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Abstract

The thesis is centred on fed-batch bioreactors, given the importance of these
high density stirred tank reactors for efficient industrial production of pro-
teins, enzymes, . .. using genetically modified microorganisms. The real prob-
lem is characterized by the scarcity of on-line measures. Other important
problems are the (strong) parametric uncertainty and the presence of sig-
nificant nonlinearity. Besides the aforementioned problems, in the case of
fed-batch bioreactors it is necessary to deal with partial equilibria, i.e. only
with respect to some of the variables. The main goals of this thesis are:

1. The search for a limited set of model structures representing most cases
of industrial interest.

2. The solution, as a first step in a bottom-up approach, to the control
problem for the case of pure cultures with only one limiting substrate
and assuming oxygen is in excess.

3. The design of controllers for regulating the microorganisms specific
growth rate. Using only biomass and volume on-line measurements with
no estimation of the growth rate nor any other variable. And, finally, al-
lowing for the system nonlinearities, uncertainty, and other phenomena.

4. To treat the aforementioned problem of partial stability.

The latter point conditioned the choice of possible techniques to be stud-
ied in order to solve the control problem. Namely:

— Geometric control techniques (by Fradkov et al.). The problem of bioreactor
control can be regarded as a problem of coordinating control. The solution
is connected with some specific system properties such as invariance and
local attractivity of nontrivial sets in state space.

— Flatness. Although commonly associated to exact linearization, a system
can be flat in a subset of the state space with no equilibrium point inside.
Even in this case, flatness is still a very useful concept since it allows one
to compute a feedforward control algebraically and indicates the system
has a very particular structure.

— Partial stability. Some results from sources providing Lyapunov-like theo-
rems for partial stability have been used in the stability proofs.

Several important goals have been attained:
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1. The determination, after an extensive literature search, of a reduced num-
ber of standard models for pure cultures with one limiting substrate.

2. An invariant control has been suggested that provides the basis for subse-

quent designs. Besides, a global stability proof was obtained that enabled

the treatment of those problems in which Haldane-like kinetic functions

are present.

Several designs for the regulation of the specific growth rate are suggested.

4. Finally, several experiments have been carried out using a strain of S.
cerevisiae with good results.

w

The attainments in this thesis provide the basis for a future treatment of
systems with an inhibitor product, multisubstrate systems, among others.



Resum

La tesi esta centrada en els bioreactors en “fed-batch”, donada la importancia
d’aquestos reactors agitats d’alta densitat per la produccié industrial eficient
de proteines, enzims, ... emprant microorganismes modificats genéticament.
El problema real ve caracteritzat per la manca de mesures en linia. Altres
problemes importants sén la (forta) incertessa paramétrica i la preséncia
significativa de no linealitats. A més dels problemes ja esmentats, en el cas
de bioreactors en “fed-batch” és necessari tractar amb equilibris parcials, és
a dir, sols respecte a una part de les variables. Els objectius principals de la
tesi son:

1

2.

. La cerca d’un conjunt limitat d’estructures de models representant la

major part dels casos d’interés industrial.

La solucié, com a primer pas en una aproximacié de “baix-a-dalt”, al
problema de control per al cas de cultius purs amb un sol substrat limitant
i assumint I'oxigen és en excés.

. El disseny de controladors per regular la taxa especifica de creiximent

dels microorganismes. Emprant solament mesures en linia de biomassa
i volum, sense cap estimacié de la taxa de creiximent ni de cap altra
variable. I, finalment, tenint en compte les no linealitats del sistema,
lincertessa i altres fenomens.

. Tractar el problema esmentat ades d’estabilitat parcial.

El darrer punt ha marcat la tria de possibles tecniques a ser estudiades

per tal de resoldre el problema de control. Especificament:

Técniques de control geométric (Fradkov et al.). El problema de control
de bioreactors pot ser vist com un de “control coordinant”. La solucié
esta relacionada amb algunes propietats especifiques dels sistemes com ara
invarianca i atractivitat local de conjunts no trivials a ’espai d’estats.
Flatness. Encara que comunment associada amb la linealitzacié exacta, un
sistema pot ser pla dins d’un subconjunt de I’espai d’estats sense cap punt
d’equilibri a l'interior. Fins i tot en aquest cas, segueix sent un concepte
molt 1til ja que permet calcular algebraicament una prealimentacié i indica
que el sistema té una estructura molt particular.
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— Estabilitat parcial. Alguns resultats, provinents de fonts aportant teoremes
tipus Lyapunov per a estabilitat parcial, han sigut emprats en les demostra-
cions d’estabilitat.

S’han assolit diversos resultats importants:

1. La determinacid, després d’una cerca extensiva a la literatura, d’un nom-
bre reduit de models estandard per a cultius purs amb un substrat limi-
tant.

2. S’ha suggerit un control invariant que aporta la base per a desenvolupa-
ments posteriors. A més, s’ha obtés una proba d’estabilitat global que ha
permés el tractament de problemes en que apareixen funcions de cinética
tipus Haldane.

3. S’han suggerit diversos dissenys per a la regulacié de la taxa especifica
de creiximent.

4. Finalment, s’han portat a terme diversos experiments emprant una vari-
ant del S. cerevisiae amb bons resultats.

Els assoliments d’aquesta tesi aporten la base per al tractament de sis-
temes amb producte inhibidor, sistemes multisubstrat, i d’altres.



Resumen

La tesis estd centrada en los biorreactores en “fed-batch”, dada la importan-
cia de estos reactores agitados de alta densidad para la produccién industrial
eficiente de proteinas, encimas, ... utilizando microorganismos modificados
genéticamente. El problema real estd caracterizado por la escasez de me-
didas en linea. Otros problemas importantes son la (fuerte) incertidumbre
paramétrica y la presencia significativa de no linealidades. Ademads de los
problemas comentados, en el caso de biorreactores en “fed-batch” es nece-
sario tratar con equilibrios parciales, es decir, sélo respecto a una parte de
las variables. Los objetivos principales de la tesis son:

1. La busqueda de un conjunto limitado de estructuras de modelos repre-
sentando la mayor parte de los casos de interés industrial.

2. La solucién, como primer paso en una aproximacion de “abajo-arriba”,
del problema de control para el caso de cultivos puros con un sélo sub-
strato limitante y asumiendo el oxigeno esta en exceso.

3. El diseno de controladores para regular la tasa especifica de crecimiento de
los microorganismos. Utilizando sélamente medidas en linea de biomasa y
volumen, sin ninguna estimacién de la tasa de crecimiento ni de ninguna
otra variable. Y, finalmente, teniendo en cuenta las no linealidades del
sistema, la incertidumbre y otros fenémenos.

4. Tratar el problema citado anteriormente de estabilidad parcial.

El dltimo punto ha marcado la eleccién de las posibles técnicas a estudiar
para resolver el problema de control. En concreto:

— Técnicas de control geométrico(Fradkov et al.). El problema de control
de biorreactores puede ser visto como uno de “control de coordinacién”.
La solucién esta relacionada con algunas propiedades especificas de los
sistemas como la invarianza y la atractividad local de conjuntos no triviales
en el espacio de estados.

— Flatness. Aunque comunmente asociada con la linealizacén exacta, un sis-
tema puede ser plano dentro de un subconjunto del espacio de estados sin
ningdn punto de equilibrio en su interior. Incluso en este caso, sigue siendo
un concepto muy 1util ya que permite calcular algebraicamente una preali-
mentacion e indica que el sistema tiene una estructura muy particular.
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— Estabilidad parcial. Algunos resultados, provenientes de fuentes aportando
teoremas tipo Lyapunov para estabilidad parcial, han sido utilizados en las
demostraciones de estabilidad.

Se han conseguido varios resultados importantes:

1. La determinacién, después de una busqueda extensiva en la literatura,
de un ntmero reducido de modelos estandard para cultivos puros con un
substrato limitante.

2. Se ha sugerido un control invariante que aporta la base para desarrollos
posteriores. Ademds, se ha obtenido una prueba de estabilidad global que
ha permitido el tratamiento de problemas en los que aparecen funciones
de cinética tipo Haldane.

3. Se han sugerido diversos disefios para la regulacion de la tasa especifica
de crecimiento.

4. Finalmente, se han realizado varios experimentos utilizando una cepa del
S. cerevisiae con buenos resultados.

Los resultados de esta tesis aportan la base para el tratamiento de sistemas
con producto inhibidor, sistemas multisubstrato, y otros.
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1 General Introduction

The Group of Complex Systems Control, now a CSIC-associated unit, has
been collaborating with the Pilot Plant of Biotechnology' in the IATA
(CSIC)? for a long time. Their main interest is in fermentation processes for
the production of proteins, enzymes ... using genetically modified microor-
ganisms or recombinants. This kind of application represents a significant
proportion of all industrial uses of biotechnology. Some of them, such as the
production of antibiotics and other pharmaceutical products, are more and
more important.

All these processes are carried out using several kinds of reactors which
can be classified under two main groups: stirred tanks and tubular or col-
umn ones. The latter, not dealt with here, must be described taking into
account diffusion phenomena and consequently using PDEs. In the former,
homogeneous conditions can be assumed at least for lab-scale or small-scale
tanks, thus allowing for description using ODEs. Further to this classifica-
tion, reactors can also be divided into low and high-density ones. The latter
being clearly preferred for production. The most important of them is the
fed-batch bioreactor, which is also of the stirred tank class. Hence, all the
work is centred on this particular kind of bioreactor.

Most theses are set to solve a given theoretical problem within a given
theoretical framework. Afterwards, applications are sought after to illustrate
the main subject. In the work reported, a different procedure has been fol-
lowed. From the very beginning, solving a real problem was the main goal.
Particularly, the design of controllers, for improving the productivity in the
aforementioned fed-batch bioreactors. No theory or technique was chosen a
priori. It was expected this choice would present itself as research with the
bioreactors proceeded.

! Now Biopolis S.L. (www.biopolis.es), a company shared by the CSIC, Natraceu-
tical, Central Lechera Asturiana and Talde.
2 Inst. of Agrochem. and Food Tech. - Spanish Council for Scientific Research
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1 General Introduction

Objectives

The main objective can be subdivided into the following;:

1.

The search for a limited set of model structures representing most cases
of industrial interest. Thus, simplifying the search for solutions while
ensuring their usefulness.

The solution, as a first step in a bottom-up approach, to the control prob-
lem described below for the case of pure cultures with only one limiting
substrate and assuming oxygen is in excess.

All applicable regulators must use as few measures as possible. In our
case only biomass and volume measurements with no estimation of the
growth rate nor any other variable. Thus facilitating the practical imple-
mentation of the regulators, given that the real problem is characterized
by the scarcity of on-line measures. A key state variable, the substrate
(nutrient) concentration in the broth, is as a rule difficult to measure
on-line. Obviously, another line of research may have tried to design ro-
bust observers for non-linear systems. In practice, these observers may
not be adequate. For example, in many cases the substrate concentration
is so low that it is within the order of magnitude of noise. Finally, it is
also interesting in itself to analyze what can be done with a minimum of
information.

The controllers must also be quite robust since the presence of (strong)
parametric uncertainty and significant nonlinearity are common problems
in this kind of process.

The main control specification: regulating the microorganisms specific
growth rate. A goal usually associated by the biologists with the mainte-
nance of a definite physiological state. It also appears in applications of
optimal control to biotechnological processes.

Besides the previously mentioned problems, in the case of fed-batch biore-
actors, partial equilibria and unbounded reference signals must be dealt
with. Specifically, a constant growth rate implies an exponential trajec-
tory for the absolute quantity of biomass.

Structure

The solutions suggested in this thesis are presented and explained in the
subsequent chapters, which are structured as follows:

— Problem statement - Ch 2. As shown in chapter 2, there are two standard

models or structures that represent at least 95% of all pure cultures of in-
dustrial interest. There are articles using these structures even for processes
with mized cultures. The case of multi-substrate pure cultures is also dealt
with in this chapter, but apart from this it has been left aside. There are al-
ready some studies on the modelling and control of general biotechnological
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processes that, besides the aforementioned ones, also include different kinds
of recycling plants (e.g: wastewater treatment), etcetera. In a sense, these
models are too general for our purposes. The biologists suggested there is
a limited number of typical microorganisms showing different kinds of be-
haviour. It must be taken into account that most often the microorganisms
to be genetically modified are chosen for their simple and/or well-known
behavioural patterns. Hence, a reduced set of models may be used and their
particularities exploited for control purposes. An extensive and intensive
literature search confirmed this point. Many aspects of the control problem
as a whole, such as the presence of nonlinearity and uncertainty, are also
presented in this chapter.

Invariant control - Ch 8 and Dealing with uncertainty - Ch 4. The search
for new techniques able to cope naturally with problems involving par-
tial equilibria led to the study of different theories. Namely flatness and
techniques considering partial stability. The former is studied in Appendix
A and its applications for control shown in chapters 3 and 4. Although
commonly associated to exact linearization, these are different properties
which under certain circumstances coincide. In fact, a system can be flat
in a subset of the state space with no equilibrium point inside. Even in
this case, flatness is still a very useful concept since it allows one to com-
pute algebraically a feedforward control and indicates the system has a
very particular structure. The other techniques considered consist of the
geometric control techniques suggested by Fradkov et al. in [134] and their
applications are also considered in the aforementioned chapters. Besides
the reasons exposed above, other factors make this geometric theory quite
suitable. In particular, the control specifications translate into a problem
of regulating a function (the specific growth rate) of part of the state vari-
ables. Consequently the problem of bioreactor control can be regarded as a
problem of coordinating control where coordination conditions, given in the
form of a relation of output variables, define smooth surfaces or multidi-
mensional submanifolds of the output space. These have a translation into
state space. The non-trivial geometrical objects obtained in this way are
usually called goal sets (submanifolds). The solution of the control problem
is then connected with some specific system properties such as invariance
and local attractivity of nontrivial sets. The controller derived using flat-
ness has a similar structure, one invariant control plus a stabilizing law.
Thus, a common structure was found which suggested the division between
chapter 3 Invariant control and chapter 4 Dealing with uncertainty. Build-
ing on the ideas developed in these stages, a new nonlinear robust adaptive
controller was designed. See again chapter 4.

Practical results - Ch 5. Finally, chapter 5 presents some experimental
results on real fermenters.

Conclusions - Ch 6 and the Appendices, including a survey on flatness and
some additional documentation.
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Attainments

Several important goals have been attained:

1. The determination of a reduced number of standard models of bioreactors

after an extensive literature search. These models have relatively few state
variables and a couple of particular structures represent most applications
for pure cultures with one limiting substrate.

An invariant control has been suggested that provides the basis for sub-
sequent designs. In particular, it is a part of the controllers presented in
chapter 4. Besides, a global stability proof was obtained that enabled the
treatment of those problems in which Haldane-like kinetic functions are
present.

Three designs for the regulation of the specific growth rate are suggested.
The first one is based on flatness and uses two PIs. The second one is
based on the geometric control techniques developed by Fradkov et alter.
It has been shown that the problem can be cast as one of partial stability,
and the corresponding techniques have been used to analyze it. Using
many elements and ideas of this design, a robust adaptive controller has
been developed and its stability proved.

Finally, several experiments have been carried out using a strain of S.
cerevisiae with good results.

The attainments in this thesis provide the basis for a future treatment of

systems with an inhibitor product, multisubstrate systems, among others.

Final remark

Before proceeding with chapter 2, a remark on nomenclature is in order.
Strictly speaking the term fermentation should be used with caution, but in
practice it is used (or misused) for almost any kind of bioreaction. This usage
is reflected in the text.



2 Problem statement

Biological systems are an example of complex systems. When being consid-
ered as a control plant, complex dynamical systems are characterized by [134]:

- High state-space dimension

- Multiple inputs and outputs

- External disturbances ...

- Significant nonlinearity and uncertainty

- Sophisticated and multiple objectives and performance criteria.

All these traits can be found in the bioreactors and are dealt with in the
following sections. This chapter is focused on an in-depth study of bioreactor
modelling for control purposes, considering not only the aspects mentioned
above but also the different production modes, available control inputs and
measurable outputs. In the literature, many different models for biotechno-
logical processes can be found. They vary not only in the functions used to
model the reaction kinetics but also in the structure and kind of the model
equations. For control purposes, the so called unstructured and non-segregated
models are mostly chosen. Even restricting ourselves to this kind of models,
there is still an important variety. Some authors, e.g. [1], suggest very general
models accounting for many different situations. In the approach adopted in
this chapter, a limited number of simple models considering as few variables
as possible is sought after. A set of standard models for the so called pure
cultures, already suggested by other authors, is presented. Their representa-
tivity is judged on the basis of an extensive review of the models appearing in
the literature and an analysis of a series of basic concepts, namely biomass,
substrate and product. As an introduction, the classical approach to the
subject is briefly developed. Afterwards it is shown in a reasoned way that
the above mentioned standard models actually represent most processes of
practical interest. The chapter is complemented by one section dedicated to
kinetic functions. Finally, the reader will find a catalogue with real examples
and references, besides some comments on structured/segregated models.
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2.1 Introduction

A complete model of a bioreactor may have to address mass transfer, growth
and biochemistry, physical chemical equilibria and various combinations of
each of these. It becomes hard to write simple equations when an accumula-
tion of factors affect time behaviour, but it is possible to develop differential
equations with terms for important factors. In other words, reduce a system
to its main components and formulate mass balances and rate equations that
integrate overall behaviour. This point is developed in the present section.

A bioreactor can be defined as a tank in which several microbial growth!
and enzyme-catalyzed reactions® occur simultaneously in o liqguid medium.

There are different kinds of models [2], depending on the simplifications
considered:

- If the cell is regarded as a black box and only the main extracellular species
consumed or excreted in the medium are considered, without delving into
the intracellular mechanisms, then the model is said to be non-structured
, otherwise structured.

- Cells may be subject to several phenomena such as aging so not all of
them have the same capacity of division, or genetic mutation so that some
cells do not produce the species of interest (plasmid loss). But if the model
is built supposing an average cell then it is said to be non-segregated.

Most fermentations of interest can be properly described, at least for
control purposes, by means of unstructured and non-segregated models. The
possible uses of structured and/or segregated models are commented in the fi-
nal section. Another simplification often considered, as previously mentioned,
is:

- Homogeinity. The conditions and concentrations in the tank are supposed
to be homogeneous, which is a good approximation for lab-scale and pre-
industrial fermentors.

From these hypotheses we proceed to develop models complete enough
to account for the process behaviour but not so complex that they become
extremely difficult to handle.

The traditional presentation, described in [1] and also [146], goes as fol-
lows:

The growth of microorganisms (bacteria, yeasts, etc.) proceeds by con-
sumption of appropriate nutrients or substrates (involving carbon, nitrogen,
oxygen, etc.) provided the environmental conditions (temperature, pH, etc)
are favourable. The mass of living microorganisms or living cells is called the
biomass. Associated with cell growth, but often proceeding at a different rate,
are the enzyme catalysed reactions in which some reactants are transformed

1 Often referred to as microbiological reactions
2 Also termed biochemical reactions or biotransformations



2.1 Introduction 7

into products (sometimes called metabolites) through the catalytic action of
intracellular or extracellular enzymes. As an example, take the dynamical
behaviour of the growth of one population of microorganisms on a single lim-
iting substrate® in a stirred tank reactor. It is most often expressed by the
following equations which are obtained from straightforward mass balances.

- The net accumulation of biomass in the reactor

(o)

prl Foux (2.1)

- The net accumulation of substrate in the reactor

d(vs)
dt

= —k1pvx + Finsin — Fouts (22)

- The variation of volume

2—1} = Fipn — Fout (2.3)
With z being the concentration of the microbial population (biomass) in the
reactor and in the effluent, s the substrate concentration in the reactor and in
the effluent, s;, the substrate concentration in the influent, Fj, the influent
flow rate, F,,; the effluent flow rate, u the specific microbial growth rate,
k1 the yield coefficient of substrate consumption by the biomass, and v the
volume of the culture medium. Some models may also consider other factors
such as gas exchange:

1. The growth of microorganisms in bioreactors is often accompanied by the
formation of products which are either soluble in the culture or which are
given off in gaseous form. The mass balance relative to the product in
the bioreactor is given by:

%:ﬂx—Dp—Q (2.4)
with p being the synthesis product concentration (in the liquid phase), Q
the rate of mass outflow of the product from the reactor in gaseous form,
D = F/v the dilution # and 7 the specific production rate.

2. Dissolved oxygen dynamics in aerobic fermentations, i.e. those in which
microorganisms need oxygen to develop properly. The dissolved oxygen
(DO) mass balance in the bioreactor is described as follows:

3 For the time being, suffice it to say this is in a way the main substrate or that
one directly influencing the growth rate.
4 Here, it is considered that F = Fip, = Fout or F = Fipn  Four =0
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ac
where C' is the DO concentration in the reactor, OTR is the oxygen
transfer rate and OUR is the oxygen uptake rate. Expressions for these
terms can be found in [1].

The way F;, and F,,; are used depends on the chosen production mode.

On the basis of liquid medium one-stage bioreactors the following modes are
found:

1. Batch. The simplest one. There is no material exchange with the environ-

ment except for gasses (oxygen, carbon dioxide,..), i.e. Fi, = Fou = 0.
All substrates are in excess within the reactor from the beginning of fer-
mentation.

. Chemostats and auzostats , also termed continuous bioreactors. The reac-

tor is continuously fed with a substrate influent. There is also an outflow
whose rate is equal to the inflow rate (Fy, = F,y; = F), hence the volume
is constant for a fixed dilution. In the chemostat, the nutrient is fed at
a constant rate, i.e. the dilution is D = F/v = const, which implies in
steady state a constant cell division rate and thus a constant physiolog-
ical state. This device was invented in the early 1940’s and marked the
advent of serious continuous fermentation [143].

An auxostat, a name coined by Martin and Hempfling in 1976, also called
nustat or nutritstat, can be regarded as a chemostat plus a control feed-
back. Medium with a given substrate concentration is fed in a suitable
way into the reactor so as to hold constant a given factor such as the
pH, dissolved oxygen or a particular concentration. From a biologist’s
point of view, it could be said that “the microorganisms establish the
feeding rate as it is adjusted to match their rate of metabolism”. Par-
ticular cases reported in the bioprocess and bioengineering literature are
the pH-auxostat, the DO-auxostat and the turbidostat. Clearly, the same
ideas can be used in fed-batch bioreactors.

Continuous reactors have two important disadvantages. First, the low
efficiency with respect to substrate usage. Second, a higher risk of con-
tamination. Hence, continuous reactors are less used in industry, with
the exception of waste treatment processes. Researchers often use them
to determine certain physiological parameters of microorganisms.

. Fed-batch. Usually the production is carried out in fedbatch mode since

substrate usage is optimized. The basic scheme is shown in figure 2.1.
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F, sinj rpm

Fig. 2.1. Fed-batch bioreactor

The symbols in figure 2.1 read as follows:

- There can be several substrates s; (multi-substrate systems), prod-
ucts py and possibly different biomass populations z; (i.e. mixed cul-
tures). The s;, pr and z; represent concentrations of the correspond-
ing species in the tank.

- v is the volume in the bioreactor, F' = F}, the input flux or alterna-
tively D = F/v the dilution.

- 8in; the concentration of substrate j in the input flux.

- There is also, in aerobic fermentations, gas exchange with the envi-
ronment (e.g: O2,CO5), but often it is not considered unless oxygen
is limited.

In general it is difficult to measure the substrate/s s; on line. Often the
available measures are off-line. On the other hand, there are sensors for
biomass® even though in general it is not possible to differentiate between
different populations within the same reactor. The same applies to the
distinction between viable and non-viable cells. Clearly, it is also possible
to measure volume v. Other state variables such as products are seldom
available on-line. Use of observers is not trivial either, and estimations of
the specific growth rate p tend to be too noisy. A comprehensive survey
of available measurements for bioreactors can be found in [142].

As for the specifications, it is usually desirable to make biomass grow at
a fixed rate until there is no more substrate to feed or the maximum tank

5 The group designed a biomass sensor with a good range. See [137].
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capacity has been reached. The goal is to keep the microorganism in a
given physiological state. As it will be explained later, the specific growth
rate depends on several factors and consequently we will have a series of
sub-specifications:

- First of all, a set of environmental conditions such as temperature, pH,
pO2... must be considered. These are usually kept constant at some
optimal values.

- Secondly, growth depends on the substrate concentration s and may
also depend on that of a given product p. In the simple yet frequent
case in which it only depends on s, we have p = const implies
s = const. But substrate concentration is seldom if ever measured on-
line. On the other hand, it can be seen that a constant p corresponds
with an exponential trajectory for the absolute quantity of biomass
Z = xv and viceversa. It is interesting to see that only part of the vari-
ables reach an equilibrium point (e.g. substrate concentration). Other
variables, i.e. volume, follow an unbounded trajectory. This kind of
setting is considered within the framework of partial stability analysis.
References for this subject are [138] and particularly [92]. In [1] the
point is highlighted but it is not dealt with.

This point will be considered again once a set of basis models has been

established.

For the time being, equations 2.1 to 2.5 form the basis for a general
dynamical model of bioreactors [1]:

£=Kp(&t) —DE—Q(E) + F (2.6)

In this model several coexisting microbial populations, substrates, and
products can be considered. The different state variables are represented by
vector £, The first term K(&,t) describes the kinetics of the biochemical
and microbiological reactions which are involved in the process. The remain-
ing terms describe the transport dynamics of the components through the
bioreactor. Functions ¢ are the rate equations which may depend on several
state and environmental variables. These are bounded functions which may
be monotonously increasing-decreasing or non-monotonous’.

A priori, from this standpoint, we may get models of arbitrary order and
still very complex and difficult to handle. But the experience of biologists
and biotechnologists shows that in practice there is a reduced number of
typical systems. This motivated a review of the question. This revision, in
turn, entailed a deeper study of the three key concepts: biomass, substrate
and product. This study is presented in the following section.

6 Notice E stands for d¢/dt. From now on, this will be used as standard notation
7 See section Kinetic functions for further details
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2.2 Basic concepts

This section is divided into three blocks dedicated to the basic concepts
mentioned above:

Biomass

Defined as the concentration of living cells in the bioreactor, although it may
refer also to the population of microorganisms as a whole. Usually, popula-
tions formed only by one species or strain are dealt with. These are the so-
called pure cultures. In some instances, there may be more than one species.
These are the so-called mized cultures. Under this heading several possible
interactions between two or more microorganisms are considered [146]. Ref-
erences in the literature to processes using several microorganisms for the
production of enzymes, proteins, antibiotics...are not common. Mixed cul-
tures of industrial interest are:

a) A particular case of mixed culture in which there is a population of geneti-
cally modified microorganisms and a second one formed by microorganisms
which have lost the modification. This phenomenon is referred to as plas-
mid loss [74].

b)Waste treatment processes, e.g. waste-water treatment processes. In this
case there are many organisms living on many different and varying sub-
strates. Being a field in its own right, it has not been considered in this
work.

Case (a) is more interesting for our purposes and falls under the general
case of several microorganisms competing for a single nutrient source. Recent
studies [74] show that even if we interfere in the system it is not possible to
have more than two different populations coexisting in equilibrium.

Other possible relations between two microorganisms, such as predator-
prey kinetics or commensalism, are listed in [146].

Substrate

The case for only one main substrate is presented first. The multisubstrate
case is much more complex, encompasses several situations and it is in fact
hard to find in the literature a unified view on the subject. Thus, two pre-
sentations are given along with their coincidences. Illustrative examples are
shown in section 2.5.

Microorganisms actually live on a combination of carbon sources, nitro-
gen sources, vitamins and other elements which altogether form the culture
medium. These different substrates may be divided into:

- homologous: substrates serving the same physiological purpose, e.g. the
substrates considered are all carbon sources or nitrogen sources.
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- heterologous: substrates serving different physiological purposes. In this
case each substrate satisfies a different metabolic requirement, e.g. one
substrate serves as carbon source and another substrate serves as nitrogen
source.

Tipycally, all these substrates except one are found in excess both in the
medium and the inflow. The nutrient in short supply relative to the others
will be exhausted first and will thus limit cellular growth. At this point, it
should be mentioned that in microbiology the term limitation of growth is
used in two different ways [148]:

- In a stoichiometric sense, i.e. it indicates that a certain amount of biomass
is synthesized from a particular nutrient. This is reflected in the growth
yield constants for the different elements.

- In the sense that the specific growth rate u is controlled by the extracellular
concentration s of a particular growth substrate.

The present discussion is limited to the second case. The ingredients, other
than the limiting one, may play various roles such as exhibiting toxicity or
promoting cellular activities, but there will not be an acute shortage to re-
strict growth as in the case of the limiting nutrient becoming exhausted.
Only this limiting substrate will take part in the equations, the other ones
being disregarded. Which of the previously mentioned elements plays the role
of limiting substrate? According to [143], the usual concepts about growth
limitation are based mainly on a carbonaceous nutrient such as glucose. The
situation changes slightly for other factors such as nitrogen, sulfur and phos-
phate. The problem arises because cell mass may not exactly reflect these
limitations. For example, cells without adequate nitrogenous components will
store carbonaceous ingredients for later use....or the ratio of the limiting nu-
trient to other media components may be critical in the production of many
bio-products such as storage compounds, exo-polysaccharides and enzymes.

When dealing with several limiting substrates, several approaches can be
taken as mentioned above:

- In [143] a division is made between diauxic and biphasic behaviour. This
division seems to make sense only when dealing with two (or more) sub-
strates which are carbon sources. The basic definitions are as follows

* diauxic: diauxic consumption of two or more substrates means the sub-
strates are used in sequence. The utilization of the second substrate
begins after the first one has been exhausted.

* biphasic: multi-substrate limited growth, where more than one nutrient
affects the growth rate and are consumed similtaneously.

- In [145] a different approach is taken. Substrates are divided into:

* essential: there is no growth if only one of the substrates is lacking.
Two cases are comprised here
e Interactive model. All substrates together determine the growth rate.
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e Non-interactive model. At any time only the substrate with the
strongest limitation governs the growth rate. This leads to a selec-
tion of the minimum growth rate allowed among all substrates.

A typical example for the presence of two essential substrates is growth

of obligate aerobic microorganisms under limitation of the carbon source

and oxygen.

growth enhancing and alternative: one of the substrates is already

sufficient for growth and others are

e cither used up in parallel,

e or sequentially.

A comparison of both approaches could be summed up in the following
scheme:

- The concept of diauxia coincides with that of alternative substrates, i.e
those used up sequentially.

- The concept of biphasia would coincide both with the case of essential sub-
strates in interactive models and the case of growth enhancing substrates,
i.e. those used up in parallel.

- Finally, the case of essential substrates in non-interactive models is re-
ducible to a set of models with a single limiting substrate each one.

Some examples of the different behaviours are shown in the catalogue,
but some comments are in order here. Many microorganisms show a diauxic
behaviour, the passage from one substrate to another requiring an adaptation
period. Biphasic behaviour is reported in the S. cerevisae [44] and E. coli [77],
[149]. Besides the case of obligate aerobic microorganisms mentioned above.
Finally, an example [37] was found which doesn’t seem to fit into any of the
classifications presented in this section. In this example, there is only one
limiting substrate affecting growth but there is also an inducer being used
up. The inducer only affects production of a product p, but this one in turn
inhibits growth. Hence it is necessary to consider both species in the model.

Product

All species excreted by the microorganism may be labelled as products. A
simple functional classification may go as follows:

— Products of interest (enzymes, proteins, antibiotics...)

— Inhibitory products, i.e. affecting growth directly. Usually, only one if
present and it may coincide with a product of interest.

— A product may be used also as a substrate as mentioned before. Some
inhibitory products such as ethanol may take part in these phenomena.

Usually, products are considered in the model only if inhibitory. Although
that depends also on the particular case and our purposes. For example,
in fed-batch mode and for a given maximum volume several optimization
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problems can be set in which the product p must be known. In some cases of
diauxic behaviour, in which a given species is first product and in a second
stage substrate, it is easier to have two separate models. The main exception
is found in the case of biphasic behaviour.

There is also a classification of products depending on how they are gen-
erated by the microorganism. See below and also reference [145].

2.3 Models for control

From previous sections it is possible to deduce that as a rule, for control
purposes, it is only necessary to consider in the models the following:

1. At most two different populations of microorganisms.

2. No more than two limiting substrates, particularly if oxygen is in excess.
3. One product.

4. And, in some kinds of bioreactors, volume.

A worst typical case may imply: x1, x2, s1, s2, p, v. In all six state vari-
ables. Additionally, a bibliographic review shows that actually two standard
models with three or four state variables (x,s,(p),v) cover a huge portion of all
applications. These models, corresponding to pure cultures, will be treated
carefully below.

The standard models presented in this section are unstructured non-
segregated models that represent pure cultures with one limiting substrate.
In this models gas exchange is not considered and oxygen is assumed to be in
excess unless it is the limiting substrate as in example 2.21 in the catalogue®.
It is also standard practice to consider only one product. Either the metabo-
lite of interest or, if it exists, an inhibitor, a product that somehow affects
microbial growth. In both cases the product may be considered, for example
when applying optimization techniques for productivity enhancement. But,
for our purposes, only in the second case the product must always be taken
into account.

A high percentage of the bioreactions can be classified into two general
types according to the reaction schemes [1], [5]. In the first type, the product
is formed in parallel with the microbial growth. It is said to be growth-linked.

S(substrate) & X (biomass) + P(product) (2.7)

The symbol ¢ indicates that the biomass is an autocatalyst, i.e. a catalyst
of its own production. The more biomass there is, the more biomass (and

8 Oxygen often appears in multi-substrate models as a limiting substrate along
with a carbon source (e.g. glucose). This sort of models, although briefly reviewed
here, are not dealt with in the following chapters
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product) can be produced. It is a pseudoreactant which is not consumed by
the reaction but can be accumulated in the reactor. The following state space
model can be derived:

T =puxr — Dz

$=—yspx + D(s; — 8) (2.8)
P =ypuz — Dp

v=F

where x, s and p are the biomass, substrate and product concentrations
respectively; D is the dilution rate; s; is the influent substrate concentration;
w is the specific growth rate; y; and y, are the yield coefficients. Processes
for the production of single-cell protein, alcohol and gluconic acid all belong
to this category.

In the second type processes, product formation takes place either in the
final phase of growth or in the secondary way, which is not directly connected
with growth. The reaction scheme can be expressed as follows:

S(substrate) + X (biomass)
X (biomass) + S(substrate) — X + P(product)

from which the following state space model can be derived:

T = puxr — Dz

§ = —Ysx b — Yspmx + D(s; — ) (2.9)
p=mnx — Dp '
v=F

where 7 is the specific production rate. Many antibiotics (streptomycin,
penicillin), lactic acid, citric acid, itaconic acid, glucoamylase and some amino
acids are produced by this type of fermentation.

These two models are commonly taken in the literature as the standard
ones for representing fermentation processes. See [4] to [15].

Depending on metabolite production, composition of culture medium and
regulation in the strain used, there may be intermediate forms. A more gen-
eral model [4] may be:

T =puxr — Dz
5=—ox+ D(s; — s)
p=mx—kp— Dp
n=F

(2.10)
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where k is the hydrolysis (or degradation) constant for product; u, o
and 7 are the specific rates of growth, substrate consumption and product
formation, respectively. In addition, there may be terms for biomass decay
and maintenance substrate consumption in the form kg, but usually are
not taken into account. The specific rates may depend on substrate, cell, and
product concentrations, or they may be related to each other. The model
(2.10) represents various fed-batch fermentations such as

- microbial cell productions involving bacteria. No metabolite production,
both p and ¢ only depend on s.

- lysine production. k = 0, u(s), 7(p) and o(u).

- alcohol production. k = 0, u(s,p), (s,p) and o(s, p).

- antibiotic production. k = 0, u(zx, s), w(s) and o(s).

Note that in this list ¢« and the other specific rates depend always on s and
may be on x, but not on the product except for the case of alcohol production.
Consequently, it may happen that production of say an antibiotic which in
principle follows model 2.9 may actually be modelled for control purposes by
a simpler set of equations discarding the equation for product.

As for the control specifications, two cases may be found depending on
whether product affects the kinetic functions or not. Having y = i, = const?®
will be in the first case equivalent to s = s,, whereas in the second case
several possibilities are open. A reasonable specification would be to keep a
constant product concentration at some p = p, along with s = s,.. Additional
devices would be needed for filtering the given product out of the broth.

At this point, it is interesting to make some comments on the control
inputs which have been assumed to be available in the control designs pre-
sented in later chapters. First of all, the quantity of substrate supplied to the
bioreactor depends on two parameters:

- F, the input flux.
- 8;, the substrate concentration in the input flux.

Usually only the first possibility is readily available. Two cases are shown:

1. Only one control action, F' or s; is used, resulting in an affine system. If
the input flux is changed, a double effect occurs:

- the dilution D will change and consequently the concentrations of all
the species present in the bioreactor.
- the quantity of substrate supplied will change also and then, indi-
rectly, the specific growth rate.
2. If an actuator able to vary separately the flux F' and s; is available,
then it will be possible to take into account independently the two effects

9 Taking the equation for biomass in absolute masses instead of concentrations,
T = uZ, it is easily checked that in any case p = u., is equivalent to forcing an
exponential trajectory for T = xv as explained in a previous section
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enumerated above. In any case, the coupling between the new control
actions should be considered. Although a non-affine system is obtained, in
practice it is implemented using two input flows F; and F» with substrate
concentrations S;pmaz and S;pmin resulting in an affine control system

Finally, if the microorganism produces an inhibitor it is very interesting to
add a recirculation through a filter in order to keep the inhibitor concentration
at a given value. In a first approach this may be represented in the equations
as a new control action o which determines the rate of product removal. This
combination also gives an affine system:

T =puxr — Dz
$=—ox+ D(s; —s)
p=mx—ap— Dp
v=F

(2.11)

This will be used in chapter 3. Of course, for real application further
study of the dynamics introduced by the filtering system and its effect on the
system should be carried out. In [155] an interesting application of a scheme
using medium recycling is presented showing good productivity results.

2.4 Kinetic functions

As it has been mentioned previously, the functions u, o and 7= depend on
several factors such as the concentrations of substrate and product, but also
the pH, temperature, etc.

Usually, u is expressed as a product of several terms and each one depends
on one of the factors previously cited. Thus:

p= p(s)u(p)u(pH)(T) ... (2.12)

Temperature, pH and other environmental variables are usually kept con-
stant. In some cases the production process is divided into several stages or
phases, and these variables may have different constant values in each stage.
It may also be possible to let a particular variable (e.g: pH, pO2) evolve freely
in order to, for example, facilitate the adaptation of the microorganisms from
one phase to the next. As for the other factors mentioned above the most
common expressions are:

— Substrate concentration. (See fig. 2.2)
1. Monod

= mes
u(s) T s

(2.13)

where i, is the maximum growth rate, and ks a transport constant.
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2. Haldane, in which inhibition of growth by the substrate is considered.

[0S
§) = ——= 2.14
W) = (214

A relatively common alternative expression is

_ Hms 1

(2.15)

i.e. the product of a Monod-like term and another term representing the
inhibition.
In practice there is always an inhibition of biomass growth, but in many
cases it appears for substrate concentrations that are very high when com-
pared to those in the zone of interest. Hence, most often a Monod growth
rate model is used. Applications such as water decontamination fall into
the opposite case. In the fermentation processes we work with, inhibitory
effects caused by a product are, if present, more important.
— Product concentration. An example may be the inhibition of growth in-
duced by ethanol.

_ kp
- kp +p

1(p) (2.16)

— Biomass concentration. Microbial growth may be slower at high concentra-
tions. A modification of Monod’s model, in order to introduce this effect,
is the Contois model

HUmS
kex + s

uis,z) = (2.17)

Another common model is the logistic one

(@) = pm(1 — az) (2.18)

There are many others in the literature. For a comprehensive list see [1]
and also [145]. In the last reference, it is noted that the differences among the
different kinetic functions are less relevant if one keeps in mind measuring
errors and remaining modeling errors. Therefore, the simplest forms such as
Monod are mostly chosen.

As for the function 7 related to product formation there may be several
cases. If product formation is growth associated then © = kpu, but the specific
production rate can also be completely or partially independent of the specific
growth rate. A typical model for partial dependence, found for instance in
the case of lactic fermentation, is due to Luedekind and Piret [1]:

T =ku+p

where p is the non-growth associated specific production rate. If 7 is fully
independent of u, then it will have a form similar to those seen above. In an
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Monod

10

Haldane

.2. Monod / Haldane kinetic functions

Fig. 2

008« .

Fig. 2.3. Monod with product inhibition
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alternative approach [145], # may be a nonlinear function of u or even its
time derivative.

In [4] a classification of fermentations is given according to the form of
1 and w. Nothing is said about o, but from previous examples it can be
seen that in most cases it will be a function of the other two specific rates.
According to this classification, there appear three main types:

1- Monotonic ¢ and non-monotonic 7. This type is most common, in which
the cell growth is not inhibited or repressed while the product formation
is inhibited. Fermentation of antibiotics such as penicillin and amino acids
such as lysine belongs to this type.

2- Non-monotonic ¢ and monotonic 7. This type is less common. However,
reports suggesting this may be the case, include glutamic acid fermenta-
tion on ethanol and vitamin B12 fermentation.

3- Non-monotonic i and non-monotonic . This is the least common type.
An example is ethanol fermentation from fructose.

For the multisubstrate case the kinetic functions suggested in the liter-
ature are generalizations of the previous ones. So, for example, in [146] the
following examples are found:

— Multi-substrate Monod kinetics.
S1 So
k14 s1 ka + s2

K= HKm

An example of such kinetics is the simultaneous requirement of glucose and
oxygen by aerobically growing organisms.
— Double-Monod kinetics.

S1 S92 1
ki1 + s1 + k2+82)(/€1 + ko

1= im( )
An example of this kinetics is the parallel use of substrates, such as various
types of sugars.

— Diauxic Monod growth.

S1 + S9
k1 + s1 Him2 ko + 5o + 5% /kr

B = HUmi

The consumption of substrate so will be inhibited until s; is exhausted,
for suitably low values of k;. Diauxic growth can be observed in many
organisms. An example is E. coli, where the uptake of lactose is repressed
in the presence of glucose.

In [145], the following general structures are suggested:

— Interacting model for essential substrates.

1(81,82, ey Sn) = MmazT1(51)72(82)....7n(Sn)
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— Non-interacting model for essential substrates.

(81,82, s Sn) = mian(p1(s1), p2(82), oo fin(8n))  Hi(Si) = MimaaTi(5:)

— Model for growth-enhancing and alternative substrates.

(1(815 825 ey Sn) = p1(51) + p2(82) + oo + pn(sn)  1i(8:) = Pimazri(8:)

As it has been stressed in this section, for control puposes, the relevant
characteristics of the kinetic functions are

— Boundedness
— Monotonicity vs. non-monotonicity

In addition, the simplest forms are often chosen and in general they can
be approximated by products/sums of relatively simple rational functions. In
this case, systems are represented by sets of differential polynomial equations
which are easier to handle with computer algebra systems such as Maple or
Mathematica. This point is not considered here, but opens an interesting line
for future research [150].

2.5 A catalogue

Finally, a list of typical models is shown below. It includes several examples
of top industrial microorganisms. Some of the models are set for production
in batch mode, i.e, with no input or output flux. Later on, a few examples of
biphasic and other models are included.

- Bacillus subtilis [16], which corresponds to the second type model (see
2.9) with ysp = 0 and adds an hydrolisis constant k.

T = puxr — Dz
§=—px+ D(s; —s)
p=mnx—kp— Dp

b=F (2.19)
— .u’ma:vs
k+s
kps
T
Kp + s+ Kz'SQ

- Corynebacterium (L-glutamic acid production) [18], which exactly corre-
sponds to the second type model.
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T = px
. 1 1
§=— nr — T
Yz /s Yp/s

p=mr (2.20)

— :U'ma:cs

s+ Kq(1+ —Kfm)
WmarS

T

- Kps +s(1 + Ki,)

- Candida parapsilosis (Xylitol production) [20]. In this example oxygen is
the limiting substrate. This model is of the first type (see 2.8).

T = px
. 1 %
§=— ux + kra(s* — s)
Yo- (2.21)
P = aux
_ HmaxS
K KOQ + s

- Microbiological Ethanol Synthesis by means of Zymomous mobilis [22].
An example of complex kinetic functions in which, as a curiosity, s;,
enters in the expressions for p and 7. It can be ascribed to the second
type model with y,, = 0.

T =puxr — Dz
& — _ D(s.. —
$ Yp/smc—l— (Sin — )
p=mx— Dp
o=F (2.22)
HmS D \q T 9 K;— sin
= 1 (£ya)y(1 — —
a Kis+s (plm) I CCm) )(Kz'—Sm)—(S—Sz‘n)
= GpmS (1_ b pz.)b .z )
Ko + s Pom —Ppi° K+

- Lactic fermentation [23] which corresponds to the more general model
(see 2.10). The most common model for lactic fermentation found in the
literature assumes m = constant, so it can be ascribed to the second type
model.
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T = px — kqxr — Dx

1
§=— x — mx + D(s; — s)
Yz /s Yp/s
P = Yppx + 7z — Dp (2.23)
v=F '
_ HmazS _K;p
=—c¢
k+s
ﬂmars
mT=—
k-+s

- Penicilline production [30] to [32]. This model also corresponds exactly
to the second type model.

T = puxr — Dz
$=—ox+D(s;—s
= —oz+ D(si =) (2.24)
p=mnx—kp— Dp
v=F
~0dls
M= 0,006z + s
0.004s
mw =
0.0001 + s + 10s2
_ k™
o= 0‘474- 19 + 0.029
k=0.01

- Saccharomyces cerevisiae. Here, several models are given depending on

the operating conditions.
a) Anaerobic fermentation on glucose [26]. This model corresponds to
the second type model with ys, = 0. Notice that p and 7 have the

same form.
T = puxr — Dz
1
§=—yHT+ D(s; — s)
p=mx— Dp
v=F (2.25)
_ _HmS 1
P K1+ £
TmS 1
m =
K +s1+ -2
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b) Aerobic fermentation on ethanol. This model, representing a particu-
lar recombinant strain (T73 BGL, see chapter 5), exactly corresponds
to the first type model.

T = pux — Dx
. 1
§ =~z + D(si —s) (2.26)
, Wm S
= F =
v a K+s

- Kluyveromyces lactis. Production of S-adenosyl-L-methionine. [147]. This
model corresponds to a hybrid type, plus a time-dependent term sug-
gested by the authors to account for a time lag and a maintenance coef-

ficient m.
. HmS _
T = ux M:KL—I-S(I_e t/tL)
5= —qsT qs = Y/ﬁ Pirt — equation. (2.27)
/s

D= qpT gp = Ap+ B Luedekind — Piret.

Some key features, namely model type and influence of product on growth,
are summarized in the following table.

example model type product
I (2.8)|II (2.9)|hybrid (2.10)
Bacilllus subtilis X no
Corynebacterium X yes
Candida parapsilosis X no
Zymomous mobilis X yes
Lactic fermentation X yes
Penicillin production X no
S. cerevisiae. Anaerobic X yes
S. cerevisiae. Aerobic X no
Kluyveromyces lactis X no

As a complement to this section, some examples are given of unstructured
non-segregated biphasic models. It must be noticed that, although more com-
plex, they are at most of order six:

- Saccharomyces cerevisiae. Several models are given in [43] to [45].
- Baker’s yeast [27] (akin to S. cerevisiae). The model is in absolute masses
and considers gas exchange.
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- One substrate plus limitation in oxygen. Penicillin production [146]. Con-
stants k1 and ko are turned on and off according to the value of p.

- Growth enhancing substrates. P. vulgaris on glucose and citric acid [145]
(Tsao and Yang).

- Escherichia coli [37]. This example does not fall in any of the categories
described in previous sections. The substrate s is an inducer which influ-
ences the production of p but does not affect growth directly. Its indirect
influence on growth is due to the fact that p is inhibitory.

2.6 Structured and segregated models

Some phenomena, causing a variation in the biomass activity per unit biomass
concentration, can not be properly handled by unstructured models. Exam-
ples are [146]:

- Loss of plasmids.

- Induction and repression of genes.

- Variation of RNA content of the cells.

- Variation of enzyme content of the cells.

- Post-translational modification of proteins.

- Signaling networks.

- Membrane transport.

- Accumulation of storage materials.

- Morphological changes, e.g. branching of filamentous organisms, volume to
surface ratio of yeast cells.

Structured models provide information about the physiological state of
the microorganisms, their composition and regulatory adaptation to the en-
vironment. Cell mass is structured into several intracellular compounds and
functional groups, connected to each other and to the environment by fluxes
of material and information. A structured model should normally be con-
structed of as few elements as possible. Otherwise the difficulties for the
experimental model verification and parameter identification become insu-
perable [145]. Sometimes, even the verification of simple unstructured models
is not possible owing to experimental difficulties. Moreover, getting on-line
information of internal variables is impossible or extremely difficult due to
sensorization and observability problems. For this reason structured models
are seldom used for design or control [146]. Structured models may be useful
to model transient behaviour of a biological system, caused for example by
one or some of the phenomena in the list above, or if a wide range of changes
of environmental conditions have to be described with one model and one
set of parameters. In other words, structured (and/or segregated) models are
mainly of interest for basic research. The complexity increases too much with
no clear advantages for production and control purposes. On the other hand,
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2 Problem statement

all the phenomena described above can not be plainly ignored and consti-
tute one argument more favouring the design of robust controllers. Surveys
on structured modelling can be found in [47] and [48]. Particular examples
in [49], [50], [51] and [52]. For segregated models see [53] and [54].

2.7 Non-linearity and Uncertainty

As can be seen, these systems are in general highly nonlinear. The nonlin-
earities are most noticeable in the kinetic functions. These systems also show
both parametric and unstructured uncertainty:

1. Dynamic (or unstructured) uncertainty is due to:

The use of unstructured and non-segregated models. Thus, ignoring
part of the system dynamics which is lumped into some key factors.
See the introduction and the previous section.

Besides the previous point, other assumptions such as homogeneity or
some further model simplifications are usually made. Let’s see as an
example a simple case which only comprises the growth of biomass on
a single substrate. The production is in batch mode, i.e. with no inputs
or outputs (except for gas exchange). Then:

&= (u—ka)w
§=—(yspt + km)x (2.28)
=0

where z (g/1) is the biomass, s (g/l) substrate concentration and v

volume. The parameters are,

* kq: used to take into account the natural death of microorganisms
or a loss of the division capacity. This term is usually disregarded.

* k., is a maintenance term representing the amount of substrate used
for the biomass survival. Usually, it is disregarded and its effect
lumped into ys, which becomes an aparent yield coefficient.

2. Parametric uncertainty may be due to:

Identification problems.

The fact that not two populations are equal, because of environmental
effects, the preparation of the inoculus.....

Aging of cells which is reflected in slight variations of certain param-
eters during an experiment. For example, the yield coefficient. It is
usually considered constant but with the aging of cellular population a
greater quantity of substrate is needed to produce the same amount of
biomass. Hence, ys will tend to increase, i.e. there is a drift with time.
In general, any change in the environment or in the broth can poten-
tially affect the system. Microorganisms are living things that contin-
uously adapt themselves to changing conditions.
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3. Uncertainty in the actuators (e.g. in the peristaltic pumps).

In addition to all these factors, the system is also affected by pertur-
bations. The most important ones, not included in the model, are reflected
in:

1. Volume, due for example to the samples for off-line analysis, the evapo-
ration caused by aereation, etc.

2. In some cases the substrate concentration in the inflow may suffer varia-
tions.

2.8 Conclusions

In this chapter, it has been shown how a reduced number of models with
relatively few state variables and a particular structure represent most ap-
plications. Moreover, even if multisubstrate and/or multiorganism systems
were taken into account it would still be possible to work with relatively sim-
ple models with similar structures. Models for mixed cultures have not been
considered but some examples can be found in [55] and [56]. Is there any
point in considering some structured models? Although it may be interesting
to explore this possibility in some particular instances, the increase in model
complexity is seldom balanced by the gains in a finer description. Finally,
other high density cultures of microorganisms such as fixed bed bioreactors
or hollow fibre ones [145] have not been considered in this review.

The main characteristics of the process, relevant for control design, have
been outlined. In the following chapters several key points are assumed:

1. All the work will be centred around the basic models described in sec-
tion 2.3 for pure cultures with only one limiting substrate and assuming
oxygen is in excess.

2. Only biomass and volume are measured on-line. No estimation of the
specific rates is used. These demands are a consequence of practical con-
siderations, but on the other hand it is also interesting in itself to analyze
what can be done with a minimum of information.

3. The main control specification will be to keep a constant growth rate.
This is usually associated by the biologists with the maintenance of a
definite physiological state. It also appears in applications of optimal
control to biotechnological processes. For references on this research area
see [70], [71].

4. Three actuator configurations are to be used: 1) only the flux F', 2) both
F and s;, and finally 3) F and «.

Other central factors, namely nonlinearity and uncertainty, determine the
techniques to be used and the search for a robust/adaptive controller.






3 Invariant control

This chapter addresses the computation of invariant control laws. It will be
seen how to derive partial state feedbacks that, assuming ideal conditions and
perfect model, keep the specific growth rate u constant provided the initial
conditions are adequate. These feedbacks depend on a reduced number of
tunable parameters (at most two) which the stabilizing controllers designed
in the next chapter modify suitably. The chapter begins with the simplest
case, for which the invariant control law can be easily deduced from physical
considerations. This law is the closed loop version of the exponential feeding
already suggested in several references as shown later. It was also found that
the closed loop version had been suggested previously in two references. But,
there is no invariance and/or stability analysis. Moreover, the geometric ap-
proach taken here is new. This approach has led to the determination of other
important objects for the designs in chapter 4. Mainly, the goal manifold to
be followed by the system if i is to be kept constant. Also, the basic law is
extended to more complex cases. Finally, in the second half of the chapter,
a study of both local and global stability within the framework of partial
stability is included.

3.1 Introduction

As it has been mentioned above, for the simpler case in which product is not
considered as in

. F

T = pu(s)r — P

. F 1
§=—yu(s)r + E(Si —3) (3.1)
v=F

an exponential feeding law has already been suggested. This law can be
expressed as

F(t) = Mx(t)v(t) = Azgveet ™t for some M = const. (3.2)
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where zg and vg are the initial conditions for biomass and volume; g,
is the desired growth rate. For references see, in the 80’s [80] and [81], also
through the 90’s [57], [59], [61], [62], [63], [65], [66], [67], [72], [77], [78] and
recently [69], [73], [75], [76]. In a few references, [65], [66], [67] and [76],
corrections are introduced modifying a constant (A , p,...) depending on the
results of different measures.

Actually, law 3.2 can be deduced heuristically. There are two starting
points:

a) From past experience biotechnologists know that in order to keep a con-
stant biomass growth rate in a fed-batch fermentation, feeding flux should
“grow exponentially”.

b)Assume all individuals in a population can be identified with an average
individual. Regard this individual as a processing unit that needs a deter-
mined quantity of energy so as to maintain a given level of activity. Then
it follows that the quantity of substrate supplied, and consequently the
feeding flux, must be proportional to the total population.

Designating the total mass population by % = zwv, it can be checked
that 2 = p(s)z. If ju(s) =, then z=pu.Z and Z(t) = Toet .
From b) it is immediate that for some constant A

F(t) = \z(t) = AZgetr?

The use of a closed loop law, i.e. measuring on-line biomass and volume,

F=MXxv for some A= const. (3.3)

is suggested for the first time in [64](1992). The difficulties in measuring
biomass, at least for some ranges, are the probable cause for the loss of interest
and only a similar law appears again in an academic article [100](1999),
[101](2002). It is derived using complex techniques involving non-linear state-
dependent time-scalings and applied in simulations to a fourth order baker’s
yeast fermentation process model. It is proved that law ensures the substrate
concentration will be within a given range i.e. below a given s..;;. Other
appearances are [125], [126] (2001) and [151](2003) in which experimental
tests are shown. See also [74] (2003) for continuous bioreactors.

Finally, in adaptive control of (bio)chemical reactors [70] a similar law is
used but needs the full state plus an estimation of an specific rate. In order to
solve this problem, it is “approximated” taking the substrate concentration
s equal to s, a reference concentration.

A simple deduction of 3.3 could be as shown below. Consider the model
3.1. Notice the kinetic function p depends only on the substrate concentra-
tion. In order to keep a constant u(s), the substrate concentration should be
kept constant at a value s = s, for which p(s,) = p,.
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Taking the flow rate F' = Azwv, the equation for substrate becomes

5= (—yp(s) + A(si — 8))x

Provided s = s, from the beginning, it is possible to keep $ = 0 using

A= constant (3.4)
Si — Sp
independently of the initial conditions for  and v. In such a case, the
trajectories followed by these two state variables would be defined by an
“exosystem”

b= g2
S (3.5)

U= A1V

Conversely, if biomass x and volume v follow a trajectory defined by (3.4)-
(3.5) then necessarily § = 0 and s = s,.. This is related to the fact that the
system (3.1) is flat with flat outputs  and v. See for example [88] and next
section.

In order to get explicit expressions for the manifold to be tracked, it must
be noticed that the first equation in (3.5) is a logistic one, with solution:

Mo
A

Tt 1)e et

x(t)

(3.6)

The volume trajectory is easily obtained after realizing that absolute mass
T = zv follows an exponential trajectory and © = AZ. Hence

/\370’00

(t) = vo + (etrt — 1) (3.7)

r

Solving for t and equating (3.6) and (3.7):

1
T — % — (movo — %vo); =0 (3.8)

which, along with

s—58=0 (3.9)

define a goal manifold, referred in the sequel as Z*. This manifold, and
in particular expression 3.8, will be very important in the developments of
chapter 4.
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3.2 Using flatness

In this section an alternative deduction of 3.3 based on flatness theory is
presented.! Differentially flat systems are underdetermined systems of non-
linear differential equations whose solution curves are in a one-to-one smooth
correspondence with a given set of arbitrary curves in a space of dimension
equal to the number of equations by which the original system is underdeter-
mined. For control systems this is equivalent to the number of control inputs.
The components of the application from the system’s space into the space
of smaller dimension are called flat outputs. These outputs are, generally, a
function of the dependent variables and a finite number of their derivatives.
With them it is possible to parametrize the whole set of solutions of the ODE
system without need of additional constants such as the initial conditions.

A general undedetermined system of differential equations of order k can
be written as

Fit,z, M, ... 2®)y=0, j=1,....N—p (3.10)

where it is assumed that F7 are C* functions, z = (z1,...,7x) depen-
dent variables, ¢ independent variable, (") the r-th derivative of z w.r.t time
and p > 1 is the number of equations by which the system is underdeter-
mined.

System 3.10 is said to be differentially flat if there exist variables y!, ..., y?
(the flat outputs) given by equations of the form

Yy = h(t,:z:,:z:(l), .. .,x(m)) (3.11)

in such a way that the original variables  can be expressed in terms of y
(locally) using an equation of the form

z =gty y®,. .. yY) (3.12)

In a particular case, the flat outputs only depend on the dependent vari-
ables and not on their derivatives. Then, we speak of 0-flatness.

With these expressions it is possible to parametrize all the solutions of
the original system of differential equations. There is no need of integrating
the equations, instead we work with algebraic expressions.

In control theory the set of the dependent variables is divided into two
sets: the states and the inputs. In addition, systems usually have the form:

! Further results based on this theory are found in the following chapter and in
appendix A.
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= f(x,u) (3.13)

although there may be other representations. System (3.13) with m inputs
u and n states z is said to be differentially flat if there exists a set m of
variables

yi = hi(x, u, 0, ....,u(w")) i=1,......,m.
such that

(i) the m components of y are differentially independent, i.e., they are not
related by any differential equation

Q- y®)=0

(ii) states = and inputs u can be expressed as functions of y and their deriva-
tives in finite number:

z=®y, ...,y
u = lp(y, ...... y y(v—‘rl))

with & and ¥ satisfying identically & = f(®,¥).

From the previous expressions it is easy to deduce that, if the trajecto-
ries to be followed by the flat outputs are fixed, it is possible to obtain the
trajectories followed by the states and how the control actions in open loop
should be.

The alternative deduction of 3.3 announced at the beginning of the section
can be obtained realizing that system 3.1 is flat. Taking as inputs F' = Dv
and s;, and as flat outputs & and v we have

- From the first and third equations in 3.1

ks ko
5= 4 = — (3.14)
B =1 a7
- From the third equation
F=19 (3.15)

- And from these and the second equation, it can be deduced the expression
for s; which will be a function of (x,v, &, 0, &, V).

Consequently, if we force some specific trajectories of x and v, then s will
go to the desired point. It is also easy to check that if the absolute quantity
of biomass follows an exponential trajectory
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T = zoupeht (3.16)

then, substituting in (3.14),

g _str (3.17)

Mm — Mo

Which obviously coincides with the expression deduced previously. Now
taking the expression for the volume v in Z* and substituting in F' = ¢ the
exponential feeding law is obtained. This is also clear looking at the exosys-
tem. The value of s; could be obtained in a similar way. If the corresponding
inputs are applied and the initial condition for the substrate concentration is
such that sg = s, then the system follows the desired trajectories and in fact
the law can be used in closed loop, being an invariant control.

3.3 Invariance

Now, it must be confirmed that there exists an invariant control. That is, a
control such that once the state is in Z* (3.8 and 3.9), it stays there. The
condition for (f, g)-invariance of system

% = f(x) + gx)u

with respect to the submanifold Z* implies the existence of a solution
u = u(x) (the invariant control) of the algebraic equation

—f(x) + z=g(x)u(x) =0 xeZ* (3.18)

where ¢ is a vector containing the expressions in the equations 3.8-3.9
defining Z*. In our case the control law is defined by the partial state feed-
back:

u(x) = Azv (3.19)

Two equations are obtained, the first one is fulfilled for every A. The
second one gives

\ = YHr
S; — Sp

(3.20)

as it was expected.
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This result can be extended to processes in which the equation corre-
sponding to a product is added. Let us introduce a new control action «
representing a filtering of the broth:

. F
b= pls,p)a—

) F
5= —Yset(5,0)T — yspv/(s,p)w + ;(si )

(3.21)
. o F
p=v(s,p)r——p——p
v v
v=F
In this case, as it can be easily checked, the invariant control is:
F = \xv
/ (3.22)
a=a v

where \ and o’ are appropriate constants and the invariant manifold is
defined by (3.8), (3.9) and

p—pr=0 pr = constant. (3.23)

This specification being justified by the need of keeping the microorganism
in a given physiological state, in which production of a specific metabolite is
optimum. Product p may be an inhibitor and/or the metabolite of interest.
The specification of p = constant, in turn, forces the introduction of the new
control action a.

3.4 Partial stability

Partial stability is defined as the stability of dynamic systems with respect
not to all but just to a given part of the state variables [92]. It arises in
the study of electromagnetics, inertial navigation systems, spacecraft sta-
bilization via gimballed gyroscopes and/or flywheels, vibrations in rotating
machinery, biocenology ... see the references in [95]. See also [93] for a list of
general situations leading to the investigation of partial stability problems.

The general definition given above, actually encompasses two different
cases [93]:

— The Lyapunov-Rumyantsev PSt-problem.
Let there be given a nonlinear system of ordinary differential equations of
perturbed motion
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&= X(t,z) X(£0)=0 (3.24)

The variables constituting the phase vector of system 3.24 are divided into
two groups 2T = (yT, 2T)T:
— the y-variables with respect to which the stability of the unperturbed
motion x = 0 is to be investigated.

— the remaining z-variables.
The unperturbed motion x = 0 of system 3.24 is said to be y-stable, if
for any numbers € > 0, to > 0, there is a number d(e, tg) > 0 such that if
|l zo ||< & then || y(t;to,z0) ||< € for all ¢ > tg.

— Stability of partial equilibrium positions.
Let there be given a nonlinear system of ordinary differential equations:

The set y = 0 of system 3.25 is said to be stable, if for any numbers ¢ > 0,
to > 0, there is a number d(e, tg) > 0 such that from || yo ||< 4, || 20 ||< 00
it follows that || y(t;to, zo) ||< € for all ¢ > tg.

This is the PSt-problem w.r.t. that part of the variables of the original
system (or the corresponding perturbed motion system) for which this
system has an equilibrium position. Partial equilibrium positions of this
kind (also termed a balanced motion) are invariant sets of the system.
Hence, it is actually the problem of stability of sets that is analyzed in this
case.

Fed-batch bioreactors fit in the second case as shown later. In the first
subsection a local analysis is carried out using the techniques in [134]. In
the final subsection, a global analysis is carried out following [95]. In both
subsections the same model used previously is assumed. The stability of the
invariant control for the case with product is not dealt with and remains
an open question. An attempt was made at extending the global analysis of
subsection 3.4.2 to this case but no valid Lyapunov function has been found
for the time being. Going back to our main point, it must be noted that
although the local analysis only deals with systems with Monod kinetics, the
global analysis considers both Monod and Haldane kinetic functions.

3.4.1 Local analysis.

The main goal of this subsection is to check whether the invariant manifold is
(at least) locally stable. With this purpose in mind, a new coordinate system
is obtained that has one coordinate z along Z* and two other coordinates
£1,&o transversal to it. The system model transforms into a task-oriented
model [94], [134], which will be linearized with respect to &1, £&2. The procedure
only gives local results, but on the other hand it is very systematic.

The new coordinates can be defined by £ = ¢(z, s,v) and a mapping from
Z* to Z, i.e.:
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1
§1=2— % — (Tovo — %UO);
o= 5— s (3.26)
2z =12V
The inverse transformation is given by:
z(& + 5r)
z — (wove — K-vo)

s =& + 5, (3.27)

o 2T (wovo — H-vo)
(& +5)
For the sake of simplicity define
o pr
b= A
a2 zov — My
0% — v

The resulting task-oriented model is

. 2(&+0b +b)?

€1 = plea + 50) (& +0b) (G+b)”

z—a z—a

: +b +b)(si — 5p — 2

62 _ _yu(€2 +ST)Z(£1 ) + (&1 )(S’L Sr €Q)U (3 8)
z—a z—a

2= (&2 + sr)z
A control law may be defined as
u=Ue(z)+Tu=XA2+7 (3.29)

where Ug(z) is the invariant control in the new coordinates, and u a

stabilizing control to be designed in case Z* is not stable only with Ug(2) (or
to try to improve performance).

From this point onwards, it is necessary to assume a definite form for pu.

In this case, a Monod function. The system to be linearized with respect to
the & coordinates is

é = f—f(ga Z) + gﬁ(ga Z)ﬂ



38 3 Invariant control

where

fe=fe+9eUe  fe(0,2)=0

with
o = e + 502D
feo = —yu(&2 + Sr)%
and

2
ger — — (5; J_r z)
gez — (&1 +b)(si — s — &2)

The resulting linear system has the form

_ 0%

£=A(2)€ +b(2)Tu A= D¢ le=0

b= g(oaz)

and the complete expressions assuming Monod kinetics

51 = ( fr? 2 /\Z>§1—|—

zZ—a zZ—Q

2
O

k+s:)2z—a z—a

7 (3.30)
e (e

zZ—a zZ—aQa

—yumk  2b b b(s; — sr)_
_ A A% T o)
+((k+s,o)2z—a zZ—a Z>§2+ z “

Define:

A pmk
B (k + sr)?

It turns out that the A-matrix

d

Az) = [‘5"" L d‘gb_ ,Ur:| (3.31)
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has both poles stable, with values:

p1 = ———(ydb+ py)
Z—a
zZ

(3.32)

b2 = — Hor

zZ—a

Hence the invariant manifold is (at least locally) stable.

As it has been mentioned in the introduction, this analysis is local and valid
only for systems with Monod-like kinetic functions. In contrast, the analysis of
the following subsection is global and valid for both Monod-like and Haldane-
like functions. Nevertheless, the local analysis is still worthy since it provides
a geometric view of the problem and some of the objects found in the process,
namely the off-the-manifold variables &;, will be used in the following chapter.

3.4.2 Global analysis

Assume a growth-linked type fed-batch bioreactor without inhibitor product,
i.e. model 3.1. Now, in order to introduce the theorem to be used in the
stability proof, consider the nonlinear autonomous dynamical system

21 = fi(z1,22), 21(0) =x10, tE Iy,

Ty = fo(w1,22), x2(0) =x10 (3.33)

where 1 € D C R™, D is an open set with 0 € D, x5 € R™ and

f1:DXRn2 — R™
is such that Vs € R™

f1 (0, LEQ) =0.
and f1(.,z2) is locally lipschitz in 7. Also
fg:DXRn2 — R™

is such that for every x1 € D, fo(x1,.) is locally lipschitz in zo and I, £

[0,72,),0 < 7z, < 00, is the maximal interval of existence for the solution
(z1(t),22(t)),t € I,. Under the above assumptions the solution exists and
is unique over I,,.

Stability with respect to x1 of the system defined above can be defined
as:

The nonlinear dynamical system 3.33 is Lyapunov stable w.r.t. x1 if, for
every € > 0 and xo0 € R™, there exists §(e,xag) > 0 such that || z19 ||< 6
implies that || z1 ||< € for all t > 0.

Definition which corresponds with the notion of partial equilibria. In [95]
there are also definitions for asymptotic stability and other. In order to ana-
lyze partial stability, the following results are used [95]:
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Theorem 3.1. Consider system 3.33, then if there exists a continuously dif-
ferentiable function V : D x R™ +— R and a class k function «(.) such that

V(0,22) =0 xz2 € R™
al| z1 []) < V(zi,22) (z1,22) € D x R™

V(a:l,asg) <0 (331,332) € D x R™
Then system 3.33 is Lyapunov stable with respect to xy.

Corollary 3.2. Consider system 3.33. If there exists a continuously differ-
entiable, positive definite function V : D — R such that

V'(z1) f1(x1,22) <0, (21,22) € D x R™

then system 3.33 is Lyapunov stable with respect to x1, uniformly in xo. If
in addition there exists a class K function y(.) such that

Vi(@1) fi(zr,22) < —y(l @1 ), (21,22) € D x R™
then system 3.33 is asymptotically stable w.r.t 1, uniformly in xoq.
Proof. Direct consequence of theorem 1 with V (21, x2) replaced by V (x1)?

Now consider

Yhr
Si — Sp

f1:85=(—yp(s) + X(s; — s))x with A=

fo i = p(s)x — Aa?

Y
whenever s = s, (§3 = s — s, = 0), we have
fi=0 Vag = (z,v)

A candidate Lyapunov function is

Vi) = 50— 5,)?

It’s derivative is

V ={(s—s,)$
= (s~ se)(—ypu(s) + D(si  5))
= (s~ se)(~yn(s)z + (si — )

2 The symbol V'(.) represents the Frechet derivative of V at z and in the pre-
vious theorem V(:cl,:cz) £ V/(z1,22) f(x1,x2). Informally, a Frechet derivative
is a derivative defined for mappings from one vector space to another. See, for
example, [153].
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and taking F' = Azv it becomes
V = (s —s0)(—yp(s)z + Az (s; — s))
Assuming perfect knowledge of model parameters,

\ = b
Si — Sp

Hence,

V= (s = s)(-ynls)a + P a(si — 9))

or

S; — S

V= yx(s — sp)(—p(s) + pr ) (3.34)

S; — Sp
with ¥y = const > 0 and x > 0. Clearly, whenever s — s, > 0 the curve
defined by u(s) must be over the straight line defined by p..(s; — s)/(s; — sr)
and viceversa. See figure 3.1. This always happens whenever the kinetics
function is monotonous or Monod-like, whereas in the Haldane-like case the
parameter s; may have to be chosen properly. See figure 3.2.

Haldane and lines mur*(si-s)/(si-sr) for mur=0.1y 0.12
T T T

L ! L L L L L
0 5 10 15 20 25 30 35 40

Fig. 3.1. Haldane and lines pr(s; — s)/(s; — sr) for p, = 0.1,0.12

A more formal proof can be set up as follows. By the mean value theorem,

ou
:U'(S) = N(Sr) + $|§€[sr,s](3 - 37“)
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Haldane and lines mur*(si-s)/(si—sr) for mur=0.12, si=40 and si=20
0.14 T T T T T T

L ! L ! L L
o 5 10 15 20 25 30 ES 40

Fig. 3.2. Haldane and lines p.(s; — s)/(s; — sy) for g = 0.12 and s; = 40, 20

Now, defining a new variable v as v = (s — s,) and substituting the
previous expression into 3.34,

V= —y:v(g—'f: 5+ ” 'LiTST)VQ (335)

In the Monod-like case the derivative of p will always be positive and
hence the system will be stable. In the Haldane-like case the derivative may
be, for some values of the substrate concentration s, negative and greater
than the term u.,./(s; — s,) hence the system may be only locally stable. This
proof can also provide some extra insight into the system performance. Since
the Lyapunov function can be expressed as

1
V:§V2

the expression 3.35 becomes

' o Por
Vi=-2ya(g ls+ —)V

Assuming the system is stable we have

o fr
m<(=—ls+——)< M
(33 S — sr)
for some constants m and M both positive. Consequently the evolution
of the function V is bounded by two functions. These depend on the value
of the biomass concentration which varies with time, but we can still check
that as the value of x increases the convergence is faster.
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This result will be used in the following chapter to ensure stability of
the closed loop imposing a saturation on the control action. In particular,
imagine a controller in the form F = (Apominat + u)xv is available that works
for systems with monod-like kinetic functions, i.e. monotonously increasing.
Its aplicability could be extended to systems with Haldane-like functions by
means of a saturation on A. This saturation would force the system to evolve
towards the monotonously increasing part of the kinetic function. A simple
method for choosing this saturation may be as follows: a maximum A could
be chosen to be that one corresponding with e, and consequently with
an s = Serit. In a second step s; should be chosen small enough to fulfil the
condition above. If, for practical questions, were advisable to choose a bigger
influx substrate concentration, then a smaller \,,,, could be chosen as far as
Amax > A’I’"

Similar reasonings could be applied if it were desirable to stabilize the
system around a point in the monotonously decreasing side of Haldane-like
function. In this case it would be necessary to determine a A, value.

Finally, the result presented in this section could also be useful in an-
alyzing already existing controllers. For example, in [154] a modification is
presented of a controller suggested in [69] using an estimation of u. For system
3.1 this modification has the form:

yp LY — pr)

F = xry —
Si — Sp S; — Sp

xrv

for some constant k& to be chosen. This can be easily rewritten as

S; — Sy Si — Sp

i.e. the invariant control plus the correction using the error in p multi-
plied by a new constant. Since the specific growth rate is bounded, there is
implicitly a limitation on A. Hence, for a properly chosen k we can make sure
the system will always be in a given region. Actually, in [154] it is proved
by other means the system can be globally stabilized at any desired setpoint
s = s, all along the (non-monotonic) kinetics.

3.5 Conclusions

In this chapter, an invariant control has been suggested that will provide the
basis for subsequent designs. In particular, it will be a part of the controllers
presented in the following chapter and the geometric approach in analyzing
this law has supplied new coordinates useful in defining an off-the-manifold
error variable. Besides, a local stability proof was obtained that encouraged
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the search for a global one. This is provided in the final section of the chapter
and will enable the treatment of those problems in which Haldane-like kinetic
functions are present.



4 Dealing with uncertainty

4.1 Introduction

The results obtained in the previous chapter are essential for the develop-
ments to be presented here. Using a saturation on A, it is possible to work
with the monotonously increasing part of the kinetic functions. Consequently,
and with no loss of generality, it is possible to work with the following model

& = p(s)x — Dx
$=—yu(s)x + D(s; — s)
v=Dv D=Xx

u(s) — Monod — like

(4.1)

the results presented in the following sections being easily extended to
the case in which p is Haldane-like. Additionally, in the conclusions some
guidelines are given to extend these results to more complex systems including
those in which a product must be considered. For system 4.1 three possible
solutions are suggested:

1. One based on flatness and using two Pls.
2. A design based on a geometric approach [94], [134].
3. Finally, a robust adaptive controller.

In all these cases it will be necessary to make sure the system does not
get stuck in the saturation.

4.2 PI controllers. Flatness

The concept of flatness, along with one of its applications, was presented in
chapter 3'. In this section those results are used to design a simple controller
consisting of the invariant control plus two PIs. These PIs take as error signal
the difference between the actual measurements of the flat outputs x,v and
their reference trajectories generated by an exosystem.

1 See also appendix A for an extensive survey on the subject
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4.2.1 Controller design

Assume a model such as 4.1. Remember from previous sections the goal is
= p, = constant (4.2)

Given that the model is supposed to be perfect and there are no pertur-
bations, this goal could be achieved using the partial state feedback

F=Xw \=-2H (4.3)

Si — Sr

As explained in chapter 3, substituting in the model with concentrations:

& = px — \x?
$=(—ysu+ A(si — s))x (4.4)
U=V

Now, to overcome model uncertainty and the presence of perturbations,
a correction on the basic control law must be introduced.

As commented in chapter 2, it is interesting to use both F' (or equivalently
A) and s; as control actions, although it appears a coupling between the new

. A A
control actions u; = X and us = s;:

T = puxr — u1w2
$ = (—ysp +ur(uz — 8))x (4.5)

U = U1TV

Since it is assumed there is not an online measure of the substrate concen-
tration s in the bioreactor, an exponential trajectory for the absolute quantity
of biomass Z will have to be forced. Remember that

= u(s)z (4.6)

Given that £ = xwv, this goal can be achieved forcing some specific trajectories
on x and v. In order to generate these reference trajectories an exosystem is
used:

2

.r: r r_/\n r
Or = By = An (4.7)

Up = Ay ZpUp
with initial conditions x,9 and v,g, being A, a nominal u; determined

using the expression in (4.3) given a nominal concentration s;, chosen a
priori.
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So, a multivariable non-affine system (4.5) with two inputs and two
outputs is obtained. In the sequel two separate control loops are designed
whithout taking into account the coupling between u; and us.

With this goal in mind, and considering what has been previously said in
chapter 2 about the effects of changing the input flux and substrate concen-
tration in it, the following associations are made:

- w1 with volume v.
- uo with biomass concentration x.

This association between inputs and outputs has an additional advantage.
If the expression for ), in (4.3) is observed, it is easy to check that a variation
in the yield coefficient ys can be compensated changing us (i.e. s;), the value
of uy (i.e. A\) remaining the same. Hence, the system will be to some extent
robust against changes in the yield coefficients.

Volume can be easily controlled using a law of the form:

1
U = Ap + kp1(ey + T /evdt)

€y = Up — 0

(4.8)

As for the biomass concentration, if the specific growth rate p is a
monotonous function of the substrate concentration s then it will suffice with
a similar law:

1
U2 = 8;, + kpg(ex + T_ /ewdt)

I2 (4.9)

€Cr =Ty — X

since if e, > 0 (e, < 0) it is necessary to increase (decrease) p and con-
sequently increase (decrease) us. The problem is more complex if functions
analogous to the Haldane expression (fig. 2.2) are considered. In this case
there exists a value s* such that for s > s* control action ue must have a
reversed sign, i.e. decreasing ue increases u. Since dependence on the knowl-
edge of s* is critical, the effect of uncertainty on the control will be bigger.
It would also be possible to restrict the operating zone to the monotonously
increasing part of the kinetic function as indicated in the introduction. In
this case a saturation on us would also be necessary. Simulated results are
shown in chapter 5.

4.3 A nonlinear P controller

This section assumes again a model in the form 4.1. The data obtained in
a real experiment are offered in chapter 5. The results presented here are
strongly based on those of chapter 3. Namely:
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Sin, An
exosist. planta
Tr O PI () U2 x
Ur PI U1 v

|

Fig. 4.1. Closed loop diagram for section 4.2

The definition of an invariant control

F=MXxv with A= % = constant (4.10)

and the associated goal manifold Z* to be tracked.

Hr Mo 1
—_ —— — —_—— —_ = 0
T =3~ (@ovo = Frvo) (4.11)
s—s.=0

Based on the first two points, the computation of a task oriented model
(eq. 3.28) which is linearized with respect to the &; variables

) Ff

=A@ A= Fea  b=g(0.2) (4.12)

where @ is an stabilizing control and the control action applied to the
original system is

u=Us(z)+a=Xz+10 (4.13)

For the partial linearization, it has been assumed that u is Monod-like.

Although the invariant control proved to be globally stable, it is neces-
sary to take into account model imperfections and perturbations. Besides
trying to see if performance can be improved. For this purpose, an additional
proportional controller was designed.
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4.3.1 Controller design

From the beginning, it was decided to design in the first place a proportional
control law modifying the gain A\ so as to obtain a simple controller in the
form suggested at the end of the previous chapter. Since in addition, only
biomass and volume are measured the controller 7 was chosen

T = kpz& (4.14)

Following [94], if @ is chosen in the form

k(z) = —bT(2)P(2)

then the matrix P = PT must be a solution to the algebraic Riccati equation

AT(2)P(2) + P(2)A(z) — P(2)b(2)bT P(2) = 2n(2)P(2)

where the function n(z) must satisfy the inequality

n(z) < miin Re)i{A(2)} — A,

for A > 0 is a small number.
The solution, obtained with a symbolic math program, implies that

kp =

So, supposing a perfect model, the invariant control alone is the best option.
But in a real situation some correction of the nominal invariant control action
is necessary. As it can be seen in the experimental data in the following
chapter, proportional action is not enough since there appears a steady state
error in u. Hence some integral action is necessary.

4.4 A robust-adaptive controller

A robust adaptive controller is presented in this section. It is applied to
processes with Monod-like and Haldane-like kinetic functions depending only
on the substrate concentration. In the latter case, the results in chapter 3 may
be used to determine a saturation in the control action to ensure stability. In
the following subsection, the theoretical derivation of the controller is shown.
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4.4.1 Controller design
Consider model 4.1. The kinetics function may be monotonic or non-monotonic.
Again, the basis for the new controller is the invariant control of chapter 3
F = )\zv

The goal manifold associated to it, also plays an important role. In fact,
a new error variable is taken in the form

Z— Zor  Hr U —Vor
z A z

oc=o0(z,v,\) =

Notice that ¢ = &;/z, i.e. the measurable off-the-manifold variable nor-
malized by the concentration of biomass, in such a way that the errors are
more important at the beginning of the fermentation rather than at the
end. Here, \ is not taken as a constant but as a variable and z = zv be-
ing Tor, Vor, Zor the initial conditions for a reference trajectory which can be
generated by exosystem

& = purx — \z?
Y

A= Ao = Yy

S; — Sp

In the sequel a law modifying A is sought in order to compensate the effect
of uncertainty. Consider the function

1
W = 502 (4.15)
It is intended to achieve 0 — 0. This could be achieved forcing
P (4.16)
=-7 .
so that
We—ls2<g (4.17)
= T,,,U < .

The derivative of o with respect to time is
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. \ ,U'T(U - Uor)

o =nu(s)(1—o0) —Hr P AT (4.18)

From the equation 4.16 and solving for the derivative of A:

. A2z 1

— AR Y- 1— — 4.1

A= e~ p(e)(L = o) = 0 (4.19)

Notice that if ¢ = 0 then

: A2z

A= ——— | — (s 4.20
ur(v_vw)[u 1(s)] (4.20)

In case an adequate on-line measure or estimation of u(s) is not available,
it should be substituted by a [ with an a priori chosen value. Then the
expression for the derivative of A\ becomes

. A2z . 1
A—m[ur—u(l—a)—T—aa] (4.21)

and substituting in the expression 4.18,

1

o= (1= 0)uls) = ) = 70 (4.22)
so that

. 2 N 1,
06 = (o= 0*)(uls) — ) = 7- (4.23)

Two elements, namely /i and Tia, can be set so as to get

o6 <0

It should be taken into account that

0 < u(s) < pim
If /i is chosen as [i = u, then

)-\ - )\22 1

ETR O L
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Assuming that

1
pr— = <0
and since
)\2
—Z>0
(U — Vor)
then
>0 — A<O0
c<0 — A>0
c=0 — AX=0
Moreover,

. 1
06 = (0 = %) (p(s) = ) = 70

with

|1(s) = prl < pim

Now, only the term Ti is to be set so as to get oo < 0. In the worst case,

(0 —0?)(u(s) — pr) >0

Taking into account that

(o — ) (u(s) — pr)| < lo = 0|t
and that for

lo| > 1, the dominant term in (o —o0?) is o
lo| <1, the dominant term in (oc—o02) is o

Hence, the following choices may be made
lo| > 1, set 7 =2pum

2
lo| <1, set % =4
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The resulting controller would be:

: A2z 1
A= ——"—[ur — =Jo 4.24
,LLT(’U—’UOT)[Mr Ta] ( )
1 2m  for |o|>1
[ )
T, Em for ol < 1
lo

Clearly, practical implementation of this scheme makes necessary to add
a dead zone §. Then the following gain is suggested inside the dead zone:

—=— for |o|<dé<1 (4.25)

which forces the system to get into the dead zone. In fact it can be checked
that

. 0
W <0 fO’I" m<|0’|<5

From the qualitative analysis in the following subsections, it can be seen
that the controller should work always for Monod-like functions but only
under certain conditions for Haldane-like ones. In a subsequent section a
formal stability proof is presented for the Monod-like case and the Haldane-
like case with an adequate saturation on the A-parameter. For this proof it is
convenient to think of the previously presented controller in the framework of
sliding mode control. Assuming infinite switching frequency were possible, the
controller would lead the system to and make sure that o = 0. Now, it must be
demonstrated that system trajectories on this sliding surface converge to the
goal manifold Z*. But as it has already been announced, before proceeding
with this proof, a qualitative analysis of the controller performance is carried
out.

4.4.2 Analysis for monotonous kinetic functions.

In this subsection a qualitative analysis of the closed loop behaviour, or rather
of the interaction between plant and controller, for the case of Monod-like
kinetic functions is offered.

Figure 4.2 depicts the intersection between a monotonous Monod kinetic
function p(s) and the line obtained from § = 0 in 4.1 (or 4.4). This point
s* will correspond to the stationary value of substrate if A is kept constant.
Correspondingly, the broth will grow with specific growth rate u(s*). As it is
clearly shown, a variation in A produces a variation in the equilibrium value
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Fig. 4.2. Equilibrium substrate concentration for Monod kinetics.

s* of the same sign. Consequently, the growth rate increases for increasing A,
and viceversa.

Now recall the adaptation law 4.24 and notice the design is such that
(pr — 1/Ty) < 0 always. The system evolves in the following way:

— When o > 0, A decreases. Therefore:

— If u(s) > p, the difference will become smaller, as p(s) decreases.

— If u(s) < u, the difference becomes more negative. This will eventually
make o become negative.

— When o < 0, A increases. Therefore:

— If u(s) > p, the difference will become greater, as p(s) increases. This
will eventually make o become positive, so the first case above will be-
come applicable.

— If u(s) < u, the difference becomes smaller.

4.4.3 Analysis for non-monotonous kinetic functions.

In this subsection a qualitative analysis of the closed loop behaviour, or rather
of the interaction between plant and controller, for the case of Haldane-like
kinetic functions is offered.

Figure 4.3 depicts the situation for a typical non-monotonous kinetic func-
tion.

The main point to consider in this case is the change of sign in the re-
lationship between A and u(s) when passing over the peak of the kinetic
function.

In this case, denoting sn.x the substrate concentration for which the
kinetic function u(s) attains its maximum value pmax, the system evolves in
the following way:

— When o > 0, A decreases. Therefore:
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Fig. 4.3. Equilibrium substrate concentration for Haldane kinetics.

— If 5 < Smax:

o If u(s) > p, the difference will become smaller, as u(s) decreases.

o If u(s) < p, the difference becomes more negative. This will eventually
make o become negative.

— If 8 > Smax (decreasing A increases u(s)):

o If u(s) > pr, as p(s) increases the system moves towards the region
§ < Smax-

o If u(s) < u, the difference becomes smaller. This will eventually make
w(sr2) = pr at spo in the region s > smax. This corresponds to an
unstable point. Any small perturbation towards the left will move the
system towards the region s < Spax.

— When o < 0, X increases. Therefore:
— If 5 < Smax. We have a behaviour like in the monotonous case.
— If 5 > Smax (increasing A decreases p(s)).

o u(s) > pr, u(s) decreases, but moving rightwards. Nevertheless, the
system moves so that o increases, eventually becoming positive and
entering in the cases above.

o u(s) < pr, u(s) decreases and o keeps negative.

Therefore, in spite of the change of sign in the process gain, the only critical
point is the one given by the second intersection of p, with pu(s), that is,
Sr,2. As far as the initial conditions are to the left of this point the proposed
robust-adaptive control drives the system towards p(s) = u, at sp.1.

4.4.4 Stability proof

It has already been shown that state trajectories converge to (the close vicin-
ity of) o = 0. This section is devoted to demonstrate that system trajectories
on this sliding surface asymptotically converge to the goal manifold Z*. In
other words, we will demonstrate that if the first off-the-manifold error (¢1)
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is maintained at zero, the second off-the-manifold error (¢2) also tends to
zero (i.e. s — s,) and the feedback gain tends to its nominal value A, given
by (3.4). In the case of non-monotonous kinetics some precautions must be
taken.

On the sliding manifold ¢ = 0, the closed-loop system dynamics can be
rewritten as follows:

$ = [—ysp(s) + A(si — 5)] =
X _ _AQ /’L(S) — Hr v
Hr UV —Uro

Yy =

(4.26)
0= [ ]z

where the equation for the evolution of A\ has been obtained from equation
4.18 and the sliding mode existence condition (¢ = 0, & = 0). Besides, the
equation for biomass concentration has been omitted to avoid redundancy.
In fact, on the sliding manifold o = 0, x is algebraically dependent on {\, v}:
T = % + &= (v —vp0) > 0. Note also that biomass concentration is bounded
since v only can increase.

On the previously defined system it is possible to apply Theorem 1 in
chapter 3 on partial stability. Before defining the necessary Lyapunov and «
functions some definitions are needed:

Definition: Let (v) = oo (vr,0,00) — (00,1). See that v = vw%
and that the Frechet derivative ¢/ = —(¢» — 1)?/v,.o. It must be taken into
account that v, o is a constant entering in the definition of the reference man-
ifold. The initial condition for volume is vy and it is assumed that vy > v, .
So, actually function ¢ could be defined as a (bounded) mapping from (vg, 00)
into (1g,1). A fact that is used in the complementary proof of asymptotic
stability below.

Definition: Let ¢ the partial state ¢ = col(s, A) and (. = col(s,, A,). Recall
that s € § = (0,s;) and A € RT. Let M = 8§ x RT, and M, the region of
o = 0 such that { € M.

See that, replacing x in the last equation of (4.26), yields © = p,(v—vy0)+
Azr,0, which confirms that, on ¢ = 0, the volume diverges exponentially. As
a result, ¥ —_ oo 1.

On the other hand, for the partial system X, define the candidate partial
Lyapunov function:

Vicu) = v [ ) Wdc 4

+(s: — $r) [m% + (AA—_M] . (4.27)

Its time derivative is
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: o B *u(s) = pir
V(¢ (v) = —yz [w A / o ds+
s (u(s) — pr)? i s) — s—s
W(u( ) — 1)+ o (1(8) — pr)( r):|‘ (4.28)

A function « such that a(]| ¢ ||) < V(¢,9(v)) is also needed. The following

can be used

a(C)=/57M(§)_“’"d<+

T

A Ar— A
+(si — 5r) [m 3t %] : (4.29)

At this point, it would be interesting to use a result of the Barbashin-
Krasovski (or LaSalle) type in order to prove not just stability but asymptotic
stability. Two proper solutions are possible:

a) Using Theorem 2 in [95].
b) Using results in [92] Chapter 3 for partial stability in the presence of large
initial perturbations.

a) Theorem 2 is stated as follows: “Consider the nonlinear dynamical
system given by (3.33 in the thesis) and assume D x R™2 is a positive invariant
set with respect to (3.33). Furthermore, assume there exist functions V' : D x
R"™ — R, W,Wy,Ws : D+ R such that V(.,.) is continuously differentiable,
W1 (.) and Wa(.) are continuous and positive definite, W(.) is continuous and
nonnegative definite, and, for all (z1,z2) € D x R™,

Wi(z1) < V(z1,22) < Wa(z1) (4.30)

V(xy, x2) < —W(x1) (4.31)
Then there exists Dy € D such that for all (x10,220) € Do X R™, z1(t) —
RE{r1 €D :W(zx;) =0} as tr oco.If, in addition, D = R™ and W;(.)
is radially unbounded, then for all (210, 720) € R™ x R",z1(t) — R £ {z1 €
R™ : W(x1) =0} as tr 00

In order to complete the proof of AS, the following remark in the same
paper must be taken into account. Remark: “Theorem 2 shows that the par-
tial system trajectories x1(t) approach R as ¢ tends to infinity. However,
since the positive limit set of the partial trajectory z1(t) is a subset of R,
Theorem 2 is a much weaker result than the standard invariance principle
wherein one could conclude that the partial trajectory z1(¢) approaches the
largest invariant set M in R. This is not generally true for partially stable
systems since the positive limit set of a partial trajectory x1(t),¢ > 0 is not
an invariant set. However, in the case where f1(.,x2) is periodic, almost pe-
riodic or asymptotically independent of xs, then an invariance principle for
partially stable systems can be derived.”
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Taking the function V' already defined in the existing proof of stability, it
is possible to define positive definite functions V(¢) £ V({, 1) and V(¢) £
V (¢, 1) such that

V() <VI(¢,v) <V(C) (4.32)

An additional nonnegative definite function can be defined as W(() £

—V(¢,1) so that
V(¢ ¥) < =W (C) (4.33)

Finally, the equations for the evolution of s and A on the sliding manifold
o = 0 are asymptotically independent of v. That is, as v diverges, ¥ — 1 and
T — /N, thus approaching to the system

Hr

§ = (=ysu(s) + Asi = 9)) 5 (4.34)

A= -Au(s) — pr)

Consequently, ¢, is a globally asymptotically stable partial equilibrium point
for the partial system X.

b) Another line could have been followed using results in [92]. This ref-
erence deals mainly with systems & = X (t,z) X (¢,0) = 0 with 27 = (y, 2)
for which stability is sought with respect to the y-variables. (See also the
thesis document pages 35-36). According to [92] Chapter 0, theorems of the
Barbashin-Krasovski can be applied in the autonomous case provided the
z-variables are bounded. In Chapter 3 a theorem giving conditions for AS is
given for the case in which zg may be large. For this to be applicable to our
case, notice it is possible to use function ¥ directly in the equations for the
evolution of s and \. Also, using this new variable, the equation for volume
transforms into

=—(— 1Az (4.35)

The actual application of these theorems is left as a future task.

For non-monotonous kinetic functions, e.g. Haldane, the previous results
about stability are only local. Actually, the system may present two equilib-
rium points. Let denote s, the substrate concentration at which the growth
rate is maximum, s, < $,, and s” > s,, the substrate concentrations satis-
fying p(sr) = p(s") = pr. Locally around s,., the kinetic function behaves as
a monotonous function. Then, V (¢, (v)) is locally positive definite around
¢, whereas V(¢,9(v)) is locally negative semi-definite and ¢, is the largest
invariant set for which V = 0. Then, ¢, is a locally asymptotically stable equi-
librium point for the partial system X, and the original system on ¢ = 0
locally asymptotically converges to the goal manifold Z, .

Definition: Let 8" = {s € S |s < s"}, L™ = {/\ ERT AN = ;LL_%},
M" = 8" x L" and M the region of o = 0 where { € M".
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It is clear from the previous expressions that M is a domain of attraction
of ¢, on the sliding manifold ¢ = 0, that is a region of convergence towards
Zyo on o = 0. Nevertheless, if the substrate concentration is initially very
high, the system state might reach (the close vicinity of) the sliding manifold
outside the domain of attraction, leading to undesired unstable dynamics.

A possible solution suggested here is to modify the adaptation law so that
the trajectories are steered to reach the attractive region M of the sliding
manifold o = 0. A natural way of avoiding the aforementioned undesired
dynamics is limiting the feeding governed by A and s;. See chapter 3 on
the invariant control. According to this, the adaptation law is modified by
incorporating the saturation function

Oifwi >0Awy >0
g(w1,wz) = { 1 othérv_vise. ° (4.36)
where w1 = A — X and wy = —o. To complete the analysis, we need to

show that despite saturation, all state trajectories finally reach the vicinity
of 0 = 0. In fact, during saturation, the derivative of the function

1
W = 50’2
becomes
W = —uo® + (n — pr)o. (4.37)

On one hand, if ¢ > 0, saturation becomes inactive (g(-,-) = 1) and A
is negative. Thus, inequality W < 0 holds, i.e. the trajectory points towards
o = 0. On the other hand, if o < 0, A remains at its limit value. Therefore, to
approach ¢ = 0, (4.37) should be negative whenever o < 0. It can be shown
that this is true, possibly except for an initial period of time. In fact, as A is
maintained fixed at ), the partial state ¢ will finally reach M", and moreover,
will converge to ¢ = (5,\) € M", where 3 is the substrate concentration at
which the solid line crosses the kinetic function. Since u(3) > ., W will,
sooner or later, become negative. Consequently, trajectories will finally point
towards ¢ = 0 from both sides as desired.

Observation : Note that although it is not necessary to assure convergence
toward Z, o, limiting A may also be used in the case of Monod-like kinetic
functions to improve the transient from certain initial conditions. Note that
a kind of windup effect may appear due to the saturation of Monod func-
tions and the integrator implicit in the control law. Effectively, in order to
reach and maintain the process state on the sliding manifold o = 0, a large
overshoot in A may appear, leading to an excess of feeding and a large set-
tling time. Limiting appropriately the value of A, the substrate concentration
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is bounded hence avoiding strong saturation of the growth rate and the as-
sociated windup effect. Based on the previous analysis, convergence to the
equilibrium point on the sliding manifold ¢ = 0 is still guaranteed despite A
limitation provided A > \,.

4.5 Conclusions

In this chapter, three different designs have been suggested to cope with
uncertainty. All of them are composed of two parts: the invariant control
plus a correction or adaption on A (and in the first case also on s;). The
results on the invariant control can also be used to extend their validity to
the case in which the kinetic functions are Haldane-like. The first design
is relatively simple but requires more actuators. Since one of the goals was
to use a minimum of resources other schemes were sought after. The second
design was a first attempt in this direction and served as a preparation for the
robust adaptive controller. This one, the most sophisticated in its conception,
has given good experimental results as shown in the following chapter.
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5.1 Introduction

In this chapter the practical behaviour of the controllers presented before is
shown using simulations, and in the last two cases, experimental results are
also included. These were obtained in fermentations with a local strain of S.
cerevisiae the TT3(CECT 1894). All experiments were performed in a 5 liters
B. Braun Biotech bioreactor, model Biostat B.

5.2 Results. Flatness

In this subsection some results corresponding to the control using two Pls
are presented. There is no formal analysis of robustness, leaving it as a future
goal. The parameters with respect to which the behaviour in closed loop is
most sensitive have been determined and afterwards a series of simulations
have been carried out. Parameter values from real processes have been used so
as to have an idea of the behaviour it might be expected in a real application.

In the following pages, the simulations using the complete control scheme
are shown. In them, besides considering the uncertainty in the initial condi-
tions, the value of the yield coefficient y, is varied. This coefficient is the most
important for the system behaviour. The experimental values for the plant
parameters and the control are shown in tables 5.1 and 5.2. These experimen-
tal values correspond with those obtained for a local strain of Sacharomices
Cerevisae, the T73.

Table 5.1. Plant parameters and nominal exosystem.

plant
Ys 1.43
ks 0.14
exosystem

~ e[0T
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Table 5.2. Controller parameters.

control
Ar |0.0079( 84 | 20
kp1| 0.01 |kp2| 10
Tr1| 100 |T72|100

Errors in the initial conditions have been considered and y, takes the
values 1.2,1.43,1.66 which are over and below the nominal value.

Table 5.3 shows the correspondence between the graphics and the different
combinations of initial conditions and values of the yield coefficient.

Table 5.3. Table of results

evs.ys | 1.2 [1.43]1.66
ez, €y < Olfig. 3|fig. 1|fig. 5
ez, €y > Olfig. 4|fig. 2|fig. 6

The results show control is very robust against uncertainty both in the
model and in the initial conditions, although transients tend to be longer
when e,, e, > 0 and ys > Ynominal = 1.43. On the other hand, control goals
are achieved quickly, the error during the transient being very small. Besides
the regulation of the specific growth rate, a very important task from the
physiological point of view, final biomass concentration and volume are very
close to those of the exosystem. See the first two graphs. Thus, it is possible
to reach an adequate quantity of biomass.
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Biomasa
Biomasa

Volumen
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T T

10 2 k) L] 5 60

0.01

00125
0.012
00115

5
0.0111
0.0105
0.01

0.0095 1 I I I I
0

Fig. 5.1.
LEFT-Nominal system and exosystem. Negative error in the initial conditions.
RIGHT-Nominal system and exosystem. Positive error in the initial conditions.
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Biomasa
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Volumen
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T T
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Fig. 5.2.
LEFT-System and exosystem. ys = 1.2, (eg, ey) < 0.
RIGHT-System and exosystem. ys = 1.2, (eg, e,) > 0.
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Fig. 5.3.
System and exosystem. ys = 1.66, (€5, €,) < 0.
System and exosystem. ys = 1.66, (ez,e,) > 0.
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5.3 Results. Proportional.

The results in the corresponding section of chapter 4 were checked on a series
of simulations, prior to its application on real fermentations. The simulated
responses showed that:

- Supposing perfect model and error in the initial conditions (i.e. initial
conditions not in the manifold to track), the best control was u = (A +
kp&1)z with k, = 0. The invariant control alone.

- Supposing modeling error (specifically in the yield parameter y5, which is
the critical one) some correction of the nominal invariant control action
is necessary.

The results corresponding to a real experiment are shown below. A fer-
mentation with a genetically modified strain T73 of yeast S. cerevisiae was
carried out. In particular, at the IATA the recombinant yeast Saccharomyces
cerevisiae Trz with the plasmid YepCR21 was studied with the purpose of
finding a feeding protocol to optimize the expression of different heterolo-
gous enzimes. An exceptional modification of the limit between oxidative
and oxidoreductive behaviour was found. So, this strain did only present
oxidoreductive behaviour. This result led to the investigation of the use of
ethanol as substrate in fed-batch operation. A natural procedure in such a
case would be to start with a glucose batch, producing ethanol and an initial
amount of biomass. Once the glucose is exhausted, the ethanol is used as
carbon source, using in turn batch and fed-batch operation. This procedure
has been investigated for the T73 with different plasmids.

In the experiment shown below, the yeast is fed first using batch operation
on glucose for 20 hours, as shown in figures 5.4 and 5.5. The control action
shown in figure 5.5 is filtered, so the actual flow evolves smoothly. Once the
glucose is exhausted, the yeast consumes the ethanol produced in the previ-
ous phase, after a short adaptation period. At ¢ = 29 hours the controlled
fed-batch is started, feeding with ethanol. In figure 5.6 an instantaneous es-
timation of the specific growth rate is shown. Its is kept constant for a long
period. After 20 hours the behaviour of the microorganism changes with time
(the experiment took three days) due to several factors. This change mainly
affects the yield coeflicient. Since the parameter k, was set to a relatively
small value, and no integral action was added, the error in steady state is
significant. Yet, the controller manages to keep the specific growth rate con-
stant.
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5.4 Results. Robust-adaptive controller

In this section, some simulations and experimental results are presented which
show the behaviour of the robust adaptive controller. The real experiments
were carried out using a non modified or natural Saccharomyces cerevisiae
T73. Thus, three fed-batch fermentations on glucose are included. In all of
them the goal was to keep a relatively low specific growth rate so as to avoid
the formation and accumulation of ethanol.

5.4.1 Simulations

Before proceeding with the experiments, some simulations are provided show-
ing the system behaviour both under ideal conditions and in the presence of
noise, measuring errors, model errors, etc.

- System with Monod-like kinetic functions. Conditions are assumed to be
ideal except for figure 5.11 in which simulations are compared for the nom-
inal system and systems with errors in the yield coefficient y,, the K¢ and
a maintenance constant . Figures 5.7 and 5.8 show the results when the
initial concentration of substrate is slightly over the required one, which
would be the typical case when a previous batch has been performed to
launch the inoculus. The value of z, ¢ is over the real one. As shown, the
specific growth rate very quickly enters a small vicinity of the desired one.
Figures 5.9 and 5.10 show the results for the case when the initial con-
centration of substrate is much higher than the required for keeping the
desired specific growth rate (u, = 0.1). It is important to keep in mind
that only an upper bound on the maximum growth rate is required.

u(s)
o

L L L L L L L
o 10 20 30 40 50 60 70 80
t

Fig. 5.7. Time evolution specific growth rate, substrate and of biomass.
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0.12

011

t(h)

t(h)

Fig. 5.11. Nominal system - ; exs = +100% — ; eys = +20% -.-. ; em = —100%

Kk

- System with Haldane-like kinetic functions. Noise and measuring errors are
assumed to be present. The reference is u, = 0.08. Figure 5.12 shows the
results for measuring errors in biomass including a term proportional to
biomass concentration itself and gaussian noise. The latter is also consid-
ered in the measure for volume. Finally, the yield coefficient y (ky(t) in
the graphic) changes with time. Figure 5.13 shows a similar scenario but
beginning from a higher glucose concentration in the decreasing side of the
haldane function. Note that the adjustable gain A converges to different
steady state values.

+0.1x+N(05,001)

A | H . . | , |
) 5 10 15 20 25 30 35 40 45 50
t(h)

Fig. 5.12. Time evolution of the specific growth rate u, A and the yield coefficient.
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. . | |
25 30 35 40 45 50
t(h)

Fig. 5.13. Time evolution of the specific growth rate i, A and the normalized error
a.

5.4.2 Experiments

In this subsection, the results mentioned in the introduction of three fed-
batch fermentations on glucose are shown. All of them are preceded by a
batch which is not included. The product of biomass concentration by volume,
i.e. the absolute biomass, is in logarithmic scale and a straight line with the
slope corresponding to the reference specific growth rate is added to facilitate
comparison.

The results of the first experiment are shown in Fig. 5.14. After an initial
batch with a glucose concentration of 5g/L (Fig. 5.14(d)), the controlled fed-
batch was switched on at tg = 7.65h, when the glucose in the medium was
almost exhausted. The concentration of glucose in the feeding flow was set
to 20g/L.

The constants of the goal manifold were set to z,0 = z(to) and v, =
0.9v(to), whereas the initial value of \ was set at A(tg) = 1.3e — 3L(gh)™ 1.
Under these conditions, the initial value of the normalized off-the-manifold
error results o(tg) = —2.3. Then, the control algorithm increases \ in order
to approach the sliding surface o = 0 (Fig. 5.14(c)). The long term variation
in A (Fig. 5.14(c)), which is commonly observed in all long experiments, can
be explained as an adaptation to the varying yield coefficient y,. For this
reason, the control strategies that use a-priori estimation of ys usually fail to
regulate the specific growth rate during the whole experiment.

The integral action inherent to the controller causes an initial overshoot
in the specific growth rate (Fig. 5.14 (a)) for some 4 hours. This transient
overshoot could have been reduced by choosing 2z, vro and A(tp) so that
o(to) = 0. Anyway, the large initial value of o(t9) allows us to corroborate
the reaching properties towards o = 0 of the algorithm (Fig. 5.14(c)). Dur-
ing the rest of the experiment, the specific growth rate p keeps around the
desired value but for some periods of time (around ¢ = 20h and ¢ = 25h).
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At these periods, v drops due to limitation in the oxygen supply, as seen in
figure 5.14(b) looking at the decrease of pOs at t = 20h and the increase of
the stirrer speed at ¢ = 25h. This behaviour occurs because there was a defi-
cient control loop for pOs in the experiment, and Oy was not considered as a
limiting substrate in the model. Actually, whenever this limitation appears,
one should improve the oxygen transfer rate by means of the air supply and
stirrer speed and/or demand for a lower specific growth rate.

Finally, it is important to stress the low values of glucose in the medium
after the initial batch. They kept at values around 0.023g/L throughout the
experiment. Their order of magnitude is close to that of measurement noise.
Therefore, a control strategy based somehow on measurements or estimation
of the substrate is not feasible in practice. As for ethanol, the low specific
growth rate permitted to avoid its formation.

The second experiment shows a similar pattern. The specific growth rate
is kept at the reference until oxygen supply drops after 18 hours of the ex-
periment. Then, it recovers except for a short period of time spanning the
criss-crossed area in which there was a pump failure. From 27 hours onwards,
it becomes very difficult to maintain an adequate oxygen level(Fig. 5.15 (b)).
Consequently, pu slowly decreases and A increases trying to compensate for
the apparent change in the yield coefficient. See figure 5.15(a) and (c). Pre-
viously, there is a curious oscillation which does not clearly coincide with an
oxygen shortage. This phenomenon was seen again in the last experiment.
Finally, the off-line measurements of glucose are shown in fig. 5.15 (d).

In the third experiment, some of the difficulties inherent to these systems
are illustrated. From 10 to 20 hours the system would not respond as expected
despite the fact oxygen was in adequate supply and \ was increasing quickly.
See fig. 5.16. Eventually, at 25 hours, growth simply stopped. After two strong
pulses of glucose and fresh medium, the system began to behave following
the pattern of the other two experiments. Notice that, in fact, the value of A
is roughly the same after and before the break. In the period between 26 and
42 hours, the specific growth rate u is kept at the reference except for short
periods of time. The first ones coincide with the appearance of problems in
the oxygen supply. See fig. 5.16(b). But some of these exceptions, particu-
larly at the end, look like sudden oscillations. A possible explanation may be
offered in [156]. According to this article, the unpredictable appearance and
disappearance of oscillations has been observed in cultures of S. cerevisiae.
This phenomenon is related to the formation of distinct cell subpopulations
via a mechanism known as cell cycle synchrony. In particular, biomass segre-
gates into two big groups. One of mature or mother cells and one of new-born
cells.
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6 Conclusion.

Bioreactors are very complex systems with non-linearity, uncertainty, partial
equilibria, etc. In addition, as opposed to the case of (electro)-mechanical
systems, there are not so many available results. Often the problem is solved
for bioreactors in continuous mode or unrealistic hypothesis, such as the
ability of measuring the full state on-line, are assumed.

It was decided to approach the general problem beginning with particular
cases, and generalize the solutions later on. Therefore, all the work is centred
around the basic models described in section 2.3 for pure cultures with only
one limiting substrate and assuming oxygen is in excess. Also, it was decided
to use a minimum number of measures and actuators. These demands are
a consequence of practical considerations, but on the other hand it is also
interesting in itself to analyze what can be done with a minimum of informa-
tion. Other central factors, namely nonlinearity and uncertainty, determine
the techniques to be used and the search for a robust/adaptive controller.

Attainments

Several important goals have been attained:

1. First of all, the determination of a reduced number of standard models of
bioreactors after an extensive literature search. These models have rela-
tively few state variables and a couple of particular structures represent
most applications for pure cultures with one limiting substrate. Moreover,
even if multisubstrate and/or multiorganism systems were taken into ac-
count it would still be possible to work with relatively simple models with
similar structures. Models for mixed cultures have not been dealt with
but some examples can be found in [55] and [56].

2. An invariant control, which can be seen as a closed loop analogue of
the usual exponential feeding law, has been suggested. It provides the
basis for subsequent designs. In particular, it is a part of the controllers
presented in chapter 4 and the geometric approach in analyzing this law
has supplied new coordinates useful in defining an off-the-manifold error
variable. Besides, a local stability proof was obtained that encouraged the
search for a global one. This is provided in the final section of chapter
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3 and enabled the treatment of those problems in which Haldane-like
kinetic functions are present.

Three designs for the regulation of the specific growth rate are suggested.
The first one is based on flatness and uses two PIs. The second one is
based on the geometric control techniques developed by Fradkov et al. It
has been shown that the problem can be cast as one of partial stability,
and the corresponding techniques have been used to analyze it. Using
many elements and ideas of this design, a robust adaptive controller has
been developed with good experimental results.

The functionality of the previously cited controllers has been extended
to the case of non-monotonous (Haldane-like) kinetic functions using the
above mentioned results on the invariant control.

Several experiments have been carried out using a strain of the S. cere-
visiae. The results corresponding to the second result are good, in the
sense that a constant specific growth rate is kept constant, but a steady
state error appeared. This is solved with the third design which adapts
the parameter \ as required by the process, which not only is uncertainly
known but also changes with time.

Future lines

Possible future lines are enumerated in the following:

A complete and rigorous analysis of systems with inhibitor product. Here,
some guidelines are given on how the elements developed in the thesis could
be combined to give an almost complete solution to the control of fed-batch
bioreactors in one of the standard forms of chapter 2. Let us begin with
the more difficult case

z = p(s,p)x — Dx

§ = —Ysapt(8,0)T — Ysp7(s, p)x + D(s; — 5)
p=m(s,p)xr — Dp

v = Dv

(6.1)

If it were possible to regulate the product concentration p at a given value
p, then

z = p(s,pr)x — Dx
§ = ~Yso (8, 0r)T — Ysp7 (s, pr ) + D(s; — 5) (6.2)
v = Dv

This could be achieved easily if p were measured on-line, using the invariant
control suggested in chapter 3 and a simple PI for the correction of the



6 Conclusion. 79

factor @ mentioned there. If no measure of p is available the problem is
much more complex and still open. Going back to system 6.2, it can be
checked that the equation for substrate is equivalent to

$=—o(s)x + D(s; — s) (6.3)

where most often one of the situations described in figure 6 will be found.

AN

— /N

Fig. 6.1. Superposition of kinetic functions. o = p + 7.

In principle, the results on the invariant control allow us to work only with
the increasing part of both  and o, so the situation is essentially similar
to that studied in the thesis.

— The study of multi-substrate systems, particularly those in which oxygen is
the second limiting substrate. Systems with one substrate and one inducer
are also very interesting.

— Of importance for the previous goals and in itself, would be to find a
stability proof of the invariant control for the case with product. Showing,
clearly, the possible extra conditions on the kinetic functions or certain
parameters such as s; necessary for global stability.

Finding the corresponding invariant control for multi-substrate models
would also be important as a first step in generalizing the control structures
developed in the thesis.

Finally the already obtained results could be used for analyzing existing
controllers as suggested at the end of chapter 3.

— As for the robust adaptive controller, it has been checked in simulations
and in a first qualitative analysis that a high gain is not necessary and that
a continuous controller with a constant finite gain such as 1/T, = 2 % f,
for all o could be used with the same qualitative results. The search for a
stability proof remains an open problem.
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— Finally, it would be interesting to analyze how to take advantage of possibly
available extra information such as an estimation of the specific growth rate
even if it is not very precise.



A Flatness

A.1 Introduction.

In this appendix the concept of flatness, its relation to exact linearization
or more specifically exact linearization of state space equations, and a first
analysis of its applicability to bioreactors, are explained.

Whenever a system has the latter property mentioned above is called
linearizable (See figure A.1).

Input-output Lin. Systems

Linearizable systems
Fully Lin. Syst.

Fig. A.1. Exact Linearization

More specifically, for a linearizable system it is possible to find some
(dummy) outputs such that the state space equations can be put in linear
form through a (dynamic) feedback and a change of coordinates. An input-
output linearizable system is a system with an actual output, whose input-
output map can be made linear and the closed loop system state space equa-
tions partially linear. In a fully linearizable system both the state space equa-
tions and the input-output map can be made linear. It should be stressed that
flatness and feedback linearization are in principle different properties which,
under certain circumstances, coincide. Namely, a system can be flat in a sub-
set of the state space with no equilibrium point inside (see [111], [90], [91])
whereas linearization only makes sense in the neighbourhood of such a point.



82 A Flatness

In the latter case one property implies the other. It may seem that this distinc-
tion is useless in practice, but there do exist systems with partial equilibrium
points. In other words, only part of the state variables eventually reach a sta-
ble finite value (see [92], [93], [94]). The mathematical model of bioreactors
in fed-batch mode is one example. Despite this fact, flatness is still a very
useful concept since it allows to compute algebraically a feedforward control
and indicates the system has a very particular structure.

The equivalence of flatness to linearization was established in [87]. In the
process, a new kind of dynamic feedback was defined. Namely, the endogenous
feedback, that will be treated in some detail in a later section. Posterior
generalizations, in which the use of time scalings was allowed, led to the
concept of orbital flatness. The more restricted idea being referred to as
differential flatness. The connections between these concepts is summarized
in figure (A.2).

General Nonlinear Systems
D. Hilbert, 1912

Orbitally Flat Systems
Time scaling + Dynamic Fback.= Trivial Syst

Differentially Flat Syst.
Dynamic Fback.= Trivial Syst

Static Fback. Linearizable Syst

Linearizable SISO Syst.

Fig. A.2. Classification of nonlinear systems according to their linearizability
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This report is centred on the case of differential flatness. The use of time-
scalings is reported in [96] to [101]. It should be noted that many of the basic
definitions apply to both cases as they stand in the text.

A.2 Flatness

One of the main questions underlying flatness theory is: When can one solve
an underdetermined (system of) ODE(s) without using integration? That is
to say, When is it possible to parametrize all solutions by a set of arbitrary
functions? According to [82] the geometer D. Hilbert was the first one to pose
this question in 1912. In particular for ODEs of the form

Ft,z,y,4,9,...) =0 (A1)

For example, the equation

(@)% +(9)? =1 (A.2)

can be solved using integration by

x(t) = /cos@(t)dt y(t) = /sin@(t)dt (A.3)

but also, using the following expressions,

t=fla) + fla)
z = cos(a) f(a) + sin(a) f(a) (A.4)

y = sin(a) f(a) — cos(a) f(a)

where « is a parameter and f an arbitrary function. It can be checked
that

dx g—z

— =4

a <«

(o3

=cos(a) ... (A.5)
Hilbert also showed that such formulas do not exist for

& = (j)? (A.6)

Hence, the answer to the question at the beginning is not always positive.
In [85], (differentially) flat systems are defined as underdetermined systems
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of (nonlinear) ordinary differential equations (ODEs) whose solution curves
are in smooth one-one correspondence with arbitrary curves in a space whose
dimension equals the number of equations by which the system is underdeter-
mined. Control systems are a natural example of underdetermined systems,
i.e. systems with more dependent variables (usually divided into “inputs”and
“states”) than equations.

A general underdetermined system of ODEs of order k£ may be written as

Fit,z, M, .. a®)y=0, j=1,...,N—p. (A7)

where F7 are assumed to be C®°-smooth functions, z = (x1,...,zx) are
the dependent variables, (") is the r-th time derivative of x, and p > 1 is
the number of equations by which the system is underdetermined. In the
case of control systems, p coincides with the number of inputs. If any p
dependent variables are set to arbitrary functions of time, then a fully de-
termined system of ODEs is obtained. If in a control system the inputs, say
TN—ptl = U1,...,TN = Up, are set to arbitrary functions then a system is
obtained whose solutions depend on N — p constants (i.e. the initial condi-
tions). But there is no reason to assign the arbitrary functions of time to
the inputs. Any p dependent variables may be chosen. Actually it may be
possible to choose p functions of the dependent variables and a finite number
of their derivatives as “free variables”. Are then the initial conditions always
necessary to parametrize the entire set of solutions or it may suffice with
those p “free variables”?

Whenever the second possibility is true, the system is said to be (diferen-
tially) flat. A formal definition could be the following:

The system given by eq. (A.7) is said to be differentially flat if there exist
variables yi1, ...,y given by an equation of the form

y=h(t,z,zM,. .. z™) (A.8)

such that the original variables © may be recovered (locally) from y by an
equation of the form

z=¢(t,y,y",...,y"). (A.9)

The variables y1,...,yp are referred to as the “flat outputs”.

Let’s particularize this definition for control systems (and differential
flatness). If the states are x1,...,Zy_, = x, and the inputs are taken as
TN—p+l = U1,...,TN = Up, then, for a system in the form

= f(z,u) (A.10)
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the definition of (differential) flatness is as follows [102]:
“The system with m inputs u and n states x

z = f(z,u)

is said (differentially) flat if there exists a set of m variables

yi = hi(x, u, G, ....,u(%')) i=1,.....,m.
such that

(i) the m components of y are differentially independent,
(ii) the state x and the input u can be expressed as functions of y and its
derivatives in finite number :

with @ and ¥ identically satisfaying & = f(®,¥)”.
A system is said to be r-flat if it admits a flat output depending on
derivatives of u of order at most r, i.e:

y = h(x,u, ..., u™) (A.11)

As mentioned above, Fliess and coworkers proved the equivalence of feed-
back linearization and flatness. They did so using the mathematical frame-
work of infinite-dimensional differential geometry or more precisely “differ-
ential geometry of jets and prolongations of infinite order”. In this setting, a
system (A.10) is regarded as an infinite family of vector fields parametrized by
u and integral curves are described as smooth functions ¢ — (z(t), u(t)) with
initial conditions in the form of the infinite sequence & = (xo, ug, to, tg, - - .)-
Therefore, all objects are defined using the infinite sequence of coordinates
&= (z,u,0,1,...) € X XU X RS where RS = R™ x R™ x ... In this context,
a smooth function is a function smoothly depending on a finite but arbitrary
number of coordinates. If the original vector field in (A.10) is prolonged as

F(E) = (f(@,u), i ... (A1)

then equation (A.10) reads

E=F(E) £0)=6 (A.13)
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Therefore, equation (A.13) defines a vector field, in the classic sense, on
the infinite dimensional manifold X x U x RS9. (See [118], [119], [120]).

Two systems are “equivalent” if there is an invertible transformation ex-
changing their trajectories. That is, if there exists a smooth invertible map-
ping @ that takes every integral curve of (A.13) (defined in a neighbourhood
of a point p in the corresponding infinite-dimensional manifold M) into an
integral curve of another system ¢ = G(¢) (defined in a neighbourhood of a
point ¢ = @(p) in the corresponding infinite-dimensional manifold N), then
both systems are (locally) equivalent. Vector fields F' and G are said to be
related. The mapping @ is called an endogenous transformation. This defi-
nition can be extended to the time-varying case and to the case of orbital
flatness, with endogenous transformations replaced by the more general no-
tion of Lie-Bdcklund isomorphisms. (See [120]).

Lie-Backlund isomorphisms

Endogenous transformations

Orbital equivalence

Differential flatness

New time scale

Time is preserved

Fig. A.3. Lie-Backlund isomorphisms and Endogenous transformations
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The above mentioned one-to-one relation between trajectories implies that

the variables of one system can be expressed as a function of the second
system variables and a finite number of their derivatives (See [88]).

Within this mathematical framework, a series of important facts have

been established [88]:

Lie-Backlund isomorphisms and endogenous transformations preserve the
number of input channels. Hence, if two systems are orbitally or differ-
entially equivalent then they have the same number of inputs.

Consider a flat system, i.e. one which is orbitally or differentially equiva-
lent to a trivial system (a linear controllable system in Brunovski canon-
ical form). The number of flat (or linearizing) outputs is equal to the
number of input channels.

If a nonlinear system (A.10) is differentially flat around a point p, then
it satisfies the strong accessibility property at p.

If two systems

= f(z,u) or (X xUXRXF) (A.14)
and
y=g(y,v) or (Y xV xRFG) (A.15)

are differentially equivalent then there exists an endogenous dynamic
feedback

P a0

such that the closed loop system (A.14)-(A.16) is diffeomorphic to (A.15)
prolonged by sufficiently many integrators. That is, diffeomorphic to

Y= g(y» 1))

b= o

o = o® (A.17)

) =

for p large enough. Consequently, if a system is differentially flat then
there exists an endogenous dynamic feedback such that the closed loop
system is diffeomorphic to a linear controllable system.

The proofs of these statements, and in particular the relation between

equivalence and feedback, can also be found in [127].
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It is interesting to analyze the last statement. A linear controllable system
is equivalent to the Brunovsky Canonical Form. Brunovsky [103], showed that
any controllable linear system

& = Ax + Bu (A.18)

with x € R™ and u € RP can be converted, via a linear state transformation
and a linear feedback, into a canonical form given by p chains of integrators:

it =u' ) = uP
11 .p P
Lo = Ty Lo = T3

(A.19)

Eh =Th g T =
withn =k + ...+ kp.

If p arbitrary functions are assigned to the p states x,lcl ...} then, it is
possible to get all the other states and inputs by successive differentiation.
From this observation, it is possible to get back to the original definition of
flatness.

There are other ways of attacking the equivalence problem. In the 1910s
and 1920s the geometer Elie Cartan developed a set of tools for the study of
equivalence of systems of differential equations [105], [106], [83]. These tools
are now set in the context of Exterior Differential Systems (See [109]) and
make use of Exterior Algebra and Calculus of forms [107]. For example, in
this setting a control system is expressed as a Pfaffian system:

= f(x,u) — I = (dz; — fi(w,u)dt)

(A.20)
x € MueR™ (z,u,t) € M x R™ X R

Many other mathematical objects such as vector fields, distributions...
have also their counterparts in this setting (See [108]). In [110] there is a
summary of the relation between flatness and Cartan’s concept of absolute
equivalence. It is also shown that endogenous feedback has a counterpart
in the framework of EDS, namely the Cartan prolongations. Some of the
advantages of this approach are, in principle, the availability of tools from
advanced algebra and the fact that implicit equations and non-affine systems
can be treated in a unified framework. Unfortunately these techniques are
complex (see [109], [104]) and completely unfamiliar to an engineer.

Finally, some researchers have established the relation between system
equivalence and system symmetries (See [116], [117]). From this standpoint
they have stablished necessary and sufficient conditions for flatness. Neverthe-
less, for the time being, no efficient method for checking them and computing
flat outputs has been found.
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A.3 Endogenous Feedback.

In the framework of flatness theory, Fliess and coworkers introduced the con-
cept of endogenous feedback. The objective of this section is to define it, place
it among the other kinds of feedback and give a definite idea of its possible
actual realizations.

Given a control system & = f(x,u), a dynamic feedback

z=a(x,z,v)
u = b(z,2,v) (A.21)

is said to be endogenous if

- it is regular.
- z and v satisfying (A.21) can be expressed as functions of z,u and a finite
number of their derivatives:

z=a(z,u, ..., u?)

A.
v =Bz, u, ..., u?) (4.22)

A slightly different definition is given in [111], allowing for explicit time
dependence of functions a,b,a and f3.

Note the endogenous feedback does not add new dynamics, in the sense
that it does not contain exogenous variables (i.e. independent of the original
system variables and their derivatives). Hence the name.

The transformations operated by an endogenous feedback can be undone
by another such feedback. Controllability is one of the properties preserved
by this kind of equivalence. As remarked in [87] and [127], it is worth point-
ing that a feedback which is invertible in the standard sense [124] is not
necessarily endogenous. The invertible feedback

Z=w u="v (A.23)

acting on the scalar dynamics £ = w is not endogenous and the closed
loop

T=v Z=v (A.24)

is no longer controllable. A diagram showing the relationship between
different kinds of feedback is given in figure A.4. The term dynamic extension
means that chains of integrators have been added to the inputs thus creating
new states which are derivatives of the original inputs.

Another example of feedback which is not endogenous is given in [111]:
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General Feedback

Invertible Dyn. Feedback

Endogenous Feedback

Dynamic Extension + Inv. Static Fback.

Invertible Static Feedback.

Fig. A.4. Classification of Feedback

231 = Z2
Zé = —z21 (A25)
u=g(z)v

Then, how may an endogenous feedback look like?

In [121] (and also in [84]) a precompensator (e.g. a dynamic extension) is
added to the original system and then it is checked whether the compound
system is linearizable using static feedback and a change of coordinates. In
particular, in [121] it is suggested that a rather general kind of endogenous
feedback may be formed by:

1- A dynamic state feedback of the form v = a(z,u, 1, . .., u®).
2- A dynamic extension on the new control variables v.
3- A (nonlinear) static feedback.

In [84] two examples are given which correspond to this scheme. One
of them coincides with the PVTOL which in [87] is proved to be flat and
equivalent to other systems.

Finally, it is interesting to note that the concepts of dynamic extension
and endogenous feedback have their counterparts in the framework of exterior
differential systems. See figure A.5 and the article [111].
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Cartan Prolongation Endogenous Fback.

Total Prolongation

Dyn. Extension

P. by Differentiation

Fig. A.5. Cartan Prolongations and Endogenous Fback.

A.4 Application to Bioreactors.

In this section the 0-flatness of the standard bioreactor model is studied under
several assumptions on the available inputs and the possible flat outputs. The
study is carried out “by inspection”. As explained in the previous section
Exact Linearization and Flatness, in general there is no systematic method for
checking flatness and finding the flat outputs [128]. The few existing methods
only work for particular cases and entail complex mathematics. See [131], in
which 0— and 1—flatness of affine systems with two inputs and four states
is treated, for a good example of the complexity of checking r-flatness even
for r-small. In this report both infinite-dimensional differential geometry and
concepts of exterior differential systems are combined. In the future it may
be interesting to deal with this kind of techniques. For the time being, as
already said above, a more basic study is carried out.

A.4.1 0-flatness

To begin with, let’s remind the definition of zero-flatness:

A system is 0-flat if the flat outputs only depend on the system states and
mputs

In order to understand the method used for checking it, it must also be
remembered that the set of differential equations can be regarded as a set
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of algebraic equations with variables x,s,...,Z,$,...,u;. If x = x(t) is as-
sumed to be known, then clearly m(t) is also known. But s and $ count as
different incognita. Then it must be checked if there are as many equations
as incognita. In case more (algebraically independent) equations are needed,
it is possible to generate them by differentiation with respect to time of the
existing ones. When choosing the equation to be differentiated it is impor-
tant to check no new incognita are generated in the process, e.g. u; or &.
Exceptionally, it may happen that the resulting equation is a combination
of the existing ones. So, in the end, independence of all equations should be
checked anyway. Maybe, it is also possible to check for 1-flatness in this way
but becomes very difficult.

Following the method described above the 0-flatness of the simplest biore-
actor was determined [126].

& = p(s)xr — Dx
$=—yso(s)x + D(s; — s) (A.26)
v=F D= E

v

In that article it was assumed that ¢ = u, but this doesn’t affect the
reasoning. On the other hand, it is still assumed that p is monod-like. If
(F,s;) are taken as inputs and (x,v) as flat outputs, then

- From the first and third equations in (A.26)

ks
Tv+vx
- From the third equation
F=9 (A.28)

- And from these and the second one it can be deduced that s; is a function
of (z,v,&,0,%,0).

Since x and v are measurable, it would be possible to use a control scheme
such as that suggested in [125] or in [126] in a version combined with fuzzy
control methods. It is also possible to determine O-flatness via an already
established result (see [128], [130]), according to which any affine system with
n states and n-1 inputs is 0-flat as soon as it is controllable or more precisely
strongly accessible. But system (A.26) should be put first in affine form. If
the system is expressed using absolute masses instead of concentrations

5= —y,0% + Fs; (A.29)
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it is clear that the substrate supplied to the bioreactor is equal to F's;,
where u1 = F, us = s;. In practice this is equivalent to F's; = FyaeSimaz +
FrinSimin Where the new control inputs are w1, = Fiae, U2 = Fiin and
Simaxs Simin are constants.

A.4.2 Applications

Remember the equations of the second type standard model

& = p(s,p)z — Dx

§= _yac/s:u’(svp)m - yac/pﬂ-(svp)m + D(Szn - 5)

p=m(s,p)x — Dp (A.30)
F

v=F D=—

v

where the control actions are u; = F', us = $;,, O

z = ,U(S,p)l' — Dz
5= _ym/sﬂ(sap)x - ym/pﬂ-(sap)x =+ D(szn - 3)

p=(s,p)x —ap— Dp (A.31)
v=F D = E
v

where the control actions are u; = F, us = a.
As a rule these models are not flat with x and v as flat outputs, except
for the second case with 1 = u1(s). Then, it is O-flat (at least locally):

From the first and fourth equations s = f(z,v,x, ).
Now the known variables are x,v, s, 4,0, $, F.

From the second equation, p and then p are obtained.
Finally, from the third equation « is obtained.

If u1 = pi(s,p) that’s no longer possible. After a series of attempts, it was
found out that the total biomass Z = zv and the total product mass p = pv
can be used as flat outputs when using (F, s;,) as inputs. Expressing the
system, not in concentrations but in absolute masses, and making it affine
through (F, si) — (F1, Fb) :

.%L' - ,U«(ga ﬁ? ,U)'f

S = —Yu/sUT — Yy pTT + FiSinmaz + FoSinmin (A.32)
]5 = 7T(§7 p» ’U)j

v=F + Iy

it can be checked that the system is (at least locally) 0-flat with (Z, )
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- The first and third equations constitute a system of two equations with
two incognita 5,v. Then, it is possible to obtain these two variables and
consequently 3, 7.

- Substituting in the second equation, the only incognita left are F7, Fb.
Hence, taking also the fourth equation, there appears another system of
two equations with two incognita.

The same reasoning also works in the non-affine case and even in the more
general case. On the other hand, it turned out that with (F, «) as inputs, the
system is not 0-flat.

There are other two possible alternatives:

- Use dilution instead of flux as control action .
Work with the equations in concentrations and take as inputs (D, s;5,)
(equivalently (D1, Ds)) or (D, «). In this way, it is possible to disregard
the equation of volume. Thus, obtaining an affine system with three states
and two inputs which is always flat, if it is controllable. Afterwards, once
D has been determined and knowing v(;—g), it is possible to determine F.

- Fiz volume trajectory (or equivalently D=D(t)). From the very beginning,
fix the trajectory of volume and consequently that of F. Then take as
control actions (, $;,,). This would require two precision pumps for s;,
and one standard pump for «, but on the other hand fermentations would
have a definite and precise duration. An affine time-varying system with
three states and two inputs is obtained. It should be checked that is 0-flat.

These two alternatives could be useful in order to reduce the possible
systems with five states and two inputs to the case of affine systems with
four states and two inputs.

It should be noted that in continuous mode fermentations the standard
model always reduces to the three states-two inputs case.
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Letter to the Editor of Biotechnology Progress.

The above paper!' deals with the control of the substrate concentra-
tion of fed-batch bioreactions with non-monotonic growth kinetics. Firstly, a
straight-forward feedback linearization control strategy is introduced which
assumes that both biomass and substrate concentrations are available for
feedback. However, as the authors assert in section 3.6 of their paper, this
assumption is generally not verified because on-line substrate concentration
measurements are not available and observers based on biomass concentra-
tion are not a valid alternative for stabilization of non-monotonic fed-batch
processes. To overcome this drawback, a modified version of this prelimi-
nary linearizing control strategy is presented which is much more realistic
from a practical viewpoint. Its main advantage is that the implementation
only requires the measurement of biomass concentration and the estimation
(based on this measure) of the specific growth rate. Then, the authors at-
tempt to demonstrate that the fed-batch process can still be stabilized around
any desired set-point all along the non-monotonic kinetics by introducing a
discontinuity in the feedback gain. Unfortunately, the stability analysis de-
veloped by the authors is not entirely consistent with the proposed control
law based only on biomass measurement. So, the claimed demonstration of
global stability without feedback of the substrate concentration is not com-
pletely valid. In this context, this note is aimed at clarifying some points
of this demonstration and at showing that the control law proposed by the
authors effectively stabilizes the substrate concentration at any set-point on
the non-monotonic kinetics.

Note that replacing the control law (5) in the mass balance equation (2)
does not yield the linear dynamics (4) (This can also be verified in Figure 2
which does not display the typical exponential response of linear systems).
Similarly, the control law (6) does not lead to the closed-loop dynamics (7)
(Actually, to obtain the closed-loop dynamics (7), the set-point C% should
be replaced by the actual substrate concentration C's in the denominator of

11.Y. Smets, G.P. Bastin and J. Van Impe, Feedback Stabilization of Fed-Batch
Bioreactors: Non-Monotonic Growth Kinetics, Biotechnol. Prog. 2002, 18, 1116-
1125.
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both terms in the right-hand side of (6), but this correction would introduce
feedback of C's and the most attractive feature of this control strategy would
be lost). Consequently, the stability analysis developed from (7) in section 3
requires some corrections to effectively demonstrate that the control law (6)
as proposed by the authors (i.e. without on-line measurement or estimation
of C'g), globally stabilizes the system at any desired set-point C% all along the
non-monotonic kinetics. We give here some guidelines for this demonstration
and derive some necessary and suficient conditions.

First of all, it is convenient to reformulate the gain 7, in (6) as a linear
function of biomass: 7, = kCx /Yx/g. Also, after some trivial algebra, the
growth rate error p — pu* for a Haldane kinetics can be written in (6) as

. pol A A
= = _C_SZ(OS - C5)(Cs — OS,a)
where b = Ky, /p*. Then, replacing (6) in the mass balance equation

(2), the following closed-loop dynamics yields

] Cx
H o)) X
Yx,5 Cs ( S)> (Cs,in — C%)

(Cs —C%)

diCs - C5)
7 = m +

where the function ¢g(Cs) is given by

k *
9(Cs) = Cs + 3(Cs = Cs,in)(Cs — Cg,q)

For the sake of simplicity, the stabilizing maintenance coeficient m is
hereinafter neglected. Then, to accomplish global stability at any C% , g(Cs)
must be strictly positive for all achievable values of Cg, i.e. VCs € [0, Cs ).
After some manipulation, the quadratic polynomial g(Cs) can be written as

(Cs) = ak Cs___GCs (C'+C*)—é +1
IS = CginCe, ~ CsanC, | 0 80/ T
Clearly, the necessary and suficient conditions for global stability are:

- ¢(0) > 0.
- g(Cs) has no root in [0, Cg,in].

, a>0.

To satisfy these stability conditions, the gain k should be selected within the
2
range

2 Actually, due to the presence of the maintenance coeficient, stability is achieved
with a larger range of k, in particular with k£ = 0, i.e. the open-loop control (3)
of the above paper also stabilizes the system.
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0<k<k=
CS,in + Cg',a - OS,inC;*ya

In fact, selecting k < 0 violates the stability condition g(Cg) > 0 for
low values of Cs (below the left flank equilibrium), whereas selecting k > &
violates the condition g(Cs) > 0 for high values of Cg (above the right flank
equilibrium).

Remark 1: A performance analysis reveals that growth rate error feedback
with & > 0 improves the local convergence to a set-point on the left flank
of the Haldane kinetics, whereas deteriorates the local response around a
set-point on the right flank. Actually, to fasten the convergence towards this
latter set-point, the gain k should be negative, but the response from low
initial substrate concentrations might be unstable.

Remark 2: If appropriate discontinuous feedback is introduced, for in-
stance replacing k by |k|sign(Cs,, — Cs) in the expression of 7,, then the
stability condition g(Cg) > 0¥Cg € [0,Csp] is verified for all k, hence for
all 7, (positive or negative). This discontinuity is equivalent to the switching
factor introduced by the authors to achieve stability. It is shown here however
that including discontinuous feedback is not a necessary condition to guar-
antee stability. Anyway, it is useful to improve the closed-loop performance,
particularly for operation at high substrate concentration levels.
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