗ 3,−2 ∗ 5, 2 ∗ 3, 2 ∗ 5),
max(−2 ∗ 3,−2 ∗ 5, 2 ∗ 3, 2 ∗ 5)] = [−10, 10]
a/b = [−2, 2] ∗ (1/[3, 5]) = [−2, 2] ∗ [1/5, 1/3] = [−2/3, 2/3]

(3.59)

If x = [−2, 2] and f = x − x then f = [−2, 2] − [−2, 2] = [−4, 4]. We
can observe that the results for f is not zero. This is because in the Interval
Analysis each variable is considered as an independent variable (two positions
of memory) and not as a unique variable (one position of memory) as it is
considered in real arithmetics. [−4, 4] is an overbounded result which contains
the real solution 0.

The same happens with the division x/x = [1, 3]/[1, 3] = [1/3, 3] which
is not equals 1. Classic intervals do not verify the distributive property. If
A,B,C ∈ I(R) one obtains a subset for A ∗ (B + C) ⊆ A ∗B +A ∗ C.

The simplest interval equations, as A + X = B and A ∗ X = B can
not always be solved. Even in the case that a solution exists, it may be not
attainable through interval operations. For example the equation

[2, 5] + [x1, x2] = [5, 7] ⇒ [2, 5] + [3, 2] = [5, 7] ⇒ [x1, x2] = [3, 2] /∈ I(R)

(3.60)

has not solution in I(R), since the interval [3, 2] cannot be represented as
a classic interval (see fig. 3.15), since it does not fulfills the rule a ≤ x ≤ a.
On the other hand, the equation

[2, 5] + [x1, x2] = [3, 7] ⇒ [2, 5] + [1, 2] = [3, 7] ⇒ [x1, x2] = [1, 2] (3.61)

has solution in I(R), but it is not achievable through interval operations
since [x1, x2] = [3, 7]− [2, 5] = [−2, 5] �= [1, 2].

In the context of classic interval analysis, the so-called united extension
Rf (the real range of the function) of a continuous function f : Rn → R at
intervals X1, ...,Xn , is defined as the range of values of the function.

Rf (X1, ...,Xn) = {f(x1, ..., xn)|x1 ∈ X1, ..., xn ∈ Xn} (3.62)

The range will be given by:

[min{f(x1, ..., xn)|xi ∈ Xi},max{f(x1, ..., xn)|xi ∈ Xi}] (3.63)
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On the other hand, if f is a real continuous function, its rational or natural
extension is defined as a function fR : I(Rn) → I(R), obtained by replacing
the variables x1, ..., xn by their rangesX1, ...,Xn, and the rational operations
between the variables by the corresponding interval operations. Rational ex-
tensions fulfill the monotonous inclusion property which is essential in the
context of the interval analysis. For instance if X1 ⊆ Y1, ...,Xn ⊆ Yn, then
fR(X1, ...,Xn) ⊆ fR(Y1, ...,Yn), if it is provided there are not divisions
by intervals which contain zero. This property will allow the use of interval
truncation for calculating with intervals, ensuring that the accurate result is
inside of the calculated result.

Fig. 3.16. Inclusion monotonicity.

If an interval X is partitioned in various subintervals X1,X2, ..,Xn, the
union of the all rational extensions fR(X1)

⋃
fR(X2)

⋃
, ...,

⋃
fR(Xn) ⊆

fR(X) is a subset of the rational extension obtained with the interval X.
This property is very applied to reduce overestimation in the computation of
interval extensions. A representation is indicated in Figure 3.17.

The relationship between the united extension and the rational extension
is

Rf (X1, ...,Xn) ⊆ fR(X1, ...,Xn) (3.64)

Thus fR(X1, ...,Xn) it is an overbound of Rf (X1, ...,Xn). For example,
if the function f(x) = x

1+x is defined for X = [2, 4] it obtains
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Fig. 3.17. Reduction of overestimation.

Rf ([2, 4]) =
1

1
x+1

= 1
1

[2,4]+1
= 1

[ 54 ,
3
2 ]

= [ 23 ,
4
5 ] = [0.6, 0.8]

fR([2, 4]) = [2,4]
[1,1]+[2,4] =

[2,4]
[3,5] = [ 25 ,

4
3 ] = [0.4, 1.3]

(3.65)

Notice the united extension gives the real range of the function. Each
instance of a variable is not considered as a different variable. That is, there
is no problem of multiincidence. Yet, with the natural extension there is a
problem of multiincidence. Each instance of a variable is considered as a
different one. This, as already seen with basic arithmetic operations, leads to
overbounding.

On the context from interval analysis, there are other interval extensions
providing an extension closer to the united extension than the rational ex-
tension. These are centered form, average value and monotonous test form
Veh́ı (1998). These interval extensions are obtained considering different
ways of expressing the rational function fR. Nevertheless, Hansen in his
book Hansen (2004), exposes: If a function is evaluated in its natural form
with intervals, we can obtain a narrower result that can be obtained with
Taylor’s expansion. This represents an unsolved problem in interval analysis.

For instance, the function f(x1, x2, x3) = x1

x2+2 + x2

x3+2 + x3

x1+2 if Xi =
[−1, 1] (i = 1, 2, 3) its natural extension is:
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f(X1,X2,X3) =
X1

X2+2 + X2

X3+2 + X3

X1+2

f(X1,X2,X3) =
[−1,1]
[1,3] + [−1,1]

[1,3] + [−1,1]
[1,3]

f(X1,X2,X3) = [−1, 1] + [−1, 1] + [−1, 1]
f(X1,X2,X3) = [−3, 3]

(3.66)

Now, the Taylor’s expansion for the function corresponds to:

f(x1, x2, x3) = f(x1, x2, x3) + (X1 − x1)g1(X1,X2,X3)+
(X2 − x2)g2(X1,X2,X3) + (X3 − x3)g3(X1,X2,X3)

(3.67)

where x1, x2, x3 are points inside X1,X2,X3 respectively. gi =
df
dxi

(i =
1, .., n) is the gradient of f . Thus, if x1 = 0, x2 = 0 and x3 = 0, the function
extension is:

f(x1, x2, x3) = f(x1, x2, x3) + (X1 − x1)(
1

X2+2 − X3

(X1+2)2 )+

(X2 − x2)(
1

X3+2 − X1

(X2+2)2 ) + (X3 − x3)(
1

X1+2 − X2

(X3+2)2 )

f(x1, x2, x3) = [−6, 6]

(3.68)

We may see that the result obtained with natural extension [−3, 3] is nar-
rower that the one obtained with Taylor’s expansion [−6, 6]. Hansen Hansen
(2004) proposes to evaluate the components of gi with some real points and
some intervals instead of using only intervals for all the arguments to ob-
tain a even more narrow result. Thus, if g1(X1, x1, x2), g2(X1,X2, x3) and
g3(X1,X2,X3) are used in Taylor’s expansion, the function extension is re-
duced to:

f(x1, x2, x3) = f(x1, x2, x3) + (X1 − x1)(
1

x2+2 − x3

(X1+2)2 )+

(X2 − x2)(
1

x3+2 − X1

(X2+2)2 ) + (X3 − x3)(
1

X1+2 − X2

(X3+2)2 )

f(x1, x2, x3) = [−4, 4]

(3.69)

Rational and united extensions of a function f at intervals X1, ...,Xn

have a single semantics,

∀(x1 ∈ X1)...∀(xn ∈ Xn)∃(z ∈ Rf (X1, ...,Xn))z = f(x1, ..., xn)
∀(x1 ∈ X1)...∀(xn ∈ Xn)∃(z ∈ fR(X1, ...,Xn))z = f(x1, ..., xn)

(3.70)

Now then, suppose we have a function z = f(x1, x2). With classic interval
arithmetics one can obtain an interval Z such that

∀(x1 ∈ X1)∀(x2 ∈ X2)∃(z ∈ Z)z = f(x1, x2) (3.71)
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If x1 is associated to specifications, x2 for those of the plants, and z for
those of the controllers. Therefore, with classic interval arithmetics one can
answer the question: Give me a set of controllers such that for all plants and
all specifications there can exist a valid controller within the set of controllers.
Clearly, the solution to the problem of controller design is within the set of
solutions provided. Yet, there are false solutions.

On the other hand, if x2 is obtained one can answer the question: Give me
a set of all plants such that for all specifications and the nominal controller,
the equation z = f(x1, x2) is fulfilled. That is, we would obtain the allowed
process uncertainty. This is the problem solved in Antritter et al. (2007).

with classic interval arithmetics one cannot solve equations with semantics
such as:

∀(x2 ∈ X2)∀(z ∈ Z)∃(x1 ∈ X1)z = f(x1, x2) (3.72)

solving (3.72) would obtain the interval Z of all controllers such that for
all plants in X2 there is some specification in X1 which is fulfilled.

Example 3.2.Given the function z = x1u − x2v
2sin(x1) > 0, we desire

to find the set of possible values to z such that constrained function is greater
than zero for all x1 ∈ [−10, 10], for all x2 ∈ [−10, 10], for all u ∈ [−1, 1] and
for all v ∈ [−2, 2], to perform the arithmetic operations with the ends of the
intervals the interpretation of the results is as follows:

∀(x1 ∈ [−10, 10]
′
)∀(x2 ∈ [−10, 10]

′
)

∀(u ∈ [−1, 1]
′
)∀(v ∈ [−2, 2]

′
)∃(z ∈ Z

′
)(z = x1u− x2v

2sin(x1) > 0)

(3.73)

The interval extension obtained for the function (x1u − x2v
2sin(x1))

is [−50, 50], then the set of values for z that satifies the constraint x1u −
x2v

2sin(x1) > 0 can be expressed as z = [ε+, 50]. Being ε+ any value posi-
tive close to zero. Then if ε+ = 0.01 the result is z = [0.01, 50]. This kind of
semantic is solved with classic interval arithmetic.

In general with classical interval arithmetic we can solve different global
optimization problems Hansen (2004) such as:

1. Unconstrained optimization. We have an unconstrained function and the
optimization problem is posed as follows:

Minimize(globally) f(x)

Where f is a scalar function of a vector x of n components. We seek the
solution set to x where the unconstrained function f(x) has its global
minimum.
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2. Constrained optimization. In this kind of optimization problem we can
have inequality and equality constraints, the optimization problem is
raised as follows:

Minimize f(x) subject to

{
pi(x) ≤ 0 (i = 1, ..,m)

qi(x) = 0 (i = 1, .., r)
(3.74)

We seek the solution set to x where the constrained function f(x) has
its global minimum.

3. Inequality constrained optimization. Here we only have inequality con-
straints, the optimization problem is as follows:

Minimize f(x) subject to
{
pi(x) ≤ 0 (i = 1, ..,m) (3.75)

we seek the solution set to x where the inequality constrained function
f(x) has its global minimum.

4. Equality constrained optimization. In this case we have equality con-
strains only. The problem is raised of the following form:

Minimize f(x) subject to
{
qi(x) = 0 (i = 1, .., r) (3.76)

we seek the solution set to x where the equality constrained function
f(x) has its global minimum.

5. Perturbed optimization. In this case, a vector of interval parameters c is
considered in the constrained function thus as the interval vector x and
the optimization problem is raised as follows:

Minimize︸ ︷︷ ︸
x,c

f(x, c) subject to

⎧⎪⎨⎪⎩
pi(x, c) ≤ 0 (i = 1, ..,m)

qi(x, c) = 0 (i = 1, .., r)

x ∈ [x, x], c ∈ [c, c]

(3.77)

we seek the set of values to c and x where the perturbed constrained
function f(x, c) has its global minimum.

3.3.2 Modal intervals

As we have seen in the previous section, classic interval arithmetics has some
deficiencies. Modal Interval Analysis is an extension of the interval analy-
sis that recovers some of the properties required by a numerical system. It
simplifies the computation of interval functions. Moreover, it allows richer
semantic interpretation of the results than classic intervals.
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The development and theoretical foundation of the Interval Modal Anal-
ysis can be found in Gardeñes et al. (1980); Gardeñes et al. (1985);
Gardeñes et al. (2001); Remei (2005).

Let us specify an interval X
′
which states and delimits a real number x

that verifies a given predicate P (x). This necessarily requires a choice between
the existential and universal quantifiers to build two logical expressions.

∃(x ∈ X
′
)P (x) : exists an element x withinX

′
that verifies P (x)

∀(x ∈ X
′
)P (x) : all element x of the setX

′
verifies P (x)

(3.78)

To work with logical expressions such as (3.78) with existential and uni-
versal quantifiers, modal intervals are defined as tuples formed by a classic
interval and a quantifier. Thus, the set of modal intervals will be represented
by I∗(R) := {(X ′

, {∃, ∀})|X ′ ∈ I(R)}. The modal coordinates of a modal
interval are its point-set domain and its modality.

If the modality of a modal interval is existential X = (X
′
, ∃) then the

modal interval is proper and if the modality is universal X = (X
′
, ∀) then

the modal interval is improper. For example the interval [2, 5] corresponding
to a proper modal interval X = ([2, 5]

′
, ∃). The interval [2, 1] is perfectly

valid, and corresponds to an improper modal interval X = ([1, 2]
′
, ∀). In

particular, an interval as [3, 3] is denominated point-interval. Its modality
can be considered like proper X = ([3, 3]

′
, ∃) or improper X = ([3, 3]

′
, ∀).

The canonical representation for a modal interval is:

X = [a, b] :=

{
([a, b]

′
, ∃) if a ≤ b

([b, a]
′
, ∀) if a ≥ b

(3.79)

For an interval X = [a, b], the operators Prop, Impr and Dual are defined
by

Dual([a, b]) = [b, a]

Prop([a, b]) = [min{a, b},max{a, b}] ∈ (X
′
, ∃)

Impr([a, b]) = [max{a, b},min{a, b}] ∈ (X
′
, ∀)

(3.80)

The extern (OutR) and internal (InnR) rounding of an interval is defined
as:

OutR([a, b]) = [Left(a), Right(b)]
InnR([a, b]) = [Right(a), Left(b)]

(3.81)

Remark: In order to avoid confusions between classical and modal inter-
vals, a classical interval of bounds a and b are represented by [a, b]

′
, instead

of the standard notation [a, b].
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3.3.3 f∗ and f∗∗ semantic extensions

In the theory of the modal intervals, we can compute two extensions for
a function. These are the f∗ and f∗∗ semantic extensions. For instance if
X = (Xp,Xi) is the proper and improper components vector, the f∗ and
f∗∗ extensions are expressed as:

f∗(X) := ∨(xp ∈ X
′
p) ∧ (xi ∈ X

′
i)[f(xp, xi), f(xp, xi)]

= [min(xp ∈ X
′
p)max(xi ∈ X

′
i)f(xp, xi),

max(xp ∈ X
′
p)min(xi ∈ X

′
i)f(xp, xi)],

f∗∗(X) := ∧(xi ∈ X
′
i) ∨ (xp ∈ X

′
p)[f(xp, xi), f(xp, xi)]

= [max(xi ∈ X
′
i)min(xp ∈ X

′
p)f(xp, xi),

min(xi ∈ X
′
i)max(xp ∈ X

′
p)f(xp, xi)].

(3.82)

where ∨ and ∧ are Join and Meet operators respectively Herrero et al.
(2005). These operators are explained in the following example.

Example 3.3.Given a family of intervals A(i) with values A(1) = [2, 5],
A(2) = [6, 2], A(3) = [1,−5], A(4) = [−1, 6], A(5) = [−3, 2] and A(6) =
[4,−2] the Join ∨ and Meet ∧ operations are computed as follows: The Join ∨
operator obtains a minimun value from all the minimun values of the family
of intervals and then, it obtains a maximum value from all the maximum
values of the family. The Meet ∧ operator obtains a maximum value from all
the minimun values of the family of intervals and then, it obtains a minimun
value from all the maximum values of the family. The mentioned above can
be expressed of the following form:

∨(i, I)A(i) = [min{2, 6, 1,−1,−3, 4},max{5, 2,−5, 6,−2}] = [−3, 6]
∧(i, I)A(i) = [max{2, 6, 1,−1,−3, 4},min{5, 2,−5, 6,−2}] = [6,−5]

(3.83)

as we have seen in Figure 3.18, the result is a box that contains all mem-
bers of the family of intervals. The range computed by the Meet operator
is the lower value (minimun) from box and the range computed by the Join
operator is the upper value (maximum) from box.

In the case that Xi = 0 then f∗ = f∗∗

f∗(X) = f∗∗(X)

= ∨(x ∈ X
′
)[f(x), f(x)] = [min(x ∈ X

′
)f(x),max(x ∈ X

′
)f(x)]

(3.84)
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Fig. 3.18. Meet and join operations for a family of intervals.

In this case f∗ is equal to the united extension (real extension of the
function) of the classical intervals. In Figure 3.19 we make the observation
that when carrying out the calculation of f∗, one first computes the Meet
operation, and then the Join operation, and vice versa for the calculation of
f∗∗. First one computes the Join operation, and then the Meet operation (see
Figure 3.20).

Fig. 3.19. Lattice meet and join operations in f∗.

Example 3.4.Given the function f(x1, x2) = x21 + x22 obtain the f∗

extension for X1 = [−1, 1] (proper) and X2 = [1,−1]) (improper).
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Fig. 3.20. Lattice meet and join operations in f∗∗.

1. Let us obtain ∧(x2 ∈ [−1, 1]
′
)[x21 + x22, x

2
1 + x22]. As the maximum value

for the function (x21 + x22) for ∀(x2 ∈ [−1, 1]
′
) occurs when x2 = −1 or

x2 = 1 then

max(x21 + x22) = x21 + (−1)2 = x21 + 1 (3.85)

and the min(x21 + x22) for ∀(x2 ∈ [−1, 1]
′
) occurs when x2 = 0 then

min(x21 + x22) = x21 (3.86)

Let us stress that all the values within the interval x2 were considered to
calculate the minimum of the function. Therefore ∧(x2 ∈ [−1, 1]

′
)[x21 +

x22, x
2
1 + x22] = [x21 + 1, x21]. Notice that the proper component x1 was not

considered in the first step.
2. Let us obtain ∨(x1 ∈ [−1, 1]

′
)[x21 + 1, x21]. As the minimun value for the

function min(x21 + 1) for ∀(x1 ∈ [−1, 1]
′
) occurs when x1 = 0 then

min(x21 + 1) = 1 (3.87)

and max(x21) for ∀(x1 ∈ [−1, 1]
′
) occurs when x1 = −1 or x1 = 1 then

max(x21) = (−1)2 = 1 (3.88)

Therefore f∗(x1, x2) = f∗([−1, 1], [1,−1]) = [1, 1]. The process is similar
for the calculation of f∗∗. In previous example we saw that f∗ cannot be
obtained if we perform inteval operations only with the extremes of the
intervals. It is necesary to consider values within intervals to compute the
maximum and minimum ranges of the functions.
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The f∗∗ extension can be computed from f∗ extension using the Dual
operation. Thus, f∗∗(X) = Dual(f∗(Dual(X))).

The most interesting feature of modal intervals is the semantic interpre-
tation of the results. The f∗ and f∗∗ extensions can be interpreted with the
∗ and ∗∗ semantic theorems respectively. These theorems are as follows:

theorem 3.1. (f∗ Semantic theorem). Given a modal interval vector
A ∈ I∗(Rn), a function f : Rn → R continuous on A

′
, and a modal interval

F (A) ∈ I∗(R) then,

f∗(A) ⊆ F (A) ⇔ ∀(ap ∈ A′
p)Q(z ∈ F (A))∃(ai ∈ A

′
i)(z = f(ap, ai))

(3.89)

�

That is, for any partition of parameters A = (Ap,Ai) in proper Ap and
improper Ai ones, any superset F (A) of f∗ admits that semantics. Also we
make the clarification that the theorem defines that the type of quantifier
will be existential (∃) for the improper parameters and universal (∀) for the
proper parameters. Q is the type of quantifier that is assigned to Z according
to the obtained result.

If the result is proper then the quantifier to Z is existential (∃) and if it
is improper the quantifier is universal (∀).

F (A) is an extension of f function obtained with natural extension, cen-
tered forms or the study of function monotonicity for instance. Therefore,
the interpretation reads ”For all elements belonging to the proper intervals,
there exists at least one element in the improper ones such that, either ∀” or
∃ (depending on Q) Z in the superset of f∗(A), the equation Z = f(ap, ai)
is fulfilled.

Example 3.5.Given a proper interval a = [10, 20] and an improper
interval b = [20, 15]. Let us consider the function z = a + b. Obtain the z∗

semantic extension for the function.

z∗ = [min︸︷︷︸
a

max︸︷︷︸
b

(a+ b),max︸︷︷︸
a

min︸︷︷︸
b

(a+ b)]
(3.90)

1. Let us obtain ∧(b ∈ [15, 20]
′
)[a+ b, a+ b]. As the maximum value for the

function (a+ b) for ∀(b ∈ [15, 20]
′
) occurs when b = 20 then

max(a+ b) = a+ 20 (3.91)

and the min(a+ b) for ∀(b ∈ [15, 20]
′
) occurs when b = 15 then
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min(a+ b) = a+ 15 (3.92)

So, ∧(b ∈ [15, 20]
′
)[a+ b, a+ b] = [a+ 20, a+ 15].

2. Let us obtain ∨(a ∈ [10, 20]
′
)[a + 20, a + 15]. As the minimun value for

the function min(a+ 20) for ∀(a ∈ [10, 20]
′
) occurs when a = 10 then

min(a+ 20) = 30 (3.93)

and max(a+ 15) for ∀(a ∈ [10, 20]
′
) occurs when a = 20 then

max(a+ 15) = 35 (3.94)

Therefore z∗(a, b) = f∗([10, 20], [20, 15]) = [30, 35]. Which is proper.
Therefore, the semantic interpretation is

∀(a ∈ [10, 20]
′
)∃(b ∈ [15, 20]

′
)∃(z ∈ [30, 35]

′
)(a+ b = z) (3.95)

theorem 3.2. (f∗∗ Semantic theorem). Given a modal interval vector
A ∈ I∗(Rn), a function f : Rn → R continuous on A

′
, and F (A) ∈ I∗(R)

then,

f∗∗(A) ⊇ F (A) ⇔ ∀(ai ∈ A′
i)Q(z ∈ Dual(F (A)))∃(ap ∈ A

′
p)(z = f(ap, ai))

(3.96)

We can see that the f∗∗ semantic theorem can be obtained from f∗,
through the complement of f∗. In this case, the improper components are
universally quantified and proper components of form existential. The modal-
ity of z is also exchanged with the dual operator.

�

Example 3.6.Given the function f = a+ b and a = [1, 2] and b = [5, 7]
proper intervals, to perform the arithmetic operation we obtain:

f = [1, 2] + [5, 7] = [6, 9] (3.97)

in the context of Classic Interval Arithmetic the semantic interpretation
corresponds to:
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∀(a ∈ [1, 2]
′
)∀(b ∈ [5, 7]

′
)∃(f ∈ [6, 9]

′
)(f = a+ b) (3.98)

That is, for all a ∈ [1, 2] and for all b ∈ [5, 7] exist values within the
interval f ∈ [6, 9] that satisfies the function f = a+ b.

in addition to this one, in the context of Modal Interval Analysis the f∗∗

semantic interpretation is as follows:

∀(f ∈ [6, 9]
′
)∃(a ∈ [1, 2]

′
)∃(b ∈ [5, 7]

′
)(a+ b = f) (3.99)

as the intervals a and b are propers, then a and b are existentially quan-
tified according to the f∗∗ semantic theorem. The result computed to f is
[6, 9] and corresponds with the existential quantifier according to the f∗ se-
mantic theorem but its modality is exchanged with the dual operator to be
interpreted correctly with the f∗∗ semantic theorem. So, f is universally
quantified. That is, exist values within a ∈ [1, 2] and b ∈ [5, 7] such that any
value within the interval f ∈ [6, 9] can be achieved.

Unfortunately, the computation of the f∗ and f∗∗ extensions is in general,
a difficult challenge. Therefore the usual procedure is to find overbounded
computations of f∗ and underbounded computations of f∗∗ which maintain
the semantic interpretations Gardeñes et al. (1985); Armengol (1999).
A representation between the f∗(A) and f∗∗(A) extensions and F (A) can
be seen in Figure 3.21.

Fig. 3.21. f∗(A) ⊆ F (A) ⊆ f∗∗(A).
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Another form to compute the f∗ extension is with the FSTAR algorithm
Herrero et al.(2005). This algorithm obtains an overbounded and under-
bounded covering to f∗. The basic algorithm consists in the following steps.

The parameters vector is grouped in proper (u) and improper (v) compo-
nents. The proper (u) and improper (v) components are divided in cells and
strips. For each cell, an inner and outer aproximation is computed through
tests of monotonicity of the interval function. The Meet operator is applied
to compute an inner and outer aproximation for each strip from inner and
outer aproximations of cells.

Out(Strip1) = ∧(Out(Cell11), Out(Cell12))
Inn(Strip1) = ∧(Inn(Cell11), Inn(Cell12)) (3.100)

Finally, the Join operator is applied to compute the inner and outer aprox-
imations to f∗ from inner and outer aproximations of previous strips. In equa-
tion 3.101 the operations are indicated. See in appendix a basic example.

Outer(f∗) = ∨(Out(Strip1), .., Out(Stripj))
Inner(f∗) = ∨(Inn(Strip1), .., Inn(Stripj)) (3.101)

3.3.4 Applications of the Modal Interval Analysis

In the literature regarding to these approaches, there are different contribu-
tions and applications for the robust control of dynamic systems using tools
based on modal intervals. Veh́ı and Sainz Veh́ı and Sainz (1999) proposed
necessary and sufficient conditions for robust stability, Armengol Armengol
(1999) applied the Modal Interval Analysis to the simulation of the dynamic
behavior of the systems with uncertain parameters. An algorithm based on
Modal Interval Analysis was developed to obtain error-bounded envelopes
applied to failures diagnosis. Inner and outer approximations to the range
of the functions at each time point were computed. The algorithm applied
theorems of partial and optimal coercion to the monotonic variables in order
to compute the range of the functions.

In 1997, Malan Malan et al. (1997) carried out the robust analysis
and design of control systems using classic interval arithmetic, and in 1998
Veh́ı Veh́ı (1998) applied for the first time the Modal Interval Analysis to
the field of control engineering, developing a modal interval formulation of
the problem of robust control for linear systems with parametric uncertainty.
Different semantic theorems of the modal interval theory and the results of
optimality to rational functions were applied to obtain necessary and suffi-
cient conditions for robust stability. A feedback control system indicated in
Figure 3.22 was considered, with an uncertain system G(s,q) of the form
indicated in equation (3.102)
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G(s,q) = αo(q)+α1(q)s+...+αm(q)sm

βo(q)+β1(q)s+...+βn(q)sn
(3.102)

Fig. 3.22. Feedback uncertain system.

with coefficients αi and βj depending arbitrarily of a structured distur-
bance characterized by the vector of parameters q = [q1 q2 ... ql]

T where
every parameter is bounded within an uncertainty domain as follows:

Q =
{
q = [q1 q2 ... ql]

T |qi ∈ [q
i
, qi], i = 1, ..., l

}
(3.103)

C(s,k), is a feedback controller that depends on the vector of parameters
k.

k = [k1 k2 .. kl]T (3.104)

the problem of design was searching and evaluating some fixed values to
the parameters ko = [ko1 ko2 .. kol ] of the feedback controller such that the
closed-loop system satisfies some specifications of robustness.

In Veh́ı (1998) it was showed that the performance specifications of
controlled system can be expressed in terms of a closed-loop characteristic
polynomial p(s,q,k) or in terms of domain frequency. In both cases they
are reduced to a set of inequalities to satisfy. In the following equation an
inequalities is indicated

fi(α,q,k) > 0, ∀α ∈ A, ∀q ∈ Q, ∀k ∈ K (3.105)

where A is the variation interval of the generalized frequency α, and K
can be a nominal controller ko or a certain domain in the parameters space
of the controller depending on the considered problem. With this formulation
different problems from the robust control were raised:

1. Verification of the specifications fulfillment. Given the uncertain system
G(s, q) and variation domain of the plant parameters Q, verify if the
designed controller C(s,ko) fulfills the robustness specifications:
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fi(α,Q,k
o) > 0 (3.106)

A representation of the problem is indicated in Figure 3.23. As we see
the problem is related to find the achievable specifications by a nominal
controller under parametric uncertainty.

Fig. 3.23. Verification of the fulfillment of specifications.

2. Calculation of the robustness margin: Given a nominal plant, G(s, qo),
to prove the maximum domain Q∗ so that the designed controller fulfills
the robustness specifications:

fi(α,Q
∗,ko) > 0 (3.107)

A representation of the problem is indicated in Figure 3.24. In this prob-
lem the admissible maximum uncertainty by a nominal controller is ob-
tained.

Fig. 3.24. Calculation of the robustness margin.

3. Design of a robust controller: Assuming certain structures of the con-
troller, and variation domain of the plant parameters Q, prove a fixed
controller C(s,ko) so that the closed-loop controlled system fulfills the
robustness specifications:

fi(α,Q,k
o) > 0 (3.108)

A representation of the problem is indicated in Figure 3.25. This problem
is similar to the first one.
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Fig. 3.25. Design of a robust controller.

4. Obtaining a setK of robust controllers: Given an uncertain plant G(s, q),
the variation domain of the plant parameters,Q, and the controller struc-
ture, find the set of robust controllers K so that C(s,K) fulfills the
robustness specifications:

fi(α,Q,K) > 0 (3.109)

the last problem corresponds with finding the controllers space under
parametric uncertainty.

Fig. 3.26. Obtaining a set ϑk of robust controllers.

In Veh́ı et al. (2000) the robustness analisys of predictive controllers
via modal intervals was studied.

In Bondia et al. (2006), the Modal Interval Arithmetic was applied to
the robust controller design under fuzzy pole-placement specifications. The
design problem was raised as a fuzzy set inclusion problem between a set of
closed-loop fuzzy specifications and a closed-loop characteristic polynomial.
The closed-loop controller parameters were found so that closed-loop image
of the fuzzy plant are including within the closed-loop fuzzy specifications.

In Sainz et al. (2008) a new approach to the solution of continuous
unconstrained and constrained minimax problems over real was introduced,
using tools based on modal intervals. For instance, if z = f(x1, .., xn) is a
continuous function of Rn to R defined in a n-dimensional interval domain
X = U × V ,

• the unconstrained minimax problem consists of finding a point x∗minimax ∈
U × V such that

f(x∗minimax) = min︸︷︷︸
u∈U

max︸︷︷︸
v∈V

f(x)
(3.110)
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together with the minimax value f(x∗minimax).
• the constrained minimax problem consists of finding x∗minimax such that

f(x∗minimax) = min︸︷︷︸
u∈U

max︸︷︷︸
v∈V

f(x),
(3.111)

subject to the constraints

gr(x
∗
minimax) ≤ 0 (r = 1, ...,m), (3.112)

where gr are continuous functions defined in X.

3.4 Constraints Satisfaction Problems

Constraint Satisfaction Problems (CSP) emerged in the field of artificial in-
telligence. In the Tsang’s Book Tsang (1993) the foundations of Constraint
Satisfaction Problems and solution techniques can be consulted. Three tech-
niques to solve CSP are mentioned: problem reduction, search and solution
synthesis.

Problem reduction is a class of techniques to transform a continuous real
CSP into problems which are easier to solve, reducing the size of the domains
of the variables and constraints in the problems.

In solutions search, the basic operation is to assign a value from the pa-
rameters space to the variables and to verify if all the constraints are satisfied.
If all the constraints are satisfied, the value is a solution. If a constraints is
violated, a new value is assigned to the variables and one evaluates the con-
straints again.

Solution synthesis, are algorithms which explore multiple branches simul-
taneously to search solutions.

Shary Shary (2002), defined a numerical Constraint Satisfaction Prob-
lem as a triple CSP = (x,D,C(x)) where

1. a set of numeric variables x = x1, ..., xn,
2. a set of domainsD = D1, ..., Dn whereDi, a set of intervals, is the domain

associated with the variable xi,
3. a set of constraints C(x) = C1(x), ..., Cm(x) where a constraint Ci(x)

is determined by any numerical relation (equation, inequality, inclusion,
etc.) linking a set of variables under consideration.

A solution to a numeric constraint satisfaction problem is an instantiation
of the variables of x for which both inclusion in the associated domains and
all the constrains of C(x) are satisfied.

A Set Inversion Via Interval Analysis (SIVIA) Algorithm was introduced
by Jaulin and Walter Jaulin and Walter (2004), is well known as a
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paradigm of interval analysis, is also suited for approximating solution sets
of the form (3.113) by means of sub pavings (sets of non overlapping boxes).

Σ = {x ∈ X
′ |f(x) ≤ 0} (3.113)

where f is a continuous function from Rn to Rm. The SIVIA algorithm
combines branch-and-bound techniques with the following two rules to de-
termine if a box x is contained in the solution set Σ or if x does not intersect
with Σ.

Rule 1 : ∀(x ∈ X
′
)f(x) ≤ 0 ⇐⇒ X

′ ⊆ Σ (3.114)

The rule 1 is used to prove that a box X
′
is contained in the solution set.

Rule 2 : ∀(x ∈ X
′
)¬(f(x) ≤ 0) ⇐⇒ X

′ ⊆ Σ (3.115)

The rule 2, is used to prove that a box X
′
does not belong to the solution

set. Σ is defined as a complementary of the solution set. The SIVIA algorithm
is able to solve a subset of QCSPs, that is to say, CSPs. An example where
we can apply the SIVIA algorithm is given below.

Example 3.7.Given a constrained function x1u − x2v
2sin(x1) > 0 and

intervals for x1 ∈ [−10, 10], x2 ∈ [−10, 10], v ∈ [−2, 2] and u ∈ [−1, 1] we
desire to find value sets for x = {x1, x2, v, u}, such that the constrained
function x1u − x2v

2sin(x1) > 0 is greater than zero. The basic approach of
the SIVIA algorithm is to divide the parameters space x1, x2, v and u and
prove for each partition if the constraint is verified. If the constraint is verified
then the partition is stored in a solution set, in other cases the partition is
devided and the process is repeated until certain precision is reached on the
division.

The solution set, can be expressed as follows:

Σ = {x ∈ X
′ |x1u− x2v

2sin(x1) > 0} (3.116)

Being X
′
= {X ′

1,X
′
2,V

′
,U

′} the set of domains of variables x =
{x1, x2, v, u}. We found the results indicated in Figures 3.27 and 3.28. In
Figure 3.27 x1 and x2 is plotted with v and in Figure 3.28 x1 and x2 is
plotted with u.

3.5 Quantified Constraints Satisfaction Problems

A Quantified Constraint (QC) Herrero et al. (2005), is an algebraic ex-
pression over the real numbers which contains quantifiers (∃, ∀), predicate
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Fig. 3.27. Solution set x1, x2, v from Constraint Satisfaction Problem (CSP) con-
sidering intervals u ∈ [−1, 1], v ∈ [−2, 2], x1 ∈ [−10, 10], x2 ∈ [−10, 10] and the
constrained function (x1u− x2v

2sin(x1) > 0).
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Fig. 3.28. Solution set x1, x2, u from Constraint Satisfaction Problem (CSP) con-
sidering intervals u ∈ [−1, 1], v ∈ [−2, 2], x1 ∈ [−10, 10] and x2 ∈ [−10, 10] and
constrained function (x1u− x2v

2sin(x1) > 0).
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symbols (e.g.,=, <,≤), function symbols (e.g.,+,−, x, sin, exp), constants
and variables x = x1, ..., xn ranging over real domains D = D1, ...,Dn.

An example of a quantified constraint is the following one,

∀(x ∈ R)(x4 + px2 + qx+ r ≥ 0), (3.117)

where x is an universally quantified variable ∀ and p, q and r are free
variables.

In a Constraint Satisfaction Problem (CSP) all variables are existentially
quantified. CSP is a particular case of a QCSP that can be used to model
problems containing uncertainty. The uncertainty is indicated with the uni-
versally quantified variables. Universal variables are used to model actions or
events which are uncertain or are not in our control. In a QCSP we try to find
solution sets, searching values in the existential variables for all possible se-
quences of instantiations for the universal variables so that all the constraints
in the problem are satisfied Gent et al. 2008.

Supposing that the constraints C(x,p) depend on some parameters
p1, p2, ..., pl in which it is only known that they belong to some inter-
vals P1, P2, ..., Pl. Moreover, these parameters have an associated quantifier
Q ∈ ∀, ∃. Taking into account the dual character of interval uncertainty, the
most general definition of the set of solutions such Quantified Constraint
Satisfaction Problem (QCSP) will have the form

∑
= {x ∈ D|(Q1pσ1 ∈ Pσ1)...(Qlpσl ∈ Pσl)C(x,p)}, (3.118)

where

• each Qi is logical quantifier ∀ or ∃,
• p = {p1, p2, ..., pl} is the set of parameters of the constraints system con-
sidered.

• P = {P1, P2, ..., Pl} is a set of intervals containing the possible values of p,
• σ = (σ1, σ2, ..., σl) is a permutation of the numbers 1, ..., l.

The sets of the form (3.118) will be referred as quantified solution sets to
the Quantified Constraints Satisfaction Problem.

When the set of solutions to solve are of the form (3.118) the SIVIA
algorithm is not able to solve this kind of problems in a direct way . The
problem of characterizing the sets of the form (3.118) will be referred as
quantified set inversion (QSI) Herrero et al. (2005). Let us develop two
examples to explain the QSI algorithm.

Example 3.8.Given the constrained function x1u− x2v
2sin(x1) > 0, we

desire to find the set of values for x1 and x2 for all u within interval u ∈ [−1, 1]
such that exists a set of values within v ∈ [−2, 2] and the constrained function



78 3 Preliminaries

is greater than zero. Quantified constrained function can be expressed as
follows:

∀(u ∈ [−1, 1]
′
)∃(v ∈ [−2, 2]

′
)(x1u− x2v

2sin(x1) > 0) (3.119)

In this kind of QCSPs, when a parameter is universally quantified means
that we can use all the range of the parameter in the algorithm to determine
solution sets. If the parameter is existentially quantified means that we will
search solution sets within interval such that the constraints are satisfied.
We also search solution sets within the free variables (x1, x2) such that the
constraints are satisfied. To apply the above approach to the QSI algorithm,
we found solution sets to x1 and x2 and solution regions to v as it is indicated
in Figures 3.29 and 3.30 respectively.
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Fig. 3.29. Solution set x1, x2 from Quantified Constraint Satisfaction Problem
(QCSP) ∀(u ∈ [−1, 1]

′
)∃(v ∈ [−2, 2]

′
)(x1u − x2v

2sin(x1) > 0). The red boxes
represent solution set, yellow boxes are outside of the solution set and black boxes
are undefined.

Example 3.9.From constrained function x1u−x2v2sin(x1) > 0, we desire
to find the set of values for x1 and x2 for all u within interval u ∈ [−1, 1]
and for all v ∈ [−2, 2] such the constrained function is greater than zero.
Quantified constrained function can be expressed as follows:

∀(u ∈ [−1, 1]
′
)∀(v ∈ [−2, 2]

′
)(x1u− x2v

2sin(x1) > 0) (3.120)

to treat of solve the previous problem, we do not find solutions. If the
modality of a parameter is changed from existential to universal as it is the
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Fig. 3.30. Solution set x1, x2, v from Quantified Constraint Satisfaction Problem
(QCSP)∀(u ∈ [−1, 1]

′
)∃(v ∈ [−2, 2]

′
)(x1u− x2v

2sin(x1) > 0).

case of v , then the problem is more restrictive. In Figure 3.30 we can see
that within v there are holes and it is not possible to satisfy the constraints
for all the range of v and u and for all the set of possible values of x1 and x2
within the intervals x1 ∈ [−10, 10] and x2 ∈ [−10, 10] respectively.

In particular, quantified solution sets where universal quantifiers are con-
strained to precede existential quantifiers are called ∀∃- solution set Shary
(2002);Goldsztejn and Chabert (2006).

Recently, a technique to solve QCSPs where the existentially quantified
variables precede to the universally quantified variables was proposed by
Goldsztejn Goldsztejn et al. (2009). The approach consists in finding all
the possible values for the existentially quantified variables that satisfy the
constraints. A point of the universally quantified variables was used in the
constraints and the QCSP is transformed to a classical CSP equivalent and
the constraints are expressed solely with the existentially quantified variables.

Formaly, the form of QCSPs where existential quantifiers precede to the
universal quantifiers is expressed as follows:

∃(x ∈ x
′
), ∀(y ∈ y

′
), c1(x, y)∧, ...,∧cp(x, y) (3.121)

where x = (x1, ..., xn) and y = (y1, ..., ym) denote vectors of vari-
ables, x

′
= (x

′
1, ...,x

′
n) and y

′
= (y

′
1, ...,y

′
m) represent vectors of intervals

over continuous domains and the constraints ci are inequalities of the form
fi(x, y) ≤ 0. We want to find solutions within the existential variables that
satisfy the constraints. The solution set of (3.121) is defined as follows:

∑
∃∀ := {x ∈ x : ∀(y ∈ y

′
) ci(x, y)∧, ...,∧cp(x, y)} (3.122)
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Example 3.10.Let us consider the following QCSP

∃(x ∈ x
′
), ∀(y ∈ y

′
), f(x, y) ≤ 0 (3.123)

being f(x, y) = 5y − x − y3, y
′
= [0, 1] and x

′
= [0, 15], determine the

values of x that satisfy the constraint. We are going to consider a point of y
for instance y = [1, 1]. If we replace this point in the function f(x, y),

f(x, y) = 5 ∗ [1, 1]− x− [1, 1] ∗ [1, 1] ∗ [1, 1] ≤ 0
f(x, y) = [5, 5]− x− [1, 1] ≤ 0

(3.124)

The QCSP is transformed to a CSP as follows:

∃(x ∈ x
′
), f(x) ≤ 0 (3.125)

being f(x) = 5 − x − 1. In the constraint f(x) ≤ 0 we can see that the
solution set of x that satisfies the constraint is x = [4, 15].

Shary Shary (2002) solves static control problems raised as QCSP’s.
Consider a linear interval system of the following form

F (a, x) = b (3.126)

being x ∈ Rn a real vector, a ∈ Rl the system inputs and b ∈ Rm the
system outputs. The inputs to the system are divided in two groups

• perturbations a1, ..., ar, which vary within intervals a1, ..., ar independently
of our will, and

• controls ar+1, ..., al which we can choose from intervals ar+1, ..., al.

The set of all the system outputs are divided in:

• the components b1, b2, ..., bs that we must be able to transform to any values
from prescribed attainability intervals b1, ...,bs, and

• the components bs+1, ..., bm that must certainly fall into some intervals
bs+1, ...,bm

The outputs of the first type are considered as controlled outputs while the
outputs of the second type as stabilized outputs. In Figure 3.31 the structural
scheme is depicted.

With respect to the system inputs, the logical quantifiers are assigned
taking into account the following considerations

1. The inputs that are not under our control, being external uncontrolled
disturbances, correspond to the quantifier (∀), and
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Fig. 3.31. Structural scheme of a static control system.

2. The inputs that we are able to vary within prescribed intervals or are
under our control, correspond to the quantifier (∃).
With respect to the system outputs

1. Stabilization regions of the system in which it is required to ensure its
functioning irrespective of values of the disturbances, correspond to the
quantifier (∃), and

2. Attainability sets of the system whose every element is covered as the
result of an appropriate choice of the controlled factors, correspond to
the quantifier (∀).
From linear interval system (3.126), find the set of all states x from its

inputs a and outputs b can be expressed as follows. Given the control in-
puts inside the intervals ar+1 ∈ a

′
r+1, ..., al ∈ a

′
l. Consider any perturba-

tions a1 ∈ a
′
1, ..., ar ∈ a

′
r such that for any a priori given output values

b1 ∈ b
′
1, ..., bs ∈ b

′
s the response of the system F (a, x) would be exactly

equal to b1, ..., bs in the controlled outputs and would be inside b
′
s+1, ..., b

′
m

in stabilized outputs. Under this setting the problem of finding the region
of the state space where all these constraints apply can be expressed, using
universal (∀) and existential (∃) quantifiers. The first order predicate calculus
corresponds to:

for any a1 ∈ a
′
1, ..., ar ∈ a

′
r and for any b1 ∈ b

′
1, ..., bs ∈ b

′
s there exist

ar+1 ∈ a
′
r+1, ..., al ∈ a

′
l such that F1(a, x), ..., Fs(a, x) are equal to b1, ..., bs

and Fs+1(a, x), ..., Fm(a, x) are inside b
′
s+1, ...,b

′
m.

This can be equivalently rewritten with the following predicate (logical
formula):

∀(a1 ∈ a
′
1)...∀(ar ∈ a

′
r)∀(b1 ∈ b

′
1)...∀(bs ∈ b

′
s)

∃(ar+1 ∈ a
′
r+1)...∃(al ∈ a

′
l)∃(bs+1 ∈ b

′
s+1)...∃(bm ∈ b

′
m)(F (a, x) = b)
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(3.127)

That is to say, the set of all states x satisfying the constraints of the
problem is described as follows

∑
∀∃ := {x ∈ Rn|∀(a1 ∈ a

′
1)...∀(ar ∈ a

′
r)∀(b1 ∈ b

′
1)...∀(bs ∈ b

′
s)

∃(ar+1 ∈ a
′
r+1)...∃(al ∈ a

′
l)∃(bs+1 ∈ b

′
s+1)...∃(bm ∈ b

′
m)(F (a, x) = b)}

(3.128)

An example is developed as follows:

Example 3.11.Consider the interval linear system (3.129) Shary (2002).

a11x1 + a12x2 ⊆ b1
a21x1 + a22x2 ⊆ b2

(3.129)

In this example we included the inclusion operator ⊆. Consider the inter-
vals indicated in the following table

Parameters Intervals
a11 [2, 4]
a12 [−2, 1]
a21 [−1, 2]
a22 [2, 4]
b1 [−2, 2]
b2 [−2, 2]
x1 [−1, 1]
x2 [−1, 1]

A Quantified Constraints Satisfaction Problem can be raised as follows:

1. Find Σ∀∃-solution sets to free variables x1 and x2 from interval linear
system (3.129) such that for any a11, a12 and a21 within the intervals
a

′
11, a

′
12 and a

′
21, there exist some values to a22, b1 and b2 within the

intervals a
′
22, b

′
1 and b

′
2 and that constraints are satisfied. So, the kind

of quantifiers assigned to the parameters correspond to the indicated in
Table 3.1.
The previous QCSP can be expressed of the following form:

Σ∀∃ = {x1 × x2|∀(a11 ∈ a
′
11)∀(a12 ∈ a

′
12)∀(a21 ∈ a

′
21)

∃(a22 ∈ a
′
22)∃(b1 ∈ b

′
1)∃(b2 ∈ b

′
2)

a11x1 + a12x2 ⊆ b1∧
a21x1 + a22x2 ⊆ b2}

(3.130)

In Figure (3.32) the results are indicated.
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Parameters quantification

a11 ∀
a12 ∀
a21 ∀
a22 ∃
b1 ∃
b2 ∃

Table 3.1. Quantifiers assigned to the parameters to the problem one
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Fig. 3.32. Σ∀∃-solution sets, obtained with quantifiers of the Table (3.1).

2. Now, let us exchange the kind of quantification to a12 from universal
(∀) to existential (∃) keeping unchanged the kind of quantification of the
others parameter as it is indicated in Table 3.2.

Parameters quantification

a11 ∀
a12 ∃
a21 ∀
a22 ∃
b1 ∃
b2 ∃

Table 3.2. Quantifiers assigned to the parameters to the problem two.

The solution set for this case is expressed as:
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Σ∀∃ = {x1 × x2|∀(a11 ∈ a
′
11)∀(a21 ∈ a

′
21)∃(a12 ∈ a

′
12)

∃(a22 ∈ a
′
22)∃(b1 ∈ b

′
1)∃(b2 ∈ b

′
2)

a11x1 + a12x2 ⊆ b1∧
a21x1 + a22x2 ⊆ b2}

(3.131)

When we exchange the kind of quantification from universal (∀) to ex-
istential (∃) as is the case of the parameter a12 we find solution sets
more extended. In Figure (3.33) we observe that solution sets includes
the paving obtained with quantifications from Table 3.1.
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Fig. 3.33. Σ∀∃-solution, obtained with quantifiers of the Table 3.2.

An example of (QCSP) directly related to the thesis is solving with Quan-
tified Set Inversion Algorithms (QSIA) an inclusion function f(ϑp, ϑk) ⊆
γ(ϑs) being ϑk a set of parameters representing a family of controllers, ϑp a
family of plants and ϑs a set of desired specifications. We are interested in
obtaining solution sets referred to controllers, attainable specifications and
maximum allowable uncertainty by the controllers. The problems are:

1. To find the maximum admissible uncertainty (ϑp(∀)) by a nominal con-
troller (ϑk(∃)) ensuring that some specifications are met (ϑs(∃)) and the
constraints are satisfied. The previous problem is expressed as follows:

∀(ϑp ∈ ϑ
′
p)∃(ϑk ∈ ϑ

′
k)∃(ϑs ∈ ϑ

′
s)(f(ϑk, ϑp) ⊆ γ(ϑs)) (3.132)

2. To determine the family of controllers (ϑk(∀)) that could ensure that
some specification are met (ϑs(∃)) and the constraints are satisfied under
parametric uncertainty in the plant (ϑp(∀)). The semantic is as follows:

∀(ϑk ∈ ϑ
′
k)∀(ϑp ∈ ϑ

′
p)∃(ϑs ∈ ϑ

′
s)(f(ϑk, ϑp) ⊆ γ(ϑs)) (3.133)
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3. To determine the achievable specifications (ϑs(∀)) by a nominal controller
(ϑk(∃)), satisfying the constraints under parametric uncertainty in the
plant (ϑp(∀)). The semantic corresponds to:

∀(ϑs ∈ ϑ
′
s)∀(ϑp ∈ ϑ

′
p)∃(ϑk ∈ ϑ

′
k)(f(ϑk, ϑp) ⊆ γ(ϑs)) (3.134)

3.6 Conclusions

This Chapter has presented the most important properties of the flatness
theory, flatness-based approach on dynamic optimization and flatness in the
context of parametric uncertainty. It has been determined that the state vari-
ables and control signals are expressed in terms of specification parameters
and process parameters when the admissible nominal trajectories of the flat
outputs and its derivatives are expressed in terms of the specification pa-
rameters. The problems of robust control, have been proposed as Quantified
Constraints Satisfaction Problems. Constraints are expressed by using set
inclusion operators and quantified variables.





4 Approach to robust possibilistic control of

nonlinear flat systems

In this Chapter we present basic aspects of possibility levels as well as the
approach of robust possibilistic control expressed as set inclusion problems.
A formal presentation on how to propose Quantified Constraints Satisfaction
Problems for nonlinear flat systems is given.

4.1 Levels of possibility

Possibility theory emerged as a natural tool for modeling and dealing with un-
certainty related to express knowledge in a natural language and represented
by fuzzy propositions Zadeh (1999); Dubois et al. (2003). In possibil-
ity theory, the available information is represented by means of possibility
distributions. On an universe of discource U with elements u ∈ U , some
fuzzy subsets Ai can be represented as it is indicated in Figure 4.1. Where
μAi , i = 1, 2, 3, 4 are member functions for each fuzzy subset.

Fig. 4.1. Fuzzy subsets.

A fuzzy subset Ai can be assigned to a variable X , this denomination can
be written as:
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X = μAi(u) (4.1)

where μAi(u) is interpreted as the degree to which the fuzzy subset Ai is
satisfied.

In 1978 Zadeh Zadeh (1978) proposed to represent pieces of information
by means of possibility distributions. Elementary propositions such ”X is Ai”
is a fuzzy predicate and X is the variable (ranging on a domain U). The main
role of possibility distributions is to discard states of affairs inconsistent with
the available knowledge. Indeed, πx(u) = 0 means that the assignmentX = u
is totally excluded if the statement ”X is Ai” is taken for granted.

If μAi denotes the membership function of the fuzzy set Ai on U , and πx
denotes a possibility distribution on U , Zadeh proposed the equality πx = μAi

expressing the statement ”X is Ai” and induces to a possibility distribution
that can be equated with μAi .

The definition of πx(u) implies that the degree of possibility may be any
number in the interval [0, 1] rather than just 0 or 1. In this connection, it
should be noted that the existence of possibility intermediate degrees is im-
plicit where commonly encountered propositions as ”There is a slight possi-
bility that Marilyn is very rich”, ”It is quite possible that Jean-Paul will be
promoted”, ”It is almost impossible to find a needle in a haystack”, etc.

The possibility distribution functions can be expressed by means of fuzzy
sets. In fuzzy sets, one assigns a so-called membership functions μAi(u), tak-
ing values in [0, 1] to each element u of a given domain U .

A membership function can take any arbitrary form. A representation
that combines simplicity and expressiveness is the trapezoidal one.

If the domain U corresponds to the space of values of a given parameter,
the membership function assigns grades of possibility to the different values
that the parameter can potentially take.

Formally, if the discourse universe, U , it is discrete and finite, and the
membership function is denoted as μAi = μÃ, then the fuzzy set Ai = Ã it
is represented as the following form Bondia (2002)

Ã =
∑m

i=1 μÃ(ui)/ui (4.2)

The height of a fuzzy set Ã is defined as the maximum value of the
membership function μÃ, ie:

hgt(Ã) := sup︸︷︷︸
u∈U

μÃ(u) (4.3)

The core of a fuzzy set Ã is the set of U elements with membership
function values equal to the unit, ie
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core(Ã) := {u ∈ U |μÃ(u) = 1} (4.4)

The support of a fuzzy set Ã is the set of U elements with membership
function values non-zero, ie

supp(Ã) := {u ∈ U |μÃ(u) > 0} (4.5)

Example 4.1.A fuzzy set Ã with membership function πÃ(u) = μÃ(u)
of trapezoidal type is indicated in Figure 4.2

Fig. 4.2. Trapezoidal fuzzy set.

Some discrete elements of the membership function are listed in the fol-
lowing table,

u πÃ(u) μÃ(u)
1 0.1 0.1
2 0.53 0.53
3 1 1
4 1 1
5 1 1
6 0.53 0.53
7 0.1 0.1

In Figure 4.2, it is verified that core(Ã) := {u ∈ U |μÃ(u) = 1} for

{3 ≤ u ≤ 5} and supp(Ã) := {u ∈ U |μÃ(u) > 0} for {1 ≤ u ≤ 7}.
A fuzzy set Ã can be represented by the set of all its cuts Terano et al.

(1992); Bondia (2002), as a stack of closed intervals of the form:
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Ã =
⋃

α∈(0,1]

α[A−
α , A

+
α ] =

⋃
α∈(0,1]

α[Ã]α (4.6)

where α[A−
α , A

+
α ] represents the fuzzy set whose support is the α-cut

[A−
α , A

+
α ], denoted as [Ã]α and the level of constant membership equal to

α.

Fig. 4.3. α-cuts.

4.2 The robust possibilistic control approach

The main objetive of robust control is to develop feedback control laws that
are robust against plant model uncertainties and changes in dynamic con-
ditions. A system is robustly stable when the closed-loop is stable for any
chosen plant within the specified uncertainty set, and a system has robust
performance if the closed-loop system satisfies the performance specifications
for any plant model within the specified uncertainty description.

The robust possibilistic control for fuzzy plants was introduced by Bondia
Bondia et al. 2005. A fuzzy set in a linear plant space was used to associate
a possibility to each member in the family of plants. A controller was designed
with the purpose of achieving a fuzzy specification set. The core of the fuzzy
specifications set was denominated as the hard specifications to be achieved
by the more possible plants, while the support was denominated as the soft
specifications representating the minimum specifications to be achieved for
all the plants in the family.
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Concerning the design problem, given a fuzzy plant P̃ and a set of fuzzy
specifications S̃, the family of controllers K̃ was obtained by solving a fuzzy
set inclusion problem of the form

J(P̃ , K̃) ⊆ S̃ (4.7)

being J(P̃ , K̃) a fuzzy set of the different performances achieved by the
family of controllers K in terms of the possibility of the different plants in
the family.

The inclusion in (4.7) corresponds to the fuzzy sets inclusion (Ã ⊆ B̃ ↔
μÃ(x) ≤ μB̃(x), ∀x).

In terms of α-cuts denoting as P̃α and S̃α to the appropriate α-cuts, the
equation (4.7) corresponds to:

J(P̃α, K̃α) ⊆ S̃α (4.8)

In this form, the family of controllers applies a set of fuzzy plants and
specifications, getting good performance for more possible plants(core), and
guaranteeing a minimum performance for any possible plant.

The solution of the equation (4.7) requires a discretization at the mem-
bership level α. In many practical cases the definition of only two levels can
be perfectly feasible considering only the worst and best plant family cases
and a set of hard and soft specifications.

In this thesis the inclusion relations are between specification spaces,
states, controllers and plants as it was specified in equation (3.44). In order
to guarantee the fulfillment of specifications we will quantify the variables
involved in the process. The technique to carry out these quantifications and
the formal proposal of the different problems from the robust control point
of view will be presented in the following sections.

4.3 Quantified set inversion

One way of solving a QCSP is through the characterization of its solution set
by means of a Quantified Sets Inversion Algorithm Herrero et al. (2005).

We will focus in proposing and solving Quantified Constraints Satisfaction
Problems considering interval functions f∗ that contain inclusion relations of
the form

f∗(X,U ,V ) ⊆ Z (4.9)

where f∗ is an interval function, X,U are proper components and V
improper components. Z is a given interval. We are going to find all the
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solution sets X such that the constraints are fulfilled taking into account
different types quantification of the variables.

That is to say, to find solution sets related to the ∗- semantic:

∀(x ∈ X
′
)∀(u ∈ U

′
)∃(v ∈ V

′
)f∗(x,u,v) ⊆ Z (4.10)

The solution set X is represented in equation(4.11)

Rule 1 : Σ∀∃ = {x ∈ X
′ |∀(u ∈ U

′
)∃(v ∈ V

′
)f∗(x,u,v) ⊆ Z} (4.11)

when the interval inclusion is fulfilled by an outer approximation of the
∗- semantic extension as it was explained in equation (3.101), then we can
specify: f∗(X,U ,V ) ⇒ Outer(f∗(X,U ,V )). So, Σ∀∃ corresponds to the
following expression:

Σ∀∃ = {x ∈ X
′ |∀(u ∈ U

′
)∃(v ∈ V

′
)(Outer(f∗(x,u,v))) ⊆ Z} (4.12)

We will evaluate set of boxes X to verify that they are not inside solution
sets. If solution sets from equation (4.11) exist, and if we use a solution box
of the resulting set, then the kind of quantification for the box X can be
existential (∃) and the corresponding semantics is:

∀(u ∈ U
′
)∃(x ∈ X

′
)∃(v ∈ V

′
)f∗(x,u,v) ⊆ Z (4.13)

Now, let us to obtain the set complement of the expression (4.13). We can
verify with semantics (4.14) whether a box X belongs or not to the group of
non solution boxes.

¬(∀(u ∈ U
′
)∃(x ∈ X

′
)∃(v ∈ V

′
)f∗(x,u,v) ⊆ Z) (4.14)

applying the negation to the quantifiers of the components U ,X,V as
well as to the inclusion relation ⊆ in equation (4.14), the resultant semantic
is indicated in equation (4.15)

∀(x ∈ X
′
)∀(v ∈ V

′
)∃(u ∈ U

′
)(f∗(x,u,v) �⊆ Z) (4.15)

Thus, the set of boxes that satisfy equation (4.15) are grouped in non
solution boxes

Rule 2 : Σ = {x ∈ X
′
)|∀(v ∈ V

′
)∃(u ∈ U

′
)(f∗(x,u,v) �⊆ Z)} (4.16)

If an inner approximation of the ∗- semantic extension of the continuous
function f∗ is considered, as it was explained in equation (3.101), then we
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can specify: f∗(X,U ,V ) ⇒ Inner(f∗(X,U ,V )). So, Σ corresponds to the
following expression:

Σ = {x ∈ X
′
)|∀(v ∈ V

′
)∃(u ∈ U

′
)(Inner(f∗(x,u,v)) �⊆ Z)} (4.17)

Finally, if none of these rules are met, the box X is undefined

4.3.1 Quantified Sets Inversion Algorithm

The general QSIA Herrero et al. (2005) to solve the QCSPs explained
above is described.

Algorithm 1. Quantified Sets Inversion Algorithm.

QSI-1(In:C,Xo,ε,Out:Σ,ΔΣ)
Initialization: Stack =Xo;Σ := 0;ΔΣ := 0

Repeat
Unstack X;
if Width(X)≤ ε, then

ΔΣ := ΔΣ ∪X;
else
if(Rule 1 is satisfied) then

Σ := Σ ∪X;
else
if(Rule 2 is satisfied)then

has no solutions;
else

Bisect X and Stack resulting Boxes;
Until stack=0;

where

• ε: QSI stops the bisecting procedure overX when this precision is reached,
• Σ: subpaving that represents an inner approximation of the solution set,
• ΔΣ: subpaving represents all the undefined boxes.

The algorithm (1) has five arguments: a set of constraints C, the initial
interval search space X = Xo, a parameter ε to stop the bisecting procedure,
Σ and ΔΣ are output arguments to contain solution sets and undefined sets
respectively. The algorithm begins with an initial box Xo. The first step is to
verify if Width(X) ≤ ε is true. If Width(X) ≤ ε is true, then X will be an
undefined box. If the rule 1 is satisfied, X is a solution box. If the rule 1 is
not satisfied, the rule 2 is tested, if the rule 2 is satisfied, X is a non-solution
box, if the rules 1 and 2 are not satisfied, X is bisected and the boxes are
stored in the stack. The following box X is read from stack and rules are
reevaluated until stack = 0.
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4.4 Set inversion applied to nonlinear flat systems

The problem to solve is related to the design of robust controllers for nonlinear
flat systems. Specifically, considering an uncertain SISO nonlinear flat system
Hagenmeyer and Delaleau (2003b)

ẋ(t) = f(ϑp, x(t), u(t)), x(0) = x0 (4.18)

with time t ∈ R, state x(t) ∈ Rn, parameters ϑp ∈ Rnp and input u(t) ∈
R. The vector field f : Rnp × Rn × R ⇒ Rn is smooth. The uncertainty of
the process parameters ϑp ∈ Rp are considered as intervals, but not exactly
known. It is desired to find the family of possible controllers, in order to
guarantee the satisfaction of specifications Veh́ı (1998); Bondia et al.
(2005); Bondia et al. (2006).

Let us consider the optimization approach based on flatness formulated
in equation (3.44) and rewritten in (4.19)

Max {ϑp|ϑp ∈ [ϑp, ϑp]}

subject to

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cy(ϕx(t, ϑp, ϑs), ψu(t, ϑp, ϑs)) ⊆ γy(t), t ∈ [t0, tf ]

ϕx(t, ϑp, ϑs) ⊆ γx(t), t ∈ [t0, tf ]

ψu(t, ϑp, ϑs) ⊆ γu(t), t ∈ [t0, tf ]

ϑp ∈ [ϑp, ϑp], ϑs ∈ [ϑs, ϑs]

(4.19)

ϑs is a set specification parameters for the flat outputs. ϑp is a set of
intervals for the plants, γy(t) defines a region for the flat output, γx(t) de-
fines bounding regions for the state variables. γu(t) defines bounding regions
for the control input. ϕx(t, ϑp, ϑs) defines interval functions of the state vari-
ables and ψu(t, ϑp, ϑs) interval function of the control input.cy(ϕx(t, ϑp, ϑs),
ψu(t, ϑp, ϑs)) defines general interval functions of the system output.

As it was explicated in Chapter 3, the bounding regions for the flat out-
put γy, states γx and control input γu can be obtained from specification
parameters ϑs and nominal plant ϑp. These bounding regions can be seen
as different objects where we desired maintain the trajectories of the process
output, states and controllers respectively. In other words, we obtain a trans-
formation from hard and soft specifications ϑs to bounding regions in time
γy, γx and γu. A representation is indicated in Figure 4.4.

Grouping the terms of the left side of inclusion relations from equation
(4.19) of the following form:
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Fig. 4.4. Bounding regions for the flat output γy, states γx and control input γu
obtained from specification parameters ϑs and nominal plant ϑp.

C(t, ϑp, ϑs) =

⎡⎣ cy(ϕx(t, ϑp, ϑs), ψu(t, ϑp, ϑs))
ϕx(t, ϑp, ϑs)
ψu(t, ϑp, ϑs)

⎤⎦ (4.20)

and the terms of the right side of the inclusion relations as follows:

Es =

⎡⎣ γy(t)
γx(t)
γu(t)

⎤⎦ (4.21)

Being Es a set of functions to meet: trajectories in the space of the flat
outputs, bounding of the states and control signals, nominal specifications,
etc. Rauh et al. (2005) and C(t, ϑp, ϑs) the set of interval functions for
the system output, states and controllers. If ϑs = {ϑs, ϑo} being ϑo a set
of fixed parameters for the flat outputs then, the set of constraints from
equation (4.19) can be expressed as a unique expression of set inclusion of
the following form.

C(t, ϑp, ϑs, ϑo) ⊆ Es (4.22)

4.4.1 Determining hard and soft uncertainty of the plant

Given hard and soft specifications y = γy(t, ϑs, ϑ̄o), one nominal plant ϑ̄p
and a nominal controller u = ψ(t, ϑ̄s, ϑ̄o, ϑ̄p) ⇒ ψ(t, ϑ̄k), determine two re-
gions of uncertainty of the plant (hard and soft plants) ϑp such that some
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specifications are fulfilled and the constraints are satisfied. A representation
of this supposition is indicated in Figure 4.5.

Fig. 4.5. Determination of hard and soft addmisible uncertainty by a nominal
controller u = ψ(t, ϑ̄s, ϑ̄o, ϑ̄p), given hard and soft specifications y = γy(t, ϑs, ϑ̄o)
and a nominal plant ϑ̄p.

The problem can be posed as a Quantified Constraints Satisfaction Prob-
lem of the form QCSP = (ϑp, D,C(t, ϑp, ϑs, ϑo)). where D is a domain asso-
ciated with the variables. The solution of this kind of problem corresponds to
determine Σ∀∃-solution sets (i.e., all the occurrences of the existential quan-
tifier ∃ are preceded by the occurrences of the universal quantifier ∀) of all
the parameters of the process ϑp such that the constraints C(t, ϑp, ϑs, ϑo) are
satisfied Herrero et al. (2005). If the system output y = h(x, ϑp) depends
on state variables and plant parameters, the solution set is defined by

Σ∀∃ = {ϑp ∈ R|∀(ϑo ∈ ϑ
′
o)∀(t ∈ t

′
)∃(ϑs ∈ ϑ

′
s)C(t, ϑp, ϑs, ϑo) ⊆ Es}

(4.23)

Being ϑp sets of the process parameters, ϑ
′
o additional parameter domain

sets corresponding to the flat outputs, ϑ
′
s desired specification domain sets

corresponding to the flat outputs. All the constraints will be verified within
an interval of time t

′
.

From general equation (4.23), the specific implementation to obtain the
maximum admissible uncertainty ϑp by a nominal controller u = ψ(t, ϑ̄s, ϑ̄o, ϑ̄p)
is indicated in equation 4.24.
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Σ∀∃ = {ϑp ∈ R|∀(ϑo ∈ ϑ
′
o)∀(t ∈ t

′
)∃(ϑs ∈ ϑ

′
s)

(cy(t, ϑ̄s, ϑ̄o, ϑp) ⊆ γy(t)∧
ϕx(t, ϑ̄s, ϑ̄o, ϑp) ⊆ γx(t)∧
ψu(t, ϑ̄s, ϑ̄o, ϑp) ⊆ γu(t))}

(4.24)

A certain region within the output space γy(t), obtained when evaluating
the QCSP (4.24), is equivalent to certain interval within the specification
parameters ϑs. A representation is indicated in Figure 4.6.

Fig. 4.6. Relation between regions of trajectories within the output space γy(t)
and specification parameters ϑs.

The process to obtain ϑp can initiate obtaining the space of soft uncer-
tainty from the soft specifications. The bounding regions of the flat outputs,
state variables and controllers are obtained using the values of the nominal
plant and controller. Then one can repeat the process to obtain the hard
uncertainty to fulfill with the hard specifications. Another form to obtain the
hard and soft uncertainty is solving (4.23) in a single step simultaneously
from the hard and soft specifications.

A Quantified Sets Inversion Algorithm verifies if a box ϑp is solution, non
solution or undefined. Boxes that satisfy the constraints are grouped in a
solution set. Those one that do not satisfy the constraints in a non solution
set, and those that partially satisfy the constraints in an undefined set. To
start, a set of initial boxes is specified to initiate the search of solution sets.
Then an interval division technique (branch-and-bound) is applied evaluating
the three following rules:

Rule 1:
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∀(ϑp ∈ ϑ
′
p)∀(ϑo ∈ ϑ

′
o)∀(t ∈ t

′
)∃(ϑs ∈ ϑ

′
s)C(t, ϑp, ϑs, ϑo) ⊆ Es ⇔ ϑp ⊆ Σ

(4.25)

This quantified constraint is used to prove that a box ϑp is contained in
the solution set. This cannot be easily proved by means of classical interval
computations. The quantified constraint corresponding to Rule 1, can be
checked through the following reasoning:

Outer(C∗(ϑp, ϑo, ϑs, t)) ⊆ Es ⇒ C∗(ϑp, ϑo, ϑs, t) ⊆ Es

⇔ ∀(ϑp ∈ ϑ
′
p)∀(ϑo ∈ ϑ

′
o)∀(t ∈ t

′
)∃(ϑs ∈ ϑ

′
s)C(ϑp, ϑs, ϑo, t) ⊆ Es

⇔ ϑp ⊆ Σ

(4.26)

Outer(C∗(ϑp, ϑo, ϑs, t)) is an outer approximation of the ∗- semantic ex-
tension of the continuous function C.

from the ∗- semantic theorem, concretely from equation (3.89), it follows
as:

f∗(A) ⊆ F (A) ⇔ ∀(ap ∈ A′
p)Q(z, F (A))∃(ai ∈ A

′
i)(z = f(ap, ai))

(4.27)

In this case, we can see that the universal quantifiers (∀) correspond to
the proper components and the existential ones (∃) to the improper compo-
nents. Therefore ϑp, ϑo, t are proper intervals and ϑs is an improper interval.

In order to prove the second rule and verify that a box has no interaction
with the solution set, the following implication is used:
Rule 2:

¬(∀(ϑo ∈ ϑ
′
o)∀(t ∈ t

′
)∃(ϑs ∈ ϑ

′
s)∃(ϑp ∈ ϑ

′
p)C(t, ϑp, ϑs, ϑo)) ⇔ ϑp ⊆ Σ̄

(4.28)

where Σ̄ is the complementary set of Σ defined by

Σ̄ = {ϑp ∈ R|∀(ϑs ∈ ϑ
′
s)∃(ϑo ∈ ϑ

′
o)∃(t ∈ t

′
)¬(C(t, ϑp, ϑs, ϑo) ⊆ Es)}

(4.29)

The parameters that do not fulfill the specifications are grouped in a non
solution set, see Figure 4.7.
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Fig. 4.7. Non solution set of plants.

This quantified constraint is, analogously, implied by the following interval
exclusion:

Inner(C∗(ϑp, ϑo, ϑs, t)) �⊆ Es ⇒ C∗(ϑp, ϑo, ϑs, t) �⊆ Es

⇔ ¬(∀(ϑo ∈ ϑ
′
o)∀(t ∈ t

′
)∃(ϑs ∈ ϑ

′
s)∃(ϑp ∈ ϑ

′
p)C(t, ϑp, ϑs, ϑo) ⊆ Es)

⇔ ∀(ϑs ∈ ϑ
′
s)∀(ϑp ∈ ϑ

′
p)∃(ϑo ∈ ϑ

′
o)∃(t ∈ t

′
)¬(C(t, ϑp, ϑs, ϑo) ⊆ Es)

⇒ ϑp ⊆ Σ̄

(4.30)

where ϑo, t are proper intervals, ϑp, ϑs are improper ones.
Inner(C∗(ϑp, ϑo, ϑs, t)) �⊆ Es is an inner approximation of the ∗-semantic
extension of the continuous function C. Finally, if none of these rules are
accomplished, the box ϑp is undefined.

Rule 3: otherwise, ϑp is undefined.

If the specifications are partially satisfied then the set of plants is grouped
in a set of indefinite plants, as it is ilustrated in Figure 4.8.

Fig. 4.8. Undefined solution set of plants.

When the constraints are of the form C(t, ϑp, ϑs, ϑo) ⊆ Es, with C being a
continuous function from Rn to Rm and each existentially quantified variable
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appears in only one function component, the problem is reduced tom different
problems, one for each component function. Then, the solution set may be
obtained as:

Σ = Σ1 ∩ ... ∩Σm (4.31)

on the other hand, if the system output y = h(x, u, ϑp) depends on state
variables, plant parameters and control input, the solution set is defined by:

Σ∀∃ = {ϑp ∈ R|∀(ϑo ∈ ϑ
′
o)∀(t ∈ t

′
)

∃(ϑk ∈ ϑ
′
k)∃(ϑs ∈ ϑ

′
s)C(t, ϑk, ϑp, ϑs, ϑo) ⊆ Es} (4.32)

From general equation (4.32), the specific implementation to obtain the
maximum admissible uncertainty ϑp by a nominal controller ϑ̄k is indicated
in equation 4.33.

Σ∀∃ = {ϑp ∈ R|∀(ϑo ∈ ϑ
′
o)∀(t ∈ t

′
)∃(ϑk ∈ ϑ

′
k)

∃(ϑs ∈ ϑ
′
s)(cy(t, ϑ̄k, ϑ̄s, ϑ̄o, ϑp) ⊆ γy(t)∧

ϕx(t, ϑ̄k, ϑ̄s, ϑ̄o, ϑp) ⊆ γx(t)∧
ψu(t, ϑ̄k, ϑ̄s, ϑ̄o, ϑp) ⊆ γu(t))}

(4.33)

A representation is indicated in Figure 4.9.

4.4.2 Determining hard and soft controllers

Given hard and soft specifications γy(t, ϑs, ϑ̄o) and a family of plants ϑp
determine hard and soft controllers u = ψ(t, ϑs, ϑ̄o, ϑp) ⇒ ψ(t, ϑk) to guar-
antee the satisfaction of some hard and soft specifications for all the plants
in the family and the constraints are satisfied. In Figure 4.10 we depicted a
representation.

Hard and soft controllers to guarantee the satisfaction of the hard and
soft specifications can be obtained from two forms. The first corresponds to
the direct form using the equation (3.41). This equation is rewritten in (4.34)

u∗ = ψ(t, ϑp, ϑs, ϑo) (4.34)

Equation (4.34) can be used when the system ouput corresponds ex-
plicitely with some state variables. Then one replaces in (4.34) the hard or
soft uncertainty in ϑp and a point for ϑs and ϑo. Therefore the set of hard
and soft plants defines the hard and soft controllers.

The second form corresponds to solve the following QCSP
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Fig. 4.9. Considerations to determine the maximum admissible uncertainty (ϑp(∀))
by a nominal controller (ϑk(∃)) ensuring that some specifications are met (ϑs(∃))
and the constraints are satisfied.

Fig. 4.10. Determination of hard and soft controllers u = ψ(t, ϑk) to guarantee the
satisfaction of some hard and soft specifications y = γ(t, ϑs, ϑ̄o) for all the plants
in the family ϑp.
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Σ∀∃ = {ϑk ∈ R|∀(ϑo ∈ ϑ
′
o)∀(t ∈ t

′
)∀(ϑp ∈ ϑ

′
p)

∃(ϑs ∈ ϑ
′
s)C(t, ϑk, ϑp, ϑs, ϑo) ⊆ Es} (4.35)

This case corresponds when the system output depends on the state vari-
ables, plant parameters and control input y = h(x, u, ϑp). In other words,
the general interval function of the system output cy(t, ϑs, ϑk, ϑp) depends
on specification parameters ϑs, parameters of the controller ϑk and plant
parameters ϑp as it was explicated in Chapter 3 (see equation (3.54)).

From general equation (4.35), the specific implementation to obtain the
hard and soft controllers (ϑk(∀)) that could ensure that some specification are
met (ϑs(∃)) and the constraints are satisfied under parametric uncertainty in
the plant (ϑp(∀)) is indicated in equation 4.36. A representation is indicated
in Figure 4.11.

Σ∀∃ = {ϑk ∈ R|∀(ϑo ∈ ϑ
′
o)∀(t ∈ t

′
)∀(ϑp ∈ ϑ

′
p)∃(ϑs ∈ ϑ

′
s)

(cy(t, ϑk, ϑ̄s, ϑ̄o, ϑp) ⊆ γy(t)∧
ϕx(t, ϑk, ϑ̄s, ϑ̄o, ϑp) ⊆ γx(t)∧
ψu(t, ϑk, ϑ̄s, ϑ̄o, ϑp) ⊆ γu(t))}

(4.36)

Fig. 4.11. Considerations to determine the hard and soft controllers (ϑk(∀)) that
could ensure that some specification are met (ϑs(∃)) and the constraints are satisfied
under parametric uncertainty in the plant (ϑp(∀)).
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With a specific point for ϑk, ϑs, ϑo and ϑp we obtain a single trajectory
for cy, ϕ and ψ as it is indicated in Figure 4.12. With hard or soft uncertainty
in the plant ϑp and a specific controller ϑk, we obtain a first expansion of
the space to cy, ϕ and ψ. The hard or soft uncertainty in the plant ϑp(∀)
determined in the previous problem can be considered. Thus, with controllers
ϑk of the solution set and the preset hard and soft uncertainty ϑp, the space
to cy, ϕ and ψ are expanding while the inclusion relation cy ⊆ γy ∧ ϕ ⊆
γx ∧ ψ ⊆ γu is fulfilled.

Fig. 4.12. With controllers ϑk of the solution set and the preset hard and soft
uncertainty ϑp, the space to cy , ϕ and ψ are expanding while the inclusion relation
cy ⊆ γy ∧ ϕ ⊆ γx ∧ ψ ⊆ γu is fulfilled.

The procedure to evaluate the equation (4.36) is similar as it was described
for the hard and soft uncertainty. First, one obtain the soft controllers from
soft specifications considering a family of plants and then the hard controllers
from hard specifications.
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4.4.3 Determining hard and soft specifications

Given hard and soft plants ϑp and hard and soft controllers u = ψ(t, ϑ̄s, ϑ̄o, ϑp),
determine attainable hard and soft specifications y = γy(t, ϑs, ϑ̄o) by some
hard and soft controllers for all the hard and soft plants ϑp and the constraints
are satisfied. In Figure 4.13 a representation can be viewed.

Fig. 4.13. Determination of hard and soft attainable specifications y = γy(t, ϑs, ϑ̄o)
by some hard and soft controllers u = ψ(t, ϑ̄s, ϑ̄o, ϑp) for all the hard and soft plants
ϑp.

If the system output y = h(x, ϑp) depends on state variables and plant
parameters, the solution set corresponds to:

Σ∀∃ = {ϑs ∈ R|∀(ϑo ∈ ϑ
′
o)∀(t ∈ t

′
)∃(ϑp ∈ ϑ

′
p)

·C(t, ϑp, ϑs, ϑo) ⊆ Es} (4.37)

A nominal controller u = ψ(t, ϑ̄s, ϑ̄o, ϑp) is preset. The specific implemen-
tation is indicated in the following equation:

Σ∀∃ = {ϑs ∈ R|∀(ϑo ∈ ϑ
′
o)∀(t ∈ t

′
)∃(ϑp ∈ ϑ

′
p)

(cy(t, ϑs, ϑ̄o, ϑ̄p) ⊆ γy(t)∧
ϕx(t, ϑs, ϑ̄o, ϑ̄p) ⊆ γx(t)∧
ψu(t, ϑs, ϑ̄o, ϑ̄p) ⊆ γu(t))}

(4.38)

The three rules are the following:
Rule 1:



4.4 Set inversion applied to nonlinear flat systems 105

∀(ϑs ∈ ϑ
′
s)∀(ϑo ∈ ϑ

′
o)∀(t ∈ t

′
)∃(ϑp ∈ ϑ

′
p)

·C(t, ϑp, ϑs, ϑo) ⊆ Es ⇔ ϑs ⊆ Σ
(4.39)

Rule 2:

¬(∀(ϑo ∈ ϑ
′
o)∀(t ∈ t

′
)∃(ϑp ∈ ϑ

′
p)

·∃(ϑs ∈ ϑ
′
s)C(t, ϑp, ϑs, ϑo) ⊆ Es) ⇔ ϑs ⊆ Σ̄

(4.40)

Rule 3: otherwise, ϑs is undefined.

We are going to select a controller of the resulting family and will try to
find the attainable specifications by the selected controller. The specifications
space is subdivided in small boxes and the constraints are verified.

In Figure 4.14 we represent a single controller and a possible specifications
space that can reach. In other words, one hopes that some controllers of the
core can reach all the range of specifications.

Fig. 4.14. Attainable specifications by a controller.

Generalizing, we could evaluate the attainable specifications by other con-
trollers of the solution set. It is possible that the controllers that are located
in the ends of the solutions space can reach only part of the specifications as
it is indicated in Figures 4.15 and 4.16.

Also we will evaluate the controllers that are located outside the core of
solutions to verify the specifications space that can reach as it is indicated in
Figure 4.17.

When we want to analyze the behaviour of a system within a specified
region (hard specification) with the consideration that could operate beyond
its region (soft specification), we can find the family of controllers that could
satisfy certain region and a tolerance region. A nominal controller may be
able to meet the hard and soft specifications, as it is indicate in Figure 4.18.
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Fig. 4.15. Attainable specifications by a controller on the left end of the solutions
space.

Fig. 4.16. Attainable specifications by a controller on the right end of the solutions
space.

Fig. 4.17. Unattainable specifications by some controllers that are outside of the
solutions space.
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Fig. 4.18. A nominal controller can satisfy hard and soft specifications.

The second form corresponds to solve the following QCSP

Σ∀∃ = {ϑs ∈ R|∀(ϑo ∈ ϑ
′
o)∀(t ∈ t

′
)∀(ϑp ∈ ϑ

′
p)

∃(ϑk ∈ ϑ
′
k)C(t, ϑs, ϑo, ϑk, ϑp) ⊆ Es} (4.41)

This case corresponds when the system output depends on the state vari-
ables, plant parameters and control input y = h(x, u, ϑp). See equation (3.54)
in Chapter 3.

From general equation (4.41), the specific implementation to determine
the achievable specifications ϑs(∀) by some nominal controller (ϑk(∃)) and
the constraints are satisfied under parametric uncertainty in the plant ϑp(∀)
is indicated in equation (4.42).

Σ∀∃ = {ϑs ∈ R|∀(ϑo ∈ ϑ
′
o)∀(t ∈ t

′
)∀(ϑp ∈ ϑ

′
p)∃(ϑk ∈ ϑ

′
k)

(cy(t, ϑs, ϑ̄o, ϑ̄k, ϑp) ⊆ γy(t)∧
ϕx(t, ϑs, ϑ̄o, ϑ̄k, ϑp) ⊆ γx(t)∧
ψu(t, ϑs, ϑ̄o, ϑ̄k, ϑp) ⊆ γu(t))}

(4.42)

A representation is indicated in Figure 4.19.

4.4.4 Controller design based on differential flatness to trajectory
tracking

After obtaining the family of robust controllers that meet hard and soft speci-
fications in a guaranteed manner under parametric uncertainty in the process,
one of them is chosen. The selected controller will be used as a feedforward
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Fig. 4.19. Considerations to determine the achievable specifications (ϑs(∀)) by
some nominal controllers (ϑk(∃)), satisfying the constraints under parametric un-
certainty in the plant (ϑp(∀)).

in the control scheme as it was explained in Section 3.2. Flatness allows one
to solve trajectory tracking problems in many ways. Because we want to
maintain the desired output within a specified region, design parameters of
the feedback controller are determined from viewpoint of the input-output
behaviour of the feedback system Zoran et. al (2003). That is, a feedback
controller will ensure that the output of the system will stay within some
desired specifications under parametric uncertainty of the plant.

All the controllers that fulfill the specifications are grouped in sets of
feasible controllers Bondia et al. 2004; Andújar et al. 2004.

The problem to solve is related to obtaining hard and soft controllers in
order to guarantee the satisfaction of hard and soft closed-loop specifications.
This problem can be raised on similar way as in the previous section.

Without loss of generality, let us consider a control scheme based on
differential flatness for the SISO case with tracking reference. Assume also
that the flat output corresponds to some state variable as it is indicated in
Figure 4.20

The terms α and β are obtained with an approach based on differential
flatness and the feedwordard corresponds to w.

Consider the closed-loop nonlinear system (4.43)
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Fig. 4.20. Control scheme based on differential flatness.

ẋ(t) = fcl(ϑp, ϑc, x(t)) (4.43)

It is desired to find the hard and soft ∀∃-solution set of controller param-
eters ϑc for which robust performance holds, i.e.,

Σϑc = {ϑc ∈ R|∀(t ∈ t
′
)∀(ϑp ∈ ϑ

′
p)∃(θq ∈ θ

′
q)

·μcl(t, ϑp, ϑc) ⊆M(t, θq)} (4.44)

where μcl(t, ϑp, ϑc) is a closed-loop function and M(t, θq) is a desired

reference model with a set of parameters θq and a set of domains θ
′
q.

The constraint has the form Ccl(t, ϑc, ϑp, θq) := {μcl(t, ϑp, ϑc) ⊆M(t, θq)}.
The three rules to solve the problem are the following:

Rule 1:

∀(ϑc ∈ ϑ
′
c)∀(t ∈ t

′
)∀(ϑp ∈ ϑ

′
p)∃(θq ∈ θ

′
q)Ccl(t, ϑc, ϑp, θq) ⇔ ϑc ⊆ Σ

(4.45)

Rule 2:

¬(∀(t ∈ t
′
)∀(ϑp ∈ ϑ

′
p)∃(θq ∈ θ

′
q)∃(ϑc ∈ ϑ

′
c)Ccl(t, ϑc, ϑp, θq)) ⇔ ϑc ⊆ Σ̄

(4.46)

Rule 3: otherwise, ϑc is undefined.

4.5 Method design

Using the formulation presented in this thesis, robust controllers can be de-
signed by using the following method:
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1. Given some desired specifications, apply the Quantified Set Inversion Al-
gorithm to find the family of robust controllers that fulfill the specifica-
tions in a guaranteed way under parametric uncertainty in the process.

2. Design a state feedback control law based on differential flatness to drive
the dynamic system.

3. Select a feedforward controller of the resulting family from step one and
find the set of parameters (paving) of the state feedback control such that
the specifications are met.

4. Select the located parameters in the center of paving from previous step
to obtain robust performance of the controlled system under parametric
uncertainty of the plant.

4.6 Advantages and limitations of the proposed
technique

The robust control approach proposed in this thesis contains several elements
that have not been treated and considered in the literature. Some of them are
the following: 1) The variables are quantified: This allows us to specify the
feedforward controller to apply to the feedback control system, the admissi-
ble uncertainty by the feedforward controller, the free variables that we wish
to solve and obtain solution set within the specification parameters. 2) The
bounding regions for the state variables, inputs and outputs are obtained by
properly exploiting the flatness property. This reduces the execution time in
the solutions search. On the other hand, the control engineer can set lim-
its on the control input, states and outputs without changing the proposed
approach. 3) The constraints are formulated in terms of set inclusion. An
advantage obtained when we use the inclusion operators in the constraints
is that the specification parameters defined as existentials, they do not need
to be partitioned. It is suffice to evaluate whether a trajectory is included
within the bounding regions. So the search of solutions within the specifi-
cation parameters or bounding regions is straightforward. 4) The proposed
design approach is based on sets. The advantage of the proposed approach re-
garding other based on single-trajectories is the robustness of the controllers
obtained. A limitation of the proposed technique is that the approach is only
applicable to nonlinear systems that are flat.

4.7 Conclusions

It has been shown how to find a family of possible controllers with a Quanti-
fied Sets Inversion Algorithm, in order to guarantee the satisfaction of spec-
ifications, as well as the three main rules to find the solution set referred
to the attainable specifications by family of controllers. A new approach of
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robust possibilistic control for nonlinear flat systems has been developed. It
has raised how to determine a family of robust controllers that meet of guar-
anteed manner a set of specifications. It has developed a method to tune
parameters of the feedback controller to ensure the robust performance of
the system.





5 Applications

In this Chapter three main applications are developed. The first example
is applied to a linear system (DC motor) since all the controllable linear
systems are flat and the method is easier to explain, the second and third
example is applied to nonlinear flat systems (simple pendulum and fed-batch
bioreactor).

5.1 Applications to linear systems

5.1.1 Dynamic model of a DC motor

The dynamic model of a DC motor can be consulted in the work of Weeara-
sooriya and El-sharkawi Weearasooriya and El-sharkawi (1991)

ẋ1 = −Ra

La
x1 − K

La
x2 +

1
La
u

ẋ2 = K
J x1 − D

J x2 − TL

J

(5.1)

where the parameters are: x2 rotor speed (rad/s), u input voltage (V),
x1 armature current (Amp), TL load torque (Nm), J rotor inertia (Nm2),
K torque and back emf constant (NmA−1), D damping constant (Nms),
Ra armature resistance (Ω) and La armature inductance (H). The same
model was used by Sira-Ramı́rez and Agrawal Sira-Ramı́rez and Agrawal
(2004) with a constant load torque Tl = 0. In this work, the load torque is
considered as a linear function of the rotor speed, that is :Tl = p1x2. The
parameterization of all system variables on function of the flat output y = x2
and a finite number of its derivatives are expressed in equations (5.2),(5.3)
and (5.4)

x2 = y
Tl = p1y

(5.2)

x1 = 1
K (Jẏ +Dy + p1y) (5.3)
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u = La

K (Jÿ +Dẏ + p1ẏ) +
Ra

K (Jẏ +Dy + p1y) +Ky

u = JLa

K ÿ + (LaD+Lap1+RaJ
K )ẏ + (RaD

K + p1 +K)y

(5.4)

5.1.2 Simulation of the system considering a region of flat output

The trajectory planning in time of the flat output can be constructed with a
polynomial function(Bézier polynomial). For example, a linear Bézier curve
between two points yo, y1 can be obtained with the following expression:

y = yo + t(y1 − yo) ⇒ yo(1− t) + ty1 (5.5)

where t ∈ [0, 1]. With this polynomial function we may obtain a straight
line between points yo, y1. If instead of a straight line between the two points,
we would desire to planify a parabolic segment between yo and y1, then we
can use a cuadratic or cubic bézier polynomial such as:

y = (1− t)2yo + 2(1− t)ty1 + t2y1 ⇒ cuadratic
y = (1− t)3yo + 3(1− t)2ty1 + 3(1− t)t2y1 ⇒ cubic

(5.6)

These functions are obtained of the first equation. Another form of tra-
jectory planning of the flat output is by means of an exponential function of
the type

y = yo + (y1 − yo)(1− e(−t/τ)) (5.7)

with the time constant τ , we adjust the response speed of the planified
trajectory. In general, the task of desired trajectory planning of flat output
can be made in many ways. If we only have a set of points around any desired
trajectory, for instance, an aproximation function can be used together with
a neural network to determine the aproximation function parameter values.
So, we consider polynomial functions with defined derivatives, smooth and
monotones. All the derivatives of the functions will be made respect to the
time. Thus, all the resulting equations and its parameters will be used in the
field of the modal interval arithmetic. We choose a Bézier polynomial (5.8)
to construct the flat output y = x2 (rotor speed) of the form:

y = yo + (y1 − yo)B(τ) (5.8)

being B(τ) a polynomial function in time, τ is a point inside t.
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B(τ) = τ5(252− 1050τ + 1800τ2 − 1575τ3 + 700τ4 − 126τ5)
τ = t−to

t1−to

(5.9)

We will make some notations. ϑs = {yo = [y
o
, yo],y1 = [y

1
, y1]} contain

the specification parameters. yo and y1 represent the initial and final range
of the rotor speed that we wished to define. ϑs = {yo = (yo − y

o
)/2, y1 =

(y1 − y
1
)/2} is a specification point. ϑp = {ϑp1, ϑp2}, ϑp1 = {La,Ra,D},

ϑp2 = {K,J ,p1} are uncertain intervals of the plant. ϑp = {ϑp1, ϑp2}, ϑp1 =
{La, Ra, D}, ϑp2 = {K, J, p1} is a nominal plant.

The regions for the flat output can be computed with ϑs and t from
equation (5.8). The equation is denoted as:

y = yo + (y1 − yo)B(τ) ⇒ γy(t, ϑs) ⇒ γy(t) (5.10)

If we consider the hard yo = [0.2, 10], y1 = [140, 150] and soft yo =
[0.1, 12], y1 = [138, 152] specifications for to = 0, t1 = 1 and t := {t ∈ R|0 ≤
t ≤ 1}. The space of flat output will be bounded in time. For instance, in
Figure (5.1) the space of flat output for the hard and soft specification is
indicated.
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Fig. 5.1. Space of flat output for the hard and soft specification.

However, to reconstruct x1, u and Tl from equations (5.3), and (5.4), the
first and second derivative (ẏ, ÿ) of the flat output are required. Both are
described in equation (5.11).
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ẏ = (y1 − yo)Ḃ

ÿ = (y1 − yo)B̈

Ḃ(τ) = τ4(5(252)− (6)(1050)τ + 7(1800)τ2

− 8(1575)τ3 + 9(700)τ4 − 10(126)τ5)

B̈(τ) = τ3(4(5)(252)− (5)(6)(1050)τ + 6(7)(1800)τ2

− 7(8)(1575)τ3 + 8(9)(700)τ4 − 9(10)(126)τ5)

(5.11)

Again using the intervals of hard yo = [0.2, 10], y1 = [140, 150] and
soft yo = [0.1, 12], y1 = [138, 152] specifications and nominal plant K =
3.4775, D = 0.03475, J = 0.068, La = 0.055 , p1 = 0.006 and Ra = 7.56 in
(5.3),(5.4), and (5.11) and making the corresponding interval operations, we
finally reconstructed the bounded intervals of armature’s current (x1), torque
load Tl and input signals (u).
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Fig. 5.2. Region of hard and soft trajectories to x1, Tl and u.

5.1.3 Determining the maximum permissible uncertainty in plant
parameters

In the previous problem, we reconstructed the ranges of the state variables
and the control signal only with the space of flat output and its derivatives
but we do not know the hard and soft uncertainty that could reach the pa-
rameters of the process. We suppose that the parameters ϑp2 = {K,J ,p1}
considerably do not affect the performance of the system. Therefore, we fixed
its nominal values to ϑp2 = {K = 3.4775, J = 0.068, p1 = 0.006}. We con-
sider that the uncertain parameters ϑp1 = {La,Ra,D} could degrade the
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performance of the system during its operation. Therefore, we want to find
the hard and soft plants (permissible maximum uncertainty by the nominal
controller).

We want to find the maximum permissible uncertainty in some plant
parameters ϑp1 = {La,Ra,D} such that the nominal controller ψ(t, ϑ̄s, ϑ̄p)
will ensure (∃) that the output will stay within space of the flat output for all
time instant into of the interval t and the constraints are met. A geometric
representation of the procedure is indicated in Figure 5.3. The representation
is related to the optimization approach described in equation (3.44) from
Chapter three.

Fig. 5.3. Representation of the interval optimization approach.

With specification intervals ϑs = {yo = [y
o
, yo],y1 = [y

1
, y1])} and the

nominal plant ϑ̄p = {La, Ra, D,K, J, p1}, we obtain the region of the trajecto-
ries of the flat output γy(ϑs, t) ⇒ γy(t), the bounding region of state trajecto-
ries γx(ϑs, ϑ̄p, t) ⇒ γx(t) and bounding region of control signal γu(ϑs, ϑ̄p, t) ⇒
γu(t). With a fixed specification ϑ̄s = {yo = (ȳo−yo)/2, y1 = (ȳ1−y1)/2}, we
are going to shake(test interval boxes) ϑp1 = {[La, La]× [Ra, Ra]× [D,D]} in
the interval functions cy(t, ϑ̄s), ϕx(t, ϑ̄s, ϑ̄p2, ϑp1) and ψu(t, ϑ̄s, ϑ̄p2, ϑp1) such
that all constraints (cy ⊆ γy)∧ (ϕx ⊆ γx)∧ (ψu ⊆ γu) are met. For this case,
we are going to see that ϑp1 is within ϕx(t, ϑ̄s, ϑ̄p2, ϑp1) and ψu(t, ϑ̄s, ϑ̄p2, ϑp1)
but is not in cy(t, ϑ̄s). So, the values of ϑp1 that we can get, depend of the
satisfaction of the bounding regions of γx and γu. In cy, ϕx and ψu we con-
sider a point of ϑs = ϑ̄s because we are evaluating the maximum attainable
uncertainty to ϑp1. In the following section, we are going to obtain the at-
tainable specifications by the nominal controller and we will test specification
boxes ϑs with a value fixed to ϑp1 = ϑ̄p1.

The functions γy,γx,γu,cy,ϕx and ψu are described as follows:
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γy(ϑs, t) = y([y
o
, yo], [y1, y1], t) ⇒ γy(t)

γx(t, ϑs, ϑ̄p) = x1(D, [yo, yo], [y1, y1],K, J, p1, t) ⇒ γx(t)

γu(ϑs, ϑ̄p, t) = u(La, Ra, D,K, J, p1, [yo, yo], [y1, y1], t) ⇒ γu(t)

cy(ϑ̄s, t) = x2(yo, y1, t)
ϕx(ϑ̄s, ϑ̄p2, ϑp1, t) = x1([D,D],K, J, p1, yo, y1, t)
ψu(ϑ̄s, ϑ̄p2, ϑp1, t) = u([La, La], [Ra, Ra], [D,D],K, J, p1, yo, y1, t)

(5.12)

[La, La] × [Ra, Ra] × [D,D] is the cartesian product of the parameters
vector. That is, the points set in the three-dimensional space bounded by the
intervals of the parameters. When we started, we must specify an initial box
of parameters [La, La], [Ra, Ra] and [D,D]. We verify if the constraints are
fulfill with the initial box of parameters. If the constraints are satisfied then
we save the parameters box in a solution set. If a parameters box does not
meet the constraints and it is outside the solution set, then the parameters
box can be saved in a non-solution set. If none of the above steps are met, the
width of the parameters box is obtained and we verify if it is less than or equal
to certain precision. If the previous condition is verified the box is considered
as undefined. If the previous condition is not verified, the parameter box is
divided into different boxes and are stored in stack. The following box is read
from stack and the previous process is repeated until stack = 0. The number
of parameters depends on the problem to be solved. The simplest case is
when we have a parameter. The parameter is divided by its center and the
two resulting intervals are stored in stack. For the case of two parameters,
the space is of two dimensions. The box can be divided in four boxes as it is
indicated in Figure 5.4. Each box can be easily plotted using its vertices. For
example, the vertices for the box number one are: v1 = (p

1
, p

2
), v2 = (p

1
, p2c),

v3 = (p1c, p2c) and v4 = (p1c, p2). Where p1c and p2c are centers of the
intervals of the parameters. A similar procedure is performed for the case of
three parameters. A representation is indicated in Figure 5.5. In this case,
the eight vertices for the box number one corresponds to v1 = (p

1
, p

2
, p

3
),

v2 = (p
1
, p2c, p3), v3 = (p1c, p2c, p3), v4 = (p1c, p2, p3), v5 = (p

1
, p

2
, p3c),

v6 = (p
1
, p2c, p3c), v7 = (p1c, p2c, p3c), v8 = (p1c, p2, p3c).

So, the set of hard and soft plants Σ∀∃ can be obtained in the following
more formal expression:
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Fig. 5.4. Division of a parameters box.

Fig. 5.5. Division for three parameters.

Σ∀∃ = {ϑp1|∀(t ∈ t
′
)∀(ϑp2 ∈ ϑ

′
p2)∃(ϑs ∈ ϑ

′
s)

(cy(ϑs, t) ⊆ γy(t)∧
ϕx(ϑs, ϑp2, ϑp1, t) ⊆ γx(t)∧
ψu(ϑs, ϑp2, ϑp1, t) ⊆ γu(t)}
�

Σ∀∃ = {La ×Ra ×D|∀(t ∈ t
′
)∀(K ∈ K

′
)∀(J ∈ J

′
)∀(p1 ∈ p

′
1)

∃(yo ∈ y
′
o)∃(y1 ∈ y

′
1)(x2(yo, y1, t) ⊆ γy(t)∧

x1(D,K, J, p1, yo, y1, t) ⊆ γx(t)∧
u(La, Ra, D,K, J, p1, yo, y1, t) ⊆ γu(t)}

(5.13)



120 5 Applications

cy(ϑ̄s, t) is equal to the state variable x2. In this inversion phase from out-
side to inside we cannot see the effect of the uncertain parameters La, Ra, D
on cy = x2. But in internal mode, the uncertain parameters have influ-
ence over x2. So, if we can known the maximum attainable uncertainty on
La, Ra, D, the nominal controller ensure that x2 will stay within γy under
the bounded variation of the uncertain parameters La, Ra, D. This is verified
by means of robustness tests in next sections.

Finally, the hard and soft plants obtained for both hard yo = [0.2, 10],
y1 = [140, 150] and soft yo = [0.1, 12], y1 = [138, 152] specifications are
indicated in Figure 5.6. We programmed in c++ and we used the library to
modal intervals (ivalDb), developed by Pau Herrero Viñas Herrero et al.
(2005). Solution sets were stored in a data file (.dat) and the results were
plotted in Matlab.
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Fig. 5.6. Solution set of hard and soft plants obtained from hard yo = [0.2, 10],
y1 = [140, 150] and soft yo = [0.1, 12], y1 = [138, 152] specifications.

A box of solution of the hard and soft plants are indicated in Table 5.1

Table 5.1. Permissible uncertainty for the parameters of the process

Parameters hard plants soft plants

La [0.01, 0.4] [0.01, 0.7]

D [0.0338, 0.0350] [0.0338, 0.0350]

Ra [6, 8] [6, 9]
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5.1.4 Computation of hard and soft controllers

With the hard and soft plants ϑp obtained in previous section and hard
and soft specifications ϑs we can obtain the hard and soft controllers from
equation (5.4) as follows:

u = JLa

K ÿ + (LaD+Lap1+RaJ
K )ẏ + (RaD

K + p1 +K)y
u∗ = ψ(t, ϑp, ϑ̄s)

= ψ(t, [La, La], [Ra, Ra], [D,D],K, J, p1, yo, y1)

(5.14)

Using hard La = [0.01, 0.4], Ra = [6, 8], D = [0.0338, 0.0350] and soft
La = [0.01, 0.7], Ra = [6, 9], D = [0.0338, 0.0350] plants and precise values
of yo = 5, y1 = 145, K = 3.4775, J = 0.068 and p1 = 0.006. We obtain hard
and soft controllers depicted in Figure 5.7. It is important to observe that
the obtained controllers are including within interval of controllers indicated
in Figure 5.2.
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Fig. 5.7. Hard and soft controllers computed with hard La = [0.01, 0.4],
Ra = [6, 8], D = [0.0338, 0.0350] and soft La = [0.01, 0.7], Ra = [6, 9],
D = [0.0338, 0.0350] plants and precise values of yo = 5, y1 = 145, K = 3.4775,
J = 0.068 and p1 = 0.006.

From equation (5.14) we can see that in state stable ẏ = 0 and ÿ = 0, so
the hard and soft nominal controllers are computed as follows:

u∗ = (RaD
K + p1 +K)y (5.15)

Using hard La = [0.01, 0.4], Ra = [6, 8], D = [0.0338, 0.0350] and soft
La = [0.01, 0.7], Ra = [6, 9], D = [0.0338, 0.0350] plants and precise values
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y = ȳ = 145, K = 3.4775, J = 0.068 and p1 = 0.006. We obtain hard and
soft nominal controllers indicated in Table 5.2.

Table 5.2. Hard and soft nominal controllers

Parameter hard controllers soft controllers

u∗ [513, 515] [513, 518]

5.1.5 Computation of attainable specifications by a nominal
controller

We are going to select a controller from the resulting family of previous section
and will try to find the attainable specifications by the selected controller. The
space of specifications [y

o
, yo]× [y

1
, y1] will be subdivided and the constraints

will be verified. The boxes that fulfill the specifications are stored in the
solution set Σ∀∃. The following expression is evaluated.

Σ∀∃ = {ϑs|∀(t ∈ t
′
)∃(ϑp ∈ ϑ

′
p)

(cy(t, ϑs) ⊆ γy(t)∧
ϕx(t, ϑs, ϑp) ⊆ γx(t)∧
ψu(t, ϑs, ϑp) ⊆ γu(t))}
⇓

Σ∀∃ = {yo × y1|∀(t ∈ t
′
)

∃(K ∈ K
′
)∃(J ∈ J

′
)∃(p1 ∈ p

′
1)∃(La ∈ L

′
a)∃(Ra ∈ R

′
a)∃(D ∈ D

′
)

(x2(yo, y1, t) ⊆ γy(t)∧
x1(D,K, J, p1, yo, y1, t) ⊆ γx(t)∧
u(La, Ra, D,K, J, p1, yo, y1, t) ⊆ γu(t)}

(5.16)

The functions γy(t),γx(t),γu(t) are described as follows:

γy(t, ϑss) ⇒ γy(t)
γx(t, ϑss, ϑ̄p) ⇒ γx(t)
γu(t, ϑss, ϑ̄p) ⇒ γu(t)

(5.17)

Being ϑss = {yos,y1s}. The parameters and considered controller are
indicated in Table 5.3. The results are depicted in Figure 5.8. In this figure
we can see that the nominal controller u∗ = 515 satisfies all the range of
specifications.

We can evaluate the specifications that can reach other controllers that
are in the core as it is indicated in Figure 5.9.
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Table 5.3. Parameters and considered controller

Parameters Values

Ra 7.56

La 0.055

D 0.03475

K 3.4775

J 0.068

u∗ 515

p1 0.006

yos [0.2, 10]

y1s [140, 150]

yo [0, 15]

y1 [130, 160]
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Fig. 5.8. Attainable specifications by the nominal controller u∗ = 515.

Fig. 5.9. Controllers of the core.
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Table 5.4. Parameters

Parameters Values

Ra 6

La 0.01

D 0.0338

K 3.4775

J 0.068

p1 0.006

u∗ 513

yos [0.2, 10]

y1s [140, 150]

yo [0, 15]

y1 [130, 160]

For example, we will take the controller from the left end of the core
considering the parameters of the Table 5.4.

The results indicated in Figure 5.10 we can observe that nominal con-
troller u∗ = 513 can reach only a partial region of specifications.
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Fig. 5.10. Attainable specifications by the controller u∗ = 513.

On similar way, now we evaluate the specifications that can fulfill the con-
troller of the right end of the core. The considered parameters are indicated
in Table 5.5.

We can verify the results indicated in Figure 5.11 that the corresponding
controller also satisfies a determined region of the specifications.
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Table 5.5. Parameters

Parameters Values

Ra 8

La 0.4

D 0.0350

K 3.4775

J 0.068

p1 0.006

u∗ 518

yos [0.2, 10]

y1s [140, 150]

yo [0, 15]

y1 [130, 160]
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Fig. 5.11. Attainable specifications by the controller u∗ = 518.

Evaluating a controller that is outside the core with the parameters indi-
cated in Table 5.6, we verified that the specifications are not satisfied.

5.1.6 Robustness test

In this section, we are going to realize a robustness test to the family of
controllers u∗ = [513, 518] verifying that they fulfill the specifications under
parametric uncertainty in the process. We will use different controllers from
the family u∗ = [513, 518] to control the system in open-loop as it is indicated
in Figure 5.12 introducing at certain instant time the variations of the process
parameters.

We considered the intervals of the parameters indicated in Table 5.1. In
Figure 5.13 it is verified that all the controllers maintain the rotor speed
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Table 5.6. Parameters

Parameters Values

Ra 11

La 0.9

D 0.04

K 3.4775

J 0.068

p1 0.006

u 522

yos [0.2, 10]

y1s [140, 150]

yo [0, 15]

y1 [130, 160]

Fig. 5.12. Open-loop control system.

y = x2 into the specifications interval considering the variation of the plant
parameters.

5.1.7 Designing a state feedback controller

In this section, we are going to apply the second phase from design proce-
dure. We are going to determine the state feedback control law and its hard
and soft parameters such that the rotor speed is within of the region of hard
and soft specifications under hard and soft uncertainty of the plant. In the
feedback control law, we are going to use a nominal feedforward that was
determined in previous section and a robustness test of the feedback con-
troller will be verified. From equation (5.4) we have the expression for the
feedforward controller

u = La

K (Jÿ +Dẏ + p1ẏ) +
Ra

K (Jẏ +Dy + p1y) +Ky (5.18)

in terms of the state variables we have that ẋ1 = 1
K (Jÿ + Dẏ + p1y),

x1 = 1
K (Jẏ +Dy + p1y) and y = x2, so
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Fig. 5.13. Robustness test.

u = Laẋ1 +Rax1 +Kx2 (5.19)

from flat output y and its derivatives ẏ and ÿ we can select the coordinate
x2 = y, and x1 = ẏ. So, ẋ1 = ÿ. With the new input of control v = ÿ we have
the following expression:

u = Lav +Rax1 +Kx2 (5.20)

The closed-loop dynamics for the flat output can be stablished with the
second order equation ÿ+ k2ẏ+ k1(y− ȳ) = 0. Which can be made asymtot-
ically stable by a suitable choice of the design parameters k2 and k1. We are
going to search the set of hard and soft parameters to k2 and k1, such that
the desired specifications are met. Closed-loop dynamics can be expressed in
terms of the state variables as follows:

ÿ = −k2ẋ2 − k1(x2 − x̄2) (5.21)

as ẋ2 = K
J x1 − D

J x2 − Tl

J thus

ÿ = −k2(KJ x1 − D
J
x2 − Tl

J
)− k1(x2 − x̄2) (5.22)
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replacing v = ÿ from equation (5.22) in (5.20), we obtain the state feed-
back control law as follows:

u = La(−k2(KJ x1 − D
J x2 − Tl

J )− k1(x2 − x̄2)) +Rax1 +Kx2 (5.23)

The state feedback controller can be expressed in function of the nominal
feedforward (u∗) determined with equation (5.15) of the following way:

u = u∗ + Lav +Rax1 +Kx2 − (RaD
K + p1 +K)x̄2

u = u∗ − x1(−Ra +
Lak2K

J )− x2(−K + Lak1 +
Lak2D

J )−
x̄2(−Lak1 + (RaD

K + p1 +K))− Lak2Tl

J

(5.24)

now, let us define a desired region (closed-loop reference model) in time
with the following interval function:

M(t, θq) = θq1(1 − θq2exp(−θq3t)) (5.25)

We desired that the output of the feedback system is within reference
modelM(t, θq). Where θq1 is the interval of the hard and soft speficifications,
θq2 and θq3 are intervals to fix the response speed in time of the function
M(t, θq), t is a time interval. If we define the hard θq1 = [140, 150] and soft
θq1 = [138, 152] specification and θq2 = [0.5, 1], θq3 = [0.2, 1] and t := {t ∈
R|0 ≤ t ≤ 40} the bound interval of the hard and soft interval function
M(t, θq) is depicted in Figure 5.14.
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Fig. 5.14. Interval function M(t, θq).
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In Figure (5.15) we make a geometric representation of the interval opti-
mization approach to feedback dynamic system. We applied a nominal feed-
forward u∗ = 515 (determined in the previous section) in the state feedback
law (5.24) and we found a set of boxes ϑc = {[k1, k1], [k2, k2]} of the feed-
back controller such that the trajectory of the state variable x2 = cx2 =
μcl(t, ϑp, ϑc) is within the limits of the reference model γy =M(t, θq).

Fig. 5.15. Representation of the interval optimization approach of the feedback
dynamic system.

A more formal expression can be expressed as follows:

Σ∀∃ = {θc]|∀(t ∈ t
′
)∀(ϑp1 ∈ ϑ

′
p1)∀(ϑp2 ∈ ϑ

′
p2)∃(θq ∈ θ

′
q)

(μcl(t, ϑp1, ϑp2, θc) ⊆M(t, ϑq))}
⇓

Σ∀∃ = {k1 × k2|∀(t ∈ t
′
)∀(La ∈ L

′
a)∀(Ra ∈ R

′
a)∀(D ∈ D

′
)

∀(K ∈ K
′
)∀(J ∈ J

′
)∃(θq1 ∈ θ

′
q1)∃(θq2 ∈ θ

′
q2)∃(θq3 ∈ θ

′
q3)

(x2(K, J, La, Ra, D, k1, k2, t) ⊆M(θq1, θq2, θq3, t))}

(5.26)

where the parameters θq = {θq1, θq2, θq3} are existentially quantified ∃,
because we want to ensure that x2 is within M(t, θq). In Table 5.7 the values
of the parameters are indicated.

Set of hard and soft parameters k1, k2 of the state feedback controller are
depicted in Figure 5.16 and 5.17.

We will perform some robustness tests. From the paving indicated in
Figure 5.16, three parameters from the feedback controller will be selected
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Table 5.7. Parameters

Parameters Values

Ra [6, 9]

La [0.01, 0.7]

D [0.338, 350]

K 3.4775

J 0.068

u∗ 515

p1 0.006

θq1(soft) [140, 150]

θq1(hard) [138, 152]

θq2 [0.5, 1]

θq3 [0.2, 1]

k1 [0.01, 5]

k2 [0.01, 5]
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Fig. 5.16. Set of hard parameters k1, k2 of the state feedback controller determined
with u∗ = 515, ϑq1 = [140, 150], ϑq1 = [0.5, 1], ϑq2 = [0.2, 1]. The red boxes
represent the solution set. The yellow boxes are outside of the solution set and the
black boxes are undefined.
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Fig. 5.17. Set of soft parameters k1, k2 of the state feedback controller determined
with u∗ = 515, ϑq1 = [138, 152], ϑq1 = [0.5, 1], ϑq2 = [0.2, 1].

ϑc1 = {k1 = 1.5, k2 = 1.5}, ϑc2 = {k1 = 3.2, k2 = 3} and ϑc3 = {k1 = 4, k2 =
1.5}. ϑc1 and ϑc2 are within the paving and ϑc3 is out of it. With a nominal
feedforward u∗ = 515, the system will be controlled in an interval of time
{0 ≤ t ≤ 40}. From t = 10 to t = 20, parameters La,D and Ra will be variated
within the intervals La = [0.01, 0.7], D = [0.0338, 0.0350], Ra = [6, 9]. These
values belong to maximum attainable uncertainty for the soft specification
as indicated in Table 5.1. The load torque also will be variated within the
interval T l = [0, 0.9] from t = 0 to t = 20. In Figures 5.18 and 5.19, we can see
that with parameters ϑc1 = {k1 = 1.5, k2 = 1.5} and ϑc2 = {k1 = 3.2, k2 =
3}, the feedback controller keep the output withinM(t, θq) for all 0 ≤ t ≤ 40,
obtaining a good robust performance under parametric uncertainty. In Figure
5.20, we can see that with parameters ϑc3 = {k1 = 4, k2 = 1.5}, the feedback
controller does not meet the specifications in certain instant of time.

After performing different robustness tests, we determined that the feed-
back controller presented better robustness performance using parameters
located around of the paving centers. A representation is indicated in Figure
5.21. In this manner, the robust controller designed under this procedure, gu-
rantees that the ouput of the system will be placed within the specifications
for all future time if the uncertain parameters change within the permissible
limits.
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Fig. 5.18. Robustness test of the state feedback controller with {k1 = 1.5},
{k2 = 1.5}, nominal feedforward u∗ = 515, soft uncertainty La = [0.01, 0.7],
D = [0.0338, 0.0350], Ra = [6, 9] and load torque T l = [0, 0.9].

5.2 Applications to simple pendulum

5.2.1 Dynamic model of the simple pendulum

Consider the simple pendulum in Figure 5.22 Slotine and Weiping (1991).
The dynamic is given by the nonlinear equation (5.27)

MR2θ̈ + bθ̇ +MgR sin(θ) = τ (5.27)

where R is the pendulum’s length, M its mass, b the friction coefficient
at the hinge, g the gravity constant and τ the control input. Letting x1 = θ
and x2 = θ̇, the corresponding state-space equation is indicated in equation
(5.28).

ẋ1 = x2
ẋ2 = 1

MR2 (−bx2 −MgR sin(x1) + τ)
(5.28)

We are going to suppose that the flat output is the displacement angle
y = x1. The parametrization of the state variables and control input in
function of the flat output and its derivatives is indicated in equation (5.29).
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Fig. 5.19. Robustness test of the state feedback controller with {k1 = 3.2},
{k2 = 3}, feedforward nominal u∗ = 515 soft uncertainty La = [0.01, 0.7],
D = [0.0338, 0.0350], Ra = [6, 9] and load torque T l = [0, 0.9].

x1 = y
x2 = ẏ
τ = MR2ÿ + bẏ +MRg sin(y)

(5.29)

5.2.2 Simulation of the system considering a region of flat output

Of similar way as in the linear case, we can define a space of the trajectory
of the displacement angle considering equations 5.30 and 5.31

y = yo + (y1 − yo)B(τ) (5.30)

B(τ) = τ5(252− 1050τ + 1800τ2 − 1575τ3 + 700τ4 − 126τ5)
τ = t−to

t1−to

(5.31)

If we considered the hard yo = [0.05, 0.2], y1 = [1.1, 1.2] and soft yo =
[0, 0.3], y1 = [1, 1.3] specifications for to = 0, t1 = 1 and t := {t ∈ R|0 ≤ t ≤
1} the flat output space will be bounded in time as it is indicated in Figure
(5.23).
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Fig. 5.20. Robustness test of the state feedback controller with {k1 = 1.5}, {k2 =
1.5} and feedforward nominal u∗ = 515 soft uncertainty La = [0.01, 0.7], D =
[0.0338, 0.0350], Ra = [6, 9] and load torque T l = [0, 0.9].

Fig. 5.21. Parameters of the feedback controller located in the robustness region.



5.2 Applications to simple pendulum 135

Fig. 5.22. Simple pendulum.
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Fig. 5.23. Space of hard and soft specifications.

Using intervals hard yo = [0.05, 0.2], y1 = [1.1, 1.2] and soft yo = [0, 0.3],
y1 = [1, 1.3] and nominal parameters for the pendulum M = 0.15, R = 0.25,
b = 0.007, g = 10 in equations (5.29) and (5.29) and making the corre-
sponding interval operations, we finally reconstructed bounding regions of
the displacement speed (x2) and input torque (τ).
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Fig. 5.24. Space of flat output y, state variable x2 and input torque u = τ .

5.2.3 Determining the maximum permissible uncertainty in plant
parameters

From parameters set of the pendulum, we are going to determine the hard
and soft maximum uncertainty that could reach the friction coefficient b.
We are going to consider that the specifications spaces for the flat output
y, state x2 and input torque τ are the represented ones in Figure 5.24. We
emphasize that these spaces were obtained with equations (5.30) and (5.29)
for hard yo = [0.05, 0.2], y1 = [1.1, 1.2] and soft yo = [0, 0.3], y1 = [1, 1.3]
specifications and nominal parameters M = 0.15, R = 0.25, b = 0.007, g =
10. Thus, the specifications space, states and input torque can be expressed
like Esy(t), Esx2(t) and Esτ (t).

x1 = y ⇒ Esy([yo, yo], [y1, y1], t) ⇒ Esy(t)

x2 = ẏ ⇒ Esx2([yo, yo], [y1, y1], t) ⇒ Esx2(t)

τ = MR2ÿ + bẏ +MRg sin(y) ⇒ Esτ ([yo, yo], [y1, y1],M,R, b, g, t)

⇒ Esτ (t)

(5.32)

On the other hand, to compute the set of boxes [b, b] that satisfy the
specifications of equations (5.32), we will use the same equations 5.30 and
5.29 with the distinction to evaluate them with a point of yo, a point of y1,
a nominal plant M = 0.15, R = 0.25, b = 0.007, g = 10 and a set of possible
boxes [b, b]. Therefore, we can write the following expression.
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x1 = y ⇒ fsy(yo, y1, t)
x2 = ẏ ⇒ fsx2(yo, y1, t)

τ = MR2ÿ + bẏ +MRg sin(y) ⇒ fsτ (yo, y1,M,R, [b, b], g, t)
(5.33)

having the solution set Σ∀∃ the following representation

Σ∀∃ = {ϑp1|∀(t ∈ t
′
)∀(ϑp2 ∈ ϑ

′
p2)∃(ϑs ∈ ϑ

′
s)

(cy(t, ϑs) ⊆ γy(t)∧
ϕx(t, ϑs) ⊆ γx(t)∧
ψu(t, ϑsϑp2, ϑp1) ⊆ γu(t))}
⇓

Σ∀∃ = {b|∀(t ∈ t
′
)∀(M ∈ M

′
)∀(R ∈ R

′
)∀(g ∈ g

′
)∃(yo ∈ y

′
o)∃(y1 ∈ y

′
1)

(fsy(yo, y1, t) ⊆ Esy(t)∧
fsx2(yo, y1, t) ⊆ Esx2(t)∧
fsτ (yo, y1,M,R, b, g, t) ⊆ Esτ (t))}

(5.34)

Being ϑp = {ϑp1, ϑp2}, ϑp1 = {b}, ϑp2 = {M ,R, g}, ϑp2 = {M,R, g},
ϑs = {yo,y1}, ϑs = {yo, y1}, γy(t) = Esy(t), γx(t) = Esx2(t), γu(t) = Esτ (t),
cy = fsy, ϕx = fsx2 and ψu = fsτ .

Hard and soft plants (uncertainty) for the friction coefficient b is indicated
in Table 5.8

Table 5.8. Permissible uncertainty for the friction coefficient b

Parameter Hard plants Soft plants

b [0.001, 0.0139] [0.001, 0.0259]

5.2.4 Computation of a family of controllers

With the intervals of hard and soft uncertainty ϑp obtained in the previous
section and with hard and soft specifications ϑs we can obtain the family of
controllers with the following equation:

τ∗ = ϑk(t, ϑp, ϑs)

= ϑk(t, [b, b],M,R, g, yo, y1)
(5.35)

The equation (5.35) is obtained from equation (5.33). Using the intervals
of hard b = [0.001, 0.0139] and soft b = [0.001, 0.0259] uncertainty and precise
values of yo = 0.15, y1 = 1.15, M = 0.15, R = 0.25, g = 10 we obtain the
results indicated in Figure 5.25. It is important to observe that the obtained
controllers are including within the interval of controllers obtained initially
in Figure (5.24). In this case, we found a unique nominal controller indicated
in Table 5.9.
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Fig. 5.25. Hard and soft controllers.

Table 5.9. Hard and soft controller τ∗

Parameter Hard controller Soft controller

τ∗ 0.342 0.342

5.2.5 Computation of attainable specifications by a nominal
controller

We are going to select the controller of the previous section and will try to
find the attainable specifications by the controller. The specifications space
[y

o
, yo]× [y

1
, y1] will be subdivided and the constraints will be verified. The

boxes that fulfill the specifications keep in the solution set Σ∀∃ verifying the
following expression:

Σ∀∃ = {ϑs|∀(t ∈ t
′
)∃(ϑp ∈ ϑ

′
p)

(cy(t, ϑs) ⊆ γy(t)∧
ϕx(t, ϑs) ⊆ γx(t)∧
ψu(t, ϑs, ϑp) ⊆ γu(t))}
⇓

Σ∀∃ = {yo × y1|∀(t ∈ t
′
)∃(M ∈ M

′
)∃(R ∈ R

′
)∃(g ∈ g

′
)∃(b ∈ b

′
)

(fsy(t, yo, y1) ⊆ Esy(t)∧
fsx2(t, yo, y1) ⊆ Esx2(t)∧
fsτ (t, yo, y1,M,R, b, g) ⊆ Esτ (t))}

(5.36)

The parameters and considered controller are indicated in Table 5.10.
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Table 5.10. Parameters

Parameters Values

R 0.25

M 0.15

g 10

b 0.0124

τ 0.342

yos [0.1, 0.2]

y1s [1.1, 1.2]

yo [0, 0.4]

y1 [1, 1.4]

being b = (0.0259 − 0.001)/2 = 0.0124 the midpoint of its interval and
y([y

os
, yos], [y1s, y1s], t) a wished solution region bounded by yos, y1s. The

result is indicated in Figure 5.26.
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Fig. 5.26. Attainable specifications for nominal controller τ = 0.342.

5.2.6 Robustness test

In this section, we wish to realize a robustness test to controller τ =
[0.342, 0.342] verifying the fulfillment of specifications under parametric un-
certainty b = [0.001, 0.0259]. For initial conditions near the steady state
x1 = 1.13 and x2 = 0.01, in Figure 5.27 it is verified that the controller
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maintain the position y = x1 into the specification x1 = [1, 1.3] after a tran-
sition of the system states.
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Fig. 5.27. Robustness test with controller τ = 0.342.

5.2.7 Designing a state feedback controller

In this section, we are going to design a state feedback controller in order to
stabilize the system. From equation (5.29) the input torque τ was deduced
as:

τ = MR2ÿ + bẏ +MRg sin(y) (5.37)

suppose it is desired to drive the state y = x1 to its equilibrium value
given by, y = x1. The closed-loop dynamics for the flat output is indicated
in equation (5.38)

y(2) + k2ẏ + k1(y − y) (5.38)

which can be made asymptotically stable by a suitable choice of the design
parameters k2 and k1. Replacing y

(2) from equation (5.38) in equation (5.37)
we obtain:

τ = MR2(−k2ẏ − k1(y − y)) + bẏ +MRg sin(y) (5.39)
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as y = x1, ẏ = x2 and y = x1 then, equation 5.39 in terms of state
variables is

τ = MR2(−k2x2 − k1(x1 − x1)) + bx2 +MRg sin(x1) (5.40)

we can also express the stabilizing controller of equation 5.40, in terms of
the nominal controller τ∗ (see Table 5.9) of the following form:

τ = τ∗ +MR2(−k2x2 − k1(x1 − x1)) + bx2 +MRg (sin(x1)− sin(x1))
(5.41)

the nominal controller τ∗ can also be obtained from equation (5.39) con-
sidering that ẏ = 0 and y = ȳ then

τ∗ =MRg sin(ȳ) (5.42)

now, let us define a desired region (closed-loop reference model) in time
with the following interval function

M(t, θq) = θq1(1− θq2exp(−θq3t)) (5.43)

we desire that the output of the feedback system is within reference model
M(t, θq). Where θq1 is the interval of the hard and soft speficifications, θq2

and θq3 are intervals to fix the response speed in time of the functionM(t, θq),
t is a time interval. If we define the hard θq1 = [1.1, 1.2] and soft θq1 = [1, 1.3]
specification and θq2 = [0.5, 1], θq3 = [0.2, 1] and t := {t ∈ R|0 ≤ t ≤ 40} the
bound interval of the hard and soft interval function M(t, θq) is depicted in
Figure 5.28.

In Figure (5.29) we make a geometric representation of the interval opti-
mization approach to feedback dynamic system. We applied a nominal feed-
forward u∗ = 0.342 in the state feedback law (5.41) and we found a set of
boxes ϑc = {[k1, k1], [k2, k2]} of the feedback controller such that the trajec-
tory of the state variable x1 = cx1 = μcl(t, θp, ϑc) is within the limits of the
reference model γy =M(t, θq).

A more formal expression can be expressed as follows:

Σ∀∃ = {θc]|∀(t ∈ t
′
)∀(ϑp1 ∈ ϑ

′
p1)∀(ϑp2 ∈ ϑ

′
p2)∃(θq ∈ θ

′
q)

(μcl(t, ϑp1, ϑp2, θc) ⊆M(t, ϑq))}
⇓

Σ∀∃ = {k1 × k2|∀(t ∈ t
′
)∀(b ∈ b

′
)∀(M ∈ M

′
)∀(R ∈ R

′
)∀(g ∈ g

′
)

∃(θq1 ∈ θ
′
q1)∃(θq2 ∈ θ

′
q2)∃(θq3 ∈ θ

′
q3)

(x1(M,R, g, b, k1, k2, t) ⊆M(θq1, θq2, θq3, t))}
(5.44)
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Fig. 5.28. Hard and soft specification.

Fig. 5.29. Representation of the interval optimization approach of the feedback
dynamic system.
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where the parameters θq = {θq1, θq2, θq3} are existentially quantified ∃,
because we want to ensure that x1 is within M(t, θq).

In Table 5.11 the values of the parameters are indicated.

Table 5.11. Parameters

Parameters Values

R 0.25

M 0.15

g 10

b [0.001, 0.0259]

τ 0.342

θq1(soft) [1, 1.3]

θq1(hard) [1.1, 1.2]

θq2 [0.5, 1]

θq3 [0.2, 1]

k1 [0.01, 5]

k2 [0.01, 5]

Set of hard and soft parameters k1, k2 of the state feedback controller are
depicted in Figure 5.30.
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Fig. 5.30. Set of hard and soft parameters k1, k2 of the state feedback controller
determined with τ = 0.342, θq1(hard) = [1.1, 1.2] and θq1(soft) = [1, 1.3]. The
green and red boxes represent the hard and soft solution set, respectively. The
yellow boxes are outside of the hard and soft solution set and the black boxes are
undefined.
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We will perform some robustness tests. From the paving indicated in
Figure 5.30, three parameters from the feedback controller will be selected
ϑc1 = {k1 = 3.7, k2 = 4}, ϑc2 = {k1 = 3.7, k2 = 1.5} and ϑc3 = {k1 =
1.5, k2 = 3}. ϑc1 and ϑc2 are within the paving and ϑc3 is out. With a nominal
feedforward u∗ = 0.342, system will be controlled in an interval of time
{0 ≤ t ≤ 40}. From t = 0.5 to t = 5, the parameter b will be variated within
the interval b = [0.001, 0.0259]. These values belong to maximum attainable
uncertainty for the soft specification as indicated in Table 5.8. In Figures
5.31 and 5.32, we can see that with parameters ϑc1 = {k1 = 3.7, k2 = 4} and
ϑc2 = {k1 = 3.7, k2 = 1.5}, the feedback controller maintaints the output
withinM(t, θq) for all 0 ≤ t ≤ 40, obtaining a good robust performance under
parametric uncertainty. In Figure 5.20, we can see that with parameters ϑc3 =
{k1 = 1.5, k2 = 3}, the feedback controller does not meet the specifications
in certain instant of time.
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Fig. 5.31. Robustness test of the state feedback controller with {k1 = 3.7, k2 = 4},
nominal feedforward τ∗ = 0.342 and soft uncertainty b = [0.01, 0259].



5.2 Applications to simple pendulum 145

0 10 20 30 40
0

1

2

y
=

x
1

0 10 20 30 40
0

0.2

0.4

x
2

0 10 20 30 40
0

0.2

0.4

u

Time [s]

0 10 20 30 40
0

0.02

0.04

b

Time [s]

1 2 3 4 5

2

4

k
1

k
2

Fig. 5.32. Robustness test of the state feedback controller with {k1 = 3.7, k2 =
1.5}, nominal feedforward τ∗ = 0.342 and soft uncertainty b = [0.01, 0259].
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Fig. 5.33. Robustness test of the state feedback controller with {k1 = 1.5, k2 = 3},
nominal feedforward τ∗ = 0.342 and soft uncertainty b = [0.01, 0259].
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5.3 Applications to fed-batch bioreactors

5.3.1 Dynamic model

A bioreactor is a tank in which several microbial growth reactions and
enzyme-catalyzed reactions occur simultaneously in a liquid environment.
These nonlinear systems show both unstructured and parametric uncertainty.
The form appears mainly due to the simplifications in the model regarding
to the behavior of the microorganism and the reactor itself. Some properties
of the model can be consulted in thesis Picó-Marco (2004)

Fig. 5.34. Fed-batch bioreactor.

• The cell is considered as a ”black box” and only the main extracellular
species are consumed or excreted in the environment, without delve into
the intracellular mechanisms.

• The cells may be subject to a phenomenon of ”aging” so not all have the
same capacity of division, or genetic mutation so that some cells do not
produce species of interest. Nevertheless the model is built taking into
account an average cell.

• The conditions and concentrations in the tank are supposed to be homo-
geneous, which is a good approximation for lab-scale fermentators.

• The biomass actually needs several substrates to grow, but all are found in
excess, both in the environment and the inflow, except one. This limited
substrate alone will take part in the equations, the other substrates will be
considered.

It is difficult to identify the value of the model parameters and it is in-
teresting to know the amount of parametric uncertainty that it could have.
If the basic considered reaction is
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X(biomass) + S(substrate) 
−→ X + P (product) (5.45)

then

ẋ1 = μ(x2)x1 − λx21
ẋ2 = (λ(Sf − x2)− μ(x2)/yx/s)x1
ẋ3 = λx1x3
ẋ4 = rx1/yx/p − λx1x4

(5.46)

where

• x1, x2, x4 represent the concentrations of biomass, substrate and product
in the tank.

• x3 is the volume in the bioreactor, λ = D/x1 the controller and D = F/x3
the dilution.

• F is the input flux.
• Sf the substrate concentration in the input flux.
• yx/s and yx/p are yield coefficients.
• μ(x2) is the microorganisms specific growth rate, that is, per unit of
biomass.

• r the specific production rate. Generally, it depends on several factors,
although in certain cases it is proportional to μ(x2) and then the product
formation is said to be associated to the growth.

The specific growth rate also depends on several factors such as the con-
centrations of substrate and product, the PH, temperature, etc. Usually, it is
expressed as:

μ = μ(x2)μ(x4)μ(pH)μ(T )... (5.47)

Temperature, pH and other environmental variables are often kept con-
stant. The more common expressions for the microorganisms specific growth
rate and product concentration are:

• Substrate concentration.

1. Monod (Or Michaelis-Menten)

μ(x2) =
μmx2

km+x2
(5.48)

where μm is the maximum growth rate, km a transport constant.
2. Haldane, in which the inhibition of growth by the substrate is taken into

account.

μ(x2) =
μox2

km+x2+
x2
2

ki

(5.49)
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In practice there is always an inhibition of biomass growth, but in many
cases it appears for substrate concentrations that are very high when they
are compared to those in the zone of interest. Hence, often a Monod is
used. The opposite case, in which it is necessary to use a Haldane, appears
in applications such as water decontamination.

• Product concentration. A common example may be

μ(x4) =
kp

kp+x4
(5.50)

The model obtained under these assumptions is:

ẋ1 = μ(x2)x1 − λx21
ẋ2 = (λ(Sf − x2)− μ(x2)/yx/s)x1
ẋ3 = λx1x3

μ(x2) = μmx2/(km + x2)

(5.51)

the same model can be consulted in Agrawal et al. (1989). In order
to simplify its practical implementation, we made some considerations. The
control variable λ may be chosen as λ = λmin + λmax and substrate con-
centration in input flux Sf ∈ [Sfmin, Sfmax], then the equation (5.51) of the
system model may be represented by

ẋ1 = μ(x2)x1 − (λmax + λmin)x
2
1

ẋ2 = (λmax(Sf − x2) + λmin(Sf − x2)− μ(x2)/yx/s)x1
ẋ3 = (λmax + λmin)x1x3

μ(x2) = μmx2/(km + x2)

(5.52)

5.3.2 Simulation of the system considering a region of flat outputs

If λ, Sf are taken as inputs and x1, x3 as flat outputs, then the output vari-
ables are y1 = x1(biomass concentration) and y2 = x3 (volume). From the
third equation in (5.51) we can reconstruct (λ).

λ = ẋ3

xT
= ẋ3

x1x3
(5.53)

From the first equation in (5.51) we can reconstruct the microorganisms
specific growth rate μ(x2)

μ(x2) =
ẋ1

x1
+ ẋ3

x3
(5.54)

using the expression of μ(x2) and replacing it in the equation μ(x2) =
μmx2

km+x2
we can reconstruct the state variable x2 of this equation
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x2 = km(x3ẋ1+ẋ3x1)
μmx1x3−(x3ẋ1+ẋ3x1)

= km(ẋT )
μmxT−(ẋT )

(5.55)

being xT = x1x3 the absolute quantity of biomass. Finally, using the
second equation of (5.51) the expression of substrate concentration in the
input flux Sf is

Sf = kmμ(x2)
μm−μ(x2)

+ (μ(x2)/yx/s)
x1x3

ẋ3
(5.56)

Since it maintains a constant microorganisms growth rate μ(x2) = const
corresponds with an exponential trajectory for the absolute quantity of
biomass xT = x1x3, then the equation μ(x2) = μmx2

km+x2
is transformed into

μr = μmx2r

km+x2r
in steady state operation mode. Thus the first and third equa-

tion of (5.51) in steady stable correspond to

ẋ1r = μrx1r − λnx
2
1r

ẋ3r = λnx1rx3r
(5.57)

if we solve these equations, we obtain the expressions of the flat outputs
in steady state. Thus the flat output y1 = x1 is

y1 = x1 = μr/λn

( μr
λnx10

−1)e−μrt+1 (5.58)

and the flat output y2 = x3 is

y2 = x3 = x30(1− λnx10

μr
) + x10x30

λn

μr
eμrt (5.59)

Being μr the nominal microorganisms growth rate, λn a nominal con-
troller, x10 the uncertain initial condition in biomass and x30 the uncertain
initial condition in volume. With the flat output equations (5.58) and (5.59)
we can obtain the equilibrium states of the system in terms of the equilibrium
values of flat outputs. Thus, from equation μr = μmx2r

km+x2r
we can obtain x2r

x2r = kmμr

μm−μr
(5.60)

the equation (5.56) is transformed in stable steady to

Sfr = x2r + (μr/yx/s)
1
λn

(5.61)

therefore the nominal controller λn is
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λn =
μr/yx/s

Sfr−x2r
(5.62)

Let us make some notations. ϑk = {λn} is a nominal controller, ϑ̄o =
{x10, x30} are fixed parameters for the flat outputs. ϑs = {[μ

r
, μr], ϑk, ϑ̄o}

contains the specification parameters, ϑ̄s = {μr = (μ̄r − μ
r
)/2, λn, x10, x30}

is a point of specification. ϑp = {[km, k̄m], [μ
m
, μm], [y

x/s
, ȳx/s]} are uncertain

intervals of the plant. ϑ̄p = {km, μm, yx/s} is a nominal plant. Let us define
two nominal hard μr = [0.09, 0.13] and soft μr = [0.07, 0.15] specifications
as is seen in Figure 5.35.

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
μ

r

Time(hour)

Soft

Hard

Fig. 5.35. Hard μr = [0.09, 0.13] and soft μr = [0.07, 0.15] specifications.

With these specifications and a nominal plant km = 0.15, μm = 0.1 and
yx/s = 0.6993, let us compute the bounding intervals x2r, Sfr and λn from
equations (5.60), (5.61) and (5.62) respectively.

μr =
[
μ
r
, μr

]
⇒ Esμ(t, ϑs) ⇒ Esμ(t)

x2r =
[km,km][μ

r
,μr]

[μ
m
,μm]−[μr

,μr]
⇒ Esx2(t, ϑs, ϑ̄p) ⇒ Esx2(t)

Sfr = [x2r, x2r] +
[μ

r
,μr]/

[
y
x/s

,yx/s

]

λn
⇒ Esf (t, ϑs, ϑ̄p) ⇒ Esf (t)

λn =
[μ

r
,μr]/

[
y
x/s

,yx/s

]

[Sfr ,Sfr]−[x2r ,x2r]
⇒ Esλ(t, ϑs, ϑ̄p) ⇒ Esλ(t)

(5.63)
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We make the clarification that Esμ, Esx2, Esf and Esλ are related to
nominal specifications that was explained in Section (4.4) from Chapter four.
After realizing the interval operations from equation (5.63) we obtain inter-
vals indicated in Figure 5.36.
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Fig. 5.36. Nominal specifications Esµ, Esx2 , Esf and Esλ computed with hard
μr = [0.09, 0.13] and soft μr = [0.07, 0.15] specifications and nominal plant km =
0.15, μm = 0.1 and yx/s = 0.6993.

5.3.3 Robustness analysis of a nominal controller

In the following example, we will use the set of nominal specifications obtained
in the previous section. The approach for obtaining the maximum permissible
uncertainty of the plant by a nominal controller ϑk = {λn} is similar to the
developed in previous applications. Let us maximize the plant space such
that to evaluate the output, the state and controller interval functions are
within the set of nominal specifications. The Approach is ilustrated in Figure
5.37.

The interval functions cμ(x2), ϕx2 , ψsf and ψλ are computed from equa-
tions (5.51), (5.55), (5.56) and (5.53) respectively. Thus, we obtain the fol-
lowing expressions

μ(x2) = μmx2/(km + x2) ⇒ cμ(x2)(t, ϑs, ϑp) (5.64)
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Fig. 5.37. Optimization approach to maximize the plant space ϑp.

x2 = km(x3ẋ1+ẋ3x1)
μmx1x3−(x3ẋ1+ẋ3x1)

= km(ẋT )
μmxT−(ẋT ) ⇒ ϕx2(t, ϑs, ϑp)

(5.65)

Sf = kmμ(x2)
μm−μ(x2)

+ (μ(x2)/yx/s)
x1x3

ẋ3
⇒ ψsf (t, ϑs, ϑp) (5.66)

λ = ẋ3

xT
= ẋ3

x1x3
⇒ ψλ(t, ϑs) (5.67)

Instead comparing Esμ with μ(x2) =
ẋ1

x1
+ ẋ3

x3
⇒ μ(x2)(t, ϑ̄s) from equa-

tion (5.54), we compared Esμ with μ(x2) = μmx2

km+x2
⇒ cμx2(t, ϑ̄s, ϑp) with

the finality to determine maximum permissible uncertainty in the plant and
computed the attainable nominal specification Esμ. In previous equations, a
set of plants μm × km × yx/s will be evaluated. Solution sets will be those
plants that fulfill the nominal specifications.

The set of constraints is expressed of the following form:
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C(t, ϑs, ϑp, ϑk, ϑo) = {cμ(x2)(t, λn, μr, x10, x30, μm, km) ⊆ Esμ(t)∧
ϕx2(t, λn, μr, x10, x30, km, μm) ⊆ Esx2(t)∧
ψλ(t, λn, μr, x10, x30) ⊆ Esλ(t)∧
ψsf (t, λn, μr, x10, x30, km, μm, yx/s) ⊆ Esf (t)}

(5.68)

and the solution set Σ∀∃ can be expressed as:

Σ∀∃ = {μm × km × yx/s|∀(x10 ∈ x
′
10)

∀(x30 ∈ x
′
30)∀(t ∈ t

′
)∃(λn ∈ λ

′
n)∃(μr ∈ μ

′
r)

(cμ(x2)(t, λn, μr, x10, x30, μm, km) ⊆ Esμ(t)∧
ϕx2(t, λn, μr, x10, x30, km, μm) ⊆ Esx2(t)∧
ψλ(t, λn, μr, x10, x30) ⊆ Esλ(t)∧
ψsf (t, λn, μr, x10, x30, km, μm, yx/s) ⊆ Esf (t))}

(5.69)

Values and assigned quantifiers to the parameters are indicated in Table
5.12.

Table 5.12. Assigned quantifiers to the parameters to meet hard ∃(μr ∈
[0.09, 0.13]) and soft ∃(μr ∈ [0.07, 0.15]) specifications

Quantifiers (∀) Quantifiers (∃)
∀(x10 ∈ [0.7, 0.7]) ∃(μr ∈ [0.09, 0.13])

∀(x30 ∈ [1, 1]) ∃(μr ∈ [0.07, 0.15])

∀(km ∈ [0.1, 0.2]) ∃(λn ∈ [0.0079, 0.0079])

∀(μm ∈ [0.5, 1.2])

∀(yx/s ∈ [0.4, 1.2])

∀(t ∈ [0, 40])

Intervals of hard and soft maximum permissible uncertainty by a nominal
controller λn = 0.0079 are indicated in Table 5.13 .

Table 5.13. Maximum permissible uncertainty by a nominal controller λn = 0.0079
to meet hard ∃(μr ∈ [0.09, 0.13]) and soft ∃(μr ∈ [0.07, 0.15]) specifications

Variables ∃(μr ∈ [0.09, 0.13]) ∃(μr ∈ [0.07, 0.15])

μm [0.783, 0.837] [0.755, 0.865]

km [0.1419, 0.1581] [0.1333, 0.1665]

yx/s [0.6723, 0.7263] [0.6443, 0.7543]

5.3.4 Computation of a family of controllers.

Let us compute the family of hard and soft controllers that could meet some
hard and soft specifications. The approach consists in maximize the space of
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controllers ϑk such that some specifications are met and the constraints are
satisfied. A representation of the approach is depicted in Figure 5.38.

Fig. 5.38. Optimization approach to maximize the space of controllers ϑk.

Let us make some notations. ϑk = {[λn, λn]} is a family of nominal con-
trollers, ϑk = {λn} is a fixed nominal controller, ϑ̄o = {x10, x30} are fixed
parameters for the flat outputs. ϑs = {[μ

r
, μr], ϑ̄o} contains the specification

parameters, ϑ̄s = {μr = (μ̄r − μ
r
)/2, x10, x30} is a point of specification.

ϑp = {[km, k̄m], [μ
m
, μm], [y

x/s
, ȳx/s]} are uncertain intervals of the plant.

ϑ̄p = {km, μm, yx/s} is a nominal plant. As we can see we separed the con-
troller ϑk from specifications ϑs since it is the space that we want to maximize.

The set of nominal Esμ, Esx2, Esf and Esλ specifications are obtained
from equation (5.63) but including ϑk in some expressions, they are as follows:

μr =
[
μ
r
, μr

]
⇒ Esμ(t, ϑs) ⇒ Esμ(t)

x2r =
[km,km][μ

r
,μr]

[μ
m
,μm]−[μr

,μr]
⇒ Esx2(t, ϑs, ϑp) ⇒ Esx2(t)

Sfr = [x2r, x2r] +
[μ

r
,μr]/

[
y
x/s

,yx/s

]

λn
⇒ Esf (t, ϑs, ϑ̄p, ϑk) ⇒ Esf (t)

λn =
[μ

r
,μr]/

[
y
x/s

,yx/s

]

[Sfr ,Sfr]−[x2r ,x2r]
⇒ Esλ(t, ϑs, ϑ̄p, ϑk) ⇒ Esλ(t)

(5.70)
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on similar way cμ(x2), ϕx2, ψsf and ψλ can be obtained from equations

(5.64), (5.65), (5.66) and (5.67) including ϑk as follows:

μ(x2) = μmx2/(km + x2) ⇒ cμ(x2)(t, ϑs, ϑp, ϑk) (5.71)

x2 = km(x3ẋ1+ẋ3x1)
μmx1x3−(x3ẋ1+ẋ3x1)

= km(ẋT )
μmxT−(ẋT ) ⇒ ϕx2(t, ϑs, ϑp, ϑk)

(5.72)

Sf = kmμ(x2)
μm−μ(x2)

+ (μ(x2)/yx/s)
x1x3

ẋ3
⇒ ψsf (t, ϑs, ϑp, ϑk) (5.73)

λ = ẋ3

xT
= ẋ3

x1x3
⇒ ψλ(t, ϑs, ϑk) (5.74)

The set of constraints is expressed of the following form:

C(t, ϑs, ϑp, ϑk, ϑo) = {cμ(x2)(t, λn, μr, x10, x30, μm, km) ⊆ Esμ(t)∧
ϕx2(t, λn, μr, x10, x30, km, μm) ⊆ Esx2(t)∧
ψλ(t, λn, μr, x10, x30) ⊆ Esλ(t)∧
ψsf (t, λn, μr, x10, x30, km, μm, yx/s) ⊆ Esf (t)}

(5.75)

The solution set Σ∀∃ can be expressed as:

Σ∀∃ = {λn|∀(x10 ∈ x
′
10)∀(x30 ∈ x

′
30)∀(t ∈ t

′
)

∀(μm ∈ μ
′
m)∀(km ∈ k

′
m)∀(yx/s ∈ y

′
x/s)∃(μr ∈ μ

′
r)

(cμ(x2)(t, λn, μr, x10, x30, μm, km) ⊆ Esμ(t)∧
ϕx2(t, λn, μr, x10, x30, km, μm) ⊆ Esx2(t)∧
ψλ(t, λn, μr, x10, x30) ⊆ Esλ(t)∧
ψsf (t, λn, μr, x10, x30, km, μm, yx/s) ⊆ Esf (t))}

(5.76)

The assigned quantifiers to the parameters to obtain the familiy of hard
and soft controllers ϑk(∀) that could ensure that some hard and soft spec-
ifications are met ϑs(∃) and the constraints are satisfied under parametric
uncertainty in the plant ϑp(∀) are indicated in Table 5.14. The family of
hard and soft controllers obtained are indicated in Table 5.15.

5.3.5 Computation of attainable specifications by a nominal
controller

Now, let us solve the space of attainable specifications by a nominal controller.
The optimization approach indicated in Figure 5.39 consists on optimizing
the space of specifications ϑs under parametric uncertainty in the plant.
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Table 5.14. Quantifiers assigned to the parameters to find a family of hard and soft
controllers ϑk and met some hard ∃(μr ∈ [0.09, 0.13]) and soft ∃(μr ∈ [0.07, 0.15]
specifications

Quatifiers (∀) Hard plants Soft plants

∀(x10 ∈ [0.7, 0.7])

∀(x30 ∈ [1, 1]) ∀(km ∈ [0.1419, 0.1581]) ∀(km ∈ [0.1333, 0.1665])

∀(λn ∈ [0.004, 0.01]) ∀(μm ∈ [0.783, 0.837]) ∀(μm ∈ [0.755, 0.865])

∀(t ∈ [0, 40]) ∀(yx/s ∈ [0.6723, 0.7263]) ∀(yx/s ∈ [0.6443, 0.7543])

Table 5.15. Family of hard and soft controllers that ensure that some hard μr =
[0.09, 0.13] and soft μr = [0.07, 0.15] specifications are met

Parameter Hard Soft

λ∗
n [0.0077, 0.0080] [0.0076, 0.0081]

Fig. 5.39. Optimization approach to maximize the space of specifications ϑs.

The nominal specifications Esμ, Esx2, Esf and Esλ are computed from
equation (5.70) as the previous case, the interval functions cμ(x2), ϕx2, ψsf

and ψλ are evaluated as follows:

μ(x2) = μmx2/(km + x2) ⇒ cμ(x2)(t, ϑs, ϑp, ϑ̄k) (5.77)
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x2 = km(x3ẋ1+ẋ3x1)
μmx1x3−(x3ẋ1+ẋ3x1)

= km(ẋT )
μmxT−(ẋT ) ⇒ ϕx2(t, ϑs, ϑp, ϑ̄k)

(5.78)

Sf = kmμ(x2)
μm−μ(x2)

+ (μ(x2)/yx/s)
x1x3

ẋ3
⇒ ψsf (t, ϑs, ϑp, ϑ̄k) (5.79)

λ = ẋ3

xT
= ẋ3

x1x3
⇒ ψλ(t, ϑs, ϑ̄k) (5.80)

the solution set Σ∃∀ referred to the specifications space corresponds to:

Σ∀∃ = {μr|∀(x10 ∈ x
′
10)∀(x30 ∈ x

′
30)∀(t ∈ t

′
)

·∀(μm ∈ μ
′
m)∀(km ∈ k

′
m)∀(yx/s ∈ y

′
x/s)∃(λn ∈ λ

′
n)

(cμ(x2)(t, μr, λn, x10, x30, μm, km) ⊆ Esμ(t)∧
ϕx2(t, μr, μm, km, x10, x30, λn) ⊆ Esx2(t)∧
ψλ(t, μr, λn, x10, x30) ⊆ Esλ(t)∧
ψsf (t, μr, λn, μm, km, yx/s, x10, x30) ⊆ Esf (t))}

(5.81)

Let us consider a nominal controller λn = 0.0079 and hard and soft para-
metric uncertainty from Table 5.13. The quantifiers and values used are in-
dicated in Table 5.16. In Figure 5.40 we can see that the nominal controller
λn = 0.0079 met the hard and soft specifications under hard and soft para-
metric uncertainty.

Table 5.16. Quantifiers to find attainable specifications by a nominal controller
λn = [0.0079, 0.0079]

Quatifiers (∀) Hard plants Soft plants

∀(x10 ∈ [0.7, 0.7])

∀(x30 ∈ [1, 1]) ∀(km ∈ [0.1419, 0.1581]) ∀(km ∈ [0.1333, 0.1665])

∀(μr ∈ [0.01, 0.3]) ∀(μm ∈ [0.783, 0.837]) ∀(μm ∈ [0.755, 0.865])

∀(t ∈ [0, 40]) ∀(yx/s ∈ [0.6723, 0.7263]) ∀(yx/s ∈ [0.6443, 0.7543])

It can be seen that to maintain a constant microorganisms growth rate
μ(x2) = const corresponds with an exponential trajectory of the absolute
biomass quantity xT = x1x3 and vice versa. With the family of obtained con-
trollers it is possible to verify the fulfillment of specifications of the biomass
and volume space as it is indicated in Figure 5.41

5.3.6 Robustness test

A robustness test in open-loop can be made by using the nonlinear system
model (5.51), with hard controllers λ = {0.0077, 0.0078, 0.0079, 0.0080}, sub-
strate concentrations Sf = [18, 22] and parametric uncertainty in the plant
μm = [0.783, 0.837], km = [0.1419, 0.1581], yx/s = [0.6723, 0.7263].
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Fig. 5.40. Hard and soft attainable specifications by a nominal controller λn =
0.0079 under hard and soft parametric uncertainty.
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Fig. 5.41. Biomass and volume space.
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Fig. 5.42. Open-loop control system.

In Figures 5.43 and 5.44 we can see that hard controllers are able to main-
tain the microorganisms growth rate within the interval μ(x2) = [0.09, 0.13]
after a certain time, under parametric uncertainty in the plant parame-
ters. The initial conditions considered for the state variables were x1(0) =
0.7, x2(0) = 0.01, x3(0) = 1.

Fig. 5.43. (a) Open-loop response with λ = 0.0077 (b) Open-loop response with
λ = 0.0078.
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Fig. 5.44. (c) Open-loop response with λ = 0.0079 (b)Open-loop response with
λ = 0.0080.

5.3.7 Computation of state feedback controller parameters.

In this section we will design a feedback controller based on differential flat-
ness considering the system model 5.52. From second equation in (5.52) we
can obtain λmin and λmax in function of the flat outputs.

λmax = 1
(Sfmax−Sfmin)

[
ẋ2

x1
+ ẋ1

yx/sx1
− ẋ3

x3x1
(− x1

yx/s
+ Sfmin − x2)

]
(5.82)

λmin = λ− λmax (5.83)

because we desire to drive the states x1 and x3 to their equilibrium values
x̄1 = ȳ1 and x̄3 = ȳ2 the differential parametrization of the input immediately
suggest the stabilizing controller as:

λmax = 1
(Sfmax−Sfmin)

[
ẋ2

x1
+ ẋ1

yx/sx1
− ẋ3

x3x1
(− x1

yx/s
+ Sfmin − x2)

]
ẋ2 = kmμm(x1x3(x3ẍ1+2ẋ1ẋ3+x1ẍ3−(x3ẋ1+ẋ3x1)

2)
(μmx1x3−(x3ẋ1+ẋ3x1))2

(5.84)
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the closed-loop dynamics for the flat outputs can be fixed as follows:

ẍ1 = −k2x1ẋ1 − k1x1(x1 − x̄1)
ẍ3 = −k2x3ẋ3 − k1x3(x3 − x̄3)

(5.85)

which can be made asymptotically stable by a suitable choice of the design
parameters k2x1, k1x1, k2x3 and k1x3.

As the objetive is to track a reference model, we fixed ẍ3 = u1 and ẍ1 = u2
where u1 and u2 are defined by two PI controllers as follows:

u1 = kpq1ex3 + kiq1
∫
ex3dτ, ex3 = x3r − x3

u2 = kpq2ex1 + kiq2
∫
ex1dτ, ex1 = x1r − x1

(5.86)

In Figure 5.45 the control diagram is indicated.

Fig. 5.45. Feedback controller.

A complete reference of nonlinear robust control of biotechnological pro-
cesses can be consulted in E. Picó-Marco’s doctoral thesis Pico-Marco
(2004). There, two PI controllers were used considering to λ and Sf as
control inputs. λ was associated with volume x3 and Sf with biomass con-
centration x1 as it is indicated in Figure 5.46.

being λn a nominal feedforward selected from Table 5.15 with the ∀∃-
solution set Σ∀∃ of process parameters ϑp of 4.23 and Sfin is fixed a priori to
Sfin ∈ [Sfmin, Sfmax]. The references, which are the trajectories that must
be followed by the flat outputs, are generated by the exosystem 5.57.
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Fig. 5.46. Feedback control scheme.

It is desired to find the solution set of controller parameters in order to
guarantee the satisfaction of specifications in function of the microorganisms
growth rate μ(x2).

To find the Σ∀∃-solution set of controller parameters ϑc for which ro-
bust performance holds, the Quantified Constraints Satisfaction Problem is
proposed as:

Σϑc = {ϑc ∈ R|∀(t ∈ t
′
)∀(ϑp ∈ ϑ

′
p)∃(θq ∈ θ

′
q)μcl(t, ϑp, ϑc) ⊆M(t, θq)}

(5.87)

being μcl(t, ϑp, ϑc) the closed-loop microorganisms growth rate andM(t, θq)
a first order reference model of the form

M(t, θq) = θq1(1− θq2 exp(−θq3t)) (5.88)

where θq = (θq1, ..., θqj), θqi =
[
θqi, θqi

]
, i = 1...j, is a box of specification

parameters.
In this Quantified Constraints Satisfaction Problem, the constraint has

the form C(t, ϑc, ϑp, θq) := {μcl(t, ϑp, ϑc) ⊆ M(t, θq)}. The three rules to
solve the problem are the followings:

Rule 1:

∀(ϑc ∈ ϑ
′
c)∀(t ∈ t

′
)∀(ϑp ∈ ϑ

′
p)∃(θq ∈ θ

′
q)Ccl(t, ϑc, ϑp, θq) ⇔ ϑc ⊆ Σ

(5.89)
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Rule 2:

¬(∀(t ∈ t
′
)∀(ϑp ∈ ϑ

′
p)∃(θq ∈ θ

′
q)∃(ϑc ∈ ϑ

′
c)Ccl(t, ϑc, ϑp, θq)) ⇔ ϑc ⊆ Σ̄

(5.90)

Rule 3: otherwise, ϑc is undefined.
The variable numeric sets, domains and quantifiers used to find closed-

loop controller parameters in order to guarantee the satisfaction of specifica-
tions are the following:

• Space of controller parameters to solve ϑc = {kpq1, kiq1, kpq2, kiq2};
• Set of controller parameter domains ϑ

′
c = {k′

pq1,k
′
iq1,k

′
pq2,k

′
iq2};

• Set of universally quantified parameters t,ϑp = {km, μm, yx/s};
• Set of existentially quantified parameters , θq = {θq1, θq2, θq3};
• Set of universally quantified parameter domains t

′
,ϑ

′
p = {k′

m,μ
′
m,y

′
x/s};

• Set of existentially quantified parameters domains , θ
′
q = {θ′

q1, θ
′
q2, θ

′
q3};

• Constraints set

Ccl(t, ϑc, ϑp, θq) = {μcl(t, ϑp, ϑc) ⊆M(t, θq)} (5.91)

Finally the solution set Σ∀∃ is

Σ∀∃ = {kpq1 × kiq1 × kpq2 × kiq2|∀(t ∈ t
′
)∀(km ∈ k

′
m)

∀(yx/s ∈ y
′
x/s)∀(μm ∈ μ

′
m)

∃(θq1 ∈ θ
′
q1)∃(θq2 ∈ θ

′
q2)∃(θq3 ∈ θ

′
q3)

(μcl(t, ϑp, ϑc) ⊆M(t, θq))}
(5.92)

now we are going to consider a hard μ(x2) = [0.10, 0.12] and soft
μ(x2) = [0.09, 0.13] specification for closed-loop microorganisms growth rate
and parameters θq1 = [0.10, 0.12], θq2 = [0.5, 1] and θq3 = [0.1, 1] for the
reference model of the hard specification and θq1 = [0.09, 0.13], θq2 = [0.5, 1]
and θq3 = [0.1, 1] for the soft specification. In Figures 5.47 and 5.48 are de-
picting solution sets of closed-loop controller parameters that guarantee the
fulfillment specifications after a certain time interval.

Selecting the controller parameters kpq1 = 100, kiq1 = 15, kpq2 = 100
and kiq2 = 15 of the subpaving of figure 5.47 for soft specifications as well
as the controller parameters kpq1 = 25, kiq1 = 1, kpq2 = 25, kiq2 = 1 of the
subpaving of figure 5.48 for hard specifications, results indicated in Figure
5.49 we can see that the hard feedback controller maintains the desired output
within the hard region and the soft feedback controller maintains the output
within the soft region.
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Fig. 5.47. Closed-loop controller parameters that guarantee the fulfillment of soft
μ(x2) = [0.09, 0.13] specifications. The red boxes represent solution set. The yellow
boxes are outside of the solution set and the black boxes are undefined.

5.3.8 Robustness test

With the purpose of being able to verify the design, a controller with pa-
rameters values kpq1 = 25, kiq1 = 1, kpq2 = 25, kiq2 = 1 has been cho-
sen. For this controller, the temporary response for different precise systems
μm = [0.755, 0.865],km = [0.1333, 0.1665],yx/s = [0.6443, 0.7543] from the
soft plants family has been simulated. In Figure 5.50 it is possible to appre-
ciate that the specifications are fulfilled.

5.4 Conclusions

A method has been developed to treat the uncertainty in biological systems
and the solution of Quantified Constraints Satisfaction problems. The theory
of nonlinear flat systems was applied to obtain a set of algebraic equations
and these were analized in the field of the Modal Interval Analysis. Different
optimization problems were raised to obtain solution sets such as: Admissible
maximum uncertainty by a nominal controller, a set of robust controllers and
attainable specifications by some controllers of the family. The solution sets
were obtained with different Quantified Sets Inversion Algorithms. In the
different applications, the constraints were verified at every point of time
within the considered domains.
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Fig. 5.48. Closed-loop controller parameters that guarantee the fulfillment of hard
μ(x2) = [0.10, 0.12] specifications. The red boxes represent solution set. The yellow
boxes are outside of the solution set and the black boxes are undefined.
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6 Conclusions and future works.

In this Chapter the fulfillment of the objectives formulated in this thesis are
commented and the main contributions are summarized. In the second part,
the future works are mentioned.

6.1 Conclusions

A new methodology of robust controllers design for nonlinear flat systems
was developed.

For the first time, the theory of flat systems was applied to the field of
the Modal Interval Analysis. A set of constraints in terms of sets relation
between specifications, states, controllers and plants were proposed in differ-
ent Quantified Constraints Satisfaction Problems. Hard and soft specification
spaces of the flat outputs were defined in terms of hard and soft specification
intervals of a fuzzy set. From the hard and soft specifications space of the flat
outputs, states and controllers specifications spaces were obtained and used
in a constraints set.

Three main formulations were proposed: 1) Quantified Constraints Sat-
isfaction Problems to determine the maximum uncertainty admitted by a
nominal controller, 2) Quantified Constraints Satisfaction Problems to find a
family of robust controllers and 3) Quantified Constraints Satisfaction Prob-
lems to obtain solutions spaces referred to the attainable specifications by a
family of controllers.

Different Quantified Sets Inversion Algorithms were implanted to obtain
the solution sets referred to: the maximum uncertainty admitted by a nominal
controller, family of robust controllers and the attainable specifications by a
family of controllers. The constraints were evaluated for each point of time
within a specified domain.

A Quantified Sets Inversion Algorithm was applied to an interval linear
system. The example was developed for different types from parameter quan-
tifications. The parameter space (free variables) was partitioned in conjuntion
with the existentially quantified parameters and the constraints were evalu-
ated for each partition. All the ranges of the universally quantified parameters
were used in the constraints.
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Robustness test to the family of robust controllers was made in open-
loop using the nonlinear model of the system. In the simulation each robust
controller was tested under parametric uncertainty of the plant. All the eval-
uated controllers fulfilled the robustness test maintaining the output of the
system within the pre-established region.

The approach was applied to a DC motor, to a simple pendulum and to a
fed-batch bioreactor. In the case of the DC motor and simple pendulum the
flat output spaces were specified only in terms of the specification parame-
ters. However, in the case of the fed-batch bioreactor the flat output spaces
were specified in terms of the specification parameters and other aditional
parameters such as: a nominal controller and initial conditions in biomass
and volume.

A feedback controller based on differential flatness was designed to control
the simple pendulum. The design parameters were determined from viewpoint
of the input-output behaviour of the feedback system. In all cases, the con-
troller parameters were tuned in order to obtain robust performance under
parametric uncertainty. Feedback controllers showed better robustness per-
formances under parametric uncertainty of the plant by using parameters
located in the center from paving solutions.

6.2 Future works

Some future works that can be developed are the following:
The approach of robust possibilistic control can be extended for several

α-cuts of the fuzzy set of specifications. New tools based on modal intervals
to deal directly with fuzzy sets can be developed. Additional information
about the distribution of the parameters within the specified uncertainty
range can be analized in future works. The specification and input spaces can
be considered as universes of discourse. These universes can be partitioned
to form fuzzy subsets. A set of rules can be defined from the fuzzy subsets.
So, a fuzzy model of the plant can be implemented, and the analysis and
design of fuzzy controllers for nonlinear flat systems can be studied in future
works. The technique to solve optimization problems with the approach of
set inclusion can be extended to solve some control problems for nonlinear
general systems. The approach can be extended to feedback control schemes
where the inverse of the plant is required such as Internal Model Control
(IMC).



A Modal intervals

A.1 Definitions and properties

Modal Interval Analysis (MIA) Gardeñes et al. (1985); Gardeñes et
al. (1995); Gardeñes et al. (2001), extends real numbers to intervals,
identifying the intervals by the predicates that the real numbers fulfill, unlike
classical interval analysis identifies the intervals by the set of real numbers
that they contain. In the following results, some of the properties of the modal
intervals are stated. The proofs of all the results presented in this appendix
as well as other recent results of modal intervals can be found in SIGLA/X.

Given the set of closed intervals of R, I(R) = {[a, b]′ |a, b ∈ R, a ≤ b}, and
the set of logical existential and universal quantifiers ∃, ∀, a modal interval is
defined by a pair:

X := (X
′
, QX) (A.1)

in which X
′ ∈ I(R) and QX ∈ {∃, ∀}. X ′

is called the extension and
QX is the modality. The set of modal intervals will be denoted by I∗(R).
On similar form that real numbers are associated in pairs having the same
absolute value but opposite signs, the modal intervals are associated in pairs
too, each member corresponds to the same closed interval of the real axis but
each one having the opposite selection modalities, existential or universal.

The universal and existential quantifiers are represented by ∀ and ∃. More-
over, since the quantifiers are operators which transform real predicates into
interval predicates, it will be written ∃(x,X ′

)P (x) and ∀(x,X ′
)P (x), indi-

cating both arguments, the real index x and the argument X
′
.

The canonical notation for modal intervals is:

[a, b] :=

{
([a1, a2]

′
, ∃) if a1 ≤ a2

([a2, a1]
′
, ∀) if a1 ≥ a2

}
. (A.2)

A modal interval ([a1, a2]
′
, ∃) is called existential interval or proper inter-

val whereas ([a2, a1]
′
, ∀) is called universal interval or improper interval.



170 A Modal intervals

A.2 Modal interval relations and operations

Given the modal interval X = (X
′
, QX) ∈ I∗(R), then

Set(X
′
, QX) := X

′
,

Mod(X
′
, QX) := QX.

(A.3)

The canonical coordinates of modal intervals are defined by

Inf(X) :=

{
if Mod(X) = ∃ then min(Set(X))
if Mod(X) = ∀ then max(Set(X))

Sup(X) :=

{
if Mod(X) = ∃ then max(Set(X))
if Mod(X) = ∀ then min(Set(X))

(A.4)

The canonical notation of modal intervals is introduced by the definition

[a, b] :=

{
if a ≤ b then ([a, b]

′
, ∃)

if a ≥ b then ([b, a]
′
, ∀) (A.5)

Canonical notations for the modal and canonical coordinates are

Inf([a, b]) = a,
Sup([a, b]) = b,
Set([a, b]) = [min(a, b),max(a, b)],

Mod([a, b]) =

{
if a ≤ b then ∃,
if a ≥ b then ∀.

(A.6)

For example, the modal coordinates of the modal interval ([2, 3]′, ∀) are
Set([2, 3]

′
, ∀) = [2, 3]

′
and Mod([2, 3]

′
, ∀) = ∀.

The canonical coordinates are Inf([2, 3]
′
, ∀) = 3 and Sup([2, 3]

′
, ∀) = 2.

The canonical notation is [3, 2] = ([2, 3]
′
, ∀).

With this canonical notation, ”natural” modal interval sets are

I∗(R) = {[a, b]|a ∈ R, b ∈ R} ,
I∃(R) = {[a, b] ∈ I∗(R)|a ≤ b} ,
I∀(R) = {[a, b] ∈ I∗(R)|a ≥ b} ,
Ip(R) = {[a, b] ∈ I∗(R)|a = b} .

(A.7)

An interval [a, b] ∈ I∃(R) is a quantified as a ”proper interval”; an interval
[a, b] ∈ I∀(R) as ”improper”; an interval [a, a] ∈ Ip(R) as a point-interval.
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Fig. A.1. (Inf-sup)-diagram

The modal quantifier Q associates to every real predicate P (.) ∈ Pred(R)
has a unique hereditary interval predicate: for a variable x on R and
(X

′
, QX) ∈ I∗(R)

Q(x(X
′
, QX))P (x) := QX(x,X

′
)P (x) (A.8)

It will be obtained, by example,

Q(x, ([−3, 1]
′
, ∃))x ≥ 0 := ∃(x, [−3, 1]

′
)x ≥ 0,

Q(x, ([1, 2]
′
, ∀))x ≥ 0 := ∀(x, [1, 2]′)x ≥ 0.

Using the canonical notation, the operation of the Q-quantifier is dis-
played as follows:

Q(x, [a, b]) =

{
if a ≤ b then ∃(x, [a, b]′),
if a ≥ b then ∀(x, [b, a]′). (A.9)

as well as a classic interval is identifiable with a predicate: X
′ ↔ x ∈ X

′
, a

modal interval also identifies a set of predicates: X = (X
′
, QX) ↔ Pred(X),

which allows to extend the relations of equality and inclusion of the classic
intervals to the modal intervals. The set of real predicates accepted by a
modal interval corresponds to



172 A Modal intervals

Pred(x(X
′
, QX)) := {P (.) ∈ Pred(R)|Q(x, (X

′
, QX))P (x)} (A.10)

The parallel relation to the inclusion of two set-theoretical of intervals
can be introduced into system of modal intervals.

It will be defined the set-theoretical of modal inclusion, for A,B ∈ I∗(R),
as

A ⊆ B ⇔ Pred(A) ⊆ Pred(B) (A.11)

Thus the inclusion among modal intervals, A ⊆ B, makes valid the im-
plication Q(x,A)P (x) ⇒ Q(x,B)P (x) for any property P (x) on the real
numbers. In terms of the canonical notation

[a1, a2] ⊆ [b1, b2] ⇔ (a1 ≥ b1, a2 ≤ b2) (A.12)

is identical to the ⊆-relation for I(R). Naming the existential intervals
”proper intervals” to the universal ones ”improper intervals” that comes from
the identification of I∃(R) and I∀(R) suggested by their coinciding inclusions
programming theorems.

In a dual way it is possible to define the set of real ”co predicates” or pred-
icates rejected by a modal interval, given by its modal coordinates (X

′
, QX)

Copred(X
′
, QX) := {P (.) ∈ Pred(R)|¬Q(x, (X

′
, QX))P (x)} (A.13)

There exists a complementarity between Pred and Copred by means of
the duality operator

Dual([a, b]) := [b, a] (A.14)

since A ⊆ B ⇔ Dual(A) ⊇ Dual(B) ⇔ Copred(A) ⊇ Copred(B).
The ”less or equal” relation, generated by the completation of the modal

inclusion, is defined as follows, in the (Inf, Sup)-diagram, a representation for
”inclusion” and ”less or equal” relationships it is indicated in Figure A.2

The system (I∗(R),⊆) is a lattice, the infimum and the supremum are
named meet and join operators represented by ∧ and ∨, respectively: for a
family of modal intervals A(i) with i ∈ I it will be defined

∧(i, I)A(i) = A ∈ I∗(R) is such that ∀(i, I)X ⊆ A(i) ⇔ X ⊆ A,
∨(i, I)A(i) = B ∈ I∗(R) is such that ∀(i, I)X ⊇ A(i) ⇔ X ⊇ B

(A.15)

annotated A ∧B and A ∨B for the corresponding two-operands case.
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Fig. A.2. Inclusion and less than relations

In terms of the canonical notations A(i) = [a1(i), a2(i)]

∧(i, I)A(i) = [max(i, I)a1(i),min(i, I)a2(i)],
∨(i, I)A(i) = [min(i, I)a1(i),max(i, I)a2(i)].

(A.16)

The system I∗(R),≤ is a lattice, the infimum and the supremum are called
Bottom and Top operators: For a family of modal intervals A(i) with i ∈ I
it will be defined

Bottom(i, I)A(I) = min(i, I)A(i)
min(i, I)A(i) = C ∈ I∗(R) is such that ∀(i, I)X ≤ A(i) ⇔ X ≤ C,
Top(i, I)A(I) = max(i, I)A(i)
max(i, I)A(i) = D ∈ I∗(R) is such that ∀(i, I)X ≥ A(i) ⇔ X ≥ D

(A.17)

In terms of the canonical notations A(i) = [a1(i), a2(i)]

min(i, I)A(i) = [min(i, I)a1(i),min(i, I)a2(i)]
max(i, I)A(i) = [max(i, I)a1(i),max(i, I)a2(i)]

(A.18)

In the Modal Interval Analysis, if DI ⊆ R is a digital scale for the real
numbers

I∗(DI) := {[a, b] ∈ I∗(R)|a ∈ DI, b ∈ DI} (A.19)

the modal outer and inner roundings of A ∈ I∗(R) are defined by
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Fig. A.3. Join, meet, bottom and top

Inn([a, b]) = [Right(a), Left(b)] ∈ I∗(DI),
Out([a, b]) = [Left(a), Right(b)] ∈ I∗(DI). (A.20)

The condition Inn([a, b]) ⊆ [a, b] ⊆ Out([a, b]) is fulfilled and equality
Inn(A) = Dual(Out(Dual(A))) makes unnecessary the implementation of
the inner rounding.

The generalization to intervals with n components is direct. The set of
n-dimensional intervals

I∗(Rn) := {([a1, b1], ..., [an, bn])|[a1, b1] ∈ I∗(R), ..., [an, bn] ∈ I∗(R)}
(A.21)

and the inclusion relation for two n-dimensional intervalsA = (A1, ..., An),
B = (B1, ..., Bn) ∈ I∗(Rn) is

A ⊆ B ⇔ (A1 ⊆ B1, ..., An ⊆ Bn). (A.22)

A.3 Semantic extensions of continuous functions

The dual formulation of the modal intervals allows one to define two semantic
interval functions, noted by f∗ and f∗∗ respectively. These play a very im-
portant role in the theory because they are in close relation with the modal
interval extensions and provide meaning to the interval computations.
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Definition A.1. * and **-semantic functions. If f is an Rn to R con-
tinuous function and X ∈ I∗(Rn) then

f∗(X) := ∨(xp, X ′
p) ∧ (xi, X

′
i)[f(xp, xi), f(xp, xi)]

= [min(xp, X
′
p)max(xi, X

′
i)f(xp, xi),max(xp, X

′
p)min(xi, X

′
i)f(xp, xi)],

f∗∗(X) := ∧(xi, X ′
i) ∨ (xp, X

′
p)[f(xp, xi), f(xp, xi)]

= [max(xi, X
′
i)min(xp, X

′
p)f(xp, xi),min(xi, X

′
i)max(xp, X

′
p)f(xp, xi)].

(A.23)

where (xp, xi) is the component splitting corresponding to X = (Xp, Xi),
with Xp a sub vector containing the proper components of X and Xi a sub
vector containing the improper components of X .

If Xi = 0

f∗(X) = f∗∗(X)

= ∨(x,X ′
)[f(x), f(x)] = [min(x,X

′
)f(x),max(x,X

′
)f(x)]

(A.24)

and if Xp = 0

f∗(X) = f∗∗(X)

= ∧(x,X ′
)[f(x), f(x)] = [max(x,X

′
)f(x),min(x,X

′
)f(x)]

(A.25)

which can be identified with the united extension of the classical interval
extensions.

Using this definition, the expressions of the arithmetic operations by
means of the interval bounds can be obtained. As example, this definition
is applied in the following addition. Let us consider the function f = x1 + x2
and given X1 = [x1, x1] and X2 = [x2, x2], the semantic extensions f∗ and
f∗∗ will be:

1. If X1 and X2 are proper:

f∗(X) = [min(x1)min(x2)(x1 + x2),max(x1)max(x2)(x1 + x2)]
= [x1 + x2, x1 + x2]

(A.26)

f∗∗(X) = [min(x1)min(x2)(x1 + x2),max(x1)max(x2)(x1 + x2)]
= [x1 + x2, x1 + x2]

(A.27)
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2. If X1 is proper and X2 is improper:

f∗(X) = [min(x1)max(x2)(x1 + x2),max(x1)min(x2)(x1 + x2)]
= [x1 + x2, x1 + x2]

(A.28)

f∗∗(X) = [max(x2)min(x1)(x1 + x2),min(x2)max(x1)(x1 + x2)]
= [x1 + x2, x1 + x2]

(A.29)

3. If X1 is improper and X2 is proper:

f∗(X) = [min(x2)max(x1)(x1 + x2),max(x2)min(x1)(x1 + x2)]
= [x1 + x2, x1 + x2]

(A.30)

f∗∗(X) = [max(x1)min(x2)(x1 + x2),min(x1)max(x2)(x1 + x2)]
= [x1 + x2, x1 + x2]

(A.31)

4. If X1 and X2 are improper:

f∗(X) = [max(x1)max(x2)(x1 + x2),min(x1)min(x2)(x1 + x2)]
= [x1 + x2, x1 + x2]

(A.32)

f∗∗(X) = [max(x1)max(x2)(x1 + x2),min(x1)min(x2)(x1 + x2)]
= [x1 + x2, x1 + x2]

(A.33)

In this case f∗(X) = f∗∗(X) = [x1 + x2, x1 + x2] for any modality of X1

and X2 and hence the sum of two intervals is noted X1 +X2 and in terms of
the bounds of Xi becomes

X1 +X2 = [x1 + x2, x1 + x2] (A.34)
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For example, for the continuous real function f(x1, x2) = x21 + x22 the
computation of the ∗-semantic and the ∗∗-semantic functions for X =
([−1, 1], [1,−1]) yields the following results:

f∗([−1, 1], [1,−1]) = ∨(x1, [−1, 1]
′
) ∧ (x2, [−1, 1]

′
)[x21 + x22, x

2
1 + x22]

= ∨(x1, [−1, 1]
′
)[x21 + 1, x21] = [1, 1],

f∗∗([−1, 1], [1,−1]) = ∧(x2, [−1, 1]
′
) ∨ (x1, [−1, 1]

′
)[x21 + x22, x

2
1 + x22]

= ∧(x2, [−1, 1]
′
)[x22, 1 + x22] = [1, 1].

For the real continuous function g(x1, x2) = (x1 +x2)
2 the corresponding

∗-semantic and ∗∗-semantic functions for X = ([−1, 1], [1,−1]) do not have
coincident values:

g∗([−1, 1], [1,−1]) = ∨(x1, [−1, 1]
′
) ∧ (x2, [−1, 1]

′
)[(x1 + x2)

2, (x1 + x2)
2]

= [if x1 < 0 then(x1 − 1)2 else(x1 + 1)2, 0] = [1, 0],

g∗∗([−1, 1], [1,−1]) = ∧(x2, [−1, 1]
′
) ∨ (x1, [−1, 1]

′
)[(x1 + x2)

2, (x1 + x2)
2]

= ∧(x2, [−1, 1]
′
)[0, ifx2 < 0then(x2 − 1)2else(x2 + 1)2]

= [0, 1].

The definition can be applied to the other arithmetic operations and then
the rules for their modal interval extensions are obtained:

• Difference:

X1 −X2 = [x1 − x2, x1 − x2] (A.35)

• Division:

X1

X2
= X1 ∗ 1

X2
if 0 /∈ X2 (A.36)

1
X = [ 1x ,

1
x ] if 0 /∈ X (A.37)

• Exponential and logarithm:

ln X = ln[x, x] = [ln x, ln x] if X > 0
eX = exp[x, x] = exp[exp x, exp x]

(A.38)
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• Absolute value:

|X | = |[x, x]| =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[x, x] if X ≥ 0

[x, x] if X ≤ 0

[0,max(|x|, |x|)] if x < 0 and x ≥ 0

[max(|x|, |x|), 0] if x ≥ 0 and x < 0

• Power of an interval:

Xn = [x, x]n =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[xn, xn] if n is odd

[xn, xn] if x ≥ 0 and x ≥ 0 if n is even

[x, x] if x < 0 and x < 0 if n is even

[0, (max(|x|, |x|))n] if x < 0 and x ≥ 0 if n is even

[(max(|x|, |x|))n, 0] if x ≥ 0 and x < 0 if n is even

Two key theorems revealing completely the meaning of the interval results
f∗ and f∗∗ and characterizing them as the key reference for the semantic
interval extensions previously defined in logical terms.

theorem A.1. ∗-Semantic Theorem. If A ∈ I∗(Rn), f : Rn → R is
continuous on A

′
and there exists an interval which is called F (A) ∈ I∗(R)

then,

f∗(A) ⊆ F (A) ⇔ ∀(ap, A′
p)Q(z, F (A))∃(ai, A′

i)(z = f(ap, ai)) (A.39)

�

This interpretation can be read: ”For all elements belonging to the proper
intervals there exists at least one element in the improper intervals that fulfills
the function”.

Example A.1.[10, 20] + [20, 15] = [30, 35] means

∀(a, [10, 20]′)∃(f, [30, 35]′)∃(b, [15, 20]′)(a+ b = f) (A.40)

Dual semantics for proper and improper modal intervals are established
by the dual semantic theorem.

theorem A.2. (∗∗-Semantic Theorem). If A ∈ I∗(Rn), f : Rn → R
is continuous on A

′
and there exists an interval which is called F (A) ∈ I∗(R)

then,
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f∗∗(A) ⊇ F (A) ⇔ ∀(ai, A′
i)Q(z,Dual(F (A)))∃(ap, A′

p)(z = f(ap, ai))

(A.41)

�

Example A.2.The semantic interpretation of

[1, 2] + [5, 7] = [6, 9] (A.42)

in the context of Classic Interval Arithmetic is

∀(a, [1, 2]′)∀(b, [5, 7]′)∃(f, [6, 9])(a+ b = f) (A.43)

In addition to this one, in the context of Modal Interval Analysis the
∗∗-semantic is

∀(f, [6, 9]′)∃(a, [1, 2]′)∃(b, [5, 7]′)(a+ b = f) (A.44)

unfortunately, the computation of the ∗- and ∗∗-extensions is, in general,
a difficult challenge hence the usual procedure is to find over bounded com-
putations of f∗ and under bounded computations of f∗∗ which maintain the
semantic interpretations.

When the continuous function f is a rational function, there are two
modal rational extensions. They are obtained by using the computation pro-
gram defined by the syntax tree of the function expression, in which the
real arguments are transformed into interval arguments and real operators
are transformed into their ∗ or ∗∗-semantic extensions. The function defined
through the computational program indicated by the syntax of f is called
modal rational function, fR(A). In general, fR(A) is not interpretable. The
interpretation problem for modal rational functions, which are the core of nu-
merical computing, consists in relating them by means of inclusion relations
to the corresponding ∗- and ∗∗-semantic extensions, which have a standard
meaning (defined by the Semantic Theorems) referring to their originary real
continuous functions. Computations with fR(A) must be done with external
truncation of each operator to obtain inclusions f∗(A) ⊆ fR(A), and with
inner truncation to obtain inclusions fR(A) ⊆ f∗∗(A).

There are several theorems that relate to the modal rational function
fR(A) and to the modal semantic extensions f∗ and f∗∗. The following ones
give two ∗ and ∗∗-interpretable coercion theorems.

Definition A.2. A component xi of x is uni-incident in a rational
function f(x) if it occupies only one leaf of the syntactical tree of f ; otherwise,
xi is multi-incident in f(x).
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Example A.3.In the rational function f of R2 in R given by

f(x1, x2) = x2 +
x2
1

x2
(A.45)

x2 is multi-incident and x1 is uni-incident.

theorem A.3. If in fR(A) all arguments are uni-incident, then

f∗(A) ⊆ fR(A) ⊆ f∗∗(A) (A.46)

In particular, if all the components of A are uni-incident and with the
same modality,

f∗(A) = fR(A) = f∗∗(A) (A.47)

�

Modal rational interval functions are not interpretable but they also have
the property of being isotonic, i.e., for A1 ⊆ B1, ..., An ⊆ Bn the relation

fR(A1, ..., An) ⊆ fR(B1, ..., Bn) (A.48)

keeps if there are not intervals containing zero in the division.

theorem A.4. If in fR(A) there are multi-incident improper
components and if AT ∗ is obtained from A by transforming, for
every multi-incident improper component, all incidences but one
into their duals, then

f∗(A) ⊆ fR(AT ∗) (A.49)

if all components of A are proper, then AT ∗ = A and

f∗(A) ⊆ fR(A) (A.50)

when these computations are performed using digital numbers, appropriate
roundings have to be made:

f∗(A) ⊆ Out(fR(AT ∗)) (A.51)

�
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theorem A.5. If in fR(A) there are multi-incident proper com-
ponents and if AT ∗∗ is obtained from A by transforming, for every
multi-incident proper component, all incidences but one into their
duals, then

f∗∗(A) ⊇ fR(AT ∗∗) (A.52)

if all components of A are improper, then AT ∗∗ = A and

f∗∗(A) ⊇ fR(A) (A.53)

In this case, the roundings that have to be performed in order to maintain
the semantics are:

f∗∗(A) ⊇ Inn(fR(A)) (A.54)

An interpretable rational interval computation program fR(A) may nev-
ertheless result in a loss of information far more important that the one pro-
duced by numerical roundings. Then it is very important to find out criteria
to characterize the rational interval functions for which fR(A), with an ideal
computation (infinite precision), is such that

f∗(A) = fR(A) = f∗∗(A) (A.55)

In this case, it is said that fR(.) is optimal for A.
There are several results which characterize the optimality of a modal ra-

tional function according to its monotonicity properties. �

Definition A.3. A continuous function f(x, y), is an uniformly mono-
tonic function with respect to x in a domain (X

′
, Y

′
) ⊆ (R,Rm) if it is a

monotonic function with respect to x in X
′
and keeps the same direction of

monotonicity for all the values y ∈ Y
′
.

Definition A.4. A continuous function f(x, y), is a totally monotonic
function with respect to a multi-incident variable x in a domain (X

′
, Y

′
) ⊆

(R,Rm) if it is a uniformly monotonic function with respect to x in X
′
and,

for every incidence of x considered as an independent variable, it is also a
uniformly monotonic function.

theorem A.6. (Operators of n variables uniformly monotonous)
All continuous function f(x, y), with (x, y) ∈ Rn which is uniformly monotonous,
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isotonic regarding the sub vector x and anti tonic regarding the sub vector y
in the domain (X

′
, Y

′
), is JM-commutative for (X,Y ) and

f∗(X,Y ) = [f(Inf(X), Sup(Y )), f(Sup(X), Inf(Y ))] (A.56)

where Inf(X) := (Inf(X1), .., Inf(Xm)),
Sup(X) := (Sup(X1), .., Sup(Xm)) and in a manner analogous to y.

�

theorem A.7. (optimal coercion for uni-modal arguments) Let A
be an interval vector and fR defined in the domain A

′
, such that each inci-

dent of every multi-incident component is included in AD as an independent
component, but transformed into its dual if the corresponding incidence-point
has a monotonicity sense contrary to the global one of the corresponding A-
component. Then

f∗(A) = fR(AD) = f∗∗(A) (A.57)

�

theorem A.8. (∗-partially optimal coercion) Let A be an interval
vector and fR defined in the domain A

′
and totally monotonic for a subset

B of multi-incident components. Let ADT ∗ be the enlarged vector of A, such
that each incidence of every multi-incident component of the subset with total
monotonicity is included in ADT ∗ as an independent component, but trans-
formed into its dual if the corresponding incidence-point has a monotonicity
sense contrary to the global one of the corresponding B-component; for the
rest, the multi-incident improper components are transformed into their dual
in every incidence except one. Then

f∗(A) ⊇ fR(ADT ∗∗) (A.58)

�

These theorems, as well as other recent results of Modal Interval Analysis
related to rational functions can be found in SIGLA/X.

A.4 Examples of range computations

The calculation of the optimal ranges for different functions and the applica-
tion of various theorem are shown in the following examples.
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Example A.4.Determination of the range of f = x− x in the parameter
space X = [1, 2]. The exact range is f(x) = [0, 0] because all possible values
of x fulfill x− x = 0. The modal rational function

fR(X) = X −X = [x, x]− [x, x] = [x− x, x− x] = [−1, 1] (A.59)

is an over bounded approximation to f∗(X). The following theorem allows
to interpret the ∗-semantically results

Thus

∀(x, [1, 2]′)∃(f, [−1, 1]
′
)(x − x = f) (A.60)

The function is monotonic with respect to x

df
dx = 1− 1 = 0 (A.61)

and with respect to every incidence of x considered as an independent
variable

df
dx1

= 1 > 0
df
dx2

= −1 < 0
(A.62)

therefore it is totally monotonic and the theorem of optimal coercion for
uni-modal arguments can be applied to obtain the exact range of the function:

such that

f∗(X) = f∗∗(X) = fR(XD) = X −Dual(X) = Dual(X)−X = [0, 0]

(A.63)

This result is semantically interpretable with the ∗-Semantic Theorem
Leaving

∀(x, [1, 2]′)∃(f, [0, 0]′)(x− x = f) (A.64)

and it is also interpretable with the ∗∗-Semantic Theorem.
so

∀(f, [0, 0]′)∃(x, [1, 2]′)(x− x = f) (A.65)

The following example shows that sometimes it is necessary to use split-
ting algorithms when the function is not totally monotonic.
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Example A.5.Determination of the range of the function f = x1x2 −
x21− 2x2 in the parameter space X1 = [1, 2] and X2 = [3, 4]. The range of the
function is Rf = [−5,−3.75]. An over bounded approximation is obtained
using the natural extension

fR(X) = X1X2 −X1X1 − 2X2 = [1, 2][3, 4]− [1, 2][1, 2]− 2[3, 4]
= [3, 8]− [1, 4]− [6, 8] = [−1, 7]− [6, 8] = [−9, 1]

(A.66)

so, fR(X) ⊇ f∗(X)
The function is monotonic with respect to x2

df
dx2

= x1 − 2 = [1, 2]− [2, 2] = [−1, 0] ≤ 0 (A.67)

and with respect to every incidence of x2 considered as an independent
variable, the function f can be redefined as f = x1x21 − x21 − 2x22 then

df
dx21

= x1 = [1, 2] > 0
df

dx22
= −2 < 0

(A.68)

since it is totally monotonic. Nevertheless, it is not totally monotonic with
respect to x1

df
dx1

= x2 − 2x1 = [3, 4]− 2[1, 2] = [3, 4]− [2, 4] = [−1, 2] � 0 (A.69)

Therefore, theorem ∗-partially optimal coercion can be applied to x2 to
obtain a better approximation of the range of the function:

The results

f∗(X) ⊆ fR(XDT ∗) = X1Dual(X2)−X2
1 − 2X2 = [−8,−1]

= [1, 2][4, 3]− [1, 2][1, 2]− 2[3, 4]
= [4, 6]− [1, 4]− [6, 8] = [−8,−1]

(A.70)

In this case, to obtain even better approximations of the exact range,
the parameter space has to be split. The advantage provided by the theorem
of ∗-partially optimal coercion, it indicates that only the variable x1 must
be divided. Moreover, the range at every sub-space can be computed more
exactly because the theorem of ∗-partially optimal coercion has already been
applied to x2. In fact, the function whose range has to be determined now is

F = X1[4, 3]−X2
1 − [6, 8] (A.71)
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which is an interval function of one variable.
In conclusion, the number of sub-spaces considered to compute an ap-

proximation of the range of the function is smaller when modal intervals are
used. This is illustrated by Veh́ı Veh́ı (1998), where modal intervals com-
bined with a branch and bound algorithm have been applied to the analysis
and design of robust controllers.

The next example shows that sometimes it is necessary to compute the
range of higher order derivatives in order to compute the range of a function.
It has been seen that to study the monotonicity of a function is necessary to
compute approximations to the range of its derivative. In the previous ex-
amples, the variables in the derivative are uni-incident so the range obtained
using the natural extension is exact. If there are multi-incident variables in
the derivative, this range is over bounded.

Example A.6.Determination of the range function f = x21x2−2x21+2x22
in the parameter space X1 = [1, 2] and X2 = [3, 4]. The range of the function
is Rf = [19, 40]. An over bounded approximation is obtained by means of the
natural extension

fR(X) = X2
1X2 − 2X2

1 + 2X2
2

fR(X) = [1, 2][1, 2][3, 4]− 2[1, 2][1, 2] + 2[3, 4][3, 4]
fR(X) = [3, 16]− [2, 8] + [18, 32] = [13, 46]
f∗(X) ⊆ fR(X)

(A.72)

The function is totally monotonic with respect to x2, as it is monotonous
with respect to x2

df
dx2

= X2
1 + 4X2 = [1, 2][1, 2] + 4[3, 4] = [1, 4] + [12, 16] = [13, 20] > 0

(A.73)

and with respect to every incidence of x2 considered as an independent
variable, being f = x21x21 − 2x21 + 2x222, thus

df
dx21

= X2
1 = [1, 2][1, 2] = [1, 4] > 0

df
dx22

= 4X2 = 4[3, 4] = [12, 16] > 0
(A.74)

It seems that the function f is not monotonic when the range of its deriva-
tive with respect to x1 is computed by means of the natural extension:

df
dx1

R(X) = 2X1X2 − 4X1 = 2[1, 2][1, 2]− 4[1, 2]

= [6, 16]− [4, 8] = [−2, 12] � 0
(A.75)
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However, this is an over bounded approximation of this range, as x1 is
multi-incident, the exact range of the first derivative can be computed by
studying the monotonicity of the second derivative:

d2f
dx2

1
= 2X2 − 4 = [2, 4] > 0 (A.76)

with respect to each multi-incident variable x1 in df
dx1

d2f
dx2

11
= 2X2 = [6, 8] > 0

d2f
dx2

12
= −4 < 0

(A.77)

as d2f
dx2

1
> 0, d2f

dx2
11
> 0 and d2f

dx2
12
< 0 then it has to apply the dual operator

to the term 2x21 to change the monotocity sense. Hence, the exact range of
the first derivative is:

df
dx1

R(X) = 2X1X2 − 4Dual(X1) = [6, 16]− [8, 4] = [2, 8] > 0 (A.78)

and the function f is totally monotonic:

df
dx11

= 2X1X2 = [6, 16] > 0
df

dx12
= −4Dual(X1) = [−4,−8] < 0

(A.79)

Then, the exact range of f is:

fR(XD) = X2
1X2 − 2(Dual(X1))

2 + 2X2
2

= [3, 16]− 2([2, 1][2, 1]) + [18, 32]
= [3, 16]− [8, 2] + [18, 32] = [19, 40]
f∗(X) = f∗∗(X) = fR(XD)

(A.80)

Example A.7.Inclusion relations in time of rational functions. To con-
sider the specifications ϑs1 ⊆ ϑs2

ϑs1 = {∀(μr, [0.09, 0.13]), ∀(λn, [0.0079, 0.0079]), ∀(x10, [0.6, 0.8])},
ϑs2 = {∀(μr, [0.07, 0.15]), ∀(λn, [0.0079, 0.0079]), ∀(x10 = [0.5, 0.9])}.
if we evaluated the rational extensions fRx1(ϑs1, t) and fRx1(ϑs2, t) with

the equation (5.58), the inclusion relations (fRx1(ϑs1, t) ⊆ fRx1(ϑs2, t)) are
fulfilled for ∀(t, [0, 40]) as it is depicted in Figure A.4.

Example A.8.To consider the following equation
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Fig. A.4. Inclusion relations of flat outputs

y = yo + (y1 − yo)B(τ)

being B(τ)

B(τ) = τ5(252− 1050τ + 1800τ2 − 1575τ3 + 700τ4 − 126τ5)
τ = t−to

t1−to

to calculate the ∗ extension of the function considering yo = [0.2, 10] and
y1 = [140, 150]. The function y can be renamed as follows:

y = yo1 + (y11 − yo2)B(τ)

the derivative of the function y respecting to yo1 is

y = 0

respecting to y11 is

y = B(τ)

and finally to yo2 is

y = −B(τ)
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given the function y is creasing monotic respecting to yo1 and y11, and
decreasing monotonic respecting to yo2 then we will apply the dual operation
to the term yo2 to change its monotonicy sense of decrasing to creasing.

y = yo1 + (y11 −Dual(yo2))B(τ)

In Figure A.5

f∗andthenaturalextensionresultsareshown.
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Fig. A.5. f∗ and natural extension

Example A.9.Consider a function F (q) depending on an uncertain pa-
rameter vector q belonging to an uncertainty domain Q. To find the semantic
extension F ∗ of the following function

F (Q) = −266.6q2 − 3.2q32 + 8.8q1q
3
2 + 0.3q41q

2
2 + 1.8q31q2

·+ 69.5q21q
2
2 + 6.6q31q

2
2 − 7.8q21q

3
2 + 5.9q31q

3
2 + 0.1q41q

3
2

·+ 0.12q41q
4
2 + 96.5q21q2 − 130.5q1q

2
2 + 103.1q22 + 119

·+ 110.6q1 + 60.4q1q2 − 32.4q21 − 0.1q31q
4
2 + 0.03q42q

2
1

(A.81)

The natural extension of the function fR(Q) with uncertain intervals q1 =
[0, 0.05], q2 = [0, 0.05] is computed using a library of modal intervals ”IvalDb”
developed by Herrero Herrero et al. (2005). Here is only presented the
main programm.
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int main(int argc, char* argv[])

{

ivalDb q1;

ivalDb q2;

ivalDb fRQ

q1=ivalDb(0,0.5);

q2=ivalDb(0,0.5);

float x,y;

fRQ=-266.6*q2-3.2*(q2^3)+8.8*q1*(q2^3)+

0.3*(q1^4)*(q2^2)+1.8*(q1^3)*(q2)+69.5*(q1^2)*(q2^2)+

6.6*(q1^3)*(q2^2)-7.8*(q1^2)*(q2^3)+5.9*(q1^3)*(q2^3)+

0.1*(q1^4)*(q2^3)+0.12*(q1^4)*(q2^4)+96.5*(q1^2)*(q2)-

130.5*q1*(q2^2)+103.1*(q2^2)+119+110.6*q1+60.4*q1*q2-

32.4*(q1^2)-0.1*(q1^3)*(q2^4)+0.3*(q2^4)*(q1^2);

x=fRQ.GetInf();

y=fRQ.GetSup();

cout<<x;

cout<<y;

return 0;

}

the resulting interval is fR([0, 0.5][0, 0.5]) = [−39.36, 232.59]. The range
is over bounded and contains zero. So applying the coercion theorem, it is
possible to obtain an optimal expression for F (q), if it is monotonic with re-
spect to each variable qi. This is checked by computing the partial derivatives
of F (q) with respect to q1 and q2.

dF
dq1

= 8.8q32 + 0.3(3q31)q
2
2 + 1.8(3q21)q2

·+ 69.5(2q1)q
2
2 + 6.6(3q21)q

2
2 + 5.9(3q22) + 0.1(4q31)q

3
2

·+ 0.12(4q31)q
4
2 + 96.5(2q1)q2 − 130.5q22

·+ 110.6 + 60.4q2 − 32.4(2q1)− 0.1(3q21)q
4
2 + 0.03q42(2q1)

(A.82)

The derivate of the function F (q) respect to q2 is

dF
dq2

= −266.6− 32.2(3q22) + 8.8q1(3q
2
2) + 0.3q41(2q2) + 1.8q31

·+ 0.12q41(4q
3
2) + 96.5q21 − 130.5q1(2q2) + 103.1(2q2)

·+ 60.4q1 − 0.1q31(4q
3
2) + 0.03(4q32)q

2
1

(A.83)

The ranges obtained are: dFR
dq1

= [44.59, 210.05],dFR
dq2

= [−335.71,−86.83].

This means that the function F (Q) is growing monotonous with respect to
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q1 and decreasing monotone respect to q2. Since the function F (Q) is to-
tally monotonic, then applying the optimal coercion theorem for uni-modal
arguments, the following steps are realised.

1. Applying the coercion theorem, the terms with positive coefficients that
contain variables q1 are separated from F (Q), thus

F1(Q) = 8.8q1q
3
2 + 0.3q41q

2
2 + 1.8q31q2

·+ 69.5q21q
2
2 + 6.6q31q

2
2 + 5.9q31q

3
2 + 0.1q41q

3
2

·+ 0.12q41q
4
2 + 96.5q21q2

·+ 110.6q1 + 60.4q1q2 + 0.03q42q
2
1

(A.84)

As each coefficient is positive and q1 is growing monotone, then it has
to change the monotony sense of q2 of decreasing monotony to growing
monotony with Dual(q2) for each term of the previous function F1(Q)

F1(Q) = 8.8q1Dual(q2)
3 + 0.3q41Dual(q2)

2 + 1.8q31Dual(q2)
·+ 69.5q21Dual(q2)

2 + 6.6q31Dual(q2)
2

·+ 5.9q31Dual(q2)
3 + 0.1q41Dual(q2)

3

·+ 0.12q41Dual(q2)
4 + 96.5q21Dual(q2)

·+ 110.6q1 + 60.4q1Dual(q2) + 0.03Dual(q2)
4q21

(A.85)

thus all the sense monotony in F1(Q) is growing.
2. Decreasing monotony q2, it has to be obtained from F (Q) all the terms

with negative coefficients containing q2

F2(Q) = −266.6q2 − 3.2q32
· − 7.8q21q

3
2

· − 130.5q1q
2
2

· − 0.1q31q
4
2

(A.86)

since each coefficient is negative and q2 is decreasing monotonic, it has
to be changed the monotone sense of q1 of growing sense to decreasing
sense, with dual(q1) in each of the terms that contain q1 in the function
F2(Q)

F2(Q) = −266.6q2 − 3.2q32
· − 7.8Dual(q1)

2q32
· − 130.5Dual(q1)q

2
2

· − 0.1Dual(q1)
3q42

(A.87)

thus all the monotony sense in F2(Q) is decreasing.
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3. Evaluating the monotony sense of other terms, these are

F3(Q) = −32.4q21 + 103.1q22 (A.88)

For the first term is observed that the coefficient is negative and q1 is
growing monotony so it has to be changed its monotony sense of grow-
ing monotone to a decreasing monotony with Dual(q1) to maintain a
monotony sense decreasing in the term. In the case of the second term,
the coefficient is positive and q2 is decreasing monotony so it has to be
changed the monotone sense of q2 from decreasing monotony to growing
monotony with Dual(q2)

F3(Q) = −32.4Dual(q1)
2 + 103.1Dual(q2)

2 (A.89)

4. As last step adding all the results FR(Q) = F1(Q) +F2(Q) +F3(Q) and
calculating the optimal extension of the function FR(QD)

FR(QD) = 8.8q1Dual(q2)
3 + 0.3q41Dual(q2)

2 + 1.8q31Dual(q2)
·+ 69.5q21Dual(q2)

2 + 6.6q31Dual(q2)
2 + 5.9q31Dual(q2)

3+
0.1q41Dual(q2)

3

·+ 0.12q41Dual(q2)
4 + 96.5q21Dual(q2)

·+ 110.6q1 + 60.4q1Dual(q2) + 0.03Dual(q2)
4q21

· − 266.6q2 − 3.2q32
· − 7.8Dual(q1)

2q32
· − 130.5Dual(q1)q

2
2

· − 0.1Dual(q1)
3q42

· − 32.4Dual(q1)
2 + 103.1Dual(q2)

2

(A.90)

The optimal extension is FR(QD) = [11.0975, 166.1975]. This example
also has been raised by Veh́ı Veh́ı (1998), to verify the positivity of a
function with uncertain parameters.

Example A.10.Consider a function F (q) depending on an uncertain pa-
rameter vector q belonging to an uncertainty domain Q. To find the semantic
extension F ∗ of the following function

F (Q) = 5 + 12q3 − 6q2 − 3q1q2 − 8q2q
2
1q3 + 3q21q

2
2

· − 6q1q2q3 + 3q1q
2
2 − 4q2(q

2
4) + 4q22q

2
4

(A.91)

The natural extension of the function fR(Q) with uncertain intervals q1 =
[0, 0.05], q2 = [0, 0.05], q3 = [0, 0.05], q4 = [0, 0.05] it is fR(Q) = [−0.5, 11.81].
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The range is over bounded and contains zero. Doing a study of monotony is
obtained:

dF
dq1

= −3q2 + 6q1(q
2
2)− 6q2q3 = [−3, 1.5] (A.92)

dF
dq2

= −6− 3q1 + 8(q24)q3 + 6(q21)q2 − 6q1q3
·+ 6q1q2 − 4(q24) + 8q2(q

2
4) = [−11,−2.75]

(A.93)

dF
dq3

= 12− 8q2(q
2
4)− 6q1q2 = [9.5, 12] (A.94)

dF
dq4

= 16q2q4q3 − 8q2q4 + 8(q22)q4 = [−4, 1] (A.95)

This study shows that the function F (Q) is decreasing monotone respect to q2
and growing monotone respect to q3. Applying the partial coercion theorem
for q2 and q3, the sub-optimal form of FR(Q) is:

FR(QDT ∗) = 5 + 12q3 − 6q2 − 3q1q2 − 8q2(q24)Dual(q3)
·+ 3(q21)Dual(q2)

2 − 6q1q2Dual(q3) + 3q1Dual(q2)
2

· − 4q2q
2
4 + 4Dual(q2)

2q24

(A.96)

For qi = [0, 0.5], Dual(q2) = [0.5, 0] and Dual(q3) = [0.5, 0] the computed
range is [0.75, 11]

Example A.11.To determine the ∗-semantic extension of the function

g(x, y, z, t) = x−y
z−t (A.97)

for X = [−1, 1], Y = [2, 1], Z = [−1, 1] and T = [3, 2]. As

dg
dx = 1

z−t =
1

[−1,1]−[3,2] = [− 1
2 ,− 1

3 ] < 0, is antitonic respect to x
dg
dy = −1

z−t =
−1

[−1,1]−[3,2] = [ 13 ,
1
2 ] > 0, is isotonic respect to y

dg
dz = y−x

(z−t)2 = [ 19 ,
1
2 ] > 0, is isotonic respect to z

dg
dt = x−y

(z−t)2 = [− 1
2 ,− 1

9 ] < 0, is antitonic respect to t

(A.98)

so
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g∗(X,Y, Z, T ) = [g(x2, y1, z1, t2), g(x1, y2, z2, t1)] = [ 1−2
−1−2 ,

−1−1
1−3 ]

· = [−1
−3 ,

−2
−2 ] = [ 13 , 1]

(A.99)

in this example theorem A.6 was applied. In g(x2, y1, z1, t2), x and t were
used since they are anti tonics and y and x since they are isotonics and in
g(x1, y2, z2, t1) were used x, t, y and z.

Example A.12.To determine the ∗∗- and ∗- semantic extensions of the
function

f(x, y) = xy + 1
x+y (A.100)

for X = [5, 10] and Y = [2, 1]. If the variables x, y in the function f(x, y)
are taken as independent variables, the function f(x, y) can be transformed
into:

f(x, y) = x1y1 +
1

x2+y2
(A.101)

as

df
dx1

= y1 > 0, is isotonic respect to x1
df
dy1

= x1 > 0, is isotonic respect to y1
df
dx2

= −1
(x2+y2)2

< 0, is antitonic respect to x2
df
dy2

= −1
(x2+y2)2

< 0, is antitonic respect to y2

(A.102)

so

XD = (X,Y,Dual(X), Dual(Y )) ⇒ fR(XD)
= X ∗ Y + 1

Dual(X)+Dual(Y )

fR(XD) = [5, 10] ∗ [2, 1] + 1
[10,5]+[1,2] = [10, 10] + 1

[11,7]

= [71/7, 111/11]

(A.103)

On the other hand as X is proper and Y is improper, the ∗∗ and ∗-
semantic extensions are

f∗(X) := ∨(xp, X ′
p) ∧ (xi, X

′
i)[f(xp, xi), f(xp, xi)]

= [min(xp, X
′
p)max(xi, X

′
i)f(xp, xi),max(xp, X

′
p)min(xi, X

′
i)f(xp, xi)],

f∗∗(X) := ∧(xi, X ′
i) ∨ (xp, X

′
p)[f(xp, xi), f(xp, xi)]

= [max(xi, X
′
i)min(xp, X

′
p)f(xp, xi),min(xi, X

′
i)max(xp, X

′
p)f(xp, xi)].

(A.104)
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thus

f∗(X,Y ) := [min(x, [5, 10]
′
)max(y, [1, 2]

′
)(xy + 1

x+y ),

·max(x, [5, 10]′)min(y, [1, 2]′)(xy + 1
x+y )]

· = [min(x, [5, 10]
′
)(2x+ 1

x+2 ),max(x, [5, 10]
′
)(x+ 1

x+1 )]

· = [71/7, 111/11]

(A.105)

f∗∗(X,Y ) := [max(y, [1, 2]
′
)min(x, [5, 10]

′
)(xy + 1

x+y ),

·min(y, [1, 2]′)max(x, [5, 10]′)(xy + 1
x+y )]

· = [max(y, [1, 2]
′
)(5y + 1

5+y ),min(y, [1, 2]
′
)(10y + 1

10+y )]

· = [71/7, 111/11]

(A.106)

Example A.13.Application of the algorithm f∗

Apply the algorithm f∗ step by step to find the extension of the following
function:

f(u, v, z) := u2 + v2 + uv − 20u− 20v + 100− 10sin(z) (A.107)

where the variables u, v, z have the following intervals u = [0, 6], v = [8, 2]
and z = [9,−4].

1. Initialization: Create Cell([0, 6], [8, 2], [9,−4])
We initialize the cell with the proper u and improper v components as it
is illustrated in Figure A.6.

Fig. A.6. Proper u = [0, 6] and improper v = [8, 2] components
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2. To divide the proper and improper components in Strips and Cells.
We are going to suppose that we divided the cell u, v in a Strip set
StripSet = {Strip1, Strip2} and that each Strip contains two cells that
is to say Strip1 = {Cell11, Cell12} and Strip2 = {Cell21, Cell22}. A
representation is depicted in Figure A.7

Fig. A.7. Strips and Cells

3. Compute inner and outer approximations of Cells
In Figure A.8 we indicated that we will realize the inner and outer ap-
proximations of each cell

Fig. A.8. Strips and Cells

The function can be written as:
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f(u, v, z) := u21 + v21 + u2v2 − 20u3 − 20v3 + 100− 10sin(z)

(A.108)

where the sub indexes represent the different multi-incidences. First of
all, the monotony of f with respect to each variable and with respect
to each one of its incidences, considered as different variables, has to be
computed.

df(u, v, z)/du := 2u+ v − 20 ∈ 2 ∗ [0, 3] + [5, 8]− [20, 20] = [−15,−6] ≤ 0
df(u, v, z)/du1 := 2 ∗ u ∈ 2 ∗ [0, 3] = [0, 6] ≥ 0
df(u, v, z)/du2 := v ∈ [5, 8] = [5, 8] ≥ 0
df(u, v, z)/du3 := −20 ∈ [−20,−20] = [−20,−20] ≤ 0
df(u, v, z)/dv := 2v + u− 20 ∈ 2 ∗ [5, 8] + [0, 3]− [20, 20] = [−10,−1] ≤ 0
df(u, v, z)/dv1 := 2v ∈ 2 ∗ [5, 8] = [10, 16] ≥ 0
df(u, v, z)/dv2 := u ∈ [0, 3] = [0, 3] ≥ 0
df(u, v, z)/dv3 := −20 ∈ [−20,−20] = [−20,−20] ≤ 0
df(u, v, z)/dz := −10cos(z) ∈ 10 ∗ cos([−4, 9]) = [−10, 10] ⊇ 0

(A.109)

since df(u, v, z)/du ≤ 0, df(u, v, z)/du1 ≥ 0, df(u, v, z)/du2 ≥ 0 and
df(u, v, z)/du3 ≤ 0 we must change to the sense of the monotony of the
variable u1 and u2 to maintain a same sense of the monotony of u. In
the same way, we observed that df(u, v, z)/dv ≤ 0, df(u, v, z)/dv1 ≥ 0,
df(u, v, z)/dv2 ≥ 0 and df(u, v, z)/dv3 ≤ 0 we must change the sense
of the monotony of the variable v1 and v2 to maintain a same sense of
monotony of v. As the variable z is not multi-incident is considered in
the internal and external approximations of the cells. The function is
expressed as it is indicated

f(u, v, z) := Dual(u)21 +Dual(v)21 +Dual(u)2Dual(v)2−
20u3 − 20v3 + 100− 10sin(z)

(A.110)

With the following main program, the arithmetical operations and the
calculation of the external range were realized. Obtaining the following
result Out(Cell11) = [−1,−6].

int main(int argc, char* argv[])

{

secureFpu();

ivalDb u;

ivalDb v;

ivalDb f;
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ivalDb z;

ivalDb dfu;

ivalDb dfu1;

ivalDb dfu2;

ivalDb dfu3;

ivalDb dfv;

ivalDb dfv1;

ivalDb dfv2;

ivalDb dfv3;

ivalDb dfz;

u=ivalDb(0,3);

v=ivalDb(8,5);

z=ivalDb(9,-4);

dfu=2*u+Du(v)-20;

dfu1=2*u;

dfu2=Du(v);

dfu3=-20;

dfv=2*Du(v)+u-20;

dfv1=2*Du(v);

dfv2=u;

dfv3=-20;

dfz=-10*cos(Du(z));

f=((Du(u))^2)+((Du(v))^2)+(Du(u))*(Du(v))-

20*u-20*v+100-10*sin(z);

cout<<f;

return 0;

}

As the function is totally monotonic with respect to u = [0, 3] and v =
[8, 5] then in order to realize the internal calculation of the cell, we will
take the center of u = ǔ = [1.5, 1.5] and will apply the dual operation to
the variables that corresponds to v.

Inn(cell11) = InnR(ǔ, Dual(v))
f(u, v, z) := ǔ21 +Dual(v)21 + ǔ2Dual(v)2 − 20ǔ3−
20v3 + 100− 10sin(z)

(A.111)

The result is Inn(Cell11) = [14.75,−21.75].
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Now we are going to calculate Out(Cell12) and Inn(Cell12). Following
the same procedure, we verified the sense of monotony of each one of the
variables in the intervals u = [0, 3] and v = [5, 2].

df(u, v, z)/du := 2u+ v − 20 ∈ 2 ∗ [0, 3] + [2, 5]− [20, 20] = [−18,−9] ≤ 0
df(u, v, z)/du1 := 2 ∗ u ∈ 2 ∗ [0, 3] = [0, 6] ≥ 0
df(u, v, z)/du2 := v ∈ [2, 5] = [2, 5] ≥ 0
df(u, v, z)/du3 := −20 ∈ [−20,−20] = [−20,−20] ≤ 0
df(u, v, z)/dv := 2v + u− 20 ∈ 2 ∗ [2, 5] + [0, 3]− [20, 20] = [−16,−7] ≤ 0
df(u, v, z)/dv1 := 2v ∈ 2 ∗ [2, 5] = [4, 10] ≥ 0
df(u, v, z)/dv2 := u ∈ [0, 3] = [0, 3] ≥ 0
df(u, v, z)/dv3 := −20 ∈ [−20,−20] = [−20,−20] ≤ 0
df(u, v, z)/dz := −10cos(z) ∈ 10 ∗ cos([−4, 9]) = [−10, 10] ⊇ 0

(A.112)

We observe that the function is totally monotonic, because of this reason
we make that u1 = Dual(u1), u2 = Dual(u2), v1 = Dual(v1) and v2 =
dual(v2)

f(u, v, z) := Dual(u)21 +Dual(v)21 +Dual(u)2Dual(v)2−
20u3 − 20v3 + 100− 10sin(z)

(A.113)

obtaining the following result Out(Cell12) = [29, 15].
As the function is totally monotonic with respect to u = [0, 3] and v =
[5, 2] then, in order to realize the internal calculation of the cell, we will
take the center of u = ǔ = [1.5, 1.5] and will apply the dual operation to
the variables that corresponds to v.

Inn(cell12) = InnR(ǔ, Dual(v))
f(u, v, z) := ǔ21 +Dual(v)21 + ǔ2Dual(v)2 − 20ǔ3−
20v3 + 100− 10sin(z)

(A.114)

The result it is Inn(Cell12) = [49.25,−5.25].
For the calculation of Out(Cell21) and Inn(Cell21) in intervals u = [3, 6]
and v = [8, 5] we realize the same procedure.

df(u, v, z)/du := 2u+ v − 20 ∈ 2 ∗ [3, 6] + [5, 8]− [20, 20] = [−9, 0] ≤ 0
df(u, v, z)/du1 := 2 ∗ u ∈ 2 ∗ [3, 6] = [6, 12] ≥ 0
df(u, v, z)/du2 := v ∈ [5, 8] = [5, 8] ≥ 0
df(u, v, z)/du3 := −20 ∈ [−20,−20] = [−20,−20] ≤ 0
df(u, v, z)/dv := 2v + u− 20 ∈ 2 ∗ [5, 8] + [3, 6]− [20, 20] = [−7, 2] ⊇ 0
df(u, v, z)/dv1 := 2v ∈ 2 ∗ [5, 8] = [10, 16] ≥ 0
df(u, v, z)/dv2 := u ∈ [3, 6] = [3, 6] ≥ 0
df(u, v, z)/dv3 := −20 ∈ [−20,−20] = [−20,−20] ≤ 0
df(u, v, z)/dz := −10cos(z) ∈ 10 ∗ cos([−4, 9]) = [−10, 10] ⊇ 0
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(A.115)

We observe that the function is monotonic with respect to u but not with
respect to v. Reason why we will use the following expression to realize
the external calculation of the cell

Out(Cell21) = OutR(fR(Dual(u), v̌))
fR(u, v, z) := Dual(u)21 + v̌21 +Dual(u)2v̌2 − 20u3 − 20v̌3+
100− 10sin(z)

(A.116)

being v̌ = [6.5, 6.5]. The result it is Out(Cell21) = [−22.75,−29.25]. Now
for the internal calculation of the cell we used the following expression

Inn(Cell21) = InnR(fR(ǔ, v)
fR(u, v, z) := ǔ21 + v21 + ǔ2v2 − 20ǔ3 − 20v3+
100− 10sin(z)

(A.117)

being ǔ = [4.5, 4.5]. To verify that in the previous expression we cannot
use Dual(v) since the function is not monotonic respect to v. Therefore
Inn(Cell21) = [40.25,−92.25].
In order to conclude with this step, we will calculate to outer and inner
approximations of Cell22 with u = [3, 6] and v = [5, 2]. For this, we again
verified the sense of monotony of each one of the variables

df(u, v, z)/du := 2u+ v − 20 ∈ 2 ∗ [3, 6] + [2, 5]− [20, 20] = [−12, 13] ≤ 0
df(u, v, z)/du1 := 2 ∗ u ∈ 2 ∗ [3, 6] = [6, 12] ≥ 0
df(u, v, z)/du2 := v ∈ [2, 5] = [2, 5] ≥ 0
df(u, v, z)/du3 := −20 ∈ [−20,−20] = [−20,−20] ≤ 0
df(u, v, z)/dv := 2v + u− 20 ∈ 2 ∗ [2, 5] + [3, 6]− [20, 20] = [−13,−4] ≤ 0
df(u, v, z)/dv1 := 2v ∈ 2 ∗ [2, 5] = [4, 10] ≥ 0
df(u, v, z)/dv2 := u ∈ [3, 6] = [3, 6] ≥ 0
df(u, v, z)/dv3 := −20 ∈ [−20,−20] = [−20,−20] ≤ 0
df(u, v, z)/dz := −10cos(z) ∈ 10 ∗ cos([−4, 9]) = [−10, 10] ⊇ 0

(A.118)

since the function is totally monotonic with respect to u and v then we
express the external calculation of the cell on the following form

Out(Cell22) = OutR(Dual(u), Dual(v))
f(u, v, z) := Dual(u)21 +Dual(v)21 +Dual(u)2Dual(v)2−
20u3 − 20v3 + 100− 10sin(z)

(A.119)
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obtaining the following result Out(Cell22) = [2,−21]. For the internal
calculation we considered a point of u and dual(v) since the function is
monotonic with respect to v. The expression is the following one

Inn(cell21) = InnR(ǔ, Dual(v))
f(u, v, z) := ǔ21 +Dual(v)21 + ǔ2Dual(v)2 − 20ǔ3−
20v3 + 100− 10sin(z)

(A.120)

The result is Inn(Cell22) = [13.25,−32.25].
4. Compute inner and outer approximations of Strips

In this step we will calculate the internal and external approximations of
Strips. We will use the following expressions

Out(Strip1) =Meet(Out(cell11), Out(cell12))
Inn(Strip1) =Meet(Inn(cell11), Inn(cell12))
Out(Strip2) =Meet(Out(cell21), Out(cell22))
Inn(Strip2) =Meet(Inn(cell21), Inn(cell22))

(A.121)

The results are

Out(Strip1) =Meet([−1,−6], [29, 15]) = [29,−6]
Inn(Strip1) =Meet([14.75,−21.75], [49.25,−5.25]) = [49.25,−21.75]
Out(Strip2) =Meet([−22.75,−29.25], [2,−21]) = [2,−29.25]
Inn(Strip2) =Meet([40.25,−92.25], [13.25,−32.25]) = [40.25,−92.25]

(A.122)

In Figure A.9 we indicated the internal and external calculations of strips.
With those results we can realize the Inner calculation and Outer using
a Join. That is to say

Outer = Join(Out(strip1), Out(strip2))
Inner = Join(Inn(strip1), Inn(strip2))

(A.123)

The results are

Outer = Join([29,−6], [2,−29.25]) = [2,−6]
Inner = Join([49.25,−21.75], [40.25,−21.75]) = [40.25,−21.75]

(A.124)

Finally in Figure A.10 we indicate that we have obtained the external and
internal calculation of the function for a cell with proper and improper
components.



Fig. A.9. Out and Inn of Strips

Fig. A.10. Outer and Inner of Strips





B Exact linearization controller design

B.1 SISO systems input-output linearization

Theoretical foundations of input-output linearization can be consulted in the
Isidori’s book Isidori (1985). For simplicity, it is considered affine SISO
control system:

dx
dt = f(x) + g(x)u
y = h(x)

(B.1)

where u ∈ � is the control input, x ∈ �n is the state vector, y ∈ � is the
controlled output, f(x) and g(x) are n-dimensional smooth functions on �n,
h(x) is a smooth function on �n.

The nonlinear system is said to have a relative degree of r at the point
x0 if for all x in a neighbourhood of x0

LgL
i
fh(x) = 0, ∀ 0 ≤ i < r − 1

LgL
r−1
f h(x) �= 0

(B.2)

where Lfh is the Lie derivative, i.e. Lfh = dh
dxf(x). If a nonlinear sys-

tem has a finite relative degree, it can always construct a nonlinear state
coordinate transformation η = φ(x) such that

φi(x) = Li−1
f h(x), 1 ≤ i ≤ r

Lgφi(x) = 0, r + 1 ≤ i ≤ n
(B.3)

This transforms the nonlinear systems into the normal form:

dηi

dt = ηi+1, 1 ≤ i ≤ r − 1
dηr

dt = α(η) + β(η)u = Lr
fh(x) + LgL

r−1
f h(x)u,

(B.4)

dηi

dt = γ(η), r + 1 ≤ i ≤ n
y = η1

(B.5)
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It is obvious that the nonlinear state feedback control law

u = 1
LgL

r−1
f h

(v −∑r−1
i=0 ki+1L

i
fh− Lr

fh) (B.6)

will make the system linear from v to y, i.e.

y(r) +
∑r−1

i=0 ki+1y
(i) = v (B.7)

Then, a linear controller can be designed for the linearized system. If the
objetive is to track a set point ysp, one simple way is to let

v = k0
∫
(ysp − y)dτ (B.8)

this control linearizing law makes the last (n − r) state variables of η
unobservable from the output. Internal stability requires those unobservable
modes to be stable. To be precise, it needs the concept of zero dynamics.
which is a generalization of the concept of zeros to nonlinear systems. Let it
partion the state vector as

ς = [η1...ηr]
′
, z = [ηr+1...ηn]

′
(B.9)

Then eq. B.5 can be rewritten as

dz
dt = γ(ς, z) (B.10)

Zero dynamics of a nonlinear system is defined as

dz
dt = γ(0, z) (B.11)

This is equivalent to the dynamics with the output y(t) constrained iden-
tically to zero. Exact input-output linearization is, in fact, a nonlinear analog
of placing poles at plant zeros, hence cancels the zero dynamics and leads to
z unobservable. It is obvious now that the zero dynamics must be stable to
guarantee internal stability.

The applicability of exact input-output linearization depends on the ex-
istence of relative degree on the stability of zero dynamics. However, both
relative degree and stability of zero dynamics are local properties of a nonlin-
ear systems. This local nature greatly complicates the applicability problem.
It is no longer so simple as whether or not applicate to a system. Zero dy-
namics of a nonlinear system may be stable in some operating regions but
unstable in others. Similarly, a nonlinear system may have singular points
where the relative degree cannot be defined. So applicability only applies to
specific operating regions of a nonlinear system.
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B.1.1 Application to control of fed-batch bioreactors

Using λ as the control variable and x1 as output variable. In this case, we
have

f(x) =

⎡⎣ μ(x2)x1−μ(x2)x1

yxs

0

⎤⎦ , g(x) =
⎡⎣ −x21
(Sf − x2)x1

x1x3

⎤⎦ (B.12)

Since λ appears on the right side of each of the state equations, the relative
degree is 1 without mattering if x1 or μ(x2) is the controlled variable.

y1 = h(x) = x1
Lfh(x) = μ(x2)x1
L0
fh = h(x) = x1

Lgh(x) = −x21
(B.13)

The control law

λ = − 1
x2
1
(k0

∫
(x1p − x1)dτ − k1x1 − μ(x2)x1) (B.14)

will make the closed-loop system input-output linear with a transfer func-
tion

T (s) = k0

s2+k1s+k0
(B.15)

Singular point Lgh(x) = −x21 = 0 means wash-out, so it is not possible
to have singular point under a normal operation condition.

If y1 = x2 is taken as output variable, it has

y1 = h(x) = x2
Lfh(x) = −μ(x2)x1

yxs

L0
fh = h(x) = x2

Lgh(x) = (Sf − x2)x1

(B.16)

The control law

λ = 1
x1(Sf−x2)

(k0
∫
(x2p − x2)dτ − k1x2 +

μ(x2)x1

yxs ) (B.17)

If y1 = μ(x2) is taken as output variable, it has
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y1 = h(x) = μ(x2)

Lfh(x) = − μ̇(x2)μ(x2)x1

yxs

L0
fh = h(x) = μ(x2)

Lgh(x) = (Sf − x2)x1μ̇(x2)

(B.18)

The control law

λ = 1
μ̇(x2)x1(Sf−x2)

(k0
∫
(μ(x2p)− μ(x2))dτ − k1μ(x2)− μ̇(x2)μ(x2)x1

yxs )

(B.19)

If the output variable is y = [x1 μ(x2)]
T and the input control is u =

[λ Sf ]
T , it has

Lfh(x) =

[
μ(x2)x1

− μ̇(x2)μ(x2)x1

yxs

]
L0
fh = h(x) =

[
x1

μ(x2)

]
Lgh(x) =

[ −x21 0
−μ̇(x2)x2x1 μ̇(x2)x1

] (B.20)

The control law

u(x) = (Lgh)
−1(

[
k011

∫
(x1p − x1)dτ

k022
∫
(μ(x2p)− μ(x2))dτ

]
−
[
k111x1

k122μ(x2)

]
− (B.21)[

μ(x2)x1
− μ̇(x2)μ(x2)x1

yxs

]
) (B.22)

will make the closed-loop system input-output linear with a transfer func-
tion matrix

T (s) = (s2I + sK1 +K0) (B.23)

if diagonal K0 = diag{k011, k022} and K1 = diag{k111, k122} is selected,
it will also have input-output decoupling, i.e

T (s) = diag{ k011

s2+k111s+k011
, k022

s2+k122s+k022
} (B.24)
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21. Fliess, M., Lévine, J., Martin, Ph., Olliver, F., and Rouchen, P.

(1995c). Flatness dynamic feedback linearizability: two approaches, Proc. Eu-
ropean Control Conf.
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42. Lévine, J., (1999). Are there new industrial perspectives in the control of
mechanical systems?. In P. Frank (Ed) Advances in Control (Highlights of
ECC’99) (London:Springer-Verlag), pp. 197-226.

43. Malan S., Milanese M. and Taragna M. (1997). Robust analysis and
design of control systems using interval arithmetic, Automática, Vol. 33(7), pp.
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58. Radhakrishnan Mahadevan, Sunil K. Agrawal, Francis J. and Doyle

III. (2001). Differential flatness based nonlinear predictive control of fed-batch
bioreactors, Control Engineering Practice, Vol. 9, pp. 889-899.

59. Rauh, A., Kletting M., Aschemann H., Eberhard P. (2005). Robust
Controller for Bounded State and Control Variables and Uncertain Parame-
ters Using Interval Methods, 2005 International Conference on Control and
Automation (ICCA2005) June 27-29, 2005, Budapest, Hungary pp. 777-782.

60. Ratschan, S. (2003). Solving Existentially Quantified Constraints with One
Equality an Arbitrarily Many Inequalities, in: Rossi, F. (ed.), Procceding of
the Ninth International Conference on Principles and Practice of Constraint
Programming, Springer, pp. 615-633.

61. Ratschan, S., and Veh́ı, J., (2004). Robust Pole Clustering of Parametric
Uncertain Systems Using Interval Methods, in: Colaneri, P. (ed.), Robust Con-
trol design 2003-Proceedings of the 4th IFAC Symposium, Elsevier Science.

62. Remei C.P. (2005). Análisis intervalar modal: Su construcción teórica, imple-
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