
Self-similar focusing with generalized devil’s lenses

Cristina Casanova,1 Walter D. Furlan,1 Laura Remón,2 Arnau Calatayud,2

Juan A. Monsoriu,2,* and Omel Mendoza-Yero3

1Departamento de Óptica, Universidad de Valencia, E-46100 Burjasstot (Valencia), Spain
2Centro de Tecnologías Físicas, Universidad Politécnica de Valencia, E-46022 Valencia, Spain

3GROC UJI, Departament de Física, Universitat Jaume I, E12080 Castelló, Spain
*Corresponding author: jmonsori@fis.upv.es

Received September 28, 2010; accepted November 21, 2010;
posted November 30, 2010 (Doc. ID 135832); published January 26, 2011

We introduce the generalized devil’s lenses (GDLs) as a new family of diffractive kinoform lenses whose structure
is based on the generalized Cantor set. The focusing properties of different members of this family are analyzed. It
is shown that under plane wave illumination the GDLs give a single main focus surrounded by many subsidiary
foci. It is shown that the total number of subsidiary foci is higher than the number of foci corresponding to
conventional devil’s lenses; however, the self-similar behavior of the axial irradiance is preserved to some
extent. © 2011 Optical Society of America
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1. INTRODUCTION
Diffractive focusing optical elements are most beneficial in
many applications where they can perform tasks that are dif-
ficult, or even impossible, with conventional refractive optics
[1]. In particular, nowadays diffractive lenses are key ele-
ments in optical systems used in several scientific and tech-
nological areas such as THz tomography, astronomy, and soft
x-ray microscopy [2–5]. Aside from conventional Fresnel zone
plates, other geometries of photonic-image-forming structures
have been proposed. One of them is known as a fractal zone
plate (FZP) [6]. A FZP is characterized by its fractal profile
along the square of the radial coordinate. The main feature
of a FZP arises from its ability to produce multiple foci.
The main lobe of these foci coincide with that of the asso-
ciated conventional zone plate, but the internal structure of
each focus exhibits a characteristic fractal structure, reprodu-
cing the self-similarity of the originating FZP. Note that, under
certain circumstances, an FZP can be thought of as a conven-
tional zone plate with certain missing zones [6].

Since their introduction in 2003, FZPs have deserved the
attention of several research groups working on diffractive
optics [7,8]. This is mainly because in certain applications they
can improve the performance of classical Fresnel zone plates,
especially where multiple foci are useful. For example, we can
profit= from FZPs by using them in image forming systems
working under polychromatic illumination [9], using them
as versatile optical tweezers [10], for designing novel optical
filters with fractal transmission spectra [11], and as encrypting
masks in optical cryptography [12].

In order to improve the diffraction efficiency of FZPs for
certain applications, we have recently proposed pure phase
FZPs known as devil’s lenses (DLs) [13]. In particular, the sur-
face relief of a DL is designed using the devil’s staircase func-
tion [14]. Contrary to FZP a DL presents a single principal
focus surrounded by subsidiary secondary foci, following a
self-similar distribution. An experimental implementation of
a DL having multilevel phases has been recently reported [15].

In this work, we analyze the focusing properties of the
novel optical devices called generalized devil’s lenses (GDLs),
which are constructed from the “generalized” Cantor set. The
blazed profile of a GDL improves the diffraction efficiency of a
DL with respect to that of the generalized FZP [16]. The focus-
ing properties of different GDLs are studied by computing
their irradiance distribution along the optical axis. In addition,
with the introduction of a generalization parameter, the num-
ber of subsidiary foci is increased in comparison with tri-
adic DLs. Its effect on the self-similar focusing properties is
investigated.

2. GENERALIZED DEVIL’S LENSES DESIGN
The original proposal for a DL [13] was based on the triadic
Cantor set shown in the upper part of Fig. 1. The first step in
the construction procedure consists of defining a straight-line
segment of unit length called initiator (stage S ¼ 0). Next, at
the stage S ¼ 1, the generator is constructed by dividing the
segment in three equal parts of length 1=3 and removing the
central one. Following this procedure in subsequent stages
S ¼ 2; 3;…, it is easy to see that, in general, at the stage S
there are 2S segments of length d ¼ 3−S with 2S−1 disjoint gaps.
In Fig. 1, only the three first stages are shown for clarity. It is
instructive to note that the Cantor set at a given stage S is in-
terpreted as a quasi-periodic distribution of segments, which
can be obtained by removing some segments in a finite per-
iodic distribution. The equivalent periodic distribution at the
stage S has ð3S − 1Þ=2þ 1 segments of length 3−S , separated
by gaps of the same length, so the period of this finite struc-
ture would be Λ ¼ 2 × 3−S .

Following the above iterative process we can define a more
general triadic fractal Cantor set in which the ratio between
lengths of the equivalent period (Λ) and of the segment (d) is a
positive integer number τ ¼ Λ=d. We call this the generaliza-
tion parameter of the Cantor set. According to the above de-
finition, a conventional (triadic) Cantor set is a particular case
with τ ¼ 2. Thus the generalized Cantor set can be obtained by
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dividing the initiator into (τ þ 1) parts and removing (τ − 1)
central segments. This operation yields a family of generalized
Cantor sets with equivalent period Λ ¼ τðτ þ 1Þ−S . Therefore,
generalized Cantor fractals are characterized by the general-
ization parameter τ and the growth level S. In general, at the
stage S there are 2S segments of length ðτ þ 1Þ−S with 2S − 1
disjoint gap intervals ½pτ;S;l; qτ;S;l�, with l ¼ 1;…; 2S − 1. For ex-
ample, for τ ¼ 3 and S ¼ 3 (see Fig. 1), the generalized Cantor
set presents seven gaps limited by the following positions in-
side the unit length: ½1=64; 3=64�, ½4=64; 12=64�, ½13=64; 15=64�,
½16=64; 48=64�, ½49=64; 51=64�, ½52=64; 60=64�, and ½61=64;
63=64�. Based on the generalized Cantor set, we can define
now the generalized Cantor function or generalized devil’s
staircase, F τ;SðxÞ, in the interval ½0; 1� as

F τ;SðxÞ ¼
� l

2S
if pτ;S;l ≤ x ≤ qτ;S;l

1
2S

x−qτ;S;l
pτ;S;lþ1−qτ;S;l

þ l
2S

if qτ;S;l ≤ x ≤ pτ;S;lþ1
; ð1Þ

being F τ;Sð0Þ ¼ 0 and F τ;Sð1Þ ¼ 1. Figure 2 shows the general-
ized devil’s staircase for τ ¼ 3 and growth levels S ¼ 0, 1, 2,
and 3. Note that within the gap intervals ½pτ;S;l; qτ;S;l�, the gen-
eralized devil’s staircase, F τ;SðxÞ, takes the constant values
l=2S with l ¼ 1;…; 2S − 1, whereas in between these intervals
it increases linearly.

From the generating function F τ;SðxÞ we define the corre-
sponding GDL as a circularly symmetric diffractive optical ele-
ment with a phase profile that follows the generalized Cantor
function. At the gap regions defined by the generalized Cantor
set, the phase shift is −l=2π, with l ¼ 1;…; 2S − 1. Thus, the
phase transmittance of a GDL is defined by

qðςÞ ¼ qGDLðς; τ; SÞ ¼ exp½iϕτ;SðςÞ�;
with ϕτ;SðςÞ ¼ −2sþ1πF τ;SðςÞ; ð2Þ

where ς ¼ ðr=aÞ2 is the normalized quadratic radial variable
and a is the lens radius. Figure 3(a) shows the phase transmit-
tance ϕτ;S for τ ¼ 3 and S ¼ 2 versus the quadratic radial vari-
able ς. After taking mod2π ½ϕτ;S �, the equivalent phase profile is
shown in Figs. 3(b) and 3(c) versus the quadratic radial vari-
able ς and versus the radial coordinate r, respectively. Thus, at
each zone of the lens the phase variation is quadratic. The pro-
file of the surface relief, hGDLðrÞ, corresponding to the above
phase function can be obtained from the relation [17]

hGDLðrÞ ¼ mod2π

�
ϕτ;S

�
r2

a2

�� λ
2πðn − 1Þ ; ð3Þ

where n is the refractive index of the optical material used for
constructing the GDL, and λ is the wavelength of the light.

Note that the GDL can be understood as a conventional ki-
noform lens but with some missing phase zones (see lower
part of Fig. 3). In fact, for a given generalization parameter

Fig. 1. Generalized Cantor set for τ ¼ 2, 3, and 4 and growth levels
S ¼ 0, 1, 2, and 3.

Fig. 2. Generalized devil’s staircase function for τ ¼ 3 and growth
levels S ¼ 0, 1, 2, and 3. The gray bars represent the corresponding
generalized Cantor set.

Fig. 3. (a) Phase transmittance of a GDL for τ ¼ 3 and S ¼ 2 versus
the quadratic radial variable. (b) Equivalent phase transmittance after
taking modulus 2π. (c) Phase transmittance versus the radial variable.
(d) Phase transmittance of a kinoform lens of the same focal length.
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τ and growth level S, we can perform a GDL from a conven-
tional kinoform lens with ðτ þ 1ÞS blazed phase zones by re-
moving the ðτ þ 1ÞS − 2S zones located at the gaps of the
generalized Cantor set. Note that the phase transmittance
of a DL is obtained when τ ¼ 2.

3. FOCUSING PROPERTIES OF
GENERALIZED DEVIL’S LENSES
Let us consider the irradiance provided by a rotationally invar-
iant pupil of radius a, and amplitude transmittance pðrÞ, at a
given point on the optical axis. This pupil is illuminated by a
monochromatic plane wave of wavelength λ. Within the
Fresnel approximation, the axial irradiance can be expressed
as a function of the axial distance from the pupil plane z, as

IðzÞ ¼
�
2π
λz

�
2
����
Za
0

pðroÞ exp
�
−i

π
λz r

2
o

�
rodro

����2: ð4Þ

If the transmittance of the pupil is defined in terms of the nor-
malized variable ς ¼ ðr=aÞ2, then the axial irradiance can be
rewritten as

IðuÞ ¼ 4π2u2

����
Z1
0

qðςÞ expð−i2πuςÞdς
����2; ð5Þ

where qðςÞ ¼ pðroÞ, and u ¼ a2=2λz is the reduced axial coor-
dinate. Thus, the axial irradiance can be determined by the
Fourier transform of the mapped pupil function qðςÞ. From
self-similar properties of fractals, if the pupil function qðςÞ
has a fractal structure, it is direct to conclude that such a sys-
tem will provide an irradiance along the optical axis also with
a self-similar profile [18]. As an example we have computed
the axial irradiances produced by GDLs at levels S ¼ 1 and
S ¼ 2. The result is represented in Fig. 4 for three values of
the generalization parameter of the Cantor set: τ ¼ 2, 3,
and 4. Note that values of the axial coordinate for S ¼ 2
are scaled by a factor γ ¼ τ þ 1 with respect to S ¼ 1. The
main foci of GDLs are located at the normalized distance
u0 ¼ ðτ þ 1ÞS , i.e., the focal length of the GDLs can be ex-
pressed as

f τ;S ¼ a2

2λðτ þ 1ÞS : ð6Þ

Note that the axial positions of the central lobes of the main
foci for the GDL coincide with those of the associated kino-
form lenses.

From Fig. 4 it is clear that GDL focusing properties are de-
termined by τ, and therefore this parameter imposes the limits
of the diffraction efficiency of the lens. It is important to note
that as τ increases, there will also be an increase in the back-
ground radiation because of the zeroth diffraction order.

Note that the axial irradiance distribution at the focal re-
gion at each stage is a modulated version of that associated
with the previous stage. In fact, the patterns in the right part of
Fig. 4 are self-similar, i.e., as S becomes larger an increased
number of zeros and maxima are encountered. These axial
irradiance patterns are scale invariant over dilations of factor
γ ¼ τ þ 1. This means that, for a GDL, its axial irradiance re-
produces the self-similarity of the pupil.

To investigate quantitatively the degree of self-similarity of
the axial irradiances provided by a given GDL, we use the cor-
relation coefficient [19] between the axial irradiance and its
scaled version with respect to the axial focal point
u0 ¼ ðτ þ 1ÞS , i.e.,

CðγÞ ¼
R
∞

0 IðuÞ · I
�
u0 þ u−u0

γ

�
duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

∞

0 I2ðuÞdu R
∞

0 I2
�
u0 þ u−u0

γ

�
du

s : ð7Þ

This function was computed for the irradiance of a GDL at
the stage S ¼ 2. When IðzÞ satisfies the strict axial self-similar

Fig. 4. Axial irradiances provided by GDL of orders S ¼ 1 and S ¼ 2
and generalization parameters τ ¼ 2, 3, and 4.

Fig. 5. Self-similarity for the axial irradiance shown in Fig. 4 for
S ¼ 2.
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property, i.e., IðuÞ ¼ Iðu0 þ ðu − u0Þ=γÞ, the correlation coef-
ficient (or simply, the self-similarity) is CðγÞ ¼ 1. In the same
way, lower degrees of self-similarity correspond to values of
CðγÞ < 1. In Fig. 5 the correlation function for the GDLs in
Fig. 4, at the stage S ¼ 2, is represented. Although the correla-
tion coefficient decreases as the generalization parameter τ
increases, we find a local maximum at γ ¼ τ þ 1. This maxi-
mum shows the degree of self-similarity of the axial irra-
diances, which is a consequence of the fractal structure of
the GDLs.

4. CONCLUSIONS
The generalized devil’s lenses designed on the basis of the
generalized Cantor function have been introduced. It is shown
that a given GDL can be understood as a conventional kino-
form lens in which some blaze zones have been eliminated. In
addition, the phase transmittance function of a conventional
DL is obtained as a particular case of Eq. (2) when τ ¼ 2. The
GDLs produce a single main focus at which the position of the
maximum axial irradiance coincides with that of the corre-
sponding Fresnel kinoform lens. However, in this case the
maximum is surrounded by subsidiary foci with self-similar
profiles. Along the optical axis, the focal volume reproduces
the fractal distribution of the originating GDL. The degree of
self-similarity of the axial irradiance provided by these novel
lenses was also investigated.

Several potential applications of GDLs are possible, espe-
cially in those areas where conventional kinoform lenses have
been successfully applied (such as image forming systems or
optical trapping). In particular, we suggest that the multifocal
structure of a GDL can find application, for instance, for trap-
ping and manipulating particles at different controlled levels
by means of a vortex GDL.
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