TABLA DE CONTENIDO

Pág.

RESÚMENES, ACRÓNIMOS Y NOMENCLATURA

RESUMEN	i
RESUM	ii
SUMMARY	iii
ACRÓNIMOS	iv
NOMENCLATURA, SÍMBOLOS LATINOS	V
NOMENCLATURA, SÍMBOLOS GRIEGOS	vi

CAPÍTULOS

CAPÍTI	ULO 1. INTRODUCCIÓN Y OBJETIVOS	1
1.1.	Objetivo y metodología	2
1.2.	Contenido	4
1.3.	Aportaciones originales	5
CAPÍT	ULO 2. LOS PERFILES TUBULARES RELLENOS DE HORMIGÓN	7
2.1.	Introducción	8
2.2.	Comportamiento compuesto	12
	2.2.1. Influencia de la forma de la sección: circular, rectangular o	
	cuadrada	16

Estudio de la Resistencia de Pilares Tubulares Circulares Rellenos de Hormigón con un Modelo
Numérico de Confinamiento Pasivo Variable

	2.2.2.	Efecto del confinamiento	17
	2.2.3.	Mecanismo de adherencia	20
	2.2.4.	Pandeo local y global	21
2.3.	El uso	del HAR	24
2.4.	Model	los numéricos	27
	2.4.1.	Modelos unidimensionales	29
	2.4.2.	Modelos de plasticidad concentrada	30
	2.4.3.	Modelos tridimensionales	32
2.5.	Conclu	usiones	36
CAPÍTU	JLO 3.	CARACTERÍSTICAS Y CALIBRACIÓN DEL MODELO	
		NUMERICO	37
3.1.	Descri	pción del programa utilizado	38
	3.1.1.	Condiciones de contorno y aplicación de la carga	38
	3.1.2.	Tipo y tamaño de elemento finito	40
	3.1.3.	Tratamiento del contacto	42
	3.1.4.	El proceso de resolución	44
3.2.	Comp	ortamiento de los materiales	45
	3.2.1.	Conceptos básicos de la Teoría de la Plasticidad	45
		3.2.1.1. Invariantes de tensiones	47
		3.2.1.2. Invariantes de deformaciones	51
	3.2.2.	Modelo de acero	51
		3.2.2.1. Superficie de fluencia plástica	51
		3.2.2.2. Regla de flujo plástico	52
	3.2.3.	Modelo de hormigón	53
		3.2.3.1. Superficie de fluencia plástica	55
		3.2.3.2. Regla de flujo plástico	59
		3.2.3.3. Calibración del modelo numérico de hormigón	63
		3.2.3.3.1. Proceso de rotura del hormigón	63

	3.2.3.3.2.	Comportamiento del hormigón sin	
		confinamiento	65
	3.2.3.3.3.	Comportamiento del hormigón con	
		confinamiento activo	66
	3.2.3.3.4.	Comportamiento del hormigón con	
		confinamiento pasivo	73
	3.2.3.3.5.	Diferencias entre el comportamiento del	
		hormigón con confinamiento activo y	
		pasivo	82
	3.2.3.3.6.	Modelo de confinamiento pasivo variable	
		(CPV)	86
	3.2.3.3.7.	Obtención teórica de los ángulos de	
		dilatancia	94
	3.2.3.3.8.	Estimación de los valores del ángulo	
		dilatancia	96
	3.2.3.3.9.	Modelo de confinamiento pasivo variable y	
		ángulo de dilatancia variable (CPV ²)	102
	3.2.3.3.10.	Comparación del modelo CPV ² con el EC4	110
CAPÍTI	ULO 4 VALIDACIÓN DEI	MODELO NUMÉRICO CON	
C/H/II	ENSAYOS EXPERI	IMENTALES	113
4.1.	Columnas cortas centradas	de sección circular	117
4.2.	Columnas esbeltas centrada	s de sección circular	132
4.3. Columnas cortas excéntricas de sección circular		143	
4.4.	Columnas esbeltas excéntri	cas de sección circular	152
	4.4.1. Ensayos experimenta	ales existentes en la bibliografía	153
	4.4.2. Ensayos experimenta	ales realizados por Portolés et ál.[99]	159
4.5.	Columnas cortas de sección	elíptica	167
4.6.	Conclusiones		176

Estudio de la Resistencia de Pilares Tubulares Circulares Rellenos de Hormigón cor	ı un Modelo
Numérico de Confinamiento Pasi	ivo Variable

CAPÍTULO 5 ESTUDIO PARAMÉTRICO PROPUESTA DE UN	
MODELO DE CÁLCULO	179
5.1. Estudio paramétrico	183
5.1.1. Primera parte del estudio paramétrico	185
5.1.2. Segunda parte del estudio paramétrico	190
5.1.3. Tercera parte del estudio paramétrico	196
5.2. Metodología de cálculo propuesta	201
CAPÍTULO 6. CONCLUSIONES Y FUTURAS LÍNEAS DE	
INVESTIGACIÓN	203
6.1. Conclusiones	203
6.2. Aportaciones originales	207
6.3. Futuras líneas de investigación	208

REFERENCIAS BIBLIOGRÁFICAS

ANEJOS

ANEJO 1.) 1. NORMATIVAS DE DISEÑO DE ESTRUCTURAS MIXTAS			1
	A1.1.	Normativ	a europea para estructuras mixtas, Eurocódigo 4	1
		A1.1.1.	Limitaciones e hipótesis adoptadas en el	
			método de cálculo simplificado	2
		A1.1.2.	Resistencia de la sección	5
		A1.1.3.	Resistencia del elemento esbelto	6
		A1.1.4.	Pilar sometido a flexocompresión	7
	A1.2.	Normativ	a británica para elementos mixtos, BS 5400-5: 2005	11
		A1.2.1.	Hipótesis adoptadas y limitaciones del modelo	
			propuesto por la BS5400	12

	A1.2.2.	Cálculo de pilares sometidos a carga axial	
		centrada	14
A1.3.	Normativ	a americana de estructuras mixtas, AISC 360: 2010	16
	A1.3.1.	Introducción	16
	A1.3.2.	Principios generales	17
	A1.3.3.	Clasificación de la sección del pilar mixto y	
		resistencia seccional	17
	A1.3.4.	Pilar sometido a carga centrada	20
A1.4.	Normativ	a australiana de cálculo de puentes, AS5100	20
	A1.4.1.	Resistencia seccional	20
	A1.4.2.	Diseño de un elemento sometido a compresión	21
A1.5.	Normativ	a china de cálculo de estructuras mixtas, DBJ13-51	22
	A1.5.1.	Resistencia seccional	22
	A1.5.2.	Pilar sometido a carga axial centrada	23

ÍNDICE DE FIGURAS	Pág.
-------------------	------

Fig. 2.1.	Diferentes tipos de columnas mixtas. Johansson [61].	13
Fig. 2.2.	(a) Estado de compresión uniaxial; (b) Estado de compresión triaxial. Adam [20].	13
Fig. 2.3.	Estado tensional en el perfil y en el núcleo antes y después de que la dilatación del núcleo de hormigón alcance a la de la camisa acero. Johansson [61].	14
Fig. 2.4.	Curvas tensión-deformación para diferentes resistencias de hormigón. CEB-FIB [6].	15
Fig. 2.5.	Confinamiento en secciones: (a) circulares y (b) cuadradas. Johansson [61].	16
Fig. 2.6.	Confinamiento en el caso de un soporte de sección circular. Equilibrio de fuerzas. Adam [20].	18
Fig. 2.7.	Comportamiento del hormigón sometido a compresión triaxial. Adam [20].	19
Fig. 2.8.	Modelo de superficie de contacto de Gourley y Hajjar [44].	31
Fig. 2.9.	Modelo de superficie de contacto de El-Tawil y Deierlein [38].	31
Fig. 2.10.	Distribución de la presión lateral. Shams y Saadeghvaziri [113].	34
Fig. 2.11.	MEF, (a) circular, (b) cuadrada y (c) cuadrada rigidizada. Hu <i>et ál.</i> [56].	35
Fig. 3.1.	Modelo con dos planos de simetría.	39
Fig. 3.2.	Modelado de la placa y la arista de aplicación de la carga tal y como se produce en el ensayo de laboratorio.	39

Fig. 3.3.	En la figura, se aprecia la modelización realizada de la columna CFT; a) columna completa, b) camisa de acero y placa de carga, c) núcleo de hormigón.	40
Fig. 3.4.	Estudio de sensibilidad del tamaño de elementos finitos en columnas CFT: a) cortas y b) esbeltas.	41
Fig. 3.5.	Relación presión separación en el contacto punto duro [1].	43
Fig. 3.6.	Estudio de sensibilidad del rozamiento en columnas CFT: a) cortas y b) esbeltas.	44
Fig. 3.7.	Espacio de tensiones principales.	48
Fig. 3.8.	Ejes principales con la representación de las tres coordenadas del espacio de High-Westergard.	49
Fig. 3.9.	Cilindro de Von Mises. Adam [20].	52
Fig. 3.10.	Límite del comportamiento elástico.	54
Fig. 3.11.	Superficie de plastificación de generatriz lineal en el plano <i>p-t</i> [1].	56
Fig. 3.12.	Sección de la superficie de plastificación en el plano desviador en función del valor de K [1].	57
Fig. 3.13.	Superficie de plastificación en el plano $I_1, \sqrt{J_2}$.	58
Fig. 3.14.	Superficie de fluencia plástica y secciones en diferentes planos.	62
Fig. 3.15.	Curvas tensión-deformación para diferentes resistencias de hormigón según el CEB-FIP [6].	63
Fig. 3.16.	Evolución del proceso de fallo del hormigón de resistencias normales. Johansson [61].	64
Fig. 3.17.	Curvas tensión deformación teóricas según el CM-90 [6] y obtenidas del modelo numérico planteado para hormigones de 30, 60 y 90 MPa.	65

Fig. 3.18.	Curvas tensión deformación de un hormigón de resistencia a compresión de 30 y 90 MPa con diferentes presiones de confinamiento según la formulación desarrollada por Attard y Setunge [22].	68
Fig. 3.19.	Curvas tensión deformación teóricas según el modelo de Attard y Setunge [22] y obtenidas del modelo numérico planteado para hormigón confinado de 30 MPa.	69
Fig. 3.20.	Curvas tensión deformación teóricas según el modelo de Attard y Setunge [22] y obtenidas del modelo numérico planteado para hormigón confinado de 90 MPa.	70
Fig. 3.21.	Sección de la superficie de fluencia plástica con el plano.	70
Fig. 3.22.	Curvas tensión deformación teóricas según el modelo de Attard y Setunge [22] y obtenidas del modelo numérico para hormigón confinado de 30 MPa.	71
Fig. 3.23.	Curvas tensión deformación teóricas según el modelo de Attard y Setunge [22] y obtenidas del modelo numérico para hormigón confinado de 90 MPa.	72
Fig. 3.24.	Curvas tensión-deformación propuesta por Tomii y Sakino [118].	73
Fig. 3.25.	Curva tensión-deformación del hormigón sin confinar y confinado según Hu <i>et ál.</i> [56].	75
Fig. 3.26.	Esquema de funcionamiento de la subrutina.	79
Fig. 3.27.	Superficie de plastificación de Drucker-Prager y envolvente de plastificación.	80
Fig. 3.28.	Curvas tensión-deformación teóricas según el modelo de Attard y Setunge [22] y obtenidas del modelo numérico para hormigón confinado de 30 MPa.	80
Fig. 3.29.	Curvas tensión deformación teóricas según el modelo de Attard y Setunge [22] y obtenidas del modelo numérico para hormigón confinado de 90 MPa.	81

Fig. 3.30.	Presión de confinamiento bilineal en el ensayo de Cetisli y Naito [29].	82
Fig. 3.31.	Curva tensión-deformación con diferentes presiones de confinamiento constantes durante todo el ensayo de Cetisli y Naito [29].	83
Fig. 3.32.	Curva tensión deformación con diferentes presiones de confinamiento bilineales durante el ensayo de Cetisli y Naito [29].	84
Fig. 3.33.	Diferencias en las curvas tensión deformación del hormigón cuando el confinamiento es constante y cuando adopta una forma bilineal.	85
Fig. 3.34.	Curva tensión-deformación uniaxial del hormigón sin confinar y confinado.	87
Fig. 3.35.	Ajuste de los valores del parámetro k_1 de definición del modelo CPV.	90
Fig. 3.36.	Ajuste de los valores del parámetro k_3 de definición del modelo CPV.	90
Fig. 3.37.	Resultados de C7 y CU-040.	91
Fig. 3.38.	Resultados de CU-070 y C3.	91
Fig. 3.39.	Resultados de C9 y SZ5S4A1a.	91
Fig. 3.40.	Resultados de SZ3C4A1 y CC4-C-4-1.	92
Fig. 3.41.	Resultados de CC8-A-8 y C14.	92
Fig. 3.42.	Resultados de CC8-D-8 y SZ3S6A1.	92
Fig. 3.43.	Resultados experimentales y curva teórica planteada para confinamiento activo a) y confinamiento pasivo b). Teng <i>et ál.</i> [117].	94
Fig. 3.44.	Deformación volumétrica. Chen [27].	96

Estudio de la Resistencia de Pilares Tubulares Circulares Rellenos de Hormigón con un Modelo Numérico de Confinamiento Pasivo Variable

Fig. 3.45.	Deformación volumétrica para un hormigón de f_c =30 MPa con diferentes valores de la presión de confinamiento f_l .	97
Fig. 3.46.	Deformación volumétrica para un hormigón de f_c =60 MPa con diferentes valores de la presión de confinamiento f_l .	98
Fig. 3.47.	Deformación volumétrica para un hormigón de f_c =90 MPa con diferentes valores de la presión de confinamiento f_l .	99
Fig. 3.48.	Valores del ángulo de dilatancia.	100
Fig. 3.49.	Deformaciones laterales de hormigones de resistencia 30, 60 y 90 MPa.	101
Fig. 3.50.	Ajuste del parámetro k_l .	104
Fig. 3.51.	Ajuste del parámetro k_3 .	105
Fig. 3.52.	Resultados de C7 y SZ5S3A1.	105
Fig. 3.53.	Resultados de CU-070 y C-3.	106
Fig. 3.54.	Resultados de C9 y SZ5S4A1a.	106
Fig. 3.55.	Resultados de SZ3C4A1 y CC4-C-4-1.	106
Fig. 3.56.	Resultados de CC8-A-8 y C14.	107
Fig. 3.57.	Resultados de CC8-D-8 y SZ3S6A1.	107
Fig. 3.58.	Gráfica de comparación de la curva tensión-deformación que se produce en la masa de hormigón con las diferentes curvas teóricas para el hormigón confinado en el caso C7.	108
Fig. 3.59.	Gráfica de comparación de la curva tensión-deformación que se produce en la masa de hormigón con las diferentes curvas teóricas para el hormigón confinado en el caso C9.	108
Fig. 3.60.	Gráfica de comparación de la curva tensión-deformación que se produce en la masa de hormigón con las diferentes curvas teóricas para el hormigón confinado en el caso CC8-A-8.	109

Fig. 3.61.	Deformaciones laterales experimentales y numéricas del ensayo SZ5S4A1a y SZ5S3A1.	109
Fig. 3.62.	Representación gráfica de los resultado medidos y calculados con el modelo CPV^2 y el EC4 [11].	112
Fig. 4.1.	Presentación gráfica de los resultados medidos y calculados según el modelo numérico, el EC4 y la normativa británica.	121
Fig. 4.2.	Presentación gráfica de los resultados medidos y calculados según el código AISC, la normativa australiana y la normativa china.	121
Fig. 4.3.	Presentación gráfica de las tendencias del ratio de comparación en función de la resistencia del hormigón según el modelo numérico.	122
Fig. 4.4.	Presentación gráfica de las tendencias del ratio de comparación en función de la resistencia del hormigón según el EC4.	122
Fig. 4.5.	Presentación gráfica de las tendencias del ratio de comparación en función de la resistencia del hormigón según la norma británica.	123
Fig. 4.6.	Presentación gráfica de las tendencias del ratio de comparación en función de la resistencia del hormigón según el código AISC.	123
Fig. 4.7.	Presentación gráfica de las tendencias del ratio de comparación en función de la resistencia del hormigón según la norma australiana.	124
Fig. 4.8.	Presentación gráfica de las tendencias del ratio de comparación en función de la resistencia del hormigón según la norma china.	124
Fig. 4.9.	Punto de la masa de hormigón donde se han obtenido los resultados en las columnas cortas centradas.	125
Fig. 4.10.	Grafica tensión-deformación en la masa del hormigón de C3, CU-150 y el hormigón H-25 sin confinar.	126
Fig. 4.11.	Grafica tensión-deformación en la masa del hormigón de CA1- 1 y CA5-1 y el hormigón H-88 sin confinar.	126

Estudio de la Resistencia de Pilares Tubulares Circulares Rellenos de Hormigón con un Modelo Numérico de Confinamiento Pasivo Variable

Fig. 4.12.	Valores de f_l frente a la deformación longitudinal de C3 y CU- 150.	127
Fig. 4.13.	Valores de f_l frente a la deformación longitudinal de CA1-1 y CA5-1.	127
Fig. 4.14.	Definición del origen y sentido de la lectura de ángulos en el contorno del núcleo de la columna.	128
Fig. 4.15.	Valores de f_l en el contorno del caso C3, f_c =25,10 MPa.	128
Fig. 4.16.	Valores de f_l en el contorno del caso CU-150, f_c =27,23 MPa.	129
Fig. 4.17.	Valores de f_l en el contorno del caso CA1-1, f_c =88,05 MPa.	129
Fig. 4.18.	Valores de f_l en el contorno del caso CA5-1, f_c =88,05 MPa.	130
Fig. 4.19.	Valores de f_l en la masa de hormigón del caso C3.	130
Fig. 4.20.	Valores de f_l en la masa de hormigón del caso CU-150.	131
Fig. 4.21.	Valores de f_l en la masa de hormigón del caso CA1-1.	131
Fig. 4.22.	Valores de f_l en la masa de hormigón del caso CA5-1.	132
Fig. 4.23.	Presentación gráfica de los resultados medidos y calculados según el modelo numérico, el EC4 y la normativa británica.	135
Fig. 4.24.	Presentación gráfica de los resultados medidos y calculados según el código AISC, la normativa australiana y la normativa china.	135
Fig. 4.25.	Presentación gráfica de las tendencias del ratio de comparación en función de la resistencia del hormigón según el modelo numérico.	136
Fig. 4.26.	Presentación gráfica de las tendencias del ratio de comparación en función de la resistencia del hormigón según el EC4.	136
Fig. 4.27.	Presentación gráfica de las tendencias del ratio de comparación en función de la resistencia del hormigón según la norma británica.	137

Fig. 4.28.	Presentación gráfica de las tendencias del ratio de comparación en función de la resistencia del hormigón según el código AISC.	137
Fig. 4.29.	Presentación gráfica de las tendencias del ratio de comparación en función de la resistencia del hormigón según la norma australiana.	138
Fig. 4.30.	Presentación gráfica de las tendencias del ratio de comparación en función de la resistencia del hormigón según la norma china.	138
Fig. 4.31.	Punto de la masa de hormigón donde se han obtenido los resultados de las columnas esbeltas centradas.	139
Fig. 4.32.	Grafica tensión-deformación en la masa del hormigón de 2 y el hormigón H-42 sin confinar.	139
Fig. 4.33.	Grafica tensión-deformación en la masa del hormigón del caso 8' y el hormigón H-42 sin confinar.	140
Fig. 4.34.	Valores de f_l frente la deformación longitudinal del caso 2'.	140
Fig. 4.35.	Valores de f_l frente a la deformación longitudinal del caso 8'.	141
Fig. 4.36.	Definición del origen y sentido de la lectura de ángulos en el contorno del núcleo de la columna.	141
Fig. 4.37.	Valores de f_l en el contorno del caso 2'.	142
Fig. 4.38.	Valores de f_l en el contorno del caso 8'.	142
Fig. 4.39.	Presentación gráfica de los resultados medidos y calculados según el modelo CPV^2 y el de modelo de Lee <i>et ál.</i> [75] y del EC4.	145
Fig. 4.40.	Presentación gráfica de las tendencias del error en función de la resistencia del hormigón según el modelo numérico.	145
Fig. 4.41.	Presentación gráfica de las tendencias del error en función de la resistencia del hormigón según el EC4.	146

Fig. 4.42.	Presentación gráfica de las tendencias del error en función de la resistencia del hormigón según el modelo numérico, el EC4 y el	146
	modelo desarrollado por Lee <i>et al.</i> [/5].	146
Fig. 4.43.	Comparación de los resultados del ensayo O49E24_30.	147
Fig. 4.44.	Comparación de los resultados del ensayo O49E48_30.	147
Fig. 4.45.	Comparación de los resultados del ensayo O49E60_30.	148
Fig. 4.46.	Comparación de los resultados del ensayo O57E48_30.	148
Fig. 4.47.	Punto de la masa de hormigón donde se han obtenido los resultados de las columnas cortas excéntricas.	149
Fig. 4.48.	Grafica tensión-deformación en la masa del hormigón del ensayo O49E48 60 y el hormigón H-59 sin confinar.	149
Fig. 4.49.	Grafica tensión-deformación en la masa del hormigón del ensayo O49E36-30 y el hormigón H-31 sin confinar.	150
Fig. 4.50.	Valores de f_l frente la deformación longitudinal del ensayo O49E48 60.	150
Fig. 4.51.	Valores de f_l frente a la deformación longitudinal del ensayo O49E36-30.	150
Fig. 4.52.	Definición del origen y sentido de la lectura de ángulos en el contorno del núcleo de la columna.	151
Fig. 4.53.	Valores de f_l en el contorno del ensayo O49E48 60.	151
Fig. 4.54.	Valores de f_l en el contorno del ensayo O49E36-30.	152
Fig. 4.55.	Presentación gráfica de los resultados medidos y calculados según el modelo CPV^2 y el EC4.	155
Fig. 4.56.	Presentación gráfica de las tendencias del ratio de comparación en función de la resistencia del hormigón según el modelo CPV^2 .	155
Fig. 4.57.	Presentación gráfica de las tendencias del ratio de comparación en función de la resistencia del hormigón según el EC4.	156

Fig. 4.58.	Punto B de obtención de datos.	156
Fig. 4.59.	Definición del origen y sentido de la lectura de ángulos en el contorno del núcleo de la columna.	157
Fig. 4.60.	Gráfica tensión-deformación en el punto B de la masa del hormigón de SC-2 y el hormigón H-56 sin confinar.	157
Fig. 4.61.	Valores def_l frente a la deformación longitudinal del ensayo SC-2.	158
Fig. 4.62.	Valores de f_l en el contorno del ensayo SC-2.	158
Fig. 4.63.	Presentación gráfica de los resultados medidos y calculados según el modelo CPV^2 y el EC4.	161
Fig. 4.64.	Presentación gráfica de las tendencias del error en función de la resistencia del hormigón según el modelo CPV ² .	162
Fig. 4.65.	Presentación gráfica de las tendencias del error en función de la resistencia del hormigón según el EC4.	162
Fig. 4.66.	Comparación de los resultados de a) C100.3.2.30.20 y b) C100.3.2.30.50.	163
Fig. 4.67.	Comparación de los resultados de a) C100.3.2.70.20 y b) C100.3.2.70.50.	163
Fig. 4.68.	Comparación de los resultados de a) C100.3.2.90.20 y b) C100.3.2.90.50.	164
Fig. 4.69.	Comparación de los resultados: a) C100.5.2.30.20 y b) C100.5.2.90.20.	164
Fig. 4.70.	Comparación de los resultados: a) C100.3.3.30.20 y b) C100.3.3.90.20.	165
Fig. 4.71.	Comparación de los resultados: a) C100.5.3.30.20 y b) C100.5.3.90.20.	165
Fig. 4.72.	Grafica tensión-deformación en el punto B de la masa del hormigón del ensayo C100-5-2-30-20 y el hormigón H-35 sin confinar.	166

Estudio de la Resistencia de Pilares Tubulares Circulares Rellenos de Hormigón con un Modelo Numérico de Confinamiento Pasivo Variable

Fig. 4.73.	Valores de f_l frente a la deformación longitudinal del ensayo C100-5-2-30-20.	166
Fig. 4.74.	Valores de f_l en el contorno del ensayo C100-5-2-30-20.	167
Fig. 4.75.	Presentación gráfica de los resultados medidos y calculados según el modelo CPV^2 y el de Dai y Lam [32].	169
Fig. 4.76.	Presentación gráfica del ratio de comparación según el modelo CPV^2 y el de Dai y Lam [32].	169
Fig. 4.77.	Comparación de los resultados a) 150 x 75 x 4-C30 y b) 150 x 75 x 4-C100.	170
Fig. 4.78.	Comparación de los resultados a) 150 x 75 x 5-C30 y b) 150 x 75 x 5-C100.	170
Fig. 4.79.	Comparación de los resultados a) 150 x 75 x 6,3-C30 y b) 150 x 75 x 6,3-C100.	171
Fig. 4.80.	Punto A de obtención de datos.	172
Fig. 4.81.	Grafica tensión-deformación en el punto A del hormigón de los especímenes a) 150x75x4-C30 y 150x75x6-C30 y b) 150x75x4-C30 y 150x75x6-C100 el hormigón sin confinar correspondiente.	172
Fig. 4.82.	Valores de f_l frente a la deformación longitudinal en el punto A de la masa del hormigón de los ensayos a) 150x75x4-C30 y 150x75x6-C30 y b) 150x75x4-C100 y 150x75x6-C100.	173
Fig. 4.83.	Definición del origen y sentido de la lectura de ángulos en el contorno del núcleo de la columna.	173
Fig. 4.84.	Valores de f_l en el contorno de los ensayos a) 150x75x4-C30, b) 150x75x4-C100.	174
Fig. 4.85.	Valores de f_l en el contorno de los ensayos a) 150x75x6-C30 y b) 150x75x6-C100.	174
Fig. 4.86.	Valor de f_l en el núcleo de hormigón de a) 150x75x4-C30, b) 150x75x4-C100, c) 150x75x6-C30 y d) 150x75x6-C100.	175

Fig. 5.1.	Ratios de confinamiento en función de la resistencia del hormigón.	186
Fig. 5.2.	Ratios de confinamiento en función de la resistencia del acero.	187
Fig. 5.3.	Ratios de confinamiento en función del ratio D/t.	187
Fig. 5.4.	Ratios de confinamiento en función de ω .	188
Fig. 5.5.	Ratios de confinamiento en función de δ .	188
Fig. 5.6.	Factor η_{ao} en función de δ .	189
Fig. 5.7.	Factor f_a en función de δ .	190
Fig. 5.8.	Factor η_{ao} en función de δ para esbelteces de 0,2.	192
Fig. 5.9.	Factor ψ_c en función de δ para esbelteces de 0,2.	192
Fig. 5.10.	Factor η_{ao} en función de δ para esbelteces de 0,5.	193
Fig. 5.11.	Factor ψ_c en función de δ para esbelteces de 0,5.	193
Fig. 5.12.	Factor η_{ao} en función de δ para esbelteces de 0,7.	194
Fig. 5.13.	Factor ψ_c en función de δ para esbelteces de 0,7.	194
Fig. 5.14.	Representación tridimensional del factor η_{ao} .	195
Fig. 5.15.	Representación tridimensional del factor ψ_c .	196
Fig. 5.16.	Resultados obtenidos para esbeltez 0,2.	198
Fig. 5.17.	Resultados obtenidos para esbeltez 0,5.	199
Fig. 5.18.	Resultados obtenidos para esbeltez 0,7.	199
Fig. 5.19.	Valores de confinamiento de columnas poco esbeltas y $\delta < 0.5$.	200
Fig. 5.20.	Valores de confinamiento de columnas poco esbeltas y $\delta > 0,5$.	200
Fig. A1.1.	Tipologías de pilares mixtos contemplados en el EC4 [11].	2

Estudio de la Resistencia de Pilares Tubulares Circulares Rellenos de Hormigón con un Modelo Numérico de Confinamiento Pasivo Variable

Fig. A1.2.	Diagrama de interacción de un pilar mixto tipo CFT según EC4 [11].	8
Fig. A1.3.	Pilar sometido a cargas excéntricas y excentricidad inicial.	8
Fig. A1.4.	Curva de interacción para un pilar flexo-comprimido.	11
Fig. A1.5.	Valores de las constantes C_1 y C_2 de la BS5400.	13
Fig. A1.6.	Curva de pandeo de elementos compuestos.	16
Fig. A1.7.	Resistencia seccional a compresión según AISC 2010 [6].	19

ÍNDICE DE T	TABLAS	Pág.
Tabla 3.1.	Valores de las variables geométricas de los ensayos experimentales.	88
Tabla 3.2.	Valores de calibración de las constantes que definen el modelo CPV.	89
Tabla 3.3.	Valores de presión de confinamiento y ángulo de dilatancia obtenido para cada hormigón.	100
Tabla 3.4.	Valores de las variables geométricas y materiales de los ensayos experimentales.	102
Tabla 3.5.	Valores de calibración de los parámetros que definen el modelo CPV^2 .	103
Tabla 3.6.	Comparativa de los resultados numéricos de modelo CPV^2 y el EC4 frente a los resultados experimentales.	111
Tabla 4.1.	Características geométricas y de materiales de los ensayos experimentales de columnas cortas cilíndricas centradas.	118
Tabla 4.2.	Resultados experimentales, numéricos y normativos.	119
Tabla 4.3.	Ratios de comparación numéricos y normativos.	120
Tabla 4.4.	Características geométricas y de materiales de los ensayos experimentales de columnas esbeltas cilíndricas centradas.	133
Tabla 4.5.	Resultados experimentales, numéricos y normativos.	133
Tabla 4.6.	Ratios de comparación.	134
Tabla 4.7.	Características geométricas y materiales de los ensayos experimentales.	143
Tabla 4.8.	Resultados de resistencia máxima obtenida del ensayo experimental, del modelo CPV2, del modelo numérico planteado por Lee <i>et ál.</i> [75] y con la aplicación del EC4.	144
Tabla 4.9.	Características geométricas y materiales de los ensayos experimentales.	153

Tabla 4.10.	Resultados de resistencia máxima obtenida del ensayo experimental, del modelo CPV^2 y con la aplicación del EC4.	154
Tabla 4.11.	Características geométricas y materiales de los ensayos experimentales.	159
Tabla 4.12.	Resultados de resistencia máxima obtenida del ensayo experimental, del modelo CPV^2 y con la aplicación del EC4.	160
Tabla 4.13.	Características geométricas y materiales de los ensayos experimentales sobre columnas de sección elíptica.	167
Tabla 4.14.	Resultados de resistencia máxima obtenida del ensayo experimental, del modelo CPV^2 y del modelo numérico planteado por Dai y Lam [32].	168
Tabla 4.15.	Resumen de valores medios y desviaciones típicas del modelo CPV^2 y del EC4.	176
Tabla 5.1.	Valores de diámetro y espesor de la primera parte del estudio paramétrico.	185
Tabla 5.2.	Valores de resistencia del acero y del hormigón.	185
Tabla 5.3.	Valores de diámetro utilizados para el diseño de los especímenes de la segunda parte del estudio paramétrico.	190
Tabla 5.4.	Valores de resistencia del acero y del hormigón utilizados para el diseño de los especímenes de la segunda parte del estudio paramétrico.	191
Tabla 5.5.	Valores del diámetro de la tercera parte del estudio paramétrico.	197
Tabla 5.6.	Valores de resistencia del acero y del hormigón.	197
Tabla A1.1.	Curvas de pandeo e imperfecciones para pilares mixtos, según EC4:2004 [11].	7
Tabla A1.2.	Valores del parámetro α en función de la génesis del elemento metálico y su ratio r/y.	15