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Abstract

Signaling pathways are interconnected to regulatory circuits for sensing the environment and expressing the appropriate
genetic profile. In particular, gradients of diffusing molecules (morphogens) determine cell fate at a given position, dictating
development and spatial organization. The feedforward loop (FFL) circuit is among the simplest genetic architectures able
to generate one-stripe patterns by operating as an amplitude detection device, where high output levels are achieved at
intermediate input ones. Here, using a heuristic optimization-based approach, we dissected the design space containing all
possible topologies and parameter values of the FFL circuits. We explored the ability of being sensitive or adaptive to
variations in the critical morphogen level where cell fate is switched. We found four different solutions for precision,
corresponding to the four incoherent architectures, but remarkably only one mode for adaptiveness, the incoherent type 4
(I4-FFL). We further carried out a theoretical study to unveil the design principle for such structural discrimination, finding
that the synergistic action and cooperative binding on the downstream promoter are instrumental to achieve absolute
adaptive responses. Subsequently, we analyzed the robustness of these optimal circuits against perturbations in the kinetic
parameters and molecular noise, which has allowed us to depict a scenario where adaptiveness, parameter sensitivity and
noise tolerance are different, correlated facets of the robustness of the I4-FFL circuit. Strikingly, we showed a strong
correlation between the input (environment-related) and the intrinsic (mutation-related) susceptibilities. Finally, we
discussed the evolution of incoherent regulations in terms of multifunctionality and robustness.
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Introduction

Complex organisms have evolved precise spatiotemporal

control programs, by transducing the presence of signaling

molecules to transcription factors, which lead to development

and differentiation [1–3]. Within this framework, it is important to

address the mechanisms by which cells are able to read a gradient

of diffusing molecules (morphogens) to trigger the expression of

genes that orchestrate spatial organization. The dissection of the

minimal genetic architectures that control cell fate [4] will help to

understand how a graded signal is transformed into a discrete

sequence of states and how fluctuations are counteracted for a

robust and precise development. In that way, the natural

occurrence in Drosophila melanogaster embryos of different networks

based on the feedforward loop (FFL) motif for reading morphogen

gradients [2], together with the engineering in Escherichia coli of

synthetic FFL circuits responding in a non-monotonic manner to a

graded signal [5–7], suggests that this architecture is particularly

suitable for pattern formation.

The FFL motif consists in a three-node network where the input

regulates the output and a third element, which also regulates the

output. FFLs are broadly found both in prokaryotes and

eukaryotes and can be seen into eight different architectures

depending on the sign of its regulations [8]. Notably, this

particular structure has certain functionalities per se. Theoretical

and experimental work on the incoherent FFL (I-FFL), mostly

based on transcriptional regulations but also enzymatic reactions,

has revealed its ability to work as an amplitude (concentration)

filter [5–7,9–11], to accelerate the output response [8,12], for

signal amplification and fold-change detection [13,14], and to

generate temporal pulses in response to a constant stimulus [8–

10,15,16]. Interestingly, this last attribute can be interpreted in

terms of adaptiveness, where after a transient behavior the system

returns to the previous state, being the output steady state level

independent of the input level [17–22].

In the present work, we investigate, by dissecting the design space

that contains all possible topological configurations (wiring) and

kinetic parameter values, whether a single FFL circuit (a topology

with certain parameterization) can accommodate both (i) the ability

to read a gradient by means of an amplitude detection mechanism

and (ii) the ability to achieve optimal adaptive response at high

output levels. Certainly, the capacity for adaptive responses of living

organisms (partial or absolute) is an intriguing question in biology,

and previous work, mostly based on metabolic systems (bacterial
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chemotaxis), has pointed out that optimal adaptiveness is more a

consequence of circuit topology than of the fine tuning of kinetic

parameters [19–22]. Thus, although the different I-FFL configura-

tions can yield a priori a palette of functionally analogous devices,

they may display different robustness profiles against external

perturbations (i.e., structural discrimination of robustness).

Results

Optimal FFL circuits for pattern formation
We aimed at designing FFL circuits able of generating one-

stripe patterns. For that, we computationally explored the whole

designing space (FFL architectures and kinetic parameters). Our

mathematical model, simultaneously accounting for transcription

and translation processes, contains ten parameters (b0, b1, c0, c1,

c2, c3, h0, h1, h2, and v) that define the design space (see Materials

and Methods). For an efficient exploration, and given that

designing space is vast for an exhaustive computation, we adopted

a heuristic optimization-based approach. We simplified the spatial

diffusion and focused our study on amplitude filtering systems

where the output reaches a maximum at intermediate input levels.

Analogous results could be obtained for inverse amplitude filters

(existence of a minimum). The transfer function is in brief

characterized by the input detection amplitude (or bandwidth) and

by the output amplitude (ratio between the maximal and basal

output concentrations). The shape of this function serves to classify

the amplitude filters into those exhibiting precision, i.e., the

detection is accomplished at a very accurate position, and those

being adaptive, i.e., a wide detection range exists so the stationary

output level is insensitive to variations in the input. Certainly, a

reliable pattern requires perceptible output amplitude, at least one

order of magnitude, to differentiate the two cell fates (ON/OFF).

Here, we imposed the condition that the output amplitude must be

100-fold. Nevertheless, there is a clear tradeoff between the

bandwidth and the output amplitude, in the sense that a given

output amplitude constrains both the maximal and minimal

bandwidths that the system can attain. Herein, we considered that

the morphogen (the input) interacts at the genetic level by

inhibiting post-translationally the regulatory ability of a sensory

transcription factor [2]. Similar results can be obtained if the

morphogen induces the degradation of that regulator (e.g.,

proteasome-mediation) or activates it (e.g., phosphorylation). In

fact, such a regulatory mode is not very relevant because of the

symmetry of the transfer function.

First, we sought for patterns with maximal precision (Fig. 1a).

This entails a transfer function with a narrow bandwidth. In

Fig. 1b, we show the histograms for the kinetic parameters that

characterize all optimal solutions. Remarkably, these histograms

are not dense, indicating that there are few optimal points. In fact,

these histograms correspond to four solution modes, which are the

Figure 1. Landscape of FFLs for pattern formation. (a, e) A spatial gradient of an external molecule (morphogen) induces a particular cell fate
depending on the position. The simplest pattern consists in a one-stripe composition with two cell fates, triggered by the expression level of one
gene. The spatial information can be reduced to construct the transfer function of the system (relation output/input in steady state). (b, f) Histograms
for the kinetic parameter values of the model resulting from multiple optimization runs with different initial guesses that explored the design space
(see Dataset S1). The ordinates represents the value in logarithmic scale, while the abscises the frequency of each one produced by the heuristic
procedure. (c, g) Incoherent FFL architectures together with the average value of the relevant kinetic parameters emerged from the landscape
exploration. (d, h) Transfer (left) and sensitivity (right) functions characterizing each circuit (see Materials and Methods). The sensitivity function is
calculated at maximal output level.
doi:10.1371/journal.pone.0016904.g001
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four I-FFL architectures with a specific parameterization (Fig. 1c).

We denote I1-FFL-P, I2-FFL-P, I3-FFL-P, and I4-FFL-P these

four circuits (the P stands for optimized for precision). In Fig. 1d,

we plot the transfer, z(u), and sensitivity, Fz(hk), functions that

characterize the behavior of each circuit (see Materials and

Methods). These circuits show no qualitative differences in the two

functions, suggesting that the four architectures are equally good at

precision. Indeed, these circuits rely on a mechanism based on a

tradeoff between the two regulatory branches, which have

opposite sign. At high input levels, both activation and repression

branches are inactive (state OFF), and at low ones both branches

are active, accomplishing the state OFF because repression is

dominant. While, at intermediate input levels, the activation

branch is active and the repression inactive (state ON). For circuits

I1-FFL-P and I3-FFL-P, rAND means that the output gene is

expressed in presence of the activator and absence of the repressor.

Interestingly, we found that the C1-FFL architecture with a

combinatorial logic type XOR (i.e., the activators inhibit each

other) and a weak activation from the intermediary gene to the

output is also a solution. With the exclusive logic, this is in fact an

I1-FFL variant. In addition, circuit I2-FFL-P emerged with either

a combinatorial logic type NOR (i.e., the repressors act

independently each other) or XNOR (i.e., the repressors inhibit

each other) and competitive binding. Moreover, circuit I4-FFL-P

emerged with a combinatorial logic type AND (i.e., both activators

act synergistically) and independent binding. We did not obtained

from the landscape exploration further combinatorial logics for

circuits I2-FFL-P and I4-FFL-P, which suggests that such

configurations would not be plausible because they would not

introduce the required tradeoff between the opposite regulatory

branches (this can be shown mathematically).

Second, we sought for patterns with optimal adaptive response

in the state ON (Fig. 1e). This entails a transfer function with a

plateau, which gives definitively a wide bandwidth. In Fig. 1f, we

show the histograms for the kinetic parameters that characterize

all optimal solutions. Surprisingly, all kinetic parameters are highly

constrained by the design specifications, which corresponds to just

one solution mode, the I4-FFL architecture with a specific

parameterization (Fig. 1g). We denote I4-FFL-A this circuit (here

A stands for optimized for adaptation). In Fig. 1h, we plot its

transfer and sensitivity functions. As it can be observed, this circuit

has a wider bandwidth and presents a lower sensitivity to

perturbations in the kinetic parameters at the state ON. The

circuit emerged with a combinatorial logic type AND and

cooperative binding, whose working principle also relies on the

tradeoff between the two regulatory branches. On the light of

these numerical results, it could be concluded that the optimal

adaptive response (existence of a plateau) was structurally encoded

by the I4-FFL topology and, in contrast to circuit I4-FFL-P,

modulated by a strong binding cooperation (v&1) between the

two activators.

Theoretical analysis for patterning and adaptation
Motivated by the numerical results from the heuristic landscape

exploration, we performed a theoretical analysis to elucidate the

attribute that discriminates the I4-FFL as the central topology with

adaptive performance in the state ON. On the one hand,

mathematically, the one-stripe pattern condition implies that the

output concentration reaches an optimum, which gives the

equation Luf (u0,y0)zLyf (u0,y0)Lug(u0)~0 where f (u0,y0) is the

production term of z and g(u0) of y in the steady state (see

Materials and Methods). Certainly, this can be satisfied in case of

I-FFL circuits, where the sign of the direct regulatory branch (x to

z) is opposite to that of the indirect branch (x to y to z). This

condition only guarantees the presence of an optimum and not a

reliable amplitude level. Together, the specification of a desired

amplitude level (e.g., 100-fold with respect to the basal state)

entails a precise parameterization.

On the other hand, to achieve an absolute adaptive response the

output concentration in steady state has to be input-independent

regardless the values taken by the kinetic parameters. Only the

transient behavior will be affected by such numerical values. For

each topology three possibilities exist although for illustrative

purposes we will focus on the I1-FFL topology. First, the system

will show adaptiveness when (x�=h1)n is the dominant term in the

denominator of f (u,y), being hi a parameter for binding affinity.

In this case, there is a strong activation of x* that saturates the

production of z, whereas the repression by y becomes negligible.

Second, when the production of y is linear with x* (i.e., x�%h0 and

m~1) and (y=h2)m is the dominant term in the denominator of

f (u,y). Now, since y is proportional to x*, the activation of x* on z

is counteracted by the strong repression of y. Third, when the

production of y saturates (i.e., x�&h0) and the cooperative term

v(x�=h1)n(y=h2)m dominates the denominator of f (u,y). Analo-

gous derivations can be done for the other I-FFL architectures.

Fig. 2 summarizes all pattern and adaptation conditions for the

four I-FFL topologies. The optimality condition, together with a

specific amplitude level, imposes a strict relation between some

kinetic parameters of the model (mostly those binding-related) and

the concentration values of the species. Nevertheless, only for the

I4-FFL with a combinatorial logic type AND, that condition is

independent of v, which is free to adopt a given value. This fact is

a direct consequence of the circuit topology and is instrumental to

achieve adaptation at high output levels. By setting a high value of

v we can ensure the first adaptive condition for the I4-FFL circuit.

In this case, the cooperative term v(x�=h1)n(y=h2)m dominates the

denominator of f (u,y), yielding a constant function, and

hence the pattern condition is satisfied because Luf (u0,y0)~
Lyf (u0,y0)~0.

Adaptiveness correlates to genetic robustness
We next explored the consequences of adaptiveness in the sense

of congruent evolution to genetic robustness [23,24]. For that, we

calculated the susceptibility of the circuit under perturbations in

the input level (Hu) and in the kinetic parameters of the model (Hk).

We focused our study on circuits operating at the state ON. Here,

to calculate the intrinsic susceptibility we just considered variations

in the most important parameters, those related to the binding

affinities between transcription factors and DNA [2]. Indeed, the

amplitude detection mechanism exploits the differences in those

binding affinities, and computational studies on the dorso-ventral

gradient in D. melanogaster embryos have confirmed that these

parameters mediate the major control on the expression of target

genes [25]. Fig. 3 represents the four circuits optimized for

precision (I1-FFL-P, I2-FFL-P, I3-FFL-P, and I4-FFL-P), the one

optimized for adaptive response (I4-FFL-A), and four more

suboptimal circuits (I1-FFL-S, C1-FFL-S, I2-FFL-S, and I3-FFL-

S). Whereas I4-FFL-A achieves optimal adaptive response, it could

be argued that the suboptimal circuits exhibit partial adaptation.

In logarithmic scale, we show a strong correlation between the

input and intrinsic susceptibilities. This fact suggests that the

acquired ability of certain biological systems to be robust against

mutations that change their kinetic properties is a direct

consequence of their ability to respond to environmental

perturbations (i.e., environmental robustness). The I-FFL circuit

by means of a tuned balance between the two regulatory branches

allows counteracting by anticipation any perturbation in the input

or in any element upstream the output. However, such a circuit

Robustness of Feedforward Loops
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cannot neutralize perturbations in the synthesis rate of the output

gene. To do so, the circuit would need to introduce a negative

feedback loop (N-FBL) implementing an integral control [18]. In

fact, N-FBLs have been shown to provide robustness in

transcription [26] and metabolic [22,27] networks, and its

combination with I-FFLs can enhance the robustness performance

[22].

Robustness to noise
In addition to the susceptibility calculations, we carried out a

stochastic analysis to study the robustness of the circuits against

molecular noise [28–31]. We considered an intrinsic source of

noise due to the low number of molecules together with a noisy

input signal (see Materials and Methods). We performed

numerical simulations to calculate the noise level in the output

gene at the state ON (Fig. 4) for different noise amplitudes in the

input for the optimal circuits (I1-FFL-P, I2-FFL-P, I3-FFL-P, I4-

FFL-P, and I4-FFL-A). Essentially, noise in gene expression can be

decomposed into three terms, one intrinsic that is Poissonian for

genes without self-regulation, another due to propagation effects,

and a third extrinsic one accounting for sources common to all

species [30]. In our case, we did not consider extrinsic noise, and

the propagation term accounts for noise directly resulting from the

input (Nu) and noise coming indirectly via the intermediary

element (Ny). These terms are proportional to their susceptibilities

(Nu!Hu
2, Ny!Hy

2). Then we can write the expression

g2
z~1=z0zNuzNy for noise in the output. Circuits with similar

transfer functions have similar susceptibilities, however noise

tolerance is structure-dependent. Indeed, at the state ON, the

concentration of the intermediary element is low for circuits I1-

FFL-P and I2-FFL-P because this gene represses the output,

whereas it is high for circuits I3-FFL-P and I4-FFL-P as in these

Figure 2. Theoretical analysis of the four I-FFL topologies. The I2-FFL is assumed to have a combinatorial logic type NOR, and the I4-FFL a
type AND. We considered a dimensionless model in steady state, where j~(x�=h1)n and g~(y=h2)m, and simplified it to only account for the higher
synthesis rate (see Materials and Methods). Moreover, h, b and c are dimensionless parameters. For each FFL topology, we mathematically derived the
condition to achieve pattern formation (i.e., z must reach a maximum at intermediate levels of x*) and adaptiveness (i.e., z in steady state must be
independent of x*). For optimal adaptive response, there are three possible strategies that can be implemented with particular choices of kinetic
parameters.
doi:10.1371/journal.pone.0016904.g002

Figure 3. Adaptiveness versus parameter sensitivity. Correlation
between the input and intrinsic susceptibilities (Hu and Hk respectively)
in natural logarithmic scale (see Materials and Methods), where each
circle corresponds to one circuit. For this plot, to calculate Hk we
considered the parameters h0, h1 , h2 , and v. We represent the four
circuits optimized for precision (I1-FFL-P, I2-FFL-P, I3-FFL-P and I4-FFL-
P), the one optimized for adaptiveness (I4-FFL-A), and four more
suboptimal circuits (I1-FFL-S, C1-FFL-S, I2-FFL-S and I3-FFL-S). The
corresponding parameter values of all these circuits are provided in
Dataset S1. The value of r corresponds to the linear correlation
coefficient (solid line obtained by linear fit).
doi:10.1371/journal.pone.0016904.g003

Robustness of Feedforward Loops
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cases it activates the output. This fact entails that the term Ny is

higher for circuits I1-FFL-P and I2-FFL-P than for circuits I3-

FFL-P and I4-FFL-P, since noise is inversely proportional to

concentration. As we can observe, noise increases in circuits

optimized for precision with randomly fluctuating input signals,

whereas circuit I4-FFL-A is highly insensitive to such stochastic

events, maintaining a constant Poissonian noise level (g2
z~1=z0).

This can be rationalized knowing that Hu&Hy&0 for this circuit.

For high input fluctuations (n~4), we have Nu&Ny thereby

precise circuits show similar noise levels.

Discussion

The knowledge of the dynamical properties of different

fundamental regulatory circuits is crucial to infer the selective

pressures that the cell has suffered during its evolution. In fact,

although the kinetic parameters are important to determine the

dynamical behavior, a circuit topology by itself can determine or

constrain the dynamics and provide structural sources of robustness

[19–21] or noise tolerance [32]. Why a precise regulatory motif is

prominent in Nature, whereas a functionally analogous circuit

(same behavior but different topology) is less abundant or even not

found, remains an intriguing question. Certainly, depending on the

biological demands, a particular circuit will be more favorable for

the cell. Regulatory circuits based on I-FFLs can operate in a

dosage-response manner to generate one-stripe spatial patterns.

More complex (multiple-stripe) patterns can be obtained by

interplaying several I-FFLs [9]. In fact, the segmentation network

of D. melanogaster involves several cascades of genes that allow

obtaining these banding patterns. For instance, while the gap genes

form a one-stripe pattern, the downstream elements, such as the

pair-rule or segmentation genes, give multiple-stripe patterns

[33,34]. Importantly, this supports the modular organization of

the regulatory networks by which complex functions are reached by

interconnecting small units. The four I-FFL architectures, with a

proper parameterization, can operate with maximal precision

having similar input and intrinsic susceptibilities. However, noise at

the state ON is eventually higher for circuits I1-FFL-P and I2-FFL-P

due to the monochromatic regulatory mode of the sensor, which

leads to a repression exerted by the intermediary element.

Remarkably, only the I4-FFL topology is able to provide

adaptiveness at the state ON (while the four architectures can give

an adaptive response at the state OFF).

In a recent work, Cotterell and Sharpe proposed different three-

gene topologies, not necessarily FFLs, to produce one-stripe patterns

[35]. Using a systematic design procedure, these authors found new

structural elements for reading morphogen gradients and control-

ling developmental genetic units, some of which should still be

discovered in vivo. Furthermore, the combination of these elements

can enlarge the repertoire of circuit topologies and increase the level

of robustness. However, unless bistable-like circuits, these topologies

were essentially based on I-FFLs. Furthermore, some canonical

functional topologies were mislaid, such as the I4-FFL, indeed

because the search algorithm used by Cotterell and Sharpe did not

account for synergistic actions (e.g., promoters type AND). Herein,

our design procedure has resulted more sensitive to study the

transcriptional FFLs and has allowed us to refine such general

approaches for a comprehensive study. Our model accounts for the

intracellular circuit dynamics under certain level of an external

signal and without tolerating the diffusion of proteins. In this sense,

Cotterell and Sharpe illustrated that protein diffusion resulting in a

cell-to-cell communication weakly affects noise tolerance but results

into a mechanism that allows tuning the position and bandwidth of

the stripe. Interestingly, diffusion affects the bandwidth differently

depending on the circuit structure. Therefore, a logical further step

concerning adaptiveness would be to study the addition of more

regulations over single FFLs, the effect of diffusion and the signaling

at the intermediary gene level to obtain a widespread analysis of the

different genetic architectures that allow reading gradients and

generate one-stripe patterns.

In addition, the I-FFL motif is also found in simple organisms

that do not require the formation of spatial patterns (e.g., bacteria

or yeast). In this case, the filtering device normally operates at one

state, and switch to the other state after environmental changes.

According to the Savageau’s demand principle [36], the mode of

gene regulation should entail a maximization of the usage (binding

to DNA) of the transcription factors; otherwise, the regulators are

lost during evolution. On the one hand, in circuits based on I1-

FFL and I2-FFL topologies operating at the state ON only one

regulator is functional, whereas in case of I3-FFL and I4-FFL

topologies the state ON requires the function of the two regulators.

This relates to the fact that in the I1-FFL and I2-FFL the sensor

has a monochromatic regulatory mode, whereas for the I3-FFL

and I4-FFL it acts as activator and repressor simultaneously.

Hence, it would be expected that circuits operating at the state ON

were preferentially based on I3-FFL and I4-FFL and were present

within the regulatory map of highly demanded biological

functions, such as central metabolism or transcription-translation

machinery. On the other hand, only the I1-FFL entails the

functionality of the two regulators at the state OFF but for low

input levels, since we are considering that the input post-

translationally inhibits the sensor. Then, circuits operating at the

state OFF would be mostly based on the I1-FFL and would control

genes of low demand (e.g., secondary metabolism) or genes that

need to be activated in specific situations such as stress responses

or during development. Interestingly, I1-FFL architectures are the

most abundant ones in bacteria and yeast [8], being reasonable

that this abundance is a consequence of the specialization of the I-

FFL to operate as time pulse generator and keep the expression of

its target genes tightly suppressed in absence of external stimuli.

One open question that arises from our results is if given the

properties of robustness associated to I4-FFLs, their abundance as

regulatory module could be considered as an exaptation (an

spandrel in S. J. Gould usage) that results from selection of larger

and more complex network structures or, perhaps, as a direct

consequence of selection for increased robustness [37]. In this

second case, the consequent relevant question is how robustness

mechanisms were selected for. If buffering mechanisms minimize

the effect of every possible mutation, they will operate on the

Figure 4. Noise tolerance for optimal designs. Noise in output
expression (g2

z ) for different FFL circuits due to intrinsic effects and
several noise levels at the input; v represents the corresponding Fano
factor (see Materials and Methods).
doi:10.1371/journal.pone.0016904.g004
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mutations created, thus making them invisible to natural selection

and hence preventing their spread in the population. A possible

solution to this paradox is that mutational robustness is a side effect

of selection for mechanisms that buffer environmental perturbations

[23,24]. Our observation that when we imposed selection against

adaptiveness the optimal design I4-FFL-A was also robust against

parameter perturbations (equivalent to mutational effects on

catalytic/binding properties) gives further support to this possibility.

Therefore, the recurrent inference of the design principles that

confer adaptiveness to organisms would clarify our understanding of

the causes of robustness to genetic perturbations and noise.

Materials and Methods

Mathematical model
The FFL motif consists in three genes (x, y and z) and it can

indeed appear as eight different architectures, four coherent and

four incoherent, depending on the nature of the regulations [8]. In

addition, we consider an external molecule (u) that modulates the

active form of x (x*) by post-translational inhibition. Our model

parameterizes all these architectures following a Hill-like function

formalism [38] and reads

dx

dt
~a{x, x�~

x

1zu
,

t
dy

dt
~

b0zb1 x�=h0ð Þn

1z x�=h0ð Þn {y,

dz

dt
~

c0zc1 x�=h1ð Þnzc2 y=h2ð Þmzc3v x�=h1ð Þn y=h2ð Þm

1z x�=h1ð Þnz y=h2ð Þmzv x�=h1ð Þn y=h2ð Þm {z,

ð1Þ

where a is the synthesis rate of x (here a~104), b0 and b1 the

synthesis rates of y from the unregulated and x-regulated promoter

respectively, and c0, c1, c2, and c3 the synthesis rates of z from the

unregulated, x-regulated, y-regulated and x,y-regulated promoter

respectively. The regulatory coefficients (bindings protein-DNA)

are h0, h1, and h2, and n, m are the Hill coefficients. Typically, the

active form of a transcription factor to activate/repress the

promoter consists of a dimmer, thus for simplicity we fix n = m = 2

otherwise specified, although it could be straightforward the

exploration of higher order aggregations. The parameter v
accounts for the potential interaction in the promoter region of x

and y, from competitive (v%1) to cooperative binding (v&1). For

independent binding, v~~11 In addition, t is a dimensionless

parameter that accounts for the relative stability of the

intermediate protein y (here t~10), related to the transient

behavior but not affecting the stationary value. In case of

adaptation, this parameter, which can be viewed as a delay over

the expression of y, controls the amplitude and duration of the

transient response after which the system returns to the original

state [8,13]. This model could be enlarged to account for mRNA

dynamics, although for FFL circuits this would not affect the

steady state of the system, or slightly modified to account for post-

transcriptional regulations, as miRNA-mediated FFLs are recur-

rently found in mammals [39]. For notation purposes, in steady

state we have y~g(u) and z~f (u,y), being x~a; in some cases,

we just write z~f (u).

Landscape exploration
We followed an optimization scheme based on Monte Carlo

Simulated Annealing to efficiently explore the landscape defined

by the general FFL model and a scoring function that measures

the distance between two functions [40,41]. We used an

exponential cooling scheme, from pure random walk at initial

iterations to pure adaptive walk at final ones. Starting from a given

parameter set, the algorithm mutated one parameter value at each

step, computed the transfer function, z~f (u), and selected against

a target function implementing an amplitude filter (w). We targeted

two different functions, with Lorentzian structure, depending on

the bandwidth specification. In case of precision, we targeted

w(u)~
100

1z(log(u){2)10
(narrow bandwidth), whereas in case of

adaptation w(u)~
1

0:01z(log(u){2)2
(wide bandwidth). In both

cases, we imposed a maximal amplitude level of z0 = 100 for

u0 = 100 (in the basal state zƒ1). For each parameter we defined a

variation range in logarithmic scale (in our particular case,

{1ƒlog bið Þƒ3, {1ƒlog cið Þƒ3, 1ƒlog hið Þƒ3, and

{2ƒlog vð Þƒ2). We discretized those ranges into ten values

per order of magnitude, giving a design space size of about 1016.

We run multiple times by starting from different initial conditions

with the aim of ensuring a good exploration of the landscape. This

heuristic approach allowed us to find the optimal combina-

tions of parameter values. Afterwards, for each circuit we

recalculate the particular values of u0 and z0, being u0~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f{

{1(z0=2)fz
{1(z0=2)

q
and z0~f (u0).

Susceptibility and stochasticity
To quantitatively study the robustness of a circuit, we

introduced the concept of susceptibility, that is, a measure that

relates the change in the output (z) from a perturbation in the

system (i.e., a change in one variable of the model). Here, we

considered two measures: the input susceptibility (Hu), which

relates the output level to changes in the input, and the intrinsic

susceptibility (Hk), which relates the output level to changes in the

kinetic parameters of the model. We also introduced the geometric

average output fold-change, Fz~ P
i

zi=z0

� �1=N

for N perturba-

tions. Then, we indentified the input susceptibility according to

Fz~exp(Hu(Fu{1)), where the variable Fu denotes a change in

the input of u~Fuu0 or u~u0=Fu. The fit was done by

considering Fu [ 1,2½ �. This definition of susceptibility turns out

into Hu~
Fz{1

Fu{1
~

L ln(z)

L ln(u)
(the logarithmic gain of the system) for

small input perturbations. For the intrinsic susceptibility, we

assumed that each parameter (k) was a Gaussian distributed

random variable with mean its nominal value (SkT~k0) and

standard deviation a percentage of it (Dk~hkk0). Then, we fit the

intrinsic susceptibility to Fz~exp(Hkhk), with a range of variation

of hk [ 0,1½ �.
The stochastic modeling was performed via Langevin formu-

lation [28–31]. We assumed that noise in x is negligible due to its

high synthesis rate. Therefore, noise in x* comes from noise in the

input (u), whose statistics are Su(t)T~u0 and Su(0)u(t)T~

vu0 exp({ tj j), where n is the Fano factor. We assumed that the

diffusion time is of the order of the half-life of protein x, which is

assumed to be short-lived. For instance, the Bicoid protein diffuses

about 0.3 mm2/s in D. melanogaster embryos of about 100 mm2

giving a diffusion time of about 5–6 min [42]. The stochastic

model reads

t
dy

dt
~g(u){yzjy(

ffiffiffi
t
p

t)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g(u)zy

p
,

dz

dt
~f (u,y){zzjz(t)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f (u,y)zz

p
,

ð2Þ
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where jy and jz are Wiener processes with statistics

Sjx(t)T~Sjy(t)T~0 and Sjx(0)jx(t)T~Sjy(0)jy(t)T~d(t).

Using perturbation theory (the mean field is deterministic and the

perturbation amplitude only depends on the mean field) and Fourier

analysis [28–31], it is straightforward to show that noise in the

output reads g2
z~

1

z0

zc1 Luf (u0,y0)j j2vu0

z0
2
zc2 Lyf (u0,y0)

�� ��2 y0

z0
2
,

where y0 and z0 are the stationary solutions at the state ON, being

c1 and c2 two constants. By using the concept of susceptibility, with

Hu~
L ln(z)

L ln(u)
~

u0

z0

Luf (u0,y0) and Hy~
y0

z0

Lyf (u0,y0), we can write

g2
z~

1

z0
zc1H2

u

v

u0
zc2H2

y

1

y0
.

Supporting Information

Dataset S1 Parameter values of 500 independent opti-
mization runs that achieved convergence corresponding

to the four solutions for precision and the one for
adaptation. It also contains the parameter values for the optimal

circuits I1-FFL-P, I2-FFL-P, I3-FFL-P, I4-FFL-P, and I4-FFL-A.
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16. Macı́a J, Widder S, Solé R (2009) Specialized or flexible feed-forward loop

motifs: a question of topology. BMC Syst Biol 3: 84.
17. Koshland DE, Jr., Goldbeter A, Stock JB (1982) Amplification and adaptation in

regulatory and sensory systems. Science 217: 220–225.
18. Sontag ED (2008) Remarks on feedforward circuits, adaptation, and pulse

memory. IET Syst Biol 4: 39–51.

19. Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature
387: 913–917.

20. Alon U, Surette MG, Barkai N, Leibler S (1999) Robustness in bacterial
chemotaxis. Nature 397: 168–171.

21. Levchenko A, Iglesias PA (2002) Models of eukaryotic gradient sensing:

Application to chemotaxis of amoebae and neutrophils. Biophys J 82: 50–63.

22. Ma W, Trusina A, El-Samad H, Lim WA, Tang C (2009) Defining network
topologies that can achieve biochemical adaptation. Cell 138: 760–773.

23. de Visser JAGM, Hermisson J, Wagner GP, Meyers LA, Bagheri-Chaichian H,

et al. (2003) Evolution and detection of genetic robustness. Evolution 57:
1959–1972.

24. Wagner A (2005) Robustness and Evolvability in Living Systems. New Jersey:
Princeton University Press.

25. Papatsenko D, Levine M (2005) Quantitative analysis of binding motifs

mediating diverse spatial readouts of the Dorsal gradient in the Drosophila

embryo. Proc Natl Acad Sci USA 102: 4966–4971.

26. Becskei A, Serrano L (2000) Engineering stability in gene networks by
autoregulation. Nature 405: 590–593.

27. Yi TM, Huang Y, Simon MI, Doyle J (2000) Robust perfect adaptation in
bacterial chemotaxis through integral feedback control. Proc Natl Acad Sci USA

97: 4649–4653.

28. Thattai M, van Oudenaarden A (2002) Attenuation of noise in ultrasensitive
signaling cascades. Biophys J 82: 2943–2950.

29. Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A (2002)
Regulation of noise in the expression of a single gene. Nat Genet 31: 69–73.

30. Pedraza JM, van Oudenaarden A (2005) Noise propagation in gene networks.

Science 307: 1965–1969.
31. Ghosh B, Karmakar R, Bose I (2005) Noise characteristics of feed forward loops.

Phys Biol 2: 36–45.
32. Cagatay T, Turcotte M, Elowitz MB, Garcia-Ojalvo J, Suel GM (2009)

Architecture-dependent noise discriminates functionally analogous differentia-
tion circuits. Cell 139: 1–11.

33. Carroll SB (1990) Zebra patterns in fly embryos: Activation of stripes or

repression of interstripes? Cell 60: 9–16.
34. Schroeder MD, Pearce M, Fak J, Fan HQ, Unnerstall U, et al. (2004)

Transcriptional control in the segmentation gene network of Drosophila. PLoS
Biol 2: e271.

35. Cotterell J, Sharpe J (2010) An atlas of gene regulatory networks reveals multiple

three-gene mechanisms for interpreting morphogen gradients. Mol Syst Biol 6:
425.

36. Savageau MA (1977) Design of molecular control mechanisms and the demand
for gene expression. Proc Natl Acad Sci USA 74: 5647–5651.

37. von Dassow G, Meir E, Munro EM, Odell GM (2000) The segment polarity
network is a robust developmental module. Nature 406: 188–192.

38. Bintu L, Buchler NE, Garcia H, Gerland U, Hwa T, et al. (2005)

Transcriptional regulation by the numbers: models. Curr Opin Genet Dev 15:
116–124.

39. Tsang J, Zhu J, van Oudenaarden A (2007) MicroRNA-mediated feedback and
feedforward loops are recurrent network motifs in mammals. Mol Cell 26:

753–767.

40. Rodrigo G, Carrera J, Jaramillo A (2007) Genetdes: automatic design of
transcriptional networks. Bioinformatics 23: 1857–1858.

41. Rodrigo G, Carrera J, Elena SF (2010) Network design meets in silico

evolutionary biology. Biochimie 92: 746–752.

42. Gregor T, Wieschaus EF, McGregor AP, Bialek W, Tank DW (2007) Stability

and nuclear dynamics of the bicoid morphogen gradient. Cell 130: 141–152.

Robustness of Feedforward Loops

PLoS ONE | www.plosone.org 7 February 2011 | Volume 6 | Issue 2 | e16904


