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Abstract. A multiple scattering formulation of two-dimensional (2D) acoustic
metamaterials is presented. This approach is comprehensive and can lead to
frequency-dependent effective parameters (scalar bulk modulus and tensorial
mass density), as it is possible to have not only positive or negative ellipsoidal
refractive index, but also positive or negative hyperbolic refractive index. The
correction due to multiple scattering interactions is included in the theory and
it is demonstrated that its contribution is important only for lattices with high
filling fractions. Since the surface fields on the scatterers are mainly responsible
for the anomalous behavior of the resulting effective medium, complex scatterers
can be used to engineer the frequency response. Anisotropic effects are also
discussed within this formulation and some numerical examples are reported.
A homogenization theory is also extended to electromagnetic wave propagation
in 2D lattices of dielectric structures, where Mie resonances are found to be
responsible for the metamaterial behavior.
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1. Introduction

Fluid-like metamaterials or metafluids with negative constitutive parameters offer new insights
into acoustic wave propagation. Single negative metamaterials (SNM), in which either the
mass density or the bulk modulus is negative [1-3], can be used, for example, for the
fabrication of surface-like acoustic lens to overcome the diffraction limit [4, 5] or acoustic
panels that attenuate low-frequency noise [6]. Double-negative metamaterials (DNM) [7-9]
exhibit negative refraction [10-13] and, as is well known from electromagnetic (EM) wave
theory, they can also be used to increase the resolution of conventional lens [14—16]. In general,
anisotropic fluid-like metamaterials with acoustic parameters, both positive and negative are
necessary, in the field of transformation acoustics for designing different types of acoustic
devices [17-21].

The existence of frequency ranges where the effective medium presents negative
constitutive parameters is related to subwavelength resonances of the individual scatterers
that constitute the metamaterial. These resonances can be, for example, due to soft-scatterer
resonances [7, 22, 23] or to Helmholtz-like resonances [2, 8], [24—26]. The same phenomenon
is found in EM waves under the name of Mie resonances [27-31], and they present an
alternative way of designing EM metamaterials to that offered by split ring resonators [32]
or metallodielectric composites [13, 33, 34], which have been the dominant structures so far.
Therefore, metamaterials based on local resonances are important not only for acoustic but also
for EM metamaterials.

It is known that the monopolar resonances in the individual scatterers are responsible
for negative bulk modulus and that the dipolar ones are responsible for negative mass density
[7, 35]. However, the behavior of aggregates of scatterers in the homogenization limit has been
partially explained since multiple scattering effects or anisotropic lattices have not been studied
in depth.

Here, we give a description of acoustic metamaterials by using a multiple scattering
approach under the assumption that the wavelength in the background is asymptotically large,
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whereas inside the scatterer, it remains finite. It is based on our theory already applied to
the homogenization of sonic crystals [36-38]. We consider in the long-wavelength limit an
ensemble of ordered or disordered scatterers as an effective medium with acoustic parameters
that are frequency dependent and can take negative values in certain frequency regions. The
frequency-dependent parameters are given in terms of the lattice symmetry, the multiple
scattering interactions and the fields at the scatterers’ surface. This formulation recovers all
the previous results regarding SNM and DNM and, moreover, can be applied to any type of
radially symmetric scatterer, to non-symmetric lattices and even to any filling fraction.

This paper is organized as follows. In section 2, the concept of low-frequency resonances
is introduced, showing how these resonances lead to scatterers with locally negative parameters.
Section 3 describes the multiple scattering formulation and reports its application to the case of
lattices with low filling fraction as well as to the more general case, showing how anisotropy
appears. In this section, the theory is extended to include multipolar effects, but we see that
they are important for high filling fractions and for high acoustic contrast. Also, it is shown that
the multiple scattering corrections are independent of frequency. In section 4, the application
of the theory to EM waves is explained in brief. The paper ends with a summary in
section 5 and two appendices. Appendix A analyzes several examples of scatterers with locally
negative parameters showing that tuning the scatterers’ resonances can be achieved using
complex scatterers, whereas appendix B gives the technical details of the derivation of the
frequency-dependent A factor, which is responsible for the multiple scattering effects in the
homogenization theory.

2. Low-frequency resonances and locally negative parameters

Homogenization theories for aggregates of scatterers are based on small-wavenumber (long-
wavelength) expansions of the fields in both the background and the scatterers. When working
with metamaterials we assume that the wavenumber in the background is asymptotically small
although we let the wavenumber inside the scatterer still be finite. Physically it means that
outside the scatterers the wave field propagates through an effective medium, but the scatterers
are still allowed to have complex scattering processes. The complexity leads to negative
parameters in a narrow frequency region, as will be explained below.

A simple example of this type of scatterer (see appendix A) is a homogeneous fluid-like
scatterer. If the sound speed inside this scatterer is much smaller than that of the background,
c. K cp, we will have that, for a given frequency w, the wavelength inside the scatterer, A,, is
also much smaller than that in the background, i.e. A, < A;,. Thus, outside the scatterer the field
will be a function of k;, = w/cp, which is a slowly oscillating function, while inside the scatterer
the field will be a rapidly oscillating function of k, = w/c,. Since we are in the low-frequency
limit we expect, in principle, the medium to behave as an effective homogeneous medium with
constant parameters, but in fact, due to the fields inside the scatterer, the resulting effective
medium has parameters that are frequency dependent.

The next subsection analyzes this effect rigorously and appendix A includes the results
for different types of scatterers, showing how complex scatterers present frequency-dependent
behavior. The latter, as will be seen in section 3, can lead to metamaterials with negative
constitutive parameters.
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2.1. Acoustic scatterers with locally negative parameters

The wave equation for a pressure field in an inhomogeneous fluid is given as [39]

2
Y _P(r)=0, (1)
B(r)

where p(r) and B(r) are the fluid mass density and bulk modulus, respectively, and r = (r, 6)
defines an arbitrary point in the x—y-plane in polar coordinates. We also consider that the
scatterer, which has radius R, and is radially symmetric with parameters p(r) and B(r), is
embedded into a fluid background with acoustic parameters p, and Bj,.

This is a canonical problem whose solution outside the scatterer is given in terms of the
Bessel and Hankel functions [39],

VI '(r)VPr)]+

P(r,0; w) = Z A) [T, (kor) + T, Hy(kpr)] €4, r > R, )

q=—00

with kj = w’p,/ By. The coefficients A) are determined by the incident field, and the scatterer
response is described by the matrix elements 7. This matrix is diagonal for the case considered
due to axial symmetry of the scatterer, and it can be obtained by solving the wave equation (1)
inside the scatterer and applying boundary conditions at the scatterer surface, r = R,. The
conditions are the continuity of the pressure field and the normal component of the velocity,

P(R}) = P(R,). (3a)
1 1

—8,P(R))=———08,P(R)). 3b
o, o P(RD 2R (R) (3b)

Since the scatterer is radially symmetric and parameters p and B depend only on the radial
coordinate, the field inside the scatterer can be expressed as a Fourier series of the form

o
P(r,0;0) = Y By(@)y,(r; w)e?’, 4)
g=—00
where the eigenfunctions v, (r; w) are the solutions of the radial part of equation (1) in
cylindrical coordinates,
2

p(r) r . () g~ C ) —
I (Wa’w"(r’ w)) " ("’ B(r) r2) Valrs @) =0, )

From this equation, after applying the boundary conditions, the general expression for the
diagonal components of the 7" matrix is easily obtained:

Xng;(kbRa) - Jq(kbRa) X p(Ra) Wq(Ra; a))
= - ) = b-
T XeH) (kR — HykoR))' 71 oy 8,9 (Ras @)
This matrix contains two contributions: the background contribution is described by the
Bessel and Hankel functions, while the scatterer contribution is described by the function yx,.
In general, equation (5) must be solved in order to obtain the x, functions; for example, for a

homogeneous and isotropic cylinder of mass density p, and speed of sound c,, the solutions to
equation (5) are Bessel functions; thus

PaCa Jq(kaRo)
X = S ——
T pocy I (kaRa)
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Standard homogenization theory based on multiple scattering uses the asymptotic form
of these expressions to derive the effective medium properties. In particular, the monopolar
and dipolar terms (g =0 and g = 1) are used to obtain the effective modulus and mass
density, respectively, both being positive [36, 37]. However, it is shown below that metamaterial
behavior (i.e. effective parameters with negative values) appears in the regime where only the
Bessel and Hankel functions of the background are replaced by their asymptotic forms at low
frequencies. In other words, when the wavelength in the background is large, the wavelength in
the scatterer is comparable in size.

So, let us then consider that the arguments of the Bessel and Hankel functions are small,
ky R, < 1, and use their asymptotic forms [40]. Then, the monopolar component of the 7 matrix
becomes

iR} 1+ 3k, Ra 0

~ KZR2 ’
4 22 Inky R, — kyRaxo

where the logarithmic term in the denominator is negligible in comparison with the linear term

in k; in the low-frequency limit but cannot be neglected when dealing with metamaterials. This

term, which has been omitted in many preceding studies about acoustic and EM metamaterials,

is of paramount importance to determine the metamaterial effective parameters.
Equivalently, the dipolar component of the 7" matrix is

iR xi /Ky Ry — 1
4 xi/kyRo+1

Since we expect similar behavior to that of a homogeneous scatterer with effective acoustic
parameters p, and B,, the matrix elements should have the standard form

Ty

8)

€

1

T lch%klz Bb 1 (10 )
~ — -1/, a
0 4 | B,
R2 p,
T~ L laPa " Pyo (10b)
4 Pat Pb

Now, comparing equations (8) and (9) with equations (10a) and (10b), one can introduce
frequency-dependent bulk modulus and mass density functions as follows:

k2 R? 1
B,(w)/B), = > Ink,R, — EkbRaXO (11a)
Pa(@)/op = X1/ kp Ry (11b)

These functions depend on the mass density at the scatterer surface, p(r = R,), and also
depend on the field and its derivative at the surface: that is, ¥, (r = R,; w) and 9, ¢, (r = R,; w),
respectively. These quantities are frequency dependent and are responsible for the frequency
dependence of the parameters B,(w) and p,(w). It is worthwhile to show that B,(w) = B), and
pa(®) = p, for a homogeneous scatterer. This is done in appendix A.

The derivation described above is similar to that in [7, 35] where the authors employed
the coherent potential approximation method and seek the self-consistent solution to ensure
that the inhomogeneous system embedded within an effective medium generates no scattering
in the lowest order of frequency. However, in [7, 35] the expressions are left as functions of
the so-called scattering coefficients and therefore they are very general and valid for any type

New Journal of Physics 13 (2011) 093018 (http://www.njp.org/)


http://www.njp.org/

6 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

of isotropic scatterer. Here, we gave a further step and analyze the low-frequency limit of the
scattering coefficients under the assumption that only the wavenumber in the background is
asymptotically large, which allows us to understand metamaterial phenomena.

Appendix A.1 reports several applications of formulae developed above. In particular, three
different scatterers with negative acoustic parameters at narrow frequency regions are briefly
analyzed.

3. Multiple scattering of acoustic waves in the low-frequency limit

A cluster of cylindrical scatterers defined by their homogeneous parameters p, and B, will
behave in the low-frequency limit (i.e. for wavelengths larger than the typical separation
between scatterers) as a homogeneous medium with effective parameters p* and B*. These
parameters were obtained by Berryman [41] in 1980 by making a comparison of the scattering
properties of the cluster and the effective scatterer. The resulting estimate was not exact because
multiple scattering effects were neglected. This approach was recently generalized by including
all the multiple scattering interactions between scatterers and very general expressions were
obtained in [36-38].

The following subsections present a generalization of the results of previous studies to
the case of metamaterials in which effective parameters are frequency dependent. It will be
considered that parameters p, and B, can be replaced by their corresponding frequency-
dependent values p,(w) and B,(w). It is demonstrated that this procedure is self-consistent
and therefore gives a correct method for the extraction of the effective parameters of acoustic
metamaterials.

3.1. Multiple scattering effects: the A factor

Let us consider a cluster of scatterers periodically distributed in a fluid background. In the low-
frequency limit, the cluster behaves like an effective fluid-like medium with the parameters
given as [41]

b =7, 7 , (12a)
B*(w) B,  Bi.(w)
() = pa(w)(l+f)+,0b(1_f) (12b)

p@(I— N+ oL+ )"

where the frequency dependence of scatterer parameters (see equations (11a) and (115)) has
been included.

While equation (12a) is valid for all filling fractions, equation (12b) is valid for diluted
clusters only (i.e. low filling fractions). In [37] and [38], the expressions for the effective density
were generalized to the case of high filling fractions, and all the multiple scattering terms were
introduced in equation (12b) by means of the so-called A factor, leading to

() = Pa(@)(A+ 1)+ pp(A — f) (13)
@ (B — N+ oA+ )

The factor A represents a correction to the effective density and takes into account all
the multiple scattering interactions between the cylinders in a cluster or in an infinite lattice.
Technical details of its derivation are given in appendix B. A also contains information on
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the mass density of the cylinders forming the cluster and, hence, if we want to introduce
a frequency-dependent factor A(w), the frequency-dependent mass density must also be
considered.

We have shown that the contribution of the scatterers’ density to the A factor is made
through the factor n defined as [37, 38]

— Pa — Pb
Pa + Pp
It is tempting to replace p, — p,(w) in order to define the frequency-dependent A (w). However,

it must be remembered that the n factor appears in the power expansion of the g-component of
the 7" matrix as follows:

(14)

i R%4 —
lim qu‘: ‘ 7R, PP, (15)
k=0 q(q — D2% p,+ py

Then, for the A factor to be consistent with our theory, we must compute 7, given by
equation (6) taking into account that the wavelength inside the scatterer is still finite. This leads
to the following equation that replaces equation (15):

Tq ~ i qu QXq/kbRa — Pb
k4 qlq— D12 qxg/keRa+pp
This equation shows that we can generalize the A factor as long as we make the substitution
qu/ kbRu — Pb
q Xq/ kb Ra + Pp
in the corresponding multipolar components in [37] and [38].

The A factor was studied in the quasi-static limit (i.e. for A — o0) and it was demonstrated
that its contribution is important only for high filling fractions and for strong scatterers
[37, 38]. This is because the coupling to higher multipolar components is always weaker.
Similar behavior is expected for the frequency-dependent factor, A(w), although we would
expect in this case the presence of resonances different from monopolar or dipolar. However, it
was shown in [38] that the multipolar contributions to the A factor are proportional to a set of
lattice sums S,, whose values depend on the lattice symmetry. Thus, for the square or hexagonal
lattices only the sums such that ¢ = 4n or g = 6n, respectively, for n =1, 2, ..., are different
from zero. Thus, the first multipolar term appearing in the A factor is that with ¢ =4 for a
square lattice and with ¢ = 6 for a hexagonal one. The resonances of these modes for a lattice
of homogeneous cylinders occur at frequencies higher than those for ¢ = 0 and ¢ = 1. Thus,
they cannot be observed in the low-frequency limit. It does not mean, however, that the A factor
is not relevant, as will be discussed in the following example, but rather that the higher-order
resonances do not contribute to the effective parameters.

The contribution of the A factor to the effective parameters is better understood for
strong scatterers. For the case of almost rigid scatterers (i.e. cylinders made of heavy solid
materials embedded in air) this factor contributes considerably to the calculation of the effective
parameters, but since these cylinders do not possesses low-frequency internal resonances, they
are of no interest to this study. In contrast, the case of soft scatterers like, for example, air
cylinders embedded in water represents the opposite system and is discussed below.

Figure 1 shows the bulk modulus of a hexagonal lattice of air cylinders in a water
background (B, =5.14 x 107°B,, p, = 10*°kgm™ and p, = 1.24kgm™?) for several filling

(16)

n—nw)= (17)
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0.1 T T T T T T T 7 7

ff=0.58
ff=0.74
— ff=0.87[]

B*(w)/B,

0.3 T T 1 T T T T M T 1
N mst-ff=0.58 [
0.2 r_ = mst-ff=0.74 4
- = = = mst-ff=0.87 ||
>s% 01l = = = low-ff=0.58 | |
T pmmm==- N e e = = = low—ff=0.74 |4
= = = |ow-ff=0.87[]
of |

_01 1 | | 1 1 1

1 1 1 1
0 005 01 015 02 025 03 035 04 045 05
wal/2n Gy

Figure 1. Upper panel: effective bulk modulus of a composite medium made
of air cylinders distributed in a hexagonal lattice and embedded in water. The
results are shown for three filling fractions ff. The effective bulk modulus is
negative in the whole frequency region considered as homogenization. Only in
a very narrow region corresponding to infinite wavelength is the effective bulk
modulus positive. Lower panel: the corresponding effective mass densities. The
dashed lines correspond to the dilute approximation (low-ff) and the continuous
lines represent calculations where the multiple scattering terms are considered

(mst-ff).

fractions. It has been pointed out that the effective bulk modulus does not need a multiple
scattering correction. However, this example demonstrates that the homogenization limit can
be defined here only from a frequency-dependent theory since the modulus is negative in a
wide frequency range. The expression for the frequency-dependent bulk modulus is given by
equation (A.la), where we observe that, since B,/B, ~ 5 x 107>, the dominant contribution
comes from the logarithmic term. The second term contributes to a weak resonance near the
reduced frequency of 0.3, as can be observed in the figure. On the one hand, this resonance is
too sharp to be measured in a real system; on the other, it occurs beyond what we could consider
the homogenization limit, which is found to be at a/A ~ 0.25.

The lower panel of figure 1 shows the frequency-dependent mass density for three different
filling fractions. The continuous line corresponds to the calculation considering the A (w) factor
as explained above; the dashed line corresponds to the low filling fraction approximation. It
is shown how the multiple scattering correction is important for high filling fractions only, as
expected, and also we can see that the resonant frequency is almost the same in both situations,
showing that the A factor is relevant mainly in the quasi-static limit.
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2
ff=0.58
1.8 — =0.74
1.6} ,L — =0.87 4
1.4 f\ |
u,—'-'—ﬁ 1
0.2 0.3 0.4 0.5

wa/2r G,

Figure 2. Imaginary part of the effective sound speed for a medium consisting
of a hexagonal lattice of air cylinders in a water background. The lattice constant
is a.

Finally, figure 2 shows the imaginary part of the effective speed of sound. As the effective
bulk modulus is negative for the whole range of frequencies considered as the homogenization
limit, the effective speed of sound is always purely imaginary. It becomes real only in the narrow
region where the effective mass density is also negative, due to the local resonance. This sharp
resonance can be observed numerically; however, it is hard to believe that this could be observed
experimentally. Thus, we can conclude that the system of air cylinders in a water background
will always be a non-propagating medium in the low-frequency limit.

3.2. Anisotropic metamaterials

Expressions obtained in the last section are not valid in the case of anisotropic lattices (i.e.
in lattices other than the hexagonal or the square). Expressions for the anisotropic mass
density were reported in the quasi-static limit and they depend on the cylinder’s parameters
and the lattice geometry [38]. It can be shown that even neglecting the terms of multiple
scattering interaction, mass anisotropy appears for non-symmetric lattices. The components of
the effective mass density tensor are

1= P (@)(A+1)? -

*—1 _

oo O T @+ @A) (8o
= P@A-1?

P O = T ) + ) (1 — 4D (150)

where A is the anisotropy factor introduced in [38] and n(w) is given by equation (14) with
Pa = pa(w). It is assumed that the coordinate axes are oriented along the principal axes of the
tensor pjy.
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Figure 3. Summary of the different types of propagation inside acoustic
metamaterials.

The expression for the effective bulk modulus remains the same as that in the previous
section, so that we can obtain the tensor for the effective speed of sound [38] as follows:
c*?
—L = p}7'B*. (19)
Ch
Note that the anisotropic mass density tensor can have both the principal values of the same
sign (negative or positive) or they can be of opposite signs.
Therefore, for the acoustic refractive index, we have

n*(0) = L 1 (20)

EVEHO) & fercos? 0+ sin 0

where 6 defines the direction of propagation of acoustic waves in the effective medium. The
refractive index surface n*(0) can be either elliptical, hyperbolic or imaginary, and also positive
or negative, depending on the sign of B* and the components of the mass density tensor.

When both the diagonal components of the mass density tensor have the same sign, but
have signs different from that of the effective bulk modulus, the refractive index becomes
imaginary and there is no sound propagation. When the signs are the same as that of the effective
bulk modulus, the refractive index becomes elliptical—or circular in the case of isotropic
media—and we have normal refraction or negative refraction, depending on the sign of the
components of the mass density tensor.

If the components of the mass density tensor are of different signs, the refractive index
surface is hyperbolic, and the sign of the square root in equation (20) is the same as that of
B*. The propagation of waves in this medium will be determined by the component of the mass
density tensor that has the same sign as B*. In this case the refractive index surface is hyperbolic,
positive or negative.

Figure 3 summarizes all types of propagation regimes allowed in metamaterials. Note that,
for a given frequency, it is not possible to have a positive index in one direction and a negative

New Journal of Physics 13 (2011) 093018 (http://www.njp.org/)


http://www.njp.org/

11 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

5 ‘

4t B*eff

3 | L p:XXE(O;
AN (1)

ol vy

1 -

o i W i

Effective Paramters
o

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

wa/2r %

Figure 4. Effective parameters, normalized to those of the background, of fluid-
like cylinders distributed in a rectangular lattice with b = 2a. The parameters of
the cylinders are p, = 0.50,, B, =0.02B;, and R, = 0.49a. Note that the two
narrow multipolar resonances observed at about wa/2mwc, = 0.3 and 0.35 are
located in a frequency region where the homogenization hypothesis is not valid.
The thin horizontal line is a guide to the eyes defining the zero of the vertical axis.

index in another direction, since the character of the propagation is determined by the bulk
modulus, whose sign is determined by the operating frequency.

The mass density tensor and the scalar bulk modulus are plotted in figure 4 for a system of
cylinders with B, = 0.02B,, and p, = 0.5p,. The underlying lattice is rectangular with b = 2a
and its filling fraction f = 0.3771, corresponding to cylinders with radius R, = 0.49a. Figure 5
depicts the real part of the corresponding components of the sound speed tensor. We observe that
from wa /27 c, =0 to 0.05, the refractive index is elliptical and positive; then a region of non-
propagation appears, where the bulk modulus is negative and the two components of the mass
density tensor are positive, leading to a refractive index imaginary for all directions. Finally, two
frequency regions with a negative hyperbolic index appear since the mass density tensors have
two resonances and still a negative effective bulk modulus.

Multiple scattering interactions have been included within this analysis; however, their
effects are negligible at low frequencies. Note also that as p, = 0.50, we have that n = —1/3,
which is three times smaller than the air—water case, where n ~ —1, which makes multiple
scattering interactions irrelevant in general.

This simple example shows the variety and complexity of the propagation characteristics
of anisotropic metamaterials. It is obvious that correct design of both elliptic and hyperbolic
refractive indices should be done by properly engineering the constituent scatterers as well as
the chosen underlying lattice.

4. Application to electromagnetic metamaterials

The vectorial nature of EM waves makes the problem more complex, but in two dimensions (2D)
the EM field can be decomposed into the TE and TM modes, leading to the same wave equation
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Figure 5. Real part of the effective speed of the sound tensor of the medium
described in figure 4 as a function of frequency. Note that we can have both
components positive, or one negative and the other imaginary (the real part is
equal to zero in this plot). It is impossible to have one component negative and
the other positive (see text). The horizontal dashed line is a guide to the eyes.

as that for scalar acoustic waves. Now P in equations (1) and (5) is the z component of the
electric (magnetic) field for the TE (TM) mode, and (p, B) = (i, ¢ ') for the TE mode and
(p, B) = (g, u= 1) for the TM mode.

Although both problems are mathematically equivalent, physically they are quite different.
The numerical values and ranges of the material parameters p, B and w, € are not the same in
both fields; therefore it is worth studying them separately.

For EM structures in the dilute regime (low filling fractions), we can assume that A ~ 1
and the effective parameters for the TE mode are

k2 R? k.R, Jo(k,R,
b DR, + JokaRa) &5 2la)
&, (a)) 2 2 Jl(kaRa) &aq
TE 1 Ji(k,R,) g
Ha (@) _ 1WaRo) ha (21b)
b kaRa J] (kaRa) Mb
For the TM mode,
k2 R? k.R, Jo(k,R,
Mo _ KRy 4, 4 KaRa JoKaRa) iy (224)
M};M(w) 2 2 ]l (ka Ra) Ha
™ 1 Ji(k,R,) &,
sMw) ((kaRy) & 020

Ep B kaRa J{(kaRa)g.

These expressions show that even when the cylinders are non-magnetic (1, = U, = o),
we can have a magnetic response within a given frequency range. This is a well-known
phenomenon called mesomagnetism [42—44].
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Figure 6. Effective constitutive parameters of a square lattice of dielectric
cylinders with radius R, = 0.4a and ¢, = 11¢,. The resonances of the effective
permeability and permittivity for the TM case are so sharp that they do not allow
the system to present negative refraction for that polarization. However, the TE
polarization is allowed within a wide range of frequencies.

Also these equations show that, as a function of frequency, the same cylinders have
different responses for the TE and the TM modes, exhibiting different constitutive parameters
that are equal only when w — 0, i.e.

lim e P (w) = eM(w) = &4, (23)
lim p1g"(@) = i, (@) = - (24)

The effective medium made of a cluster of these scatterers will present different constitutive
parameters for each of the polarizations, so that, applying the results of section 3, we obtain

e w) = (1= fep+ fe,", (25a)

e ):MZE(w)(1+f)+Mb(l—f)M
W (@)1= f)+pp(1+ )7

™) = (1= fHus+ fu™, (25¢)

Mgy e @)1+ ) +ep(1= f)
T ey (1= f)+e,(1+ 1)

(25b)

n

(25d)

&

Figure 6 depicts the effective constitutive parameters for a square lattice of dielectric
cylinders with ¢, = 11¢, and R, = 0.4a. Note that although w©, = u, = o there is a strong
magnetic resonance for both polarizations. However, we note that the resonance of ¢™, at
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Figure 7. Effective speed of light normalized to that of the background for both
the TE and TM modes. As we can see, there is no negative refraction for the TM
mode (see text). The regions where there is no solution correspond to those where
¢ and p have different signs, so that the speed of sound is purely imaginary.

A < 2.6a, is beyond the homogenization condition (A > 4a) [36]. Probably this resonance could
not be observed.

Figure 7 shows the effective speed of light (relative to that of the background) for this
system. Note that only the TE polarization presents negative speed of light (or negative
refraction index). This phenomenon is due to the fact that the resonance of €™ is too far and
too sharp to overlap with that of ™. If we would like to have negative refraction in both
polarizations, we should employ anisotropic cylinders, as we did for the acoustic case.

If the cylinder’s permittivity is given by a tensor of the form

éa = (gara €a0, Saz)v (26)

the expressions for the frequency-dependent constitutive parameters are now

K2R2 KTER, Jo(kTER,
e _KiRay g oy Ko Radotki Ro) & (27a)
8;£E(a)) 2 2 Jl (k;{ERa) Eaz
TE (@ 1 Ji(K'ER,) w,
b ka Ra Jl (ka Ra) b
k2 R2 K™MR. Jo(k™R,
Fo 5%y, R 4 2a ok, " Ra) o (27¢)
uM(w) 2 2 Ji(K™MR,) 1,
™ 1 J,(k™R,)e,
g, () y (kg " Ra) €as 27d)

e kMR, J (KIMR,) ¢,

TE _ ™ _ 2 _
where k,° = w./e.qlha, k" = W /Eaoltq and Y= = €49/,
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Figure 8. Frequency shift to the left of the £€™ resonance due to anisotropy of
the cylinder. As we see, there is a frequency region in which all the constitutive
parameters for the two modes (TE and TM) are negative, so that we have a region
of total negative refraction.

These expressions allow us to shift the resonance of €™ to lower values just by increasing
ea and keeping the rest of the system unaltered, in the same way as we did for the acoustic case.
Note that due to the correspondence p, — e4™ and py — ™, we need to increase the value
of ¢, in the EM case. Thus, as we increase it, the anisotropy factor y goes to zero, and the
resonance moves to the left.

Figure 8 shows the same system as that in figure 6 but with anisotropic cylinders, where
er =200gy and gy = ¢, = 11¢;,. A periodic array of parallel carbon nanotubes embedded in a
background material with isotropic permittivity €, is an example of this type of system [45];
the cylinders are rolled up from an anisotropic dielectric sheet characterized by a tensor that in
dielectric coordinates is represented by a diagonal matrix with elements €, = ¢,, and &, = ¢,,.
Note how all the resonances keep their positions but €™, which now moves to the left reaching
the ™-resonance, leading, therefore, to an effective medium with negative refraction. The
effective speed of light is depicted in figure 9, where it is obvious now that both polarizations
present negative refraction properties within the same frequency range.

5. Summary

In summary, we present multiple scattering formulation of acoustic metamaterials. This
formulation is based on a homogenization theory in the low-frequency limit, in which we allow
the wavenumber in the background to be arbitrarily small while the wavenumber inside the
scatterers remains finite.

In general, it is shown that ordered or disordered arrays of sound scatterers can behave,
in the low-frequency limit, like effective fluid-like materials with either positive or negative
acoustic parameters, where these parameters are the scalar bulk modulus and the tensorial mass
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Figure 9. Effective speed of light for both TE and TM modes for the system of
figure 8. It is clear that there is a region of total negative refraction, thanks to the
frequency shift of the ¢™ resonance caused by anisotropy (see text).

density. The behavior of the effective medium depends, among other factors, on the surface
fields at the scatterer. Therefore, it is possible to improve or manage the frequency response
of the effective medium with complex scatterers, like fluid-like shells or anisotropic fluid-like
materials.

Examples of these scatterers have been analyzed, showing that they present negative
effective parameters whenever the theory predicts them, verifying therefore the formulation
presented. Also, it has been shown how these complex scatterers can be used to tune the effective
parameters of the medium.

The homogenization theory developed for acoustic waves has been extended to EM waves
in 2D. It was shown that an equivalent type of scatterers can also be used in dielectric materials
to tailor the effective medium response.

In conclusion, the theory presented not only explains the metamaterial behavior found so
far in the literature, but also gives the basis for improving this behavior with more complex
scatterers.
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Appendix A. Scatterers with local negative parameters

This appendix presents the application of formulae developed in section 2.1 to three different
types of scatterers whose metamaterial behavior has been reported so far. The first one
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corresponds to a homogeneous fluid cylinder such that ¢, < ¢;, the condition that grants
k, < k,. The second is also a homogeneous fluid cylinder but with cylindrical anisotropy. These
types of cylinders have already been studied for cloaking devices, radial wave crystals [46],
hyperlenses [16] and low-frequency resonators [47]. They are employed here as examples to see
how they can be used to tune the resonance of the dynamical mass density of a metamaterial.
Finally, the third example shows that fluid-like shells can work as Helmholtz resonators,
obtaining from them negative bulk modulus, but also they can work as metamaterials with
negative mass density.

In order to improve the metamaterial frequency response, complex scatterers should be
employed but a full analysis of this type is beyond the scope of the present work.

A.1. Homogeneous and isotropic scatterers

For a homogeneous scatterer with parameters p, and B, the field inside the scatterer is given
in terms of the Bessel functions. Therefore, after some algebra, the frequency-dependent
parameters are

k2 R? k,R, Jo(k,R,) B,
oRa o,k + KeBa JoKaRo) B
2 Jl(kaRa) Bb
1 Jl(kaRa) La
kaRa Jl/(kaRa) Pb’

(A.la)

Pa(w)/ pp = (A.1b)

where k, = w+/p./B,. Note that for k, — 0 we recover the static cylinder’s parameters.

Metamaterial behavior appears when k, R, < 1, while k, R, is not necessarily small. This
condition occurs when ¢, < ¢, i.e. when the wavelength in the background is several times
larger than that inside the scatterer.

Figure A.1 plots the frequency-dependent parameters described by equations (A.la)
and (A.1b) for a soft scatterer with B, = 0.005B,, and p, = 0.5p,. These values give ¢, = 0.1c¢,
for the speed of sound of the scatterer. This relation locates the resonances in the low-frequency
limit, as can be seen in the figure.

From (A.1b) we obtain that the region of negativity for p,(w) is determined by the first
zeros of J, (k,R,) and J{(k,R,), which are « = 3.8317 and o’ = 1.8412, respectively [40]. Then,
this region is

1.8412c¢, - 3.831700’ Aoy s 2ca. (A2)
R, R, R,
Therefore, if we want to locate the frequency region in the low-frequency limit, we have to
decrease ¢, (for fixed R,). But, as a consequence, the bandwidth will decrease because the
resonance becomes sharper.

These types of scatterers are possible only in an acoustically more dense background, like
water, where we can get such a low bulk modulus and density. If we need to get metamaterials
in an air or gas background another approach should be used instead.

A.2. Homogeneous and anisotropic scatterers

Sometimes it is not possible to obtain materials with sound speed smaller than a certain value.
If we want to decrease the frequency at which the mass density becomes negative, fluid-like
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Figure A.1. Frequency-dependent parameters of a homogeneous and isotropic
fluid-like cylinder with B, =0.005B, and p, =0.50,. A low-frequency
resonance is observed for both parameters, leading to negative refractive index
behavior.

cylinders with circular anisotropy can be used in order to shift the resonance to lower
frequencies [48].

Anisotropic cylinders are characterized by a scalar bulk modulus B, and a tensorial mass
density whose components are constant when referred to a cylindrical coordinate system,
Pa = (p,, po). In these cylinders the pressure field is described in terms of the Bessel functions
of real order y g,

Yy (r, w) = Jp g (kar), (A.3)

where y = \/p,/py 1s the anisotropy factor.
Since this type of anisotropy does not break azimuthal symmetry, the method developed

here remains valid. Thus, when g = O the field distribution is the same as that of an isotropic
cylinder (because J,,, for ¢ =0 is Jy), the frequency-dependent bulk modulus is also given by
equation (A.la). However, (A.1b) now becomes

1 Jy(kaRy) pa
kaRa J;(kaRa) Pb

Pa(@)/pp = (A4)

and, as we let the anisotropy factor y be smaller than one, the dipolar resonance g = 1 becomes
closer to the monopolar one,

lin%) Jy, (kar) = Jo(k,r), (A.S)
Y—

and the resonant frequency decreases.
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Figure A.2. Effective dynamical mass density of an anisotropic fluid-like
cylinder for three different anisotropy ratios. The radial component of the sound
speed tensor is ¢, = 0.2¢, in the three examples. Note that the growth of the
anisotropy ratio leads to a lower resonant frequency.
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Figure A.3. Effective bulk modulus of a water shell scatterer embedded in air.
The outer radius of the shell is R, = 0.3a. Effective values are obtained for three
different inner radii R,,.

This effect is clearly observed in figure A.2, where the frequency-dependent mass density
is plotted for three different p, /py ratios. Note how the resonance of the density moves to lower
frequencies as we increase the value of py (so that we decrease the anisotropy factor y).

These types of strongly anisotropic fluid-like cylinders have already been used by Li
et al [16] to build an acoustic hyperlens and have been recently characterized for different
anisotropy ratios in [47], showing also the same frequency shift.
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A.3. Fluid-like shells as Helmholtz resonators

Let us assume now that we have a fluid-like cylinder of radius R, and parameters p, and B,.
If this cylinder is enclosed by another of radius R, > R, and parameters p, and By, we have
a fluid-like shell. Obviously this is an idealization, because such a structure cannot be realized
with common fluids. However, on the one hand, if the shell is an elastic material, this can
sometimes be a good approximation; on the other hand, if the fluids are ‘metafluids’ [49-51],
the structure can be easily fabricated.

These structures behave like Helmholz resonators [24, 26]. Here we give a more rigorous
derivation of the resonance frequency.

After applying the correct boundary conditions, the impedance factor x, of a fluid-like
shell is given by

_ PsCs Jq (kst) + Tanq (kst)

X - ’ (A.6)
T ppey J)(ksRy) + TAY, (ks Ry)
where
2] (k;R,) — J,(ksR,
qa _ Xq q( ) q( ) (A7)
X(?Hq/ (ksRa) - Hq(ksRa)
and
av~a J kaRa
o _ PaCa Jq(kaRq) (A.8)

Yo = e, T ke R

The parameters of the shell are p, and c,, while those of the enclosed cylinder are p, and c,,.
For ¢ =0 and k; — O, the inner 7" matrix 7 is equal to

Rz [1 - ]

Ty ~ , A9
CT 4 & &.9)
where
B, k*R?
&, =1+ ——=InkR,. (A.10)
B, 2
Thus the impedance factor of the shell can be approximated by
2 g 1+ 1= & Ik Ry/s,
Xo ™ — — - : (A.11)
bR By - K- B g,
which can be zero only for B,/ B, > 1 and consequently
k?R? B,
&, ~ —=—1InkR,, (A.12)
B,
which defines a cut-off frequency w,:
a 2 a
wo =2 | Lo (A.13)

Ra Ps ln(Rb/Ra) ‘
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If the shell is soft, i.e. if B;/B, < 1, a negative bulk modulus appears as in the case of
a homogeneous cylinder, and the shell nature of the scatterer is not relevant. In that case, as
R, — R, the impedance factor is reduced to

2 B, 1 2 B,

_kbRbB_bl_ 2_2 [1 _ %] " kR, By
b a

Xo & (A.14)

and the bulk modulus cannot be negative. However, we will see now that in that case the density
can be negative.
When g = 1 the inner T matrix 7" is approximated by

7 R*k? p, — p;
7o~ Tl Pa P (A.15)
4 patps
The density becomes negative once the denominator of y; vanishes, i.e. when
JkR) + TV G Ry ~ L [1 KR _Rip=pn] (A.16)
IRUREAY) 11sb’\’2 4 Rl%pa_i_ps—. .
This expression gives the cut-off frequency for the negative density
4c? R? p, — py
Wl = ;[1——;p p‘], (A17)
R R}, pa+ ps

where we now need p; < p,.

Appendix B. Multiple scattering and the A factor

This subsection briefly explains how the multiple scattering contribution appears in the effective
parameters by means of the so-called A factor. First, we describe the multiple scattering
formulation of the band structure calculation for a 2D lattice of identical cylinders. Afterwards,
we analyze the low-frequency limit of the band structure in order to obtain the effective speed
of sound of the homogenized medium. Finally, we derive the effective mass density from the
effective speed of sound obtained previously.

Given a cluster of N cylinders located at arbitrary positions in 2D, multiple scattering
theory assumes that the total scattered field is a superposition of the scattered fields by all the
cylinders in the cluster

N
P*=Y%"Pr. (B.1)
a=1

The scattered field P;° is the response of the cylinder « to a given incident field, which in this
case is the field scattered by the rest of the cylinders—no external field is considered here since
we are looking for the eigenmodes of the system. The response of one cylinder to the incident
field is defined, as explained in the text, by the 7" matrix. Thus, we have

Py =T,P)=Ty Y GuPy, (B.2)
BFa

where T, = [T,], is the T matrix of the « cylinder (assumed here to be a diagonal matrix)
and G.p = [G4lap are the coefficients that translate the scattered wave functions from the g
reference frame to the « one. If all the cylinders are identical and arranged in a regular lattice,
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such that R, = aja, + v,a,, with oy, @, being integers, and we let the number of cylinders N
be infinite, Bloch’s theorem relates the field scattered by a cylinder « to the scattered field by
another cylinder 8 by means of the Bloch wave vector K:

Py = e'K Rop psc, (B.3)
Thus, equation (B.2) now becomes
PY =T, Y Gupe* Py, (B.4)
B

which is equivalent to
- TaSoz)P;C =0, (B5)

where S, (0w, K) =) pta Gy e'® R The above system of equations has nontrivial solutions as
long as

I —TS| =18, —T,S,| =0, (B.6)

whose solutions define the band structure of the periodic arrangement, K = K (w). As can be
seen, this band structure or dispersion relation depends on the structure of the lattice through
the lattice sums S, and on the nature of the cylinders through the 7" matrix. It is well known
that in the low-frequency limit this dispersion relation becomes linear, defining the slope of this
line the effective speed of sound c* as

. K . K
lim —— = lim —, (B.7)

where k, = w/c; is the background’s wavenumber and u is a unit vector in the direction of the
wavevector K. The effective speed of sound ¢*(u) depends on the direction of propagation and,
therefore, the effective medium is anisotropic.

A semi-analytical expression for the effective speed of sound c¢* can be found by analyzing
the low-frequency limit of equation (B.6),

lim [ — TS| =18, — 1,8, =0, (B.8)
where neither f’q nor S’qs, given by
7 = lim — B.9
e Yy (8.9)
Sys = lim S, k! (B.10)
kp—0

is a function of w, as we have taken the long-wavelength limit (w — 0) and only those terms
different from zero are kept. The expressions for these asymptotic forms can be found in [38].
The secular equation (B.8) is, in principle, of infinite order since the multipolar terms ¢, s
run from —oo to co. Even truncating these indices to &= .« the determinant is too complex to
be solved analytically. However, as shown in [38], only the terms in S‘qs such that ¢, s =0, =1
contain information on the effective speed of sound c*, which is the only unknown in that
equation; thus, the matrix M,, = §,, — YA“q S'qs can be factorized into four blocks such that

A3z Bsyo
M = , B.11
(CQx3 Do @11
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where the subindex of each matrix indicates its dimensions and only matrix A contains the
variable c¢*. It can be seen that the condition det M = 0 is equivalent to

|JA—BD'C|=0, (B.12)

which is the determinant of a 3 x 3 matrix. If we take into account only the ¢ = 0, £1 multipolar
terms, the above equation reduces to det A =0, and we obtain the well-known low filling
fraction approximation. The A factor comes from the consideration of the contribution of the
terms BD~'C, being defined as

A=1-BD'C|,. (B.13)

Note that all the block matrices B, C and D are of the form ﬁ, S‘qs for |g|, |s| > 1, which means
that they contain information on the lattice structure, filling fraction and physical properties of
the cylinders, but not on the effective speed of sound. By assuming an isotropic lattice (i.e.
hexagonal or square) we obtain the following expression for the effective speed of sound

1 1-— (A A—
L ( f+i),0( + f) + ps( f)pb~ (B.14)
c* B,  Bi) pa(A—f)+pp(A+f)
From which we obtain the effective mass density as
o _ Pa(A+ )+ pp(A—f) (B.15)

pu(h = N+ pr(b+ )

Obviously this expression does not depends on frequency since it is obtained in the limit w — 0.

In general the low-frequency limit is equivalent to the long-wavelength limit (A — 00) and,

thus, if k;, and k, are the background and scatterer wavenumbers, respectively, w — 0 implies

k, — 0 and k, — 0. We assume here that k, — 0, while k, remains finite. As the scatterer’s wave

number k, appears in the secular equation only through the 7" matrix, the secular equation for a
frequency-dependent theory can be easily obtained as

lim [1 = TS| = |8, — T, (ka)S,s) =0, (B.16)
bh—>
where the limit in

F (k) = lim 2 B.17

q ”)_khllnww (B.17)

b
is taken only for the variable k; but not for k,, which allows us to define a frequency dependent
factor A = A(k,) through the variable k, = w/c,. The above limit, from the general definition

given in (6) after using the asymptotic expressions for the Bessel and Hankel functions, yields
A T, i R% kyR, —
T k) = lim 4 = — TRy, Xl B R =y (B.18)
k=0 9 gl (g —1)!12%0 k=0 g x4/ kpRa + po

which is the frequency dependent multipolar contribution to the A factor.
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