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Ich versichere hiermit wahrheitsgemäß, die Arbeit bis auf die dem Aufgabensteller bereits
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Abstract

In this document, we study the synchronization between the sent frame and the received

frame in a communications system for a good recovery of the data and its probability of

success. It is a important due to the channel introduces impairments, and the signal is

different when arrives to the finish.

Studying Massey algorithm for real sequences, and improving it for complex sequences

used in Long Term Evolution, we see success of a correct detection or not.

The results show for big SNRs a great detection, with a very high percentage of success,

but adding the different impairments produced during the transmission in the channel,

the errors grow up, so in a perfect situation, the algorithm works for LTE.
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1 Introduction

One problem in a communications system is to know where the data starts, we know

when the data is sent, but never when it arrives, for that reason, we need something to

know where the data starts and we can recover. That is why we need a synchronization

word at the beginning of the data, and this synchronization word has to have specific

properties that we can use to determine where exactly is in all the symbols we receive.

Now we know we need a synchronization word, but not the length of it and if it depends

on total length frame or the signal power. These are aspects we will show in this study,

so using a sight window of a length equal to the total frame length, previously known,

and considering the synchronization word is the same in each frame, we can move this

window, symbol per symbol, and determine, with a rate error, the probability of success

in the correct position.

But in real communications systems, we have different impairments that hinder the de-

tection, as noise, and others that we will study in this document, and affirm, if we correct

these impairments, how we can detect the correct start position of the frame.

So we will study a typical communications system scheme composed by a transmitter,

a channel and a receiver, where we will generate our own data word, completly ran-

dom and binary and then apply the Massey Algorithm, that James Massey designed in

1972, for real sequences. Then, we improve it for complex sequences, like Zadoff-Chu

sequences used in Long Term Evolution (LTE) in the present day, and study how the

error rate changes depending which impairment we use and adding to create the more

closely situation of a real communications system.

The Massey algorithm uses the property of cross correlation, so these synchronization

words should have a good autocorrelation properties to detect with the maximum easily.

After studying the Massey algorithm as he did in his study in 1972, we will modify for

complex sequences and study them only with the time delay and noise, introduced by

the channel, as unique impairments. Later we will add the phase impairment due to the

reflections and refractions of the signal in the channel, and then, we will finish our study

with the Doppler effect suffered in the communications channel, developing the algorithm

using the property of the coherence length.

In each study we will show the results in plots and their comments about them, provided

3



1 Introduction

by referring to the signal to noise ratio and different frame lengths and lengths of syn-

chronization word, because is what we can play with to obtain a success ratio as better

as possible, the rest of the parameters are totally random.

At the end, we will show the conclusion and possible utility in a future research and

application.

4



2 System model

We consider a point-to-point communication system with a BPSK Modulation to evaluate

the performance of frame synchronization algorithms. The system consists of 3 Parts that

we describe below:

2.1 Transmitter

We consider the transmitter which aim is to generate the frame, composed by the syn-

chronization word and the data word.

We assume that a transmitted frame consists of a synchronization word of length L,

s = [s0, s1, ..., sL−1] and a data word of length N-L, d = [dL, dL+1, ..., dN−1], such that,

the whole frame is N symbols long.

After generating the sync-word and data word, we concatenate both in one simply vector

and send into the channel.

This vector will be

sd = [sd] = [s0, s1, ..., sL−1, dL, dL+1, ..., dN−1] (2.1)

2.2 Channel

As in many communications systems, the channel introduces Additive White Gaussian

Noise (AWGN) which is a real noise with variance N0/2 and zero mean of length N.

n = [n0, n1, ..., nN−1] (2.2)

In the channel, we introduce the different types of impairments, like phase shift and

frequency shift, and the time delay, depending the focus point we study, but in all the

cases we study the time delay.

We will define a vector r of length N as the output of the channel

r =
√
ETm(sd) + n (2.3)

5



2 System model

where Tm() operator is a cyclic shift by m symbols to simulate the time delay.

2.3 Receiver

In the receiver, we only focus on the frame synchronization and try to find where the

sequences start. We will measure the probability of errors in estimation of the frame start

due to the noise and different delays. We do not focus on the demodulation, rather, the

first step to start the data recovery.

To obtain the estimated m, start index of our frame, we use the Maximum Likehood Method

[BPV08]. We consider ρ as the actual value assumed by the random vector r, which length

is also N, ρ = [ρ0, ρ1, ..., ρN−1], and µ as the estimation of m, 0 ≤ µ < N which maximize

S1 = Pr[m = µ|r = ρ] and mixed with the Bayes’ Theorem for events and Random

Variables, so, the estimation problem should be like max
m

S1 such that

S1 =
pr(ρ|m = µ)Pr[m = µ]

pr(ρ)
(2.4)

The Pr[m = µ] = 1
N for all µ, and is a constant, thus the maximum problem can be

formulated as max
m

S2

S2 = pr(ρ|m = µ) (2.5)

Now we assume δ as the possible values of random vector data, d, so, δ = [δL, δL+1, ..., δN−1],

so S2 is the same as

S2 =
∑
∀δ
pr(ρ|d = δ,m = µ)Pr(d = δ) (2.6)

Since Pr(d = δ) = 1
2N−L

, and again, it is constant, the problem can be reformulated as

max
m

S3 with S3 equal:

S3 =
∑
∀δ
pr(ρ|d = δ,m = µ) (2.7)

which upon making use of (2.3) becomes

S3 =
∑
∀δ
pn(ρ−

√
ETµ(sδ)) (2.8)

6



2.3 Receiver

In the next chapters, depending the focus of the study, we will see how to obtain the

estimate of m according to the received vector r.

7





3 Synchronization Algorithms for Real

Sequences

In this chapter we will focus how detect the correct slot position of the received frame

for real sequences.

3.1 Massey Algorithm

In this section, we briefly show the Massey algorithm [Mas72].

As we saw in formula (2.8),

S3 =
∑
∀δ
pn(ρ−

√
ETµ(sδ)) (3.1)

and the Gaussian assumption on noise, we consider

pn(ρ−
√
ETµ(sδ)) = (2π)−N/2

∑
∀δ

([

L−1∏
i=0

e−(ρi+µ−
√
Esi)

2/N0 ]

N−1∏
i=L

e−(ρi+µ−
√
Eδi)

2/N0) (3.2)

Now, focusing only in the two products, we define A = (ρi+µ −
√
Esi)

2 and B =

(ρi+µ −
√
Eδi)

2, and develop both terms, considering δi = −1 or δi = 1 equiprobable:

A = ρ2i+µ + Es2i − 2Eρi+µsi (3.3)

considering just the term depending in µ due to ρ2i+µ and Es2i are constants, we can ignore

them and redefine A as A2 = −2
√
Eρi+µsi/N0. Same process for term B and renaming,

we define B2 = −2
√
Eρi+µδi/N0. This is equivalent to maximize max

m
S4, where S4 is

S4 =
∑
∀δ

([
L−1∏
i=0

e−A2 ]
N−1∏
i=L

e−B2) (3.4)

9



3 Synchronization Algorithms for Real Sequences

S4 =
∑
∀δ

([
L−1∏
i=0

e2
√
Eρi+µsi/N0 ]

N−1∏
i=L

e2
√
Eρi+µδi/N0) (3.5)

Carrying out the term of the summation in all delta and remembering, δ just take +1 or

-1, and defining the second product as B3, it will be

B3 =
∑
∀δ

(

N−1∏
i=L

e2
√
Eρi+µδi/N0) =

N−1∏
i=L

e2
√
Eρi+µ/N0 + e−2

√
Eρi+µ/N0 (3.6)

and the property of cosinus hyperbolicus 1
2(ea + e−a) = cosh(a)

B3 =
N−1∏
i=L

2cosh(2
√
Eρi+µ/N0) (3.7)

so finally, S4 is

S4 = [
L−1∏
i=0

e2
√
Eρi+µsi/N0 ] ·B3 (3.8)

S4 = [
L−1∏
i=0

e2
√
Eρi+µsi/N0 ]

N−1∏
i=L

2cosh(2
√
Eρi+µ/N0) (3.9)

Applying logarithms and disregarding the constants, is equal to maximize the expression

max
m

S5

S5 =

L−1∑
i=0

2
√
Eρi+µsi/N0 +

N−1∑
i=L

ln(cosh(2
√
Eρi+µ/N0)) (3.10)

If we define
∑N−1

i=0 ln(cosh(2
√
Eρi+µ/N0)) as the summation over all components of ρ,

independent of µ, we can subtract to S5 without affecting the maximization, so, is equal

to maximize max
m

S6

S6 =

L−1∑
i=0

2
√
Eρi+µsi/N0 −

L−1∑
i=0

ln(cosh(2
√
Eρi+µ/N0)) (3.11)

And finally, disregarding the constants, we obtain the Optimum Rule for locating the

Synchronization Word as Massey defined

10



3.1 Massey Algorithm

S =

L−1∑
i=0

ρi+µsi −
L−1∑
i=0

f(ρi+µ) (3.12)

where

f(x) = ln(cosh(2
√
Ex/N0)) (3.13)

The first summation in (3.12) is the correlation between the synchronization word we

generate in the transmitter, and L bits from the received frame, and the second summation

is a kind of energy correction to account the random data surrounding the sync-word.

Moreover, we can make approximations for higher and lower SNRs. Considering Low

SNR when the SNR < 0dB and High SNR for SNR ≥ 15dB [Mas72].

For High SNR, the argument in the cosh is greater than 1, so, we can approximate the

cosh(x) as 1
2e
|x|, and we can obtain

f(x) = ln(cosh(2
√
Ex/N0)) = ln(

1

2
e|2
√
Ex/N0|) = ln(

1

2
) + ln(e|2

√
Ex/N0|) (3.14)

We can disregard the first term since it is a constant and affects all terms, the constants

of the second term, and replacing x for ρi+µ. Finally, the S is

ShighSNR =
L−1∑
i=0

ρi+µsi −
L−1∑
i=0

|ρi+µ| (3.15)

For Low SNR, the argument of the cosh is smaller than one, so, we can approximate the

cosh with the Maclaurin series [Bab09]

cosh(x) =

∞∑
n=0

1

(2n)!
x2n,∀x (3.16)

And the Taylor series [Bab09] for exponential function is

ex =

∞∑
n=0

1

(n)!
xn,∀x;n ∈ N0 (3.17)

Combining (3.16) and (3.17), the correction term is

11



3 Synchronization Algorithms for Real Sequences

ln(cosh(2
√
Eρi+µ/N0)) =

2
√
E

N0

1

2
ρi+µ

2 =

√
E

N0
ρi+µ

2 (3.18)

SlowSNR =
L−1∑
i=0

ρi+µsi −
√
E

N0

L−1∑
i=0

ρi+µ
2 (3.19)

Finally we have the Optimum Rule, now we will use some training sequences what have

some good correlation properties like Barker Sequences [Bar53], Neuman-Hofman Se-

quence [NH71] and Willard Sequences [Wil61], and also for random sequences.

3.1.1 Barker Sequences

In this section, we apply the algorithm after receiving a sequence ρ and estimate the

position µ. As the training sequence, we use Barker sequence of length 7 and 13 [Bar53]:

L=7 s=(1, -1, 1, 1, -1, -1, -1)

L=13 s=(1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1)

In the study we use different frame lengths to see how it influences.

3.1.2 Neuman-Hofman Sequence

Another different training sequence is Neuman-Hofman sequence of length 13 [NH71]:

L=13 s=(-1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1,1)

And, as in Barker sequences, the same idea for frame’s length.

3.1.3 Willard Sequences

We use Willard sequences to see the comparison with Barker and Neuman-Hofman, due

to these sequences do not appear in the Massey’s results [Mas72], and see what happens

for these sequences of lengths 7 and 13 [Wil61]:

12



3.2 Results

L=7 s=(1, 1, 1, -1, 1, -1, -1)

L=13 s=(1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1)

And also, we use same frame lengths to compare them.

3.1.4 Random Sequences

In this point we will see what happens if the synchronization word is not a specific known

sequence, what are going to be the results if both, synchronization word and data word,

are random, but only taking values of +1 or -1.

Also here, we will see for different lengths of synchronization word and frame’s length,

not only L = 7 and L = 13, and what are their theoretical result.

3.2 Results

3.2.1 Barker and Neuman-Hofman Sequences Results

We show what happens using the algorithm for the Barker and Neuman-Hofman sequence

described before. We divide this section in 2 different cases, where we have the fixed L,

explained before and a fixed N as in [Mas72], and for different length of N to see how

the error grows.

Fixed L and Fixed N

We fix N = 91 for largest Barker sequence and Neuman-Hofman sequence, and N = 28

for smallest Barker sequence [Mas72].

In Figure 3.1 and Figure 3.2, we observe the results, after computing the algorithm using

Matlab. The flat lines, without ∗, are the results after applying the algorithm, and the

∗ lines are the reference given in [Mas72] without the correction term. The axes are, in

abscissa the SNR in dB, and the ordinates the percentage of errors done in the receiver

by our detector.

The computed results are quiet similar with the reference, so we can affirm the algorithm

is correctly programmed. On the other hand, the results are very few, so we enlarge the

SNR vector to obtain a huge vision of the errors. The axes in Figure 3.3, as earlier, in

abscissa we have the SNR in dB, and in ordinates, the number of errors in a logarithm

scale. From this point, all the plots of this chapter will have the same axes and structure.

So, Figure 3.3, in we have a big sight of how the sequences behave, and we can observe

13
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Figure 3.1: Reference without correction term
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Figure 3.2: Reference with correction term

a gain, in all cases, more or less, between SNR = −5 dB and SNR = 11 dB, from the

cross correlation (the algorithm without the correction term) to the correction term.

There is a valley in Neuman-Hofman sequence without correction that goes so deep in

the graph, that is produced because the simulation is done with 2.000 experiments, if we

enlarge this number until 100.000, this valley will be converge above the line with the

correction term.
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Fixed L and Larger N

Here we will see different results with larger N and how the errors will increase. In this

point, we will observe the results when the frame length, N , is the double or nearby this

value.

In Figure 3.4, we observe the results when the frame length is greater than the double,

and we observe, again, this gain between SNR = −5 dB and SNR = 11 dB, but if we

compare this Figure 3.4, and Figure 3.3, we can observe a better flatness and soft curve

in Figure 3.4, specially in Barker sequence, in the other 2 will happen the same if we

had done the simulation with more experiments, and also, we can observe, in Figure 3.3,

the number of errors are less, and that has sense, because if we enlarge the length of our

total frame, but we keep the length of the synchronization word, the probability to found

the synchronization word inside the data vector, is higher than if we have another frame

with the total length smaller.

Later we will see how is this probability look like when the synchronization word and

data are completely random.
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3.2.2 Willard Sequences Results

After studying the Barker and Neuman-Hofman sequences, we just compare Willard

sequences and Barker sequences for different lengths of N . As we can see, in Figure 3.5,

the gain is again between SNR = −5 dB and SNR = 10 dB and it is represented for

different lengths of total frame, and we can observe, how the number of errors is growing

up with the size of the total frame. In Figure 3.7 we can observe the same result for

larger SNRs, but the main difference is, the gain is bigger, that means, the difference

between the results without the correction term, and the correction term, when they start

to stabilize, is bigger in the Willard Sequences than in the Barker Sequences.

3.2.3 Random Sequences Results

In random sequences we have, both, synchronization word and data word, random, as we

saw before, and we made the study for different lengths of synchronization word, no just

L = 7 and L = 13.

In all figures, we can observe the gain between the cross correlation term without the

correction term and with it, and also, how we enlarge the synchronization word, for the

same total length frame, the number of errors are decreasing.

For example, focusing N = 750, it is in all 4 plots, we can see for Figure 3.9 the results

are practically zero, they are a huge rate of error, it starts over 95% and decrease till
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80%, but it continues being a very huge rate of error, and we can’t observe the difference

gain due to the correction term.

In Figure 3.10, the error for big SNRs is so much smaller than Figure 3.9 going down the

10% of error rate, and just doubling the length of the synchronization word. The gain is

also more clear now, and we can observe a difference gain due to the correction term of

8 dB.

In Figure 3.11 and In Figure 3.12 there are some rate error where their values are zero,

because we can not see the the corresponding value, so we consider no errors when the

plot ends. In both figures, the curves decrease faster than other 2 plots and their gain are,

in Figure 3.11 a gain of 7.5 dB and for Figure 3.12 a gain of 3 dB but here the receiver

does it correctly with the correction term, even when the noise is 10 times greater than

our signal power.

Probability of error without noise

Now we will see if our simulated results are corrected obtaining the probability of error

without noise, and then, compare to the value of SNR = 20

All the symbols are equiprobable, so Pr(x = 1) = Pr(x = −1) = 1
2 , and, as the synchro-

nization word has length L, the probability to detect it correctly is

Pr(r0:L−1 = s) =

(
1

2

)
0

·
(

1

2

)
1

· · ·
(

1

2

)
L−1

=

(
1

2

)L
(3.20)

Then, the probability of success is
(
1
2

)L
, but we are looking for the probability of error.

There are N different possibilities to find the synchronization word inside the frame, do

not forget, our window sight is length N and the first one is between 0 and N − 1, the

second one is between N and 2N − 1 and so on, but the whole study for one window

sight, includes also the values between 0 and [(N − 1) + (L − 2)] because the start

position could be in the last part of the frame, the frame is cyclic shifted, so, we have

N different possibilities to find inside the frame, but only one is corrected, so there are

N − 1 possibilities erroneous, so

Pr(e) = (N − 1)

(
1

2

)L
(3.21)

This is the probability of error in case there is no noise. For Figure 3.12, and using (3.21),

the probability of error for N = 500 and L = 50 is Pr(e) = 4.432010314303625e − 13,

nearly zero, and in our plot, does not appear result because it is zero, so we can affirm it

is correct.
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3 Synchronization Algorithms for Real Sequences

Another example, in Figure 3.10 and N = 500 and L = 13, the probability of error is

Pr(e) = 0.060913085937, and in our plot, the error is 10−1.7 = 0.019952623149689 better

result than theoretical result, but increasing the number of experiments, the result will

converge to the theoretical value.
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4 Frame Synchronization Algorithms for

Complex Sequences

In this chapter we will modify our previous algorithm for complex sequences, in this

case we will use Zadoff-Chu sequences [Pop10] because they are used in Long Term

Evolution (LTE) systems in the Primary Synchronization Signal (PSS) [PB08], and see

what happens for High and Low SNRs.

4.1 Method references

Zadoff-Chu Sequence is a complex vector sequence which is parametrised by a root u

defined as:

xu(n) = e
−iπun(n+1)

NZC (4.1)

where NZC is the sequence length.

These sequences have different properties interesting for our study:

1. They are periodic with period NZC if NZC is odd.

2. The product of 2 prime length Zadoff-Chu sequences with a cyclically shifted version

of itself is zero.

We will consider as synchronization word the Zadoff-Chu Sequence with root u = 25 and

length NZC = 63.

That was respect the synchronization word, now, we focus on the data word, which pos-

sible values for 1 bit or symbol are

xk = ± 1√
2
± 1i√

2

Each xk is normalized with 1√
2

to have |xk| = 1

Starting in (3.1) and remembering ρ and s are complex now, we will use absolute values,

pn(ρ−
√
ETµ(sδ)) = (2π)−N/2

∑
∀δ

[
L−1∏
i=0

e−|ρi+µ−
√
Esi|2/N0 ]

N−1∏
i=L

e−|ρi+µ−
√
Eδi|2/N0 (4.2)
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4 Frame Synchronization Algorithms for Complex Sequences

Defining A =
∣∣∣ρi+µ −√Esi∣∣∣2, and B =

∣∣∣ρi+µ −√Eδi∣∣∣2
A = (ρi+µ −

√
Esi)(ρi+µ −

√
Esi)

∗ = |ρi+µ|2 − ρi+µ
√
Esi

∗ − si
√
Eρi+µ

∗ + E |si|2 (4.3)

In complex domain, we have:

a+ a∗ = Re{a}+ iIm{a}+Re{a} − iIm{a} = 2Re{a} (4.4)

And using this with (4.3)

A = (ρi+µ −
√
Esi)(ρi+µ −

√
Esi)

∗ = |ρi+µ|2 + E |si|2 − 2
√
ERe{ρi+µsi∗} (4.5)

And following the same process, we obtain

B = (ρi+µ −
√
Eδi)(ρi+µ −

√
Eδi)

∗ = |ρi+µ|2 + E |δi|2 − 2
√
ERe{ρi+µδi∗} (4.6)

Disregarding in term A and B the absolute values of si and ρi+µ (since they are constants)

and focusing on terms depending on µ, A and B become the following form:

A = −2
√
ERe{ρi+µsi∗}

B = −2
√
ERe{ρi+µδi∗}

And now we have

S4 =
∑
∀δ

[

L−1∏
i=0

e−A/N0 ]

N−1∏
i=L

e−B/N0 (4.7)

S4 =
∑
∀δ

[

L−1∏
i=0

e2
√
ERe{ρi+µsi∗}/N0 ]

N−1∏
i=L

e2
√
ERe{ρi+µδi∗}/N0 (4.8)

As mentioned of the beginning of the chapter, the four different possible values of 1 bit,

but disregarding the 1√
2

to make easier the calculation, we replace δi for these values,

and defining C =
∏L−1
i=0 e

2
√
ERe{ρi+µsi∗}/N0 , and D =

∏N−1
i=L e2

√
ERe{ρi+µδi∗}/N0
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4.1 Method references

D =

N−1∏
i=L

e2
√
ERe{ρi+µ(1−1i)}/N0 + e2

√
ERe{ρi+µ(1+1i)}/N0

+ e2
√
ERe{ρi+µ(−1−1i)}/N0 + e2

√
ERe{ρi+µ(−1+1i)}/N0

=
N−1∏
i=L

e2
√
ERe{ρi+µ}/N0e2

√
EIm{−ρi+µ}/N0 + e2

√
ERe{ρi+µ}/N0e2

√
EIm{ρi+µ}/N0

+ e2
√
ERe{−ρi+µ}/N0e2

√
EIm{−ρi+µ}/N0 + e2

√
ERe{−ρi+µ}/N0e2

√
EIm{ρi+µ}/N0

=
N−1∏
i=L

2cosh(2
√
ERe{ρi+µ}/N0)e

−2
√
EIm{ρi+µ}/N0

+ 2cosh(2
√
ERe{ρi+µ}/N0)e

2
√
EIm{ρi+µ}/N0

=

N−1∏
i=L

2cosh(2
√
ERe{ρi+µ}/N0)[e

2
√
EIm{ρi+µ}/N0 + e−2

√
EIm{ρi+µ}/N0 ]

=
N−1∏
i=L

4cosh(2
√
ERe{ρi+µ}/N0)cosh(2

√
EIm{ρi+µ}/N0) (4.9)

Now, combining the cross-correlation (term C) and the term D

S4 = C ·D (4.10)

Applying logarithms and disregarding constants

S5 =
L−1∑
i=0

2
√
ERe{ρi+µsi∗}/N0

+
N−1∑
i=L

ln[cosh(2
√
ERe{ρi+µ}/N0)cosh(2

√
EIm{ρi+µ}/N0)] (4.11)

Using the same condition like in (3.11),

S6 =

L−1∑
i=0

2
√
ERe{ρi+µsi∗}/N0

25



4 Frame Synchronization Algorithms for Complex Sequences

−
L−1∑
i=0

ln[cosh(2
√
ERe{ρi+µ}/N0)cosh(2

√
EIm{ρi+µ}/N0)] (4.12)

And finally, the optimum rule for complex sequences is

S =

L−1∑
i=0

Re{ρi+µsi∗} −
L−1∑
i=0

f(ρi+µ) (4.13)

where f(x) is

f(x) =
N0

2
√
E
ln[cosh(2

√
ERe{xi+µ}/N0)cosh(2

√
EIm{xi+µ}/N0)] (4.14)

Now we see the approximations for High and Low SNRs using the same conditions as

in real sequences

For High SNR, the argument in the cosh is greater than 1, so, we can approximate

the cosh(x) as 1
2e
|x|, and we can obtain, disregarding the constants

S =
L−1∑
i=0

Re{ρi+µsi∗} −
L−1∑
i=0

|Re{ρi+µ}|+ |Im{ρi+µ}| (4.15)

For Low SNR, the argument of the cosh is smaller than one, so, we can approximate the

cosh with the Maclaurin series as we saw in chapter 3,

f(x) =
N0

2
√
E

(ln[cosh(2
√
ERe{xi+µ}/N0)] + ln[cosh(2

√
EIm{xi+µ})]) (4.16)

f(x) =
N0

2
√
E

(
1

2
(2
√
ERe{xi+µ}/N0)

2 +
1

2
(2
√
EIm{xi+µ}/N0)

2

)
(4.17)

Disregarding the constants

f(x) =
N0

2
√
E

E

N0
2 (Re{xi+µ}]2 + Im{xi+µ}]2) (4.18)
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4.2 Results

f(x) =

√
E

N0
|xi+µ|2 (4.19)

Finally

S =
L−1∑
i=0

Re{ρi+µsi∗} −
√
E

N0

L−1∑
i=0

|ρi+µ|2 (4.20)

4.2 Results

As we saw in the theory of this chapter, we will use for our study a Zadoff-Chu Sequence

[Pop10], with root u = 25 and length NZC = 63, so first we will see how is this Sequence

its real and imaginary part look like, because it is a complex sequence.
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Figure 4.1: Real Part Zadoff-Chu Sequence u = 25 and NZC = 63

As we can see in Figure 4.1 and Figure 4.2, the amplitude is bounded and if we put a

mirror in the middle of the image, we can see a periodicity but reflected.

Now we will see the number of errors versus the SNR for different lengths of total frame

N and the length of our Zadoff-Chu sequence L = 63. We can observe in Figure 4.3 the

difference in number of errors when we enlarge the length of total frame, we have more

errors in a frame of N = 5000 than in one of N = 500. We can appreciate also, the

difference between the cross correlation term with and without the correction term, we

always obtain better results using this correction term.
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Figure 4.2: Imaginary Part Zadoff-Chu Sequence u = 25 and NZC = 63
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Figure 4.3: Error rate in a Zadoff-Chu Sequence

Moreover, we can see, the curves converge faster if we compare with the Real Sequences

in last chapter, and the first zero value appears for N = 200 and N = 500, the blue and

green squared lines, in SNR− 3 dB, where the noise is even greater than signal power.

We can not consider N = 1000 also in that evaluation, because, if we continue seeing,

the next point, for SNR = −2.5 dB, appears an error, and then, for SNR = −2 dB
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4.2 Results

goes again to zero and now stabilized in zero. Than means, the receiver didn’t detect any

error in SNR = −3 dB, but, if we increase the number of experiments, we will see an

error in SNR = −3 dB and then in SNR = −2 dB the receiver detects always correct.

As a last note, we can observe forN = 5000 we have the bigest difference between the cross

correlation with and without the correction term, concretely, this value is GN=5000 = 2.5

dB.
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5 Frame Synchronization Algorithms for

Complex Sequences with Phase Shift

In this chapter we will see how a constant phase shift introduced in the channel influences

the performance of frame synchronization. We will use the same scheme but adding the

phase shift, ϕ, to the formula in (2.3).

r =
√
E · ejϕ · Tm(sd) + n (5.1)

5.1 Method references

Using (5.1) and starting with (4.8) but adding the phase shift, we continue with the

process

S4 =
∑
allδ

[
L−1∏
i=0

e2
√
ERe{ρi+µsi∗e−jϕ}/N0 ]

N−1∏
i=L

e2
√
ERe{ρi+µδi∗e−jϕ}/N0 (5.2)

Having a look in the process, si is conjugated, as well the phase, that’s why appears with

the negative and in (5.1) is positive.

We use the same synchronization word and same values for 1 bit data, which are

xk = ± 1√
2
± 1i√

2

For the calculation, we disregard the term 1√
2

to make easier the derivation.

Defining C =
∏L−1
i=0 e

2
√
ERe{ρi+µsi∗e−jϕ}/N0 and D =

∏N−1
i=L e2

√
ERe{ρi+µδi∗e−jϕ}/N0

D =
N−1∏
i=L

e2
√
ERe{ρi+µ(1−1i)e−jϕ}/N0 + e2

√
ERe{ρi+µ(1+1i)e−jϕ}/N0+

+e2
√
ERe{ρi+µ(−1−1i)e−jϕ}/N0 + e2

√
ERe{ρi+µ(−1+1i)e−jϕ}/N0 (5.3)
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5 Frame Synchronization Algorithms for Complex Sequences with Phase Shift

And following the same steps as we saw in chapter four,

D =
N−1∏
i=L

4cosh(2
√
ERe{ρi+µe−jϕ}/N0)cosh(2

√
EIm{ρi+µe−jϕ}/N0) (5.4)

S4 = C ·D (5.5)

Applying logarithms to S4,

S5 =

L−1∑
i=0

Re{ρi+µsi∗e−jϕ}

+

N−1∑
i=L

4cosh(2
√
ERe{ρi+µe−jϕ}/N0)cosh(2

√
EIm{ρi+µe−jϕ}/N0) (5.6)

In complex domain, defining x as a complex number

x = |x| ei∠x

Re{x} = Re{|x| ei∠x}

= Re{|x|}Re{ei∠x} (5.7)

The Re{|x|} is constant, so Re{|x|} = |x|, and the Re{ei∠x} we can use the Euler formula

[Mos02].

ei∠x = cos(∠x) + isin(∠x) (5.8)

Applying the real part for ei∠x

Re{ei∠x} = cos(∠x) (5.9)

Applying (5.7) with the earlier equation,

Re{x} = |x| cos(∠x) (5.10)

32



5.1 Method references

So the first term would be

L−1∑
i=0

Re{ρi+µsi∗e−jϕ} =

∣∣∣∣∣
L−1∑
i=0

ρi+µsi
∗

∣∣∣∣∣ cos(∠
L−1∑
i=0

ρi+µsi
∗ − ϕ̂) (5.11)

And now we are actually not interested in ϕ, so we must to eliminate from (5.11), so we

need to estimate a ϕ̂ which maximize the summation and the cosinus in (5.11). The maxi-

mum value of a cosinus ismax{|cos(x)|} = 1, so we have to equate cos(∠
∑L−1

i=0 ρi+µsi
∗ − ϕ̂)

to 1. The cosinus is 1 when the cosinus argument is 0, so

cos(∠
L−1∑
i=0

ρi+µsi
∗ − ϕ̂) = 1 (5.12)

∠
L−1∑
i=0

ρi+µsi
∗ − ϕ̂ = 0 (5.13)

ϕ̂ = ∠
L−1∑
i=0

ρi+µsi
∗ (5.14)

Changing the limits in the summation of second term, as we did in the other chapters,

and disregarding the constants, the optimum rule is

S =

∣∣∣∣∣
L−1∑
i=0

ρi+µsi
∗

∣∣∣∣∣−
L−1∑
i=0

f(ρi+µ, ϕ̂) (5.15)

where

f(x, ϕ̂) =
N0

2
√
E
ln[cosh(2

√
ERe{xi+µe−jϕ̂}/N0)cosh(2

√
EIm{xi+µe−jϕ̂}/N0)] (5.16)

Now we derive the approximations for larger and lower SNR to the correction term as we

did in all the chapters earlier, the cross correlation term remains equal.

For SNR ≥ 15dB, using the same conditions as in the other two chapters, cosh(y) = 1
2e
|y|

and disregarding the constants

fhighSNR(x, ϕ̂) =
N0

2
√
E
· 1

2
|2
√
ERe{xi+µe−jϕ̂}/N0|
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+
N0

2
√
E
· 1

2
|2
√
EIm{xi+µe−jϕ̂}/N0| (5.17)

fhighSNR(x, ϕ̂) =
(
|Re{xi+µe−jϕ̂}|+ |Im{xi+µe−jϕ̂}|

)
(5.18)

And for SNR < 0dB, and the Maclaurin series, ln(cosh(y)) = 1
2y

2,

flowSNR(x, ϕ̂) =
N0

2
√
E

√
E

N0
· 1

2
(2
√
ERe{xi+µe−jϕ̂}/N0)

2

+
N0

2
√
E

√
E

N0
· 1

2
(2
√
EIm{xi+µe−jϕ̂}/N0)

2
(5.19)

flowSNR(x, ϕ̂) =
N0

2
√
E

4E

N0
2

(
Re{xi+µe−jϕ̂}

2
+ Im{xi+µe−jϕ̂}

2
)

(5.20)

And finally

flowSNR(x, ϕ̂) =

√
E

N0

∣∣∣xi+µe−jϕ̂∣∣∣2 (5.21)

5.2 Results

To see how the phase affects to the signal detection for different SNRs, we will compare

the same synchronization word with a Zadoff-Chu Sequence with root u = 25 and NZC =

63, but for 2 different total frame lengths, for N = 200 and N = 2000. As we can see

here, the plot is a bit different from the others. In Figure 5.1 we see represented in

ordinates the errors, as earlier, but in the abscissa axis we have represented the phase

shift in radians, and plotted the different SNRs.

In the plot are only represented from SNR = −10 dB until SNR = 0 dB because the

others SNRs used all the experiments in the simulation, so, first point we can affirm,

the phase shift is not a problem always we have a signal power greater than noise power,

even, if we use the correction term in the cross correlation term, we can have a sensitivity

of 0 dB and always detects correct.

According with the second part of this affirmation, the cross correlation term, without
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Figure 5.1: ZCNZC=63 Sequence with N = 200 adding phase shift

the correction term, shows some errors for SNR = 0 dB, so that means, the receiver

detects 10 errors per each 1 million of experiments. In Figure 5.2 we can observe the

same pattern as in In Figure 5.1, but the difference, as we expected, is the error rate.

Here, for a larger total frame length, the error rate is bigger, but the receiver continues

doing a good detection for big SNRs, so if we have a good sensitivity, we do not have to

worry about it.

35



5 Frame Synchronization Algorithms for Complex Sequences with Phase Shift

−4 −3 −2 −1 0 1 2 3 4
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

RESULTS    L=63 N=2000

Phase [rad]

E
rr

o
rs

 

 

SNR=−10

SNR=−5

SNR=0

SNR=5

SNR=10

SNR=15

SNR=20

SNR=−10 corrected

SNR=−5 corrected

SNR=0 corrected

SNR=5 corrected

SNR=10 corrected

SNR=15 corrected

SNR=20 corrected

Figure 5.2: ZCNZC=63 Sequence with N = 2000 adding phase shift

36



6 Frame Synchronization Algorithms for

Complex Sequences with Frequency

Shift

In this last chapter, we will study the Doppler effect after solving the phase shift problem.

6.1 Method references

Remembering the vector we have in the channel output, (5.1), and adding the Doppler

effect.

r =
√
E · ejϕ[ej2πf

′Ta0ej2πf
′Ta1 . . . ej2πf

′Ta(N−1)] · Tm(sd) + n (6.1)

where Ta is the Sampling period and f ′ is the Doppler shift.

After solving the phase problem as we saw in chapter 5, we have

Sopt(m, f
′) =

∣∣∣∣∣
L−1∑
i=0

ρi+µsi
∗e−j2πf

′Tai

∣∣∣∣∣−
L−1∑
i=0

f(ρi+µ, ϕ̂, f̂ ′n) (6.2)

where

f(ρi+µ, ϕ̂, f̂ ′n) = ln[cosh(2
√
ERe{ρi+µe−jϕ̂e−j2πf̂

′
nTai}/N0)

·cosh(2
√
EIm{ρi+µe−jϕ̂e−j2πf̂

′Tai}/N0)] (6.3)

Now, we need to solve the Doppler effect in the cross correlation term (first term in Sopt)

and estimate the f̂ ′n for the correction term (second term in Sopt).
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6 Frame Synchronization Algorithms for Complex Sequences with Frequency Shift

The idea is to chop the whole length frame N in small sections of length Lcoh [AE07]

where we suppose, in each new segment, the phase is constant through the channel.

The criteria to choose the length of Lcoh:

1. Lcoh � L

2. Lcoh is a multiple of L i.e. mod( L
Lcoh

) = 0

First, we define Γ =
∣∣∣∑L−1

i=0 ρi+µsi
∗e−j2πf

′Tai
∣∣∣ [PVVC+10], and we can approximate:

2πf ′Tai ≈ 2πf ′Tab
i

Lcoh
cLcoh (6.4)

Using (6.4) and the definition of Γ,

Γ ≈
K−1∑
k=0

(k+1)Lcoh−1∑
i=kLcoh

ρi+µsi
∗e−j2πf

′TakLcoh =

=
K−1∑
k=0

e−j2πf
′TakLcoh

(k+1)Lcoh−1∑
i=kLcoh

ρi+µsi
∗ (6.5)

where k = b i
Lcoh
c.

Defining xk,µ =
∑(k+1)Lcoh−1

i=kLcoh
ρi+µsi

∗ we can continue with our development.

Γ =
K−1∑
k=0

e−j2πf
′TakLcohxk,µ (6.6)

Next step, we make absolute value squared, easier to work with complex vectors.

|Γ|2 =
K−1∑
k=0

xk,µe
−j2πf ′TakLcoh

K−1∑
h=0

xh,µ
∗ej2πf

′TahLcoh =

=

K−1∑
k=0

|xk,µ|2 +

K−1∑
n=1

2Re{
K−1∑
k=n

xk,µx
∗
k−n,µe

−j2πf ′TanLcoh} (6.7)

Defining Λ0(µ) =
∑K−1

k=0 |xk,µ|
2 and Λn(µ, f ′) = 2Re{

∑K−1
k=n xk,µx

∗
k−n,µe

−j2πf ′TanLcoh},
we can see, the formula (6.7) as

|Γ|2 = Λ0(µ) +
K−1∑
n=1

Λn(µ, f ′) (6.8)
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6.1 Method references

Now we need to estimate f̂ ′n applying the same process as (5.9)

f̂ ′n = argmax
f ′

Λn(µ, f ′n) =
∠
∑K−1

k=n xk,µx
∗
k−n,µ

2πnLcohTa
(6.9)

Then, we can substitute the estimation of f̂ ′n into f ′

Λn(µ, f ′) ≈ Λn(µ, f̂ ′n) (6.10)

And then, applying this last approximation into (6.8),

|Γ| =

√√√√K−1∑
k=0

|xk,µ|2 +

K−1∑
n=1

2

∣∣∣∣∣
K−1∑
k=n

xk,µx
∗
k−n,µ

∣∣∣∣∣ (6.11)

Finally, Sopt is

Sopt = |Γ| −
L−1∑
i=0

f(ρi+µ, ϕ̂, f̂ ′n) (6.12)

where

xk,µ =

(k+1)Lcoh−1∑
i=kLcoh

ρi+µsi
∗ (6.13)

and

f(ρ, ϕ̂, f̂ ′n) =
N0

2
√
E
· ln[cosh(2

√
ERe{ρi+µe−jϕ̂e−j2πf̂

′
nTai}/N0)

·cosh(2
√
EIm{ρi+µe−jϕ̂e−j2πf̂

′
nTai}/N0)] (6.14)

Now we derive the approximations for larger and lower SNR to the correction term as we

did in all the chapters earlier, the cross correlation term remains equal.

For SNR ≥ 15dB, using the same conditions as in all the chapters, cosh(y) = 1
2e
|y| and

disregarding the constants
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6 Frame Synchronization Algorithms for Complex Sequences with Frequency Shift

fhighSNR(ρ, ϕ̂, f̂ ′n) =
N0

2
√
E

∣∣∣2√ERe{ρi+µe−jϕ̂e−j2πf̂ ′nTai}/N0

∣∣∣

+
N0

2
√
E

∣∣∣2√EIm{ρi+µe−jϕ̂e−j2πf̂ ′nTai}/N0

∣∣∣ (6.15)

fhighSNR(ρ, ϕ̂, f̂ ′n) =
(
|Re{ρi+µe−jϕ̂e−j2πf̂

′
nTai}|+ |Im{ρi+µe−jϕ̂e−j2πf̂

′
nTai}|

)
(6.16)

And for SNR < 0dB, and the Maclaurin series, ln(cosh(y)) = 1
2y

2,

flowSNR(ρ, ϕ̂, f̂ ′n) =
N0

2
√
E

1

2
4ERe{ρi+µe−jϕ̂e−j2πf̂

′
nTai}

2
/N0

2

+
N0

2
√
E

1

2
4EIm{ρi+µe−jϕ̂e−j2πf̂

′
nTai}

2
/N0

2 (6.17)

flowSNR(ρ, ϕ̂, f̂ ′n) =

√
E

N0
Re{ρi+µe−jϕ̂e−j2πf̂

′
nTai}

2

+

√
E

N0
Im{ρi+µe−jϕ̂e−j2πf̂

′
nTai}

2
(6.18)

And finally

flowSNR(ρ, ϕ̂, f̂ ′n) =

√
E

N0

∣∣∣ρi+µe−jϕ̂e−j2πf̂ ′nTai∣∣∣2 (6.19)

6.2 Results

For the Doppler simulation, we will fix some parameters to do the simulation faster. First,

we fix the phase shift as a perfect phase estimation ϕ = 0 and see what happens for a

Zadoff-Chu synchronization word of length L = NZC = 63 and two total frame length of
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6.2 Results

N1 = 200 and N2 = 2000 to compare them.

We will see also what happens with the Lcoh parameter, so we will do, for same L =

NZC = 63 and total frame length of N1 = 200 and N2 = 2000, but for Lcoh1 = 1 and

Lcoh2 = 7.

The figures will represent the number of errors in a logarithm scale in the ordinates, and

the frequency shift in Hz in the abscissa.
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Figure 6.1: ZCNZC=63 Sequence N = 200 Lcoh = 1 and frequency shift

In Figure 6.1 we represent in the different coloured lines the SNRs, and we observe can

not dispense of the correction term, because we have an error of 99% or even 100% only

with the correlation term, so we need this correction term.

For negative SNRs we still continue having a big rate of error, but, when the signal

power is greater then the noise, this rate decreases, and arrives, for the case of SNR = 20

dB and no frequency shift, fn = 0 Hz, the error rate is P (error) = 10−0.7 = 0.1995 it is

a high rate if we compare with the other results where we consider only the phase shift

and time delay, but considering, each symbol was affected by a different frequency, we

can affirm, it is a good solution and a good rate. It could be better, using the Secondary

Synchronization Signal (SSS) [KHRC09], but this is not our objective, we only focus on

the Primary Synchronization Signal (PSS) [PB08] using the Zadoff-Chu sequence.

In Figure 6.2 we observe a huge error rate even with the correction term, so we can affirm
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6 Frame Synchronization Algorithms for Complex Sequences with Frequency Shift
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Figure 6.2: ZCNZC=63 Sequence N = 200 Lcoh = 7 and frequency shift

is better with a Lcoh = 1 in case of a total length frame of N = 200.
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Figure 6.3: ZCNZC=63 Sequence N = 2000 Lcoh = 1 and frequency shift
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6.2 Results

As we can see in Figure 6.3, as expected, the results are worse than Figure 6.1, but we

still need the correction term, to minimize the errors, and a good SNR.

These results could be better if we use the Secondary Synchronization Signal again.
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7 Conclusion

We have the problem of data recovery in a communications system, we know when we

send the information, but not when it reaches the destination, the message suffers noise

interference introduced by the communication channel, phase impairment due to reflec-

tions and Doppler effect, so we need an algorithm which can detects correctly the data,

and then start the demodulation of the signal, in a modern communications system.

We have focused in Massey Algorithm, tested in real sequences, applied larger SNRs and

total length frame, then we improved the algorithm for complex sequences and used the

Zadoff-Chu sequences as example. We study the time delay and noise impairment, and

later, we added the phase impairment and the Doppler effect.

In the best case of correction of phase shift and Doppler effect, we observed a gain between

the simple cross correlation term and the correction term so we can use a receiver with

bad sensitivity for example 0 dB instead of a one with good sensitivity, for example 30

dB, because the second one is more expensive, but we need the correction term always

to decrease the error ratio. The total length frame is also a point of view, if we are going

to use large frames, it is good use large Synchronization words too, and backwards.

Only considering the phase shift impairment, we saw that having a high Signal-to-Noise

Ratio, we can detect with a very high probability correctly the starting position of our

frame.

In the Doppler effect, we saw a rate of error we did not have in the other cases, so with a

good sensitivity and using always our correction term we are going to need more methods,

like Secondary Synchronization Signal, to decrease this rate.

If we have a best case of correction of the Doppler effect, we can affirm that using a

receiver with a good Signal-to-Noise Ratio is enough to detect correctly the beginning of

the frame and start the data recovery in further processes.
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