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Resumen 

En la presente tesis se realiza una evaluación exhaustiva de los Sistemas de Memoria Distribuida 

conocidos como Sistemas de Memoria Virtual Compartida. Este tipo de sistemas posee 

características que los hacen especialmente atractivos, como son su relativo bajo costo, alta 

portabilidad y paradigma de programación de memoria compartida. 

La evaluación consta de dos partes. En la primera se detallan las bases de diseño y el estado del arte 

de la investigación sobre este tipo de sistemas. En la segunda, se estudia el comportamiento de un 

conjunto representativo de cargas paralelas respecto a tres ejes de caracterización estrechamente 

relacionados con las prestaciones en estos sistemas. Mientras que la primera parte apunta la 

hipótesis de que la comunicación asíncrona es una de las principales causas de pérdida de 

prestaciones en los Sistemas de Memoria Virtual Compartida, la segunda no sólo la confirma, sino 

que ofrece un detallado análisis de las cargas del que se obtiene información sobre la potencial 

comunicación asíncrona atendiendo a diferentes parámetros del sistema. 

El resultado de la evaluación se utiliza para proponer dos nuevos protocolos para el funcionamiento 

de estos sistemas que utiliza un mínimo de recursos hardware, alcanzando prestaciones similares e 

incluso superiores en algunos casos a sistemas que utilizan circuitos hardware de propósito 

específico para reducir la comunicación asíncrona. En particular, uno de los protocolos propuestos 

es comparado con una reconocida técnica hardware para reducir la comunicación asíncrona, 

obteniendo resultados satisfactorios y complementarios a la técnica comparada. Todos los modelos y 

técnicas usados en este trabajo han sido implementados y evaluados utilizando una nuevo entorno de 

simulación desarrollado en el contexto de este trabajo. 

 





 

 
Resum 

En la present tesi, es realitza una avaluació dels Sistemes de Memòria Distribuïda coneguts com 

Sistemes de Memòria Virtual Compartida. Este tipus de sistemes posseeix característiques que els 

fan especialment atractius, com són el seu relatiu baix cost, alta portabilitat i paradigma de 

programació de memòria compartida. 

L'avaluació consta de dues parts. En la primera es detallen les bases de disseny i l'estat de l'art de la 

investigació sobre este tipus de sistemes. En la segona, s’estudia el comportament d'un conjunt 

representatiu de càrregues paral·leles respecte a tres eixos de caracterització estretament relacionats 

amb les prestacions en estos sistemes. Mentre que la primera part apunta la hipòtesi que la 

comunicació asíncrona és una de les principals causes de perduda de prestacions en els Sistemes de 

Memòria Virtual Compartida, la segona no sols la confirma, sinó que ofereix una detallada anàlisi 

de les càrregues de què s'obté informació sobre la potencial comunicació asíncrona atenent a 

diferents paràmetres del sistema. 

El resultat de l’avaluació s’utilitza per a proposar dos nous protocols per al funcionament d'estos 

sistemes que utilitzen un mínim de recursos hardware, aconseguint prestacions semblants i superiors 

en alguns casos a sistemes que fan us de hardware de propòsit específic per a reduir la comunicació 

asíncrona. En particular un dels protocols proposts és comparat amb una reconeguda tècnica 

hardware per a reduir la comunicació asíncrona, obtenint resultats satisfactoris i complementaris a la 

tècnica comparada. Tots els models i tècniques usats en este treball han sigut avaluats utilitzant un 

nou entorn de simulació desenvolupat en el context d'este treball. 

 





 

 
Abstract 

In this thesis, an exhaustive evaluation of Distributed Shared Memory Systems known as Shared 

Virtual Memory Systems is performed. This kind of systems has characteristics that made them 

specially attractive, like their relatively low cost, high portability and shared memory programming 

paradigm. 

The evaluation is performed in two parts. In the first part, the design principles and the state of the 

art of the research related with this kind of systems is performed. In the second part, it is studied the 

behavior of a representative set of parallel workloads regarding to three axes of characterization 

intimately related with the performance of this kind of systems. While the first part points to the 

hypothesis that asynchronous communication is one of the main causes of performance loss, the 

second does not only confirm it, but also offers a detailed analysis of the workloads that shows 

useful information about the potential asynchronous communication attending to different system 

parameters. 

The evaluation results are used to propose two new protocols for this kind of systems that uses 

minimal hardware resources, reaching similar and in some cases superior performance to that 

obtained by systems that make use of specific hardware for reducing asynchronous communication. 

In particular, one of the proposed protocols is compared with a well-known hardware technique for 

reducing asynchronous communication, obtaining satisfactory and complementary results to the 

compared technique. All the modeled systems and techniques used in this work have been 

implemented and evaluated using a new simulation environment developed in the context of this 

work. 
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Chapter 1 
Introduction 

Parallel workloads executed on distributed systems, multiprocessors or multicomputers, are 

usually based on two distributed programming paradigms: message passing and shared 

memory. In the first paradigm, parallel processes have separate memory address spaces and 

they communicate with the other processes explicitly by means of message passing. In the 

second paradigm, the processes share (partially or totally) the memory address space and, 

in a dynamic and transparent way for the programmer, write actions on the shared memory 

from a process are perceived later by other parallel processes. 

Traditionally, message passing distributed programming has been used to parallelize and 

execute workloads in low cost distributed computer environments, such as those made up 

by Networks of Workstations (NOW) [AND95]. The main reasons for this phenomenon 

are: 

• There are standard libraries such as PVM [SUN90] and MPI [HAN98] that have 

been developed for different operating systems and hardware, assuring platform 

independence for the workload execution. 

• The message-passing paradigm can be adapted to almost any environment because 

the interface it offers to the parallel workload is independent of the supporting 

hardware, which can be even a heterogeneous NOW. 

1 



INTRODUCTION 

• As the interface is independent of any specific hardware, system maintenance is 

facilitated because it becomes open and independent of the manufacturer (as long 

as it follows a standard, such as Ethernet). This reduces costs since the nodes and 

the interconnection network can be easily replaced and upgraded. 

• Communication between processes is mainly carried out by software, with 

practically no hardware restrictions (any network is valid, even those which are 

non-specifically designed for parallel computing). 

On the other hand, the main disadvantages of the message-passing paradigm are: 

• It is much less intuitive for the programmer than the shared memory paradigm, so 

to parallelize code is more difficult than in Shared Memory Multiprocessor (SMP) 

systems [CUL99] or Distributed Shared Memory (DSM) systems [PRO98]. 

• A great amount of the code that is currently executed in monoprocessor systems 

may easily be parallelized by means of the shared programming paradigm; for 

example, the code in multimedia software, databases, and the Internet. This is 

because several threads (multithread), which share the same memory address 

space, carry out the execution. 

The parallelization of the execution of shared memory workloads has been carried out by 

means of a hardware specifically designed to allow this type of programming. Usually, 

SMP or DSM systems are used. SMP systems are inexpensive but they lack scalability 

(only less than 16 nodes are feasible) as a consequence of their use of a shared medium for 

communication, which is not easily expandable because it saturates quickly, so becoming a 

bottleneck. DSM systems allow higher scalability and are more easily expandable, but they 

require a higher cost in hardware and design. 

1.1. Software Distributed Shared Memory 

Software Distributed Shared Memory (SDSM) systems [LI_86] are an inexpensive 

alternative, scalable above SMP systems, easier to maintain, and open. This kind of 

systems can be implemented by means of two methods: 

 2 
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• Supported by the programming language or by extensions of the language in which 

the workload is programmed. The compiler or the preprocessor generates the 

necessary code to establish the communication. This assumes that the programmer 

should somehow mark the memory zones or objects to be shared. 

• Supported by the operating system: The Operating System (OS) detects write 

operations in memory zones and carries out the communication. Typically, virtual 

memory mechanisms, which are present in all modern operating systems, are used 

for this case. This scheme is transparent for the programmer. 

This work is aimed at the study of the latter type of SDSM systems, the Shared Virtual 

Memory (SVM) systems. 

Li and Hudak suggested first the SVM system concept in [LI_86], and their 

implementation details were published in [LI_88]. Four main features define an SVM 

system:  

a) Nodes share a common virtual memory address space, by using the virtual memory 

system provided by the supporting OS.  

b) The page is the sharing unit. 

c) The supporting software (OS, libraries, etc.) takes charge of guaranteeing 

coherence maintenance of the shared pages (when necessary).  

d) The parallel workload is independent of the interconnection network and the 

hardware supporting it. 

These features make SVM systems especially attractive because they allow the use of 

shared memory code without modifications, allowing its execution in heterogeneous and 

decoupled networks. 

In general, SVM systems are usually composed of several inexpensive nodes (single 

processors or SMP systems) connected by a commodity network. In addition, SVM 

systems are cheaper than other alternatives. As in the case of NOWs that use the message 
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passing paradigm, this approach enables fault tolerance and offers good flexibility when 

maintaining and upgrading the processing nodes of the system, since these are physically 

independent. 

On the other hand, these features become the source of the main problems in these systems: 

• False sharing: Since the page size is usually large (4 or 8 Kbytes), the probability 

of false sharing rises, so increasing the communication traffic. The effect of false 

sharing is that coherence actions are performed between nodes that are not sharing 

data. False sharing may have adverse effects for the system such as the ping-pong 

effect of pages among writers [TOR94]. 

• High latency: Usually, coherence messages are triggered by page faults detected by 

the OS, which uses the appropriate software to inject them in the interconnection 

network. Therefore, their latency penalties are usually very high. 

Both problems are related, since false sharing produces additional messages to maintain the 

coherence, which introduce their own latency affecting the whole system performance. 

1.2. Relaxed Memory Consistency Models 

To lessen these problems, much research has focused on relaxed memory consistency 

models [IFT99]. Memory consistency models specify when a memory reference can be 

carried out and become visible to the memory system, so that the rest of network nodes can 

see it. Depending on whether the model is more or less restrictive, better or worse 

performances will be achieved. The most restrictive model is called sequential and it is 

simpler to implement, but it offers the worst performance. To improve performance, 

research has focused on reducing the restrictions in order to increase performance. The 

answer has been the release memory consistency models, which allow reordering of 

memory references according to certain rules specified by the model. In SVM systems, the 

release memory consistency models most frequently used are Release Consistency (RC) 

model [GHA90] and Lazy Release Consistency (LRC) model [KEL95]. 

Most parallel workloads use synchronization methods when several processes access 
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shared data. In this chapter we will assume that the primitives used are semaphores, as 

semaphores can implement any synchronization primitive. 

The main idea behind release memory consistency models is that if a parallel workload is 

correctly programmed, it must be exempt from race conditions [ADV93]. A race condition 

occurs when a possible execution of the program may allow a write access and another 

access at the same time (read or write). If race conditions are not allowed, writing accesses 

to shared data will be performed serially using any synchronization primitive (for instance, 

semaphores). This implies that it is only necessary to send coherence messages when a 

given process leaves a section protected by a semaphore. 

When these models were introduced, new techniques were added to allow multiple writers 

on a page. As race conditions are not allowed, writes carried out at the same time by 

different writers refer to different variables. Therefore, multiple writers carry out 

modifications at the same time on different addresses in the page. These techniques face 

the problems derived from false sharing, as there is no conflict between writers accessing 

the same page. 

The implementation of a given memory consistency model (with single or multiple writers) 

is called memory consistency protocol. The first memory consistency protocol 

implementing the RC model with multiple writers was the Eager Release Consistency 

(ERC) protocol [GHA90] and it was implemented on the Munin system [CAR91]. The 

model carries out the coherence actions when the semaphore is released. Its advantage is 

that it reduces the number of coherence messages by delaying the coherence actions 

(several coherence actions are compressed in one message). In addition, the software 

overhead is reduced (only one message is sent) and the probability of coherence actions 

due to false sharing is also reduced. A more recent implementation can be found in the 

Quarks system [SWA98]. 

Many of the messages that the ERC protocol sends are unnecessary. As we will see in 

Chapter 2, only the next process accessing the semaphore needs to apply coherence actions 

before entering the semaphore. In fact, it is not necessary to carry out the coherence actions 

until the next process accessing the semaphore is known. The Lazy Release Consistency 

(LRC) [KEL95] model exploits this idea. The first protocol implementing it was proposed 
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in the TreadMarks system [KEL94]. Other implementation can be found in [BIA96]. 

The most frequently used memory consistency protocol that implements the LRC model is 

called Home Lazy Release Consistency (HLRC) [ZHO96] protocol. The main difference 

between the Treadmarks LRC protocol and the HLRC protocol is that in the latter there is a 

home node for each page, which concentrates the modifications. In this way, when a 

process needs a copy of the updated page it only interrupts the home node (in the 

Treadmarks LRC protocol, multiple nodes can be interrupted). In addition, if the home 

node is chosen carefully it is possible to reduce the number of page faults, as it is 

continuously updated. Because of these advantages, some recent systems have 

implemented the HLRC protocol [STE00][BIL98], and for this reason it is used as the 

baseline protocol in this dissertation. 

However, SVM systems are far from obtaining performances close to those reached by 

hardware based shared memory systems. The main reason is that the software 

characteristics of SVM systems interact adversely with the parallel workloads, thus 

reducing the performance [IFT96][JIA97][ZHO97]. This is because parallel workloads are 

usually optimized for hardware systems. In general, there is a performance loss if the 

workload has frequent synchronizations and the granularity of the shared data is small. 

Release memory consistency protocols generate coherence actions as a consequence of 

synchronizations and, as it has been already said, the coherence messages have high 

latencies in SVM systems. On the other hand, if the granularity of the shared data is small, 

false sharing and fragmentation occur and the number of required coherence actions 

increases. The HLRC protocol mitigates these problems, but introduces new ones: 

• Readers interrupt writers asynchronously to update their data. The asynchronous 

communication is a critical factor in the performance of current SVM systems due 

to its high cost. 

• The complexity of the release memory consistency protocols adds computing time 

to each message, thus increasing its latency. 

• Release memory consistency protocols tend to arrange the coherence actions at 

synchronization points, causing contention points during the execution. 
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1.3. Thesis Overview 

This thesis focuses mainly on the problems of reducing both asynchronous communication 

traffic and latency. To mitigate these problems so improve the system performance, new 

and efficient protocols are suggested. The proposed protocols are based on the 

understanding of the main characteristics of the workload at runtime. The main 

contributions of the thesis are: 

• Characterization of several parallel workloads from the SPLASH-2 suite [WOO95] in 

those aspects that can negatively impact the performance of SVM systems. The 

characterization quantifies the sources of performance loss by measuring three axes 

that are related to latency in asynchronous communication: frequency of sharing, 

granularity of sharing, and entropy in sharing patterns. The results illustrate the impact 

of the sharing granule size, quantifying the relationship between page size and 

fragmentation/false sharing. The effects of sampling across fixed intervals are also 

studied, showing how many applications exhibit distinct phases during execution. 

Some of the results found in those studies have been published in [PET02]. Others 

have been submitted and are pending revision [PET03]. 

• Implementation of a new simulation environment for SVM systems. The developed 

tool is an execution-driven simulator [PET00] aimed at studying the behavior of 

memory consistency models. This tool can take as input any of the SPLASH-2 

benchmark suites or can use the real workloads. It simulates the detailed behavior of 

these systems, varying both memory consistency models and the local area network 

configuration. 

• Design of two new SVM memory consistency protocols (HLRC-CU and HLRC-DU 

protocols) that use the results of the SPLASH-2 characterization to improve the 

baseline HLRC protocol. The HLRC-DU protocol is a pure software protocol while the 

HLRC-CU protocol uses a specific hardware table. Both protocols use a specific 

message (referred to as write update) to update written data, reducing asynchronous 

communication. The HLRC-CU protocol also reduces latency caused by multiple 

writer protocol overhead by focusing on those write operations that perform over small 
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continuous areas. The behavior of both protocols is also characterized in function of 

the maximum write update size. The characteristics of both protocols and studies of 

their performance metrics have been published in [PET01][PET01b]. 

This thesis has been structured in chapters as follows: Chapter 2 introduces SVM systems 

and describes an important subset of the memory consistency models and protocols found 

in the open literature. It also describes the latest contributions from recent research by 

explaining asynchronous communication design and implementation in SVM systems. 

Chapter 3 describes the LIDE simulation environment for SVM systems. Chapter 4 

characterizes SPLASH-2 parallel workloads from the SVM point of view and discusses the 

main sources of performance loss in current SVM systems. Chapter 5 proposes two new 

consistency protocols designed from the results obtained in Chapter 4. The performance of 

the proposed protocols is compared with other classical solutions. Finally, Chapter 6 

presents the most relevant conclusions of the thesis and the open research lines for future 

works. 
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Chapter 2 
Shared Virtual Memory Systems 

As we introduced in Chapter 1, SVM systems allow shared memory programming at a low 

design and maintenance cost due to their software implementation; nevertheless, as 

hardware implementations work faster, their performance are still far from that achieved by 

hardware based distributed shared memory (DSM) systems. Nowadays, SVM systems use 

relaxed memory consistency models and multiple writer protocols as techniques to reduce 

latencies and false sharing respectively; however, these techniques induce additional 

overheads that reduce performance. The four main characteristics that define the SVM 

systems are: 

Shared virtual address space: The processes access the same memory areas through 

logic memory addressing. This virtual address space is split up into pages. This 

relies on the same mechanism that allows several processes to share pages in single 

processor systems. However, in an SVM system each node has its own local 

physical memory. In other words, different nodes do not map their virtual 

addresses to the same physical memory. Thus, the OS needs to maintain the 

memory coherence among the local memories of the nodes. 

• 

• Page as sharing unit: The sharing unit of the system is the virtual memory page. 

Usually, the most commonly page size is used is 4 KB. 
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Software maintained coherence: The OS updates or invalidates the non-coherent 

pages. Thus, coherent actions are usually performed by software. 

• 

• 

• 

• 

• 

Heterogeneous interconnection network: Coherence actions can be performed 

using message passing because the OS performs the coherence actions. This allows 

a high degree of independence from the supporting hardware, as happens in 

message passing parallel systems. In other words, the shared memory 

programming paradigm is accomplished by a message passing architecture. 

In this chapter a general overview of the SVM systems is presented. The remainder of the 

chapter is organized as follows. Section 2.1 describes a simple SVM system as an example 

to illustrate the characteristics mentioned and how they affect the design and 

implementation of this kind of systems, section 2.2 explains memory consistency models, 

in particular relaxed memory consistency models, section 2.3 discusses the memory 

consistency protocols implementing relaxed memory consistency models, section 2.4 

details asynchronous communication in SVM systems. Finally, section 2.5 concludes with 

some remarks linking the different concepts introduced in this chapter. 

2.1. A Simple SVM System Example 

We use a simple example to show the main characteristics and the software nature of SVM 

systems. For the sake of simplicity, we suppose that the interconnection network is a bus 

for two main reasons: i) it is the simplest network topology and, ii) each node connected to 

the bus can snoop all the traffic on the bus, so monitoring all the transmitted messages.  

Let us assume that the pages in memory can be in three different states: 

Invalid: Any access to the page sends an interrupt to the local OS of the node. It is 

used for pages whose content has been invalidated by a previous writer. 

Read-only: Any write access to the page sends an interrupt to the local OS of the 

node. It is used in order to detect writings to the page. 

Read-write: Reads or writes to the page can be performed without interrupts. This 

 10 



CHAPTER 2 

happens when a process of the node has performed at least one write to the page. 

We assume that each node connected to the interconnection network can host one or 

several processes. As processes in a node share the same physical memory (for example, an 

SMP system), page states are set per node, instead of per process. This reduces memory 

overhead for storing page tables and allows local modifications in a node to be seen by all 

the local processes of the node without need of SVM coherence actions. An 

implementation of this technique can be found in [SAM98]. 

Whenever an interrupt is produced, the local OS of the interrupted node takes control and 

performs the corresponding coherence actions: 

• If the page is invalid, it performs the necessary correspondent actions to make it 

coherent. 

• If the page is read-only, the writing is detected, and an invalidation is generated for 

other remote processes sharing the page. 

Initially, only the process 0 owns a copy of all the shared pages in read-write access mode. 

Let us assume that this process is running in node 0. All the other nodes do not have a 

mapped copy of the shared pages. 

In the initial scenario, if a process in a node other than 0 (we can call it remote node) tries 

to read a page, the access will result in an unmapped page and it will generate an interrupt 

due to a page fault. Then, the local OS requires a copy of the page to the node that has the 

page in read-write access mode (in this case, node 0). When the update is accomplished, 

both node 0 and the node of the reader process will have a read-only copy of the page. This 

state is maintained in all the copies of the page while there are only reader processes. 

When a remote process tries to write a shared page, it will have a page miss and will 

produce an interrupt. Then, the local OS requires a copy of the page to the node that has the 

page in the read-write access mode (in this case, node 0), then invalidates all the other node 

copies, and sets its copy to a read-write state. This node will serve future remote accesses 

to that page. Note that both nodes that have an invalid copy of the page and the node that 

 11 



SHARED VIRTUAL MEMORY SYSTEMS 

has the page in the read-write state are known by all the nodes, because we assume that all 

the nodes monitor the messages transmitted through the bus. In systems that do not 

broadcast the coherence actions, a directory of nodes sharing the page is needed. This 

directory can be maintained centralized or distributed. 

Figure 1 shows the state transition diagram. This graphic summarizes how local and remote 

pages change their state due to read and write accesses to the page. The continuous arrows 

on the left represent state transitions due to local accesses; the dotted arrows on the right 

represent state transitions due to remote accesses. For example, a read-write to read-only 

transition is triggered by a remote read, and a local write triggers a read-only to a read-

write transition, invalidating remote copies of the page. 

UNMAPPED READ ONLY

INVALID READ/WRITE

Read

Write

Read

Write

Write

READ ONLY

INVALID READ/WRITE

Read

Write

Write

 

a) Transitions due to local accesses   b) Transitions due to remote accesses 

Figure 1 – State transition diagram of a page 

Figure 2 shows the handler code of both page faults and remote message requests. Each 

page has an associated lock that assures atomicity for the code executed by the handlers 

between the processes running in a given node. 

If a given process in a node N has a read page fault on page P, its OS will execute the read 

fault handler. This handler sends a message to the node that has a read-write copy of the 

page P (rw_node). On receiving this message, the rw_node executes the read message 

handler, which returns an up-to-date copy of the page P to node N and sets its copy to the 

read-only state. The node N receives the up-to-date copy of page P and sets it to the read-
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only state. 

 Read fault handler: 

  lock(page); 

  send(page.rw_node, READ, page.address); 

  recv(page.address); 

  page.state = READ_ONLY; 

  unlock(page); 

 Read message handler: 

  lock(page); 

  reply(page.address); 

  page.state = READ_ONLY; 

  unlock(page); 

 Write fault handler: 

  lock(page); 

  send(ALL, WRITE, page.address); 

  recv(page.address); 

  page.state = READ_WRITE; 

  page.rw_node = this_node; 

  unlock(page); 

 Write message handler: 

  lock(page); 

  if (page.rw_node == this_node) then reply(page.address); 

  page.state = INVALID; 

  page.rw_node = sender_node; 

  unlock(page); 

 

Figure 2 – OS interrupt handlers 

If a given process in a node N has a write page fault on page P, its OS will execute the 

write fault handler. This handler broadcasts a message to all the nodes in the system, 

including the node that has a read-write copy of the page P (rw_node). On receiving this 

message, all nodes execute the write message handler, which sets their copies of the page P 

to the invalid state. Only the rw_node returns an up-to-date copy of the page P to node N, 

which receives the copy and sets it to read-write state. Finally, all the nodes set the 

rw_node of the page P to the node N. 
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From this example it is noticeable that the software nature of the protocol handlers 

(executed by the OS) and the large size of the coherence (a page) are the root of the main 

performance drawbacks that a simple system like the above described will suffer: 

The example behaves similarly to an SMP snoopy cache invalidation protocol. This means 

that it will send a message each time a process in a node writes to a read-only page. As 

message latency is much higher in SVM systems than in SMP systems due to their 

software nature and the commodity network, the performance will decrease enormously. In 

addition, as a consequence of the big size of pages, the number of messages sent due to 

false sharing increases. 

To solve these problems, the design and implementation focused on new relaxed memory 

consistency models, which are detailed in the next section. 

2.2. Memory Consistency Models 

Parallel programmers wish a shared memory system behavior that is formally defined by 

the memory consistency models (regardless of whether the system architecture is 

centralized or distributed). Intuitively, programmers assume the sequential memory 

consistency model (see section 2.2.2), which disables some optimizations that improve 

SVM performance. Although the first SVM proposal followed the sequential consistency 

model [LI_86], it is not used in current implementations. The SVM systems focus on 

relaxed memory consistency models [IFT99] because these models enable to delay 

coherence actions, thus reducing the number of coherence messages, and so saving latency. 

In addition, these models allow the design of multiple writer protocols, which enormously 

reduce the number of messages sent due to false sharing. 

There are two main concepts related with consistency models: the performing order and the 

fence. Both are described in the next following sections. 

2.2.1. Performing Order 

Memory consistency models define the order in which memory operations from one 

process can perform with regard to other processes. 
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Formally: 

A memory operation issued by a process i performs with regard to a process j 

when the result of the memory operation is visible by the process j. 

• 

• The performing order of a process i with regard to a process j is the order in 

which memory operations of process i perform with regard to process j. 

Depending on the memory system, the performing order can be unique or dependent on j. 

For instance, in an SMP system all the processes see the same performing order because 

they all read the same information from the bus, which serializes shared memory 

operations. However, in a DSM system, different orders can be seen at different points of 

the interconnection network. 

In a monoprocessor system, the performing order of memory operations is quite flexible 

and it can be easily reordered when it affects different addresses without violating the 

program semantics. This enables improvements in performance, for example, by adding 

write buffers and/or caches. However, reordering is less flexible when a parallel program is 

running in several processors, because it can violate the program semantics. Figure 3 shows 

an example of a code running in two different processors (A and B). The two instructions of 

processor A write different variables, so processor A does not need to monitor which 

instruction is performed first if the code is only running in one processor (there are not data 

dependencies). However, if this code is a fragment of a parallel program with the code of 

processor B, the order is important because the value assigned to the variable b in processor 

B depends on the performing order of processor A with regard to processor B. 

 a=1; 

 x=1; 

 while (x==0) {}; 

 b=a; 

A code B code 
 

Figure 3 – Code example running in two different processors 

This example shows that to guarantee parallel program semantics, memory systems need to 
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restrict the order in which memory operations from a process can perform with regard to 

other processes. We define a fence as a new operation in the program flow that delimits the 

begin and/or the end of a possible area of reordering. In particular, we can distinguish two 

types, as shown in Figure 4: 

Begin Fence (Fb): Ensures that all the operations issued by a process i that are 

located after the fence in program order, perform after the fence with regard to any 

process j. 

• 

• End Fence (Fe): Ensures that all the operations issued by a process i that are 

located before the fence in program order, perform before the fence with regard to 

any process j. 

bF

eF

eF

bF

P.O.

Must be performed after

Must be performed before

 

Figure 4 – Begin fence (Fb) and end fence (Fe) 

Both types are not exclusive so the same point may act both as begin and end fence. We 

refer to such points as total fence or simply a fence. 

Memory consistency models differ depending on what instructions set a fence in the 

parallel program execution and what is the type of that fence. Below, we describe the 

memory consistency models, from the most to the least restrictive. 
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2.2.2. Sequential Memory Consistency Model 

Prohibiting changes in the performing order is the most straightforward manner to prevent 

semantic problems caused by reordering. This is accomplished by considering each 

memory operation as a total fence. This defines the sequential memory consistency model 

[LI_86] where memory operations issued from a process perform with regard to any other 

processes in program order. 

Formally, the condition for sequential consistency is: 

A read, write, or synchronization operation can perform with regard to any 

other process if all previous reads, writes and synchronization operations have 

already been performed. 

• 

Figure 5(a) describes a possible sequence of memory operations issued by a parallel 

process. Each memory operation is issued to a different, unrelated memory address (a, b, c, 

d, e, f, x, and y). Under the sequential memory consistency model, reordering is not allowed 

and so the performing order matches the program order. 

The main drawback of the sequential model is that it does not allow reordering. This 

implies that each memory operation has to wait that the previous instructions in program 

order have performed. In SVM systems, this restriction would force the transmission of a 

coherence message through the network each time a shared memory operation is issued, 

dramatically reducing the performance. Thus, the sequential memory consistency model is 

not implemented and some degree of reordering is allowed. 

By allowing reordering the system cannot assure that the performing order matches the 

program order. Consequently, the semantics of a parallel program cannot depend on the 

program order of the memory operations. To solve this problem, the programmer uses 

synchronization operations (i.e., locks, unlocks and barriers) to impose order restrictions. 
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R(a)
W(b)

S(x)

R(c)
W(d)

S(y)

R(e)
W(f)  
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W(d)

R(e)
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aS (x)

rS (y)

 

R(c)
W(d)

R(e)
W(f)

R(a)
W(b)

aS (y)

aS (x)

rS (y)

 
(a) Sequential (b) Release (c) Lazy Release 

Figure 5 – Fences in memory consistency models 

It can be shown that if the parallel workload is assumed to be data-race-free [ADV93] and 

correctly labeled [GHA90] by synchronization operations, the performing of the memory 

operations can be postponed to the next synchronization point in program order. 

For example, we can specify that the synchronization operations execute in program-order, 

although memory operations located between such synchronization operations can be 

reordered. The systems working in this way follow relaxed memory consistency models 

[IFT99]. We can consider several models according to the level of relaxation. Below, the 

release and lazy release memory consistency models, which are the most commonly used 

in SVM systems, are described. 

2.2.3. Release Memory Consistency Model 

The release memory consistency model [GHA90] allows more reordering than the 

sequential model by using two types of synchronization operations: acquire and release. 

The former behave as begin fences, and the latter as end fences. In this manner, all the 

memory operations following an acquire operation in program order must perform after the 

acquire operation, and all the memory operations prior to a release operation in program 

order must perform before the release operation. 

Under release consistency, acquire operations can be conveniently mapped to the lock 
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synchronization operation because a lock precludes the following operations being 

performed before the lock. Release operations are associated with the unlock 

synchronization operation, which means that when the process leaves the critical section all 

the previous writes have been performed. Acquire and release operations can also be 

mapped to other synchronization operations. In particular, barrier operations can be 

associated with an acquire and a release operation because writings prior to the barrier in 

program order are expected to perform before the barrier, and writings following the barrier 

in program order cannot perform before the barrier. In this manner, barriers still behave 

like total fences. 

Formally, the conditions for release consistency are: 

A read or write can perform with regard to any other process if all previous 

acquires have already been performed. 

• 

• 

• 

A release can perform with regard to any other process if all previous reads and 

writes have already been performed. 

Synchronization operations cannot be reordered. 

Figure 5(b) shows how release consistency allows reordering. R(a) and W(b) can be 

reordered but they cannot perform after Sr(y) because it is a release operation (end fence). 

On the other hand, R(e) and W(f) cannot perform before Sa(x) because it is an acquire 

operation (begin fence). Finally, R(c) and W(d) have both reordering limits. 

2.2.4. Lazy Release Memory Consistency Model 

Applying release consistency, the parallel program shown in the previous example of 

Figure 3, must rely on synchronization primitives to share data. Figure 6 shows the new 

code. 
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a=1;

unlock(x);

lock(x)

b=a;

A code B code
 

Figure 6 – Code example 

Release consistency ensures that the write issued by A to variable a performs with regard to 

the process B before unlock(x). This condition is sufficient to make consistent the read of 

variable a by process B but it is not necessary. The necessary condition is that the write 

issued by A performs with regard to B before the lock(x) performs. Thus, the write issued 

by A only needs to perform with regard to process B, even if more processes exist. Thus, 

although the protocol had non-coherent data copies in different nodes of the system, it 

maintains the consistency. The model that permits this kind of reordering is called the lazy 

release memory consistency model [KEL95]. 

Formally, the conditions for lazy release consistency are: 

A read or a write can perform with regard to another process if all previous 

acquires have already been performed with regard to that process. 

• 

• 

• 

A release can perform with regard to another process if all previous reads and 

writes have already been performed with regard to that process. 

Synchronization points cannot be reordered. 

Figure 5(c) showed the possible reorderings under lazy release consistency. As release 

consistency, acquires behave as begin fences, so R(c), W(d), R(e), W(f) cannot perform 

before Sa(x). The difference is that the performing of memory operations can be postponed 

until other process acquires the same synchronization variable than the following release in 

program order. In other words, the variable (y) used by the following release (Sr(y)) can be 

acquired (Sa(y)) by other process. In such a case, that acquire operation states the latest time 

a memory operation can be postponed until. When the acquire operation performs, previous 

writes must only perform with regard to the acquirer process. 
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The memory operations that must perform with regard to a given acquirer are those 

occurring before following a specified order, called happened-before [KEL95]. This order 

marks as previous all the memory operations issued by the process that released the same 

semaphore or barrier before the current acquire. It also means (in a recursive way) the 

memory references performed by the processes releasing the semaphores or barriers 

accessed by the process that issued the last release. Figure 7 shows a hypothetical sequence 

of acquires and releases between different processes. According to the happened-before 

order all the writes in the figure occurred before process E executed the acquire. 

write

write

write write

write

rel

rel

acq

acq rel

acq rel

acq t

D

E

C

B

A

 

Figure 7 – Happened-before order example 

2.3. Multiple Writer Protocols 

To enable the reordering of memory operations under the lazy release memory consistency 

model an important piece of research has focused on multiple writer protocols, which allow 

several writers on a page at the same time, hiding most of the false sharing effects. In 

general, multiple-writer protocols store and send page differences (also called diffs) instead 

of the whole page to detect which parts of a given page each node has written to. Below, 

we discuss some details of the implementation. 

In the sequential memory consistency model shared pages only can be written at a given 

time by a single processor. In other words, write operations must be serialized between 
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processors. Protocols working in this manner are called single writer protocols and they are 

the most intuitive way to guarantee the single and strict ordering of operations that the 

sequential model requires. Relaxed memory consistency models allow reordering of non-

synchronization operations, which supposes different processors may see different 

orderings. Moreover, in the lazy release consistency model, write operations are not 

globally seen, so writers on the same page do not need to carry out coherence actions (for 

example, page invalidations) among them, allowing several writers to write simultaneously 

on different parts of the page. 

False sharing was the main reason because SVM system designers introduced multiple 

writer protocols. Its impact on performance is higher in SVM systems than in hardware 

DSM systems, because in the former it is more probable that two or more processes write 

to the same coherence unit, because of the larger page size. When false sharing occurs in a 

single writer protocol the well-known ping-pong effect is produced, which is magnified in 

SVM systems because of their software nature and the high latencies of the commodity 

network. Multiple writer protocols reduce this problem. 

The main problem to solve when designing multiple writer protocols is how to prevent 

local modifications of a given page from being overwritten by those page modifications of 

a concurrent remote writer. In other words, if process A modifies a piece of its local page 

copy, an update to the same page from other process B will overwrite the whole page, and 

so local modifications of process B are lost. To prevent this problem multiple writer 

protocols work as follows: i) the OS labels all the shared pages as read-only in order to 

detect the write operations; ii) when the underlying virtual memory system detects the first 

write to a page (due to a page fault), it creates a copy of the page before the write is done –

referred to as a twin-, and marks the page as read-write; iii) then, if another node requires 

the page, the twin and the page are compared to obtain the differences between them. The 

comparison results are stored in a table, called diff; and, iv) only the diff is updated, instead 

of the whole page, so avoiding that remote updates overwrite local modifications. 

Diffs enable multiple nodes to write in parallel to the same page so reducing write latency. 

In addition, the coherence actions do not apply immediately (as occurs in SMP systems), 

and memory operations can be postponed (as occurs in relaxed memory consistency 
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models). This fact implies that several coherence actions can be packed in just one 

message; thus, reducing the total number of coherence action messages. 

2.3.1. Invalidating versus Updating 

Two kinds of multiple writer protocols are distinguishable depending on how they handle 

coherence actions: invalidation and update protocols. The relative performance of 

invalidation versus update protocols strongly depends on two important workload 

characteristics: the granularity of sharing and the frequency of sharing. These are 

explained below: 

 Granularity of Sharing 

This characteristic quantifies the mean amount of data transferred when an update occurs. 

It is computed with regard to the granularity of the system (i.e., the page size, which is 

typically 4 or 8 Kbytes). The granularity of sharing is classified as fine-grained (FG) when 

only a few words (less than 30%) of the page are shared, medium-grained (MG) when at 

least 30% of the page is shared, and coarse-grained (CG) if more than 60% of the page is 

shared. The granularity of sharing can be further broken down depending on the type of 

memory operation performed on the shared data (i.e., granularity of reading and 

granularity of writing). Both granularities are commonly present in different sizes. 

 Frequency of Sharing 

In SVM systems, coherence actions are carried out at synchronization points; therefore, the 

frequency of the synchronization operations matches the frequency of sharing. The 

frequency of sharing metric is calculated as the average computation time between two 

consecutive synchronization events [ZHO97]. We assume we are performing fine-grained 

synchronization (FGS) if the average computation time is close to the average 

synchronization time. Otherwise, we assume synchronization is coarse-grained (CGS). 

  

The larger the granularity of sharing and frequency of sharing are, the larger the network 

utilization. When both are relatively large, the network saturates and becomes a congestion 
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point. This point establishes the performance border between invalidate and update 

protocols. 

Update protocols usually achieve a better performance than invalidate protocols before the 

network saturates. When this occurs, their performance dramatically drops, offering poorer 

performance than invalidate protocols. That is because invalidate protocols generate less 

traffic and so they saturate the network later. 

On the other hand, the performances of invalidate protocols in SVM systems are limited by 

the frequency of sharing. This happens because page requests must be performed using 

asynchronous communication in SVM systems, which has a high latency, and the number 

of page requests grows as the frequency of sharing increases. For this reason, in general, 

invalidate protocols offer worse performance than update protocols when the frequency of 

sharing is high. 

The multiple writer protocols commonly used in SVM (with the exception of those needing 

additional hardware or compiler support) are: Eager Release Consistency (ERC) protocol, 

the Lazy Release Consistency (LRC) protocol and the Home Lazy Release Consistency 

(HLRC) protocol. The ERC protocol is implemented as an update protocol, while both 

LRC and HLRC protocols are usually implemented as invalidate protocols, although they 

can be implemented in either way. 

2.3.2. Eager Release Consistency Protocol 

The multiple writer protocol implementation of the release memory consistency model is 

known as ERC protocol. It is implemented by updating diffs in those nodes sharing the 

page when the release is executed. Typical implementations of this kind of protocol can be 

found in [CAR91] and [SWA98]. 

Figure 8 shows a working example of an ERC protocol. When a process in node A executes 

the release that frees the semaphore sem1, the OS of node A must calculate and send the 

diff(X,A) containing the writes performed in page X by the processes in node A. The diff 

must be sent before the release operation ends in order to be applied in those nodes sharing 

the page. In this way, when a process in a remote node acquires the semaphore sem1 it will 
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have the page updated. 

tacq(sem1)

diff(X,A)
rel(sem1)w(X)acq(sem1)

A

B

C
 

Figure 8 – ERC protocol example 

In the release memory consistency model, memory operations perform releases globally. 

Therefore, implementations of the ERC protocol allow multiple writers by using update 

operations. This means that the ERC protocol is very sensitive to the granularity of sharing, 

because it broadcasts all the previous writes at the release. The frequency of sharing also 

affects the number of broadcasts (one per release operation). Nevertheless, the ERC 

protocol has been used in recent pure software SVM implementations [SWA98] because 

the absence of invalidations reduces most asynchronous communication. 

2.3.3. Lazy Release Consistency Protocol 

The ERC protocol performs poorly when the broadcasts saturate the available network 

bandwidth. In this case, it is a better to relax the memory consistency model to allow point-

to-point messages instead of broadcasting to carry out the coherence actions through the 

network. The LRC protocol [KEL94] (which implements the lazy release memory 

consistency model) applies the coherence actions just to those nodes accessing a semaphore 

or barrier, instead of broadcasting the coherence actions to the other nodes as the protocol 

ERC does. 

As these coherence actions are only applied to a given node, invalidation protocols can be 

implemented allowing multiple writers because the rest of nodes in the network will not be 

affected by the action. In this context, the invalidation information is called write notice. 

Figure 9 shows an example of an invalidate LRC protocol. The writes produced by 
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processes in nodes A and B to page X produce write notices (wn(X,A) and wn(X,B)). When 

a process in node B has a page miss, it receives the diff of page X from node A (diff(X,A)). 

So, when a process in node C has a page miss, it only needs to contact with node B to 

obtain the two diffs (diff(X,A) and diff(X, B). 

w(X)A

B

C
wn(X,B)

diff(X,A)
diff(X,B)

w(X)acq(sem1)

wn(X,A)
rel(sem1)

diff(X,A)

w(X)acq(sem1)

wn(X,A)

rel(sem1)acq(sem1)

t  

Figure 9 – LRC protocol example 

It is not necessary to communicate all the previous write notices to the process acquiring 

the semaphore or barrier, but only those that have not been applied yet. The mechanism to 

know at the moment of the acquire operation which coherence actions have been applied 

and which must be applied is based on intervals and timestamps vector. Each time a 

process in a node executes an acquire operation or a release operation; the node increases 

its interval number. The timestamp vector contains the intervals of each node known to the 

node of the process that performs the acquire operation (through coherence actions). By 

comparing the timestamps with that of the node that performed the release, it is possible to 

know what coherence actions must be applied: those corresponding with the intervals 

unknown to the node that performs the acquire operation and known to the node that 

performed the previous release operation. 

Table 1 shows an example of a node calculating the new vector timestamp when some of 

its processes execute an acquire operation. To handle the calculation, the node uses its 

current vector timestamp and the vector timestamp of the node of the last process that 

executed the corresponding release operation. The node that performs the acquire operation 

must apply all the coherence actions associated with the intervals of other nodes that are 

not in its vector timestamp, but are in the vector timestamp of the node that performed the 
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release. For example, if we consider A as the node acquiring a semaphore, it will apply the 

actions from the intervals 2 to 10 of B and the interval 12 of D. The intervals of C are not 

applied because A has applied more intervals than the node releasing the semaphore. 

Acquire
Node Release

After Before

A 0 5 6

B 10 1 10

C 7 9 9

D 12 11 12
 

Table 1 – Vector timestamps calculation example 

After applying the intervals, node A updates its own vector timestamp with the intervals 

applied and increases its own interval (from 5 to 6) because it has just finished the acquire 

operation. 

When a node invalidates a page due to a write notice, it will obtain updates from the writers 

at the moment of a page miss. Because it is impossible to know the moment when the diffs 

will be needed, they must be stored until the moment they are applied in all the nodes. 

Generally, they are not stored indefinitely but they are broadcasted at the same time than 

barriers and later discarded. 

The performance drops in the LRC protocol when there are many page faults, because the 

faulting node starts asynchronous communication sessions to fetch the corresponding diffs. 

Asynchronous communication has a high operational cost in SVM systems, because it adds 

latency to the update fetch. Thus, given sufficient bandwidth, the frequency of sharing is a 

key performance factor even more important than the granularity of sharing in invalidation 

based LRC protocols. 
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2.3.4. Home Lazy Release Consistency Protocol 

The HLRC protocol [ZHO96], like previous protocols, implements the lazy release 

memory consistency model. In this protocol each page has associated a home node that 

concentrates all the diffs. When a node writes in a page, it supplies the diffs only to the 

home node. Then, diffs can be removed from the writing node. The remaining nodes 

invalidate the page by applying write notices following the same happened-before order as 

the LRC protocols. 

In the case of a page miss, due to write notices, the OS of the faulting node asks the home 

node for an updated page. Because of network delays, the needed diffs may have not yet 

arrived at the home node. In this case, the request is queued until the diffs arrive. Vector 

timestamps are used to discover if the page of the home node is sufficiently updated. The 

vector timestamp associated with a page encodes the number of intervals updated by each 

node. 

Figure 10 shows a write sequence equivalent to that of Figure 9 but following an HLRC 

protocol. The diffs generated by nodes A and B are gathered by node D because it is the 

home node of page X. Write notices are distributed in the same way than in the LRC 

protocol. As nodes B and C have their page invalidated by the write notices (wn(X,A) and 

wn(X,B) respectively) they ask the home node for an updated page version. The request 

message of node B arrives (t1) after the diff of the node A (t0) therefore the OS of node D 

can immediately satisfy the request. But, the request from node C (t2) must wait to be 

satisfied until the diff of B arrives (t3). 

Processes running in the home node of a page never have a fault for that page, because they 

always have the page updated by diffs produced by remote writers. Thus, if the home is 

properly chosen (for example, by profiling), asynchronous communication is reduced. This 

fact mitigates the importance of the frequency of sharing. The granularity of sharing is not 

as important as under the ERC protocol because writers only update the home. For this 

reason, HLRC multiple writer protocols are the most used in SVM system 

implementations. 
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Figure 10 – HLRC protocol example 

Recent research in SVM systems has attempted to further reduce the impact of 

asynchronous communication in SVM systems, which is a key factor in improving their 

performance and one of the most problematic points in their design. The next section 

explains asynchronous communication, detailing the most recent research in this area. 

2.4. Asynchronous Communication 

Most current parallel workloads have been optimized to run on distributed hardware 

systems (e.g., symmetric multiprocessors) or supercomputers. SVM systems lack hardware 

support for a lot of tasks supported by these hardware systems. This lack is the reason why 

SVM systems can experience performance losses and why they must be implemented using 

asynchronous communication [BIL98]. 

Basically, in all asynchronous communication, a client node initiates a request and a server 

node services the request. For example, the client node can require the server node to read a 

given page or to lock a given semaphore. Then, the server node is interrupted to service the 

request. This asynchronous communication involves a context switch in the server node, 

which introduces both high service latencies and overhead in the server. This implies a 

high operational cost that produces high service latencies and wastes precious computing 

time in the server [BIA96]. 

 29 



SHARED VIRTUAL MEMORY SYSTEMS 

An important piece of recent research in SVM systems is aimed at reducing asynchronous 

communication by several methods. Some mechanisms include hardware support that 

partially, or totally, avoids this kind of communication [BIA96][BIL98][BLU98][STE00]. 

Others try to reduce this communication, or hide its latency using software techniques 

[BIL97][SPE98][SWA98]. 

The section below discusses asynchronous communication implementation in SVM 

systems, as well as the kinds of asynchronous communication that can be found in the 

design of a memory consistency protocol. We also analyze and discuss some techniques 

used to reduce the impact on performance for each particular kind. 

2.4.1. Asynchronous Communication Implementation 

Asynchronous communication can be implemented by using polling or interrupt 

techniques. Polling periodically wastes some processor cycles (usually, close to 10) when 

checking if there are new messages to serve. However, the service time of polling 

techniques is much lower (several orders of magnitudes [ZHO97]) than that offered by 

interrupts. Therefore, in general, polling is preferable. On the other hand, processor cycles 

are spent in polling whatever the communication is. Consequently, if there is little 

communication, interrupt techniques are preferable. 

The use of interrupts or polling depends on the OS the nodes are executing. The Brazos 

system [SPE98] uses the Windows NT operating system, which incurs too much overhead 

dealing with interrupts. To solve this problem, Brazos (designed using multithreading) 

dedicates one thread to poll the requests. On the other hand, systems like Quarks [SWA98], 

implemented under UNIX, are based in interrupts. These systems often enter in busy 

waiting mode when the node is blocked waiting an answer from other node. If the nodes 

are multiprocessors, this technique is more effective, because it is more likely to find a 

blocked processor than it is in single processor nodes [KAR96]. 

In general, in multiprocessor nodes, only one processor serves asynchronous 

communication. When using interrupts, the balancing of this overhead, for example by 

using a round-robin scheme, can incur longer interrupt service times [BIL97]. If the system 

uses polling it is sufficient that one process in the node deals with this overhead 
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[SAM98][STE97]. 

2.4.2. Types of Asynchronous Requests 

In the SVM protocols, there are several kinds of client requests that produce asynchronous 

communication. A possible classification is: data request, data receive, semaphore request, 

and barrier request. 

 Data Request 

Data requests need to be served with a high priority. They appear in protocols that use 

invalidations as coherence actions. When a client node tries to access an invalid page, it 

starts an asynchronous communication with the server to fetch the data. In HLRC based 

protocols the server answers submitting the whole page while the action the server 

performs on LRC based protocols as a response is to submit the correspondent diffs. 

Software techniques update the data avoiding the consequent asynchronous request. The 

Quarks system [SWA98] uses an ERC update protocol, but most cases use a hybrid 

protocol that behaves like an invalidation protocol, switching to an update policy when 

certain conditions occur. The Brazos system [SPE98] uses multicast to update other nodes 

in the copyset of the page if they have a data request for the same page, as well as to update 

predicted clients before they leave the barriers. Stets et al. [STE00] measure the 

performance of a multicast protocol based on a history record, but with hardware support. 

The hardware techniques can update the data like the software techniques or can serve data 

requests automatically without processor intervention [BIA96][BIL98]. In [BIA96], a 

hardware support for an LRC based protocol that serves data requests is proposed, but the 

processor is still interrupted to perform metadata maintenance tasks of the data structures 

related to intervals. In [BIL98] the NI processor of the Myrinet is used to serve pages 

automatically in a HLRC based protocol. 

 Data Receive 

As mentioned in section 2.3.1, some protocols update data in order to avoid data requests. 

In a data receive request, a client produces the data and pushes it into a repository server 
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(for example, the home of the page), producing asynchronous communication. 

This asynchronous communication can be easily removed by software. Swanson et al. 

[SWA98] proposed a remote deposit mechanism based on low latency software messages. 

This mechanism can be also implemented by hardware [BLU98][BIL98][STE00]. Software 

implementation leaves the data in a low priority queue, that is later checked by the server 

but hardware mechanisms go a step further, allowing data updates directly in memory. 

 Semaphore Request 

SVM semaphores are implemented by mapping lock and unlock calls to message requests. 

Because they have high priority, a semaphore request must be served as soon as it arrives at 

the server. In SVM systems, each semaphore has a home node, which maintains a queue of 

semaphore requests. The home also forwards lock requests between nodes to maintain a 

distributed list of semaphore requesters. An unlock request is performed without home 

intervention using this distributed list. 

SVM semaphores work as shown in Figure 11. Semaphores are managed in a FIFO 

distributed queue. Each node in the queue points to, by means of a next field, the following 

node that requests the semaphore. To do this, a node sends a lock message (arc solid line) 

to the home of the semaphore (node H), which redirects it to the last queued node (node P). 

This node will update its next field to point to the new requester (node Q). When a node 

releases the semaphore, it leaves the queue and grants the semaphore to the node pointed to 

by its next field by sending an unlock message (straight solid line). Following requesters 

(nodes Q, R, and S) will follow the same rules (dotted lines). 

Relaxed memory consistency models together with multiple writer protocols increase the 

service latency of semaphore requests. The overhead includes the maintenance of interval 

lists and write notices, as well as diff calculation if the protocol starts some automatic 

update at synchronization points (as occurs in ERC and HLRC based protocols). 

There are software techniques that try to reduce the impact of this overhead. Some models 

such as [STE00] and [BIL98] broadcast the write notices as soon as they are generated, 

uncoupling their transmission from the synchronization. This technique is effective due to 

the low bandwidth cost the write notices have. Although in both cases hardware is used to 
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broadcast (remote deposit) the write notices, it is possible to do the same using software as 

is performed in [SWA98]. If the protocol updates the data at synchronization points 

(updating the home as in HLRC, or broadcasting the modifications as in ERC), the 

overhead is avoided by updating the data after the semaphore release [BIL97]. In 

[SWA98], data updates are also performed in semaphore acquire operations, overlapping 

the updates with semaphore waiting time. 

next: Q

last: S

lock

unlock

H

SRQP
next: NULLnext: Snext: R

 

Figure 11 – SVM semaphore management example 

Hardware support can automatically serve the semaphore. This can be implemented in 

different ways. For example, in [BIL98] the Myrinet NI serves the semaphore following 

the mapping of semaphores over the message passing scheme shown in Figure 11. Stets et 

al. [STE00] use the total ordering capabilities of the network to implement spinlocks. 

 Barrier Request 

Barrier requests do not have priorities as high as semaphore requests because they require 

all the nodes of the system to be involved in the communication. Thus, there is no need to 

start any asynchronous communication each time a barrier request is received. This can be 

done without additional hardware [BIL97]. When the server enters the barrier, it checks the 

incoming message queue. If it has a request from each node in the system, the server 

releases it. Otherwise, it polls for the barrier requests of the missing nodes. 
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2.5. Conclusions 

SVM systems are parallel systems that use the OS virtual memory subsystem to share 

memory. This makes SVM systems a both highly portable and inexpensive alternative to 

other hardware based parallel systems. In section 2.1, we introduced a simple example of 

an SVM system to illustrate the basic aspects related with their design. 

In the past, SVM systems enforced memory consistency by sending explicit messages to 

other nodes when a write operation was detected to a shared address. This kind of memory 

consistency is known as sequential memory consistency. Sequential memory consistency 

has severe performance drawbacks because it needs to send a lot of coherence messages 

which have high latency. To mitigate these drawbacks, past research focused on relaxing 

memory consistency models and multiple writer protocols. In section 2.2 and section 2.3 

we explained the most widely accepted memory consistency models and protocols from the 

open literature. 

Relaxed memory consistency models highly reduce the number of coherence messages. 

However, there is still an important performance gap between hardware based systems and 

SVM systems. This performance gap is due to asynchronous communication. 

Asynchronous communication is used in SVM systems for data sharing and 

synchronization purposes. Both types of asynchronous communication introduce long 

latencies because they are usually implemented with software interrupts that are sent via a 

commodity network (typically a low speed network). In section 2.4, we categorize the 

different types of messages used for asynchronous communication and summarize the most 

important research aimed at reducing the performance gap. 

To reduce the performance gap, a common technique is to use polling instead of interrupts 

to implement the asynchronous communication [KAR96][SAM98][SPE98][STE97] 

[ZHO97]. In addition, recent research tries to reduce the number of asynchronous messages 

sent. On one hand, pure software methods propose: a) update protocols that avoid 

asynchronous communication due to page faults [SPE98][STE00][SWA98], b) uncoupling 

some overhead from asynchronous communication [BIL97][SWA98], and c) lowering 

priorities of some asynchronous communication messages [BIL97]. On the other hand, 
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some proposals include hardware accelerators to: a) serving shared data automatically 

when requested [BIA96][BIL98], b) updating shared data before it is requested 

[BLU98][BIL98][STE00], and c) serving semaphores [BIL98][STE00]. 
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Chapter 3 
The Simulation Environment: LIDE 

Current results presented in the open literature regarding SVM systems are usually 

obtained from real systems. This is an inflexible way to design the whole system. The use 

of simulators is a cheaper and more flexible way to handle the design. This chapter 

introduces the simulation environment we developed for DSM systems, specifically aimed 

at SVM systems in networks of workstations. The proposed tool simulates the detailed 

behavior of these systems, taking as inputs the memory consistency model and the local 

area network. It is an execution-driven simulator [DAV91] that can make use of real 

typical benchmarks such as the SPLASH-2 benchmark suite.  

The proposed tool is an execution-driven simulator aimed at studying the behavior of 

memory consistency models, with the exception of those needing compiler modifications. 

It presents a cheap and flexible way to undertake performance studies and design efficient 

consistency models for SVM systems. 

The proposed simulation environment is called LIDE (LImes & siDE). It was developed 

from two simulators, LIMES [MAG97] and SIDE (initially called SMURPH) [DOB93]. 

Figure 12 shows the block diagram of the proposed environment, and how the simulators 

connect to each other. LIMES enables parallel program execution and it is used to collect 

the memory references generated by the workloads. SIDE allows memory consistency 

model design, and injects the transactions needed for coherence maintenance. 
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Figure 12 – Block diagram of the LIDE simulation environment 

This chapter is organized as follows. Sections 3.1 and 3.2 describe respectively the LIMES 

and SIDE simulators. Section 0 details how both simulators communicate in order to 

implement the LIDE simulation environment. Section 3.4 discusses the block structure of 

LIDE. Finally, section 3.5 presents some concluding remarks of this chapter. 

3.1. LIMES 

LIMES is a cache memory simulator of SMP systems running on i486 compatible 

processors similar to TangoLite [DAV91]. Although LIMES was designed to simulate i486 

SMP systems, it can be concluded [MAG97b] that the number and composition of the 

memory references generated by these systems is similar to those obtained from a RISC 

multiprocessor machine. Therefore, the memory references obtained from simulations of 

i486 SMP systems can be extended for simulating other RISC SMP systems. 

An SMP memory model is very different from an SVM model. However, although the 

differences are only expressed from a physical point of view (architectural design and 

temporary behavior), the references generated by distributed programs executed on these 

systems are equivalent. In other words, the logical behavior of a DSM system does not 

really differ from an SMP system. In consequence, to simulate an SVM system, it is only 

necessary to take the references generated by an SMP simulator such as LIMES and inject 

them in a simulator of the SVM memory and network system (SIDE). By using UNIX 

pipes, LIMES sends to SIDE the memory references to be simulated for each processor, 
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and SIDE replies to LIMES when the reference is satisfied. 

Figure 13 shows the temporal behavior of the components of the LIMES simulator. LIMES 

does not call the memory system each simulation cycle because that would suppose 

multiple context-changes; and consequently would increase the simulation time. Instead, 

LIMES only calls the memory system when there is a pending memory reference. One of 

the parameters of this call is the time elapsed since the last memory reference was issued. 

The memory simulator executes a loop for each elapsed cycle from the last reference to the 

current time. If within the loop, the simulator is in a stable state, which does not change 

until a new reference is generated, then it simply increases the simulation time to the 

current reference without further spinning. This optimization speeds up the simulation 

time. 

��
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SPLASH

Application

������
LIMES
Kernel

������

New memory reference
from the splash
applicattion.

Memory simulator did
not acomplish the
referece in one cycle.
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testing.

��

Also in this cycle
simulates from T1 to T2

T1 T2
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Figure 13 – Temporal relation example between the SPLASH application, the 

simulator kernel, the memory simulator and the simulation time in LIMES 

If the current memory reference is not satisfied in the cycle that the memory simulator was 

notified, LIMES calls the memory simulator during each processing cycle until the 

reference is satisfied. Therefore, the memory simulator is called each cycle only if a 

reference is pending. Generalizing for more processors, the LIMES kernel keeps testing the 

memory simulator if some processors are still waiting for a pending reference. 
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The current version of LIMES does not have threads support. Therefore, a stalled processor 

only can wait for a pending reference. 

3.2. SIDE 

SIDE is a heterogeneous environment for the simulation of networks and processes (state 

machines). It has two main advantages. Firstly, it offers an object-oriented programming 

model with defined classes for the management of several types of synchronization 

between processes (tails, signals, shared memory, messages, etc.). Secondly, it provides 

several examples of high performance networks. 

We have introduced in SIDE the code to simulate the SVM systems handled by the 

operating system. The code includes both the consistency model and the simulator of the 

physical network interconnecting the nodes. Both models are duly isolated. Thus, it is quite 

easy to change the physical network module without any, or just minimal, modification of 

the memory system code. 

SIDE controls the simulation of a scheme of asynchronous events and processes. The 

execution of different parts of the code for each process depends on the arrival of the 

expected events, as shown in Figure 14. Events are message arrivals, signals from other 

processes, arrival of a process to a particular state, timeouts generated by processes, etc. 

Processes in SIDE are executed in nodes. A node can manage several processes, such as 

processes for simulating the OS, others for network devices, etc. The processes can only 

synchronize through events. Therefore, it is impossible to know if the state of the system is 

stable at a given time as in LIMES, because it depends on the events asynchronously 

produced by other processes (for instance, incoming network messages). 
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Figure 14 – Temporal simulation example in the SIDE simulator 

3.3. Connecting and Executing LIMES with SIDE 

As introduced above, LIDE uses LIMES to obtain the processor references, and it injects 

them in SIDE, which simulates the behavior of the memory and network systems. SIDE 

processes several references at the same time, and replies to LIMES when any reference is 

satisfied. Communication between both simulators is made by means of UNIX pipes. 

Because both simulators use different simulation techniques (LIMES simulation is 

synchronized cycle by cycle, SIDE simulation is asynchronously event driven), the main 

problem in the design and implementation of LIDE was to establish at run-time the 

convenient flow of events between LIMES and SIDE to assure the correct execution of the 

parallel benchmarks. 

If SIDE is blocked while waiting a new memory reference from LIMES, its own event 

driven simulation is blocked. On the other hand, SIDE cannot simply check for a new 

memory reference from LIMES on the UNIX pipe and continue with its simulation, 

because some memory references from LIDE can be missed if they arrive before the next 

pipe check. 

The obvious solution to this problem is that SIDE performs the pipe synchronization cycle-
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by-cycle. However, because of the asynchronous nature of SIDE simulation, it is 

impossible to know the global system state at any given moment. Therefore, it is 

impossible to know when the SIDE simulator has reached a stable state and carry out the 

optimization explained in Section 3.1 to reduce the synchronization overhead. Without this 

optimization, synchronizing each cycle introduces a huge overhead, which grows because 

the synchronization is performed by UNIX pipes. This can be tackled in a fast DSM system 

simulation because the memory service takes just a few cycles; but this takes much longer 

in an SVM system (thousands of cycles), and consequently, this method is not feasible. 

To solve this problem, we developed a new synchronization scheme that does not need 

cycle-by-cycle synchronization. In the proposed scheme, SIDE counts the real simulation 

time and LIMES is only aware of the correct order in which the references are satisfied. 

The working scheme is organized in the five steps discussed below: 

1) The memory simulator (LIMES) waits for all the processors to issue a memory 

reference. 

2) The memory simulator (LIMES) sends to SIDE the memory reference and the 

number of processing cycles of each process to be simulated. These cycles are 

independently counted in each processor as the amount of processing time elapsed 

since the previous memory reference. 

3) With the information from 2) SIDE then simulates in parallel for each processor: 

a) The corresponding processing cycles. 

b) The service time for the current memory reference. 

4) SIDE replies to LIMES when one of the memory references is satisfied. 

5) Return to the step 1. 

Proceeding in this way, we ensure that SIDE will only check for new memory references 

from LIMES when a pending memory reference is satisfied. Therefore, it does not use the 

pipe every cycle. 
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Two different simulators are used by LIDE, so two different time-scales are available. By 

using the above scheme, the correct time information comes from SIDE because LIMES is 

used only as a helper process that generates references. 

Figure 15 shows how the proposed scheme works. Only when the LIMES simulator arrives 

at T1 it is possible to know all the references from the processors involved (step 1). Then, 

LIMES sends to SIDE the corresponding information (step 2) by means of the pipe. SIDE 

then simulates the number of cycles corresponding to the number of instructions from the 

previous reference to the actual reference in each processor (step 3). The processor 0 

reference is satisfied when the timeline arrives at T2, and then LIMES is restarted (step 4). 

Nine cycles later, processor 0 issues another reference and SIDE continues simulating these 

9 cycles from processor 0 and retake the work left in the memory system 1 (step 5). 
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Figure 15 – Example of LIMES and SIDE working together 

In this way, we achieve the correct execution because LIMES knows the order in which the 

events are generated, and we obtain the correct time because SIDE knows it. 
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3.4. LIDE Block Structure 

This section details the block diagram of the proposed simulator. We have developed a new 

memsim (from LIMES memory simulator) that is connected to SIDE by means of two 

named pipes. The feedback that LIMES receives from SIDE, gives the order in which 

memory requests are accomplished, and this ensures the correct operation of the workloads 

code that it is dependent on synchronization. 

In SIDE we have several processes synchronized by events. These are represented in 

Figure 16. The root process implements the communication with the LIMES memory 

simulator by UNIX pipes, and multiplexes the references among the memory processes. 

Memory processes simulate the memory system behavior for each processor. Finally, SIDE 

mailboxes communicate the memory and root processes. 
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Figure 16 – LIDE synchronization paths and processes 

The simulator design ensures independence between the network topology and the memory 

processing modules. Therefore, we can check different network protocols and 

configurations without modifying the memory simulator code. For example, Traffic AI is 

the statistical method used to generate packets in SIDE. This method is not used in LIDE to 

generate packets; but packets coming from the memory processes are sent to the network 

processes using the Traffic AI as an interface. 
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Class heritage and macros encapsulate other issues such as system setup and packet 

reception from the network to the memory processes. As Figure 17 shows, the network 

code module is only dependent on the lideRoot module. All interfacing for network 

programming is coded in the modules lideRoot and lideStation. 

The lideProcess module has the memory process code. This code uses macros to access top 

classes, which implement transaction requests and memory management. In this module, 

different consistency models can be implemented. 

lideRequest

lideLock

lidePage

lideMemory

lideStation

lideRoot

lideTraffic

Network Code

lideProcess

 

Figure 17 – LIDE module dependencies 

3.5. Conclusions 

This chapter presents LIDE, a simulation environment for distributed shared memory 

systems. In this environment, network simulation and memory architecture simulation are 

placed in two independent and de-coupled structures to make component changes easier. 

LIDE is based on two well-known simulators: LIMES and SIDE. LIMES is an execution 

driven simulator that collects and simulates the references generated by the execution of 

typical parallel benchmarks. SIDE simulates the memory architecture and the 

interconnection network. 

There are two possible purposes of LIDE used in SVM systems:  

1) Consistency models evaluation studies: The tool allows the development and 
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evaluation of current SVM consistency models as well as the implementation and 

evaluation of new proposals. This gives an opportunity to make performance 

comparisons between different solutions, in a much more flexible way than when 

using real systems. 

2) Network of workstations evaluation studies: To study which standard types of 

NOW are most suitable for the implementation of SVM systems, by using the 

different examples included with SIDE (ATM, Ethernet, etc.); or by modeling new 

ones (100VG AnyLan, FDDI, etc.). 

LIDE is free software currently available at the URL: 

http://godzilla.disca.upv.es:8181/~spetit/lide/.
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Chapter 4 
Workload Characterization 

Chapter 2 discussed the nature and basic working of SVM systems. We focused on the 

reasons causing performance limitations, and presented the current research directions 

aimed at improving performance. The main solutions presented in the open literature often 

improve some specific aspects of the SVM system design and implementation, for 

example, most of those solutions improve the performance of the protocols used, and 

others propose hardware accelerators. 

In addition to the performance problems discussed in Chapter 2, there are other problems 

related with the synergies between the parallel workloads and the SVM system running 

them. For example, a common tradeoff in parallel systems that involves update versus 

invalidation protocols is dependent on two important characteristics of the workload such 

as the granularity and the frequency of sharing [IFT96]. 

To be able to improve the performance of an SVM system, we need to previously develop 

a good understanding of how typical workloads interact with the underlying system. In this 

chapter we characterize a set of parallel workloads suite from the standpoint of the SVM 

protocol designer, identifying the critical workload features that must be exploited to 

improve performance. 

This chapter is organized as follows. Section 4.1 discusses the axes of characterization we 

selected. Section 4.2 describes the parallel workloads used. Section 4.3 concentrates on the 
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sources of performance loss. Section 4.4 characterizes the workloads with the selected 

axes, analyzing the results. Finally, section 4.5 presents some concluding remarks. 

4.1. Axes of the Characterization 

To characterize the workload, we have selected three axes to capture the intrinsic behavior 

associated with the asynchronous communication presents in real SVM systems. The axes 

we will use in this study are: the frequency of sharing, the granularity of sharing, and the 

dynamic changes in the sharing pattern. 

The software nature of SVM systems interacts with the parallel workload, often dropping 

performance with regard to hardware systems. The main reason for performance loss is that 

parallel workloads are usually optimized for hardware systems. This fact defines their 

granularity of sharing and their frequency of sharing. Both metrics will be defined in 

section 2.3.1. 

In addition to the frequency and granularity of sharing characteristics, we also use a third 

axis of characterization that it is useful to express the potential synergies between parallel 

workloads and SVM systems: the sharing pattern. 

During workload execution, data sharing follows a given pattern. This sharing pattern can 

be stable throughout the workload execution or can dynamically change. According to the 

number of producers and consumers of data, the sharing pattern for a given instance of data 

can be classified in one of four categories: 

• 1P-1C: There is only one (1) producer (P) and one consumer (C). This category 

includes the case known as migratory sharing, where the consumer becomes the 

producer of the same data in the future. 

• 1P-MC: There is just one producer and multiple (M) consumers. 

• MP-1C: There are multiple producers and only one consumer. 

• MP-MC: There are both multiple producers and consumers. 
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In addition, we consider the patterns 0P-1C and 0P-MC, which refer to one and multiple 

consumers of the first-loaded data, respectively. 

4.1.1. Performance Synergies 

With regard to the frequency of sharing, hardware systems support fine-grained 

synchronization (for example, via spinlocks) and the workloads are optimized to this point 

in order to minimize the communication to computation ratio. In these systems, the cost of 

the synchronization events is not high, and this allows small critical sections to be 

frequently executed. This technique is often used to protect access to small sections of 

shared data or to implement shared task queues. When running in SVM systems, the 

synchronization is implemented via asynchronous communication as commodity hardware 

has no support for fine-grained synchronization between nodes. This software 

communication and its frequency are the main causes of performance loss. 

In relation to the granularity of sharing, Zhou et al. [ZHO97] showed that the software 

overhead in SVM systems reduces the performance in workloads showing fine-grained 

granularity of sharing. In that case, the writers only produce a small percentage of the page. 

In SVM systems, data is shared at virtual page granularity (typically 4 KB), as a 

consequence, the number of page faults due unrelated processes writing and reading the 

same page increases. As page faults involve asynchronous communication in current 

protocols like LRC and HLRC, the performance drops dramatically in those workloads 

showing fine-grained granularity of sharing. In other words, invalidation protocols like 

LRC and HLRC save an important percentage of network bandwidth, but the latency costs 

of the added asynchronous communication due to workloads showing fine-grained 

granularity of sharing, defeats this advantage. Using a pure broadcast protocol like ERC 

does not easily solve this problem, because some workloads still need a lot of bandwidth to 

obtain a good performance. 

The fine-grained granularity of sharing, which most parallel workloads present, also 

changes the sharing patterns that can be observed during execution in an SVM system. The 

whole effect is detailed in section 3.3.2. 

 49 



WORKLOAD CHARACTERIZATION 

4.2. Workload Description 

The workloads that we use in this study are a subset of the SPLASH-2 benchmark suite 

[WOO95].  

Below, we describe them while focusing on the axes of characterization. For description 

purposes, workloads are divided into two groups: regular and irregular, according to the 

distribution of the shared data on the nodes. 

4.2.1. Regular Applications 

In these applications the shared data is organized in arrays, and uniformly distributed 

across the nodes. Data distribution patterns are often predictable, as well as the granularity 

and frequency of sharing, which often depends on the problem size. 

Radix: This kernel implements a distributed integer radix sort. It follows the 1P-1C 

sharing pattern [IFT96]. Its granularity of writing is always FG, while its granularity of 

reading is MG or CG (depending on the problem size). Our results will show that 

Radix has CGS synchronization. 

• 

• 

• 

• 

Ocean: This application simulates large-scale ocean movements based on eddy and 

boundary currents. Ocean follows a 1P-1C sharing pattern [IFT96], with CG 

granularity smaller than typical problem sizes. Ocean has CGS synchronization 

[ZHO97]. 

FFT: This kernel calculates the Fast Fourier Transform in six parallel steps, and uses 

barriers for global synchronization. FFT follows a 1P-1C sharing pattern. The 

granularity of writing is CG, while the granularity of reading is FG or MG, depending 

on the problem size [IFT96]. This kernel represents the workload possessing the 

smallest amount of synchronization (it contains five barriers during its entire 

execution). 

LU: This kernel factors a dense matrix into the product of a lower triangular and upper 

triangular matrix. Its associated frequency of synchronization is CGS (through 
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barriers). Its sharing pattern is 1P-MC [IFT96]. There are two versions of LU 

(continuous and non-continuous), each requiring different partitions of the input 

matrix. The continuous version factors the matrix as an array of blocks. This data 

structure maximizes the data locality in each partition. In the continuous version, the 

granularity of sharing is CG. The non-continuous version implements the matrix to be 

factored as a bi-dimensional array. The resultant algorithm is conceptually simpler than 

the continuous version, but it exhibits lower data locality. In the non-continuous 

version, the granularity of sharing is FG [JIA97]. Both versions have CGS 

synchronization [ZHO97]. 

4.2.2. Irregular Applications 

In these applications the data distribution is less predictable than the distribution found in 

regular applications, which complicates the load-balancing task. To this end, the workloads 

usually use dynamic mechanisms that use task queues. The granularity of sharing and the 

frequency of sharing are fine-grained, which allows for significant overlap of 

communications with computations. 

Barnes: This application implements the Barnes-Hut method to simulate the 

interaction of a system of bodies (N-body problem). Barnes shows a 1P-MC sharing 

pattern through its whole execution. Two different stages can be identified in this 

application [IFT96]. The first stage includes the particle update and force calculation 

phases, which have regular behavior. In the second stage, a shared tree of particles is 

built among the parallel processes in a migratory sharing pattern, and the tree is then 

partitioned into spatial zones protected by semaphores. The tree processing follows a 

FG sharing pattern, and FGS synchronization, regardless of the problem size [ZHO97]. 

Thus, Barnes can be considered a hybrid application, because there are two distinct 

stages exhibiting different behaviors (regular and irregular). 

• 

• Water: This application evaluates both forces and potentials that occur in systems of 

water molecules. There are two versions of the water application, 1) Water-nsquared 

and 2) Water-spatial. Water-nsquared uses an O(n2) algorithm to calculate the motion 

of the water molecules over time. Water-nsquared has CG granularity, and possesses a 
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migratory sharing pattern [IFT96]. Water-nsquared has FGS synchronization [ZHO97]. 

Water-spatial uses a different algorithm that imposes an uniform 3D grid of cells on the 

problem domain, using an O(n) algorithm to calculate the motion. During the motion, 

molecules move through cells owned by different processes. In general, water-spatial 

follows a 1P-1C pattern for large problem sizes. For smaller problem sizes, this 

application follows a 1P-MC sharing pattern, possessing CG granularity [IFT96] and 

has CGS synchronization [ZHO97]. 

Table 2 summarizes the behavior of the studied workloads along the three axes of 

characterization. 

Granularity of Sharing
Benchmark

Writing Reading

Frequency

of Sharing

Sharing

Pattern

Radix FG MG or CG CGS 1P-1C

Ocean CG CGS 1P-1C

FFT CG FG CGS 1P-1C

LU (continuous) CG CGS

Regular

LU (discontinuous) FG CGS
1P-MC

Barnes FG FGS 1P-MC

Water (nsquared) CG FGS MigratoryIrregular

Water (spatial) CG CGS 1P-1C

 

Table 2 – Workload characteristics according to the three axes of characterization 

4.3. Sources of Performance Loss 

In this section we describe the performance loss associated with the proposed 

characterization axes. In general, performance loss arises when the frequency of sharing is 
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high and/or the granularity of sharing is small. If the frequency of sharing is high, 

performance drops due to critical section dilation [JIA97]. If the granularity of sharing is 

small, the performance drops due to sharing pattern conversion [IFT96]. Below we 

describe both phenomena. 

4.3.1. Critical Section Dilation 

Hardware systems usually support fine-grained synchronization and workloads are 

optimized to minimize the communication to computation ratio. In systems supporting 

FGS, the cost of synchronization events is small (in relation to an SVM system), which 

allows short critical sections to be frequently executed. Critical sections are used to protect 

shared data or to implement shared task queues. 

For SVM systems, the time that parallel workloads spend in critical sections increases 

because of two main reasons: 

• SVM systems do not support FGS synchronization. Thus, the synchronization 

primitives, such as locks or barriers, are mapped to a distributed set of queues that 

are managed by particular nodes in the distributed system. 

• Some SVM systems carry out invalidations at synchronization points; thus, 

increasing the probability that a page fault occur while executing the critical 

section. A page fault usually requires the invalidated node to retrieve a copy of the 

page from another node. 

Both situations introduce latency due to software message passing and asynchronous 

communication with other nodes. In addition, the software management of the SVM 

protocol adds more latency. 

The sum of the mentioned latencies implies that the total time that workloads spend in the 

critical sections is much higher in SVM systems than in hardware systems. Since critical 

sections are frequently executed, the contention increases, which also results in lower 

performance. This effect is so important than some sections of code, which represent a very 

small percentage of the total execution time in hardware systems, may become 
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performance bottlenecks in SVM systems. 

4.3.2. Sharing Pattern Conversion 

Parallel workloads follow a pattern we will refer to as the inherent sharing pattern. This 

pattern can be static or can change dynamically throughout workload execution. Since data 

instances are shared at a given granularity, this granule size can be carefully optimized to 

map efficiently onto specific hardware systems. We will refer to this granularity as 

workload granularity, while we will refer to the sharing unit granularity supported by the 

system as system granularity. In general, the workload granule size is small (less than 64 

bytes, FG), but it can change with the problem size, while the granularity of the SVM 

system is usually CG. 

When both granularities have different granule sizes, it is probable that a new sharing 

pattern occurs. The chance that these new patterns arise depends upon the characteristics of 

the workload and is a function of the disparity between granule sizes. 

When the workload granule is smaller than the system granule size there are two main 

effects that can produce sharing pattern conversion: false sharing and fragmentation. 

 False Sharing 

False sharing appears when the write granularity of the workload is smaller than the system 

granularity. In this case, the producer only writes a fraction of the whole sharing unit, so 

several producers could write data to the same sharing unit. Thus, the inherent sharing 

pattern with one producer (1P) becomes an induced sharing pattern with multiple producers 

(MP). 

The problems produced by false sharing (such as the ping-pong effect) are partially 

reduced in SVM systems by using relaxed memory consistency models and multiple writer 

protocols. Anyway, it remains a performance drawback because the consumers are 

compelled to require the page produced by multiple producers instead of just one producer. 

False sharing mainly affects LRC based protocols, where a page fault in a reader can 

produce asynchronous communication with several writers. The HLRC protocol mitigates 
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this problem because the writers always update the home node. Thus, asynchronous 

communication performed by readers only needs to affect the home node. This advantage 

can become an inconvenience when the home suffers contention due multiple readers 

requiring updates. 

 Fragmentation 

Fragmentation appears when the read granularity of the workload is smaller than the 

system granularity. In this case, the consumer only reads a fraction of the whole sharing 

unit, so several consumers could read data from the same sharing unit. Thus, the inherent 

sharing pattern with one consumer (1C) becomes an induced sharing pattern with multiple 

consumers (MC). 

The fragmentation occurs because the readings have finer granularity than writings. In 

systems with FG granularity (such as SMP systems) this is not a problem because readers 

only access small blocks of data. In SVM systems, due their CG granularity, reader page 

faults imply fetching the whole page, even if the data needed represents a small percentage 

of the page. As a consequence, there is higher bandwidth utilization, which increases the 

service latency when data is required. 

False sharing and fragmentation can appear simultaneously. For example, if both read and 

write granularities are FG or MG (very common in irregular applications) and the system 

granularity is CG, it is likely that we obtain a MP-MC pattern from a 1P-1C pattern, thus, 

showing false sharing and fragmentation [IFT96]. 

Table 3 shows the inherent patterns and the induced patterns that can arise. Information is 

shown for write and read operations individually (though not together), because the 

induced sharing pattern is always MP-MC, and is independent of the inherent pattern. The 

induced effect was also shown in [IFT96]. Sharing patterns which refer to the pattern on 

initial loading (0P-1C and 0P-MC) can move to new induced sharing patterns, though 

induced patterns due to false sharing depend on the sharing unit size. If the size is small, 

the most likely induced sharing pattern will have just one producer (1P), while if the size is 

relatively large the probability of moving to a multiple producer (MP) sharing pattern 

increases. 
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Sharing pattern conversion is strongly correlated with critical section dilation; i.e., when 

the induced sharing pattern becomes MP and/or MC, the number of page faults increases 

(one for each producer or consumer of a given page). 

Inherent pattern Access Effect Induced pattern

Read Fragmentation 0P−MC
0P-1C

Write False Sharing 1P−1C or MP-1C

Read Fragmentation 0P−MC
0P-MC

Write False Sharing 1P-MC or MP−MC

Read Fragmentation 1P−MC
1P−1C

Write False Sharing MP−1C

Read Fragmentation 1P−MC
1P−MC

Write False Sharing MP−MC

Read Fragmentation MP−MC
MP−1C

Write False Sharing MP−1C

Read Fragmentation MP−MC
MP−MC

Write False Sharing MP−MC
 

Table 3 - Transition from the inherent pattern to the induced pattern 

4.4. Workload Characterization Analysis 

In this section we perform a detailed characterization of our target workloads and also 

describe the simulation environment. Our characterization is presented around the 

characterization axes discussed in section 4.1. 
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4.4.1. Simulation Environment 

The execution driven simulator Limes (introduced in section 3.1) has been used to 

instrument the workload in order to capture memory references. In our experiments we use 

both the compiler and instrumentation tool provided by the SMP simulator. The Limes 

simulator uses a modified version of the GCC v2.6.3 compiler using the -O2 optimization 

flag. The instrumentation tool traps memory accesses by adding augmentation code that 

calls the memory simulator after each memory reference. We trap synchronization 

operations by mapping the ANL macros to memory simulator calls. Measurements are 

taken just after the parallel processes are created, as described in [WOO95]. Table 4 lists 

the problem size used for each benchmark. These sizes are close to those used in [BIL97]. 

Every benchmark was executed considering 16 processes. 

Benchmark Problem Size Execution Cycles

Barnes 8K particles 47441193

FFT 1M points 54372159

LU 512x512 points 48591413

LU-CONT 512x512 points 48589005

Ocean 258x258 ocean 29082695

Radix 4M integers 13389554

Water-NSQ 512 molecules 34211024

Water SP 512 molecules 26965078
 

Table 4 – Benchmark problem sizes 

Experimental results are independent of the system architecture. Independence is 

accomplished by trapping both memory accesses and synchronization operations directly 

from the workload, before they arrive at the memory system. To reduce the memory 

requirements of the simulator, each computing process runs in a dedicated node with a 

single issue, one instruction per cycle, processor. Processors share memory through a 
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perfect RAM (PRAM) memory model. 

Memory access information is collected in traces and analyzed offline. For each access we 

capture the following information: 

• The processor ID 

• The memory operation type 

• The virtual address of the referenced data 

• The simulated time (in processor cycles) when the referenced was issued. 

4.4.2. Frequency of Sharing 

In this experiment we measure the synchronization period (number of cycles between 

synchronization operations) present in each workload. To reduce simulation overhead, we 

measure the results for one randomly selected process. Results for other processes were 

also checked with negligible differences. Figure 18 shows the average time between 

synchronization events found in each workload. From the results we can distinguish 

between two distinct groups of applications: 1) Barnes, Ocean, Radix, and Water-NSQ 

have a much smaller average synchronization period, and 2) FFT, LU, and Water-SP have 

a much larger synchronization period. 
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Figure 18 – Cycles between synchronizations 
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A synchronization operation can take several µsec to be processed in a typical SVM system 

[ZHO97], which is equivalent to thousands of clock cycles in current microprocessors. 

Taking this into account, we can characterize the workloads in the first group as having 

FGS synchronization and workloads in the second group as having CGS synchronization. 

These values help to identify critical workload parameters that will affect performance. 

However, we also want to know if the synchronization period is homogeneous across the 

whole workload, or instead is concentrated in some interval or “hot spots”. To identify how 

well distributed synchronization events appear in each workload, we calculated both the 

average and the standard deviation for the elapsed time between synchronizations. Results 

are shown in Table 5. 

Benchmark Average Standard Deviation

Barnes 22516 709681

FFT 13593000 12891100

LU 759240 961535

LU-CONT 759202 958547

Ocean 54519 163341

Radix 155345 738216

Water-NSQ 28967 494870

Water-SP 817122 2518130
 

Table 5 – Average and standard deviation in frequency of sharing 

Table 5 shows that the benchmarks have a huge standard deviation. This characteristic 

indicates that the synchronization period is not uniform and there may be hot spots. To 

confirm our reasoning, we divide the execution time of each workload into intervals of 

equal length (1 million cycles), and we then measured the synchronization period occurring 

in each. We chose to use this interval for all the applications because we found it provided 

us with a meaningful sampling interval. 
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Results are shown in Figure 19. The points with high ordinate values (those points are not 

shown as they are well off the ordinate scale and are less interesting) indicate that the 

synchronization period is very high. I.e., few or no synchronization points (or a negligible 

number) occur in those intervals. The kernel FFT is not included in Figure 19 because it 

contains just 5 synchronizations. LU and LU-CONT possess the same shape because they 

only differ in their data distribution characteristics, and not in their synchronization 

patterns. 
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Figure 19 – Synchronization period measured by interval 

Based on the synchronization period, we can classify a workload as belonging to one of 

three groups: 

• Pure CGS: This category includes those workloads exhibiting a high degree of 

CGS synchronization during execution. Since these applications possess a large 

synchronization period, critical section dilation will not appear in the workloads. 

Some examples of pure CGS are FFT, LU, LU-CONT, and Water-SP. Some 
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applications (e.g., Water-SP and LU) possess a short average synchronization 

period (less than 50,000 cycles). However, the number of synchronizations 

involved is negligible. Only the last interval of LU contains a non-negligible 

number of synchronizations. 

• Medium FGS: This category includes Ocean, and possesses a minimum 

synchronization period that is much smaller than that found in pure CGS, but it is 

still higher (several orders of magnitude higher) than other FGS workloads. Zhou 

et al. [ZHO97] state that Ocean possesses a CGS pattern; however, our results 

indicate that in some intervals of its execution, Ocean is FGS. For example, the 

synchronization period in the intervals 5, 15, 16, 22, 27 and 29 has high variance, 

which means that synchronizations appear in bursts (with less than 100 cycles 

between synchronizations). This FGS behavior can produce critical section dilation 

in those intervals. 

• High FGS: This category includes Barnes, Radix and Water-NSQ, which possess a 

minimum synchronization period that is much smaller (several orders of magnitude 

smaller) than medium FGS. Although Radix seems to have the higher 

synchronization period in two intervals (3 and 10), this is due to just two outlier 

values that greatly impact on the average. If these values were ignored, the results 

would be one order of magnitude smaller (368 average cycles between 

synchronizations instead of 2627 cycles). This situation also occurs in Water-NSQ 

in the interval 24, where the synchronization period is 1445 cycles, but if we leave 

out the one anomalous case, the average synchronization period falls to 240 cycles. 

The smaller the average period exhibited by an application, the higher the chances that 

FGS will occur. This non-homogeneity of synchronization intervals indicates critical 

section dilation problems. Iftode [IFT96] and Zhou [ZHO97] also come to similar 

conclusions by identifying those parts of the code that consume the greatest execution 

times when run on SVM systems. 

The probability that critical section dilation appears increases with the number of fine-

grained synchronizations. For this reason, to see how much critical section dilation can 

impact performance, we measured the number of synchronizations issued during each 
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interval. Figure 20 shows the results. 
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Figure 20 – Synchronization count measured by interval 

Inspecting the results, one can observe that Barnes and Water-NSQ will be the applications 

most affected by critical section dilation because both are FGS and possess a large number 

of synchronizations in the affected intervals (more than 500). Ocean and Radix have the 

same problem (but to a lesser extent) because their synchronization counts are smaller. In 

the case of Radix, synchronizations are distributed in the application similarly to Barnes 

and Water-NSQ, while in Ocean the synchronizations are spread evenly across the trace. 
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Finally, FFT, LU and Water-SP have few synchronizations, which together with their CGS 

behavior, confirm their robustness against critical section dilation effects. 

4.4.3. Granularity of Sharing 

To determine the granularity of sharing, we measure the size of each instance of shared 

data written between synchronization points (locks, unlocks and barriers). Similar to the 

characterization techniques presented in the previous section, we divide the execution time 

of each workload into intervals of 1000000 cycles. For each synchronization point, we 

measure both the size in bytes and number of the writes performed since the previous 

synchronization point. 

Each continuous area of data written is called a chunk. Figure 21 shows the average size of 

a chunk in bytes, classified by intervals, namely the average granularity. The points in 

Figure 21 that possess a value of 0 represent intervals where no writes were detected. 

Based on the granularity results obtained, workloads can be classified in three groups: 

• FG: This group includes Barnes, LU, Ocean, Water-NSQ and Water-SP. LU non-

continuous and Barnes possess a smaller average granularity value. LU and Barnes 

do not share chunks larger than 32 and 16 words, respectively. Ocean has a slightly 

larger than average sharing granularity size, and issues synchronization events in 

all the intervals. The granularity size is less than 16 words in half of the intervals, 

and in all the intervals the granularity size is less than 128 words, with an average 

size of about 10 words. We also found that the sizes of the chunks shared by Ocean 

show a high variance. 

• MG: In this group we only classify the Radix kernel as having MG granularity. 

This kernel performs synchronizations in only a few intervals (just 4 of 14), but 

with an average granularity of around 326 words for those intervals. 

• CG: This group includes the FFT and LU-CONT kernels. Both workloads exhibit 

CG granularity in all the intervals where synchronizations were issued. FFT 

performs very few synchronization operations (5 barriers: 1 during interval 1 

without sharing data, 1 during interval 11 and 3 during the last interval). 
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Figure 21 – Mean granularity measured by interval 
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Results show that most workloads (with the exception of FFT and LU-CONT) have FG and 

MG sharing granularity. This means that they are likely to have sharing pattern conversion 

due to both false sharing and fragmentation. 

The entropy in the sharing pattern conversion is affected by the amount of written data at a 

given granularity. Figure 22 plots the amount of written data between synchronizations for 

each interval. This information complements the information shown in Figure 21 because, 

in general, as the number of chunks that are written at small granularity increases, the 

probability that sharing pattern conversion occurs also increases. This means that sharing 

pattern conversion will have a large impact on performance in Radix and Ocean, because 

they are MG and FG, respectively, and they share a large amount of data. 
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Figure 22 – Total written data between synchronizations for each interval 

An update protocol could solve the asynchronous communication derived from sharing 

pattern conversion because it avoids a lot of page faults; however, the performance of this 

protocol is limited by the amount of data that the network can process without becoming a 
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contention point. This is a typical trade-off between invalidate versus update protocols. 

Looking at the results, one can deduce that an SVM update protocol will achieve poor 

performance in FFT, Radix and Ocean due to the large amount of written data. 

Synchronizations in FFT and Radix are concentrated in very few intervals, but the amount 

of data to be updated is very large. On the other hand, the number of synchronizations in 

Ocean is distributed among more intervals, but with less data to be updated. This means 

that using a fast enough network could guarantee no performance loss in Ocean, though it 

would result in writing more shared data than Radix and FFT together. 

LU and LU-CONT share the same amount of data (so they are represented by the same 

plot, LU), which means that both will have the same performance when using an update 

protocol. Sharing pattern conversion differences between LU and LU-CONT are due only 

to granularity differences. 

As in Ocean, the number of synchronizations in LU is distributed among many intervals. 

These numbers are relatively low, but the total amount of data written by each LU 

application is close to Radix. In contrast, both Water and Barnes share only a maximum of 

50,000 words across the workload, which makes them suitable for an update protocol. 

4.4.4. Sharing Pattern 

This section studies the sharing pattern conversion characteristics for each workload. For 

this experiment, we explore the sharing patterns of each benchmark varying the sharing 

unit size. The results show that the sharing patterns in each workload are very sensitive to 

this parameter. Only two workloads (FFT and LU-CONT) are not affected by changes in 

granularity size. 

Figure 23 presents the sharing pattern frequency obtained by varying the sharing unit size 

from one word (4 bytes) to one page (4096 bytes). The plotted lines represent the number 

of bytes exhibiting a given pattern. Bytes are not individually accounted; sharing patterns 

are considered on a sharing unit basis, so we compute the number of bytes based on the 

size of the entire sharing unit. For example, if the sharing unit size is 1024 bytes, and a 

given sharing unit has a 1P-1C sharing pattern, we add 1024 to the 1P-1C count. 
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Proceeding in this way, the count value represents the data that would suffer from false 

sharing and fragmentation. On the other hand, if we just counted the number of sharing 

units, our results would be less accurate since this number is a function the sharing unit 

size. 

For our analysis, both individual points in Figure 23 and the slope of the lines are 

meaningful. Individual points can be used to determine how important a given pattern is for 

a given sharing unit size. The slope of one, or several lines, can help us identify sharing 

pattern conversion when the sharing unit size changes. 

In addition to the pattern classification shown in Table 3, Figure 23 shows the 0C pattern, 

which represents those sharing units having no consumers (i.e., non-shared data). If the 

sharing unit size is large enough, the non-shared data will join other shared data in a larger 

unit. This will now be treated as one unit (both the non-shared and the shared) and 

classified under the same sharing pattern, thus increasing the shared data count. Figure 24 

shows an example. When the sharing unit size is 2 Kbytes (left side), the data in the B 

sharing unit is not shared because there are no consumers. If the sharing unit size is 4 

Kbytes (right side), the data is a subset of the shared unit. Thus, fragmentation reduces the 

non-shared data count. This kind of fragmentation is representative of the behavior in half 

of the studied workloads (Barnes, Ocean, Water-NSQ, and Water-SP). 

The frequency of the 0C pattern is several orders of magnitude higher than that observed in 

other patterns. This high frequency appears because most of the address space does not 

have consumers. Thus, it is difficult to observe if all the patterns are plotted on the same 

figure; however, the slope of the 0C pattern is helpful to understand how the others patterns 

evolve. Thus, we represent its shape shifted to the X-axis in order to discover its trends. 

Studying sharing at the granularity of 4 bytes (one word) unit gives us a better view of the 

inherent sharing pattern because larger granules may be subject to false sharing and 

fragmentation. Using larger units can blur the sharing picture. Below, each workload is 

analyzed. 
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Figure 23 – Sharing pattern count 
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Figure 24 – Fragmentation effect 

 Barnes 

This application shows inherent 1P-1C and 1P-MC sharing patterns, as well as 0C 

fragmentation. When we increase the size of the sharing unit to 64 bytes, we increase the 

frequency of 1P-1C (due to fragmentation effects), and in turn we decrease the 0C and the 

1P-1C patterns. False sharing also occurs because the amount of MP-MC grows. For 

intermediate sharing unit sizes (128-512 bytes), false sharing becomes the dominant effect, 

increasing the MP-MC pattern at the expense of reducing both the frequency of 1P-1C and 

1P-MC patterns. For larger sharing units (1024-4096 bytes) there is an accelerated 

transition. False sharing continues to increase (MP-MC grows), but 1P-1C also increases. It 

seems that 1P-1C increases at the expense of 1P-MC, but that is not the case. A closer look 

reveals that the growth of 1P-1C is caused by increased fragmentation (0C). 

 FFT 

This kernel exhibits a fairly constant behavior and so no induced sharing patterns appear. 

Strictly, a slight growth in the inherent 1P-MC pattern occurs at the expense of reducing 

the frequency of the 1P-1C pattern. This change can be attributed to the increase in 

fragmentation, though differences are negligible. One other important sharing pattern 

present in FFT is 0P-1C, which indicates than a high percentage of the shared data is not 

written after the initialization phase. 

 LU 

For small sharing unit sizes (4, 64, and 128 bytes), there is just one predominant sharing 
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pattern present (1P-MC). However, this pattern practically disappears for larger unit sizes. 

This is because false sharing then becomes the dominant effect, increasing the MP-MC 

pattern at the expense of the 1P-MC pattern. 

 LU-CONT 

This kernel is an optimized version of the studied LU kernel that considerably reduces the 

amount of false sharing in LU. This explains why we see large changes in LU when 

sharing units larger than 256KB and this does not occur in LU-CONT. The 1P-1C pattern 

is the predominant pattern across different sharing unit sizes. Both LU-CONT and FFT are 

CGS and CG, so they maintain the same sharing pattern for different page sizes. 

 Ocean 

This application shows one dominant 1P-1C pattern for sharing unit sizes less than 512 

bytes. The frequency of this pattern progressively decreases, while we see increases in the 

1P-MC pattern. This dynamic is due to fragmentation. Sharing patterns stabilize for sharing 

unit sizes larger than 512KB. 

 Radix 

This kernel shows just one dominating inherent 1P-1C pattern. The frequency of this 

pattern dramatically drops to zero while the frequency of the MP-1C pattern increases. 

False sharing causes this change. 

 Water-NSQ 

As the sharing unit size increases both false sharing and fragmentation effects are more 

accentuated in Water-NSQ. The particular sharing patterns change depending on the 

sharing unit size. For smaller sizes (8 and 64 bytes), the frequency of the 0P-1C, 1P-1C, 

1P-MC and MP-MC patterns increase due to fragmentation (note that 0C decreases). For 

intermediate unit sizes (128 and 256 bytes), the 1P-1C frequency decreases while the MP-

MC frequency increases due to both false sharing and fragmentation. For larger sharing 

unit sizes, MP-MC stabilizes, while 1P-1C increases (0C decreases). This is due to 

increased fragmentation. 
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 Water-SP 

As in Water-NSQ, the Water-SP application suffers from false sharing for small page sizes 

and fragmentation for larger sizes. In the first 128 bytes, the original 1P-1C sharing pattern 

remains constant because very little fragmentation occurs (0C decreases). From 128 bytes 

to 1024 bytes, fragmentation becomes dominant, increasing the frequency of the 1P-MC 

pattern, which increases at the expense of the 0C and 1P-1C patterns. For larger page sizes, 

the impact of false sharing is accentuated, and as a consequence, 1P-MC patterns are 

replaced by MP-MC patterns. 

4.5. Conclusions 

The overhead associated with the software management of SVM systems introduces extra 

latency that can negatively impact system performance. One way to limit this overhead is 

to design more efficient SVM consistency protocols that reduce overall communication 

overhead. 

To begin to address communication overhead, it is vital to better understand how workload 

interacts with the system. In this chapter we focused on a number of parallel workload 

characteristics that can negatively impact the performance of SVM systems. More 

precisely, we have both identified and quantified the sources of performance loss in each 

workload. 

We first characterized the workload based on three axes related to asynchronous 

communication latency: the frequency of sharing, the granularity of sharing, and the 

sharing pattern. 

From this characterization, we find that typically the synchronization rate is high in some 

intervals of execution, and the sharing granule is much smaller than the page size. We also 

explore dynamic characteristics that are directly related to performance degradation in 

SVM systems. We have both identified and quantified some useful cause-effect 

relationships, including: i) a high frequency of sharing rate causes critical section dilation, 

and ii) a small sharing granule interacts with the sharing pattern, causing sharing pattern 

transformations. In our analysis, we quantified the severity of critical section dilation and 
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sharing pattern transformation that each workload can incur throughout its execution. 

We presented results, varying the page size from 4B to 4KB. We also studied the effects of 

sampling across fixed intervals. This form of sampling can provide the designer with a 

more precise view of workload dynamics, which can translate into improved protocol 

efficiency. 

Previous research in the open literature has explored the behavior of parallel workloads as 

run on SVM systems [IFT96][JIA97][ZHO97]. Iftode et al. [IFT96] established a workload 

taxonomy based on sharing patterns and the granularity of sharing. Jiang et al. [JIA97] 

modified source code based on the described axes to improve the performance of SVM 

systems. Zhou et al. [ZHO97] studied the behavior of workloads running on several 

protocols and systems, developing a number of rules about the optimal granularity of 

sharing. In addition, they introduced the concept of the frequency of synchronization in 

their workload taxonomy. 

Our characterization differs in that we gather information about the behavior of the 

workload independently of the underlying system. This allows us to focus on the workload 

behavior without any system interference. We concentrate on workload characterization 

and how the workload characteristics impact the performance metrics. 
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Chapter 5 
The HLRC-DU and the HLRC-CU 

Protocols 
As it has been widely discussed in previous chapters, asynchronous communication is one 

of the main performance drawbacks in SVM systems. In Chapter 4 we detailed the factors 

why asynchronous communication rises in these systems through investigating the different 

workloads. We concluded that, as a consequence of the large granularity supported by 

SVM systems (the page) the false sharing and fragmentation phenomena (sharing pattern 

transformation) appears, considerably increasing asynchronous page requests and 

contributing to the dilation of critical sections. 

From the explained above, one could deduce that protocol performance can be improved if 

their design is addressed either to reduce false sharing and fragmentation effects; i.e., to 

reduce the amount of asynchronous page requests. This can be accomplished by reducing 

the amount of invalidations. 

We explore this idea by using the Home Lazy Release Consistency (HLRC) protocol as the 

baseline protocol. We propose an improved version of this protocol: the HLRC Diff Update 

(HLRC-DU) protocol. This protocol updates data through write notices when diffs are 

smaller than a given threshold. In this way, the write-notices update the data instead of 

invalidating the page, so we refer them as write updates. The purpose of this proposal is to 

reduce the amount of invalidations in order to avoid asynchronous requests to page homes. 
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Diffs can perform over one or more continuous written areas in a page. We refer to each 

continuous area as a written chunk – or simply, a chunk. We detect (see section 5.1) that a 

huge percentage of diffs perform over a single chunk, so showing spatial locality. One 

advantage of these kinds of diffs is that they can be easily detected and calculated by a 

simple hardware, as we will discuss later. For this reason, we propose an alternative 

protocol, the HLRC Chunk Update (HLRC-CU) that uses specific hardware to 

automatically detect and calculate those diffs. 

This chapter is organized as follows. Section 5.1 performs a preliminary study to find the 

potential benefits of write updates. Section 5.2 explains the proposed protocols HLRC-DU 

and HLRC-CU, studies the hardware complexity of the specific hardware used in the 

HLRC-CU protocol, and compares both proposals. Section 5.3 studies the sensitivity of the 

HLRC-DU protocol to the threshold size used for performance tuning. Section 5.4 

compares a hardware technique used in the open literature [BIL98] against the HLRC-DU 

protocol. Finally, section 5.5 presents some concluding remarks. 

5.1. A Preliminary Study 

One straightforward solution for the protocol designer in order to reduce asynchronous 

communication is to update, instead of invalidating data, as explained in section 2.3.1. 

However, update techniques have a tradeoff between the benefits obtained for reducing 

asynchronous communication and the consequent increase in network utilization. To 

maximize the benefits in this tradeoff, updates have to be a) small enough to fit in the 

network bandwidth without causing congestion, b) useful enough to reduce the 

asynchronous communication in a high percentage. 

An idea derived from this tradeoff is to update only small diffs, given that the granularity 

of sharing is in general small in parallel workloads, as shown in Chapter 4. The protocol 

designer could select a range of continuous pattern sizes (i.e., from 1 word to 64 words) in 

which all the writings are updated by the write notices. This option slightly increases 

network traffic when sending write notices because they are larger, however, it can reduce 

a high percentage of asynchronous communication both in LRC and HLRC protocols as 

small granularity of sharing is frequent enough. In addition, HLRC contention in home 
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nodes is reduced if all the updates for their pages are sent along with write notices. We will 

refer to a write notice plus its associated diff as a write update. 

On the other hand, diffs will be likely to perform over continuous words (ranging from 

only one word to the complete page) due to spatial localities (we will refer to a range of 

continuous written words as a page chunk or simply a chunk). This locality could be used 

to reduce diff calculation overhead by detecting patterns of continuous writes via small 

hardware. When that situation is detected, it can be notified to the OS by indicating the 

address and size of the page chunk that was written. This optimization will reduce the 

elapsed time spent on diff calculation at the nodes. 

In this section we examine whether the discussed ideas could be useful for improving 

performance by reducing asynchronous communication and diff calculation costs. We use a 

baseline implementation of the HLRC protocol described in the next section to check the 

new proposals. 

5.1.1. The Baseline HLRC Protocol 

The baseline protocol is based on the implementation of the HLRC protocol (see section 

2.3.4) proposed by Zhou et al. in [ZHO96]. In our implementation, each page has a home 

node to accumulate the diffs calculated by the writer nodes. When a node receives a write 

notice for a page, it marks its local copy as invalid and asks the home for an up-to-date 

version of the page, whenever any local process tries to access it. The page homes are 

selected by means of a module function of the most significant bits of their page addresses. 

Each write notice contains the identification of the writer process, the timestamp of the 

write, and the page address. There is no garbage collection of globally known write notices. 

Write notices are only sent to a given process if it acquires a semaphore, or to all processes 

when they reach a barrier. 

Once a process releasing a semaphore or a barrier sends the write notices to the acquirer, it 

immediately sends to the homes those diffs produced by its previous writes in order to keep 

the homes updated. The acquirer will invalidate the pages corresponding to the addresses in 

the received write notices. Then, if the acquirer accesses the invalidated page, a page fault 
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will occur. Consequently, the protocol asks the home for an up-to-date page. If the home is 

not updated, the diff will arrive immediately because it was sent just after the write notice. 

Figure 25 shows how modifications of the writer node (node A) on page P arrive at the 

home node of the page (node B) before the invalidated node (node C) can ask for an up-to-

date copy from the home node (node B). 

NODE A

NODE B

NODE C

LOCK   WRITE X   UNLOCK

COMPUTE
DIFF

APPLY
DIFF

LOCK   READ X

FETCH
PAGE P

WRITE
NOTICES

 

Figure 25 – Baseline protocol example 

Each semaphore and barrier has a home node selected by using a module function. The 

semaphore home node queues the acquire requests and remembers which was the last node 

to release the semaphore. This allows it to forward those requests to the last releaser when 

needed. Then, the releaser will directly send the write notices to the acquirer node without 

crossing the home. 

Nodes that reach a barrier send the write notices to the barrier home and get blocked. When 

the home has received all the barrier requests it sends to all pending processes the write 

notices it has received. Finally, nodes invalidate the corresponding pages and release the 

barrier. Barriers are implemented without using the broadcast capabilities of Ethernet. 

5.1.2. Simulation Environment 

We use the LIDE execution driven simulator described in Chapter 3 to evaluate if write 

updates could benefit the performance and all the proposed protocols in this chapter. We 

compile the running benchmarks with a modified version of GCC v2.6.3, applying the O2 

optimization flag. 
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The modeled architecture consists of a single cluster composed of 32 monoprocessor nodes 

connected through an overclocked (1 gigabit per second) Ethernet network. The contention 

of the network is also modeled. The internal clock rate of each processor works at 1 Ghz (1 

cycle = 1 nanosecond). 

The load in each node consists of the parallel application plus the operating system 

overhead introduced by the memory consistency model. A two level cache hierarchy is 

simulated for the memory accesses. In the first level, we assume a 64KB cache. In the 

second level, we assume a 1 MB cache. Both caches are direct mapped. Hits at the first 

level cache take one cycle. In the case of a miss occurring in the first level, the second level 

cache solves it, taking 8 cycles. If both caches have a miss, the block is loaded from 

memory, taking 20 cycles. When a page fault or a remote request occurs, the operating 

system takes 100 µsec. to change the context. Before returning to the parallel application, a 

check is made to see if there is any request pending from a remote processor. If so, those 

requests have higher priority than the local requests, and each takes 10 µsec before issuing 

a response. 

In addition to the previous times, diff creation in writer nodes and its application in home 

nodes takes time that grows linearly with the page size (4 cycles per word). As page size is 

assumed to be 4KB and word size 4bytes, all protocols take 4096 nanoseconds in either 

creating or applying the diff. This overhead is not present when copying a single page 

because the model assumes that a DMA device performs this task. 

To carry out our experiments we use the same benchmarks as in Chapter 4. Table 6 shows 

the problem size used for each benchmark. The problem sizes match those used in the open 

literature to perform similar studies for workload characterization. 
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Benchmark Problem Size

Barnes 2K particles

FFT 256K points

LU 512x512 points

LU-CONT 512x512 points

Ocean 130x130 ocean

Radix 1M integers

Water-NSQ 512 molecules

Water-SP 512 molecules
 

Table 6 – Benchmark problem sizes 

5.1.3. Experimental Results 

Write notices are received when a process acquires a semaphore or a barrier. We 

instrument the baseline protocol to obtain the size of the diff produced by the write notice 

when they are sent. Then, we measure the number of sent diffs of each size. This helps us 

to check the potential benefits that we could achieve by avoiding the write notices that 

produce the smallest diffs. 

Table 7 represents the distribution per processor of those sizes. As can be seen, most diffs 

are relatively small (about the 58% contain less than 128 words), except in FFT. To update 

them seems to be a good compromise between the expected reduction in asynchronous 

communication and the induced traffic. Thus, we choose 128 words as an experimental 

threshold value for this preliminary study. 

Note that in order to update most diffs in FFT we should choose a much higher threshold. 

In addition, the distribution of diff sizes in LU and Ocean also seems to suggest a higher 

threshold. We explicitly avoided this, in order to keep network traffic bounded. Section 5.3 

contains a detailed analysis for determining the optimal threshold value. 
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BenchmarkDiff Size

Range (Words) Barnes FFT LU LU-CONT Ocean Radix Water-NSQ Water-SP

Cumulative

percentage

]0,1] 3366 1 0 0 12 7 0 3 2%

]1,2] 93 0 0 0 665 7 161 164 3%

]2,4] 14525 0 0 0 21 21 74 3 14%

]4,8] 839 0 32 32 1608 38 95 16 16%

]8,16] 746 0 0 0 1128 99 148 256 18%

]16,32] 1322 0 9215 0 1016 139 9065 2 33%

]32,64] 261 0 0 0 4570 10869 77 560 45%

]64,128] 647 0 5600 0 3345 7886 28 17 58%

]128,256] 303 0 23488 0 3689 2037 70 78 79%

]256,512] 40 0 3002 1585 2166 1373 36 980 86%

]512,1024] 0 3120 0 4912 8760 113 704 0 99%

]1024,2048] 0 0 0 0 1560 0 0 0 100%
 

Table 7 – Distribution of diff sizes 

As explained at the beginning of this section, writers often update only a continuous chunk 

of data in a page, due to data localities. The diffs produced by this pattern will be 

composed of only one chunk of data and could be calculated by simple hardware snooping 

of the data bus. This will improve performance by reducing diff calculation costs. To check 

if this continuous pattern is frequent enough, we split the diffs into four categories: 

1. Those that can become write updates because they are smaller than the threshold 

value, and are composed of just a single chunk (Update-single). 

2. Those that can become write updates because they are smaller than the threshold 

value, but are composed of multiple chunks (Update). 

3. Those greater than the threshold so they cannot become write updates (Invalidate). 

Figure 26 shows these results. There is a huge percentage of diffs belonging to the two first 

categories. On average, around the 56% of the diffs will become write updates in a protocol 

that updates all diffs smaller than 128 words using write updates. If the protocol only 
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updates continuous chunks, the percentage falls to 36%. Thus, if we choose only to update 

continuous chunks the benefits of reducing diff calculation time is at the expense of 

increasing the percentage of asynchronous communication. This is a tradeoff that we will 

explore in section 5.2.3. 
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Figure 26 – Breaking down received write notices. Legend: Update) Diffs smaller than 

128 words; Update-Single) Continuous diffs smaller than 128 words; Invalidate) Diffs 

greater than 128 words. 

Note that in both FFT and LU-CONT there are not write notices to be updated (Update or 

Update-single); thus, the behavior of both approaches will be similar to the baseline 

protocol. On the other hand, Barnes and Water-NSQ update a great amount of diffs below 

128 words. Other workloads lay between the two extremes. 

The benchmark Water-NSQ also has more spatial locality than the other workloads under 

this threshold. Therefore, it is expected that both approaches will perform equally well in 

this workload. This occurs also in Radix, but to a lesser extent. The other side is 

represented by the benchmarks Ocean and Water-SP, which do not show spatial locality on 

small diffs, and Barnes and LU, which show both high percentages of continuous and non-

continuous diffs. It is difficult to predict how these last workloads will behave when 

running under the proposed protocols due the trade-off mentioned above. 
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5.2. Proposed Protocols 

In the previous section we find that many diffs are relatively small, and in addition, due 

spatial localities they are composed by one chunk of continuous words. The proposed 

HLRC-CU protocol just updates this kind of diffs, while the HLRC-DU protocol updates 

all diffs. In both cases, diffs are only updated if they are smaller than the threshold. 

As the threshold approaches zero, both protocols perform more invalidation actions and 

their behavior is close to the baseline HLRC behavior. On the other hand, they behave like 

pure update protocols when there are no threshold restrictions. 

5.2.1. The HLRC-DU Protocol 

The HLRC-DU protocol detects diffs smaller than a threshold size and injects them as 

updates via write notices, which become write updates. Larger diffs are only sent to the 

home nodes and the associated write notice invalidates the page as in the baseline HLRC 

protocol. No threshold will induce network congestion in some applications; consequently, 

we use the threshold to control the load injected in the network by write updates. 

Figure 27 shows how modifications of the writer node (node A) on page P arrive directly to 

node C when entering the semaphore. In this way, the home node is not interrupted from 

workload computation. The page fault (on READ X) in node C is also saved. 

APPLY
DIFF

NODE A

NODE B

NODE C

LOC K   W RITE X   UN LOC K

COM PUTE
DIFF

               LOC K READ X

W RITE
UPDATES

APPLY
DIFF

 

Figure 27 – HLRC-DU protocol example 

If during the acquisition of a semaphore, a process receives both an update and invalidation 

for the same page, the page becomes invalid. In such a case, the protocol invalidates the 
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node; as a consequence, the node will need an up-to-date copy from the home, which will 

contain all the modifications. Thus, there is a need to update the home (node B) as occurs 

in the base HLRC protocol. 

5.2.2. The HLRC-CU Protocol 

HLRC-DU protocol emphasizes every diff smaller than the threshold; thus it can contain 

just a single chunk or multiple chunks. On the other hand, the HLRC-CU protocol 

emphasizes only those diffs containing a single chunk. This is because, as mentioned in 

section 5.1.3, a large number of page modifications perform over a single chunk and these 

diffs are easy to detect and calculate with simple hardware. In this sense, the HLRC-CU 

protocol tries to benefit from the workload behavior. 

Diffs are composed of one or more chunks. For each chunk, the information sent is 

composed of i) the initial address, ii) the total data size, and iii) the data to be updated. The 

first two components of that information are an unavoidable overhead when updating data. 

The minimum overhead occurs when the diff is composed of just one chunk. In addition, 

that situation is easily detectable both by software and simple hardware. If continuous 

writing patterns are frequent enough, a simple table hardware will take advantage of the 

situation, because most diffs will be calculated by hardware; thus, saving software 

overhead. 

To accelerate the HLRC-CU protocol we introduce a Page Information Table (PIT) that is 

a hardware table for detecting chunk areas at run-time. In this sense, the hardware 

alleviates the operating system from this task. Figure 28 shows the information structure of 

this table. A written chunck is defined by its initial and final address and one array of 

continuous page data. Table complexity is negligible when compared with the generic diff 

calculators used in [BIA96][BIL98]. The PIT is a fully associative table working as a small 

cache indexed by the page address. 

The PIT works as follows. Initially the node fetches the page; then when the processor 

issues a write operation a new entry for that page is created, both the first access and the 

continuous bit are set, and the address is placed both in the initial access address and in the 
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last access address fields. Then, each time a new local write is performed, a substractor 

calculates if the current address is continuous with the last stored address (less or equal to a 

word width). If not, the continuous bit is reset, and it remains cleared until an unlock or a 

barrier operation is performed. Then, the OS retrieves and resets the full PIT information. 

Page 
Address (tag)

Last Acc.
Address

Initial Acc.
Address

First 
Acc. Cont.

32-13=19

     Current
 Write Address

SUBSTRACTOR
and control

1111 1 1

 

Figure 28 – Page information table structure 

The OS can use the information provided by the PIT (initial access address and last access 

address) to embed the continuous chunk of data in write updates. Note that this task can be 

done with little OS intervention, through DMA and so further accelerating the creation of 

protocol messages. 

 PIT Hardware Overhead 

The PIT behaves as a fully associative cache indexed by page address. Ideally, the PIT 

must be large enough to store all the page entries of those pages written by each process 

before it releases a semaphore or a barrier. At that moment, the entire table contents will be 

flushed to memory by the protocol. To choose the dimensions of the table, we measure the 

maximum number of diffs sent when a release occurs, that is the number of pages written 

after the previous release. 
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Results are shown in Table 8. We found that the maximum size is similar between 

processes when running the same workload. Thus, only maximum values between 

processes are shown. When the PIT size is not large enough to fit all the page addresses (of 

the input data set), those entries could be clearly detected by software or treated as in the 

baseline HLRC protocol. In accordance with the obtained results for the size of the 

workloads used, the PIT only needs 1024 lines, which means little hardware is needed. 

Benchmark Diffs updated

Barnes 44

FFT 65

LU 128

LU-CONT 32

Ocean 37

Radix 979

Water-NSQ 16

Water-SP 18
 

Table 8 – Maximum number of required entries in the PIT 

5.2.3. HLRC-DU versus HLRC-CU 

In this section we compare the performances of both proposed protocols. This comparison 

also checks if the benefits of reducing diff calculation costs (HLRC-CU) are higher than 

extending the range of write updates to non-continuous diffs (HLRC-DU). 

As explained in section 5.1.3, an experimental threshold value limiting the maximum size 

of diffs sent with the write updates is needed to avoid network congestion. From the results 

in section 5.1.3, we chose an experimental threshold of 128 words (512 bytes). To check if 

this threshold value also works for the HLRC-CU protocol, we gathered the distribution of 

diff sizes. Figure 29 shows the values from diffs obtained under the HLRC-CU algorithm 
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without threshold restrictions. As one can see, most are smaller than 128 words. Thus, we 

also chose 128 as the threshold value for the HLRC-CU. 

Table 9 shows the total number of diffs being updated by the HLRC-CU protocol as well as 

the increment that the HLRC-DU protocol produces. We show the total increment as well 

as a break down into smaller intervals. The total increment ranges from no increment in 

LU-CONT to more than one order of magnitude in Ocean, LU and Water-SP. 

 Benchmark Diff Size 

Range Barnes FFT LU LU-CONT Ocean Radix Water-NSQ Water-SP 

Total 

HLRC-CU 
14600 1681 9247 6529 860 20222 9525 186 

]0,1] 0 0 0 0 0 0 0 0 

]1,2] 0 0 0 0 0 0 0 0 

]2,4] 3489 0 0 0 0 0 0 0 

]4,8] 795 0 0 0 1578 0 0 0 

]8,16] 736 0 0 0 1102 1 4 256 

]16,32] 1303 0 0 0 998 6 14 2 

]32,64] 261 0 0 0 4526 322 77 560 

]64,128] 631 0 5600 0 3301 1982 28 17 

]128,256] 287 0 23488 0 3689 38 70 78 

]256,512] 40 0 3002 0 2166 17 36 980 

]512,1024] 0 1440 0 0 8760 1 704 0 

]1024,2048] 0 0 0 0 1560 0 0 0 

Total 

HLRC-DU 
22142 3121 41337 6529 28540 22589 10458 2079 

 

Table 9 – Increment of diffs updated by HLRC-DU versus HLRC-CU 
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Figure 29 – Distribution of diff sizes 
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Figure 30 summarizes the speedup results for both proposed protocols over the baseline 

protocol. The results show the large gains that both the HLRC-DU and HLRC-CU 

protocols achieve. As explained in Figure 26, both protocols obtain the same results in FFT 

and very similar results in LU-CONT. The best speedups are achieved by those workloads 

that update more diffs under the HLRC-DU protocol (Barnes, Ocean and Water-NSQ). 
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Figure 30 – Speedup over the baseline protocol of the proposed protocols 

In Radix, however, the updates have an adverse effect, because they increase the utilization 

of the network, producing a bottleneck. Thus, once again, we emphasize the compromise 

between the number of write updates and network congestion. We will explore this tradeoff 

in section 5.3. In general, the results show that most writes perform on small diffs that can 

be attached to write notices and updated by the receiver node. As they are small, they do 

not suppose a high impact on bus utilization. 

Both protocols achieve, on average, on the average, a speedup of nearly 5% over the 

baseline HLRC protocol. This means that the proposed PIT, although useful for reducing 

diff calculation overhead, also considerably reduces the range of potential write updates. 

Consequently, it would be interesting to have a hybrid protocol that updates in the same 

way as the HLRC-DU all those diffs smaller than the given threshold, as well as using the 

PIT for those diffs composed of only one chunk. 

The 5% average can seem small but it is important to notice that the benefits obtained 

across the benchmarks have a high variance. As expected, FFT and LU-CONT behave like 

the baseline, but 4 of the 8 benchmarks perform 8% more quickly. In some cases (Barnes, 
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Ocean, Water-SP), the speedup surpasses the 15%, reaching the 25% in Ocean. The 

negative results found in LU and especially in Radix are explored in section 5.3. 

5.3. Sensitivity to the Threshold Size 

In section 5.2 we proposed the HLRC-DU memory consistency protocol and found that it 

performs better than the baseline HLRC protocol. The HLRC-DU protocol updates data 

through write notices when diffs are smaller than a given threshold. In this way, the write-

notices update the data instead of invalidating the page, so we refer them as write updates. 

The goal is to reduce the number of invalidations in order to avoid asynchronous requests 

to page homes. 

The threshold size imposes a trade-off between bus utilization and the reduction of 

asynchronous communication. In this section we study the sensitivity of the HLRC-DU to 

this parameter. For this study, six different threshold values ranging from 16 to 512 words 

have been explored, as well as a seventh options with infinite threshold or no threshold 

restrictions. 

5.3.1. Experimental Results 

The advantage of a write update over a write notice is that it can avoid some page requests 

to the home. So, the distributions shown in Table 7 were an upper bound on the number of 

requests that can be avoided. These results indicate that the benchmarks are able to avoid 

more requests in Barnes, Radix and Ocean than in LU-CONT and FFT, for example. 

Table 10 shows the percentage of home page requests saved by write updates considering 

different values for the threshold in HLRC-DU. Values from the last column of Table 10 

are lower than 100% due to the initial home page requests. Results for our benchmarks fall 

into three categories:  

1. Benchmarks highly sensitive to the threshold value (Barnes and Water-NSQ): For 

example, Barnes shows savings from 70% (with threshold 16) to 87% (with 

threshold 512). 
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2. Benchmarks slightly less sensitive (Ocean, Water-SP and LU): Their results are 

consistent with the results shown in Table 7. 

3. Benchmarks insensitive to the threshold value (saving less than a 4% of the home 

page requests, FFT and LU-CONT): Due to the low values shown in Table 7, the 

performance of these benchmarks in the HLRC-DU protocol will not differ much 

from those found for the baseline protocol when using small thresholds, for 

example, 256 words. 

Radix is an exception because its results are non-coherent with those presented in Table 7. 

Radix performs in this way because many updates that could save page requests are 

cancelled by invalidations. In addition, many page requests are produced by the initial 

loads and therefore cannot be saved. 

Threshold size (words)

Benchmark Requests 16 32 64 128 256 512 ∞

Barnes 11539 70% 76% 76% 78% 85% 87% 87%

FFT 26616 0% 0% 0% 0% 0% 0% 30%

LU 39507 0% 0% 2% 14% 69% 82% 82%

LU-CONT 2880 0% 0% 0% 0% 0% 0% 24%

Ocean 35231 7% 7% 9% 16% 32% 45% 90%

Radix 22944 0% 0% 0% 6% 6% 6% 7%

Water-NSQ 4083 5% 40% 41% 41% 42% 44% 74%

Water-SP 7266 6% 6% 13% 13% 13% 72% 72%
 

Table 10 – Percentage of saved home page requests varying the threshold size  

Comparing Table 7 with Table 10, it can be seen that larger write updates tend to save 

more home page requests across the benchmarks. This is because larger diffs present less 

false sharing, i.e. they leave fewer places in the page that could be invalidated. Although 
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larger diffs hugely reduce the number of requests, we must trade off this reduction in 

network traffic to improve the system performance. 

Figure 32 shows the network utilization in the baseline HLRC model for each benchmark 

used while varying the threshold size. While in most cases, under a large threshold value, 

the injection of write updates considerably increases the network traffic (e.g. FFT, LU, LU-

CONT, Ocean and Radix), it is remarkable that no benchmark increases the network traffic 

when using a small threshold value. 

While it is unclear from Figure 32 when the network saturates, this can be clearly observed 

in Figure 31. This graph summarizes the speedup results for HLRC-DU over the baseline 

protocol, while varying the threshold size value. When the speedup increases, it is obvious 

that there is no contention point (e.g. Ocean, Barnes, Water-NSQ and Water-SP). In 

general, the network becomes saturated when using a threshold of 32 words. Below this 

threshold, our protocol behaves close to the baseline protocol for FFT, LU, LU-CONT and 

Radix. 
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Figure 31 – Speedup relative to the baseline protocol varying the threshold size 

In general, our experiments show that the threshold values that achieve the best speedup 

are those in the range of 32 to 128 words (depending on the workload used), and the 

performance of any benchmark does not drop when using a threshold value lower than 32 

words. 
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Figure 32 – Network utilization varying the threshold size 
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5.4. Performance versus Hardware Techniques 

In previous sections we saw how the HLRC-DU performs regarding to the baseline HLRC 

protocol and its sensitivity to the threshold. In this section we compare the HLRC-DU with 

the best threshold to a hardware approach found in the literature [BIL98]. 

In general, hardware techniques for improving performances of HLRC protocols use 

specific hardware, or dedicated processors, for avoiding asynchronous communication at 

the node serving the page. In this way, pages are served automatically and the home node is 

uninterrupted. We modeled this feature in the simulator by assuming that in these kinds of 

systems the page is served in zero time. Figure 33 presents the speedup of HLRC-DU with 

a 32 threshold and the baseline protocol with the hardware that automatically server pages 

without asynchronously interrupting the processor. 

0.80

0.90

1.00

1.10

1.20

1.30

Barnes FFT LU LU-CONT Ocean Radix Water-NSQ Water-SP

Sp
ee

du
p

HLRC-DU 32 Hardware

 

Figure 33 – Speedup of the HLRC-DU protocol using a threshold size of 32 words 

relative to the baseline protocol 

Results show that specific hardware performs better than HLRC-DU only in those cases 

where HLRC-DU does not obtain benefits relative to the baseline protocol. In all other 

cases, HLRC-DU performs better than hardware. This occurs because write updates save 

two interrupts, one at the node accessing the page and the other at the home node. In 

contrast, the hardware only saves one interrupt at the home node. Although pages are 

served in zero time, in four of the eight workloads considered (Barnes, Ocean, Water-NSQ 

and Water-SP) the additional saved interrupt improves the performance. 
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Note that the compared hardware and the HLRC-DU protocol are compatible. In fact, they 

are complementary approaches. Table 11 shows the results of combining both approaches. 

In some workloads like Barnes, Ocean and Water-SP, the HLRC-DU protocol and 

hardware sum up performances. In others, the advantage of just one approach remains. 

There are only two workloads where HLRC-DU impacts negatively together with the 

hardware (FFT and LU-CONT), but in those two cases the negative impact is less than 2%. 

Benchmark HLRC-DU 32 Hardware HLRC-DU 32 + Hardware

Barnes 1.24 1.02 1.25

FFT 1.00 1.03 1.02

LU 1.00 1.08 1.08

LU-CONT 1.00 1.06 1.04

Ocean 1.17 1.03 1.21

Radix 1.01 1.04 1.04

Water-NSQ 1.08 1.01 1.08

Water-SP 1.15 1.05 1.19
 

Table 11 – Speedup relative to the baseline protocol 

5.5. Conclusions 

Open SVM systems research tries to avoid or reduce asynchronous communication 

whenever possible because it is one of the main sources of performance loss. In previous 

chapters we studied why the workloads produce a large amount of asynchronous 

communications in SVM systems and we measured these amounts. In this chapter we also 

explored the diff sizes and we showed that most of them are really small. From this 

observation, we propose two new protocols to take advantage of this empirical remark. To 

reduce asynchronous communication and contention at home nodes, the proposed protocols 

attach the small diffs to write notices in order to be updated by the receiver node. We refer 
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to this metadata (write notices plus associated diff) as write updates. 

The goal of the protocols is to reduce the asynchronous requests to the page homes caused 

by write notices. This is accomplished by receiving a write update instead of a write notice. 

In this manner, the page copy remains valid and the asynchronous request is saved. 

This approach introduces higher network bandwidth, because write updates are larger than 

write notices. To avoid the network becoming a bottleneck, we chose an empirical 

threshold. Diffs whose size is greater than the threshold are not sent and the protocol 

proceeds as the baseline protocol. 

The protocols proposed and detailed in this chapter have been: 

1. The HLRC-DU protocol, as a version of the baseline HLRC protocol, where the 

writer node sends updates instead of invalidations when diffs smaller than an 

experimental threshold value (128 words) are detected. This protocol can convert 

about 21% of the invalidations in the baseline protocol to updates, saving 

significant asynchronous communications.  

2. The HLRC-CU protocol, which is proposed due to the large number of writes 

performed over continuous areas detected in the HLRC-DU. The HLRC-CU only 

sends those diffs through write updates. This protocol saves, on average, about 

13% of the asynchronous communication. Its main advantage is that diff 

calculation can be easily hardwired by a simple hardware table, discussed earlier. 

This specific hardware has less complexity than some alternative proposals that 

can be found in the open literature [BIA96][BIL98]. 

There is a trade-off between asynchronous communication savings and the acceleration of 

diff calculation. To investigate this trade-off, we compare both protocols to check which 

one achieves the best performance. Both protocols achieve better performance than the 

baseline HLRC. The experiments in section 5.2 show that in four of out of eight workloads 

the speedup is over the 8% and in two workloads exceeds 15%. On average the speedup 

achieved is a 5% faster than the baseline protocol. In general, the performances of both 

protocols are similar. This means that asynchronous communication savings are more 
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important for performance than diff calculation accelerators. 

Because asynchronous communication and network utilization are strongly dependent on 

the threshold value used, we also check the optimal threshold that maximizes system 

performance. Our results show that the HLRC-DU protocol can save about the 50% of 

request petitions to the page homes in some of the benchmarks, when working under their 

optimal threshold. For small threshold values, the network traffic only increases marginally 

while the speedup increases, and in some cases it reaches the 20% versus the HLRC 

baseline protocol. Although the optimal threshold value is workload dependent, it does not 

surpass 32 words, a small value that avoids the network becoming a bottleneck. 
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Chapter 6 
Conclusions 

SVM systems are an economic and flexible way to run parallel workloads although their 

performances are still far from those achieved by hardware systems. This thesis has 

focused on how this performance gap can be reduced; therefore the study has concentrated 

on performance loss. The main performance drawbacks in SVM systems are related with 

asynchronous communication. Recent research often proposes solutions involving specific 

hardware to avoid this kind of communication. 

This dissertation analyzes parallel workloads characteristics in order to identify the sources 

of high latencies appeared in asynchronous messages. The main goal of this analysis is to 

help protocol designers reduce these latencies and investigate when asynchronous 

messages can be avoided. 

From this study new SVM protocols based on the HLRC protocol have been designed as 

proposed. These protocols are the HLRC-CU and HLRC-DU. Both reduce asynchronous 

communication by using pure software mechanisms that take profit of the workload 

characteristics observed in the characterization study. The HLRC-CU protocol also 

introduces specific hardware for accelerating remaining asynchronous communication. 

In order to make performance evaluation studies in these kinds of systems a simulation 

environment, called LIDE, has been specifically developed. It has been the test bed where 

the protocols discussed in this dissertation have been developed and checked. 
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Next sections summarize some of the most relevant conclusions extracted from the 

research made. 

6.1. Workload Characterization in SVM Systems 

The performance drawbacks that parallel workloads like SPLASH-2 suffer on SVM 

systems are mainly caused by the assumptions made by programmers. Because generic 

languages and compilers are unable to support all the various kinds of parallel platforms 

where a parallel program can be executed, it is the programmer’s job to optimize the code 

aimed to the capabilities offered by the distributed systems. Often software based parallel 

architectures like SVM systems are not considered when developing these workloads. In 

addition, the optimizations aimed at hardware systems produce performance losses in SVM 

systems because they reduce the granularity of sharing of the workload and increase the 

frequency of sharing. 

Several research papers in the open literature propose workload modifications in hardware 

based parallel systems to improve performance in SVM systems without performance 

losses [IFT96][JIA97][ZHO97]. Some of the work presented in this dissertation has its 

sources in these studies but it mainly differs from those works in the selection of the 

characterization indexes, which have been carefully chosen to be useful for tuning the 

SVM performance protocols. 

From the parallel workload study, we can concisely state both the grain of sharing unit and 

the capability of synchronization assumed by the workload programmer, concluding 

similar remarks to previous studies although with deeper details. In general, we found that 

most of the workloads are programmed aiming to parallel systems that support both fine-

grained sharing and synchronization. This is the source of a high percentage of 

asynchronous communication that occurs when the same workloads are executed in SVM 

systems. We also are able to parameterize the effects produced by the grain of sharing and 

the synchronization, such as the critical section dilation and the sharing pattern 

transformation. In this sense, the studies done have been very valuable for the design of the 

protocols proposed in this dissertation. 
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6.2. Developed Protocols 

The reasons that induce us to propose the protocols explained in Chapter 5 spring from the 

previous workload characterization study described in Chapter 4 and in Appendix A. In 

particular, from the fact that sharing is mostly performed at small sizes and that a high 

percentage of the sharing shows spatial localities. 

The protocols HLRC-DU and HLRC-CU exploit these facts by sending small updates 

instead of invalidations. This benefits the performance by reducing asynchronous 

communication and contention at home nodes because the page remains valid. However, 

there is a tradeoff with the traffic they induce because the network can become a 

bottleneck. Therefore, we introduced a threshold value to limit the size of updates in order 

to find a good compromise between the number of write updates sent and network traffic. 

We found that these updates improve performance except when the network becomes a 

bottleneck. Small updates have a negligible impact on the network bandwidth. Because 

there are many synchronizations performed after small writings (as shown in Chapter 4), 

the number of asynchronous page requests is substantially reduced, and consequently the 

speedup can be improved. This is not the case when using larger updates because they 

appear less frequently, thus there are fewer asynchronous page request candidate to 

eliminate. In addition, larger updates consume more network bandwidth. 

The workloads that benefit from this strategy are known in the literature as irregular. This 

kind of applications often use task queues synchronized by active waiting semaphores, 

which are natively supported by the hardware systems. When synchronizing, only small 

amounts of data are invalidated or updated in hardware systems while in SVM systems one 

or more pages of data in several nodes can be affected. Performing small updates reverses 

this effect. On the other hand, the regular workloads distribute parallel work by defining 

static partitions for the data. In general, SVM systems achieve good performance with this 

kind of applications if the problem size is large enough. If the application offers low 

performance, it is often possible to tune the data distribution or the program code to gain 

performance (for example, the continuous version of LU). In these workloads the proposed 

protocols neither increase nor reduce performance except when using high thresholds due 
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to the large utilizations they produce. 

6.3. Simulation Environment 

The LIDE simulation environment made in the initial phase of this work is a helpful tool to 

simulate and explore the behavior of existing protocols, or new protocols proposals, and for 

making performance evaluation studies. More precisely, the environment allows in a 

flexible way to: 

• Check the impact on performance of different configurations while varying the 

physical conditions of the system and the network. 

• Easily verify protocols and debug errors. 

• Better understand the drawbacks and gains that the protocols achieve.  

All these features can be reached because of the tool allows us total control of the 

execution of the parallel workload and the simulation of the memory accesses. 

6.4. Future Lines of Research 

Regarding to the practical aspects, we plan to develop extensions in current operating 

systems in order to support the designed protocols. Because of their software nature, once 

they have been designed and tested, it should be easy to implement them in real 

architectures. 

An open area of research with regard to the workload characterization is the study of the 

Inter Reference Gap (IRG) [PHA95] sequences (in the context of SVM systems) that 

provide a framework for studying not only the frequencies and sizes of the shares but also 

for studying the correlation between the accesses made by different processes to different 

words. 

We hope that the results of the characterization help us to design new versions of the 

protocols presented in this dissertation that could adaptively invalidate or update in 

function of the predicted accesses of other processes. In this way we could also look for 
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solutions that help us to reduce the number of updates in some workloads and so reducing 

network utilization. 

Finally, the contention in the nodes that serve the pages and their synchronization are also 

an important source of performance losses in SVM systems. In the context of home-based 

protocols used in this dissertation the main problem is that the HLRC protocol tries to 

reduce asynchronous communication by concentrating the asynchronous communication in 

the home node of the page; but due to only one home node exists per page, it may become 

a contention point. We are planning to explore new protocols that migrate or replicate the 

home nodes in an intelligent way, so spreading the traffic and avoiding that contention 

points will arise. 

6.5. Publications Related with This Dissertation 

Preliminary versions of fragments of this work have been published in proceedings of 

several national and international conferences: 

• S. Petit, “LIDE: Un Entorno de Simulación para Sistemas de Memoria Virtual 

Compartida,” Actas de las X Jornadas de Paralelismo, Murcia, Spain, September 

1999. 

• S. Petit, J. A. Gil, J. Sahuquillo, and A. Pont, LIDE: A Simulation Environment for 

Shared Virtual Memory Systems, September 2000 issue of the ACM Computer News, 

ISSN 0163-5964, Vol. 28, No. 4. 

• S. Petit, J. Sahuquillo, and A. Pont, “Performance Evaluation of Consistency Models 

using a New Simulation Environment for SVM systems” Proceedings of the 2nd ACM 

International Workshop on Software Distributed Shared Memory, (in conjunction with 

the International Conference on Supercomputing), Santa Fe, New Mexico, USA, May 

2000. 

• S. Petit, “Evaluación de Modelos de Consistencia mediante un Nuevo Entorno de 

Simulación,” Actas de las XI Jornadas de Paralelismo, Granada, Spain, September 

2000. 
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• S. Petit, J. Sahuquillo, J.A. Donet, and A. Pont, “Detecting Spatial Locality to Improve 

SVM Consistency Protocols,” Proceedings of the 2nd International Conference on 

Advances in Infrastructure for Electronic Business, Science and Education in Internet, 

L´Aquila, Italy, August 2001. 

• S. Petit, J. Sahuquillo, and A. Pont, “About the Sensitivity of the HLRC-DU Protocol 

to the Written Area Size and Page Size,” Proceedings of the 2001 IEEE International 

Symposium on Performance Analysis of Systems and Software, Tucson, Arizona, USA, 

November 2001. 

• S. Petit, J. Sahuquillo, y A. Pont, “Reducing Multiple Writer Overhead in Memory 

Consistency Protocols for SVM Systems,” Actas de las XII Jornadas de Paralelismo, 

Valencia, Spain, September 2001 

• S. Petit, J. Sahuquillo, and A. Pont, “Characterizing Parallel Workloads to Reduce 

Multiple Writer Overhead in Shared Virtual Memory Systems,” Proceedings of the 

10th IEEE Euromicro Workshop on Parallel, Distributed and Network-based 

Processing, Gran Canaria, Spain, January 2002. 

• S. Petit, J. Sahuquillo, y A. Pont, “Accelerating Consistency Protocols through Write 

Updates,” Actas de las XIII Jornadas de Paralelismo, Lleida, Spain, September 2002. 

Another important piece of work related with this dissertation is already pending to be 

published, and has been recently submitted to an important conference in the area. 

• S. Petit, J. Sahuquillo, A. Pont, and D. Kaeli, “Temporal Characterization of Parallel 

Workloads targeting SVM Systems”. 
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Appendix A 
Preliminary Workload Studies 

Performances of any kind of computer systems are based on the characteristics of the 

workload running on them; i.e., some recent cache schemes [SAH00] use two independent 

cache organizations to exploit the kind of locality that data exhibits (spatial or temporal). 

As we are interested in the design improvement of SVM protocols, an initial step must be 

made to study those characteristics of the parallel workload that can help designers to 

reduce that overhead. 

Research in SVM systems introduces the techniques discussed in Chapter 2 to reduce 

network traffic and false sharing; although, their applications present new overhead. One of 

the sources of the overhead comes from the multiple writers capability. Each time a node 

has a page fault, it needs an up-to-date copy of the page, which is an aggregate of diffs 

created by previous writers. In a pure software SVM cluster, each writer creates one or 

more diffs for the page to be applied later in one or more nodes. The cost to create and 

apply diffs grows linearly with the page size. The worst case appears in the LRC protocol, 

where the faulting node could asynchronously ask every writer involved for the diffs, and 

so interrupting their potentially useful workload computation. The HLRC protocol tries to 

palliate that overhead by concentrating the asynchronous communication in the home node 

of the page; but as only one home node exists per page, it may become a contention point. 

This problem gets worse if that node is also the home of more frequently accessed pages. 
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Semaphore synchronization of parallel workload in SVM systems becomes a potential 

source of serialization; thus, they may limit the number of multiple writers in the parallel 

workload. The overhead introduced when multiple writers are considered in pure software 

SVM systems is due to the use of multiple writer capability. This chapter studies to which 

extent they become necessary in typical parallel workloads. In cases where multiple writers 

(and diffs) are needed, the study checks the spatial locality for write operations in shared 

pages. The spatial locality that may help us speed up the diff creation and application 

occurs when a given page is written in several neighboring words. 

To do this, we instrument the parallel workload to trap the synchronization and write 

operations issued. Below, the instrumentation technique and target parallel workload are 

detailed. 

A.1. Experimental Framework 

The tool used to instrument the workload is a part of LIMES [MAG97]. In our experiments 

we only use the compiler and instrumentation tool provided by the SMP simulator. LIMES 

uses a modified version of GCC v2.6.3 which compiles applications with the O2 flag. The 

instrumentation tool traps memory accesses by adding augmentation code that calls the 

memory simulator after each memory reference. The synchronization operations can also 

be trapped by redefining the ANL macros to memory simulator calls. 

To carry out our experiments we use eight benchmarks (Barnes, Cholesky, FFT, FMM, 

LU, Ocean, Radix, and Water) from the SPLASH-2 benchmark suite. As in [WOO95], the 

measurements are taken just after the parallel processes are created. Table 12 shows the 

problem size used for each benchmark, as well as the number of semaphores and 

semaphore acquisitions obtained under such problem size. Every benchmark was executed 

while taking into account 32 processes. 

 104 



APPENDIX A 

Benchmark Problem Size
Total

Semaphores

Total Semaphore

Acquires

Barnes 2K particles 78 4579

Cholesky Tk 14.0 64 21559

FFT 32K points 0 0

FMM 2K particles 22 4449

LU 512x512 points 0 0

Ocean 66x66 ocean 2 3648

Radix 128K integer 32 2048

Water 512 molecules 516 17728
 

Table 12 – Benchmark characteristics 

The characterization study results are independent of the system architecture because we 

trap the memory accesses and synchronization operations directly from the workload, 

before they arrive at the memory system. Thus, to reduce the memory requirements of the 

simulator, each computing process runs in a dedicated node with a single issue, one 

instruction per cycle, processor. Processors share memory through a perfect RAM (PRAM) 

memory model.  

The gathered traces of the trapped accesses contain, for each memory reference, the 

following information: 

• The processor identifier. 

• The memory operation (read or write). 

• The virtual address of the referenced data. 

• The identifier of the current semaphore (if the memory operation occurs in a 

section protected by a semaphore). 
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A.2. Sharing Patterns 

Most coherence actions in SVM systems are performed as consequence of the write 

operations carried out in a protected section. Therefore, we will focus on the identification 

of the type of shared data patterns that can appear in the accesses to protected sections 

using semaphores. 

We also will pay special attention to identifying the write patterns associated with a shared 

page in order to recognize the locality of those writes in parallel workloads. 

Both patterns will be helpful in characterizing the workload in SVM systems. This will 

help us to propose new ideas for avoiding the large amount of the overhead produced in 

these architectures due to consistency maintenance. 

A.2.1. Serial and Concurrent Data Sharing 

Two assumptions may imply that parallel workloads can limit the use of multiple writer 

protocols by synchronizing using semaphores. Firstly, processors accessing the same 

semaphore have a high probability of sharing the same data. This assumption seems 

reasonable because a parallel program tends to associate certain data to certain semaphores. 

Program locality also gives data a high probability of being accessed in the same code 

areas, in the same way as caches base their effectiveness on data localities. Other more 

relaxed consistency models such as Entry [BER93] and Scope [IFT96b] are based on this 

characteristic of the workload code, although they force the programmer to define this 

relation in the source code. Secondly, writes to shared data have also a high probability of 

happening in protected sections. This assumption is reasonable too, although exceptions 

(such as some implementations of distributed linked lists) can occur. From these two 

assumptions, we can conclude that writers to the same shared data may be serialized at the 

same protected sections. Furthermore, common practices in concurrent programming show 

that readers of shared data will access sections protected by the same semaphores as 

writers, so every access to the same shared data may be serialized using the same 

semaphore. 
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 Filtering Traces. 

To test the above assumptions, a software filter applied to traces gathered from the 

benchmark execution is implemented. When a process accesses a memory address, we 

check if any other process has written the same address. If so, we check if such a process 

wrote to the section protected by the same semaphore. If so, as semaphores serialize writers 

there is no need for a multiple writer coherence mechanism. We refer to those writes as 

serial shares. On the other hand, if any other process wrote outside the semaphore, such 

writes could have been performed concurrently and so multiple writers capabilities become 

necessary. We refer to those writes as concurrent shares. If there is not a previous writer, 

we call the access a cold share. Figure 34 shows the pseudocode of the filter algorithm and 

Figure 35 plots the results for an 8KB page size. The filter results are independent of the 

page size because the filter classifies data shares at granularity of word. LU and FFT do not 

appear in the Figure 35 because they have no semaphore (as shown in Table 1). 

Figure 35 shows that, in general, the percentages of serial shares between processes 

accessing a given semaphore is meaningful among the benchmarks, confirming our 

previous assumptions. The only exception can be found in Barnes with a value of just 7%. 

The remaining cases reach a value higher than 18%, Radix even surpasses 60%. On 

average, serial shares are nearly three times more frequent than concurrent shares. That is 

shown clearly in Table 13, which summarizes these percentages. As cold shares represent 

accesses to unwritten data words written during the cold start, they have been removed 

because they are not useful for our proposals. 
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Algorithm shares

Begin

For Each Access Do

If (the access is inside a semaphore) Then

If (there is no previous writer to the address) Then

COLD_SHARES++ /* Data was written during the cold start */

Else

If (any other processor has written to the same data) Then

If (the data was written in the current semaphore) Then

SERIAL_SHARES++

Else

CONCURRENT_SHARES++

End If

End If

End If

End If

End For

End
 

Figure 34 – Software filter to classify shared data accesses inside the semaphores 
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Benchmark Concurrent Serial

Barnes 91% 9%

Cholesky 20% 80%

FMM 45% 55%

Ocean 2% 98%

Radix 0% 100%

Water 5% 95%

Average 27% 73%
 

Table 13 – Concurrent versus serial shares 

A.2.2. Writing Localities 

Write operations will probably be performed over a chunk of continuous words (ranging 

from only one to the full page) due to data localities. Those write locality patterns could be 

used in several ways to reduce diff overhead. As in the previous section, we implement a 

software filter to count the occurrence of those profitable write locality patterns. 

 Filtering Traces 

We classify the possible situations in four categories depending on the locality of writes 

performed by a computing process in a page. The classification approach is as follows: 

• The process writes the full page. 

• The process only writes in continuous addresses. 

• The process writes just a single word. 

• The process only writes in discontinuous addresses. 

Figure 36 presents the software filter that takes account of write localities. When a process 
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references an address previously written by another process, it checks the type of write 

locality that the previous writer exhibited in the page. Then, it clears the statistics of the 

previous writer for that page (so as not to cause a jam in latter accesses). 

Algorithm localities

Begin

For Each Access Do

If (the address was written by other processor) Then

Switch (locality of writes of the other processor)

The processor wrote the full page: FULL++

The processor wrote just a single word: SINGLE++

The processor only wrote in continuous addresses: CONTINUOUS++

The processor wrote in discontinuous addresses: DISCONTINUOUS++

End Switch

Reset statistics of writes of the other processor in the page

End If

End For

End
 

Figure 36 – Software filter to classify page writes 

Figure 37 plots the percentages of discontinuous, continuous, single word, and full page 

write operations obtained when varying the page size. We use a very small page size 

(256B) to check how the percentage of full page writes depends on the page size. As can be 

seen, for larger sizes (1KB, 4KB and 8KB) the percentage is negligible, with the only 

exception of FFT with a page size of 1 KB. 

As the page size grows the percentage of discontinuous page writes also grows stabilizing 

at 4KB. The results between 4KB and 8KB differ slightly because the SPLASH-2 

benchmark suite uses a page size parameter to distribute data among nodes [WOO95]. So, 

this affects the data distribution algorithm, producing similar results when varying the page 

size across that range. 
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Figure 37 – Percentage of Write Patterns 
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As expected, due to false sharing, the percentage of full pages is smaller when the page size 

is larger. However, independently of the page size used there is a large percentage of 

continuous and single patterns. For typical page sizes (i.e. 4KB) it ranges from about 30% 

(Water) to 75% (Ocean). To check the commonest sizes of continuous patterns, Table 14 

represents the distribution of the sizes of each continuous pattern generated by all the 

benchmarks using an 8KB page size. Most write chunk areas smaller than 256 bytes and 

just 7.1% of chunks are larger. 

Chunk Size Area Percentage (%)

[ 0, 256B [ 92.90

[ 256B, 1KB [ 5.22

[ 1KB, 4KB [ 1.20

[ 4KB, 8KB ] 0.69
 

Table 14 – Chunk size distribution 

A.3. Implementation Ideas to Improve SVM Protocols 

In this section we discuss some ideas that could be implemented to reduce the multiple 

writer overhead and diff overhead when frequent serial shares occur and spatial locality is 

detected.  

A.3.1. Reducing Multiple Writer Overhead 

To carry out all the suggestions detailed in section 5.1, the first design step is to associate 

each page with the semaphore where the write operation was performed. Then, the 

invalidated page is marked as written by that semaphore. In an ideal case, where only serial 

shares would occur, each node stores the same semaphore descriptor each time it has to 

invalidate a page. It is possible that several nodes store different semaphore descriptors for 

the same page because each node does not change semaphore when it writes to a page. This 

situation happens when different parts of the page are written on different semaphores by 
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several nodes. Figure 38 shows a possible scenario where two sets (I, J) of nodes are 

serialized by two semaphores (r, s) for writing in a page p. Nodes i1 and j1 have just passed 

their critical sections and generated write notices. 

s data

p
r data

r s

i2, i3 ... in j2, j3 ... jn

WRITE X

WRITE Y

wn(i1, X, r) wn(j1, Y, r)
 

Figure 38 – Semaphores serializing the writers to a page. Legend: wn(i, a, r) 

represents a write notice from node i to address a in the section protected by the 

semaphore r 

We can take advantage of this situation by allowing invalidated nodes to ask for the whole 

page from the last node that wrote to that page in the protected section using the associated 

semaphore. This is possible because the invalidated node knows (by means of the write 

notices) that this page was only written in that section, and the writers have to access the 

requested page in serial order. 

This technique improves LRC-based protocols [AMZ99] by reducing the number of 

computed diffs, which are related to computing time and memory consumption. It also 

allows dedicated hardware to make copies of the whole page, instead of asynchronously 

interrupting a potential computing node to compute a diff. Some examples of using 

available hardware for these purposes can be found in [STE00] and [BIL98]. 

We think HLRC-based protocols could also benefit from this situation by spreading 

 113 



PRELIMINARY WORKLOAD STUDIES 

contention among home nodes. Ideally, home nodes do not receive update requests because 

invalidated nodes can request the up-to-dated pages from the last writers in the semaphores. 

That is close to a multiple home protocol. In this protocol, we consider a main home that 

collects diffs like those found in HLRC protocol. The remaining homes are migrating 

across serial writers, and there are as many homes for each page as the number of 

semaphores whose protected sections write to that page. 

The LRC consistency model enables concurrent shares so the ideal case explained above 

may not occur every time the workload is running; thus, we must consider a mechanism to 

consider them. If a node receives a write notice from an unexpected semaphore, the write 

could have been concurrent. Thus, to have an up-to-date copy of the page, a multiple writer 

mechanism must be available. In the case of an HLRC-based protocol, the simplest 

solution is to ask the main home for an up-to-date page. LRC-based protocols can request 

the writer for the diff related to the write notice. If the invalidated node receives more than 

one write notice, it needs to request each previous writer for its diff. If these writers are 

serialized, a possible improvement could be to combine the twin page of the first writer 

with the page copy of the last writer in order to compute an accumulative diff. This 

represents a tradeoff with the network traffic because the technique involves three nodes 

(requester, twin owner, and up-to-date copy owner) per diff request. 

To have an overall perspective of how an increase in the number of homes would benefit 

the system performance, we summarize in Table 15 the mean number of writers per page 

varying the page sizes in 1, 4 and 8KB. As can be seen, there are several benchmarks with 

a high density of writers per page, even for a small page size; and that means that they 

could benefit from a multiple home protocol as discussed above. 

We think that the discussed technique could offer a potentially higher advantage than home 

migrations as proposed by Stet et al. [STE00], although they can be applied together, 

because in [STE00] just one home migrates (our main home). 
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Page Size

1KB 4KB 8KB
Benchmark

writers/page writers/page writers/page

Barnes 4.8 5.6 5.3

Cholesky 2.0 2.7 3.5

FFT 1.0 1.1 1.1

FMM 3.5 5.1 5.5

LU 8.0 8.0 9.0

Ocean 1.1 1.3 1.6

Radix 18.9 23.6 21.8

Water 3.8 3.8 3.5
 

Table 15 – Mean number of writers per page varying the page size 

A.3.2. Reducing Diff Overhead 

The ideas commented in section 5.2 could significantly reduce the number of asynchronous 

diff requests in pure software SVM protocols, but in some cases they must still be used. 

Diff calculation, as implemented today, is a summary of the writes of a certain writer to a 

page; and it is general enough to allow writers to intercalate data in the same page and so 

enabling full multiple writer capabilities. 

The detection of patterns of continuous writes can be performed via software by comparing 

the twin page with the written page, or via simple hardware by snooping the write 

addresses. 

When that situation is detected, it can be notified by indicating the address and size of the 

page chunk that was written along with the write notices. This action is likely to increase 

the performance of LRC based protocols, because invalidated nodes can ask for a copy of 
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the written chunk instead of an asynchronously calculated diff. Invalidated nodes can also 

receive the whole page, provided they are notified, through write notices, which page 

chunks have been written. In the case of discontinuous writes, it is possible to send a 

bitmask (as wide as the words in the page) with the write notice indicating the written 

words in the page. By using these bitmasks, as in the continuous written chunk case, the 

nodes can ask for the whole page instead of asynchronously initiate a diff calculation. As a 

lateral effect, avoiding diff calculation in LRC saves memory because diffs are stored until 

garbage collection time. 

The protocol designer can select a range of continuous pattern sizes (i.e., from 1 word to 64 

words) in which all the writings are updated by the write notices. This option slightly 

increases network traffic when sending write notices because they are larger now; however, 

it will reduce a high percentage of asynchronous communication both in LRC and HLRC 

protocols as small-size single and continuous writing patterns are frequent enough. In 

addition, HLRC contention in homes will be reduced if all the updates for their pages are 

sent along with write notices. 

Detection of only single patterns can be performed without intrusive hardware by means of 

double page faults. The first fault indicates that there was a write, then the page is write 

protected to detect any other write. If no write occurs, the writing pattern is just a single 

word. As results show, single writing patterns are so frequent that sending them as write 

notices could save a high percentage of asynchronous communication. The induced 

overhead is very cheap in terms of network traffic because write notices would be just two 

words larger (address and value). However, the double page faults represent a tradeoff to 

be taken into account. 

A.4. Conclusions 

Coherence actions carried by SVM memory consistency protocols are strongly dependent 

on the data sharing patterns of the running workloads; thus, it is worthwhile addressing 

consistency protocol design at this point. This chapter focuses on how the workload sharing 

patterns behave and it is intended to help protocol design. 
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Multiple writer capabilities introduce overhead in SVM protocols by using asynchronous 

communication to calculate diffs, or to request pages to home nodes. Diff calculation has 

an overhead that grows linearly with the page size. Homes would introduce contention 

when they become overloaded. To set bounds to this overhead, this chapter concentrates 

the sharing patterns of parallel workloads from experimental traces. 

Firstly, we examine if parallel processes make an extensive use of those multiple writer 

capabilities. Experiments show that, on the average, sharing between processes is mainly 

serialized by semaphores. Accesses to potentially concurrent written data are three times 

less frequent than those serialized by semaphores. That workload behavior can be taken 

into account in protocol design to reduce diff calculation time, diff memory consumption, 

and to spread home contention; i.e., this can be achieved by allowing assistant homes to 

store those pages whose writers are serialized by a semaphore. 

Secondly, when the overhead of multiple writer capabilities cannot be avoided, it is still 

possible to optimize protocols taking advantage of the writing locality of processes. Results 

show that a significant percentage of writers write in continuous areas before other 

processes access their written data. Furthermore, around 93% of the continuously written 

areas is smaller than 256 bytes. Those small areas can be directly updated, thus reducing 

diff memory consumption as well as asynchronous communication. Furthermore, early 

updates could also reduce home contention. 

To adapt the protocols to workload behavior, some software and hardware implementations 

are also discussed. Most of the implementations would not only improve protocol 

performance but they would add little complexity. 
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