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Abstract. The vibrational properties of out-of-plane elastic waves in hexagonal
monolayer granular membranes were studied theoretically. The predicted
propagation modes involve an out-of-plane displacement and two rotations with
axes in the membrane plane. Shear and bending rigidities at the contact between
beads were considered. Both the cases of freely suspended membranes and
membranes coupled to a rigid substrate were analyzed. Dispersion relations
and the existence of band gaps are presented and discussed for various contact
properties. For freely suspended membranes with sufficient contact bending
rigidity, it is shown that complete band gaps exist. The results obtained may be
of interest for testing with acoustic waves the elasticity of recently developed
granular membranes composed of nanoparticles (of interest because of their
phoxonic properties) and more generally for the control of designing devices
for membrane wave propagation.
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1. Introduction

The study of the properties of phononic crystals and of the control of elastic/acoustic wave
propagation by metamaterials has become a very active area of research, owing to their
numerous interesting applications in, for example, high-frequency surface acoustic wave
filtering [1, 2]. There is also much interest among researchers in the study of acoustic
metamaterials, related to new or enhanced wave processes including, for example, acoustic
cloaking, negative refraction or subwavelength imaging [3—6]. Although devices involving
plates or membranes have been widely used, most of the recent studies on metamaterials concern
three-dimensional (3D) materials supporting bulk or surface acoustic waves [2], whereas very
little has been reported on plate or membrane waves [7-9]. Recently, even at the smallest
scale suitable for gigahertz acoustic applications, nanogranular media were produced, allowing
simultaneously both photonic and phononic (phoxonic) functionalities [10]. For instance,
technologies have been developed for building crystals consisting of nanoparticles [11-15],
ordered monolayers of particles [16—18] and freely suspended membranes composed of a single
layer of periodically ordered particles [19-21].

To describe the high-frequency (short-wavelength) vibrational behavior of such periodic
structures composed of interacting discrete particles, the continuous approximation of the
elasticity theory becomes inadequate and the discrete nature of the medium should be explicitly
taken into account [22, 23]. For most of the discrete structures, including atomic crystals, the
particles can be considered as point masses interacting through central forces [22]. However,
to model the elastic behavior of granular crystals composed of finite-size particles interacting
through forces located at the contact points between particles [24-27], it becomes necessary
to take into account the particle dimensions, the finite rotational inertia (rotational degrees of
freedom) and the interactions through non-central forces. In particular, in addition to shear
and longitudinal acoustic modes, rotational (micro-rotational) modes are predicted in such
structures [28, 29].

For more than a century, there exist theories for the description of long-wavelength acoustic
wave propagation in the so-called micropolar media, the Cosserat continuum theory (micropolar
elasticity) [30-32]. However, when wavelength is shortened and becomes comparable to
the particle size, these theories are unable to describe the dispersive phononic properties.
Nevertheless, the predictions of the Cosserat continuum theory (micropolar elasticity) [30-32],
which incorporates in continuous elasticity the possible rotations of micro-mechanical elements

New Journal of Physics 13 (2011) 073042 (http://www.njp.org/)


http://www.njp.org/

3 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

composing micro-inhomogeneous materials such as microcrystalline materials, can be used for
a comparison to the low frequency limit of the theories for elastic wave propagation in ordered
granular structures. This comparison provides an opportunity to identify micro-mechanical
interactions contributing to particular elastic constants appearing in Cosserat-type theories of
micro-inhomogeneous but macroscopically homogeneous and isotropic materials in addition to
two constants of classical linear elasticity of micro-homogeneous isotropic materials [33—-35].

It should be mentioned that, although a general theoretical approach for analysis of acoustic
waves in discrete periodic systems has been presented earlier [36], the analysis of 2D-3D
structures composed of finite size particles has been limited mostly to predictions of the
properties of bulk longitudinal and shear acoustic-type elastic modes [37—40] and guided shear
acoustic modes in macroscopically inhomogeneous granular crystals [41-43]. Only in recent
years the rotational, coupled rotational /transversal and transversal /rotational modes have been
included in analyses [44—46]. The analysis of 2D structures, which includes rotational degrees
of freedom in particle motion, has been reported only for in-plane motion [33-35]. Out-of-
plane motion has been analyzed only for surface acoustic waves on discrete structures of point
masses [23] and in the framework of the Cosserat continuum models [47, 48].

Here, we present the results of a theoretical investigation of the elastic modes in freely
suspended granular membranes and in membranes interacting with a substrate. The out-of-plane
motion incorporating rotations of particles is analyzed for the first time. The developed theory
provides the basis for the application of elastic waves in the non-destructive evaluation and
testing of granular membranes and in the testing of the adhesion of a particle monolayer to a
substrate.

2. Model

We consider an infinite monolayer membrane composed of periodically ordered spherical
particles, arranged in a hexagonal lattice (figure 1(a)). The structure is supposed to consist of
homogeneous spheres with radius R and is characterized by a lattice constant a = 2R. The
corresponding first Brillouin zone is shown in figure 1(b), and the modulus of the reciprocal
vector k is 4n/(«/§a).

2.1. Shear rigidity of the contacts

In order to analyze the out-of-plane modes of the membrane, we model the shear forces at the
contacts as springs, characterized by a constant shear rigidity & at the contact. The elongation
of the springs introduces forces and momenta that induce the motion of the particles: out-of-
plane displacement (#) and in-plane rotation angles ¢ and i (¢-rotation with the axis in the
x-direction and i -rotation with the axis in the y-direction; figure 1(b)).

We present the equations of motion for the central particle, which are given by the equation
for the displacement u of the center of the central particle, and the equations for the rotations

@o and Yry:
miig = —& [(Suy +8us) + (Sus + Sug) + (Sus +8us)], (1)

V3

I[P = TSR [(Buy —Sus) — (Susz — due)], (2)
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Shear coupling (c)

Figure 1. (a) Geometrical arrangement of the beads in the elementary cell
of the hexagonal membrane crystal. (b) Definitions of the Brillouin zone and
coordinate axes. (c) Activation of shear rigidity by particle displacements and
rotations.

. R
Iy = Eé [(Buy —bus) + (Suz — Sue)] + RE [dup —dus], 3)

where m is the mass of the particle and, for the particular case of homogeneous spheres, the
momentum of inertia is 1 = %m R?. The term Su; denotes the elongation of the spring at the
contact between the central and i -particle, i.e. the relative displacement between 0 and i-particle
at the contact point. The form of relative displacements du; can be given in terms of particle
displacements in the z-direction and rotations. For the six particles surrounding the central one
in a cell of the lattice, relative displacements are explicitly given by the expressions

V3 1

Suy =ugy — Uy =uo— Uy — TR (po+¢1) — ER (Wo+ Y1), “4)
V3 1

Sug = Ugis — Ugys = Ug — Uy + TR (po+@4) + ER (Yo +Ya) , (5)
V3 1

Suz =uo;3 —u33 =uo—uz+ TR (po+¢3) — ER (Yo +v3), (6)
V3 1

Sue = g6 — Ue/e = Uo — U — TR (9o +e) + ER (Yo +vs) , (7N

Suy =ugp —uzp =ug—uy — R (Yo +), (8)

Sus =ug;s —us;s =ug —us+ R (Yo + ), 9)
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where the expressions for the displacements of particle i in the contact point with particle j
(u;/;) are given in the appendix, and ¢; and ; are the rotations of the i particle with the axes
collinear to the x- and y-directions, respectively.

The motion equations can be written for the new variables ® = R¢ and W = Ry (the arcs
on the particle surface) and solved in the form of plane waves

u(x, Y, Z) u . ' .
V= Sx,y,t)| =D el —ikyx—ikyy (10)
\IJ(‘X’ y9 t) lIJ

u
iwt —ikyxo—iky —iky Ax—iky A
— (D e xX0 }yoe x y y,

v

where (xg, yo) are the coordinates of the central particle. We note that only the relative
coordinates (Ax, Ay) between the central particle and the neighbor particles are involved in
the out-of-plane modes of the membrane.

After the substitution of equations (4)—(9) into the system of equations of motion (1)—(3)
and plane-wave substitution with the help of equation (10), the equation of motion can be written
in the form

S¥ = 0. (11)

Normalizing the distances to the lattice constant a, the elements of the matrix S are then
given by

S = Q% —sin® (o — B) —sin® (a + B) —sin® Qa) , (12)
Sip= —i?{sin [2(+p)]—sin[2 (a — B}, (13)
Si3 = %{sin [2 (@ — B)] +sin[2 (a + B)] +2 sin (4ar)}, (14)
$21 =i?{sin [2 (e +p)]—sin[2 (a — B}, (15)
Sy = %QZ — % [cos® (@ — B) +cos” (a + B)] . (16)
Sy = ? [cos? (@ + B) — cos® (@ — B)], (17)
S5y = —%{sin [2 (o + B)] +sin [2 (@ — B)] + 2 sin (4ar)}, (18)
3 = ? [cos? (@ + B) — cos® (@ — B)], (19)
S33 = %QZ — % [cos® (@ — B) +4 cos” (2a) +cos” (a + B)] , (20)

where we have defined 22 = »®/(4w}) with 0} = & /m and & = ! k.a, B=%k,a.
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Figure 2. (a) Dispersion curves along the path (KOMK) in the case
where only shear forces between beads are taken into account. Red curves
correspond to pure rotation modes, blue curves to coupled displacement—rotation
modes (with predominance of displacement) and yellow curves to couple
displacement-rotation modes (with predominance of rotation). (b) Iso-surface

plots of €2 for the lowest eigenvalue (left), the middle eigenvalue (center) and the
highest eigenvalue (right), obtained for each couple (o, B).

The Q—k dispersion curves shown in figure 2(a) are obtained from det(S) =0. The
dispersion curves are depicted, following the KOMK path in the first Brillouin zone [2], in
figure 1(b). In the new normalization (a = 1) these points correspond, in the reciprocal space,
to O=(0,0),M=(0,7/2) and K= (;r/6, w/2). The segments OM and OK correspond to
waves propagating along symmetry directions. The segment OM corresponds to the y-direction.
Due to the symmetry of the structure, any rotation of the propagation direction of nm/3
(with n being an integer) relative to the z-axis provides no modification of the propagation
properties. Accordingly, the segment OK 1is a propagation direction equivalent to the
x-direction, i.e. it exhibits the same propagation properties. In figure 2(a), different propagation
directions are separated by dashed lines and the nature of the modes is labeled. The plotted
eigenvalues have been colored relatively to the eigenvectors that have been classified. Red
curves correspond to pure rotation modes, blue curves to coupled displacement-rotation modes
(with a predominance of displacement) and yellow curves to coupled displacement-rotation
modes (with a predominance of rotation). The eigenmodes of the infinite membrane motion
are consisting, in general, of three different components (the out-of-plane displacement u and
two in-plane rotation angles ® and W). Nevertheless, for particular propagation directions one
of the components is decoupled from the others. In the case of a propagative wave in the k,
(respectively k) direction, a mode called ®-mode (respectively W-mode) and shown in red
in figure 2 appears uncoupled from the mixed modes (u+ W) (respectively (u + ®)). In the
case of waves propagating along the y-direction (0 < 8 < /2), we note a zero-frequency
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Figure 3. Schematic diagram of the contacts with bending rigidity and definition
of the angles and axes.

(u + ®)-mode, whereas two other modes corresponding to u+® and W-modes propagate
with frequencies Q2= %(1 — % sin’ B) and Q?= %(1 — % sin’ B), respectively. For the
x-direction, a compact presentation of the dispersion relation can be obtained for the uncoupled
d-mode: Q? = 14—5(1 —sin® ), where 0 < o < 7 /3. For the particular plane vibrations with k, =
0, ky =0, the three components are decoupled from each other: the two modes corresponding
to rotations have the same eigenfrequency given by Q2 = 15/4, whereas the displacement mode
has zero frequency.

The frequencies 2 satisfying det(S) = O for any propagation direction in the plane (¢, 8)
are shown in figure 2(b). For the three obtained eigenvalues of S, the sixth-order symmetry
around the z-axis is observed on these iso-surface plots.

The zero frequency u + ®-mode (non-propagative mode of zero group velocity) exists
because there are such combinations of displacements and rotations of the particles which do
not lead to the loading of the contact (to the elongation of the shear spring). In other words,
in the model presented above, there are configurations of the displaced and rotated particles
which have the same energy as the background configuration with zero displacement and zero
rotation. The analysis demonstrates that the zero mode is allowed, particularly because in the
model developed above (figure 1(c)), the rotations of two neighboring particles with the same
angle but opposite directions do not cause any loading of the contact. In reality, it is the bending
rigidity of the contacts that counteracts this type of motion (figure 3(c)). Whereas the bending
rigidity plays a negligible role in comparison with shear rigidity in unconsolidated granular
crystals [44—46], it plays an important role when the contacts are consolidated (sintered).

2.2. Bending rigidity of the contacts

We model, in the following, the bending rigidity of sintered contacts of radius r >~ R < R by
including in the contact description (additionally to the shear spring) two springs with normal
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rigidities &g (see figure 3(c)). They are oriented in the membrane plane and located at the lowest
and highest points of the contact along the z-direction.

In this extremely simplified presentation of the physical nature of bending rigidity, even
rotations of the neighboring particles in opposite directions but with the same angle will cause
elongation of one of the springs and contraction of the other. The corresponding forces have
non-zero momenta relative to the rotation axes and will try to make the particles return to their
equilibrium state. For example, an additional (bending-related) momentum of forces acting on
particle 0 because of the rotations of particles 0 and 2 relative to the y-axis can be described by

2
Mg, = _ESB("I}O —\,). (21)

In the proposed simple model, bending-related momenta are effective not only for contacts
located on the rotation axis (e.g. for the contact between particles 0 and 2 in the case of their
rotation along the x-axis). In the latter case, spin (torsional) rigidity of the contact [49] could
play a role.

As a consequence of the contact bending rigidity, which is a function of both &g and the
dimension R@ of the contact along the z-axis (where 6 is the contact angular dimension; see
figure 3(a)), there is a moment along the 7;;-axis tangent to the contact between neighbor beads
i and j in the x—y-plane. This moment exists even if the beads rotate relative to the direction ¢;;
to exactly opposite angles x;; = —x; (figure 3(c)).

Here, the angle x;; of rotation of the bead i relative to the axis 7; is equal to

Xij = @i sina;; +; cos (22)
where «;; = «j; 1s the angle between the #;;-axis and the y-axis (ag1 = o = 7/3, 03 = g =
27'[/3, Oy = Ops = O)

Due to bending rigidity, the sum of the bending momenta provides the following
contributions to the momenta rotating the central beads (j = 0) along the x- and y-axes:
0

2
M, = ?SBRZ [(X10 = Xo1 — Xo4 + Xa0) sin(7/3) + (X30 — X03 — Xos + Xe0) Sin(w/3)], (23)

92
M, = ?éBRZ[(XIO — Xo1 — Xo4 + X40) €08(7r/3) + (X30 — X03 — Xo6 + Xe0) COS(27/3)

+ (X20 — Xo2 — Xos + Xs50)1- (24)
The matrix § is modified in the following additional terms:
ASy = —2 pe [sin” (@ + B) +sin’ (@ — B)] (25)
A8z = AS3,
= — ? pg [sin® (@ — B) —sin® (@ + B)] (26)
ASs33 = —pg {[sin® (@ + B) +sin” (@ — B)] /4 +sin’*2a)} (27)

where the non-dimensional bending parameter pg has been defined as pg = %%‘3 By
considering bending rigidity of the contact, the rotation around the x-axis influences the rotation
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around the y-axis and vice versa. The dispersion relations of the membrane are modified by the
presence of bending rigidity, as can be noted in the modes corresponding to the propagation
along the y-axis (OM segment), where a second coupled mode propagates even for small values
of the bending parameter (figure 4).

The frequencies of all the modes in the points M, K and O can be found analytically. Their
analysis demonstrates that a forbidden frequency gap for wave propagation along the y-direction
(path OM) always exists. For 0 < pg < 8/15 the forbidden gap (v/15/2) ps < € < +/2 shrinks
with increasing pg. For 8/15 < pg < 1 the width of the forbidden gap V2<Q< W15 /2)pB
grows. It stabilizes at +/2 < < +/15/2 for pg > 1. For waves propagating in the x-direction
(path OK), the forbidden gap 3/2 < Q < 4/15(1+3pg)/4 opens for pg > 7/15 and its width
increases till pg = 1. Combining the information about the mode frequencies in the critical
points M, K and O, it can be predicted that a complete band gap opens above 2 =3/2 for
ps > 3/5. Its width grows up to a maximum value 3/2 < Q < V'15/2 when pg = 1 and retains
the same value on increasing pg above 1. These theoretical predictions agree with the numerical
results presented in figure 4.

For small values of the parameter pg, the frequency of the lowest mode is proportional to
the square root of pg,

Q% ~2pgsin* B/[1 — (7/15) sin® B, (28)

demonstrating that propagation of this mode is due to the bending rigidity of the contacts.
Measurements of the velocity of this mode provide direct access to the evaluation of bending
rigidity.

Analytical expressions for some symmetry directions of propagation can be obtained. In
particular, for waves propagating along the y-direction the rotation mode frequency is given by

QY =3 [3+(ps—Dsin*(B)], (29)
and for waves propagating along the x-direction, the frequency of the rotation mode is
Q% =2 [1+(ps— Dsin® (@)]. (30)

Dispersion curves for different bending parameter values are shown in figure 4 and verify
the expressed analytical results. In figure 4 (and in the following), the color code (blue, green,
red) corresponds to the order of appearance of the eigenvalues along the diagonal of the
dynamical matrix S after a Schur decomposition. The Schur decomposition provides ordering
of the eigenmodes (and consequently ordering of the associated eigenvalues) in accordance with
the dominance of the component u, as a first criterion. If, for several modes, components u are
equal, the ordering is obtained in accordance with the dominance of @, and finally, a comparison
of the W component is used if necessary. This ordering is used to attribute the successive colors
blue, green and red to the three ordered eigenvalues in figure 4.

2.3. Normal contact with a rigid surface

We have analyzed the out-of-plane modes of a free suspended membrane considering both the
rotational degrees of freedom of the particles and the finite size of the contact between beads.
We include now the interaction with an infinitely rigid substrate supporting the membrane. The
interaction with the substrate gives rise to the existence of additional forces and momenta at
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2 Bandgap.' Sr——

@ P =0T
0.5
K 0 M K
15 ~Bandgap ..

Figure 4. Dispersion curves obtained for different values of the parameter pg
of bending rigidity. The values of the bending parameter pp are indicated and
they increase from the top to the bottom panels. Dotted curves corresponding
to the case of no bending rigidity, as in figure 2(a), are shown for comparison.
The complete band gap is shown by the gray-shaded zone. The color code (blue,
green, red) corresponds to the order of appearance of the eigenvalues along the
diagonal of the dynamical matrix after a Schur decomposition.
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0.5

K o) M K

Figure 5. Dispersion curves obtained for different values of the parameter py
(normal rigidity between the beads and the substrate) and zero bending rigidity.
Dotted curves corresponding to the case of no bending rigidity and no normal
rigidity with the substrate, as in figure 2(a), are shown for comparison. The color
code (blue, green, red) corresponds to the order of appearance of the eigenvalues
along the diagonal of the dynamical matrix after a Schur decomposition.

the contact between an individual particle and the substrate, which are modeled as springs with
their corresponding stiffness constant.

An additional returning force appears due to the motion along the z-axis, related to the
normal rigidity of the contact of a sphere with the substrate & (the symbol ' refers to the
interaction with the rigid substrate).
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Figure 6. Dispersion curves obtained for different values of the parameter py
(normal rigidity between beads and the substrate) and for a fixed pg =1.5
(bending rigidity between the beads). Dotted curves corresponding to the case of
no bending rigidity and no normal rigidity with the substrate, as in figure 2(a), are
shown for comparison. The color code (blue, green, red) corresponds to the order
of appearance of the eigenvalues along the diagonal of the dynamical matrix after
a Schur decomposition. The complete band gaps are shown by the gray-shaded
zones.

This introduces modifications in only one term of S, given explicitly by
AS}y = —pi. 31)

where we have defined the adimensional parameter py as p =&y/&. The contact of the
membrane with a rigid substrate has an influence on the dispersion relations.

The effect of normal rigidity in the absence of bending rigidity is shown in figure 5: when
the membrane is on a rigid substrate it is composed rather of interacting oscillators than of
oscillating masses. This manifests, in particular, in the fact that the wave with k = 0, which
corresponds to pure displacements without rotations, has now a non-zero frequency.
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The growth of the frequency of the displacement-dominated lowest mode in the point
O is described by Q2= py and is independent of the bending rigidity of the inter-bead
contacts.

As follows from our analytical evaluations and figure 5 above, the displacement-dominated
mode in the case p| =0 becomes the lowest (in frequency) mode for pg > 7/15 in the point
K and for pg > 8/15 in the point M. The analysis demonstrates that at larger values of pg
and non-zero values of p), the frequency of the lowest mode in these points depends only on
the bead—substrate normal interactions: 2 = (3/2)* + py, and 2 =2 + p{; at the points K and
M, respectively. Thus the continuous increase of py for a fixed value of pg > 9/15, where the
complete band gap exists in the free-standing (py = 0) membrane, will lead to closing of the
complete gap. For 3/5 < pg < 1 the complete gap closes because the frequency of the first
(lowest) mode at the point K becomes higher than the frequency of the second mode at the point
M. This happens when p{, = %[SpB —3].

For pg > 1 the complete band gap associated with bending rigidity (see figure 4) closes
when py becomes larger than 3/2 because the frequency of the first (lowest) mode in the point
K becomes higher than the coincident frequencies of the second and the third modes at the point
O. In figure 6, we illustrate for pg = 1.5 the closing of this complete gap, which is caused by the
increased normal rigidity of the contacts between the beads constituting the membrane and the
substrate. While this complete gap closes, the opening of a low-frequency complete band gap
is also observed. This low-frequency complete band gap exists only if both bending rigidity of
contacts between beads and normal rigidity of bead—substrate contacts are simultaneously non-
zero. The bending rigidity is necessary to open a local low-frequency band gap at the point M,
while the normal rigidity is necessary to open a local low-frequency band gap at the point O. For
small values of the rigidities pg and py, these local gaps grow proportionally to corresponding
rigidities (as 0 < 2 < 15pg/4 and 0 < Q < py, respectively). Thus, for p, < 1 and p| K 1,
the complete low-frequency band gap is controlled by max(15pg/4, py) and experimental
determination of the complete gap could provide a measure either of the bending rigidity of
the contacts between the beads or of the normal rigidity of the bead—substrate contacts.

3. Conclusions

The above-presented results on the analytical and numerical evaluation of the out-of-plane
motion of free-standing membranes composed of a single layer of ordered spherical particles
demonstrate that, above a critical value of the ratio of bending to shear rigidity of the inter-
particle contacts, a complete forbidden band gap for the elastic wave propagation exists. This
complete band gap may disappear in the membranes supported by a substrate. Closing of the
high-frequency (‘optical’) complete gap with increasing normal rigidity of the contacts between
the particles and the rigid substrate has been predicted. Also, a low-frequency (‘acoustical’)
complete band gap has been predicted to exist when the bending rigidity of contacts between
beads and the normal rigidity of bead—substrate contacts are both important. More complex
phenomena are expected if the shear rigidity of the contacts between the particles and the
substrate is taken into consideration, because the shear rigidity of the particle—substrate contact
couples the out-of-plane motion in the supported membranes to the in-plane motions. It would
also be interesting to investigate in future the role of the spin (torsional) rigidity of the
inter-particle contacts. The theoretical results presented above will guide the development of
opto-acoustical methods for the non-destructive non-contact evaluation of the elastic properties
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of free-standing and supported monolayer particle membranes [13—18, 20, 21], which are based
on the all-optical monitoring of the elastic waves through both their generation and detection by
lasers [50-52].
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Appendix

The elongation of the spring that models the contact is equal to the relative displacement Su; of
the O and i particles in this contact. This displacement is given by du; = uq,; — u;;;, where u;;
refers to the displacement of the i particle in the j contact. Explicitly, these displacement are

given by
V3 1 V3 1
=ug— — Ry — =Ry, =u;+—Rp+ =Ry,
Up/1 = Ug ) Yo ) Yo Uy =ug 2 ¥1 > (3
V3 V3
=ug+—Rpy+ =Ry, =uy— —Rps — =Ry,
U4 = Ug 2 Yo > Yo Ugsg = Ug > P4 > Yy
+ —ﬁR 1R¢ V3 R+ 1R1/x
Uy = U - = , U3z = Uz — = )
0/3 0 ) Yo > 0 3/3 3 2 ¥3 > 3
V3 1 V3 1
=ug— — Ry + =R, =ug+—Reps — = R,
Up/e = Ug 3 Yo 5 Yo Ug/e = Ug > Yo ) Ve
uo;2 = o — Ry, Uz = uy+ Ry,
uoss = o+ R, us;s =us — Rys.
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