

A Web Engineering Approach for A Web Engineering Approach for A Web Engineering Approach for A Web Engineering Approach for
the Development of Businessthe Development of Businessthe Development of Businessthe Development of Business----

Process Driven Web ApplicationsProcess Driven Web ApplicationsProcess Driven Web ApplicationsProcess Driven Web Applications

Victoria Torres BoschVictoria Torres BoschVictoria Torres BoschVictoria Torres Bosch

Department of Information Systems and
Computation

Technical University of Valencia

A thesis submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy in Computer Science

Supervisor: Dr. Vicente Pelechano Ferragud

July 2008

Members of the Thesis Committee:

Dr. D. Oscar Pastor LópezDr. D. Oscar Pastor LópezDr. D. Oscar Pastor LópezDr. D. Oscar Pastor López

 Catedrático de Universidad

 Universidad Politécnica de Valencia

Dr. D. Joan Fons CorsDr. D. Joan Fons CorsDr. D. Joan Fons CorsDr. D. Joan Fons Cors

 Colaborador

 Universidad Politécnica de Valencia

Dr. D. Ernest Teniente LóDr. D. Ernest Teniente LóDr. D. Ernest Teniente LóDr. D. Ernest Teniente Lópezpezpezpez

 Titular de Universidad

 Universidad Politécnica de Catalunya

Dr. D. Antonio Ruiz CortDr. D. Antonio Ruiz CortDr. D. Antonio Ruiz CortDr. D. Antonio Ruiz Cortééééssss

 Titular de Universidad

 Universidad de Sevilla

Dr. D. JoDr. D. JoDr. D. JoDr. D. João Falcão ão Falcão ão Falcão ão Falcão eeee Cunha Cunha Cunha Cunha

 Professor Associado

 Universidade do Porto

Abstract

Nowadays, the World Wide Web is established as the most

common platform for the execution of corporate applications.

These applications are called Web applications and among

other functionalities, these must provide support for the

Business Processes (BP) defined by the corporations.

From the Web Engineering area, different methods have

proposed a solution to deal with the challenge of building this

kind of Web applications (hereafter BP-driven Web

applications). However, these solutions were mainly focused on

the support for light-weight BPs (i.e. the check out process

usually provided in on-line stores). In addition, other types of

BPs where different participants (humans and systems)

cooperate to accomplish a particular goal have not been

properly addressed.

This thesis presents a Web Engineering method for the

systematic specification and automatic generation of Web

applications supporting BPs, understanding BPs in a wider

sense, not limiting to the already addressed light-weight BPs.

The proposed method provides mechanisms that allow

specifying the particular characteristics of BP-driven Web

applications at the modelling level (in a technological

independent manner). In addition, based on the Model Driven

Engineering, application specifications are combined and

transformed to obtain different software artefact. On the one

hand, by means of model-to-model transformations, we

combine model specifications to obtain different models. On the

other hand, by means of model-to-text transformations, models

can be derived into executable code implemented in a

particular technology. In addition, based on the reference

model proposed for Workflow Management Systems, the

method proposes the extension of the logical layer of the

generated Web applications with the introduction of process

engine.

The method proposed in this thesis is supported by a tool

called BIZZY. This tool has been developed in the Eclipse

environment and covers the development process from

modelling to code generation. Specifically, the generated code

corresponds to the Tapestry Web framework (framework for

Java Web applications) and the WS-BPEL language, which

allows the execution of the BP defined at the modelling level.

Resumen

Actualmente, la World Wide Web se ha convertido en la

plataforma más común para llevar a cabo el desarrollo de

aplicaciones corporativas. Estas aplicaciones reciben el nombre

de aplicaciones Web y entre otras funciones, deben de dar

soporte a los Procesos de Negocio (PN) definidos por las

corporaciones.

Esta tesis presenta un método de Ingeniería Web que permite

el modelado y la construcción sistemática de aplicaciones Web

que soportan la ejecución de PN. En este trabajo se conciben

los PN desde un punto de vista más amplio que el abordado por

otros métodos de Ingeniería Web. El tipo de PN abordados

incluye tanto procesos cortos como largos. A grosso modo, esta

concepción más amplia permite considerar procesos que

involucran diferentes participantes (personas y/o sistemas) los

cuales cooperan para llevar a cabo un objetivo particular.

Además, dependiendo del tipo de proceso que se esté

ejecutando (corto o largo), la interacción del usuario con el

sistema deberá adaptarse a cada caso.

El método presentado en esta tesis ha sido desarrollado

basándose en el Desarrollo de Software Dirigido por Modelos.

De esta forma, el método propone un conjunto de modelos que

permiten representar los diferentes aspectos que caracterizan

las aplicaciones Web que soportan la ejecución de PN. Una vez

el sistema ha sido representado en los modelos

correspondientes, mediante la aplicación de transformación de

modelos se obtiene otros modelos (transformaciones de modelo-

a-modelo) e incluso el código que representa el sistema

modelado en términos de un lenguaje de implementación

(transformaciones de modelo-a-texto).

El método propuesto en esta tesis está soportado por una

herramienta llamada BIZZY. Esta herramienta ha sido

desarrollada en el entorno de Eclipse y cubre el proceso de

desarrollo desde la fase de modelado hasta la generación de

código. En particular, el código generado corresponde con el

framework Web Tapestry (framework que genera aplicaciones

Web en Java) y con WS-BPEL, lenguaje que permite la

ejecución de los PN definidos a nivel de modelado.

Resum

Actualment, la World Wide Web s’ha convertit en la

plataforma més comuna per a portar a terme el

desenvolupament d’aplicacions corporatives. Aquestes

aplicacions reben el nom d’aplicacions Web i entre altres

funcions, deuen donar suport als Processos de Negoci (PN)

definits per les corporacions.

Aquesta tesi presenta un mètode d'Enginyeria Web que permet

el modelatge i la construcció sistemàtica d’aplicacions Web que

suporten l’execució de PN. En aquest treball es conceben els

PN des d’un punt de vista més ampli que el considerat per

altres mètodes d'Enginyeria Web. El tipus de PN abordats

inclou tant processos curts com llargs. En general, aquesta

concepció més àmplia permet considerar processos que

involucren diferents participants (persones i/o sistemes) els

quals cooperen per a portar a terme un objectiu particular. A

més, depenent del tipus de procés que s’estigui executant (curt

o llarg), la interacció de l’usuari amb el sistema haurà

d’adaptar-se a cada cas.

El mètode presentat en aquesta tesi ha estat desenvolupat

basant-se en el Desenvolupament de Programari Dirigit per

Models. D’aquesta forma, el mètode proposa un conjunt de

models que permeten representar els diferents aspectes que

caracteritzen les aplicacions Web que suporten l’execució de

PN. Una vegada el sistema ha estat representat en els models

corresponents, mitjançant l’aplicació de transformació de

models s’obtenen altres models (transformacions de model-a-

model) i fins i tot el codi que representa el sistema modelat en

termes d'un llenguatge d’implementació (transformacions de

model-a-text).

El mètode proposat en aquesta tesi està suportat per una eina

cridada BIZZY. Aquesta eina ha estat desenvolupada en

l’entorn d’Eclipse i cobreix el procés de desenvolupament des

de la fase de modelatge fins a la generació de codi. En

particular, el codi generat correspon amb el framework Web

Tapestry (framework que genera aplicacions Web en Java) i

amb WS-BPEL, llenguatge que permet l’execució dels PN

definits a nivell de modelatge.

A mi hermana Gloria

Acknowledgements/AgradecimientosAcknowledgements/AgradecimientosAcknowledgements/AgradecimientosAcknowledgements/Agradecimientos

 Esta tesis es el fruto de muchas discusiones y horas de

trabajo, horas que he compartido con mucha gente y que por eso

hago esta tesis tan suya como mía.

 A mi director de tesis el Dr. Vicente Pelechano, por

compaginar como nadie los roles de director y amigo. Por haberme

dado la oportunidad de iniciarme y crecer en el fascinante mundo

de la investigación. Sin duda alguna, tu calidad investigadora

unida a tu calidad humana hacen de ti el mejor patrón para llevar

con éxito una empresa como ésta.

 Al Dr. Oscar Pastor por los esfuerzos constantes que

siempre has realizado, en función de director pero en actitud de

amigo.

 A Mati por tu amistad, ayuda y tus valiosos consejos

ofrecidos durante todo este tiempo.

 A Joan y Manoli, por la ayuda incondicional y el cariño que

siempre me habéis mostrado así como de vuestra experiencia

investigadora.

 A Marta, Pedro, Javi, Ricardo y Gonzalo por todos los

momentos que hemos pasado juntos a lo largo de esta experiencia.

 A Pau, por el esfuerzo y dedicación que siempre has

demostrado para hacer realidad las ideas que se desarrollaron en

esta tesis.

 A Bea y Giovanni, por traer la alegría a nuestro laboratorio

y por darme una lección de prioridades en la vida.

 A Ana, por el valioso ejemplo que nos das cada día.

 A Paco por el esfuerzo que has hecho para que OOWS sea

una realidad.

 A Carlos y Fani por el cariño y la amistad que me habéis

demostrado.

 Al resto de miembros del grupo OO-Method (Nathalie,

Paqui, Sonia, Isabel, Juan, Jorge, Sergio, Ignacio, Jose Luis, Luis

y Nelly) por ser unos fantásticos compañeros de abordo.

 A Josep por el apoyo constante que me has demostrado y

por el ejemplo de capacidad de trabajo que me has dado.

 A mis padres, Gloria y Paco, pues todo lo que tengo se lo

debo a ellos. Sin duda alguna, su cariño y apoyo a lo largo de toda

mi vida ha permitido que llegara hasta aquí.

A mi hermana Gloria, por su apoyo incondicional y la confianza

que siempre ha demostrado tener en mí.

A Alberto, por la paciencia que ha demostrado a lo largo de estos

años.

A mi hermano Fran y a Mª José por regalarnos a Francisco, la

mejor terapia contra el estrés que nunca se haya inventado.

Table of Contents

1 INTRODUCTION 31

1.1 PURPOSE 33

1.2 PROBLEM STATEMENT 38

1.3 MAIN CONTRIBUTIONS 39

1.4 RESEARCH METHODOLOGY 42

1.5 THESIS DEVELOPMENT CONTEXT 44

1.6 STRUCTURE OF THE THESIS 45

2 FOUNDATIONS 49

2.1 WEB ENGINEERING 50

2.1.1 THE OOWS WEB ENGINEERING METHOD 50

2.2 BUSINESS PROCESSES 60

2.2.1 BPMN: BUSINESS PROCESS MODELLING NOTATION 61

2.2.2 WS-BPEL: BUSINESS PROCESS EXECUTABLE LANGUAGE FOR WEB

SERVICES 67

2.3 BUSINESS PROCESS-DRIVEN WEB APPLICATIONS 72

2.3.1 SHORT-RUNNING BUSINESS PROCESSES 73

2.3.2 LONG-RUNNING BUSINESS PROCESSES 76

2.3.3 REQUIREMENTS FOR DEALING WITH BP-DRIVEN WEB APPLICATIONS

 80

2.4 CONCLUSIONS 82

3 STATE OF THE ART 85

3.1 WEB ENGINEERING AREA 85

3.1.1 UWAT+ 87

3.1.2 WEBML: WEB MODELING LANGUAGE 91

3.1.3 OOHDM: OBJECT-ORIENTED HYPERMEDIA DESIGN METHOD 96

3.1.4 UWE: UML BASED-WEB ENGINEERING 100

3.1.5 OO-H: OBJECT-ORIENTED HYPERMEDIA METHOD 104

3.1.6 WSDM: WEB SITE DESIGN METHOD 106

3.1.7 HERA 109

3.1.8 MIDAS 112

3.1.9 DISCUSSION 115

3.2 CONCLUSIONS 123

4 DEVELOPMENT PROCESS 125

4.1 INTRODUCTION 125

4.1.1 USING BPMN TO DEFINE THE DEVELOPMENT PROCESS 127

4.2 THE BIG PICTURE 128

4.3 THE MODELING STEP 132

4.3.1 THE OO-METHOD MODELING STEP 132

4.3.2 THE SERVICES MODEL 133

4.3.3 THE BUSINESS PROCESS MODEL 134

4.3.4 THE OOWS METHOD MODELING STEP 134

4.4 THE CODE GENERATION STEP 135

4.4.1 WS-BPEL CODE GENERATION STEP 135

4.4.2 USER INTERFACE CODE GENERATION STEP 137

4.5 CONCLUSIONS 138

5 BUSINESS PROCESS MODEL 141

5.1 BUSINESS PROCESS MODEL BASED ON THE BPMN NOTATION 142

5.2 BPMN LIMITATIONS TO SUPPORT THE BPM 144

5.3 PHD THESIS DELIVERY EXAMPLE 145

5.4 BPMN EXTENSIONS 148

5.4.1 DIFFERENTIATING HUMAN PARTICIPANT BEHAVIOUR 149

5.4.2 DEFINING THE FUNCTIONALITY OF EACH PROCESS TASK 150

5.4.3 LANE DEPENDENCES 152

5.5 CONCLUSIONS 153

6 NAVIGATIONAL MODEL EXTENSION 155

6.1 INTRODUCTION 156

6.2 INTRODUCING THE NEW NAVIGATIONAL PRIMITIVES 157

6.3 NAVIGATIONAL PRIMITIVES TO SUPPORT BP EXECUTION 160

6.3.1 PROCESS CONTEXT 160

6.3.2 ACTIVITY CONTAINER 165

6.3.3 MAIN-AIU 170

6.3.4 HUMAN-AIU 173

6.3.5 COMPLEMENTARY-AIU 176

6.3.6 INDEX 179

6.3.7 CLASS-VIEW 184

6.3.8 SERVICE-DATA-VIEW 186

6.3.9 SERVICE-FUNCTIONAL-VIEW 188

6.3.10 PROCESS-LINK 191

6.4 EXTENDED NAVIGATIONAL METAMODEL 195

6.5 CONCLUSIONS 196

7 PRESENTATION MODEL EXTENSION 197

7.1 INTRODUCING THE NEW PRESENTATION PRIMITIVES 197

7.2 PRESENTATION PRIMITIVES TO SUPPORT BP EXECUTION 198

7.2.1 DETAILS ON DEMAND PATTERN 199

7.2.2 LIST BUILDER PATTERN 202

7.3 EXTENDED PRESENTATION METAMODEL 204

7.4 DEALING WITH USABILITY ISSUES 205

7.4.1 PREVENTING INPUT ERRORS 207

7.4.2 DISPLAYING THE TASKS PENDING TO COMPLETE 210

7.4.3 NOTIFY USERS WHEN THEY ARE EXPECTED TO PERFORM A TASK 212

7.5 CONCLUSIONS 213

8 ARCHITECTURAL EXTENSION 215

8.1 INTRODUCTION 216

8.2 EXTENSION OVERVIEW 217

8.2.1 PRESENTATION LAYER 221

8.2.2 BUSINESS TIER 222

8.2.3 DATA TIER 223

8.3 DEALING WITH HUMAN TASKS 223

8.3.1 TASK MANAGER WEB SERVICE 223

8.3.2 WEB SERVICE CONVERSATION WHILE HUMAN PARTICIPATION 228

8.4 CONCLUSIONS 230

9 MODEL TRANSFORMATIONS 231

9.1 THE BIG PICTURE 232

9.2 MODEL TRANSFORMATIONS TO GENERATE WS-BPEL CODE 235

9.2.1 FROM THE BPM TO BPMN ACCORDING TO THE BABEL TOOL 238

9.2.2 COMPLETING THE WS-BPEL DOCUMENT 243

9.2.3 XSD & WSDL GENERATION 252

9.3 MODEL TRANSFORMATIONS TO GENERATE THE USER INTERFACE

 255

9.3.1 BPMN TO OOWS NAVIGATIONAL MODEL 255

9.3.2 CODE GENERATION FOR A WEB FRAMEWORK 259

9.4 CONCLUSIONS 263

10 TOOL SUPPORT 265

10.1 TOOL OVERVIEW 266

10.2 FROM A BP SPECIFICATION TO A WEB APPLICATION: STEP BY

STEP 269

10.2.1 STEP 1: SYSTEM SPECIFICATION 271

10.2.2 STEP 2: GENERATION OF THE WEB SYSTEM NAVIGATION 274

10.2.3 STEP 3: GENERATION OF THE WEB SYSTEM GUI 275

10.2.4 STEP 4: GENERATION OF WS-BPEL EXECUTABLE BPS 279

10.3 DEPLOYMENT 281

10.3.1 WEB APPLICATION DEPLOYMENT 282

10.3.2 WS-BPEL DEPLOYMENT 283

10.4 CONCLUSIONS 285

11 CONCLUSIONS & FURTHER WORK 287

11.1 MAIN CONTRIBUTIONS 287

11.2 FURTHER WORK 289

11.3 PUBLICATIONS 291

A LYBRARY4U CASE STUDY 295

A.1 DESCRIPTION 295

A.2 STRUCTURAL MODEL 296

A.3 SERVICES MODEL 298

A.4 USER MODEL 299

A.5 ANONYMOUS NAVIGATIONAL AND PRESENTATION MODEL 300

A.5.1 AUTHORING-IN-THE-LARGE 301

B SHORT-RUNNING BP CASE STUDY 313

B.1 DESCRIPTION 313

B.2 STRUCTURAL MODEL 314

B.3 SERVICES MODEL 314

B.4 BUSINESS PROCESS MODEL 316

B.5 NAVIGATIONAL MODEL 316

B.5.1 AUTHORING-IN-THE-LARGE 317

B.5.2 AUTHORING-IN-THE-SMALL 317

B.6 USABILITY ASPECTS 320

C LONG-RUNNING BP CASE STUDY 321

C.1 DESCRIPTION 321

C.2 STRUCTURAL MODEL 322

C.3 SERVICES MODEL 323

C.4 BUSINESS PROCESS MODEL 324

C.5 NAVIGATIONAL AND PRESENTATION MODELS 325

C.5.1 MEMBER NAVIGATIONAL AND PRESENTATION MODEL 326

C.5.2 SECRETARY NAVIGATIONAL MODEL 330

C.5.3 LIBRARIAN NAVIGATIONAL MODEL 336

List of Figures
Figure 1.1 Workflow Reference Model from (Hollingsworth, 1995)

.. 37

Figure 1.2 Research methodology followed in this thesis 42

Figure 2.1 Types of Users According to the Different Access

Permission.. 52

Figure 2.2 Example of User Specialization 52

Figure 2.3 Navigational Map for the Library4U Case Study 53

Figure 2.4 Navigational Context ... 56

Figure 2.5 Layout Patterns applied to Navigational Class and

Relationships ... 59

Figure 2.6 Events Graphical Elements .. 62

Figure 2.7 Activities Graphical Elements 63

Figure 2.8 Gateways Graphical Elements 64

Figure 2.9 Connecting Objects Graphical Elements 65

Figure 2.10 Swimlanes Graphical Elements................................. 65

Figure 2.11 Artifacts Graphical Elements 66

Figure 2.12 Relation between WS-BPEL Process Definition and

WSDL... 68

Figure 2.13 Partner Link Type structure...................................... 69

Figure 2.14 Partner Link structure... 69

Figure 2.15 Example of a short-running process: Checkout Process

.. 74

Figure 2.16 Web interface to complete the first activity of the

Checkout BP... 76

Figure 2.17 Example of a long-running process: Book Purchase

Request... 77

Figure 2.18 Web interface to complete the “Request Validation”

activity of the long-running BP ... 79

Figure 3.1 UWAT+ Development Process 91

Figure 3.2 Data Model Extended... 94

Figure 3.3 WebML Extended Development Process 95

Figure 3.4 MIDAS development process focused on BP 115

Figure 4.1 Process Development ... 130

Figure 4.2 Expanded Sub-process System Specification 131

Figure 4.3 Expanded Sub-process Web Specification 132

Figure 4.4 Expanded Sub-process WS-BPEL generation 136

Figure 4.5 Expanded Sub-process Tapestry Web framework

generation .. 137

Figure 5.1 PhD Thesis Delivery BP... 146

Figure 5.2 Excerpts of the Structural Model and Business Process

Diagram ... 147

Figure 5.3 Metamodel Architecture .. 148

Figure 5.4 Extension Defined to the BPMN Metamodel 149

Figure 6.1 Navigational Map for the Secretary User type

(Authoring-in-the-large) .. 158

Figure 6.2 Book Purchase Request Process Context (Authoring-in-

the-small) ... 158

Figure 6.3 Navigational Map for the Member User type

(Authoring-in-the-large) .. 159

Figure 6.4 Check Out Process Context (Authoring-in-the-small)

.. 159

Figure 6.5 Web page corresponding to the “Processes” Section.. 162

Figure 6.6 Web page corresponding to the “Shopping Cart”

Navigational Context... 163

Figure 6.7 Process-Context primitive.. 163

Figure 6.8 Metamodel Excerpt including the Process Context

primitive... 164

Figure 6.9 Web page corresponding to the “Validate Request”

Activity Container.. 166

Figure 6.10 Activity-Container primitive.................................... 167

Figure 6.11 Metamodel Excerpt including the Activity Container

primitive... 169

Figure 6.12 Main-AIU primitive ... 171

Figure 6.13 Metamodel Excerpt including the Main-AIU primitive

.. 172

Figure 6.14 Implementation of a Human-AIU............................ 174

Figure 6.15 Human-AIU primitive.. 175

Figure 6.16 Metamodel Excerpt including the Human-AIU

primitive... 176

Figure 6.17 Complementary-AIU primitive................................ 177

Figure 6.18 Metamodel Excerpt including the Complementary-

AIU primitive... 178

Figure 6.19 Index primitive... 180

Figure 6.20 Implementation of a Main-AIU when the index gets

activated... 182

Figure 6.21 Implementation of a Main-AIU when the index gets

deactivated ... 183

Figure 6.22 Metamodel Excerpt including the Process-Index

primitive... 184

Figure 6.23 Class-View primitive.. 185

Figure 6.24 Metamodel Excerpt including the NavigationalClass

primitive... 186

Figure 6.25 Service-View primitive... 187

Figure 6.26 Metamodel Excerpt including the Service-data-view

primitive... 188

Figure 6.27 Web page corresponding to the “Payment” Activity

Container ... 189

Figure 6.28 Service-Functional-View primitive 190

Figure 6.29 Metamodel Excerpt including the Service-functional-

view .. 191

Figure 6.30 Detail of a Navigational Context including a process-

link ... 192

Figure 6.31 Web page corresponding to the Shopping Cart

Navigational context.. 193

Figure 6.32 Process-Link primitive... 194

Figure 6.33 Metamodel Excerpt including the Process link

primitive... 194

Figure 6.34 Navigational Model Excerpt including the BP related

primitives ... 195

Figure 7.1 Presentation attributes associated to the Book

Purchase Request BP... 198

Figure 7.2 Details on Demand Pattern in use 200

Figure 7.3 Detail On Demand Pattern.. 201

Figure 7.4 Metamodel Excerpt including the Details on Demand

primitive... 202

Figure 7.5 List Builder Pattern in use .. 203

Figure 7.6 Metamodel Excerpt including the List Builder primitive

.. 204

Figure 7.7 Presentation Metamodel .. 205

Figure 7.8 Models Used for the generation of Web Pages 211

Figure 7.9 Generated User Interface for a Short-running BP.... 212

Figure 7.10 Modified version of a BP definition.......................... 213

Figure 8.1 Three Layer architecture for Process-driven Web

applications .. 217

Figure 8.2 Tapestry File Organization.. 218

Figure 8.3 Task Manager Service Interface................................ 223

Figure 8.4 WSDL for the Task Manager Service 224

Figure 8.5 Task Manager Structure.. 225

Figure 8.6 Role of the Task Manager Web service...................... 228

Figure 9.1 Transformations Defined for generating the WS-BPEL

code... 232

Figure 9.2 Transformations Defined for generating the Web site

for the Tapestry Framework.. 233

Figure 9.3 Interaction between the WS-BPEL process and the set

of Partners.. 244

Figure 9.4 Basic Process Context Generated for the Secretary role

.. 258

Figure 9.5 Web Application Abstraction Levels.......................... 261

Figure 10.1 Tool Support for the OOWS-BP Development Process

.. 267

Figure 10.2 STP BPMN Modeller.. 271

Figure 10.3 Different Editors provided by the OLIVANOVA

Modeller ... 272

Figure 10.4 Tree-based EMF editor for the Services Model 273

Figure 10.5 Tree-based EMF editor for the Extension defined over

the BPMN notation.. 274

Figure 10.6 From BPM to OOWS Navigational Model............... 275

Figure 10.7 M2T Transformations .. 276

Figure 10.8 Web application folder within the TOMCAT Web

server.. 277

Figure 10.9 WEB-INF Folder Structure 278

Figure 10.10 M2M transformation to prepare BP definitions

according to the Babel tool .. 279

Figure 10.11 Generation of a partial WS-BPEL BP 280

Figure 10.12 Generation of a complete WS-BPEL BP................ 280

Figure 10.13 Generation of the Interface and Data types used by

the WS-BPEL BP... 281

Figure 10.14 ActiveBPEL prepared environment....................... 284

Figure 10.15 Active-bpel folder within the TOMCAT Web server

.. 284

Figure A.1 Library4U Class Diagram... 297

Figure A.2 User Model... 300

Figure A.3 Anonymous User Navigational Map 301

Figure A.4 Home Navigational Context 302

Figure A.5 Home Navigational Context (Presentation proprieties)

.. 303

Figure A.6 Implemented Home Navigational Context 304

Figure A.7 Books Navigational Context...................................... 305

Figure A.8 Books Navigational Context (Presentation proprieties)

.. 306

Figure A.9 Anonymous Book Navigational Context 307

Figure A.10 Anonymous Book Navigational Context (Detail).... 308

Figure A.11 Authors Navigational Context 309

Figure A.12 Authors Navigational Context (Presentation

proprierties) ... 309

Figure A.13 Authors Navigational Context 310

Figure A.14 Shopping Cart Navigational Context...................... 311

Figure A.15 Shopping Cart Navigational Context (Presentation

proprierties) ... 311

Figure A.16 Shopping Cart Web page ... 312

Figure B.1 Structural Model ... 314

Figure B.2 Business Process Model... 316

Figure B.3 Registered User Navigational Map........................... 317

Figure B.4 Checkout Navigational Context 318

Figure B.5 Generated User Interface for the “Shipping” task.... 319

Figure B.6 Generated User Interface for the “Payment” task.... 319

Figure B.7 Generated User Interface for the “Gift wrap” task... 320

Figure C.1 Excerpt of the Structural Model................................ 323

Figure C.2 Business Process Model... 325

Figure C.3 Member Navigational Map.. 326

Figure C.4 Home page including the Processes Link 327

Figure C.5 My TODO List for a Secretary user 328

Figure C.6 RBP Process Context for the Member user............... 329

Figure C.7 Request Book Purchase task for the member user... 329

Figure C.8 Secretary User Navigational Map............................. 330

Figure C.9 Details of the Request Book Purchase Process Context

.. 331

Figure C.10 RBP Process Context for the Secretary user........... 332

Figure C.11 RBP Process Context for the Secretary user

(Presentation properties) ... 333

Figure C.12 List Build pattern applied to the Request Validation

Activity Container.. 334

Figure C.13 Detail On Demand pattern applied to the Request

Validation Activity Container ... 335

Figure C.14 Generated interface for the “Pick Up Books” activity

.. 336

Figure C.15 Librarians Navigational Map.................................. 336

Figure C.16 Loan book Navigational Context............................. 337

Figure C.17 Generated interface for the “Loan Book” activity... 338

Chapter 1

1 Introduction

Initially, in the early nineties, the World Wide Web (WWW) was

basically used as a medium to get information (Berners-Lee,

1996). Fortunately, however, the evolution that the WWW has

undergone makes now a broader use of it. In fact, the WWW has

been established as the common platform for the development of a

vast amount of software systems (Ginige & Murugesan, 2001b).

These days it is possible to find Web applications for almost every

domain, i.e., economy, industry, education, health, public

administration, leisure, etc. Moreover, as was reported in (Kappel

et al., 2006), within each of these domains, the complexity that

Web applications can reach varies in accordance with historical

evolution. The different categories of Web applications that have

appeared since the beginning of the Web are document-centric,

interactive, transactional, workflow-based, collaborative, portal-

oriented, ubiquitous, social and semantic. Although all these kinds

of applications share multiple characteristics, each one has its own

application field. Therefore, these applications require a special

analysis for their adequate development.

Specifically, the work presented in this thesis has been developed

in the context of Web applications that are included within the

32 Chapter 1. Introduction

workflow-based1 category (hereafter BP-driven Web applications).

Examples of these systems are on-line stores or corporate web

systems that support well-defined processes such as incidence

management, material purchases, etc. Throughout this work, we

propose to further the development of systems of this kind by

combining the Web Engineering field (WE) (Murugesan & Ginige,

2001) and the Model Driven Engineering field (MDE) (Selic, 2003;

Schmidt, 2006).

With regard to the WE field, we propose a set of mechanisms to

improve WE methods to properly represent systems of this kind at

the modelling level. These mechanisms span different concerns.

On the one hand, we have introduced a model (the Business

Process Model -BPM) into the development process to capture

Business Process (BP) requirements properly. On the other hand,

a set of new abstractions related to user interaction have been

defined in order to improve the user experience during BP

execution. These new abstractions are associated to the

Navigational and Presentation models of typical Web Engineering

approaches (Murugesan & Ginige, 2001b). Moreover, a review of

the architecture of the applications generated by Web engineering

methods is also performed. In fact, based on the architecture of

Business Process Management Systems (BPMS), we propose

introducing a process engine into the architecture of the generated

Web applications.

1 In this thesis, we use the term “business process” (BP) as a synonym of

“workflow”.

Chapter 1. Introduction 33

With regard to the MDE field, we propose to follow a strategy that

allows us to move the systems that are specified at the modelling

level into a particular implementation. This strategy also allows

us to combine different models in a previous stage of the

development process in order to produce other models. For

instance, by combining BP descriptions with structural and

behavioural specifications we can generate the models that

abstract the GUI which allows the original BP specifications to be

executed.

The remainder of this chapter is organized as follows. Section 1.1

presents the reasons that have inspired this thesis work. Section

1.2 states the problems that we deal with in this work. Section 1.3

presents the solution to these problems which constitutes the

main contribution of this work. Section 1.5 presents the context in

which this work has been developed. Finally, section 1.6 presents

the structure of the whole document, providing a brief description

of each chapter.

1.1 Purpose

Nowadays, the WWW is considered to be the most common

platform that is used for the development of software applications.

When an organization needs a solution to handle its BPs, it is very

common to deal with the problem from the WE field (Murugesan

& Ginige, 2001b). Several methods have been developed to cope

with the systematic development of Web applications. Moreover,

34 Chapter 1. Introduction

within this discipline, all of these methods have evolved according

to the needs that have emerged as a consequence of the evolution

of the WWW. Specifically, during the third edition of the

International Workshop on Web-Oriented Software Technologies

(IWWOST2), some of the most well-known approaches of WE

provided a solution to deal with the integration of BPs. However,

the separation of concerns that was proposed to differentiate pure

navigation from BP navigation was not properly achieved. These

proposals moved the flow of the BPs into the navigational model

producing navigational models that were too complex to handle.

Moreover, these solutions did not address the integration of BP in

the broadest sense. These solutions only dealt with the integration

of light-weight BPs. Due to this limitation, aspects such as the

cooperation of different types of users to achieve a common goal,

the consideration of manual tasks or handling multiple instances

of a specific process are out of the scope of their proposed

solutions. If we take the definition given by the Workflow

Management Coalition in (WfMC, 1999), a workflow is defined as

“the automation of a business process, in whole or part, during

which documents, information or tasks are passed from one

participant to another for action, according to a set of procedural

rules”. Therefore, BP-driven Web applications can be defined as

systems that allow BPs to be handled within or between different

enterprises. The aspects that characterize Web applications of this

kind are the following:

2 http://www.dsic.upv.es/~west/iwwost03/

Chapter 1. Introduction 35

� Distributed SystemsDistributed SystemsDistributed SystemsDistributed Systems: We are not dealing with isolated systems

where all the functionality is provided by a single system. In

this case, different systems are integrated with each other and

collaborate to achieve a common goal. This situation is very

frequent within a Business-to-Business (B2B) environment

where applications are not considered as monolithic systems

and where the WWW is commonly used as the platform for

their integration.

� Definition of Manual TasksDefinition of Manual TasksDefinition of Manual TasksDefinition of Manual Tasks: The definition of a BP can involve

the participation of automatic systems and human beings. In

particular, the role that can be performed by people within the

definition of a BP can be twofold:

1. As a participant inputting data to the process that

performs a specific task (introduction of data through

the use of an adequate user interface).

2. As a participant performing tasks that are not

automated in the process (sending a fax, making a

phone call, organizing a meeting, etc.).

� Temporal ConstraintsTemporal ConstraintsTemporal ConstraintsTemporal Constraints: The execution of a BP can extend in

time for weeks, months or even years. For instance, a process

can require the sequential participation of different

participants, which may extend the process. Another example

is when the definition of the process includes temporal

constraints (starting, finishing or maximum duration dates),

which can also extend the time required.

36 Chapter 1. Introduction

� Kinds of interaction between the participants of a BPKinds of interaction between the participants of a BPKinds of interaction between the participants of a BPKinds of interaction between the participants of a BP: Apart

from the human-machine and machine-machine interaction

that already exist in traditional applications, BPs can also take

into account the human-human interaction (interaction that is

commonly found in workflow applications).

In addition to considering Web engineering methods, Business

Process Management Systems (BPMS) can also be taken into

account as a solution for handling the BPs of the organization (in

particular for long-running BPs). Examples of these systems are

JBoss jBPM3, IBM WebSphere4, Oracle BPEL Process Manager5

or Biztalk6. These systems, according to the definition provided by

the Workflow Management Coalition in (WfMC, 1999) are “A

system that defines, creates and manages the execution of

workflows through the use of software, running on one or more

workflow engines, which is able to interpret the process definition,

interact with workflow participants and, where required, invoke

the use of IT tools and applications”. As this definition states,

these tools provide support to the BPM within its whole life-cycle.

This life-cycle includes five stages which are BP (1) Design, (2)

Modelling, (3) Execution, (4) Monitoring and (5) Optimization.

BPMS include different tools to perform each of these stages. For

instance, while a graphical editor allows performing the modelling

3 http://www.jboss.com/products/jbpm

4 http://www-306.ibm.com/software/websphere/

5 www.oracle.com/technology/bpel

6 http://www.microsoft.com/biztalk/

Chapter 1. Introduction 37

stage, the process execution runtime allows activating processes

and orchestrating people, data and systems that are involved in

the BP. Figure 1.1 shows the typical components that are

available in most BPMS products.

Figure 1.1 Workflow Reference Model from (Hollingsworth, 1995)

However, BPM systems are mainly focused on the process itself

(its definition, execution and efficiency) and not in other aspects

such as the user interfaces used to allow users interacting with

the process. In fact, the kind of interfaces provided by these

solutions are quite basic and little elaborated. Moreover, these

interfaces are provided at the implementation level. As a result,

any modification must be performed at this level. This approach

does not fit in a context where the software development process is

based on models. Moreover, the majority of these solutions are

commercial suits whose use and implantation forces us to use

proprietary languages and technologies, moving us away from the

standards.

38 Chapter 1. Introduction

To sum up, these two approaches (WE and BPMS) constitute

different solutions for the execution of two different types of BPs,

one for short-running7 processes and another for long-running

processes. On the one hand, WE methods deal with the integration

of BPs into Web applications focusing only on short-running

processes. Moreover, these methods attempt to carry out the

integration by taking only navigational issues into account. As

result, a poor separation of concerns regarding navigation and

functionality is obtained. On the other hand, even though BPMS

solutions provide support for handling long-running processes,

they are highly technology dependent.

1.2 Problem Statement

As the previous section clearly indicates, the alternatives that are

currently available to develop BP-driven Web applications fail to

fulfil the necessary requirements. None of the solutions from

either of these fields handles BPs that includes both types, short-

running and long-running processes. Therefore, in order to develop

applications of this kind, from an engineering point of view, the

following research questions arise:

� Research question 1Research question 1Research question 1Research question 1. What types of BPs should be

considered when referring to BP-driven Web applications

and how should they be addressed from the Web

engineering perspective?

7 The term short-running is used as a synonym for light-weight

processes.

Chapter 1. Introduction 39

� Research question 2Research question 2Research question 2Research question 2. Since WE is moving towards MDE

(Vallecillo et al., 2007), what role should BP specifications

play throughout the development process?

� Research question 3Research question 3Research question 3Research question 3. How should BP specifications be

defined during the development process (i.e. which

notation/language)?

� Research question 4Research question 4Research question 4Research question 4. How can a correct separation of

concerns with regard to navigation be achieved when we

are dealing with BP integration?

These research questions are analyzed and answered in the

following section.

1.3 Main Contributions

The challenge of integrating BPs into Web applications has

already been addressed by existing Web engineering methods.

However, the proposed solutions do not perform the integration of

BPs in their broader sense. Therefore, we provide a method for the

systematic development of BP-driven Web applications for both

short-running and long-running processes. We have taken into

account the four research questions presented above in order to

define the method. These questions represent a key factor in the

successful achievement of the proposal.

First of all, regarding reseresereseresearch question 1arch question 1arch question 1arch question 1, we present a method

that allows short-running and long-running BPs to be

represented. Although BPs are similarly specified at the modelling

40 Chapter 1. Introduction

level in both cases (both are represented as BP diagrams using a

particular graphical notation), the GUIs that are generated to cope

with their execution are different for each case. This

differentiation produces a more appropriate GUI for each case.

Besides, taking into account the characteristics that BP-driven

Web applications require, the method also handles:

1. The definition of manual tasks within the BP

specifications. The particularity of activities of this kind is

that they are completely performed by human participants

and outside of the boundaries of the system.

2. The definition of BPs as a composition of activities that are

performed by different systems.

Regarding research question 2research question 2research question 2research question 2, we propose the use of BP

specifications to produce two different kinds of artefacts during

the development process. Following the MDE, a set of model

transformations (model-to-model and model-to-text) has been

defined to automate as much as possible the production of the

following artefacts as much as possible:

1. The Navigational and Presentation models required to

support BP specified in the BPM. These models

respectively capture the requirements in terms of (1) the

content and functionality necessary to allow the user to

perform process tasks and (2) the organization of these

elements within the corresponding GUI.

2. An equivalent definition of the BP in terms of an

executable language. This transformation will bring these

Chapter 1. Introduction 41

specifications to life by deploying them into a process

engine.

This set of transformations has been automated and is provided as

part of a prototype tool8. This tool has been developed in the

context of the Eclipse platform and supports the proposed method

from the modelling phase through the code generation phase, thus

automating the entire development process.

Regarding research question 3research question 3research question 3research question 3, we propose the use of standards

during the development process. Thus, we propose the use of:

1. The BPMN (OMG, 2006) notation for specifying BPs at the

modelling level.

2. The WS-BPEL (Andrews et al., 2003) language for the

execution of these BPs.

Finally, regarding research question 4research question 4research question 4research question 4, we propose to achieve the

separation of concerns related to navigation by maintaining the

navigation that occurs during BP execution inside the definition of

the process. This is possible since we have extended the

architecture of the generated Web applications by introducing a

process engine that is capable of handling the execution of BPs.

This element is necessary at the architectural level since the

navigation that occurs during BP execution (1) is more controlled9

than pure/content navigation and (2) the flow complexity found in

long-running BPs cannot be handled properly in the Navigational

8 http://oomethod.dsic.upv.es/labs/projects/bizzy

9 The process is the one driving the user to the next step

42 Chapter 1. Introduction

model. However, although we do not move BP flow into the

Navigational model, we still need to specify the set of data and

functionality that is going to be included in the Navigational

models in order to perform BP tasks. Therefore, these are the kind

of elements that are included in the Navigational model.

The solution proposed in this thesis has been applied to a method

developed within the Web Engineering area, the OOWS (Object-

Oriented Web Solution) approach (Fons, 2008). This approach has

already been extended to cope with requirements (Valderas, 2008),

adaptivity (Rojas, 2008), and Service Oriented Architectures

(Quintero, 2008). In this thesis, we propose an extension to endow

the method with enough expressivity to model Web applications

that provide support to the execution of BPs.

1.4 Research Methodology

Taking as reference the design research methodology described by

(March & Smith, 1995; Vaishnavi & Kuechler, 2004), the research

performed in this thesis has involved the following five steps: (1)

awareness of the problem, (2) suggestion, (3) development, (4)

evaluation, and (5) conclusion. These steps are graphically

depicted in Figure 1.2.

Figure 1.2 Research methodology followed in this thesis

Chapter 1. Introduction 43

First of all, according to this methodology, we identified and stated

the problem subject of this thesis. As a result, the boundaries of

the problem being considered were clearly identified.

Then, the second step in the methodology involved suggesting a

solution to the previously identified problem. The solution was

designed taking into account the research developed in the Web

Engineering area. However, in contrast to the solutions proposed

in this area, the suggested solution was also influenced by the

architecture used by Business Process Management Systems

(BPMS). Therefore, not only new abstractions for describing BP-

driven Web applications were identified, in addition, a revision of

the architecture of the generated Web applications was performed.

During the third step, the solution designed in the previous step

was developed. This development was in turn performed in several

sub steps as follows:

� First, the correspondences between the identified

abstractions and different software artifacts were designed.

These correspondences allowed us evolving the system

specification to (1) complete the specification by building

different aspects of the system and (2) generating the

equivalent representation but this time in terms of an

implementation technology.

� In parallel to the first sub step, we defined a strategy to

implement these correspondences. This decision was highly

44 Chapter 1. Introduction

influenced by the use of standards and the tool support

provided by each strategy.

� After the two previously sub steps, and by following the

previously defined strategy, these correspondences were

implemented.

As a result of the third step, a tool implementing the proposed

solution was obtained. With this tool we could validate the

proposed solution by developing different case studies. This

validation constitutes step four.

Finally, after putting in practice the proposed solution and

observing the obtained results, a set of conclusions have been

presented. In addition, new research challenges emerged to this

work are also proposed.

1.5 Thesis Development Context

This work has been developed in the OO-Method group, which

belongs to the Department of Information Systems and

Computation at the Technical University of Valencia. The OO-

Method group research interests span multiple areas that involve

Requirements Engineering, Web Engineering, Human-Computer-

Interaction, Software Quality and Ambient Intelligence, all of

which are tackled from the modelling perspective.

The work developed in this thesis started in the Web Engineering

subgroup. This group has developed a Web Engineering method

that covers the most requested requirements of current Web

Chapter 1. Introduction 45

applications. The works that have enabled the development of the

present thesis are framed in the following projects:

� “DESTINO: Desarrollo de E-Servicios para la nueva

sociedad digital”. CICYT Project referenced as TIN2004-

03534. (From 2004 to 2007).

� “WEE-NET: Web Engineering Network of Excellence“. E.U.

ALFA (América Latina – Formación Académica)

Programme.

� “SESAMO: Construcción de Servicios Software a partir de

Modelos”. CICYT Project referenced as TIN2007-62894.

(From 2008 to 2010).

1.6 Structure of the Thesis

This document has been organized in five parts as follows:

Part one. InPart one. InPart one. InPart one. Introductiontroductiontroductiontroduction

� Chapter 2. Foundations.Chapter 2. Foundations.Chapter 2. Foundations.Chapter 2. Foundations. This chapter provides the

foundations for this work, these span Web Engineering,

BP, and a combination of these two areas, BP-driven Web

applications. First, the chapter presents the basics of the

Web engineering method that has been taken as the basis

for this thesis. Second, it presents the BP notation and the

executable language used in the development of this work.

Finally, it states the characteristics that are observable in

BP-driven Web applications. Based on these characteristics

it proposes a set of requirements that Web Engineering

methods should satisfy in order to specify BP-driven Web

applications.

46 Chapter 1. Introduction

� Chapter 3. State of the Art.Chapter 3. State of the Art.Chapter 3. State of the Art.Chapter 3. State of the Art. This chapter provides an

analysis of the literature found in the Web engineering

area. In particular, this chapter focuses on the solutions

proposed by each of the reviewed methods regarding the

integration of BP.

Part two. OOWSPart two. OOWSPart two. OOWSPart two. OOWS----BP ExtensionBP ExtensionBP ExtensionBP Extension

� Chapter 4. Development ProcessChapter 4. Development ProcessChapter 4. Development ProcessChapter 4. Development Process. This chapter provides the

big picture of the proposal. It presents the set of models

that are included in the proposal, the relationships among

all of them, and the artefacts consumed and generated in

each step of the development process.

� Chapter 5. Business Process Model. Chapter 5. Business Process Model. Chapter 5. Business Process Model. Chapter 5. Business Process Model. This chapter presents

the Business Process Model that has been defined for the

specification of BP. This model is based on the BPMN

notation, we also discuss the limitations found in the

original notation and extend it for use in the context of this

work.

� Chapter 6. Navigational Extension. Chapter 6. Navigational Extension. Chapter 6. Navigational Extension. Chapter 6. Navigational Extension. This chapter presents

the navigational abstractions that have been defined to

cope with the construction of the GUIs that support BPs.

� Chapter 7. Presentation Extension.Chapter 7. Presentation Extension.Chapter 7. Presentation Extension.Chapter 7. Presentation Extension. This chapter presents

the abstractions that have been defined in the Presentation

model in order to properly specify BP-driven Web

applications. In addition, based on usability requirements,

this chapter covers the mechanisms provided by the

proposal to obtain a more usable GUI.

Chapter 1. Introduction 47

Part three. OOWSPart three. OOWSPart three. OOWSPart three. OOWS----BP FrameworkBP FrameworkBP FrameworkBP Framework

� Chapter 8. Architectural Extension.Chapter 8. Architectural Extension.Chapter 8. Architectural Extension.Chapter 8. Architectural Extension. This chapter presents

the architecture of the generated applications to provide

support for BP-driven Web applications.

� Chapter 9. Model TransformationsChapter 9. Model TransformationsChapter 9. Model TransformationsChapter 9. Model Transformations This chapter presents

the transformations that have been designed to obtain an

executable web application. These transformations cover

(1) the generation of executable BP and (2) the generation

of the proper user interface.

� Chapter 10. Tool support.Chapter 10. Tool support.Chapter 10. Tool support.Chapter 10. Tool support. This chapter presents the tool

that has been developed within the context of the Eclipse

project to support the development process of BP-driven

Web applications.

Part four. Conclusions and Further workPart four. Conclusions and Further workPart four. Conclusions and Further workPart four. Conclusions and Further work

� Chapter 11. Conclusions and Chapter 11. Conclusions and Chapter 11. Conclusions and Chapter 11. Conclusions and Further Further Further Further WorkWorkWorkWork. This chapter

summarizes the main contributions of this work and

presents future research work.

Part five. AppendixesPart five. AppendixesPart five. AppendixesPart five. Appendixes

� AppendiAppendiAppendiAppendix A.x A.x A.x A. This appendix introduces the Library4U case

study that is used throughout appendixes B and C to

illustrate how short-running and long-running processes

are modelled following the proposed approach. Moreover,

the development of these case studies allows us to validate

the proposal.

48 Chapter 1. Introduction

� Appendix B. Appendix B. Appendix B. Appendix B. This appendix extends the Library4U case

study presented in appendix A to present a short-running

BP.

� Appendix C. Appendix C. Appendix C. Appendix C. This appendix extends the Library4U case

study presented in appendix A to present a long-running

BP.

Chapter 2

2 Foundations

This chapter presents the concepts and notions in which this

thesis is based on and that are going to be used throughout this

thesis. This work is related to two areas which are Web

Engineering (WE) and Business Processes (BP). Within the WE

area, we have applied the developed work to the OOWS approach

(Fons, 2008). Therefore, in section 2.1 we present the basics of this

approach. Similarly to the WE area, within the BP area there are

several notations (BPML, BPMN, XPDL, UML Activity Diagrams)

and executable languages (WS-BPEL, XPDL) that can be used to

specify and execute processes. We have chosen the process

standards BPMN (OMG, 2006) and WS-BPEL (Andrews et al.,

2003), which deal with BP specification at different levels of

abstraction (modelling and execution respectively). Finally, in

section 2.3 we state the characteristics that differentiate the two

different types of processes covered in this thesis which correspond

to short-running and long-running BPs. Based on the stated

characteristics, we propose a set of requirements that Web

Engineering methods should satisfy in order to specify properly

what we have named BP-driven Web applications.

50 Chapter 2. Foundations

2.1 Web Engineering

To deal with the particularities that characterize Web applications

compared to traditional software (desktop applications),

researchers started working on the definition of methods for the

systematic construction of this kind of systems. These methods

were not defined from the scratch; in fact, they were based on

existing methodologies for traditional software development such

as object oriented techniques. The main contributions of these new

methods were the introduction of new abstractions to deal with

modeling navigation and presentation concerns.

In the following subsections we present the basics of the Web

Engineering method in which we have applied this thesis work,

the OOWS approach.

2.1.12.1.12.1.12.1.1 The OOWS Web Engineering MethodThe OOWS Web Engineering MethodThe OOWS Web Engineering MethodThe OOWS Web Engineering Method

OOWS (acronym standing for “Object-Oriented Web Solution”) is a

method that was conceived to provide a methodological support for

the development of Web applications applying the principles of the

Web Engineering. This method defines a set of extensions to the

OO-Method approach (Pastor et al., 2001) aimed at the

construction of object-oriented applications. In particular, this

extension introduces the User, Navigational and Presentation

Models which allows describing the requirements that define the

interaction of the user with those systems. The extension also

defines new model compilers that allow completing the code

Chapter 2. Foundations 51

generation phase by transforming these new models into their

corresponding software artefacts.

2.1.1.12.1.1.12.1.1.12.1.1.1 The OOWS User ModelThe OOWS User ModelThe OOWS User ModelThe OOWS User Model

The User Model allows identifying and categorizing users. It

allows determining the kind of users that are going to interact

with the system. These kinds are organized within a hierarchical

structure that represents the specialization/generalization

relationships between them. In addition, this model allows

characterizing users into three groups which are:

� AnonymAnonymAnonymAnonymousousousous. This kind of users does not need to be

identified in the system to access to it. Normally, they

have a very limited access to data and functionality. In

particular “sensitive”, “critical” or “personal” data is

hidden to anonymous users.

� RegisteredRegisteredRegisteredRegistered. This kind of users requires to be identified in

the system and represents users with access to data and

functionality defined as “sensitive”, “critical” or “personal”.

� Abstract (or without access)Abstract (or without access)Abstract (or without access)Abstract (or without access). This kind refers to “virtual”

types of users which are defined (1) to express the set of

common responsibilities defined for a group of users, (2) to

capture the functional hierarchy of the organization and

(3) to organize and structure the users of the system.

The graphical notation used to identify types of users according to

their access permission is presented in Figure 2.1.

52 Chapter 2. Foundations

Figure 2.1 Types of Users According to the Different Access Permission

Regarding the relationship between user types, this mechanism

allows inheriting navigational properties between them. In

addition, child user types can modify the inherited navigational

maps by adding or removing access to nodes or links. Figure 2.2

shows the User Model defined for the case study developed in

Appendix A. In it, the Librarian and Secretary types inherit the

navigational properties defined for the Member type which in turn

inherits from the Anonymous user type.

Figure 2.2 Example of User Specialization

2.1.1.22.1.1.22.1.1.22.1.1.2 The OOWS Navigational ModelThe OOWS Navigational ModelThe OOWS Navigational ModelThe OOWS Navigational Model

The Navigational model has been defined to describe the system

accessibility for the type of users defined in the User Model. This

model is built in two steps. First of all a global description of the

interaction points with users is performed. This step is called the

“Authoring-in-the-large” step. Then, a detailed description of these

Chapter 2. Foundations 53

interaction points is performed. This step is called “Authoring-in-

the-small” step.

AuthoringAuthoringAuthoringAuthoring----inininin----thethethethe----large large large large StepStepStepStep

During this step, we describe the way a particular type of user will

be able to navigate through the system for consulting some

information and performing some functionality, attending to her

responsibilities and privileges as user of the system.

Figure 2.3 Navigational Map for the Library4U Case Study

Figure 2.3 represents the Navigational map built for the

Library4U case study. This map is represented as a directed graph

whose nodes represent navigational contexts or navigational

subsystems and whose arcs represent navigational links that

define the valid navigational paths over the system. Navigational

links correspond to arcs from the navigational map and are used

to define reachability paths among different nodes. There are two

types of navigational links:

54 Chapter 2. Foundations

� Sequence links or “contextual links” (represented using

solid arrows) involve a semantic navigation between two

contexts understanding semantic navigation as the activity

of carrying some information from a source context to

target context.

� Exploration links or “non contextual links” (represented

using dashed arrows) represent valid navigation paths

through different contexts. In contrast to the navigation

defined by sequence links, this navigation does not involve

carrying information between contexts. These links are

implicitly defined by exploration contexts or exploration

subsystems.

During this stage, without specifying the details of the nodes, we

can build a system accessibility structure that allows organizing

the tasks and responsibilities of a particular kind of user.

AuthoringAuthoringAuthoringAuthoring----inininin----thethethethe----small small small small StepStepStepStep

Within this step, the navigational contexts (nodes) defined in the

navigational map built previously are detailed (see Figure 2.4).

Navigational contexts are made up of a set of Abstract Information

Units (AIU), which represent the requirement of retrieving a

chunk of related information. AIUs are made up of navigational

classes, which represent views over the classes defined in the

Class Diagram. These views are represented graphically as UML

classes that are stereotyped with the «view» keyword and that

contain the set of attributes and operations that will be available

to the user. Each AIU must include one navigational class (called

Chapter 2. Foundations 55

the manager class) and can optionally include a set of

complementary class views (called complementary classes) to

complete the information retrieved by the manager class.

Navigational classes are related by unidirectional binary

relationships called navigational relationships. These

relationships are defined over existing association or inheritance

relationships defined in the Class Diagram. Moreover, depending

on the navigational capability of the navigational relationship

these can be of two types:

1. Context Dependency Relationship (graphically represented

using dashed arrows) which represents a basic information

retrieval by crossing a structural relationship between

classes. When a Context Dependency Relationship is

defined, all the object instances related to the origin class

object are retrieved.

2. Context Relationship (graphically represented using solid

arrows) which represents the same information recovery as

a Context Dependency Relationship does plus a navigation

capability to a target navigational context, creating a

sequence link in the navigational map.

56 Chapter 2. Foundations

Figure 2.4 Navigational Context

A Service Link defines a navigation that will automatically be

performed after the execution of an operation defined within a

navigational class (navigational operation). Figure 2.4 shows an

example of a Service Link defined associated to the Book class

view. This Service Link defines the navigation to the target

context (ShoppingCart) that will be performed each time the

“addToShoppingCart()” is executed inside this context.

Apart from attributes and operations, navigational classes can

also define conditions to filter the retrieved objects. These filters

are called Population Filters and are specified by means of OCL

formulas at the bottom section of the class view primitive. In

Figure 2.4, a population filter over the Book class view has been

defined to indicate the retrieval of just those books whose

attribute “bestSeller” is set to true.

Chapter 2. Foundations 57

These are the core primitives for navigational specifications.

However, this specification can be enriched by introducing

mechanisms to help the user explore and filter the huge amount of

information inside a context. These advanced concepts are indexes

and filters. On the one hand, an index is a structure that provides

an indexed access to the population retrieved by the manager

class. Indexes create a list of summarized information by using an

attribute or a set of attributes. When an index gets activated, a

list of all the possible values for the indexed attribute/s is created.

By choosing one of these values, all objects that have the same

value for this property will be shown in a search view. This search

view describes the information that will be available to the user to

aid him/her to select an instance. This selected instance will be

activated in the navigational context. On the other hand, a filter

defines a population condition to restrict the object instances to be

retrieved. There are three types of filters which are:

� Exact filters, which take one attribute value and return all

the instances that match it exactly.

� Approximate filters, which take one attribute value and

return all the instances whose attribute values include

this value as a substring.

� Range filters, which take two values (a maximum and a

minimum) and return all the instances whose attribute

values fit within the range. If we specify only one value, it

is only bounded on that side (upper or lower bounded).

58 Chapter 2. Foundations

2.1.1.32.1.1.32.1.1.32.1.1.3 The OOWS Presentation ModelThe OOWS Presentation ModelThe OOWS Presentation ModelThe OOWS Presentation Model

The Presentation Model allows describing presentation

requirements by means of a set of basic patterns. This model is

strongly dependent on the navigational model since it uses

navigational contexts (system-user interaction units) to define the

presentation properties. Presentation requirements are specified

by means of patterns that are associated to the primitives of the

navigational context (navigational classes, navigational links,

searching mechanisms, etc.). The basic presentation patterns are:

� Information Paging. This pattern allows us to specify

information “scrolling”. All the retrieved instances are

broken down into logical blocks so that only one block is

visible at a time. Mechanisms to move forward or backward

are provided. The required information is:

o Cardinality, which represents the number of

instances that make a block.

o Access mode, which can be defined as Sequential,

providing mechanisms to go to the next, previous,

first and last logical block or Random, where the

user can directly access any block.

o Circularity. When this property is active, the set of

blocks behaves as a circular buffer.

� Ordering Criteria. This pattern defines a class population

ordering (ASCendant or DESCendant) using the value of

one or more attributes. It can be applied either to

navigational classes or access structures, specifying how

the retrieved instances will be ordered.

Chapter 2. Foundations 59

� Information Layout. We provide three basic layout patterns

and one layout operator. The three patterns are: register,

tabular (vertical and horizontal), and tree. The operator

pattern (master-detail) is applied to many-to-many

relationships using one of these basic layout patterns to

show the detail portion.

These presentation patterns, together with the specified

navigation features, capture the essential requirements for the

construction of web interfaces.

Figure 2.5 Layout Patterns applied to Navigational Class and Relationships

Figure 2.5 shows the presentation attributes associated to the

Book navigational context depicted in Figure 2.4. In particular,

the Register and Master-Detail(Text) Information layout patternS

have been associated to the classes included in the AIU.

60 Chapter 2. Foundations

In Figure 2.5, the application of the Information layout pattern to

the manager class and the navigational relationships is presented.

On the one hand, the register pattern is only applied to the

manager class. On the other hand, since a Book can have related

multiple authors, editors, subjects and copies, the tabular pattern

cannot be applied. In this case the master-detail and the text

layout pattern are combined. The master-detail pattern creates a

link between the information from the manager class (class

playing the role of master) and the complementary classes (detail).

The text layout pattern specifies that data is retrieved without

any format.

In this section we have presented the basics of the OOWS

approach which are necessary for the explanation of the presented

thesis. However, a complete description of this method is

presented in (Fons, 2008).

2.2 Business Processes

The objective of this section is to present the specifications that

are going to be used along this work to deal with the

representation of BPs. Attending to the two different levels of

abstractions defined in the proposed method (modelling and

implementation) the following two subsections present

respectively the BPMN notation (graphical notation used to

represent BPs at the modelling level) and the WS-BPEL language

(specification used to execute the BPs represented graphically at

Chapter 2. Foundations 61

the modelling level). This differentiation is necessary since WS-

BPEL, although being a powerful language, it is difficult to use

and it is not very intuitive to end-users.

2.2.12.2.12.2.12.2.1 BPMN: Business Process Modelling NotationBPMN: Business Process Modelling NotationBPMN: Business Process Modelling NotationBPMN: Business Process Modelling Notation

The BPMN standard was developed by the BPMI (Business

Process Management Initiative) mainly to provide a notation that

could be easily understood by all business stakeholders. In

addition to this goal, it was also developed to ensure that XML

languages designed for the execution of BP (such as WS-BPEL)

could be visualized with a business-oriented notation. As a result,

this notation constitutes a standardized bridge between the BP

definition and its implementation.

The common characteristics that are observable in BP design

notations are:

� Capability for modeling the sequence of activities.

� Capability for modeling the data or messages interchanged

between the participants involved in the BP definition.

� Capability for modeling different participants and different

roles within these participants.

� Capability of understanding their internal business

procedures in a graphical notation and will give

organizations the ability to communicate these procedures

in a standard manner.

62 Chapter 2. Foundations

Specifically, the BPMN notation10 provides a set of elements to

deal with the characteristics presented above. This set of elements

is organized in four categories which are Flow Objects, Connecting

Objects, Swimlanes and Artifacts:

Flow ObjectsFlow ObjectsFlow ObjectsFlow Objects

These elements constitute the main graphical elements to define

the behaviour of a Business Process. These refer to:

� Events. An event is something that “happens” during the

course of a business process. These events affect the flow of

the process and usually have a cause (trigger) or an impact

(result). Events are circles with open centre to allow

internal markers to differentiate different triggers or

results. There are three types of events, based on when

they affect the flow: Start, Intermediate, and End. Figure

2.6 shows the complete set of events defined by the

notation.

Figure 2.6 Events Graphical Elements

� Activities. An activity is a generic term for work performed

within a BP. An activity can be atomic or non-atomic

10 The BPMN version used in this work corresponds to the version 1.1

Chapter 2. Foundations 63

(compound). The types of activities that are a part of a

Business Process Diagram are: Process, Sub-Process, and

Task. Only Tasks and Sub-Processes define a specific

graphical object (a rounded rectangle). On the contrary,

Processes are built as a set of activities and the controls

that sequence them. In addition, Tasks and Sub-Processes

include a set of attributes which determine if these

activities are repeated or performed just once. This

repetition can be performed either sequentially (loop

marker) or in parallel (parallel marker). Figure 2.7 depicts

the different types of activities and the markers available

to specify when the activity can be repeated and how.

Figure 2.7 Activities Graphical Elements

� Gateways. A Gateway is used to control the divergence and

convergence of Sequence Flows. Thus, it will determine

branching, forking, merging, and joining of paths. Internal

markers will indicate the type of behaviour control. Figure

2.8 depicts the different types of gateways provided by the

notation.

64 Chapter 2. Foundations

Figure 2.8 Gateways Graphical Elements

Connecting ObjectsConnecting ObjectsConnecting ObjectsConnecting Objects

This element allows connecting Flow objects or other information.

The connecting objects defined by the notation are:

� Sequence Flow: It is used to show the order in which

activities will be performed in a Process. This type of

connecting object can in turn be specialized in Normal,

Conditional and Default Flow.

� Message Flow: It is used to show the flow of messages

between two participants that are prepared to send and

receive between them. In BPMN, two separate Pools in the

Diagram will represent the two participants (e.g., business

entities or business roles).

� Association: An Association is used to associate information

with Flow Objects. Text and graphical non-Flow Objects

(i.e. data objects) can be associated with Flow Objects.

Figure 2.9 depicts the different connecting objects defined by the

BPMN notation.

Chapter 2. Foundations 65

Figure 2.9 Connecting Objects Graphical Elements

Swimlanes Swimlanes Swimlanes Swimlanes

This element allows grouping Flow objects based on a particular

criterion. This category includes two types of elements which are:

� Pools: represent a Participant in a Process.

� Lanes: are used to organize and categorize activities. This

is achieved by partitioning the Pool in different lanes.

Figure 2.10 depicts the different types of elements defined by the

Swimlane group.

Figure 2.10 Swimlanes Graphical Elements

Artifacts Artifacts Artifacts Artifacts

The elements included within this type are introduced into BP

models to improve their understanding. Within this category we

find:

� Data Object: This element provides information about

activity requirements and results.

� Group: The grouping can be used for documentation or

analysis purposes. Groups can also be used to identify the

activities of a distributed transaction that is shown across

Pools.

66 Chapter 2. Foundations

� Annotation: Text Annotations are the mechanism provided

to modellers to introduce additional information for the

reader of a BPMN Diagram.

Figure 2.11 Artifacts Graphical Elements

In addition to these four categories, the BPMN notation handles

advanced modelling concepts such as:

� Exception handling. By means of this mechanism we can

capture and handle exceptions during the performance of

the process. The way to capture them is by the use of

Intermediate Events (Message, Timer, and Rule) which act

like a forced end to an activity and Exception Flows.

� Transactions. These are used during the definition of Sub-

Processes. Associated to transactions we can define the

protocol that is going to be used to control the behaviour of

the Sub-process as well as the technique that will be used

to undo a transaction when this has been cancelled.

� Compensation. When the outcome of some activities result

in an undesirable situation, compensation can be specified

to undo the obtained results. To represent this scenario the

BPMN notation provides the Compensation Intermediate

Event, Association and Activity.

Chapter 2. Foundations 67

The elements presented above correspond to the version 1.0 of the

notation (OMG, 2006). This version was adopted by the OMG on

February 2006 as the official specification. However, a RFP for the

2.0 version has already been released (OMG, 2007b). The objective

of this RFP is to define a complete and consistent language based

on the BPMN and the Business Process Definition Metamodel

(BPDM) (OMG, 2007a) that unifies their capabilities (graphical

notation, metamodel and interchange format).

BPMN was not been conceived to model applications; instead, it

was conceived to model processes which will be executed within

these applications. Therefore, a BPMN model needs to be

expressed in a language that could be interpreted and executed by

the software in charge of executing them. In this context,

languages such as BPML, WS-BPEL and XPDL come into play.

From this set of languages we have opted for the standard which

is the WS-BPEL language and is presented later in the following

subsection.

2.2.22.2.22.2.22.2.2 WSWSWSWS----BPEL: BPEL: BPEL: BPEL: Business Process Executable Business Process Executable Business Process Executable Business Process Executable

Language for Web ServicesLanguage for Web ServicesLanguage for Web ServicesLanguage for Web Services

Business Process Executable Language for Web Services (WS-

BPEL) is a XML-based language that allows orchestrating

interactions between Web services in a standardized manner. This

language is based on Web services, in fact, each business process

is assumed to be implemented as a Web service. Basically, a WS-

68 Chapter 2. Foundations

BPEL process describes a flow of interactions that occur between

the process and a set of services. The basic elements of a WS-

BPEL document are activities (units of work carried out to

complete the process) and partners (elements responsible of

performing process activities). Figure 2.1 depicts this basic

elements and how this relate to each other. Moreover, it also

depicts the elements defined in a WSDL document and the

mappings defined between these elements and the basic elements

of a WS-BPEL document.

Figure 2.12 Relation between WS-BPEL Process Definition and WSDL

Moreover, other elements such as correlation, data compensation,

fault and events handlers are also defined by the language. The

set of elements defined by the WS-BPEL language are:

Partner Link TypesPartner Link TypesPartner Link TypesPartner Link Types

This element is used to characterize a conversation between two

services. In this conversation the roles played by each service is

specified as well as the port type provided by the service to receive

messages. Figure 2.13 depicts graphically the structure of this

Chapter 2. Foundations 69

element. A Partner Link Type can define one or two roles. One

role is defined for One-way and Notification operations. On the

contrary, two roles are defined for Request-response and Solicit-

response operations. The only requirement when two roles are

defined is that the calling service will receive a response (call-

back) from the requested service along the conversation.

Figure 2.13 Partner Link Type structure

Partner LinksPartner LinksPartner LinksPartner Links

This element represent each of the partners involved in the

process (the own WS-BPEL process is also considered one of the

partners). It is necessary to specify for each conversation the role

played by each of the partners involved in it which corresponds to

the roles defined by the Partner Link Types as Figure 2.14 shows.

Figure 2.14 Partner Link structure

More than one Partner link can be characterized by the same

Partner Link Type allowing the use of multiple vendors within the

same process.

VariablesVariablesVariablesVariables

70 Chapter 2. Foundations

Variables are used to handle data (receive, manipulate and send

data during partner conversations) and allow maintaining the

state of the process. The types of these variables relate to data

types defined externally to the WS-BPEL process.

ActivitiesActivitiesActivitiesActivities

Activity elements describe the steps that make up a process (the

order in which these occur is defined by the flow of the process). In

WS-BPEL we can define three different types of activities which

are:

� BasicBasicBasicBasic. This type of activities are used to represent invokes

or receptions on service operations. These types are

“invoke”, “receive” and “reply”.

� StructuredStructuredStructuredStructured. This type of activities is used to specify the

order in which a set of activities can take place. Within this

group we find ordinary sequential control by the use of

“sequence”, “switch” and “while” types, concurrency and

synchronization between activities by the use of the “flow”

type and nondeterministic choice based on external events

by the use of the “pick” type.

CorrelationCorrelationCorrelationCorrelation

This is the mechanism provided by WS-BPEL to allow delivering

messages to the proper process instance. WS-BPEL addresses

correlation scenarios by providing a declarative mechanism to

specify correlated groups of operations within a service instance. A

set of correlation tokens is defined as a set of properties shared by

all messages in the correlated group.

Chapter 2. Foundations 71

All these elements are defined in the WS-BPEL version 1.1. This

version constitutes an enhanced version of the BPEL 1.0 version

and was submitted to OASIS in April 2003. As we can observe

from the elements presented above, version 1.1 of the WS-BPEL

language does not provide support for human interactions. In fact,

it is necessary to incorporate new elements to the original

specification to deal with this issue. However, the incorporation of

new elements difficult the portability of the WS-BPEL document

because this usually ties the document to the proprietary

implementation of the provider.

Related to this limitation, researchers from Active Endpoints,

Adobe, BEA, IBM, Oracle and SAP have defined two specifications

which introduce a comprehensive human interaction model for

WS-BPEL. These extensions are:

� BPEL4PeopleBPEL4PeopleBPEL4PeopleBPEL4People (Agrawal et al., 2007) which provides an

extension to BPEL to address human interactions as a

first-class BPEL citizen. It defines a new type of basic

activity which uses human tasks as an implementation,

and allows specifying tasks local to a process or use tasks

defined outside of the process definition. This extension is

based on the WS-HumanTask specification.

� WSWSWSWS----HumanTaskHumanTaskHumanTaskHumanTask (Agrawal et al., 2007a) provides the

definition of human tasks, including their properties,

behaviour and a set of operations used to manipulate

human interactions. A coordination protocol is introduced

72 Chapter 2. Foundations

to control autonomy and life cycle of service-enabled human

tasks in an interoperable manner.

In this thesis, since these two specifications did not exist, we

defined a Task Manager Service (see chapter 8) in charge of

handling the interaction with human participants.

2.3 Business Process-driven Web Applications

A Business Process-driven Web application is defined as an

application that is accessed via a Web browser over a network (i.e.,

the Internet or an intranet) and that provides support for the

execution of BP. The type of BPs that can be supported by these

applications includes different degrees of complexity, where the

complexity is given by the number and the type of interactions

defined by the BP. Based on this complexity we have catalogued

BPs into two types which are named short-running and long-

running BPs. These types are explained in detail in the following

subsections. However, before we are going to present the common

characteristics that are required in BP-driven Web applications,

independently of the type of BP supported.

� Short&Long Short&Long Short&Long Short&Long 1111. Users need mechanisms for launching BP

instances and taking up again BPs that have not been

completed.

� Short&Long 2Short&Long 2Short&Long 2Short&Long 2. Users need mechanisms for completing BP

activities. These mechanisms have to be provided according

to the type of activity been performed. For instance, when

the activity requires the introduction of data, the user has

Chapter 2. Foundations 73

to be provided with an interface that allows her inputting

this data.

� SSSShorthorthorthort&L&L&L&Long 3ong 3ong 3ong 3. Users must be guided through the steps

that allow achieving the BP goal.

� Short&Long 4Short&Long 4Short&Long 4Short&Long 4. Users can leave (suspend) the execution of

a BP for a while and taking up again (resume) the BP later

on. Therefore, the system has to keep the state of the

process to restore the BP when this is taken up again.

� Short&Long 5Short&Long 5Short&Long 5Short&Long 5. Some of the activities defined in a BP can be

performed by external system.

2.3.12.3.12.3.12.3.1 ShortShortShortShort----runningrunningrunningrunning Business PBusiness PBusiness PBusiness Processesrocessesrocessesrocesses

This type of processes is also called in the literature “light-weight

processes”. As the following list of requirements shows, its effect

has a short period of time and its consequences of a wrong decision

are small. Examples of this kind of processes are the “Check out

process” usually found in online stores or the “Booking service”

usually found in online travel agencies. These types of processes

are characterized by the following features:

� Short 1: Short 1: Short 1: Short 1: Are completed in a very short period of time

(intervals can range from seconds to a few hours).

� Short 2: Short 2: Short 2: Short 2: Involve just one human participant (who interacts

with the system/process to accomplish it) and one or more

“automated” participants.

� Short 3: Short 3: Short 3: Short 3: Are usually simple (in terms of control flow) and

not very large (big).

� Short 4: Short 4: Short 4: Short 4: Are always started by the user (human

participant).

74 Chapter 2. Foundations

� Short 5: Short 5: Short 5: Short 5: The user only participates in one case (instance) of

the process at the same time.

Example: Example: Example: Example: Checkout Checkout Checkout Checkout Business ProcessBusiness ProcessBusiness ProcessBusiness Process

In order to exemplify this type of BP we present in Figure 2.15 the

Checkout BP. This process involves the participation of two

agents. One of them refers to a human being (lane labelled as

“Member”) and another to an automated system (lane labelled as

“System”). The process details the steps that are required to

accomplish the virtual purchase.

Figure 2.15 Example of a short-running process: Checkout Process

In this BP, it is the human participant (Member role) who starts

the checkout process. The first task in the process asks the user to

input information about the shipping details (address, city,

country, shipping mode, etc). In the second task the user is asked

to input information about payment options (credit card, PayPal

account, security codes, etc). Once all of this information is

inputted, the process starts a payment validation step by invoking

an external validation service provided by a payment service. If

Chapter 2. Foundations 75

the external service validates the inputted data then the user is

asked about wrapping options. Otherwise, the user is redirected to

the payment step to introduce again the payment data. Finally,

the process concludes by creating and placing the order in the

system.

Taking up again the characteristics that are observable in short-

running BP we can see that all of them are satisfied in the Check

out BP example:

� Short 1: Short 1: Short 1: Short 1: The completion of the BP only depends on the

Member user (we assume that automated activities are

completed instantaneity, i.e., the “Place order” activity

included in the System lane). Therefore, if the user does not

suspend the BP, this can be completed in a few minutes.

� Short 2: Short 2: Short 2: Short 2: The BP just includes one human participant

(represented by the Member lane) and one system

(represented by the System lane).

� Short 3: Short 3: Short 3: Short 3: The BP is quite simple and not too long, it only

includes four activities.

� Short 4: Short 4: Short 4: Short 4: The Member user (human participant) is the one

launching an instance of the BP.

� Short 5: Short 5: Short 5: Short 5: The Member user cannot participate in more than

one instances of the Checkout BP at the same time.

Figure 2.16 shows the Web interface that is provided to the

Member user to complete one of the activities defined in the Check

out BP. Specifically it shows the interface provided for

accomplishing the Shipping task where the user has to introduce

76 Chapter 2. Foundations

all the information required by the underlying operation

associated to this task (address, city, country, etc.)

Figure 2.16 Web interface to complete the first activity of the Checkout BP

2.3.22.3.22.3.22.3.2 LongLongLongLong----running Business Prunning Business Prunning Business Prunning Business Processesrocessesrocessesrocesses

These processes usually define the protocols that have to be

followed within an organization to achieve a specific goal.

Examples of this kind of processes are the “Material Purchase

Requests” or the “Incidence Management Requests”. In general,

this kind of processes involves not only the coordination of

different systems but also the coordination of different people

behaving with different roles. The following list gathers the

features/requirements observed in this kind of processes:

� LLLLong ong ong ong 1111: Usually take a long time for being completed.

There are several reasons that justify this prolongation in

Chapter 2. Foundations 77

time such as several human participants, temporal

constraints, etc.

� Long 2: Long 2: Long 2: Long 2: Usually involves more than one human participant

and one or more automated systems.

� Long 3: Long 3: Long 3: Long 3: Can include temporal constraints that provoke that

some tasks cannot be started until a specific instant of

time.

� Long 4: Long 4: Long 4: Long 4: Can be started by any participant involved in the

process. (Therefore, it is advisable that users could find

easily the set of pending tasks that she/he is responsible

of).

� Long 5: Long 5: Long 5: Long 5: The user can participate in more than one case

(instance) of the process at the same time.

Example: Book Purchase Request Business ProcessExample: Book Purchase Request Business ProcessExample: Book Purchase Request Business ProcessExample: Book Purchase Request Business Process

To exemplify this kind of processes we are going to make use of

the “Book Purchase Request” BP depicted in Figure 2.17.

Figure 2.17 Example of a long-running process: Book Purchase Request

This BP is started by a Member user who wants a specific book

that it is not catalogued in the library. Therefore, the user

78 Chapter 2. Foundations

provides in the first step the information of the specific book (i.e.,

book title or ISBN). Then, the book request is processed by any

user belonging to the Secretary User type. In this step, the user

validates the request based on some criteria. If the Secretary User

denies the purchase request, the system notifies the member

(usually by sending an e-mail). On the contrary, if the purchase

request is approved, this request is redirected to the Central

Library, which is responsible of the purchase of the requested

books. At this point the process is waiting for the purchase

notification response sent back by the Central Library. When this

notification arrives, the system must load the book details into the

Library4U system and in parallel, any user belonging to the

Secretary group has to pick up (manual operation) the book from

the Central Library. When these two tasks are completed, the

system notifies the member about the acquisition of the book and

finally one of the users belonging to the Librarian User type

finalizes the process by realizing the book loan to the solicitor

member.

Again, the characteristics found in this example map to the ones

that are observable in a long-running BP:

� LLLLong ong ong ong 1111: In this case, the existence of several human

participants propitiates the prolongation in time of the BP.

� Long 2: Long 2: Long 2: Long 2: The BP involves three human participants which

refer to users belonging to the Member, Secretary and

Librarian User types. In addition it also includes an

automated system which refers to the local system.

Chapter 2. Foundations 79

� Long 3: Long 3: Long 3: Long 3: In this case the temporal constrains are introduced

by the time that different human participants take to

complete their assigned activities.

� Long 4: Long 4: Long 4: Long 4: In this case the BP is started by a human

participant. However, compared to the Checkout BP, new

human participants are involved in the BP.

� Long 5: Long 5: Long 5: Long 5: Any of the human participants defined in the BP

can participate in different instances of the same BP. For

instance, a Secretary user has to validate each book

request launched by any member.

Figure 2.18 Web interface to complete the “Request Validation” activity of the long-running
BP

Figure 2.18 shows the Web interface that is provided to the

Secretary user to complete the “request validation” task. In this

case, we can appreciate that there are two different instances of

this task.

80 Chapter 2. Foundations

2.3.32.3.32.3.32.3.3 Requirements for Dealing with BPRequirements for Dealing with BPRequirements for Dealing with BPRequirements for Dealing with BP----driven Web driven Web driven Web driven Web

applicationsapplicationsapplicationsapplications

Based on the characteristics that are observable in both types of

BPs, we enunciate the requirements that Web Engineering

methods should satisfy in order to specify and built BP-driven

Web applications. Some of these requirements have already been

stated by Damiano et al. in (Distante et al., 2007a).

� Requirement 1.Requirement 1.Requirement 1.Requirement 1. Differentiate between Short-running and

Long-running Processes. WE methods should follow a code

generation strategy that allows generating appropriate GUI

depending on the type of process being executed. For instance,

long-running processes are better handled from a Web

interface similar to the ones provided by Business Process

Management solutions. This type of Web interfaces allows

users to launch new process instances and complete their

pending tasks. On the contrary, short-running processes are

better handled from a Web interface designed following the

wizard pattern.

� Requirement Requirement Requirement Requirement 2222.... Specify the data and functionality to support

BP activities. WE methods should provide mechanisms that

allow specifying which data and functionality has to be

provided in order to complete a BP activity.

� Requirement 3Requirement 3Requirement 3Requirement 3.... Deal with the Specification of BP flows. WE

methods should provide mechanisms that allow describing the

different paths that BP can take during the execution.

� Requirement Requirement Requirement Requirement 4444.... Deal with Distributed Processes. WE methods

should provide mechanisms that allow specifying the different

Chapter 2. Foundations 81

systems involved in the process and also how these interact to

accomplish the BP goal.

� Requirement Requirement Requirement Requirement 5555.... Deal with Multiple roles. Within a single

organization, process activities are distributed among different

responsibilities. Therefore, it is necessary to provide

mechanisms for specifying the different roles involved in a BP

and how these cooperate to achieve a common goal.

� Requirement Requirement Requirement Requirement 6666.... Deal with Manual Tasks. Manual tasks are

commonly found in processes involving human participation.

Thus, it is necessary to provide mechanisms that allow

specifying tasks of this kind.

� Requirement Requirement Requirement Requirement 7777.... Separation of Concerns related to Navigation.

In terms of model reusability and maintenance, it is very

important to follow a strategy that allows a proper separation

of concerns regarding navigation. This separation should

clearly distinguish between the navigation that occurs during

the execution of a BP and the navigation that occurs during

content navigation.

� Requirement 8.Requirement 8.Requirement 8.Requirement 8. Keep the State of the BP. To ensure that users

can suspend safely the current executed BP and resuming it

correctly later, it is necessary to keep the state of the launched

BP instances.

Table 2-1 summarizes the BP characteristics that are covered by

each of the requirements stated previously.

82 Chapter 2. Foundations

 Short & LongShort & LongShort & LongShort & Long ShortShortShortShort LongLongLongLong

 1111 2222 3333 4444 5555 1111 2222 3333 4444 5555 1111 2222 3333 4444 5555

Req1Req1Req1Req1 � � � � �

Req2Req2Req2Req2 �

Req3Req3Req3Req3 �

Req4Req4Req4Req4 �

Req5Req5Req5Req5 � � �

Req6Req6Req6Req6 �

Req7Req7Req7Req7 �

Req8Req8Req8Req8 � � �

Table 2-1 Mapping between BP characteristics and the Requirements that should be satisfied
by WE Methods

2.4 Conclusions

In this chapter we have presented the foundations for this thesis

which span Web Engineering, BPs and Web applications that

support BP execution. First, we have provided a brief description

of the OOWS method. Specifically, we have focused on the

Navigational and Presentation models which capture the

particular requirements that introduce the specification of Web

applications. In this thesis we have extended these models to

capture properly the requirements of BP-driven Web applications

(see chapters 6 and 7). Second, we have presented the BPMN and

the WS-BPEL standards. These have been adopted in the current

proposal to specify BPs at two different levels of abstraction. On

the one hand, the BPMN notation allows us representing BPs at

the modelling level. On the other hand, the WS-BPEL language

allows us executing BPs specified at the modelling level.

Specifically, the BPMN notation has been extended to integrate

Chapter 2. Foundations 83

BP specifications within the method and to allow an automatic

generation of BPs represented in WS-BPEL (see chapter 5).

Finally, we have presented the kind of BPs that we are

considering in this thesis. By means of two examples we have

stated the characteristics of each type. These characteristics have

been used to define a set of requirements that Web Engineering

methods should satisfy in order to specify properly BP-driven Web

applications.

Chapter 3

3 State of the Art

This chapter provides an analysis of the most well-known methods

developed within the Web Engineering field. Specifically, this

analysis is focused on the solution provided by these methods to

deal with the integration of BPs into Web applications. First of all,

it presents the concrete solution designed by each method. This

presentation includes the mechanisms provided at the modelling

level, the adaptation of the development process to this new

feature and, when applicable, the support provided by a tool.

Then, it provides a discussion of the adequacy of the proposed

solutions to deal with the construction of BP-driven Web

applications. This discussion is based on the requirements that

Web engineering methods should satisfy to specify BP-driven Web

applications.

3.1 Web Engineering Area

In order to deal with the systematization of the Web application

development (Pressman et al., 1998), during the late nineties, a

new Engineering discipline emerged, it was called Web

Engineering (WE). This term was coined in (Murugesan et al.,

86 Chapter 3. State of the Art

1999) and was defined as “an engineering that uses scientific,

engineering, and management principles and systematic

approaches to successfully develop, deploy, and maintain high-

quality Web systems and applications”. Later, different authors

(Ginige et al., 2001a; Kappel et al., 2006; Mendes, 2006) have

supported the necessity of this new engineering to deal with the

particularities introduced by Web-based systems. As a result of

the studies developed in this area, a set of methods, models and

techniques were defined to cover, to a great extent, part of the

development cycle of Web applications.

The methods developed within the context of the WE area

emerged to provide support for the modelling of Web information

systems. The original requirements for this sort of systems were

storing, retrieving, transforming and presenting data to users.

However, Web application requirements change over time and

require more powerful and expressive methods for the

development of systems that are not simply based on data but also

in business processes (BP). Therefore, to provide support to these

necessities, the methods for the development of Web applications

have been extended and updated to provide the required

mechanisms for the modelling of this kind of systems.

The set of methods considered in this analysis constitute the most

relevant approaches within the WE area. These are UWAT+

(Distante, 2004), WebML (Ceri et al., 2000), OOHDM (Schwabe

and Rossi, 1998), UWE (Koch, 2001), OO-H (Gomez et al., 2000),

WSDM (Troyer and Leune, 1998), HERA (Houben, 2000) and

Chapter 3. State of the Art 87

MIDAS (Marcos et al., 2004). In particular, this analysis is focused

on the solutions that each of these proposals provide to perform

the construction of Web applications supporting BPs. This section

has been organized as follows. First of all it presents each proposal

by detailing the following points:

� Method descriptionMethod descriptionMethod descriptionMethod description. This point provides a general

description of each method that includes its origins,

evolution and tool support.

� Adaptation Adaptation Adaptation Adaptation to build BPto build BPto build BPto build BP----driven Web applicationsdriven Web applicationsdriven Web applicationsdriven Web applications. This

point presents the mechanisms defined by each method to

carry out the construction of Web applications providing

support to BPs.

� Development processDevelopment processDevelopment processDevelopment process. This point presents how each

proposal has modified its development process to cope with

the modelling phase related to BP.

Finally, once each proposal has been presented, section 3.1.9

provides a discussion about the support provided by the reviewed

methods to deal with the requirements introduced by BP-driven

Web applications (these requirements are detailed in section 2.3.3

from chapter 2).

3.1.13.1.13.1.13.1.1 UWAT+UWAT+UWAT+UWAT+

The Ubiquitous Web applications (UWA) framework (UWA

Consortium, 2002) is the result of a joint effort developed by a

group of researchers from different countries which constituted

the UWA Consortium (www.uwaproject.org). As its name stands

for, this framework provides a methodology for the construction of

88 Chapter 3. State of the Art

ubiquitous Web applications. The ubiquitous aspect provides

flexibility regarding the target device and the usage context in

which Web applications are going to be used.

The objective of the UWA project was the production of an

environment that would allow covering the development process of

ubiquitous Web applications from requirements to the design

phase. This consortium proposes the use of an extended and

customized UML notation along the development process.

The aspects considered by the consortium for the definition of the

framework include “Requirements Elicitation: Model, Notation

and Tool Architecture”, “Hypermedia and Operation design: model

and tool architecture”, “Transaction design” or “Customization

design”.

Authors in (Distante et al., 2007) state that UWA provides a set of

tools for describing ubiquitous Web applications. However we have

not found any tool or even document where these tools were

presented or explained.

3.1.1.13.1.1.13.1.1.13.1.1.1 Adaptation to integrate processAdaptation to integrate processAdaptation to integrate processAdaptation to integrate process----driven Web driven Web driven Web driven Web

applicationsapplicationsapplicationsapplications

Originally, the UWA framework did not face properly aspects such

as (1) the necessity of describing the scenarios where process

execution and navigation are mixed, (2) the specification of the set

of contents and objects related to a particular activity or (3) the

Chapter 3. State of the Art 89

design of the collaboration of different users within a BP.

Therefore, to deal with these limitations an extension called

UWAT+ was proposed by (Distante, 2004). This extension focuses

on the Transaction and Navigation Design phases of the

development process.

On the one hand, the Organization and Execution Models built

during the Transaction Design phase have been extended as

follows:

� The Organization Model represents a web transaction from

a static point of view. The main change introduced in this

model allows differentiating the kind of relationships

between activities. On the one hand, Hierarchical Relations

allow specifying whether a sub-activity is required or

optional to complete the associated activity. On the other

hand, Semantic Relations allow specifying the dependence

between two activities.

� The Execution Model represents a web transaction from a

dynamic point of view. The main change introduced to the

original model is that system activities are specified

separately from user related aspects.

On the other hand, new diagrams have been included in the

Navigational Model built during the Navigation Design phase.

These diagrams are used as follows:

� The Activity Node concept was introduced to represent an

elementary activity of a BP. This node is an interactive

unit of information provided to the user in a single step.

90 Chapter 3. State of the Art

� The Activity Cluster concept specifies the possible

navigation between a set of nodes. This navigation includes

the interaction between process execution and content

navigation.

In addition, the state of the process and its activities is kept in the

system by means of a set of variables.

3.1.1.23.1.1.23.1.1.23.1.1.2 Development ProcessDevelopment ProcessDevelopment ProcessDevelopment Process

UWA defines six models to carry out the specification of Web

applications. First, following a goal-oriented approach,

requirements are gathered in the (1) RequirementsRequirementsRequirementsRequirements ModelModelModelModel. Second,

(2) ConceptualConceptualConceptualConceptual Model Model Model Model is built to specify the content of the

application as well as the ways to access to it. In addition, with

regard to the high-level transactional goals gathered in the

requirements model, static and dynamic views of these

requirements are defined in the (3) OrganizationOrganizationOrganizationOrganization and (4)

ExecutionExecutionExecutionExecution models respectively. These two models have been

extended to deal with the specification of BPs (see section 3.1.1.1).

Then, (5) the NavigationNavigationNavigationNavigationalalalal model model model model is built to define the navigation

throughout the content (Conceptual model) of the application. New

diagrams have been included in this model to deal with the

specification of BPs. Finally, the pages of the final Web application

are designed in the (6) Publishing modelPublishing modelPublishing modelPublishing model.

The development process is made up of six phases which produce

each of the models presented above. Figure 3.1 shows the

Chapter 3. State of the Art 91

development process of a Web application following the UWAT+

extension.

Figure 3.1 UWAT+ Development Process

In addition to the extensions defined to some of the models defined

by UWA, the development process itself has also been modified

regarding the order in which some steps are carried out. For

instance, the Navigational design step is now performed after the

Transaction Design phase. Moreover, the Conceptual model

produced during the Information Design phase is used by the

Transaction and Navigation Design phases.

3.1.23.1.23.1.23.1.2 WebML: Web Modeling LanguageWebML: Web Modeling LanguageWebML: Web Modeling LanguageWebML: Web Modeling Language

WebML (Ceri et al., 2000) was conceived in 1998 by an Italian

research group11 from the Politecnico di Milano. WebML is a

11 http://www.webml.org

92 Chapter 3. State of the Art

notation for specifying complex Web sites at the conceptual level

avoiding designers to commit detailed architectural details.

Originally, WebML was conceived to support the design and

implementation of data-intensive Web applications; however, as a

response to the new arising challenges appeared in the Web,

WebML has evolved continuously to satisfy some of these new

challenges. As a result of this evolution, WebML has been

extended to address the generation of: web service-enabled

(Brambilla et al., 2006b), workflow-based (Brambilla et al., 2006),

context-aware (Ceri et al., 2007), semantic web (Brambilla et al.,

2006a) and rich internet (Bozzon et al., 2006) applications. A

complete description of this method gathering all these extensions

is presented in (Brambilla et al., 2008).

Moreover, the WebML modelling language and its development

method are implemented in a commercial Web tool called

WebRatio Site Development Studio12. This tool covers the

development process and automates the generation of the

relational database and the application page templates. This tool

allows fast-prototyping and can be also used for implementation,

maintenance and evolution of the modelled Web applications.

12 http://www.webratio.com

Chapter 3. State of the Art 93

3.1.2.13.1.2.13.1.2.13.1.2.1 Adaptation to integrate processAdaptation to integrate processAdaptation to integrate processAdaptation to integrate process----driven Web driven Web driven Web driven Web

applicationsapplicationsapplicationsapplications

Web sites are described in WebML by means of four distinct

orthogonal models which are (1) the structural modelstructural modelstructural modelstructural model (which

defines the data content by means of a compatible language with

classical notations like the E-R model and the UML class

diagrams), (2) the hypertext modelhypertext modelhypertext modelhypertext model which in turn consists of two

submodels, the composition modelcomposition modelcomposition modelcomposition model (which defines the pages that

compose the site) and the navigation modelnavigation modelnavigation modelnavigation model (which defines the

topology of links between pages), (3) the presentation modelpresentation modelpresentation modelpresentation model

(which defines the layout and graphic requirements for page

rendering and (4) the personalization modelpersonalization modelpersonalization modelpersonalization model (which defines the

customization features for one-to-one content delivery).

However, none of the previously four presented original models

were aimed at the development of workflow-based applications.

Then, in order to deal with this limitation, WebML was extended

to provide support to lightweight Web-enabled workflows

(Brambilla, 2003; Brambilla et al., 2003; Brambilla et al., 2006).

The proposed extension embraces both the language and the

methodology itself. On the one hand, the language extension

includes:

� The introduction of a new dimension (the BP model) into

the methodology to deal with BP modeling. The notation

used to deal with the BP modeling is the BPMN notation.

� The extension of the data model (see Figure 3.2) with a set

of objects to describe the meta-data that is necessary for

94 Chapter 3. State of the Art

tracking the execution of the BP. This extension

represents a reference model that gathers the process

relevant information that is outside the data application.

Figure 3.2 Data Model Extended

� The extension of the hypertext model to specify business

activity boundaries and the workflow-dependent

navigation links.

On the other hand, the extension regarding the methodology

involves the following changes:

� New phases were introduced into the development process

to cope with the modelling of BPs and their integration

with the conceptual models.

� The design tool has been extended to allow the design of

workflow models.

� New transformations for translating workflow diagrams

into skeletons of Web applications defined in the WebML

language.

Chapter 3. State of the Art 95

3.1.2.23.1.2.23.1.2.23.1.2.2 Development ProcessDevelopment ProcessDevelopment ProcessDevelopment Process

WebML proposes an iterative and incremental development

process (see Figure 3.3) where various tasks are repeated and

refined until results meet the business requirements. This model

allows the continuous testing, evaluation, modification or

extension of each version of the system. As Figure 3.3 shows, the

conceptual design phase has been extended with two new tasks

(the process design and the process distribution) to endow the

method for the generation of process-aware Web applications.

Figure 3.3 WebML Extended Development Process

� The process designprocess designprocess designprocess design task is focused on the high-level

schematization of the processes underlying the application.

Although the process design task is performed at the

beginning of the conceptual design phase, this is not

strictly immovable. If data is the central role of the

application, the design task can be postponed after the data

design task to fit better the application requirements

nature.

� The process distributionprocess distributionprocess distributionprocess distribution task is focused on addressing the

allocation of sub-processes to different peers, and therefore

96 Chapter 3. State of the Art

occurs only when there are several Web servers involved in

the process enactment.

These two phases have influence over the data and hypertext

design phases. This influence is clearly seen by the extensions

performed to each of these models.

3.1.33.1.33.1.33.1.3 OOHDM: ObjectOOHDM: ObjectOOHDM: ObjectOOHDM: Object----Oriented Hypermedia Design Oriented Hypermedia Design Oriented Hypermedia Design Oriented Hypermedia Design

MethodMethodMethodMethod

The OOHDM proposal was developed by Schwabe and Rossi in

1994 (Schwabe & Rossi, 1998).

The set of models proposed by the OOHDM approach is based on

object-oriented concepts, using concepts such as object structure

and behaviour and abstraction mechanisms such as aggregation

and generalization/specialization. However, although this method

is based on object-oriented concepts, the resulting design can be

implemented on top of any conventional platform.

The OOHDM method has evolved since its conception and it has

been adapted to deal with the demanding necessities of each

moment. Then, we find extensions to deal with Semantic Web

technologies (Lima & Schwabe, 2003; Schwabe et al., 2004),

adaptation (de Assis et al., 2006), BPs (Schmid & Rossi, 2004) and

rich applications (Fialho & Schwabe, 2007). A complete description

of this method gathering all these extensions is presented in

(Rossi & Schwabe, 2008).

Chapter 3. State of the Art 97

The only available tool related to OOHDM is HyperDE13.

However, this tool is based on the Semantic Hypermedia Design

Method (SHDM) method, which defines an extension to the

original method for the construction of semantic web applications.

3.1.3.13.1.3.13.1.3.13.1.3.1 Adaptation to integrate processAdaptation to integrate processAdaptation to integrate processAdaptation to integrate process----driven Web driven Web driven Web driven Web

applicationsapplicationsapplicationsapplications

The OOHDM method uses four models to specify hypermedia web

applications. (1) The ususususe case diagramse case diagramse case diagramse case diagrams are used to provide a

concise graphical representation of the interaction between the

user and the system during the execution of a task. (2) The

conceptual modelconceptual modelconceptual modelconceptual model represents the application domain. This model is

based on well-known object-oriented modeling principles. (3) The

navigational modelnavigational modelnavigational modelnavigational model describes the navigational structure of a

hypermedia application. Expressing different views on the same

domain is achieved by building different navigational models for

the same conceptual schema. (4) Finally, the abstract interface abstract interface abstract interface abstract interface

modelmodelmodelmodel is built to map navigation with perceptible objects. It

describes the interface for navigational objects and the responses

to external events.

However, all these models were conceived basically to retrieve and

manipulate the data of the system. Therefore, to deal with the

modeling of BPs, OOHDM proposes to modify its conceptual and

navigational model by bringing processes as first class citizens.

13 http://www.tecweb.inf.puc-rio.br:8000/hyperde

98 Chapter 3. State of the Art

This is achieved by adding concepts related to BPs in both models.

On the one hand, the conceptual model is extended with a new

primitive called activity (primitive abstracting the process activity

concept). As a result, the conceptual model is made up of two types

of classes, one referring to entities and another to processes. On

the other hand, the Navigational model is extended consequently

with a set of primitives related to processes. One of them is the

called activity node, primitive that describes, in an abstract way,

the visible attributes, anchors and operations, elements that will

allow the user interacting with the system during process

execution. Moreover, as activity nodes exist within the context of a

particular process, these are contained within the corresponding

process node (primitive that gathers related activity nodes).

Finally, new types of links have been added to connect different

activity nodes (navigation that does not leave the process) and

activity and entity nodes (navigation that connects pure

navigation with navigation during process execution). The

semantics of navigation changes during the execution of a process

(Schmid & Herfort, 2004), and the new links are:

� StartStartStartStart: It allows the user moving from pure navigation to

the execution of a process.

� SuspendSuspendSuspendSuspend: It allows the user leaving the execution of a

process temporally. At this point, the process state is kept

until it is taken again by the user.

� ResumeResumeResumeResume: It allows the user taking up again the process

execution from pure navigation.

Chapter 3. State of the Art 99

� TerminateTerminateTerminateTerminate: It allows the user leaving the process and

changing to pure navigation. This stage is achieved because

the process has been cancelled or finished.

Moreover, to specify the flow control of the processes, the proposal

includes a new model into the method. This model uses the UML

activity diagram notation (OMG, 2004) to specify processes.

3.1.3.23.1.3.23.1.3.23.1.3.2 Development processDevelopment processDevelopment processDevelopment process

OOHDM divides the development process into four steps which

correspond to (1) domain design, (2) navigational design, (3)

abstract interface and (4) implementation. During the first step a

conceptual domain model is described using an object-oriented

hypermedia design model. In this model primitive such as classes,

relationships and sub-systems are used. In addition, a UML

Activity Diagram has been added at this stage to define the

control flow within processes. In the second step, the hypermedia

of the application is described by means of navigational structures

which are built based on the responsibilities assigned to different

types of users. This model is partitioned in two sections which

relate to pure navigation and process execution. Then, during the

Abstract Interface Design step the specification about how users

will perceive navigational objects through the interface is

performed. Finally, during the Implementation step navigational

and abstract interface models are transformed into a concrete

implementation environment.

100 Chapter 3. State of the Art

3.1.43.1.43.1.43.1.4 UWE: UML basedUWE: UML basedUWE: UML basedUWE: UML based----web Engineeringweb Engineeringweb Engineeringweb Engineering

UWE (Koch, 2001; Koch & Kraus, 2002) came up by 1998. The

method was developed by the WE Group from the Ludwig-

Maximilians-Universität München.

It is a software engineering approach based on UML (OMG, 2004)

(it uses the UML standard notation as much as possible) and

defines a UML profile to specify the peculiarities that introduce

web applications. The major benefit of being UML compliance is

that any CASE tool that supports the UML notation can be used

to produce the UWE models.

The UWE approach has evolved to deal with new features such as

personalization or support for BP execution (Koch et al., 2004;

Knapp et al., 2004). In addition, the approach has also evolved

regarding technological issues such as adopting aspect-oriented

techniques or model driven principles (Koch, 2006; Kraus et al.,

2007; Koch, 2007). (Koch et al., 2008) provides a complete

description of the approach including all these extensions.

An extension to the open-source CASE tool ArgoUML14 has been

implemented to provide modelling support for UWE (the

development process is not realized within the tool). This tool is

called ArgoUWE15 and supports the UWE method during the

14 http://argouml.tigris.org/

15 http://www.pst.informatik.uni-muenchen.de/projekte/argouwe

Chapter 3. State of the Art 101

modelling phase. However, the code generation phase in which the

Web application is built is out of the scope of this tool.

3.1.4.13.1.4.13.1.4.13.1.4.1 Adaptation to integrate processAdaptation to integrate processAdaptation to integrate processAdaptation to integrate process----driven Web driven Web driven Web driven Web

applicationsapplicationsapplicationsapplications

UWE proposes to deal with the process of modelling web

applications with a set of models to specify four different aspects.

(1) Initially, to deal with requirements, UWE proposes the use of

Use CasesUse CasesUse CasesUse Cases and UWE Activity DiagramsUWE Activity DiagramsUWE Activity DiagramsUWE Activity Diagrams. The former is used to

specify users of the web system and the functionality that the

system will provide to them. The latter is used to provide a more

detailed description (pre and post conditions, a workflow

description, exceptions, etc.) of the functionalities specified

previously. (2) The content modelcontent modelcontent modelcontent model provides a visual specification of

the domain application. In addition, to deal with customization

aspects (adaptation to the properties of users or user groups to

features of the environment) this model is accompanied with the

user or context modelcontext modelcontext modelcontext model. Both models are graphically represented by

a UML class diagram. (3) The navigational structurenavigational structurenavigational structurenavigational structure allows

defining the navigation nodes and links, menus, access primitives

(indexes and guided tours), etc.

The extension defined by UWE involves the phases related with

requirements and the navigational structure. Moreover, it

proposes introducing a new model that allows defining the

structural and behavioural view of the process. This model is

called Process flow modelProcess flow modelProcess flow modelProcess flow model and allows modelling processes

102 Chapter 3. State of the Art

independently of navigation, achieving the always wanted

separation of concerns in the design of Web applications. An

important difference between this model and the navigational one

is that in this case, the model can include elements that are not

derived from the conceptual model.

At the requirements stage, UWE extends the Use case modelling

technique by differentiating two types of use cases, the Navigation

Use cases and the Process Use cases.

� Navigation Use casesNavigation Use casesNavigation Use casesNavigation Use cases are used to model typical user

behaviour when interacting with a web application

(browsing or searching some content).

� Process Process Process Process UUUUse casesse casesse casesse cases are used to describe business tasks that

end users will perform with the system.

On the other hand, UWE proposes enriching the navigation

structure to reflect the set of integration points where the user

leaves pure navigation to change into the view referred to process

execution. To achieve this goal, the proposal has been extended

with the inclusion of two new stereotypes, which are the Process

Class and the Process Link primitives.

� Process CProcess CProcess CProcess Classlasslasslass: This stereotype represents classes whose

instances are used by the user during the execution of a

process. It is possible to define a mapping function between

process classes and use cases (those related to processes)

similarly to the mapping functions defined between

navigational classes and conceptual classes.

� Process LProcess LProcess LProcess Linksinksinksinks: This stereotype represents the association

between a navigational class and a process class. Moreover,

Chapter 3. State of the Art 103

this kind of links needs to have associated information

about the state of the process (i.e. links must be restricted

by an OCL expression about the state of the process). This

allows taking up again activities within a process under

certain conditions.

3.1.4.23.1.4.23.1.4.23.1.4.2 Development processDevelopment processDevelopment processDevelopment process

The construction of the navigational model is performed in two

steps. The former consists in building the navigational model that

includes both navigational and process classes which have been

derived from the Use cases built in the analysis stage. The later

step consists in the introduction into the navigational model of a

set of access structures which are needed to complete the

navigation. This step is partially automated and consists in the

introduction of indexes, tourist guides and queries following

certain rules. The process structural model similar to the

navigational model is derived from the conceptual model. The

developer must determine the set of conceptual classes that are

relevant to the process flow. The Process flow model is a

refinement of the process model defined during the analysis level

and represented by means of UML activity diagrams. UWE

describes by means of this model the process behaviour (sequence

of activities that make up the process). Each activity from the

Process Flow Model defines either a UML subactivity representing

the execution of a non atomic sequence of steps or a UML call

representing an atomic action that invokes to just one operation.

This operation is always referred to operations defined in the

process classes included in the structural process model. UWE, in

104 Chapter 3. State of the Art

line with its philosophy of being UML compliance, follows strictly

the notation and semantics defined by the UML activity diagram.

3.1.53.1.53.1.53.1.5 OOOOOOOO----H: ObjectH: ObjectH: ObjectH: Object----Oriented Hypermedia MethodOriented Hypermedia MethodOriented Hypermedia MethodOriented Hypermedia Method

OO-H is an initiative started in 2000 by Gómez et al. (Gómez et

al., 2000; Cachero & Gómez, 2002). OO-H was originally defined

as an approximation addressed by the user requirements, object

oriented-based and partially based on the standards. Based on the

object-oriented paradigm, this approach provides designers with

the semantics and notation necessary for the development of

personalized Web-based interfaces.

The OO-H proposal has been extended to deal with (1) dynamic

personalization (Garrigos et al., 2003) studying how

personalization properties influence navigation and presentation

models and (2) BPs integration (Koch et al., 2004).

The analysis and design steps proposed by OO-H are supported by

a modelling environment called VisualWADE16. This tool provides

a set of model compilers that allow generating a running

application for different platforms and languages.

3.1.5.13.1.5.13.1.5.13.1.5.1 Adaptation to integrate processAdaptation to integrate processAdaptation to integrate processAdaptation to integrate process----driven Web driven Web driven Web driven Web

applicationsapplicationsapplicationsapplications

OO-H proposes to deal with the modelling process with three

different models. These models are (1) the conceptual model, (2)

16 http://www.visualwade.com

Chapter 3. State of the Art 105

the Navigational model and (3) the Presentation model. The

conceptual model is defined by means of a UML class diagram

that keeps information related to the domain object. The

Navigational model is defined by means of the Navigational

Access Diagram (NAD) which allows defining menus, navigation,

views over conceptual classes and the paths provided to the user

to traverse the system. Finally, the Presentation model is used to

define the characteristics of each navigation path. These

characteristics allow changing certain visibility features such as

different link colours.

OO-H proposes the complementary use of UML activity diagrams

to represent the process control flow, endowing the expressive

power of the OO-H to allow the modeling not uni-granular

(atomic) and multi-granular (compound) services. The integration

is performed by preserving the navigational model and ensuring

the accomplishment of the restriction imposed by the control flow

of processes. Therefore, OO-H proposes mapping the elements

defined in the process model with elements from the navigational

model.

3.1.5.23.1.5.23.1.5.23.1.5.2 Development processDevelopment processDevelopment processDevelopment process

OO-H proposes five steps for the development of web applications

that support BPs. (1) Initially, the developer must refine the

conceptual model by adding properties and even new elements to

the UML class diagram. (2) Then, the developer must refine the

process model defined at the analysis level by means of Use cases.

Taking in mind the previously refined conceptual model, it is

106 Chapter 3. State of the Art

possible to build a more detailed activity diagram where the links

between the constructs of the process design and the conceptual

model is established by the identification of UML call states

(atomic actions that would invoke the execution of only one

operation). (3) The designer must then apply a set of predefined

mapping rules that allow the automatic generation of Navigation

Access Diagrams (NAD) based on the design of process models.

This automatic generation ensures the traceability between both

models (navigational and process models). (4) Then, the designer

must perform again over the recently obtain NAD diagram the

necessary refinements such as the addition of filters or extra

navigational paths. (5) Finally, once the navigational model is

completed, the designer can continue the process by defining

presentation aspects of the system.

3.1.63.1.63.1.63.1.6 WSDM: Web Site Design MethodWSDM: Web Site Design MethodWSDM: Web Site Design MethodWSDM: Web Site Design Method

WSDM is an initiative developed in the Vrije Universiteit Brussel

(Troyer & Leune, 1998). WSDM is a methodology and as such, it

provides modelling primitives and a systematic way to develop

web sites/applications.

Originally, the WSDM abbreviation referenced a method for the

design of Web sites (Web Site Design Method). However, the

method has evolved allowing now not only the design of traditional

web applications but also the development of semantic web

applications. For this reason, the abbreviation now stands for Web

Semantics Design Method.

Chapter 3. State of the Art 107

WSDM has been extended to deal with new modelling

requirements. The most important extensions performed to the

approach are to support (1) localization (Troyer & Casteleyn, 2004)

and adaptation (Casteleyn, 2005). A complete description of this

method gathering all these extensions is presented in (Troyer et

al., 2008).

WSDM does not have any tool that provides support either to the

method or to the models defined to deal with the description of

web applications.

3.1.6.13.1.6.13.1.6.13.1.6.1 Adaptation to integrate processAdaptation to integrate processAdaptation to integrate processAdaptation to integrate process----driven Web driven Web driven Web driven Web

applicationsapplicationsapplicationsapplications

The extension proposed by WSDM involves mainly the Conceptual Conceptual Conceptual Conceptual

designdesigndesigndesign phase which in turn is constituted by the Task Task Task Task and and and and

Information MInformation MInformation MInformation Modellingodellingodellingodelling and the Navigational designNavigational designNavigational designNavigational design phases.

On the one hand, the Task ModellingTask ModellingTask ModellingTask Modelling phase endows the method to

model explicitly tasks. To deal with the modelling of tasks WSDM

uses the ConcurTaskTree (CTT) notation (Paternò et al., 1997).

This notation was developed in the context of the Human-

Computer Interaction (HCI) to describe user tasks. This notation

allows specifying four different types of tasks (user, application,

interaction and abstract tasks) as well as the temporal

relationships between these. However, WSDM does not follow

completely the original CTT notation. In fact, it has been adapted

and slightly modified (user tasks are discarded because these are

108 Chapter 3. State of the Art

considered not useful during the design stage and some operators

have modified their meaning to express temporal relationships

between tasks) to satisfy the particularities that introduced the

design of Web applications.

On the other hand, the navigational model allows now a better

separation of concerns between the structure and the process

workflow. In this case, the task navigational modeltask navigational modeltask navigational modeltask navigational model allows

describing the way in which users can perform tasks in the web

site. This model is built from the model taskmodel taskmodel taskmodel task and the object chunobject chunobject chunobject chunksksksks

defined during the previous stage of task modelling. ComponentsComponentsComponentsComponents

and Project logic linksProject logic linksProject logic linksProject logic links are used to build the task navigational

model for each task model defined previously. However, to express

the workflow or the process logic defined in the task model by

means of temporal relationships in the CTT they use what they

call Process logic linksProcess logic linksProcess logic linksProcess logic links.

3.1.6.23.1.6.23.1.6.23.1.6.2 Development processDevelopment processDevelopment processDevelopment process

WSDM proposes to deal with the modelling process in five phases

which, in some cases, are made up in turn of different phases. The

first phase is the Mission Statement SpecificationMission Statement SpecificationMission Statement SpecificationMission Statement Specification whose goal is

the identification of the purpose of the web system (the proposal

follows an audience-driven design approach) as well as the subject

and the target users. Then, the Audience modelling phasAudience modelling phasAudience modelling phasAudience modelling phaseeee comes

into play. In this phase, the target users identified in the previous

phase are refined into audience classes. The next phase is the

Conceptual DesignConceptual DesignConceptual DesignConceptual Design phase. In this phase the method specifies the

information, functionality and structure of the web system at the

Chapter 3. State of the Art 109

conceptual level. On the one hand, the information and

functionality are specified during the Task and Information Task and Information Task and Information Task and Information

modellingmodellingmodellingmodelling sub phase. On the other hand, the navigational

possibilities for each audience class are specified during the

NavigaNavigaNavigaNavigational designtional designtional designtional design sub phase. Then, it is time to perform the

Implementation DesignImplementation DesignImplementation DesignImplementation Design phase. This is made up of three sub

phases which are Site Structure DesignSite Structure DesignSite Structure DesignSite Structure Design (in this phase the

conceptual structure of the website is mapped into pages),

Presentation DesignPresentation DesignPresentation DesignPresentation Design (in this phase the look and feel of the web

system as well as the layout is defined) and Logical Data designLogical Data designLogical Data designLogical Data design

(this phase is only performed for data-intensive systems and is

aimed at the construction of a database schema and the mapping

between the conceptual data model and the actual data source).

Finally, the ImplementationImplementationImplementationImplementation phase is reached, which is performed

by using the set of models generated previously.

3.1.73.1.73.1.73.1.7 HERAHERAHERAHERA

HERA (Houben, 2000; Houben et al., 2003; Houben et al., 2004) is

a method resulting of the Hera research project17 started in 2000

initially at the Technische Universiteit Eindhoven and supported

later by other Belgium fellow researchers from the Vrije

Universiteit Brussel and the University of Namur. It is a method

for the design of Web information systems that found its origins in

an approach for hypermedia presentation generation.

17 http://wwwis.win.tue.nl/~hera/

110 Chapter 3. State of the Art

The approach has been subject of different refinements resulting

in the Hera-S (van der Sluijs et al., 2006) extension. This

extension includes compliant models to the original ones

(hypermedia-based) which are based on the Resource Description

Framework (RDF) and RDF Schema (RDFS). This extension was

defined to easy the development of web systems when these rely

on very heterogeneous data sources. A complete description of this

method gathering all these extensions is presented in (Houben et

al., 2008).

Hera Studio is a graphical design tool that supports the domain,

context and application models defined by the proposal. Each of

these models is built in a separate editor and when these are

completed, these can be exported into an RDF serialization, format

that can be used by Hera. Currently, the application model editor

is being extended to support some of the specific constructs

introduced by the semantic extension (HERA-S).

3.1.7.13.1.7.13.1.7.13.1.7.1 Adaptation to integrate processAdaptation to integrate processAdaptation to integrate processAdaptation to integrate process----driven Web driven Web driven Web driven Web

applicationsapplicationsapplicationsapplications

The method defines three main models which are targeted to

model (1) content, (2) hypermedia navigation and (3) presentation.

The Domain ModelDomain ModelDomain ModelDomain Model (DM) describes the structure of the content

data. Based on this model, the Application ModelApplication ModelApplication ModelApplication Model (AM) is built.

This second model describes a hypermedia-based navigation

structure over the content. Moreover, HERA allows, by means of

the Context ModelContext ModelContext ModelContext Model (CM), the dynamic personalization and

Chapter 3. State of the Art 111

adaptation of the content. Then, the AM is instantiated resulting

in an Application Model PagesApplication Model PagesApplication Model PagesApplication Model Pages (AMP) which can be though of as

pages that display data and that contain links that allow moving

from one to another AMP. Then, AMPs are transformed into

suitable presentations by a presentation engine.

To carry out the modeling of BPs, HERA introduces the Workflow Workflow Workflow Workflow

ModelModelModelModel into the already presented models. The goal of this model is

to describe the set of BPs of the system as well as the collaboration

with both users and external systems. This model is defined by

means of UML Use cases and Activity Diagrams, which have been

extended with a language (based on ECA rules) for detailing the

activity states.

3.1.7.23.1.7.23.1.7.23.1.7.2 Development processDevelopment processDevelopment processDevelopment process

HERA proposes a development process consisted in six phases. (1)

Initially, an identification of actor representing user groups or

external systems and their assigned tasks is performed by means

of the task model. This specification is performed using a Use case

diagram. (2) Then, the Domain model is built to specify the

application domain data structure. (3) Regarding the workflow of

the system, this is defined in the Workflow model. (4) Then, state

activities are specified in the forth step. (5) Once all the

requirements are expressed in the corresponding models, an

automatic transformation can be executed to generate a model

describing the internal data processing and the basic navigation

structure of the previously designed system. (6) Finally, an

optional step can be performed to better fit the generated models.

112 Chapter 3. State of the Art

3.1.83.1.83.1.83.1.8 MIDAMIDAMIDAMIDASSSS

MIDAS (Marcos et al., 2004) is a Spanish initiative developed by

researchers from the Kybele Research Group at the Rey Juan

Carlos University.

MIDAS is a methodological framework that proposes the

development of Web Information Systems based on the MDA

approach. For this reason, it proposes to perform the modelling

process according to two dimensions. The first dimension is

related to the MDA abstraction techniques (CIM, PIM and PSM)

and how these are mapped to each other. The latter is related to

the hypertext (Caceres et al., 2004), content (Marcos et al., 2003)

and behaviour (Marcos et al. 2003a) relevant aspects in Web

Information System (WIS) development.

This is the most recent proposals from those analyzed in this

section. For this reason, the support to cope with BPs is provided

from the beginning, being not necessary the definition of any

extension.

The models proposed by MIDAS are supported by the MIDAS-

CASE tool. This tool includes a verification and validation module

that informs users about the completeness and correctness of the

defined models.

Chapter 3. State of the Art 113

3.1.8.13.1.8.13.1.8.13.1.8.1 Adaptation to integrate processAdaptation to integrate processAdaptation to integrate processAdaptation to integrate process----driven Web driven Web driven Web driven Web

applicationsapplicationsapplicationsapplications

MIDAS proposes a set of models for WIS development which are

organized orthogonally in the abstraction levels defined by the

MDA approach (CIM, PIM and PSM) and in the aspects that

characterize WIS systems (hypertext, context and behaviour).

In order to deal with BPs, MIDAS defines five models which are

gathered in the behaviour aspect and distributed in the three

different abstraction levels defined by the MDA approach. The (1)

Business modelBusiness modelBusiness modelBusiness model is built by the analyst and it is used to capture the

requirements in the form of BPs. Then, in the (2) User Services User Services User Services User Services

modelmodelmodelmodel, the developer identifies the users of the system as well as

the services (understood as complex functionality that satisfy a

specific need of the user) that the system will offer them. Once,

users and system services have been identified, by means of the

(3) Extended Use Cases modelExtended Use Cases modelExtended Use Cases modelExtended Use Cases model, the developer refines each of the

previous identified services in one or more user services, which in

turn can be defined as basic or composite services. Basic services

are also specified as structural (services aimed just for showing

pieces of information) or functional (services aimed to represent

interaction between the user and the system).Then, to define the

flow of the previously identified services, the (4) Services Process Services Process Services Process Services Process

modelmodelmodelmodel is built. The notation used in this model is the UML activity

diagram and each activity is mapped to the basic services defined

in the Extended Use Cases model. To detail more precisely the

service processes defined in the previous presented model, the (5)

114 Chapter 3. State of the Art

Services Composition modelServices Composition modelServices Composition modelServices Composition model is built. At this stage, the developer

(a) identifies the set of business collaborators that participate in

the process, (b) splits service activities into activity operations

(activities carried out by collaborators), (c) identifies which activity

operations will be provided as Web services and (d) distributes the

activity operations between the identified collaborators.

Related to the Hypertext aspect, MIDAS defines two models at the

PIM level. On the one hand, in the (1) Extended Slice modelExtended Slice modelExtended Slice modelExtended Slice model, the

system is decomposed into significant parts (slices, which in turn

can be defined as structural or functional, and hyperlinks). This

model could be considered as a view over the Conceptual Data

model where the developers filters the data and functionality that

is going to be shown in the user interface. On the other hand, (2)

the Extended Navigation modeExtended Navigation modeExtended Navigation modeExtended Navigation modellll is based on the previous model

and includes navigation structures such as Menu, Index or Query

among others. This model defines how the slices defined in the

Extended Slice model are going to be provided to the user.

3.1.8.23.1.8.23.1.8.23.1.8.2 Development processDevelopment processDevelopment processDevelopment process

The development process proposed by MIDAS to perform the

development of process-driven Web applications follows the

development process depicted in Figure 3.4.

Chapter 3. State of the Art 115

Figure 3.4 MIDAS development process focused on BP

This figure only shows the set of models included in the behaviour

aspect. However, the Extended Slice model defined within the

Hypertext aspect is derived from the Extended Use Cases Model

and the Conceptual Data model defined in the content and

behaviour aspects respectively.

3.1.93.1.93.1.93.1.9 DiscussionDiscussionDiscussionDiscussion

This section summarizes the support provided by the reviewed

methods to deal with the requirements that WE methods should

satisfy for building BP-driven Web applications (these

requirements are presented in Chapter 2). This summary is

organized as follows. First, the support provided by the reviewed

proposals is discussed. Then, we outline the solution designed in

this thesis to satisfy the identified requirement.

Requirement 1.Requirement 1.Requirement 1.Requirement 1. Differentiate between Short-running and Long-

running Processes.

116 Chapter 3. State of the Art

From the set of reviewed methods, HERA, UWAT+ and WebML

provide modelling mechanisms for specifying both types of BPs.

However, none of these methods follows a code generation strategy

that allows producing Web applications in which users can

differentiate the type of process being executed. The main reason

to make this differentiation explicit is to help users in completing

the BP in which they are involved.

Solution Proposed in this thesis:

In this scenario we propose the generation of a different GUI

depending on the case. On the one hand, short-running BPs are

presented to users similarly to a wizard. The involved user follows

a set of steps which allows the accomplishment of the BP goal. On

the other hand, long-running BPs are presented to users similarly

to the way BPMS do. In this case, processes are handled

throughout a TODO list. This list allows users reaching and

completing their pending tasks easily. In addition, usability

aspects are also considered for the generation of these GUIs.

These are taken into account in order to improve the user

experience which results in speeding the completion of process

tasks.

Requirement 2.Requirement 2.Requirement 2.Requirement 2. Specify the data and functionality to support BP

activities.

All the reviewed methods provide mechanisms to specify the

functionality that supports the execution of BP activities.

However, regarding with the data necessary to complete BP

activities, only OOHDM and UWAT+ provides mechanisms (by

Chapter 3. State of the Art 117

suspending and resuming tasks) that allow users moving from BP

navigation to content navigation to reach this data.

Solution Proposed in this thesis:

In this thesis, views over classes and services defined in the

Structural and Services model respectively allows us defining

which data and functionality is going to be presented to the user to

complete process tasks. One of the extensions performed to the

BPMN notation is to associate process tasks with functionality

that is defined either in the Structural or in the Services model.

Therefore, by means of the association with the Structural model

we are implicitly defining which classes are associated to each

activity.

Requirement 3Requirement 3Requirement 3Requirement 3. Deal with the Specification of BP flows.

All the reviewed methods provide mechanisms to specify BPs flow.

All of them make use of specific languages or notation to represent

these flows (i.e., BPMN, UML Activity Diagrams or Concur Task

Tree).

Solution Proposed in this thesis:

In this thesis we have introduced a new model to specify the BP

flows. This model is called the Business Process Model and is

based on the BPMN notation. The expressivity provided by this

model (i.e. fork and merge gateways or loop activities) allows us

representing graphically the potential paths that can be taken

during business process execution.

118 Chapter 3. State of the Art

Requirement 4. Requirement 4. Requirement 4. Requirement 4. Deal with Distributed Processes.

Only the HERA, MIDAS and WebML consider the collaboration

with external parties to support some of the activities included in

the BPs. On the contrary, OOHDM, OO-H, UWE, WSDM and

UWAT+ conceive web applications as isolated systems where all

the activities of the BPs is supported by the own Web application.

Solution Proposed in this thesis:

This requirement is satisfied by means of the notation that has

been used to represent BPs which is BPMN (see chapter 2 for

details on the notation). This notation provides graphical elements

(specifically the Pool and the Message Flow graphical elements)

that allow specifying different organizations involved in the same

BP and the way they cooperate to accomplish the BP goal.

Requirement 5.Requirement 5.Requirement 5.Requirement 5. Deal with Multiple roles.

Most of the analyzed proposals (MIDAS, OOHDM, OO-H, UWE,

and WSDM) just deal with the specification of short-running BP.

Therefore, even though the notations used to model BPs provide

mechanisms for specifying different roles, this mechanism is not

used by these methods. Other methods such as WebML, HERA

and UWAT+ allow the definition of different roles which

participate for the conclusion of a specific BP.

Solution Proposed in this thesis:

Similarly to the previous requirement, this is satisfied by means of

the BPMN notation. In this case, the graphical elements provided

by the notation (the Lane and the Flow graphical elements) allow

Chapter 3. State of the Art 119

specifying different responsibilities within the same organization

and the way they cooperate to accomplish the BP goal.

Requirement 6. Requirement 6. Requirement 6. Requirement 6. Deal with Manual Tasks.

None of the analyzed proposals take into account that BPs can

define tasks that are performed manually.

Solution Proposed in this thesis:

Similarly to the two previous requirements, this is satisfied by

means of the BPMN notation. In this case, BPMN provides with

different types of activities which include the “manual” type

activity. This type is used to represent manual tasks included in

the BP specification. Moreover, a proper GUI is provided to the

user to accomplish this type of task.

Requirement 7. Requirement 7. Requirement 7. Requirement 7. Separation of Concerns related to Navigation.

The analyzed proposals deal with the separation of concerns

regarding navigation at three different levels:

a) By describing the control flow of the BPs by the use of UML

activity diagrams or a similar language. All of the proposals

make use of this mechanism.

b) By introducing new primitives into the navigational model to

differentiate content navigation from navigation during BP

execution. This mechanism has been adopted by the OOHDM,

UWAT+, UWE, WebML, MIDAS and WSDM proposals.

However, proposals such as HERA and OO-H simply use the

existing navigational primitive to simulate BP execution.

120 Chapter 3. State of the Art

c) By introducing mechanisms that allow leaving the execution of

a BP (suspending the current BP instance) and starting with

content navigation and vice versa (resuming the suspended BP

instance). This aspect has only been considered by the

OOHDM and UWAT+ proposals.

Solution Proposed in this thesis:

Although these mechanisms constitute a first attempt to

distinguish navigation in both cases (content navigation and BP

navigation), it still requires defining the navigational flow within

the navigational model. This decoupled degree can be acceptable

for the definition of simple processes. However, this solution does

not scale for more complex situations where the control flow

derives into complex structures that are difficult to handle within

the navigational model. Therefore, we propose to further the

separation of concerns by maintaining the navigation that occurs

during BP execution inside the definition of the process. To

achieve this level of separation of concerns we have extended the

architecture of the generated Web applications by introducing a

process engine that is capable of handling the execution of BPs.

Requirement 8. Requirement 8. Requirement 8. Requirement 8. Keep the State of the BP.

On the one hand, UWAT+ and WebML have extended their

respective conceptual models to keep explicitly the state of the

started activities and the BP. This mechanism allows these

proposals to restore the process state whenever this is necessary.

On the other hand, methods such as OOHDM, UWE, OO-H,

MIDAS, HERA and WSDM keep the state of the BP implicitly in

Chapter 3. State of the Art 121

the navigational model. The main problem with this approach is

that the state of a started BP cannot be restored if the user has

left the BP (i.e., when the computer is switched off

unintentionally).

Solution Proposed in this thesis:

In this work we propose to keep the state of the BP explicitly.

However, in contrast to the solutions proposed by UWAT+ and

WebML, in this work we make use of a process engine that is in

charge, among others tasks, of keeping the state of each launched

BP.

In addition to these requirements, even though the existence of a

tool supporting the method does not change the method itself, it

provides an added-value to the method and contributes to the

acceptability of the method in industrial environments (Garzotto

& Perrone, 2007). For this reason we are also going to mention the

tool support provided by the reviewed methods.

Tool supportTool supportTool supportTool support

Only WebRatio and ArgoUWE (tools supporting WebML and UWE

respectively) provide support to the extension to deal with BP

integration. However, in the case of ArgoUWE, this support is

limited to the modelling stage. On the contrary, WebRatio

processes the models defined in the proposals to produce the

running Web application.

122 Chapter 3. State of the Art

Regarding the HERA, UWAT+, OOHDM, OO-H, MIDAS and

WSDM proposals, up to date there is no tool supporting the

extensions proposed by each of them.

Solution Proposed in this thesis:

In this thesis, we have developed an Eclipse-based tool that

supports the modelling and the transformation phases that allow

building a BP-driven Web application based on the specification

performed at the modelling level. This tool combines different

projects developed within the Eclipse environment (EMP and STP)

that have allowed its construction.

Table 3-1summarizes the support provided by each of the

previously analyzed proposals to deal with the integration of BPs

in Web applications.

U
W
A
T
+

W
eb
M
L

O
O
H
D
M

U
W
E

O
O
-H

W
S
D
M

H
E
R
A

M
ID

A
S

Requirement 1        

Requirement 2        

Requirement 3        

Requirement 4        

Requirement 5        

Requirement 6        

Requirement 7        

Requirement 8        

Table 3-1 WE methods Summary

Chapter 3. State of the Art 123

The symbols used in Table 3-1 have the following meaning:

: The approach completely supports the feature

 : The approach partially supports the feature

: The approach does not support the feature

3.2 Conclusions

In this chapter we have presented the most well-known

approaches developed within the WE area and how these have

faced the integration of BPs into Web applications. First we have

introduced each proposal presenting its origins and the set of

extensions developed to deal with the different requirements that

have emerged since the birth of the WWW. Then, we have

presented the mechanisms proposed by each proposal to deal with

the integration of BPs at the modelling level and how this affects

to the corresponding development process. Once all the proposals

have been presented, a discussion about the appropriateness of

each solution is provided. This discussion is based on the

requirements that Web Engineering methods should support to

build BP-driven Web applications (these requirements were

presented in chapter 2). This discussion reveals that some of the

requirements are not addressed properly and others even are not

considered. Finally, the discussion has been completed by

providing an overview of the solution developed in this thesis to

deal with each requirement.

Chapter 4

4 Development Process

This chapter presents the development process that has been

designed to deal with the construction of BP-driven Web

applications. This process extends the process defined by the

OOWS method by introducing and modifying some of the existing

steps. Along the chapter, each step of the process is described in

detail specifying the set of artefacts (model or code) that are

required and that are produced by each of them.

The chapter has been organized based on the phases that relate to

the extension. On the one hand, during the Design phase the

system is represented in terms of the models defined by the

method. On the other hand, during the Implementation phase, by

means of the application of model transformations, we obtain

automatically an equivalent representation of the system but this

time in terms of an implementation language.

4.1 Introduction

The Model Driven Development (MDD) approach proposes to deal

with the software development process based on the use of models.

Putting this approach into practice involves three steps. First of

126 Chapter 4. Development Process

all, it is necessary to define a language (metamodel) that allows

expressing a particular kind of systems. Then, in a second step,

this language can be used to create models that represent

different system instances. Finally, in order to execute these

models it is necessary to transform them into an executable

representation. This last step is achieved by means of model

transformations which allow moving the system represented in

the models into a particular implementation technology. But these

are the ingredients that make possible the application of the MDD

approach. However, it is necessary to establish the steps that

define the development process as well as the artefacts resulting

from each step.

Independently of the software development model used in the

definition of a software development process (waterfall or

iterative), a complete process involves six different steps which

covers from requirements gathering to software maintenance.

However, in this chapter, the development process is focused just

on two of these steps which relate to the Design and

Implementation of the Web system. This simplification is due to

the fact that the proposal developed in this thesis has only impact

in these two steps.

Therefore, according to this simplification of the development

process, the proposed process is made up of two steps. During the

first step, the Design of the Web system is performed. In this case,

the system is represented in terms of the models defined by the

method (structure, behaviour, system views, etc) (see section 4.3).

Chapter 4. Development Process 127

Then, in a second step, all these models are transformed into a

particular implementation technology, allowing the execution of

the modelled system (see section 4.4). The latter step is performed

by the application of model transformation techniques which allow

moving from the problem space (real world concepts) to the

solution space (system implementation).

Before presenting the development process itself, in the following

subsection we advocate for the use of the BPMN notation to

represent graphically the development process.

4.1.14.1.14.1.14.1.1 Using BPMN to Define the Development ProcessUsing BPMN to Define the Development ProcessUsing BPMN to Define the Development ProcessUsing BPMN to Define the Development Process

There are different approaches that can be used to specify

software development processes. Some of these approaches are the

PIE methodology (Cunin et al., 2001), the OPEN Process

Framework (Firesmith & Henderson-Sellers, 2001) or SPEM

(OMG 2005b). However, since in this work we use the BPMN

notation to describe business processes, we find more appropriate

to use this notation to specify the development process. In fact, in

(Sousa et al., 2007), authors proved that BPMN can be used to

represent graphically methods defined according the SPEM

specification. This proof is based on a comparison made between

the elements defined by SPEM and the ones defined by the BPMN

notation. This comparison shows that it is possible to find BPMN

elements to represent each of the elements defined by SPEM.

However, since the BPMN notation defines different types of sub-

models to create BPs, we need to specify the use made of this

128 Chapter 4. Development Process

notation to define the development process. The different types of

sub-models provided by the BPMN notation are “private (internal)

business processes”, “abstract processes” and “collaboration

processes”. From these types, we have used the “private (internal)

business process” type of sub-model. In this case, the internal

business processes refers to the development process itself.

Although the expressivity provided by the BPMN notation is

enough to describe the whole process (it includes “Flow Objects”,

“Connecting Objects”, “Swimlanes”, “Artefacts”, “Events”,

“Activities”, “Gateways”, etc.), we still need to differentiate the

type of document produced in each task. For this purpose we have

extended the semantics of the Data Object graphical element from

the original BPMN notation with the use of stereotypes.

Therefore, when the generated artefact refers to a model, we will

denote it with the “model” stereotype. On the contrary, if the

generated artefact corresponds to executable code we will denote it

with the “code” stereotype. In addition, the process tasks in gray

colour represent the tasks that have been introduced or modified

in the current proposal from the ones defined by OOWS originally.

4.2 The Big Picture

The process depicted in Figure 4.1 shows the development process

resulted after extending the OOWS method to deal with the

execution of Business Processes. As this figure shows, the process

involves the participation of three different roles, two of which are

related to human-beings (the Analyst and the Developer) and the

Chapter 4. Development Process 129

third to a system (the Bizzy tool) as indicated by the stereotypes

“human-being” and “system” respectively in Figure 4.1.

The process is started by the Analyst. This user defines, using the

BPMN notation, the set of Abstract18 Business Processes (ABP)

that have to be supported by the system (“Business Process

Analysis” task). As a result of this task a set of ABP are produced.

Then, the Developer appears in the process. Based on the

previously generated ABPs, this participant represents these BPs

in terms of the OO-Method models and the Services model (see

Figure 4.2 the “System Specification” sub-process task). As a

result of this task, an OO-Method plus a Services model

representation of the BPs is obtained.

Although the development process proposes performing first the

“Business Process Analysis” and then the “System Specification”,

these tasks can be performed in the other way round. The order in

which these tasks are going to be performed is determined by the

way in which the system requirements19 are discovered. In some

cases, requirements are provided in terms of a well defined

process. In other cases, requirements are provided in terms of

domain concepts and uni-granular functionalities.

18 This process description is abstract since it cannot be executed in a

process engine. It is an incomplete BP definition from the execution point

of view.

19 In this case we are referring to functional requirements.

130 Chapter 4. Development Process

2nd Stage – Solution Space

1st Stage – Problem Space

OOWS-BP

Analyst

«human-being»

Developer

«human-being»

Business Process

Analysis

+

System

Specification

+

Web

Specification

Business Process

Design

Bizzy Tool

«system»

«model»

Business Processes

[incomplete]

«model»

OO-Method Model

«model»

Business Processes

[complete]

«model»

OOWS

Models

[basic]

«code»

WS-BPEL

document

Web Application

Generation

This sub-process

references

The OO-Method

This sub-process

involves

model2model

transformations

Enrich?

+

Enrich Web

Specification

YesNo

+

+

Executable

Business Process

«code»

Tapestry

files

«model»

OOWS

Models

[enriched]

This sub-process

involves

model2text

transformations

«model»

Services Model

This task

includes

model2text

transformations

Figure 4.1 Process Development

Chapter 4. Development Process 131

Structural

Model
Functional

Model

Dynamic

Model

Sistem Object Life

Specification

State Changes

semantics

Specification

Information

Structure

Specification

External

Services

Specification

WSDL Services

Model

Figure 4.2 Expanded Sub-process System Specification

The following step in the process is still performed by the

developer. At this point, the developer completes20 the ABPs

defined by the Analyst in order to generate, in a later step, an

equivalent representation of the BPs but this time in terms of the

WS-BPEL executable language. This is achieved by associating

operations defined either in the Structural Model or in the

Services Model to the tasks included in the ABPs. These

associations will allow, in a later step of the process, to obtain

Concrete21 Business Processes (CBP).

20 This completion is only required when the ABP includes at least one

task that has not been defined as manual, this is, a task whose execution

is implemented in a system.

21 Understanding “concrete” as an executable definition of the process.

132 Chapter 4. Development Process

Once the system has been shaped in the previous mentioned

models we can bring them into the Bizzy tool and use it for the

generation of new artefacts (“Web Specification” task). This tool

performs two different tasks which produce different artefacts

from the specifications defined in the Structural, Services and

Business Process Models. On the one hand, the tool generates the

Navigational and Presentation models defined by the OOWS

approach (see Figure 4.3). On the other hand, from the CBPs the

tool generates the equivalent BP but this time as a WS-BPEL

process ready to be deployed in a process engine.

Figure 4.3 Expanded Sub-process Web Specification

4.3 The Modeling Step

This section presents the first step in the development process.

This step involves representing the system requirements in terms

of the models defined in the proposal.

4.3.14.3.14.3.14.3.1 The OOThe OOThe OOThe OO----Method Modeling Method Modeling Method Modeling Method Modeling StepStepStepStep

OO-Method provides a set of models that allow performing the

conceptual modelling of Information Systems. This conceptual

model is represented by two different aspects which are the

Chapter 4. Development Process 133

system structure and its behaviour. These two aspects are

gathered in the Structural, Dynamic and Functional models. In

addition to these models, an additional model was introduced in

(Torres et al., 2005; Quintero, 2008) to capture the functionality

that is provided by external systems. All these models are

explained in the following subsections.

4.3.1.14.3.1.14.3.1.14.3.1.1 The Structural ModelThe Structural ModelThe Structural ModelThe Structural Model

It defines the system structure (its classes, operations and

attributes) and relationships between classes by means of a UML

Class Diagram.

4.3.1.24.3.1.24.3.1.24.3.1.2 The Dynamic ModelThe Dynamic ModelThe Dynamic ModelThe Dynamic Model

It describes (1) the different valid object-life sequence for each

class of the system using State Transitions Diagrams and (2) the

communication between objects by means of Sequence Diagrams.

4.3.1.34.3.1.34.3.1.34.3.1.3 The Functional ModelThe Functional ModelThe Functional ModelThe Functional Model

It captures the semantics of the state changes to define service

effects using a textual formal specification.

4.3.24.3.24.3.24.3.2 The Services ModelThe Services ModelThe Services ModelThe Services Model

This model was introduced in the OOWS original proposal in order

to cope with the integration of external functionality into the

proposal. The objective of this model is bringing up external

services (functionality provided by external partners) into the

modelling level in order to manage them more easily.

134 Chapter 4. Development Process

4.3.34.3.34.3.34.3.3 The Business Process ModelThe Business Process ModelThe Business Process ModelThe Business Process Model

This model is used to specify the set of BPs that have to be

supported by the system. Its specification is performed by means

of the BPMN notation. The diagrams specified in this model are

built in two steps. First of all, a general description of the

processes is performed by the analyst. This description does not

include details in terms of the system, but in terms of the domain.

In a second step, these descriptions are taken and processed by

the developer in order to include all the details that will convert

them into process descriptions that can be transformed into

executable processes. This model is explained in detail in chapter

5.

4.3.44.3.44.3.44.3.4 The OOWS Method Modeling The OOWS Method Modeling The OOWS Method Modeling The OOWS Method Modeling StepStepStepStep

The OOWS Method extends the OO-Method approach in order to

cope with the peculiarities introduced by Web applications. It

defines three different models which gather three different aspects

of Web applications, (1) the kind of users interacting with the

system, (2) the way users can navigate through the system and (3)

the way the system is presented to the users.

4.3.4.14.3.4.14.3.4.14.3.4.1 The User ModelThe User ModelThe User ModelThe User Model

It defines the kind of users that are going to interact with the web

application. Moreover, it allows defining inheritance relationships

between them.

Chapter 4. Development Process 135

4.3.4.24.3.4.24.3.4.24.3.4.2 The Navigational ModelThe Navigational ModelThe Navigational ModelThe Navigational Model

It captures the navigational structure of Web applications. This

structure is defined as views over the system and different views

are defined for each kind of user defined in the User Model. The

extension to deal with the navigation modeling during BP

execution is presented in chapter 6.

4.3.4.34.3.4.34.3.4.34.3.4.3 The Presentation ModelThe Presentation ModelThe Presentation ModelThe Presentation Model

It defines the presentation properties in which the information

and functionality must be shown in the Web application. These

properties are related to information paging, layout and ordering

criteria and are applied to the elements that have been defined in

the Navigational Model.

4.4 The Code Generation Step

In a second step in the development process, the domain specified

in the models presented in the previous section is transformed into

code artefacts that can be executed. This phase of the process

includes two steps, one related with the generation of the code

representing the service orchestration (BPs) and another

representing the interface that will allow users involved in the

process interacting with the BPs. In particular, this interface is

going to be provided as a Web application.

4.4.14.4.14.4.14.4.1 WSWSWSWS----BPEL Code Generation StBPEL Code Generation StBPEL Code Generation StBPEL Code Generation Stepepepep

The generation process of an executable definition of the business

process is made up of three steps as Figure 4.4 shows.

136 Chapter 4. Development Process

Figure 4.4 Expanded Sub-process WS-BPEL generation

First of all, the “BPMN2BP-Babel” task takes as input the

abstract BPMN definition of the process and transforms it into the

BP format accepted by the Babel tool. This step is performed by

means of a model to model transformation (see section 9.2). Then,

the “Babel2WS-BPEL” task transforms the BP definition into a

partial WS-BPEL document (only the Activities section is

generated being the Partner Link, Variables and Correlation Sets

left). Then, the partial WS-BPEL document is completed in the

“WS-BPEL completion” task. This task can complete the WS-

BPEL definition from the information gathered in the Structural

and Services models. Finally, as a WS-BPEL process is also a web

service, it is necessary to generate its interface which contains

operations and data types. This is performed in the “WS-BPEL

WSDL + XSD” task.

Chapter 4. Development Process 137

4.4.24.4.24.4.24.4.2 UserUserUserUser Interface Code Generation Step Interface Code Generation Step Interface Code Generation Step Interface Code Generation Step

The generation process to obtain the modelled system into a Web

framework is performed in just one step (see Figure 4.5). In this

step a set of model-to-text transformations are executed to obtain

the modelled system in terms of a Web framework. Specifically,

these transformations produce code according to the Tapestry Web

framework. One of the main reasons to adopt this framework was

the component-based model in which this framework bases. This

allows marking a clear separation of different technologies used

during the development of the Web application.

Therefore, the “Web application generation” task requires the

OOWS model (including the OO-Method, the Services and the BP

models) as input model.

Figure 4.5 Expanded Sub-process Tapestry Web framework generation

138 Chapter 4. Development Process

As Figure 4.5 shows, the “Web framework files generation” task

produces three kinds of code files:

� The java files java files java files java files which define the java classes that

implement the logic of the application. It corresponds to

the Controller aspect from the MVC architecture in which

this framework relies on.

� The HTML filesHTML filesHTML filesHTML files which define the templates that

correspond to the View aspect from the MVC architecture.

� The page filespage filespage filespage files which are XML documents that include the

declaration of the Tapestry components used in the HTML

files. Although page files are optional, they contribute to

obtain a more readable code.

A more detailed explanation about the Tapestry framework and

the required files for building a Web application in this framework

is presented in chapter 9.

4.5 Conclusions

In this chapter we have presented the extended version of the

OOWS Web Engineering method to deal with the modelling and

generation process of BP-driven Web applications. The extension

involves the introduction of a new step in the modelling process to

specify the set of BP that the generated web application should

provide support to. Moreover, the generation process has been also

extended with a new step where BP definitions are transformed

into executable processes. Chapter 9 includes the set of

Chapter 4. Development Process 139

transformations that have been implemented to support the

generation process.

Chapter 5

5 Business Process Model

The Business Process Model (hereafther BPM) has been

introduced into the OOWS method to deal with the specification of

BPs at the modelling level. This model is based on the BPMN

notation. However, the expressivity provided by this notation does

not cover all the modelling requirements needed in the BPM. For

this reason, we have defined some extensions to the original

notation. These extensions allow us building BP specifications

that are integrated with other models defined in the method and

that can be automatically transformed into executable process

definitions (in particular in WS-BPEL definitions). These

extensions have been designed trying to modify the BPMN

original notation as little as possible. In fact, an extended model is

still a valid BPMN model (no structural or semantic changes have

been performed).

The chapter has been organized as follows. Section 5.2 present in

detail the modelling limitations found in the original BPMN

notation. Section 5.3 presents a BP example that highlights the

limitations previously presented. Then, by using the example,

142 Chapter 5. Business Process Model

section 5.4 details the extensions defined to deal with the

limitations. Finally, section 5.5 provides some conclusions.

5.1 Business Process Model based on the BPMN

notation

The BPM has been introduced in the OOWS original proposal to

provide developers with modelling mechanisms for the

specification of Business Processes (BP). This model allows

describing system functional requirements that are provided in

terms of a well-defined process. The type of information that is

represented in a BPM includes the set of tasks that form the

process and how these tasks are distributed among different

participants.

As we have stated in chapter 2, the BPM is specified by means of

the BPMN notation. This notation defines three basic types of sub-

models which are (1) private (internal) business processes, (2)

abstract (public) processes and (3) collaboration (global) processes.

In this work we combine two of these basic sub-models to model

BP requirements. On the one hand, private business processes are

used to define internal processes of a specific organization (for

which we are developing the system). On the other hand, abstract

processes are used to represent interactions between private

business processes and external participants.

The BPM is represented as a single Business Process Diagram

(hereafter BPD) that includes multiple private and abstract

Chapter 5. Business Process Model 143

processes where the activities that are common to several

processes are associated. In the last step of the development

process, by the application of model-to-model transformations,

each private business process is mapped to one WS-BPEL

document. Moreover, this document also includes the specification

of the interaction between the private process and the external

partners defined in the abstract processes. Specifically, this usage

of the BPMN notation corresponds with one of the types of BPD

covered by the notation (OMG, 2006), which corresponds to the

“Detailed private business process with interactions to one or more

external entities (or “Black Box” processes)” diagram type.

The information that has to be gathered in the BPM corresponds

to (1) the systems (external and internal) that are involved in the

BP, (2) the activities that conform the internal (private BP)

system, (3) the participants (within the private BP) that are

responsible of performing these activities, (4) the conditions that

control the BP flow and (5) the interaction that occurs between the

private BP and the external partner(s). To represent all this

information in a BPD, the BPMN notation provides us with

different elements that allow representing the information that

need to be specified in the BPM. These elements have already

been presented in chapter 2 but the main groups are briefly

presented now.

� SwimlanesSwimlanesSwimlanesSwimlanes: The elements included in this group allow

grouping primary modeling elements. These elements are

Pools, and Lanes and are defined in the specification as

follows:

144 Chapter 5. Business Process Model

� ArtifactsArtifactsArtifactsArtifacts: The elements included in this group are used to

provide additional information about the Process.

Nowadays, the BPMN specification includes Data Object,

Group and Annotation, however, this set is susceptible to

grow and standardize either for general use or for vertical

markets. A common characteristic of the elements included

in this group is that none of them have a direct effect on

the Sequence or Message Flow of the Process.

� Flow ObjectsFlow ObjectsFlow ObjectsFlow Objects: The elements included in this group define

the behaviour of a BP. These elements are Events,

Activities and Gateways.

� Connecting ObjectsConnecting ObjectsConnecting ObjectsConnecting Objects: The elements included in this group

allow connecting Flow Objects to each other. The

specification distinguishes three kind of connecting objects

which are Sequence Flow, Message Flow and Association.

5.2 BPMN limitations to Support the BPM

The four groups of elements roughly presented in the previous

section gather the set of graphical elements used in the BPD.

However, in order to produce executable definitions equivalent to

those modelled in the BPMN notation it is necessary to provide

detailed information to some of the elements conforming these

BPs. Within the set of BPMN graphical objects we find almost all

the necessary elements for defining the kind of processes we are

interested in. Nevertheless, the notation does not allow us

defining:

Chapter 5. Business Process Model 145

1. The scenarios where human participants behave as individuals

or as members of a particular group.

2. The functionality that is going to support each task/activity

included in the BP definition. Note however that this do not

applies to tasks defined as manual (tasks that do not change

the state of the Information System and that are completely

carried out by users).

3. Dependencies between different lanes within the same pool. In

some cases process participants are related each other and this

link have to be explicitly defined in the process.

To deal with these limitations we have defined extensions to the

original BPMN notation. Specifically, the proposed extensions

have been defined over the BPMN Metamodel included in the

BPMN modeller22 from the STP (SOA Tools Platform) project. The

modeller main goal is to provide a graphical notation that allows

defining processes. This tool has been developed based on GMF

(Graphical Modeling Framework) and reuses and extends the GEF

(Graphical Editing Framework) and the EMF (Eclipse Modeling

Framework) projects.

5.3 PhD Thesis Delivery Example

The PhD Thesis Delivery BP depicted in Figure 5.1 represents the

procedure defined by a University Department to present a PhD

Thesis work. This BP is fully performed by participants of the

same organization (all of them are defined in different lanes

22 http://www.eclipse.org/stp/bpmn/

146 Chapter 5. Business Process Model

within the same pool). However, the behaviour of the participants

is different depending on the role. For instance, the Member role

(Member lane in Figure 5.1) is supposed to behave as an

individual. This means that the same person is going to perform

all the tasks included within this lane. Therefore, the person

delivering the Thesis draft (first activity of the BP) has also to fix

up the recommended corrections, fill in the handout request, and

all the remainder tasks that have been specified within the

Member lane. Nevertheless, this is not the case for other lanes

such as the Member.supervisor, Secretary and Department

Commission lanes. In these cases, any person belonging to the any

of these groups can perform any of the tasks that have been

defined within their lane.

S
y
s
te
m

«
e
n
ti
ty
»

D
e
p
a
rt
m
e
n
t
o
f
In
fo
rm
a
ti
o
n
 S
y
s
te
m
s
 a
n
d
 C
o
m
p
u
ta
ti
o
n

M
e
m
b
e
r

«
ro
le
-o
n
e
»

D
e
p
a
rt
m
e
n
t

C
o
m
m
is
s
io
n

«
ro
le
-a
n
y
»

S
e
c
re
ta
ry

«
ro
le
-a
n
y
»

U
n
iv
e
rs
it
y

C
o
m
m
is
s
io
n

«
ro
le
-a
n
y
»

M
e
m
b
e
r.
d
ir
e
c
to
r

«
ro
le
-a
n
y
»

Figure 5.1 PhD Thesis Delivery BP

In addition, process tasks can be defined of different types. Some

of them are fully performed by humans (i.e. “Notify Reviewers”),

others are performed by humans but being assisted by the system

(i.e. “Draft Thesis Delivery”) and others are performed completely

by the system (i.e. “Notify Dates”). From these types, only process

Chapter 5. Business Process Model 147

tasks included in the last two types are associated with some

system functionality. Figure 5.2 depicts (1) an enlarged excerpt of

the PhD Thesis Delivery BP and (2) an excerpt of the Structural

Model built for this example.

Figure 5.2 Excerpts of the Structural Model and Business Process

Diagram

Another particularity of the PhD Thesis Delivery BP is that the

specific supervisors involved in the process depend on the member

delivering the thesis. On the contrary, other participants such as

the Secretary Staff, the Department and the University

Commissions are always the same independently of the specific

user delivering the thesis.

148 Chapter 5. Business Process Model

5.4 BPMN Extensions

This section is divided into three sub-sections which are dedicated

to present the solutions designed to deal with the limitations

presented previously.

The extensions have been organized in a new metamodel called

bpmnxModel which extends some of the concepts defined in the

original BPMN metamodel. Figure 5.3 shows how the original

BPMN metamodel and the extension have been organized in

different packages.

Figure 5.3 Metamodel Architecture

The extension defined over the BPMN metamodel (see bpmnx

Metamodel package in Figure 5.3) has been implemented by

creating a new EMF model that references (1) the elements that

are going to be extended from the original specification (see import

relationship between the bpmn Metamodel and the bpmnx

Metamodel packages) and (2) the functionality that has been

defined in the Structural and Services models (models that are

included in the oows Metamodel package).

The details of the defined relationships between the bpmnx

package and the bpmn and the oows packages are presented in

Figure 5.4. As this figure shows, the XLane and the XActivity

Chapter 5. Business Process Model 149

classes extend the Lane and Activity concepts defined in the

BPMN original metamodel.

Figure 5.4 Extension Defined to the BPMN Metamodel

The following subsections explain each extension. This

explanation is carried out in two steps. First, a concrete syntax

based on the example presented in section 5.3 is provided. Then,

the abstract syntax of the introduced elements (concepts and

relationships) is performed.

5.4.15.4.15.4.15.4.1 Differentiating Human Participant BehaviourDifferentiating Human Participant BehaviourDifferentiating Human Participant BehaviourDifferentiating Human Participant Behaviour

Concrete SyntaxConcrete SyntaxConcrete SyntaxConcrete Syntax: : : : In the PhD Thesis Delivery BP, the Member

lane has been marked with the “role-one” value. On the contrary,

the remainder lanes have been marked with the “role-any” value.

Abstract Abstract Abstract Abstract SyntaxSyntaxSyntaxSyntax: : : : In order to differentiate the behaviour of a

process role we have extended the Lane element with a new

attribute, the type attribute. The values accepted by this new

attribute are role-one and role-any.

150 Chapter 5. Business Process Model

� The role-one value is used when the user behaves as an

individual. Therefore, the human being performing the first

task of the lane has to be the same for the rest of tasks

defined within the same lane.

� The role-any value is used when the user behaves as a

member of a group. In this case, any human being

belonging to the group specified in the lane can perform

any of the tasks included in it.

Specifically, this extension has been implemented by adding the

type attribute to a new class, the XLane class, which extends from

the Lane class defined in the original BPMN notation. This

attribute has been designed as follows:

� The type attribute has been introduced to specify the

behaviour of the role involved in the current lane. It can

take one of the three different values: entity (used when

the participant is not a human being), roleOne (used when

the participant is a human being that participates in the

current process as an individual) or roleAny (used when the

participant is a human being that participates in the

current process as a member of a group). These values are

defined in the XlaneType enumeration.

5.4.25.4.25.4.25.4.2 Defining the Functionality of each Process TaskDefining the Functionality of each Process TaskDefining the Functionality of each Process TaskDefining the Functionality of each Process Task

Concrete SyntaxConcrete SyntaxConcrete SyntaxConcrete Syntax: : : : In the PhD Thesis Delivery BP, tasks defined as

“user” and “service” has to be linked to operations defined in the

Structural Model. For instance, the first activity “Draf Thesis

delivery”, which is defined as “user”, is associated with the

Chapter 5. Business Process Model 151

“handInThesis()” operation defined in the Thesis class (see Figure

5.2). In this activity, the user inputs the required data (specifically

the data required by the operation) and the system executes the

operation which creates (1) an instance of the process and (2) an

instance of the thesis class. Similarly, the “Propose reviewers”,

“Validate Thesis proposal” and “Select Reviewers” activities are

associated with the “Collaborator.newRevisor()”,

“Thesis.setState()” and “Collaborator.setState()” operations

respectively.

Abstract SyntaxAbstract SyntaxAbstract SyntaxAbstract Syntax: : : : A necessary step to obtain an executable

definition of the process is specifying the functionality that is

going to be performed in each task. For this purpose, we have

extended the Task element with a new attribute, the operation

attribute, which associates tasks with functionality that has been

defined in the Structural or in the Services Model. On the one

hand, the Structural Model defines functionality that is provided

by the local system, specifically by the classes defined in it. On the

other hand, the Services Model defines functionality that is

provided by external systems, specifically by the imported Web

services. However, this extension only applies to tasks defined as

Service, Receive, Send and User (these are some of the types in

which a task process can be defined) in the BPMN notation.

Process tasks defined as Script or Manual are not susceptible of

this extension.

152 Chapter 5. Business Process Model

Specifically, this extension has been implemented by adding the

operation attribute to the XLane class. This attribute has been

designed as follows:

� The operation attribute is used to reference an operation

defined either in the Structural model or in the Services

model.

5.4.35.4.35.4.35.4.3 Lane DependencesLane DependencesLane DependencesLane Dependences

Concrete SynConcrete SynConcrete SynConcrete Syntax:tax:tax:tax: In the PhD Thesis Delivery BP, the “dynamic”

lane has been labelled as “Member.supervisor” indicating the

dependent lane (Member) and the relationship between these two

lanes (supervisor). In addition, the role-dependence attribute has

set to the navigation expression: Thesis.isSupervisedBy which

allows identifying the users that can perform the tasks included in

the Member.supervisor lane. With regard to the order in which

tasks have to be performed, Figure 5.1 shows that the “Draft

Thesis delivery” task in charge of creating an object of the Thesis

class is performed previously to the “Propose Reviewers” task

which can be performed by any of the supervisors associated to the

Thesis previously delivered.

Abstract SyntaxAbstract SyntaxAbstract SyntaxAbstract Syntax: : : : In order to define dependencies between

different roles included in the BP we have extended the Lane

element with a new attribute, the role-dependence attribute. This

attribute is valued with an expression linked to the Structural

Model that allows identifying the users that form this “dynamic”

role. This expression corresponds to navigation over associations

defined in the Structural Model. In addition, this dependency

Chapter 5. Business Process Model 153

forces to perform first the activities that create or selects the

object involved in the navigation expression. Finally, to identify

more easily dependencies between lanes we label “dynamic” lanes

as follows: [dependent_lane].[relationship].

Specifically, this extension has been implemented by adding the

role-dependence attribute to the XLane class. This attribute has

been designed as follows:

� The role-dependence attribute has been introduced to

specify the dependence of the current lane with another

lane defined within the same pool. This relationship has to

be expressed in terms of the relationship defined in the

Structural model between these users. The notation used to

define this link is related with the relationship defined in

the Structural model.

5.5 Conclusions

Business Process models play a very important role in the

development process of enterprise software systems. Although

depending on the area in which enterprises develop their

functionality, it is quite likely that some of the requirements of the

system were given as a process. Then, once these process

specifications are given, these can serve as two purposes. On the

one hand, it allow business analysts to define clearly (as these

specifications are usually performed in languages or notations

targeted to this kind of users) the business process that systems

should implement. On the other hand, these specifications can

154 Chapter 5. Business Process Model

also be used as input in the development process to derive new

artefacts (executable process definitions and graphical user

interfaces) related to it.

This chapter has presented a set of extensions defined over the

original BPMN notation. The main reason to define these

extensions is integrating BP specifications into the OOWS

approach and detailing these specifications to transform them into

an executable language.

Finally, the availability of tools developed under the umbrella of

the Eclipse project (and in particular the use of the EMF project),

as it is the case of the BPMN modeller, has facilitated the

development of the proposed extension.

Summing up, the introduction of the Business Process Model with

the characteristics that have been explained in this chapter

endows the method to overcome seamlessly the development of

Web applications that are highly driven by Business Processes.

Chapter 6

6 Navigational Model Extension

This chapter presents the extensions that have been introduced

into the OOWS Navigational Model to deal with the integration of

Business Processes (BP). These extensions have been designed

taking into account the characteristics of the kind of BPs (short-

running and long-running BPs) we are dealing with (see chapter

2). The main reason to introduce new primitives is to be consistent

with the separation of concerns in which the OOWS method has

been conceived since its inception.

The chapter has been structured as follows. Section 6.1 provides

an introduction to this chapter. In this section, a motivation for

the introduction of these primitives is provided. Then, the

extension is presented through the following three sections. First,

in section 6.2 the extension is presented intuitively by means of

two case studies. Second, a more formal description of these

primitives is presented in section 6.3. Third, an overview of the

Navigational metamodel is presented in section 6.4. Finally,

section 6.5 presents the conclusions of this chapter.

156 Chapter 6. Navigational Model Extension

6.1 Introduction

The interaction that takes place between the user and the system

during the execution of a BP is different from the one occurring

during content navigation. On the one hand, when the user

navigates through the Web application (content navigation), she is

the one deciding the path (link) to follow. On the other hand, when

the user is executing a BP (BP navigation), is the system that

drives the user through the application.

The set of new primitives presented in this chapter allow

capturing, relating and manipulating the different aspects that

are introduced by the execution of BPs which are:

� The required data and functionality to perform BP

activities. The required functionality is specified by means

of the class-view, service-data-view and service-functional-

view primitives. These primitives are views over classes

and services defined in the Structural and Services Models

respectively and define the data and functionality that is

associated to a specific BP activity.

� The access point that allow users reaching BPs. This access

points allow users (1) starting new instances of a specific

BP and (2) taking up again a started BP instance that was

previously suspended. This is specified by means of the

Process Context and the Process Link primitive.

� Complementary information that help users completing BP

tasks. By providing users with information related to the

BP activities being performed we (1) help them in

Chapter 6. Navigational Model Extension 157

completing the activity and (2) avoid them switching from

BP to content navigation to reach that information. This

information is specified by means of the Complementary-

AIU primitive.

� Mechanisms to filter the amount of data shown to the user.

To avoid overloading GUIs with too much information it is

necessary to specify the filters that are going to be applied

to the retrieved instances. This filtration is specified by

means of the Index primitive.

� Other primitives have been introduced to organize data

and functionality according to the requirements of each BP

activity. For this purpose, primitives such as Activity

Containers, Main-AIU and Human-AIU have been defined.

6.2 Introducing the New Navigational Primitives

Before detailing each primitive, this section introduces them

graphically. To cover all the primitives, two different examples are

used. Both examples are presented in two steps. First, the

Navigational map for a specific type of user is presented

(Authoring-in-the-large). Second, a detailed view of the Process

Context included in the Navigational Map is presented

(Authoring-in-the-small).

The first example is related to the “Book Purchase Request” BP.

Within the categorization defined in chapter 2, this process

corresponds to a long-running BP. In this case, Figure 6.1 presents

the Navigational map for the Secretary User type.

158 Chapter 6. Navigational Model Extension

Figure 6.1 Navigational Map for the Secretary User type (Authoring-in-

the-large)

Figure 6.2 shows the detailed view of the “BookPurchaseRequest”

Process Context depicted in Figure 6.1. This figure includes most

of the primitives included in the extension.

Figure 6.2 Book Purchase Request Process Context (Authoring-in-the-

small)

Chapter 6. Navigational Model Extension 159

The second example is related to the “Checkout” BP. Within the

categorization defined in chapter 2, this process corresponds to a

short-running BP.

Figure 6.3 Navigational Map for the Member User type (Authoring-in-

the-large)

In this case, Figure 6.3 presents the Navigational map defined for

the Secretary User type.

Finally, Figure 6.4 shows the detailed view of the “Checkout”

Process Context depicted in Figure 6.3.

Figure 6.4 Check Out Process Context (Authoring-in-the-small)

160 Chapter 6. Navigational Model Extension

Along this chapter, these figures are referenced to explain the

primitives included in it.

6.3 Navigational Primitives to Support BP

execution

The extension defined over the Navigational Model defines ten

primitives, which include new ones and others that have been

adapted to the context of BPs. All these primitives represent an

abstraction of the elements included in the GUI used for

completing BPs. The new primitives are Process Context, Activity

Container, Main-AIU, Human-AIU, Complementary-AIU, Service-

Data-view, Service-Functional-view and Process-link. The adapted

ones are Index and Class-view. Each primitive is going to be

presented according to this schema: First, the problem that

motivates the definition of the current primitive is presented.

Second, the concrete syntax of the primitive is presented. This

syntax is described in a diagrammatic form and defines how the

abstract syntax (which is presented next) is presented to the end

user. Finally, the abstract syntax of the primitive is presented. In

this case, the concepts associated to the primitive and their

relationships to other primitives (even from another metamodel)

are described.

6.3.16.3.16.3.16.3.1 Process ContextProcess ContextProcess ContextProcess Context

ProblemProblemProblemProblem: We need to specify which GUIs are associated to a

particular BP. In addition, it is necessary to specify how a BP is

Chapter 6. Navigational Model Extension 161

reached, this is, which navigational paths have to be followed to

reach a specific BP.

Concrete SyntaConcrete SyntaConcrete SyntaConcrete Syntaxxxx: Figure 6.2 and Figure 6.4 illustrate a detailed

view (authoring-in-the-small) of the “Book Purchase Request” and

“Checkout” BPs respectively. With regard to the “Book Purchase

Request” BP, the process context has been defined as

“Exploration” context and has been associated to the Secretary

User type. This means that users belonging to the Secretary User

type can reach this Process Context from any place of the Web

application. In addition, this Process Context has been defined

from the “Book Purchase Request” Process Context specified for

the Member User type (this is possible because in the User Model

we have defined an inheritance relationship between the Member

and the Secretary User types). This inheritance mechanism allows

redefining contexts based on the user responsibilities.

The strategy proposed to allow users reaching long-running BPs

defined as “Exploration” context, is to gather these BPs into a

specific section called “Processes”. Figure 6.5 illustrates the Web

page corresponding to this “Processes” section. In addition, this

section includes the “my TODO List” section which provides the

logged users a shortcut to access their pending tasks.

162 Chapter 6. Navigational Model Extension

Figure 6.5 Web page corresponding to the “Processes” Section

With regard to the “Checkout” BP example, this has been defined

as “Sequence” context and has been associated to the Member

User type. This means that users belonging to the Member User

type can reach this Process Context throughout the “Shopping

Cart” Navigational Context. Figure 6.6 illustrates the

implementation of the “Shopping Cart” Navigational Context. In

this Web page, a link to start the “Check Out” BP is provided to

the user.

Chapter 6. Navigational Model Extension 163

Process Link to

Start the “Check Out” BP

Figure 6.6 Web page corresponding to the “Shopping Cart” Navigational

Context

A generic diagram of this primitive is shown in Figure 6.7. As this

figure shows, a detailed view of a Process Context is depicted

graphically as a UML package stereotyped with the keyword

«process-context» (see the white part of Figure 6.7) and containing

the name that corresponds to the referred process.

Figure 6.7 Process-Context primitive

164 Chapter 6. Navigational Model Extension

Abstract Syntax: Abstract Syntax: Abstract Syntax: Abstract Syntax: The Process Context primitive abstracts the

concept of a BP at the Navigational model. For each user defined

in the User Model participating in any process we include a

Process Context in her corresponding Navigational map.

The Process Context primitive has been designed as a specialized

class of the NavigationalNode primitive defined originally in

OOWS (see Figure 6.8). Similarly to the NavigationalContext class

(context defined for content navigation), the ProcessContext class

inherits the attributes defined in the NavigationalNode class

which represent (1) the name that is going to be displayed to the

user (alias attribute), (2) the identifier for internal purposes (id

attribute) and (3) the reachability type for the context

(reachability attribute).

Figure 6.8 Metamodel Excerpt including the Process Context primitive

The reachability type defines the way users can access a specific

Process Context and the values accepted by this type are:

� ExplorationExplorationExplorationExploration: This reachability type represents contexts

that are always accessible from any part of the application.

For long-running BPs, all the Process Contexts defined

Chapter 6. Navigational Model Extension 165

according this type are gathered in an always accessible

section called “Processes”.

� SequenceSequenceSequenceSequence: This reachability type represents contexts that

are only accessible by means of a predefined path. This sort

of contexts is reached through a set of chained Navigational

Contexts whose last context in the chain includes a link to

the Process Context (see Process-link in 6.3.10 subsection).

6.3.26.3.26.3.26.3.2 Activity ContainerActivity ContainerActivity ContainerActivity Container

ProblemProblemProblemProblem: We need to specify the data and functionality that is

associated to a specific BP activity.

Concrete SyntaxConcrete SyntaxConcrete SyntaxConcrete Syntax: Figure 6.2 and Figure 6.4 define two Process

Contexts which include different Activity Containers, specifically,

one per each activity defined in the BP involving human

participation. Each Activity Container gathers all the data and

functionality that are necessary to complete the associated BP

activity.

Figure 6.9 illustrates how the “Validate Request” Activity

Container included in the “Book Purchase Request” BP (see Figure

6.2) is presented at the implementation level.

166 Chapter 6. Navigational Model Extension

Figure 6.9 Web page corresponding to the “Validate Request” Activity

Container

A generic diagram of this primitive is shown in Figure 6.10. As

this figure shows, an Activity Container is depicted graphically as

a white square (see the white part of Figure 6.10) contained within

a specific Process Context. In addition, it contains the keyword

«activity-container» which is followed by the name of the activity.

Chapter 6. Navigational Model Extension 167

Figure 6.10 Activity-Container primitive

Abstract SyntaxAbstract SyntaxAbstract SyntaxAbstract Syntax: The Activity Container primitive abstracts the

concept of a BP activity at the Navigational model. It is contained

within the Process Context primitive previously presented. Each

activity modelled in the Business Process Model (BPM) and

defined as «user» or «manual» will have a corresponding Activity

Container in the Navigational Model. This primitive gathers the

required data and functionality that has to be provided in the GUI

to the user to complete the corresponding BP activity. An Activity

Container is made up of different Abstract Information Units23

(AIU). An Activity Container must include either a Main-AIU or

Human-AIU and zero or many Complementary-AIUs (these

primitives are explained in sections 6.3.3, 6.3.4 and 6.3.5

respectively). This constraint is defined in the metamodel by

23 An AIU is defined in the original proposal as a “primitive representing

the requirement of retrieving a chunk of related information”. This

primitive allows the coexistence of different information units in the

same web page (requirement that is usually demanded in Web portals).

168 Chapter 6. Navigational Model Extension

means of a multiplicity restriction defined between the Activity

Container and the abstract BaseAIU classes (the BaseAIU

generalizes the Main-AIU and the Human-AIU classes). Activity

Containers define two attributes which are initial and

createProcessInstance. On the one hand, the initial attribute is

valued to true when the Activity Container corresponds to the first

activity of the process requiring interaction with a human being.

Within the same Process Context, no more than one Activity

Container can be defined as initial. This means that the BP is

started by the user associated to the Process Context. On the

contrary, when no Activity Containers are defined as initial, the

BP is started by a system. This constraint is expressed in the OCL

language as follows:

Context ProcessContext

inv: (self.activities.initial->select(a|a = true))->size() = 1

On the other hand, the createProcessInstance attribute is valued

to true when the Activity Container represents the first activity of

the process (independently of its type). Moreover, only Activity

Containers whose initial attribute is set to true can value their

createProcessInstance attribute to true. The reason is that only

the initial activities can create an instance of the associated BP.

This constraint is expressed in the OCL language as follows:

Context ProcessContext

inv: (self.activities.initial->select(a|a = false))->union (

 (self.activities.createprocessinstance->select(a|a = true)))->size()= 0

Chapter 6. Navigational Model Extension 169

As Figure 6.11 shows, since the Activity Container primitive is

“part of” the Process Context primitive, a composition relationship

between these two classes. With regard to the definition of an

Activity Container, this defines four attributes to indicate (1) an

internal identifier (id attribute), (2) the name used to be displayed

to the user (alias attribute), (3) if the Activity Container

corresponds to the first activity of the process requiring

interaction with humans (initial attribute) and (4) if the Activity

Container corresponds to the first activity of the process

(createProcessInstance attribute).

Figure 6.11 Metamodel Excerpt including the Activity Container

primitive

170 Chapter 6. Navigational Model Extension

6.3.36.3.36.3.36.3.3 MainMainMainMain----AIUAIUAIUAIU

Problem: Problem: Problem: Problem: We need to specify which data has to be necessarily

provided to the user to complete a “user” BP activity (an activity

performed by the user that changes the state of the system).

Concrete SyntaxConcrete SyntaxConcrete SyntaxConcrete Syntax: In Figure 6.2 and Figure 6.4 we can see different

Main-AIUs which are associated to their corresponding Activity

Containers. For instance, the “Validate Request” Activity

Container includes a “ValidateRequest” Main-AIU. This primitive

gathers the data and functionality that has necessarily to be

provided to the user to complete the associated BP activity. In the

case of the “ValidateRequest” Main-AIU, the data and

functionality is gathered from the class-views (“RequestBook” and

“Member”) defined within the Main-AIU.

A generic diagram of this primitive is shown in Figure 6.12. As

this figure shows, a Main-AIU is depicted graphically as a white

square divided by a single line (see the white element of Figure

6.12). The top section is dedicated to gather views over the

Structural and Services model. The bottom section is dedicated to

define an Index (see subsection 6.3.6). It includes the keyword

«Main-AIU» followed by the name of the unit.

Chapter 6. Navigational Model Extension 171

Figure 6.12 Main-AIU primitive

Abstract SyntaxAbstract SyntaxAbstract SyntaxAbstract Syntax: This primitive gathers all the data and

functionality required by the user to perform a specific task. It is

divided into two sections; (1) one that includes views over the

Structural model (see Class-view) or the Services model (see

Service-functinoal-view) and (2) another that defines the way data

is going to be shown when the AIU retrieves more than one

instance (see the Index primitive presented in section 6.3.6).

The Main-AIU primitive has been defined as a specialized class of

the Base-AIU abstract class. The reason to introduce this abstract

class is to represent the constraint previously presented that

states that “An Activity Container can only include either one

Main-AIU or one Human-AIU”. In turn, this abstract class

inherits from the AIU class which defines attributes to represent

(1) an internal identifier (id attribute), (2) a string used for

172 Chapter 6. Navigational Model Extension

identifying the AIU at the user interface (alias attribute) and (3)

the relationship between this AIU and the Context in which this

AIU belongs (isContextual attribute).

Figure 6.13 Metamodel Excerpt including the Main-AIU primitive

A particularity introduced by this primitive is that within a Main-

AIU, the included views (class-views or service-functional-views)

can only specify one operation. Specifically, this operation

corresponds to the functionality that supports the associated BP

activity. This constraint is expressed in the OCL language as

follows:

Context MainAIU

inv: (self.ManagerClass.NavigationalOperation->size() = 1) or

(self.ComplementaryClass.NavigationalOperation->size() = 1)

When the class-views or services-data-views included in the Main-

AIU retrieve more than one instance, the Main-AIU primitive

activates the Index defined in its bottom section. As a result, it

filters the data defined in the views and shows just the attributes

specified in the attribute section of the Index.

Chapter 6. Navigational Model Extension 173

6.3.46.3.46.3.46.3.4 HumanHumanHumanHuman----AIUAIUAIUAIU

Problem: Problem: Problem: Problem: We need to specify which data has to be necessarily

provided to the user to complete a “human” BP activity.

Concrete SyntaxConcrete SyntaxConcrete SyntaxConcrete Syntax: In Figure 6.2 we can see the “PickUpBooks”

Human-AIU associated to the “PickUpBooks” Activity Container.

This primitive gathers the data that has necessarily to be provided

to the user to complete the associated BP activity. In this case, the

data is gathered from the class-views defined within the Human-

AIU.

Figure 6.14 shows how the Human-AIU modelled in Figure 6.2 is

implemented in a Web page. In this case, the event associated to

the “submit” button does not invoke any functionality. It only

communicates the BP that the current BP activity has been

completed.

174 Chapter 6. Navigational Model Extension

Figure 6.14 Implementation of a Human-AIU

A generic diagram of this primitive is shown in Figure 6.15. As

this figure shows, a Human-AIU is depicted graphically as a white

rectangle that includes the keyword «Human-AIU» followed by the

name of the unit (see the white part of Figure 6.15). Moreover, this

primitive display data related to the activity being performed

(usually a description of the tasks to perform).

Chapter 6. Navigational Model Extension 175

Figure 6.15 Human-AIU primitive

Abstract SyntaxAbstract SyntaxAbstract SyntaxAbstract Syntax: This primitive represents BP activities defined in

the BPM that are not automated in the system (activities that are

fully performed without the assistance of any system).

Similar to the Main-AIU primitive, the Human-AIU primitive has

been designed as a child class from the Base-AIU abstract class. In

addition to the attributes inherited from the AIU class, the

Human-AIU primitive includes the description attribute which is

used to include information that is going to be presented to the

user when the corresponding Human-AIU gets activated.

176 Chapter 6. Navigational Model Extension

Figure 6.16 Metamodel Excerpt including the Human-AIU primitive

This primitive represents a BP activity that is not automated in

the system. Therefore, the views defined in it cannot include any

operation. This constraint is expressed in the OCL language as

follows:

Context HumanAIU

inv: (self.ManagerClass.NavigationalOperation->isEmpty() and

self.ComplementaryClass.NavigationalOperation->isEmpty())

6.3.56.3.56.3.56.3.5 ComplementaryComplementaryComplementaryComplementary----AIUAIUAIUAIU

Problem: Problem: Problem: Problem: We need to specify the information that can “help” the

user in completing a specific BP activity. Providing the user with

this information we avoid the user suspending the current activity

to look for specific information through content navigation. As a

result, we are reducing the amount of time spent by the user to

finalize the BP activity.

Concrete SyntaxConcrete SyntaxConcrete SyntaxConcrete Syntax: In Figure 6.2 we can see that both Activity

Containers include Complementary-AIUs. This primitive gathers

information that assists the user to complete the associated BP

Chapter 6. Navigational Model Extension 177

activity. In this case, the information is retrieved by means of

class-views and service-data-views defined within the

corresponding Activity Containers.

A generic diagram of this primitive is shown in Figure 6.17. As

this figure shows, a Complementary-AIU is depicted graphically

as a white rectangle that includes the keyword «Complementary-

AIU» followed by the name of the unit (see the white part of

Figure 6.17).

Figure 6.17 Complementary-AIU primitive

Similar to Human-AIUs, this primitive gathers views over the

system (from the Structural and Services models) with the

particularity that no functionality can be defined in it.

Abstract Syntax: Abstract Syntax: Abstract Syntax: Abstract Syntax: This primitive was introduced to assist the user

while she is performing a specific task. It provides additional

information that may help her in completing it. This AIU is not

178 Chapter 6. Navigational Model Extension

strictly necessary to perform the task but avoids the user leaving

the execution of the process to reach this information through

content navigation. The objective of this AIU is to speed up the

completion of the process providing the user with useful

information. Contrary to other primitives, this one cannot be

derived automatically from the BP definition. In this case, the

developer has to include it manually. For this reason, during the

specification of the BP, the analyst specifies (in a textual form) the

information that should be provided associated to each BP

activity. This textual description will be used by the developer to

decide the complementary units that should be included for each

Activity Container.

Complementary-AIUs are optional units within a particular

Activity Container. This constraint is defined by the multiplicity of

the composition association defined between these two primitives.

Moreover, the Complementary-AIU class inherits the three

attributes defined in the AIU class.

Figure 6.18 Metamodel Excerpt including the Complementary-AIU

primitive

Since Complementary-AIUs are used to provide some useful data

related to the current BP activity, the views defined in it cannot

specify any operation. These views can only retrieve information,

Chapter 6. Navigational Model Extension 179

no functionality. This constraint is expressed in the OCL language

as follows:

Context ComplementaryAIU

inv: (self.ManagerClass.NavigationalOperation->isEmpty() and

self.ComplementaryClass.NavigationalOperation->isEmpty())

Related to the previous constraint, since the Service-Functional-

View is a primitive used to provide functionality to the user, this

primitive cannot be associated to a Complementary AIU. This

constraint is expressed in the OCL language as follows:

Context ComplementaryAIU

inv:

(self.NavigationalClass.ManagerClass.ServiceFunctionalView->isEmpty())

and

(self.NavigationalClass.ComplementaryClass.ServiceFunctionalView-

>isEmpty())

6.3.66.3.66.3.66.3.6 IndexIndexIndexIndex

Problem: Problem: Problem: Problem: During the execution of a long-running process, we need

to specify the information that is going to be included in the GUI

in two different contexts (1) when the GUI gathers all the

instances of a particular BP activity and (2) when the GUI gathers

just one BP activity instance. This is necessary since different BP

instances can exist for the same long-running BP.

Concrete SyntaxConcrete SyntaxConcrete SyntaxConcrete Syntax: Figure 6.2 illustrates how an Index is associated

to the “Validate Request” Main-AIU. In this case, the

180 Chapter 6. Navigational Model Extension

“ATTRIBUTES” section specifies that the book title, units and the

login of the applicant member are going to be retrieved for each

instance retrieved by the Main-AIU. In addition, the “LINK

ATTRIBUTE” section states that the “title” field is going to be

used as anchor to reach the selected instance.

A generic diagram of this primitive is shown in Figure 6.19. As

this figure shows, an Index is depicted graphically as a white box

attached to the bottom section of a Main-AIU (see the white part

of Figure 6.19). Its definition is merely textual and includes three

attributes which are (1) the index name, (2) a list of attributes

that are shown when more than one instance is retrieved and (3)

an attribute that is used as anchor to retrieve the discriminated

data of a particular instance. Only the attributes included in the

attributes list will be displayed when the associated AIU retrieves

more than one instance.

«process context»

Process_name

E

«activity container» Activity_name

«Main-AIU»

Activity_name

«Complementary-AIU»

Complementary-AIU_name

«class-view»

Name-of-the-class

Class-attribute-1

Class-attribute-2

…

Class-attribute-n

Class-operation()

Population-filter

«class-view»

Name-of-the-class

Class-attribute-1

Class-attribute-2

…

Class-attribute-n

Population-filter

index_name IDX_name

attributes class-attribute-1,...

anchor_attribute class-attribute-3

Figure 6.19 Index primitive

Chapter 6. Navigational Model Extension 181

The Index primitive is always associated to the Main-AIU and

Human-AIU primitives. This is because these primitives can

potentially gather more than one activity instance in the same

GUI. This constraint is expressed in the OCL language as follows:

Context MainAIU

inv: self.ManagerClass.Index->size() = 1

Context HumanAIU

inv: self.ManagerClass.Index->size() = 1

Figure 6.20 and Figure 6.21 show the difference between an

activated and deactivated index. On the one hand, Figure 6.20

shows the “Request Validation” Main-AIU with the index

activated. As a result, only the title, units and solicitor data is

shown for the active instances of this BP activity. On the contrary,

Figure 6.21 shows the same AIU but this time with the index

deactivated. As a result, one activity instance is shown with all the

information specified in the corresponding view (title, editor,

publisher, year, solicitor and units).

182 Chapter 6. Navigational Model Extension

Figure 6.20 Implementation of a Main-AIU when the index gets

activated

The main difference between these two contexts is that it allows

handling multiple process instances (when the index gets

activated) or just one process instance (when the index is

deactivated).

Chapter 6. Navigational Model Extension 183

Figure 6.21 Implementation of a Main-AIU when the index gets

deactivated

Abstract Syntax:Abstract Syntax:Abstract Syntax:Abstract Syntax: An Index primitive is used to reduce the amount

of data that is retrieved by a Main-AIU when this retrieves more

than one instance. The reduction is carried out by limiting the

amount of data displayed by each instance. An Index gets

activated automatically when the corresponding Main-AIU

retrieves more than one instance. Then, the attribute defined as

anchor can be used to access all the associated and not displayed

data of a particular instance. On the contrary, when the Main-AIU

simply retrieves one instance, the index does not get activated and

184 Chapter 6. Navigational Model Extension

the whole content (no instance data is discarded) is displayed to

the user.

The set of attributes defined by the Index attribute (attributes and

anchor) are referred to the NavigationalAttributes defined within

the associated AIU (see Figure 6.22). Indexes are always activated

automatically and this activation depends on the state of the AIU.

When the AIU retrieves a population the index gets activated

automatically. On the contrary, when the AIU retrieves the info

for a particular instance, the index gets deactivated.

Figure 6.22 Metamodel Excerpt including the Process-Index primitive

6.3.76.3.76.3.76.3.7 ClassClassClassClass----viewviewviewview

Problem: Problem: Problem: Problem: We need to specify which data and functionality provided

by the “local system” is going to support a specific BP activity.

Concrete SyntaxConcrete SyntaxConcrete SyntaxConcrete Syntax: Figure 6.2 and Figure 6.4 show different class-

views defined within the corresponding AIU. For instance the

“Validate Request” Main-AIU illustrated in Figure 6.2 includes

the “RequestBook” class-view. According to the constraint

associated to the Main-AIU which states that the views included

in it can only specify one operation, this view only specifies the

“validateRequest()” operation. Moreover, it also defines a

Chapter 6. Navigational Model Extension 185

population filter which specifies that only the instances whose

“state” attribute is valued either to the “pending” or “denied”

values are retrieved by the class-view.

A generic diagram of this primitive is shown in Figure 6.23. As

this figure shows, a Class-view is depicted graphically as a white

square divided into four sections which define (1) the name of the

class being retrieved; (2) the class attributes that are going to be

retrieved; (3) the operation that supports the BP activity; and

finally (4) the filter over the population retrieved by the class view

(see the white part of Figure 6.23).

Figure 6.23 Class-View primitive

Abstract Syntax:Abstract Syntax:Abstract Syntax:Abstract Syntax: The Class-view primitive represents a view over

a class from the Structural Model. This view is made up of four

parts; (1) the top section which includes the name of the class

being retrieved; (2) the second section that includes the class

attributes that are going to be retrieved; (3) the third section

which includes the operation that supports the task; and finally

186 Chapter 6. Navigational Model Extension

(4) the bottom section that defines a filter over the population

retrieved by the class view. In general, Class-views can include

several operations in their third section. However, when these are

used for BPs definition they can only include one operation

corresponding to the associated process task (when this view is

contained within a Main-AIU) or zero operations (when it is

contained within a Complementary-AIU).

Figure 6.24 Metamodel Excerpt including the NavigationalClass

primitive

Depending on the context, a Class-view can retrieve either a

particular class instance (when the class-view is passed with an

object reference) or the class population (when no object reference

is passed). Moreover, the retrieved instances have always to

satisfy the filter condition in case this has been defined.

6.3.86.3.86.3.86.3.8 ServiceServiceServiceService----DataDataDataData----viewviewviewview

Problem: Problem: Problem: Problem: We need to specify which data provided by “external

systems” is going to support a specific BP activity.

Chapter 6. Navigational Model Extension 187

Concrete SyntaxConcrete SyntaxConcrete SyntaxConcrete Syntax: Figure 6.2 shows the Service-Data-View defined

over the “CentralLibraryWS”. In this case, the Service-Data-View

retrieves the “location” and the “telephone” data from the data

returned by the “getOrganizationDetails()” operation.

A generic diagram of this primitive is shown in Figure 6.25. As

this figure shows, a Service-Data-View is depicted graphically as a

white square divided into three sections which specify (1) the

name of the service being invoked; (2) the fields that are returned

by the operation and that are going to be displayed to the user and

(3) the service operation being invoked (see the white part of

Figure 6.25).

Figure 6.25 Service-View primitive

Abstract Syntax:Abstract Syntax:Abstract Syntax:Abstract Syntax: The Service-Data-view primitive represents a

view over a service operation from the ones imported into the

Services Model.

188 Chapter 6. Navigational Model Extension

As Figure 6.26 shows, the Service-Data-view primitive has been

defined as a specialized class of the abstract ServiceView class

(class representing views over the services imported into the

Services Model).

Figure 6.26 Metamodel Excerpt including the Service-data-view

primitive

The Service-view primitive invokes a service operation and

gathers the returned values to be displayed to the user.

6.3.96.3.96.3.96.3.9 ServiceServiceServiceService----FunctionalFunctionalFunctionalFunctional----ViewViewViewView

Problem: Problem: Problem: Problem: We need to specify which functionality provided by

“external systems” is going to support a specific BP activity.

Concrete SyntaxConcrete SyntaxConcrete SyntaxConcrete Syntax: Figure 6.4 and Figure 6.27 show respectively

how service-functional-views are used in the navigational model

and how these are finally represented at the implementation level.

In particular, in Figure 6.4 the “Payment” Activity Container

Chapter 6. Navigational Model Extension 189

includes within its Main-AIU a Service-Functional-view linked to

the payment operation kept in the Services Model.

Figure 6.27 Web page corresponding to the “Payment” Activity Container

A generic diagram of this primitive is shown in Figure 6.28. As

this figure shows, a Service-Functional-View is depicted

graphically as a white square divided into two sections which

specify (1) the name of the service being invoked and (2) the

operation being invoked (see the white part of Figure 6.28).

190 Chapter 6. Navigational Model Extension

Figure 6.28 Service-Functional-View primitive

Abstract Syntax: Abstract Syntax: Abstract Syntax: Abstract Syntax: Similarly to the Service-Data-view primitive, the

Service-Functional-view primitive represents a view over a service

operation from the ones imported into the Services Model. The

difference between this primitive and the Service-Data-view

primitive is that this is used when the service is invoked and no

returned data has to be displayed to the user. This does not mean

that the service is not going to return any data. However, none of

the returned data is going to be shown to the user. This view is

made up of two parts; (1) the top section which includes the name

of the service being invoked; (2) the bottom section that defines

the operation being invoked.

Chapter 6. Navigational Model Extension 191

NavigationalClass

Services Model

Service

0..* 1

ServiceViewClassView

ServiceDataViewServiceFunctionalView

Figure 6.29 Metamodel Excerpt including the Service-functional-view

6.3.106.3.106.3.106.3.10 ProcessProcessProcessProcess----lilililinknknknk

Problem: Problem: Problem: Problem: We need to specify the entry points that allow launching

a specific BP.

Concrete SyntaxConcrete SyntaxConcrete SyntaxConcrete Syntax: Figure 6.3 showed that the “Checkout” Process

Context was defined as “Sequence” context. This means that this

Process Context is reached after traversing the “Shopping Cart”

Navigational context. However, to reach the “Checkout” Process

Context is necessary to include a mechanism that allows linking

these two contexts. As Figure 6.30 shows, this mechanism is the

Process-link primitive. Associated to this primitive we have to

specify (1) the anchor to invoke the process (the “checkout” string

over the solid arrow) and (2) the process that is going to be

invoked (the “CheckOut” process). As a result, an entry point to

the initial Activity Container defined in the process is defined.

192 Chapter 6. Navigational Model Extension

Figure 6.30 Detail of a Navigational Context including a process-link

It is necessary to specify the activity to be invoked because the

navigational model does not define relationships between BP

activities (this is only kept by the BP handled by the process

engine). Figure 6.31 illustrates the Web page corresponding to the

“Shopping Cart” Navigational Context. In this Web page, the

entry point to the “Check Out” BP is provided by means of the

“Check Out” link included at the right hand of the Web page.

Chapter 6. Navigational Model Extension 193

Process Link to

Start the “Check Out” BP

Figure 6.31 Web page corresponding to the Shopping Cart Navigational

context

A generic diagram of this primitive is shown in Figure 6.32. As

this figure shows, a Process-Link is depicted graphically as a

rectangle (see white part of Figure 6.32) which includes the

keyword «process-link» and the name of the process being invoked.

Moreover, the primitive includes a property that allows indicating

the text used as anchor to activate the process.

194 Chapter 6. Navigational Model Extension

Figure 6.32 Process-Link primitive

Abstract SyntaxAbstract SyntaxAbstract SyntaxAbstract Syntax: The Process-link primitive is used to invoke a

process context that has been defined as Sequence context.

Therefore, it defines the entry point to a specific business process.

This primitive is linked with the AIU construct which will include

it. Since one Activity Container from the referenced process is

going to be defined as initial, it is not necessary to specify the

Activity Container that has to be activated.

The ProcessLink primitive is associated with one ProcessContext.

Moreover, ProcessLinks can only exist within an AIU.

Figure 6.33 Metamodel Excerpt including the Process link primitive

Chapter 6. Navigational Model Extension 195

6.4 Extended Navigational Metamodel

This section presents the primitives presented in the previous

section but this time integrated with the original ones (just the

excerpt related to the former primitives is included). This

metamodel is defined as the UML class diagram presented in

Figure 6.34 together with the set of OCL constraints that have

been presented along section 6.3.

OOWS Navigational Model Excerpt

Structural Model

NavigationalNode

NavigationalContext

ProcessContext

AIU

Main-AIU

Complementary-AIU

1

1
1

0..*

class

1 0..*

Activity Container

1 0..*

Human-AIU

Index

ProcessLink

0..*

1..*

Base-AIU
UserRole

0..1

1..*

ManagerClassComplementaryClass

NavigationalClass

1
1

1

0..*

1

0..*

Services Model

Service

0..* 1

0..1 1

ServiceViewClassView

Figure 6.34 Navigational Model Excerpt including the BP related

primitives

All the gray-coloured primitives depicted in Figure 6.34

correspond to the primitives related to the BP extension.

196 Chapter 6. Navigational Model Extension

6.5 Conclusions

This chapter has presented the extension defined for the OOWS

Navigational model to deal with BP integration. The presented

new primitives extend the conceptual modeling stage allowing a

correct description of web systems dealing with the execution of

BPs.

As we already stated in chapter 2, the objectives of the

navigational model are the following three ones (1) defining the

structure of the web application, (2) defining the way this

structure can be accessed and (3) defining the content and

functionality that should be provided by the web application.

However, the extension presented in this chapter only deals with

the first and third objectives of this model. The main reason to

leave out the second one is that the navigation during BP

execution is going to be driven by the process.

Moreover, apart from enriching the expressivity of the model with

new primitives, the extension enforces the relationship with other

models. In particular, new relationships with the Services Model

have been defined. This allows retrieving data and functionality

not only from our system but also from external ones.

Chapter 7

7 Presentation Model Extension

The previous chapter was dedicated to present the Navigational

extensions that are necessary to deal with the specification of BPs

in Web applications. In the current chapter we present the

extensions that are required in the Presentation model to better

adequate the Navigational contents during BP execution. Since

the Presentation model is based on a set of patterns, the extension

proposed involves the definition of new patterns that allow

improving the user experience while executing BPs. In addition, to

face the drawbacks found in existing Web engineering methods to

deal with usability issues (Atterer et al., 2006), this chapter

presents how these issues can been integrated into the OOWS

Web Engineering method to ensure the quality of the generated

web systems.

7.1 Introducing the New Presentation Primitives

Before detailing the new primitives, this section introduces them

graphically. This is performed by using the Book Purchase

Request BP. Figure 7.1 shows the presentation primitives

associated to the process context of the example.

198 Chapter 7. Presentation Model Extension

Figure 7.1 Presentation attributes associated to the Book Purchase

Request BP

As Figure 7.1 shows, the navigational elements included in the

process context have associated some presentation attributes.

These will be used during the transformation process to generate

the layout of this context accordingly.

7.2 Presentation Primitives to Support BP

execution

The extension defined over the Presentation metamodel defines

two new primitives that are associated to the GUI generated for

the execution of BPs. These new primitives correspond to the

Details On Demand and List Builder patterns. Each primitive is

going to be presented according to this schema: First, the problem

that motivates the definition of each primitive is presented.

Chapter 7. Presentation Model Extension 199

Second, the concrete syntax of the primitive is presented. This

syntax is described in a diagrammatic form and defines how the

abstract syntax (which is presented next) is presented to the end

user. Finally, the abstract syntax of the primitive is presented. In

this case, the concepts associated to the primitive and their

relationships to other primitives (even from another metamodel)

are described.

7.2.17.2.17.2.17.2.1 Details On Demand PatternDetails On Demand PatternDetails On Demand PatternDetails On Demand Pattern

Problem:Problem:Problem:Problem: The amount of data that can potentially be of interest to

users enforces developers to organize this data according to the

GUI limitations. Therefore, users have to follow different links to

reach the data that was discarded to overload the GUI. More light-

weight mechanisms are necessary to reach this discarded/ hidden

data.

Concrete Syntax:Concrete Syntax:Concrete Syntax:Concrete Syntax: According to Figure 7.1, the index associated to

the “Validate Request” Main-AIU includes a “Details On Demand”

pattern. In this case, the title attribute included in the

“RequestBook” class-view has been defined as anchor to retrieve

the information specified in the detail section of the pattern (the

editors and publisher attributes from the RequestBook class-view).

Figure 7.2 shows how this pattern is presented in a web page (web

page according to the process context depicted in Figure 7.1). In

this case, each title item defines a link with the following

behaviour: when the user positions the mouse over the title, new

contents related to the item are shown in a new floating section. In

200 Chapter 7. Presentation Model Extension

this particular case, Author, Publisher and Publish date are

shown.

Figure 7.2 Details on Demand Pattern in use

A generic diagram of this primitive is shown in Figure 7.3. As this

figure shows, a Detail On Demand pattern is applied to the index

Navigational primitive. This primitive is depicted as a white

rectangle containing two different sections. On the one hand, the

anchor section specifies which attribute is going to be used to

retrieve the “hidden” data. The available attributes for this section

corresponds to the attributes specified in the attributes section of

the index primitive. On the other hand, the detail section specifies

which data is going to be shown in the new floating widget. In this

case, the attributes included in this section are limited to the ones

Chapter 7. Presentation Model Extension 201

retrieved by the class-views and services-data-views defined

within the Main-AIU.

Figure 7.3 Detail On Demand Pattern

Abstract Syntax:Abstract Syntax:Abstract Syntax:Abstract Syntax: This pattern allows specifying how the data

contained in a Web page is shown to the user based on the user

demand. This pattern is associated to the AIU primitive and can

only include attributes from the views included in the

corresponding AIU. A complete specification of this pattern

includes an (1) anchor that could be used to retrieve the hidden

information and (2) the set of information that is going to be

displayed in the floating widget.

Figure 7.4 shows an excerpt of the Presentation metamodel

including the Details On Demand primitive. This primitive defines

a specific type of layout, and that is why this has been defined as a

subclass of the Layout primitive. In addition, we have already

202 Chapter 7. Presentation Model Extension

mentioned that this primitive can only be associated to indexes

defined within an AIU. This is shown by means of the relationship

between the Details On Demand primitive and the index primitive

defined in the Navigational Metamodel.

Figure 7.4 Metamodel Excerpt including the Details on Demand

primitive

7.2.27.2.27.2.27.2.2 List BuildList BuildList BuildList Builder Patterner Patterner Patterner Pattern

Problem:Problem:Problem:Problem: The user is presented with a list of items which

correspond to different instances of the same BP activity. In this

case, the user needs to manage this list easily and quickly.

Concrete Syntax:Concrete Syntax:Concrete Syntax:Concrete Syntax: According to Figure 7.1, the “Validate Request”

Main-AIU has been associated with the “List Builder” pattern.

The application of this pattern allows us executing the

functionality associated to the corresponding BP activity (in this

case the “validateRequest() operation) to all the instances

retrieved by the Main-AIU.

Figure 7.1 shows how this pattern is specified at the modelling

level. It can only be applied to AIU primitives. In general, this

pattern can be applied to any list whose item lines accept the same

Chapter 7. Presentation Model Extension 203

functionality. For instance, in the context of a BP execution, this

pattern can be used for completing multiple instances of the same

process task.

Figure 7.5 shows the application of this pattern to the

“ValidateRequest” Main-AIU. This pattern allows users speeding

up the completion of tasks and processes. However, this pattern

should only be used with operations requiring up to one argument.

On the contrary, the interface would get too much complex.

Figure 7.5 List Builder Pattern in use

Abstract Syntax:Abstract Syntax:Abstract Syntax:Abstract Syntax: This pattern is used to allow the user dealing

more efficiently with the data retrieved by the GUI. It allows

204 Chapter 7. Presentation Model Extension

users building up and managing a list of items at the same time.

In this case, the selected functionality can be applied on many

items at the same time.

Figure 7.6 shows an excerpt of the Presentation metamodel

including the List Builder primitive. This primitive is associated

to the Main-AIU primitive defined in the Navigational metamodel.

As the multiplicity of the composition relationships states, the

association of this pattern is optional.

Figure 7.6 Metamodel Excerpt including the List Builder primitive

7.3 Extended Presentation Metamodel

This section presents the primitives presented in the previous

section (those depicted in grey-colour) but this time integrated

with the original ones. In addition, since Presentation primitives

are defined over the primitives defined in the Navigational

metamodel, the related primitives from the Navigational model

have also been included.

Chapter 7. Presentation Model Extension 205

Figure 7.7 Presentation Metamodel

7.4 Dealing with Usability Issues

Up to now, we have presented the presentation patterns that have

been defined in the OOWS proposal to deal with presentation

issues. However, in order to ensure the quality (understanding

this term as user satisfaction) of the generated user interfaces, we

have also considered a set of guidelines proposed by usability

experts.

206 Chapter 7. Presentation Model Extension

In most cases, the success of Web systems relies on the user

acceptance, which is associated to the user experience. In the

usability research area, the community has produced guidelines

and standards that face the different usability problems

introduced by web applications (Nielsen, 1999), (Fowler, 1998),

(van Welie), (Mayhew, 1992). However, in order to ensure that

these guidelines are used and applied properly, it is necessary to

integrate them during the software development process and

provide them with tool support (Abran et al., 2003).

If we concentrate just on the problems that can arise when

performing a business process in a web application we find that

usability guidelines are oriented to ensure that users understand

correctly the data and functionality that is shown to her.

Therefore, the usability issues that are going to face up in this

work are the following:

� Preventing Input Errors

� Notify Users when they are Expected to Perform a Task

� Displaying the Tasks Pending to Complete (Wizard

pattern)

The following subsections present how the OOWS approach cope

with these usability guidelines. The following subsections have

been organized in two parts, first we state the usability problem

being considered as well as the kind of processes in which this

usability problem applies and then we present the solution

designed in the OOWS approach to be compliance with the

corresponding guideline.

Chapter 7. Presentation Model Extension 207

7.4.17.4.17.4.17.4.1 Preventing Input ErrorsPreventing Input ErrorsPreventing Input ErrorsPreventing Input Errors

Users are required to input some data (usually by means of a web

form) and they are not provided with enough information

regarding the kind of data they are expected to input. As a result,

web forms are sent with data provided in incorrect formats and/or

unfilled fields.

This problem refers to usability guidelines gathered in (van

Welie), (Mayhew, 1992) and it can appear in both short and long-

lived processes. The guidelines provided by experts are

summarized in the following list:

� Provide right field length allowing users to see their

entered data.

� Partition long data items to aid users in detecting and

reducing entry errors.

� Minimize user data entry filling input elements providing

default values.

� Provide examples of input data that help users

understanding the information that they are asked to

input.

� Do not make mandatory fields whose data is not required

to continue the transaction.

� Use informative error messages.

Solution. These guidelines have been handled either at the

Structural Model and the Presentation Model as follows:

Class attributes and operation’s parameter defined in the

Structural Model include among other properties the followings:

208 Chapter 7. Presentation Model Extension

� Data type: It let us define the type of the attribute.

� Is mandatory: It allows specifying weather this attribute is

required to execute the operation.

� Valid value range: It let us define and control which values

can be entered.

� Default value: It lets the system suggest a predefined value

to the user. The default value is a well-formed formula that

is type-compatible with the attribute.

In the Presentation Model we associate to the Navigational

attributes included the following properties:

� Alias: It allows defining an alternative name to the

property being defined in order to present it more clearly to

the user. (Ex. An attribute whose name is tel_number and

its alias is Phone Number).

� Edit mask: It determines the format that the data shows

when the user enters it. This mask is used for several

purposes, (1) it is used to show the user an example of the

data that she is expected to input, (2) it is used to partition

long data items following the mask format and (3) it allows

to provide a correct length of the input element.

� Help message: It allows specifying a text that can be shown

to the user to provide some information about the meaning

of the data to be entered.

� Validation message: is a piece of text that is shown to the

user when a validation error occurs on the entered data.

With all this information defined at the modelling level we can

generate graphical user interfaces that satisfy the above

Chapter 7. Presentation Model Extension 209

mentioned usability guidelines and that help the user

understanding the data that she is asked to introduce.

On the other hand, other usability guidelines gathered in (Nielsen,

1999; van Welie) are better applied directly in the transformation

rules that generate the corresponding code. The main reason to

move them directly into the transformational level is that they

refer to design issues more than modeling issues. Examples of

guidelines of this type are:

� Using the most appropriate input element (radio buttons,

checkbox, list box, etc.) regarding the kind of data being

handled.

� Marking mandatory fields clearly.

� Check syntactic errors at the client side (avoiding sending

incorrect data to the server, what implies lengthening the

time dedicated to complete a task).

These three guidelines are introduced in the rules as follows:

� Appropriate widgets for input elements are generated

following the guidelines provided by Jackob Nielsen in his

Alertbox column24 in conjunction with the form pattern

defined by (van Welie). These guidelines advice the most

appropriate widget depending on the data being

represented (number of different options, exclusion,

multiple selection, etc.)

� Labels of mandatory input fields are attached with the

asterisk symbol (*).

24 http://www.useit.com/alertbox/20040927.html

210 Chapter 7. Presentation Model Extension

� Client-side scripting languages (such as JavaScript or

VBScript) or web development techniques (as AJAX25) are

generated to check syntactic errors at the client side.

7.4.27.4.27.4.27.4.2 Displaying the Tasks Pending to CompleteDisplaying the Tasks Pending to CompleteDisplaying the Tasks Pending to CompleteDisplaying the Tasks Pending to Complete

When a user starts a short-running BP it is better to display the

user with the set of steps involved in the process. This information

can be used by the user to have an idea about the information that

she has to provide in order to complete the process. On the

contrary, regarding long-running BP, the user should only be

displayed with the next pending task and not with the whole list

of tasks to complete the process. Moreover, in this case, it is not

important to provide the user with information about the steps

that she has already perform in the process.

Solution. The GUI should include (just for short-running BP) an

area that displays the sequence of tasks/steps that need to be

performed in order to complete the process. Moreover, the current

task being performed by the user must be distinguished among

the rest of the tasks. This area can be generated from the BP

definition. Figure 7.8 depicts graphically the models involved in

the transformation process to obtain the final web pages. As this

figure shows, only those activities defined in a BP that require

interaction with the user are first transformed into Activity

Containers in the Navigational Model (NM), which are later on

25 http://www.adaptivepath.com/publications/essays/archives/000385.php

Chapter 7. Presentation Model Extension 211

transformed into the web pages that will provide support to each

of those activities.

Figure 7.8 Models Used for the generation of Web Pages

The generated web pages include an area where the user can see

the list of activities that constitute the process being executed (see

group labelled as A in Figure 7.9). Moreover, the current activity

is highlighted to help the user identify clearly the current action

being performed (see group labelled as C in Figure 7.9).

212 Chapter 7. Presentation Model Extension

Figure 7.9 Generated User Interface for a Short-running BP

7.4.37.4.37.4.37.4.3 Notify Users when they are expected to perform a Notify Users when they are expected to perform a Notify Users when they are expected to perform a Notify Users when they are expected to perform a

TaskTaskTaskTask

During the execution of a long-running BP many different

participants can take part in it. After the completion of an

intermediate task new task(s) turns into pending tasks for the

same role or for a different one. However, if these new pending

tasks require participation of a human being different from the

one completing the previous task, she will not perform her job

until she checks if there is any pending activity in their TODO list

what can derive in a longer delay of the process.

Solution. To minimize this problem, we have extended long-

running BPs with tasks that notify users when they become

Chapter 7. Presentation Model Extension 213

responsible of a new activity. These new tasks are added before

any activity requiring human participation. However, these new

tasks are only added when the process flow moves to another role

associated with a human being different from the one performing

the previous task.

Following the solution mentioned previously, we generate an

extended version for the Request Book Purchase BP as shown in

Figure 7.10. The new grey-coloured added tasks refer to services

that send alerts to the involved users in order to make them aware

of these new tasks. By default the process sends alert mechanism

via email messages, however, other mechanisms such as Short

Message System (SMS) or voice messages could also be considered.

M
E
M
B
E
R

S
E
C
R
E
T
A
R
Y

C
E
N
T
R
A
L

L
IB
R
A
R
Y

L
IB
R
A
R
IA
N

S
Y
S
T
E
M

«
e
n
ti
ty
»

«
ro
le
-a
n
y
»

«
ro
le
-a
n
y
»

«
ro
le
-o
n
e
»

L
ib
ra
ry
4
U

Figure 7.10 Modified version of a BP definition

7.5 Conclusions

This chapter has presented the extensions defined to the

presentation model to deal with the execution of BPs. The

presented extensions have been introduced to improve the user

experience. As a result, users can perform process tasks more

214 Chapter 7. Presentation Model Extension

efficiently and faster. This is possible since the user is display

with useful information about the kind of task being performed

and the kind of information she is asked for. On the one hand, the

Details On Demand pattern allows the user getting more

information just in case the user really needs it. Therefore, the use

of this pattern avoid overloading user interfaces what results in

more clear interfaces. On the other hand, the List Builder pattern

allows accelerating the completion of multiple task instances.

Moreover, to improve the usability of the generated web interfaces

we have also taken into account the guidelines proposed by the

expertise community in web design. To deal with these guidelines

we have considered them, depending on its suitability, either in

the OOWS models or directly into the model to code

transformations.

Chapter 8

8 Architectural Extension

This chapter presents the extension defined at the architectural

level for Web applications to deal with the execution of Business

Processes (BPs). This extension has been designed trying to keep

the separation of concerns in which the OOWS method has been

conceived. Therefore, to keep separate the navigation that

happens during pure navigation and BP execution, we have

introduced a process engine into the architectural tier. This

element allows us obviate the navigation within the navigational

model since this is going to be fully controlled by the process. As a

result, a more clear and easy to handle navigational model is built

for BP execution. In addition, as a consequence of introducing a

process engine into the architecture, process definitions have to be

defined in a process executable language. In particular, in this

work we have chosen the WS-BPEL language. This language

allows specifying BPs behaviour based exclusively on Web

Services. This limitation forced us to introduce new elements into

the business layer to handle the lack of WS-BPEL for supporting

human tasks.

216 Chapter 8. Architectural Extension

8.1 Introduction

Similar to the introduction of database management systems into

the architecture of software systems, dealing with systems that

support the execution of Business Processes (BPs) requires the

introduction of solutions that allow us handling BPs properly.

These solutions provide mechanisms to model, automate,

integrate, monitor and optimize BPs continuously (Hollingsworth,

1995). From this set of mechanisms, the one we are interested of

at this point is the one related with the automation of BPs. This

automation is achieved by the use of a process engine which

launches and run instances of existing BPs.

Based on the decision of adopting WS-BPEL as the executable

language of processes (see chapter 2), we have introduced into the

architecture of the generated Web applications a process engine

that implements this specification. In particular, we have made

use of the ActiveBPEL26 process engine.

However, as WS-BPEL is based on Web services, when we want to

model workflows (processes that include human participants) we

have to make use of some mechanisms on top of the original

specification to allow us handling the asynchrony introduced by

this kind of process participants27.

26 http://www.active-endpoints.com/active-bpel-engine-overview.htm

27 Trying to face this limitation, the WS-BPEL Extension for People

(Kloppmann et al., 2005) has been proposed.

Chapter 8. Architectural Extension 217

This chapter presents the extension defined at the architectural

level in order to cope properly with the requirements of the kind of

Web applications that we are dealing with.

8.2 Extension Overview

In this section we present the whole picture of the architecture of

the kind of Web applications we are dealing with. As Figure 8.1

shows, the architecture follows the classical 3-Tier architecture. In

this architecture each layer interacts only with the layers placed

immediately next to it and is responsible for a specific function.

From these three layers, we are going to focus on the Business

layer, layer where the presented extension has been placed.

Figure 8.1 Three Layer architecture for Process-driven Web applications

In order to keep the separation of concerns established by this

three-architecture tier, the Model-View-Controller (MVC)

architectural pattern (Reenskaug, 1979; Reenskaug, 2003) is the

most appropriate solution to be applied. Each part of the pattern

218 Chapter 8. Architectural Extension

is in charge of a specific task, ModelsModelsModelsModels are used to maintain data,

ViewsViewsViewsViews are used for displaying all or part of the data and finally

ControllersControllersControllersControllers are used for handling events that affect the model or

view(s). The major benefits of this separation of concerns are (1)

the reduction of the complexity of the architectural design and (2)

the increase of flexibility and reuse. On the one hand, complexity

is reduced since the controller part decouples data access and

business logic from data presentation and user interaction. On the

other hand, the increase of flexibility and reuse is achieved by the

possibility of defining multiple views for the same model

depending on the target user.

In this work, the proposed architecture has been mapped to the

Tapestry Web Framework28. In this framework, the different parts

of the MVC pattern are represented by different types of files as

Figure 8.2 shows.

Figure 8.2 Tapestry File Organization

28 http://tapestry.apache.org/

Chapter 8. Architectural Extension 219

Java files are used to represent the Model and Controller part of

the MVC pattern. On the one hand, Java files representing the

Model part define the domain logic of the application. On the other

hand, Java files representing the Controller part define the

behaviour of the View part of the pattern. Code excerpt 8.1 shows

part of the Java file associated to the Home.html page. This Java

file contains the code that completes the corresponding static

HTML template with dynamic data.

Code excerpt 8.1 Java file completing the corresponding HTML template

HTML files are used to represent the View part of the pattern.

These files are HTML templates using pure HTML which includes

place holders for Tapestry components. Some of the built-in

220 Chapter 8. Architectural Extension

Tapestry components are For (to loop over a collection of source

values), Insert (to allow for the insertion of text into the HTML

response), DirectLink (to create an <a> hyperlink that notifies the

component when the link is triggered) or Submit (to provide an

HTML form submission element). Code excerpt 8.2 shows the

HTML template built for the Home page. Within the HTML code

and associated to the span tag we find the “jwcid” special attribute

which references to a Tapestry component.

Code excerpt 8.2 HTML Template

Page files are XML descriptor files that allow combining HTML

templates with Java code. These files are optional but they

contribute to have a more legible code. Code excerpt 8.3 shows the

XML included in the Home.page descriptor. This file links HTML

templates with the associated Java files.

Chapter 8. Architectural Extension 221

Code excerpt 8.3 XML Descriptor

8.2.18.2.18.2.18.2.1 Presentation LayerPresentation LayerPresentation LayerPresentation Layer

The Presentation Layer is the layer responsible for (1) providing

an interface for the end users into our application and (2) for

exposing business functionality to external partners by means of

Web services. In Web applications, for the generation of graphical

user interfaces, this layer includes dynamic web pages which are

created by server-side languages such as ASP, JSP, PERL, or PHP

among others. On the other hand, the business logic exposed to

external partners is provided by means of Web services.

222 Chapter 8. Architectural Extension

8.2.28.2.28.2.28.2.2 Business TierBusiness TierBusiness TierBusiness Tier

This tier communicates with the presentation layer and the data

layer and depending on the case, its responsibility changes. On the

one hand, the Business Tier is responsible for accessing the data

tier to process (retrieve, modify and delete) data to and from the

data tier. On the other hand, it is responsible for sending the

results to the presentation tier.

The extension proposed in this chapter involves this tier. This

extension includes two new elements which are the Process Process Process Process

EngineEngineEngineEngine and the Task Manager Task Manager Task Manager Task Manager Web Web Web Web ServiceServiceServiceService. The function of the

PPPProcess rocess rocess rocess EEEEnginenginenginengine is creating and running new process instances

from input WS-BPEL processes when an incoming message

triggers the start process activity. Moreover, since WS-BPEL is

based on Web services, and these can be hosted on different

servers, the business tier can be distributed being their

components linked by the process engine. The Task ManagerTask ManagerTask ManagerTask Manager WebWebWebWeb

ServiceServiceServiceService (see Figure 8.3) is the element that comes into play when

activities related to humans are invoked. This service takes the

responsibility of handling this kind of activities, and

communicates with the process engine and the application logic (a

detailed explanation is provided later on in the chapter).

Chapter 8. Architectural Extension 223

Figure 8.3 Task Manager Service Interface

8.2.38.2.38.2.38.2.3 Data TierData TierData TierData Tier

The data tier is intended to deal with the storage and retrieval of

information (no business logic is placed here). In this tier we

usually find a Database Management System (DBMS) (MySql,

SQLServer, Oracle, etc.) or plain text files.

8.3 Dealing with Human Tasks

In this section we present on the one hand the design of the Task

Manager Web Service (hereafter TM-WS). On the other hand we

present the communication that happens between the process

engine, the TM-WS and the Web application when a human

participant is involved in the execution of a BP.

8.3.18.3.18.3.18.3.1 Task Manager WeTask Manager WeTask Manager WeTask Manager Web Serviceb Serviceb Serviceb Service

As we have shown in Figure 8.3, the Task Manager Service

exposes six operations to interact with both the WS-BPEL process

and the Web application. A graphical representation of the WSDL

file of this service is shown in Figure 8.4.

224 Chapter 8. Architectural Extension

Figure 8.4 WSDL for the Task Manager Service

The interface of the TM-WS defines all these operations based on

the way in which this has been implemented. To understand

better these operations it is necessary first to explain how tasks

are handled by this service. In Figure 8.5 we show the class model

design to handle tasks. The TaskManager class handles zero or

multiple tasks (relationship defined between this class and the

Task class). Then, a task is defined by a header (composition

relationship between the Task and Header classes) and a payload

(document). On the one hand, the header includes information

such as the identifier of the task, the user involved, the user group

and the name of the process and the task. On the other hand, the

payload is a XML file containing the data of the task.

Chapter 8. Architectural Extension 225

Figure 8.5 Task Manager Structure

Then, the operations published by the Task Manager are the

following:

� “getAllHeadersgetAllHeadersgetAllHeadersgetAllHeaders” and “getHeadersgetHeadersgetHeadersgetHeaders” operations have been

defined to access more efficiently to the information about

the tasks kept by the Task manager. These operations will

be invoked to build dynamically the menu that allows users

to access their pending tasks. “getHeadersgetHeadersgetHeadersgetHeaders” accepts a query

that allows specifying which tasks we are interested in (i.e.

pending tasks for a particular user or for a group of users).

The following Code excerpt 8.4 shows how the “getHeadersgetHeadersgetHeadersgetHeaders”

operation is invoked by a particular function designed to

see if there are pending activities for a specific process.

public boolean getActivityPending(){

 String activityName = getCurrentActivity().getName();

 if(activityName.equals("Request a Book Purchase")){

 return true;

 }

 Header h = new Header(); //This header will be the query

 h.setTaskName(activityName);

 Collection<Header> list = service.getHeaders(h);

 //If there are pending tasks the current activity will be a link

226 Chapter 8. Architectural Extension

 if(list.size() > 0) return true;

 else return false;

}

Code excerpt 8.4 Example of getHeadersgetHeadersgetHeadersgetHeaders operation invocation

� ““““getTaskgetTaskgetTaskgetTaskssss” and “getTask” getTask” getTask” getTask” operations allow obtaining the

tasks (differently from the previous presented operations

that only retrieve the header part of the task) kept by the

Task manager. “getTaskgetTaskgetTaskgetTask” retrieves from a task identifier

the whole task. Code excerpt 8.5 shows an example of

invocation of the “getTasksgetTasksgetTasksgetTasks” operation. In this case the

getElements function invokes this operation to retrieve all

the tasks instances corresponding to the “Validate the

Request” task.

public List<BookRequest> getElements(){

 elements.clear();

 Header h = new Header(); //This header will be the query

 h.setTaskName("Validate the Request");

 Collection<Header> list = service.getHeaders(h);

 //We have to get the ids of the tasks

 int[] idTasks = new int[list.size()];

 int i = 0;

 for(Header hd : list){

 idTasks[i] = hd.getTaskID();

 i++;

 }

 //Now let´s get the tasks

 Collection<Task> tasks = service.getTasks(idTasks);

 //Now let´s create the requests (each request is associated with the corresponding taskID)

 for(Task t : tasks){

 BookRequest r = new BookRequest(t.getPayload());

 r.setIdTask(t.getHeader().getTaskID());

 elements.add(r);

 }

 return elements;

Chapter 8. Architectural Extension 227

}

Code excerpt 8.5 Example of getTasksgetTasksgetTasksgetTasks operation invocation

� “doTaskdoTaskdoTaskdoTask” is the operation invoked by the application to

notify the TM-WS for erasing the task whose identifier

coincides with the one passed to the operation. The

following code excerpt includes part of the generated Web

application code where the “doTask” operation is invoked.

public void onFormSubmit(){

 BookRequest r = new BookRequest();

 for(BookRequest x : elements){

 if(x.getIdTask() == getTaskID()) r=x;

 }

 r.validate(r.isValid());

 Document requestxml = r.serialize("Validate_the_Request");

 try{

 //Send the request to the external service and remove task from the taskManager

 SoapClient.sendRequest(humanService, requestxml);

 service.doTask(getTaskID());

 }catch(SOAPException e){;

 }catch(IOException e){;}

}

Code excerpt 8.6 Example of doTadoTadoTadoTasksksksk operation invocation

� “addTaskaddTaskaddTaskaddTask” is the operation invoked by the WS-BPEL

process when a task involving human participation is

reached by the process flow. As parameter, the operation

accepts the identifier of the process instance. The reason

for requiring this identifier is to perform the correlation

between process instances and data. Code excerpt 8.7

shows WS-BPEL portion where the “addTask” operation is

invoked.

228 Chapter 8. Architectural Extension

<invoke name="Validate_the_Request"

 inputVariable="addTaskRequest"

 operation="addTask"

 outputVariable="addTaskResponse"

 partnerLink="human"

 portType="ns3:taskManagerPortType"/>

Code excerpt 8.7 addTaskaddTaskaddTaskaddTask operation invocation from WS-BPEL code

8.3.28.3.28.3.28.3.2 Web Service Web Service Web Service Web Service Conversation while Human Conversation while Human Conversation while Human Conversation while Human

ParticipationParticipationParticipationParticipation

Once we have presented the interface exposed by the TM-WS, this

section presents a scenario that shows the interaction

accomplished between the WS-BPEL process, the TM-WS and the

Web application when an activity requiring human participation

is reached by the flow of the process. As Figure 8.6 shows, to

represent this interaction we use UML Sequence Diagrams.

Web Application Task Manager BPEL process

getHeaders

header

getTask(id)

task

addTask(X)

completion_X

doTask(id)

Figure 8.6 Role of the Task Manager Web service

Chapter 8. Architectural Extension 229

The invocation sequence is the following:

• First of all, the process engine starts running a BP (either

short-running or long-running process) which includes some

activities involving human participation (i.e. approve

purchase, review code, etc). Then, when one of these activities

is reached by the flow of the process, the WS-BPEL process

sends a request to the TM-WS to handle it. This interaction is

represented in Figure 8.6 by the asynchronous call invoking

the “addTask” operation.

• Then, the TM-WS creates a work item to represent the

request. Moreover, it stores correlation information so that a

subsequent request to the WS-BPEL process can locate the

originating process instance.

• The Web application, when a user logs into the system,

contacts the TM-WS to reach the set of pending tasks for the

logged user. At this point, the user is responsible for

completing the work item, which is accomplished through the

corresponding user interface from the Web application. The

completion of the work triggers two calls. One the one hand,

the “doTask” operation is invoked to notify the TM-WS that

this task has been completed and can be removed from the

Task manager. On the other hand, the “completion_X”

operation is invoked to pass back the control to the WS-BPEL

process (the “X” references the name of the task which

coincides with the string passed as argument to the “addTask”

operation). This operation is sent together with correlation

230 Chapter 8. Architectural Extension

information to inform the process engine about the completion

of the task for a particular process instance.

8.4 Conclusions

This chapter has presented the extension performed to the

architecture of the generated web applications in order to handle

properly the execution of business processes. This extension

involves on the one hand the introduction, at the business layer, of

a process engine capable of handling BP instances. On the other

hand, in order to cope with the lack of WS-BPEL to support

processes involving human participants, we have defined a new

service (the Task Manager Web Service) which handles this kind

of tasks.

An important issue that we have taken into account is the

portability of the provided solution. It was a must to keep WS-

BPEL process definitions independent of any process engine

vendor. For this reason, the Task Manager Web Service has been

defined as an external partner for the WS-BPEL process, similar

to any other external partner. For instance, instance process

correlation is achieved by means of identifiers generated by the

“objects” handled in the own process instance. This decision allows

us controlling correlation in the same way independently of the

engine used.

Chapter 9

9 Model Transformations

In previous chapters we have presented the necessary concepts for

creating the models that allow represent properly BP-driven Web

applications. However, to get the most from a Model Driven

Development (MDD) approach as the one presented in this thesis,

it is necessary to automate the transformations that allow

translating models to other artefacts, including code. Depending

on the type of generated artefact, a model-to-model (M2M) or

model-to-text (M2T) transformation has been defined. Therefore,

this chapter presents the set of transformations that implement

the mappings between the models defined in the proposal and

other artefacts such as models and code.

The chapter has been structured as follows. First of all, section 9.1

provides an overview of the M2M and M2T transformations

defined along the development process. These transformations

generate two different types of artefacts, which are an executable

WS-BPEL process and a Web application. Then, according to the

different generated artefacts, sections 9.2 and 9.3 present in detail

232 Chapter 9. Model Transformations

the transformations implemented in each case. Finally, section 9.4

presents the conclusions of this chapter.

9.1 The Big Picture

Following the Model Driven Development (MDD) approach, we

have defined and implemented a set of model transformations to

obtain a complete Web application according to the architecture

presented in chapter 8. These transformations are dedicated to

obtain (1) the WS-BPEL definition of the BPs modelled in the

Business Process Model (BPM) and (2) the Web application that

gives support to these BPs in a specific Web framework (the

Tapestry Web Framework). Figure 9.1 and Figure 9.2 present

graphically the set of steps that are necessary to obtain in each

case the required artefacts. The numbers included in both figures

define the order in which these transformations are performed.

Figure 9.1 Transformations Defined for generating the WS-BPEL code

On the one hand, Figure 9.1 details the steps that have been

defined to obtain, from a BP specification represented using the

BPMN notation, an executable BP represented in the WS-BPEL

language. The transformation process includes M2M and M2T

transformations. In addition, the BPMN2BPEL Babel tool has

Chapter 9. Model Transformations 233

been used to generate part of the WS-BPEL document. As this

figure shows, this document is obtained not only from the BPM. It

also requires the Structural and Services Models which are used

to complete some of the WS-BPEL sections.

Figure 9.2 Transformations Defined for generating the Web site for the

Tapestry Framework

On the other hand, Figure 9.2 details the steps that have been

defined to obtain the Web application that supports the BPs

specified in the BPM. Specifically, this application is generated for

the Tapestry Web Framework. For this reason, according to the

architecture imposed by this framework, these transformations

produce a set of .java, .page and .html files.

Although model transformation is a relatively young area, there

already exist different possibilities to perform this task (Czarnecki

& Helsen, 2003). Specifically, the options that have been taken to

implement the transformations defined in this work are the Atlas

Transformation Language (ATL29) to implement M2M

transformations and MOFScript30 to implement M2T

transformations. A key factor on the selection of the

29 http://www.eclipse.org/m2m/atl/

30 http://www.eclipse.org/gmt/mofscript/

234 Chapter 9. Model Transformations

transformation languages was their tool support in order to apply

the proposal in practice. The usage of Eclipse-based tools could

permit seamless tool integration with other projects used by the

present work such as Eclipse Modelling Project31 and SOA Tools

Platform Project32.

The ATL language (Jouault & Kurtev, 2006) is a proposal

developed in parallel to the OMG QVT (OMG, 2005a) standard for

model transformation (Miller & Mukerji, 2003). ATL is a hybrid

language (declarative and imperative) that allows the definition of

rules that describe how source model elements are matched and

navigated to create and initialize the elements of the target

models. Moreover, it provides an IDE developed on top of the

Eclipse platform, which provides a number of standard

development tools providing support to the edition, execution and

debugging of M2M transformations.

With regard to M2T transformations, MOFScript was one of the

candidates in the OMG RFP process on MOF Model to Text

Transformation. It is included in an Eclipse subproject aimed at

developing tools and frameworks for supporting model to text

transformations, e.g., to support generation of implementation

code or documentation from models. Some of the characteristics

that made this tool a good candidate to deal with M2T

transformations were that (1) it allows generating text from MOF-

31 http://www.eclipse.org/modeling/

32 http://www.eclipse.org/stp/

Chapter 9. Model Transformations 235

based models, (2) it defines a set of mechanisms that facilitates

the implementation of transformations (i.e., control mechanisms,

string manipulation, expressions to reference model elements), (3)

it allows specifying the file being generated and (4) it allows keep

traceability between source models and generated files.

9.2 Model Transformations to Generate WS-BPEL

code

The main goal of the BPMN notation is bridging the gap between

the business process design and the process implementation. The

way to bridge this gap has already been documented (White, 2005)

and even implemented in some tools (Borland Together33 or Oracle

BPEL Manager34). With regard to the published documentation,

this is based on a particular example and does not provide a

complete mapping between BPMN diagrams and WS-BPEL. On

the other hand, the limitations of WS-BPEL forces extending the

language in proprietary ways, which works against the language

promised portability. If the required extension were based on Web

services interfaces, the portability would not be compromised.

However, most vendors add proprietary extensions to lock users in

their products.

Therefore, we needed to provide a transformation that (1) would

cover the whole mapping between the graphical notation and the

33 http://www.borland.com/us/products/together/index.html

34 http://www.oracle.com/technology/bpel/index.html

236 Chapter 9. Model Transformations

executable language and (2) would generate an executable

representation 100% compliant with the standard. In this

direction, we found within the Babel project35 developed by the

Business Process Management Group36 the BPMN2BPEL37 tool.

This tool is a Java application that transforms process models

represented in BPMN diagrams into process definitions

represented in WS-BPEL (Ouyang et al., 2006). This tool seems

initially promising but it has some limitations:

1. It does not include a graphical editor for BPMN modelling.

Although providing graphical editors to build models is not

a must for the realization of the MDD approach, it

constitutes in most cases the key factor for the success of

any tool.

2. The generated WS-BPEL code is incomplete and only

generates the code related to activities within a WS-BPEL

document. The completeness of a WS-BPEL document is

necessary in order deploy successfully the process

definition into a process engine.

As can be seen in Figure 9.1, the WS-BPEL complete code

generation process has been defined using both M2M and M2T

transformations and includes the following steps:

35 http://www.bpm.fit.qut.edu.au/projects/babel/

36 http://www.bpm.fit.qut.edu.au/

37 http://www.bpm.fit.qut.edu.au/projects/babel/tools/

Chapter 9. Model Transformations 237

1. First of all, BP definitions depicted graphically following

the BPMN notation are transformed into BPs according

the Babel tool format.

2. In parallel to the first step we can generate the interface

(WSDL file) of the WS-BPEL process as well as the data

types used by it. The interface is generated in the WSDL

language since the executable WS-BPEL process is seen

from the outside as a Web service.

3. Once we have a business process representation according

to the schema defined by the Babel tool we can execute the

BPMN2BPEL tool to obtain a preliminary version of the

WS-BPEL document.

4. Finally, the previously obtained WS-BPEL document is

completed by including the sections that are not built by

the Babel tool (which are the partner link, variables and

correlation set sections) and by associating activities with

the proper partner. Moreover, before sending and receiving

data to and from an external partner it is necessary to

perform a transformation process to map the data types

used by the process to the ones used by the external

partners. Therefore, it is necessary (1) to build a new

partner in charge of this transformation process and (2) to

include the activities that invoke the operations providing

this functionality.

After the application of this set of steps we obtain a complete

executable WS-BPEL document which can be executed in a WS-

238 Chapter 9. Model Transformations

BPEL engine. The following subsections present in detail each of

these steps.

9.2.19.2.19.2.19.2.1 From the BPM to BPMN according to the Babel From the BPM to BPMN according to the Babel From the BPM to BPMN according to the Babel From the BPM to BPMN according to the Babel

ToolToolToolTool

In the context of M2M transformations, we have defined and

implemented the necessary transformation rules to overcome the

BPMN modelling limitation of the BPMN2BPEL tool. Since the

metamodel used by the Babel tool is quite simple (considering just

tasks, links and gateways to control the flow) the set of

transformations defined in this case are quite straight forward as

the following list shows:

� Activities are transformed into nodes (see Code excerpt 9.1)

� Links, which connect two nodes, are transformed into arcs

(see Code excerpt 9.2)

rule Activity2Node{
 from a: bpmn!Activity(a.isLocal and
 (not a.isHuman) and (not a.isSend) and (not a.isReceive) and (not
a.isStartEvent))
 to node: babel!Node(
 id<-a.iD,
 name<- a.name,
 type <- a.nodeType

)
}

Code excerpt 9.1 Rule transforming Activities into nodes

rule Sequence2Arc{
 from s: bpmn!SequenceEdge(s.isLocal and not s.target.isInitial)
 to arc: babel!Arc(
 id<-s.iD,
 source<- if s.source.isHuman and (not s.source.isInitial) then

 thisModule.Human2Complete(s.source).id
 else

Chapter 9. Model Transformations 239

 if s.source.isReceive then
 thisModule.Activity2Transform(s.source).id
 else
 s.source.iD
 endif
 endif,
 target<- if s.target.isSend then
 thisModule.Activity2Transform(s.target).id
 else s.target.iD
 endif,
 guard<-s.name
)
}

Code excerpt 9.2 Rule transforming Links into arcs

In addition to these two transformation rules, a set of additional

helpers functions have been defined in order to inquire some

properties about elements of the model. This is necessary since

BPMN considers more activity types than the ones supported by

the Babel format. Therefore, these helpers constitute the

mappings between the BPMN and the Babel activity types. In the

Code excerpt 9.3 the helper defining the mappings between the

whole set of BPMN start events and the one supported by Babel is

presented.

helper context bpmn!Activity def: isStartEvent:Boolean=

 let types: Sequence(bpmn!ActivityType)=

 Sequence{#EventStartEmpty,

 #EventStartMessage,

 #EventStartRule,

 #EventStartTimer,

 #EventStartLink,

 #EventStartMultiple} in

 types->includes(self.activityType);

Code excerpt 9.3 Helper to check whether an activity is defined as a start

activity

240 Chapter 9. Model Transformations

A set of helpers have been defined to determine the type of the

activity being handled (isStartEvent, isMessageEvent,

isTimerEvent, isXorJoin, isXorSplit, isEbXorJoin, isEbXorSplit,

isAndJoin, isAndSplit, isEndEvent, isTask, nodeType). For the

complete definition of these helpers see Appendix D38.

However, as we have already mentioned, the WS-BPEL document

generated by the Babel tool constitutes a preliminary version of

the document. The code presented in the Code excerpt 9.4 shows

the WS-BPEL document generated for the “Request Book

Purchase” process (see Appendix C) by the Babel tool.

<?xml version="1.0" encoding="UTF-8"?>

<process xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

name="output.babel" targetNamespace="http://samples.org/output.babel">

 <!--bpmn2bpel Version 1.0-->

 <partnerLinks>

 <!--List of services participating in this BPEL process-->

 <partnerLink name="local" partnerLinkType="localPT" myRole="localService" />

 </partnerLinks>

 <variables>

 <!--List variables used in this BPEL process-->

 </variables>

 <sequence name="sequenceComponent_6">

 <receive name="ProcessInstantiation" partnerLink="client"

 portType="localPT" operation="localPT" variable="client_data"

createInstance="yes" />

 <sequence name="sequenceComponent_1">

38 Available on-line at

http://www.dsic.upv.es/~vtorres/thesis/appendixes/appendixD

Chapter 9. Model Transformations 241

 <invoke name="RequestaBookPurchase" partnerLink="local"

 portType="localPT" operation="RequestaBookPurchase"

 inputVariable="RequestaBookPurchase_data_in"

 outputVariable="RequestaBookPurchase_data_out" />

 <invoke name="ValidatetheRequest" partnerLink="local" portType="localPT"

 operation="ValidatetheRequest"

 inputVariable="ValidatetheRequest_data_in"

outputVariable="ValidatetheRequest_data_out" />

 <receive name="complete_ValidatetheRequest" partnerLink="local" portType="localPT"

 operation="completion_complete_ValidatetheRequest"

 variable="complete_ValidatetheRequest_data" createInstance="no" />

 </sequence>

 <switch>

 <case condition="no">

 <invoke name="NotifyRequestRejection" partnerLink="local" portType="localPT"

 operation="NotifyRequestRejection"

inputVariable="NotifyRequestRejection_data_in"

 outputVariable="NotifyRequestRejection_data_out" />

 </case>

 <case condition="yes">

 <sequence name="sequenceComponent_4">

 <sequence name="sequenceComponent_2">

 <invoke name="transform_SendRequest" partnerLink="local" portType="localPT"

 operation="transform_SendRequest"

inputVariable="transform_SendRequest_data_in"

 outputVariable="transform_SendRequest_data_out" />

 <invoke name="SendRequest" partnerLink="local" portType="localPT"

operation="SendRequest"

 inputVariable="SendRequest_data_in"

outputVariable="SendRequest_data_out" />

 <receive name="ReceivePurchaseNotification" partnerLink="local" portType="localPT"

 operation="completion_ReceivePurchaseNotification"

 variable="ReceivePurchaseNotification_data" createInstance="no" />

 <invoke name="transform_ReceivePurchaseNotification" partnerLink="local"

portType="localPT"

 operation="transform_ReceivePurchaseNotification"

 inputVariable="transform_ReceivePurchaseNotification_data_in"

 outputVariable="transform_ReceivePurchaseNotification_data_out" />

242 Chapter 9. Model Transformations

 </sequence>

 <flow name="flowComponent_3">

 <invoke name="PickUpBooks" partnerLink="local" portType="localPT"

operation="PickUpBooks"

 inputVariable="PickUpBooks_data_in"

outputVariable="PickUpBooks_data_out" />

 <invoke name="LoadBookDetails" partnerLink="local" portType="localPT"

 operation="LoadBookDetails" inputVariable="LoadBookDetails_data_in"

 outputVariable="LoadBookDetails_data_out" />

 </flow>

 <sequence name="sequenceComponent_0">

 <invoke name="NotifyBookPurchase" partnerLink="local" portType="localPT"

 operation="NotifyBookPurchase"

inputVariable="NotifyBookPurchase_data_in"

 outputVariable="NotifyBookPurchase_data_out" />

 <invoke name="LoanBook" partnerLink="local" portType="localPT"

operation="LoanBook"

 inputVariable="LoanBook_data_in" outputVariable="LoanBook_data_out" />

 </sequence>

 </sequence>

 </case>

 </switch>

 </sequence>

</process>

Code excerpt 9.4 WS-BPEL code generated by the BPMN2BPEL Babel

tool

As the Code excerpt 9.4 shows, in order to generate a valid WS-

BPEL document the Babel tool generates:

1. the partner link section, but just including one partner link

which is associated to all the activities of the process

2. the variables section, where only the structure is defined,

no variables are defined in it.

Chapter 9. Model Transformations 243

Finally, regarding the Correlation Set section, not even the

structure is built. This limitation of the Babel tool is due to the

lack of expressivity of the metamodel handled by it. In fact, this

metamodel is only composed of two primitives which are nodes

and arcs (the whole metamodel is shown in Appendix D39).

Therefore, it is necessary to add the information that cannot be

generated by the Babel tool.

9.2.29.2.29.2.29.2.2 Completing the WSCompleting the WSCompleting the WSCompleting the WS----BPEL DocumentBPEL DocumentBPEL DocumentBPEL Document

The following subsections explain the transformations defined to

complete the WS-BPEL document generated by the Babel tool.

These explanations are accompanied with some interesting code

excerpts which are also presented in appendixes40 D, E and F.

Adding the Partner Link Adding the Partner Link Adding the Partner Link Adding the Partner Link and Namespace and Namespace and Namespace and Namespace sectionsectionsectionsectionssss

The first section that we are going to focus on is the section related

to the partners interacting with the process. Before going deep

into the details, Figure 9.3 depicts graphically the interaction

schema that is going to be used for each generated WS-BPEL

document.

39 Available on-line at

http://www.dsic.upv.es/~vtorres/thesis/appendixes/appendixD

40 Available on-line at http://www.dsic.upv.es/~vtorres/thesis/appendixes

244 Chapter 9. Model Transformations

Figure 9.3 Interaction between the WS-BPEL process and the set of

Partners

As Figure 9.3 shows the WS-BPEL process interacts with four

different types of Web services which are the Task Manager WS,

the System WS, the Transformer WS and the collection of Partner-

i WS.

1. The Task Manager Web serviceTask Manager Web serviceTask Manager Web serviceTask Manager Web service has been defined to

overcome the WS-BPEL lack for handling human tasks. If

the WS-BPEL process includes tasks involving human

participation, this service must be always present as a

partner. This service provides a set of operations that are

invoked when a task demanding human participation is

reached by the process flow (see chapter 8 for a detailed

description of this service).

2. The System Web serviceSystem Web serviceSystem Web serviceSystem Web service is the partner in charge of

providing all the functionality defined in the local system

and that is associated with process activities. Therefore,

Chapter 9. Model Transformations 245

this service will only be generated when the WS-BPEL

process invokes functionality defined in the local system.

3. The Transformer Web serviceTransformer Web serviceTransformer Web serviceTransformer Web service is a service in charge of

performing format conversions between the data types used

by the WS-BPEL service and the data types used by each of

the business partners. This service is, by the moment, built

manually. However, based on works such as (Benatallah et

al., 2005) where adapters are defined automatically to

integrated different Web services, this service would be

built automatically.

4. Finally, the set of PartnerPartnerPartnerPartner----i Web servicei Web servicei Web servicei Web services s s s represent each

one of the external business partners involved in the

process. There is one per each business partner.

The Code excerpt 9.5 shows the ATL code defined for the

construction of the four types of partners interacting with the WS-

BPEL process. This code can be found in Appendix D.

helper context bpmn!BpmnDiagram def: partnerLinks:Sequence(TupleType(name:String,
 type:String,myRole:String,partnerRole:String))=
 let procName:String=self.name.normalize in
 let ns:String='ns1' in
 Sequence{
 Tuple{name='client', type=ns+':'+procName+'PLT',myRole=procName+'Service'},
 Tuple{name='human', type=ns+':'+'humanPLT',
 myRole='humanTaskRequester',partnerRole='humanTaskService'},
 Tuple{name='system', type=ns+':'+'systemPLT',partnerRole='system'},
 Tuple{name='transformer',
type=ns+':'+'transformerPLT',partnerRole='transformer'}
 }->union(
 self.pools->select(p| not p.isLocal)->collect(x|
 Tuple{name=x.name.normalize, type=ns+':'+x.name.normalize+'PLT',

myRole=x.name.normalize+'ServiceRequester',partnerRole=x.name.normalize+'Service'}
)
);

Code excerpt 9.5 Helper building the Partner Link section

246 Chapter 9. Model Transformations

Moreover, it is also necessary to include the namespace section to

the WS-BPEL document. The code excerpt in charge of adding this

section is shown in Code excerpt 9.6.

helper context bpel!BPEL def: namespaces:Map(String,String)=
 let name:String=thisModule.processName in --self.process.name
 let processName:String= name in
 let nsBpel:String='http://schemas.xmlsoap.org/ws/2003/03/business-process/' in
 let nsTMSchema:String='http://taskManager.example.org' in
 let nsLocal:String='http://www.example.org/'+processName+'/' in
 let nsLocalSchema:String='http://www.example.org/'+processName+'/xsd' in
 let nsTM:String='http://example.org/taskManager' in
 Map{
 ('',nsBpel),
 ('bpel',nsBpel),
 ('ns',nsTMSchema),
 ('ns1',nsLocal),
 ('ns2',nsLocalSchema),
 ('ns3',nsTM) };

helper def:namespaces:Map(String,String)=
 bpel!BPEL.allInstancesFrom('IN')->any(x|true).namespaces;

Code excerpt 9.6 Helper related to the generation of the Namespace

section

In these two cases we have included the namespaces explicitly in

the code. However, in a next version of the tool we want to allow

the parameterization of this part of the transformations.

Adding the Variables sectionAdding the Variables sectionAdding the Variables sectionAdding the Variables section

By default, the Babel tool associates input and output variables to

all the invoke activities defined in the WS-BPEL document. The

nomenclature used is the activity name followed by “_data_in” or

“_data_out” depending on the case (i.e

ValidatetheRequest_data_in and ValidatetheRequest_data_out).

However, the process still needs the inclusion of a set of variables

that will be associated to activities that are going to be generated

later on. The set of new variables are defined to:

Chapter 9. Model Transformations 247

� Be included in the reply activities added as a response to

the receive activities (i.e. client_dataResponse)

� Gather the output values of the Invoke activities when the

Transformer Web service is invoked (i.e.

SendRequest_data_mapped or

ReceivePurchaseNotification_mapped)

� Gather the input and output values send and received from

the invocation of the “addTask” operation provided by the

Task Manager Web service (i.e. addTaskRequest)

� Represent the object created and modified along the

process instance (i.e. BookRequest)

The Code excerpt 9.7 shows how variables are built depending on

their purpose and the place where they are used. For instance,

associated to a send activity (activity that invokes an external

partner) two variables are defined, one to gather the input data for

the activity and another to gather the input data contained in the

previous variable but this time with the types according to those

used by the external partner.

helper context bpmn!Activity def:variables:Sequence(TupleType(name:String, type:String))=
 let ns:String='ns1' in
 let init:bpmn!Activity=bpmn!Activity.allInstances()->any(a|a.isInitial) in
 let initName:String=if init.oclIsUndefined() then 'localPT' else init.name.normalize endif
in
 if self.isInitial then
 Sequence{
 Tuple{name='client_data', type=ns+':'+initName+'Request'},
 Tuple{name='client_dataResponse', type=ns+':'+initName+'Response'}

 }else
 if self.isSend then
 Sequence{
 Tuple{name=self.name.normalize+'_data_in', type=ns+':'+self.name.normalize},

248 Chapter 9. Model Transformations

 Tuple{name=self.name.normalize+'_data_mapped',
type=ns+':'+self.name.normalize+'Request'}
 }else
 if self.isReceive then
 Sequence{
 Tuple{name=self.name.normalize+'_mapped',
type=ns+':'+self.name.normalize+'Mapped'} ,
 Tuple{name=self.name.normalize+'_data', type=ns+':'+self.name.normalize}
 }else
 Sequence{
 Tuple{name=self.name.normalize+'_data_in',
type=ns+':'+self.name.normalize+'Request'} ,
 Tuple{name=self.name.normalize+'_data_out',
type=ns+':'+self.name.normalize+'Response'}
 }endif
 endif
 endif;

Code excerpt 9.7 Helper building the required Variables

Adding the Correlation Set SectionAdding the Correlation Set SectionAdding the Correlation Set SectionAdding the Correlation Set Section

Messages received by BPs require some data in order to identify

the process instance in which they are involved. This ensures that

messages are dispatched to the correct process instance.

Therefore, in order to define a value that is going to identify each

process instance, we create the correlation set section. In

particular we are always going to define a correlation set named

“CS1” whose value is going to be given by the identifier of the

object created and manipulated along the process instance life. For

this purpose, the code shown in the Code excerpt 9.8 creates this

section.

correlationSets: bpel!TCorrelationSets(
 correlationSet<-correlationSet
),
correlationSet: bpel!TCorrelationSet(
 name<-'CS1',
 properties<-'ns1'+':'+'identificador'
)

Code excerpt 9.8 Code Excerpt creating the Correlation Section

Chapter 9. Model Transformations 249

Moreover, as correlation set names are used in invoke, receive and

reply activities, within the transformations that handle this type

of activities we are going to associate them the generated

correlation set. An example of the code included after these kinds

of activities is shown in Code excerpt 9.9.

<bpel:correlations>

 <bpel:correlation initiate="no" set="CS1"/>

</bpel:correlations>

Code excerpt 9.9 Correlation section associated to invoke, receive or reply

activities

The initiate attribute is set to “no” or “yes” depending if the

receive activity corresponds to the first activity of the process

which creates an instance of the process.

Recovering the BusinessRecovering the BusinessRecovering the BusinessRecovering the Business Process Extension Information Process Extension Information Process Extension Information Process Extension Information

We defined an extension to the original BPMN notation to allow

transforming automatically BPMN diagrams into WS-BPEL code

(see chapter 5 for the details). However, since the Babel tool lacks

traceability support for the original elements of the BPMN

notation we have to recover all the information that we loosed

after the execution of this transformation. With this data we can

complete the WS-BPEL code generated by the Babel tool by

specifying Assign activities and Receive and Invoke attributes

such as partner links and port types.

250 Chapter 9. Model Transformations

At this point the code that is still missing in the new definition of

the WS-BPEL document refers to (1) assign activities and (2) some

attributes (partnerLink and portType attributes) of process

activities. Table 9-1 summarizes the actions performed by the

defined transformations depending on the kind of activity. The

Activity type column refers to characteristics that differentiate

BPMN activities:

� User to denote activities performed by the system but

requiring human participation.

� Manual to denote activities that are completely performed

by humans.

� Initial to denote the first activity defined in the process.

� External partner to denote activities used to communicate

with external services.

� Transformer to denote the activities used to communicate

with the transformer service (service in charge of mapping

the data types handled by the process with the data types

used by the external partners).

Activity TypeActivity TypeActivity TypeActivity Type PartnerLinkPartnerLinkPartnerLinkPartnerLink portTportTportTportTypeypeypeype

Assign Assign Assign Assign

activity?activity?activity?activity?

Create Create Create Create

instance?instance?instance?instance?

User Human completeHumanTask yes No

Manual Human completeHumanTask No

Initial - - Yes Yes

Ext. partner Partner-i Completion_<partner_name> R
ec
ei
v
e

R
ec
ei
v
e

R
ec
ei
v
e

R
ec
ei
v
e

Transformer Transformer transformPT Yes No

User/Manual Human taskManagerPortType Yes No

Service System doTask Yes No

Ext. partner Partner-i <partner_name>PT No

In
v
ok
e

In
v
ok
e

In
v
ok
e

In
v
ok
e

Transformer Transformer transformPT Yes No

Table 9-1 Actions performed during ATL activity transformations

Chapter 9. Model Transformations 251

Regarding the values indicated in the remainder columns:

� The Human partner link refers to the service that mediates

between the process and the user.

� The completeHumanTask port type refers to the operation

from the Human service in charge of completing a user task

� Assign activities are required in all cases since it is

necessary to prepare the data to be sent and received to

and from partners.

� The createInstance attribute is only set to “yes” only for

Receive-Initial activities which means that an instance of

the business process is going to be created if it does not

already exists.

� The <partner_name> used in the names of the port types

for Invoke and Receive activities when these are associated

to an external partner refers to the service provided by the

partner.

� For Invoke-User/Manual activities the Assign section has

also to prepare: (1) the group to which the target user

belongs, (2) the name of the task, (3) the user involved in

the task and (4) the current data. All this data is required

since the process is going to invoke an operation of the

Task Manager WS.

Finally, we want to note that after the execution of these

transformations we have a WS-BPEL “model” representing the

WS-BPEL code. However, since we have created the EMF

metamodel of WS-BPEL from the corresponding XML Schema

252 Chapter 9. Model Transformations

document, the serialization of the model to the code is

automatically performed by EMF.

9.2.39.2.39.2.39.2.3 XSD & WSDL GenerationXSD & WSDL GenerationXSD & WSDL GenerationXSD & WSDL Generation

In addition, to complete the WS-BPEL generated code, it is

necessary to make this WS-BPEL code deployable. For this reason

it is necessary to generate also the interface associated to the new

service defined by the WS-BPEL document (expressed in WSDL)

and the data types used by it (expressed in XSD). In this case, also

the Structural and Services model are used to produce these two

files. Specifically, these two models contain a detailed description

of the operations and data types used and produced by the

functionality associated to BP activities. Code excerpt 9.10 shows

how these models are specified at the header of the M2T

transformation which corresponds to:

1. the BPMN metamodel

2. the extension defined to the BPMN notation (defined in the

bpmnx metamodel)

3. the OOWS metamodel, which includes the Structural,

Services, Navigational and Presentation metamodels.

texttransformation ExampleTransformation (in bpmn:"http://stp.eclipse.org/bpmn", in
ext:"http://www.example.org/bpmnx", in oows:"http:///oows.ecore") {

Code excerpt 9.10 Header of the MOFScript transformation

In Code excerpt 9.11 the entry point of the transformation is

defined. In it a set of functions are invoked which are in charge of

the generation of each section of the WSDL document (header,

import, types, messages, portTypes, bindings, services,

Chapter 9. Model Transformations 253

partnerLinks and property alias). The complete set of

transformations is included in Appendix E41.

 bpmn.BpmnDiagram::main () {
 //initOperations()
 file (self.name + ".wsdl");
 print(self.xmlHeader()) nl(1)
 print(self.header()) nl(1)
 print(self.imports()) nl(1)
 print(self.types()) nl(1)
 print(self.messages()) nl(1)
 print(self.portTypes()) nl(1)
 print(self.bindings()) nl(1)
 print(self.services()) nl(1)
 print(self.partnerLinks()) nl(1)
 print(self.props()) nl(1)

Code excerpt 9.11 Entry point rule to the transformation to obtain the

WSDL file

The properties and property aliases included in the WSDL file are

used to define the correlation set (set of properties shared by

different messages) defined in the WS-BPEL process. On the one

hand properties define the identifiers used as correlation set in the

WS-BPEL document. On the other hand, since a single property

might exist in several messages, property aliases allow extracting

the value of the property from a message or variable.

bpmn.BpmnDiagram::props():String{
 var props:String=''
 //message ID:
 props = props + '<vprop:property xmlns:vprop="http://docs.oasis-
open.org/wsbpel/2.0/varprop"
 name="identificador" type="xsd:string"/> '

 //Initialize Identifications:
 oows.objectsOfType(oows.Class)->forEach(c:oows.Class){

41 Available on-line at

http://www.dsic.upv.es/~vtorres/thesis/appendixes/appendixE

254 Chapter 9. Model Transformations

 c.Attribute->forEach(att:oows.Attribute){
 if(att.isIdentifier){
 idents.put(c.id,att.id)
 }
 }
 }
 ...

 externalTasks()->forEach(a:bpmn.Activity| a.isSend()){
 var name:String=a.varName()
 var att:String=a.getIdName()
 props= props + '<bpws:propertyAlias messageType="tns:' + name +
 'Request" part="parameters" propertyName="tns:identificador"
query="sch:'+att+'"/>'
 }
 ...
}

Code excerpt 9.12 Property and Property Aliases generation

Regarding the generation of the schema document (XSD file), a

MOFScript transformation has been defined. In Code excerpt 9.13

the entry point of the transformation is defined. In it a set of

functions are invoked which are in charge of the generation of

each section of the XSD document (header, types and elements).

The complete set of transformations is included in Appendix42 E.

 bpmn.BpmnDiagram::main () {
 initTypes()
 file (self.name + "Schema.xsd");
 print(self.xmlHeader()) nl(1)
 print(self.header()) nl(1)
 print(self.elements()) nl(1)
 print(self.taskElements()) nl(1)
 print(self.footer())
}

Code excerpt 9.13 Entry point rule to the transformation to obtain the

XSD file

42 Available on-line at

http://www.dsic.upv.es/~vtorres/thesis/appendixes/appendixE

Chapter 9. Model Transformations 255

In this case we generate separately data types and elements. The

operations in charge of this generation are elements() and

taskElements() respectively.

9.3 Model Transformations to Generate the User

Interface

The second type of artefact obtained from the models built at the

modelling level corresponds to the different code files that

constitute the Web application. The different transformations

(M2M and M2T) that have been defined in this case were briefly

presented Figure 9.2 and produce the following assets:

� The Navigational Model that supports the execution of the

original BP definitions.

� The set of files corresponding to the Navigational Model in

terms of the Tapestry Web Framework.

The following subsections detail the process followed in each case.

9.3.19.3.19.3.19.3.1 BPMN to OOWS Navigational ModelBPMN to OOWS Navigational ModelBPMN to OOWS Navigational ModelBPMN to OOWS Navigational Model

The set of M2M transformations defined to obtain a first version of

the OOWS Navigational model uses as input the BPM model as

well as the Structural and Services models. The particularity of

these transformations is that only apply to tasks that are included

in lanes defined in the BPM as «role-one» and «role-any» which

correspond to tasks performed by human beings. In the following

paragraphs we present textually the set of rule transformations

defined to obtain the OOWS Navigational model. The

256 Chapter 9. Model Transformations

Navigational model built after the application of these

transformations includes the extension defined in this thesis (see

chapter 6). The complete set of rules expressed in ATL is

presented in Appendix G.

TransformationsTransformationsTransformationsTransformations RulesRulesRulesRules:

• Process Context Generation. For each lane defined in the

process with its typed valued as «role-one» or «role-any» we

build a Process Context with the same name in the

Navigational Map. We want to note that the roles used in

the BP definition correspond to one of the type of users

defined in the User Model. (see Code excerpt 9.13).

• Activity Container Generation. Each task involving human

participation («user» and «manual» tasks) defined within

the boundaries of a role type Lane («role-any» or «role-one»)

will be transformed into an Activity Container with the

same name of the task (see Code excerpt 9.13).

• AIU Generation: Depending on the type of the task, a

different type of AIU will be generated:

o For the tasks that are defined as «user», we include a

Main-AIU within the corresponding Activity

Container.

� If the operation associated to the task refers to

an operation defined in the Structural Model,

then include a Class-View in the Main-AIU

that references the class containing such

operation.

Chapter 9. Model Transformations 257

� If the operation defined in the task refers to an

operation provided by a Service from the

Services Model, then include a Service-

Functional-View in the Main-AIU that

references such operation.

o For the tasks defined as «manual», we include a

Human-AIU within the Activity Container.

rule lane2rol{
 from d:bpmn!Lane(d.isHuman)
 to out:oows!UserRol(
 id<-d.name.normalize,
 Class<-oows!Class.allInstances()->any(c|c.id=d.name),
 NavigationalNode<-process
),
 process:oows!ProcessContext(
 id<-d.pool.diagram.name.normalize,
 alias<-d.pool.diagram.name,
 activities<- acts
),
 acts: distinct oows!ActivityContainer foreach(a in d.activities->select(x|x.isTask
and x.isHuman)) (
 id<-a.name.normalize,
 alias<-a.name,
 initial<-a.isInitial,
 baseAIU<-a
)

}

Code excerpt 9.14 ATL rule to build a Process Context

Code excerpt 9.13 shows the ATL rule that implements the

transformation that builds a Process Context and the structure of

the set of Activity Containers included in it (Appendix G contains

the complete set of transformations).

After the application of these transformations to the BPM, we

obtain a basic Navigational Model that will allow users executing

258 Chapter 9. Model Transformations

the corresponding BPs. Based on the case study developed in

Appendix C, Figure 9.4 depicts the Process Context generated for

the secretary role.

«process context»

BookPurchaseRequest

«activity container» ValidateRequest

«Main-AIU»

ValidateRequest

«class-view»

Member

-name

-surname

-login

+validateRequest()

«class-view»

RequestBook

-title

-authors

-editorial

-numEdition

-publishDate

-units

E

state == pending or denied

«activity container» PickUpBooks

«Human-AIU»

PickUpBooks

«class-view»

RequestBook

-title

-isbn

-units

state == approved

Figure 9.4 Basic Process Context Generated for the Secretary role

This Process Context includes two activity containers (one for each

user task assigned to the secretary role), among which are a Main-

AIU and a Human-AIU.

Chapter 9. Model Transformations 259

9.3.29.3.29.3.29.3.2 Code Generation for a Web FrameworkCode Generation for a Web FrameworkCode Generation for a Web FrameworkCode Generation for a Web Framework

Navigational and Presentation models defined by OOWS include

web page abstractions that can be mapped onto any language or

framework capable of implementing web applications. In

particular, in this work we decided to make use of a web

framework that facilitates the construction of the final application.

From the wide range of available web frameworks we finally chose

the open-source framework Tapestry43. Briefly, the main reasons

for this decision were the use made by Tapestry of (1) a

component-based model, (2) the Inversion of Control (IoC) pattern

and (3) the Model-View-Controler (MVC) pattern.

A Tapestry component, technically know as JWC (Java Web

Component) is a web component that can be configured,

instantiated and aggregated to take part in other components.

These components can be from an input text to a flow control

component such as an “if” clause. In addition, the set of

components is extensible allowing the developer defining her own

components.

The IoC pattern avoids the software developer dealing with low

level tasks such as controlling references between objects. This

task is relegated to a container (which is called HiveMind44 in the

43 http://tapestry.apache.org/

44 http://hivemind.apache.org/

260 Chapter 9. Model Transformations

Tapestry framework) which injects all dependencies, references

and objects related to a given object.

The MVC pattern is a software architecture pattern that

separates in three different components the data, the presentation

and the logic of the application. This pattern is widely used in the

development of web applications, where the View is constituted by

HTML templates and the code providing dynamic data for the

page, the Model is constituted by the data model (which is usually

represented by a class diagram) and the Controller is constituted

by the logic of the application.

As a result of this decision, the obtained benefits are the following:

� Simplicity, consistency and efficiency of the built code.

� Tapestry uses standard HTML code for their templates.

Moreover, following the IoC pattern, the semantics of the

components is included in separate configuration files, fact

that allows keeping templates just with HTML code.

Moreover, we can reuse HTML code by converting it into a

Tapestry component, which can then be used by means of

the proper identification.

� Tapestry components are easy to use but also to create.

� The use of the IoC pattern avoids the developer dealing

with low level aspects.

� It includes useful predefined components such as an input

validation system, an error report, own AJAX components,

etc.

Chapter 9. Model Transformations 261

From the required code to obtain a complete web application, we

group them into two groups, which are (1) generic code

independent of the domain and (2) specific code dependent of the

domain. The code belonging to the first group has been already

built and is going to be reused in each new developed system. For

example, the files required to start the application (such as the

home.html, home.page and home.java) are considered within this

group. On the other hand, the code belonging to the second group

is going to be generated each time based on the models that define

the system. Figure 9.5 outlines the stack of abstraction levels of

the generated application. In addition remarks the fact that only

the application dependent code is generated from the models

defined in the method.

Business
Proces
Model

Application
Independent Code

Tapestry Framework

Servlet Container

Java

Application
Dependent Code

Navigation &
Presentation

Models

Structural &
Services
Model

Figure 9.5 Web Application Abstraction Levels

The transformations implemented for the generation of the

application for the Tapestry framework have been organized in six

different files. These are explained in the following paragraphs.

262 Chapter 9. Model Transformations

Transformations associated to the process itself:

� Model.m2tModel.m2tModel.m2tModel.m2t: This transformation generates the java class

(Model.java) in charge of keeping the information about the

existing processes, activities and roles. Moreover, it also

keeps its data and the way in which processes, activities

and roles are related.

� ProcessJava.m2tProcessJava.m2tProcessJava.m2tProcessJava.m2t: This transformation generates the java

class (Processes.java) in charge of redirecting the user to

the appropriate web page depending on the state of the

process.

Transformations associated to process Activities:

� ActivitiesHTML.m2tActivitiesHTML.m2tActivitiesHTML.m2tActivitiesHTML.m2t: It generates the HTML code of the

application (the view from the MVC pattern).

� ActivitiesPage.m2tActivitiesPage.m2tActivitiesPage.m2tActivitiesPage.m2t: This transformation generates the

.page files gathering the XML code corresponding to the

declarations of the Tapestry components.

� ActivititesJava.m2tActivititesJava.m2tActivititesJava.m2tActivititesJava.m2t: It generates the java code associated

to the HTML generated by the ActivitiesHTML

transformation (the controller from the MVC pattern).

Transformations associated to the Structure of the Domain

� ClassDiagram.m2tClassDiagram.m2tClassDiagram.m2tClassDiagram.m2t: : : : It generates the classes defining the

domain of the application (the Model from the MVC

pattern). Since the logic of the local system is going to be

provided by the OlivaNova tool, the generated classes in

this case represent locally the objects provided by the tool.

This integration is possible since applications generated

Chapter 9. Model Transformations 263

with the OlivaNova Transformation Engines provide

Components and Web Services to make use of the

application logic. In both cases, domain classes are

available to be queried and to access their business logic

functionality.

For a whole description of these transformation see Appendix H45,

where all the MOFScript code to implement these transformations

is included.

After the application of these transformations, a ready to run Web

application is built. The different generated files are distributed

among different folders according to the Tapestry requirements. A

complete description of this structure is presented in chapter 10.

9.4 Conclusions

This chapter has presented in detail the set of transformations

that have been defined to move the system specification performed

following the OOWS approach to a particular implementation. As

transformation languages we have used ATL and MOFScript to

implement M2M and M2T transformations respectively. On the

one hand we have detailed the process performed to obtain from a

business process specification depicted in the BPMN “extended”

notation to an equivalent definition of the process in the

executable WS-BPEL language. For this purpose, in addition to

45 Available on-line at

http://www.dsic.upv.es/~vtorres/thesis/appendixes/appendixH

264 Chapter 9. Model Transformations

the already mentioned transformation languages we have made

use of the BPMN2BPEL java tool. This tool allows us generating a

preliminary version of the executable process in the WS-BPEL

language. Then making use of the BPM, Structural and Services

models we have completed the WS-BPEL document and also

generated the file defining the interface of the process (in a WSDL

file) as well as the data types used by it.

On the other hand we have detailed the process of deriving the

Web application supporting the business processes defined in the

BPM. This process is performed in two steps. First of all, we derive

from the BPM the Navigational and Presentation model which

represent in an abstract way the elements that make up the web

pages of the web application. Then, in a second stage we

instantiate these models into a particular Web framework,

Tapestry in this case. As a result, a ready to run Web application

supporting the execution of the originally specified business

processes is built.

Chapter 10

10 Tool Support

Models in software engineering were initially used for

documentation purposes. These were relegated to play a secondary

role within the software development process. However,

approaches such as the Model Driven Development (MDD)

changed that reality. This approach brought models as first class

citizens during the software development process. The main

advantage of this approach was that software applications could

be automatically generated from models. In addition, nowadays,

the maturity reached by technologies and standards allow turning

the MDD approach into reality. Examples of these mature tools

are the Eclipse Modelling Project (EMP) or the Domain-Specific

Language tools from Microsoft.

This chapter presents the BIZZY tool which has been developed in

the context of the EMP where a set of Eclipse plugin (model

editors and model transformation languages) have been combined

to completely support the development process proposed in this

thesis. On the one hand, the included model editors allow

developers creating and manipulating the set of models defined in

this work (Structural, Services, Business Process Navigation and

266 Chapter 10. Tool Support

Presentation Models). On the other hand, model transformation

languages have been used to implement model-to-model (M2M)

and model-to-text (M2T) transformations that allow obtaining

respectively other models (specifically the Navigational model)

and their equivalent representation but this time in terms of a

technological representation.

The chapter has been organized as follows. First, section 10.1

takes up again the development process presented in chapter 4 to

detail the tools used in each step of the process. Then, in section

10.2, the development process is presented step by step by

detailing the tools used and the artefacts consumed and generated

in each step. Section 10.3 presents how the artefacts obtained

after the execution of the implemented model transformations are

deployed to a Web server. Finally, this chapter is concluded in

section 10.4.

10.1 Tool Overview

The generation of BP-driven Web applications is performed by

using different model editors and model transformations along the

different steps defined in the development process. According with

the development process presented in chapter 4, this process is

divided into two main steps which relate to system specification

(problem space) and system generation (solution space). The

coordinated use of these model editors and model transformations

allows generating the Web application according to the models

specified at the problem space. Figure 10.1 shows the tool support

Chapter 10. Tool Support 267

provided for each of the steps defined in the process. In this figure,

when a model transformation is performed, this has been

indicated by means of a gear image, which includes in the type of

transformation performed (M2M, M2T or both).

1st Stage – Problem Space

2nd Stage – Solution Space

OOWS-BP

Analyst

«human-being»

Developer

«human-being»

Business Process

Analysis

+

System

Specification

+

Web

Specification

Business Process

Design

Bizzy Tool

«system»

«model»

Business Processes

[incomplete]

«model»

OO-Method Model

«model»

Business Processes

[complete]

«model»

OOWS

Models

[basic]

«code»

WS-BPEL

document

Web Application

Generation

Enrich?

+

Enrich Web

Specification

YesNo

+

+

Executable

Business Process

«code»

Tapestry

files

«model»

OOWS

Models

[enriched]

This sub-process

involves

model2text

transformations

«model»

Services Model

This task

includes

model2text

transformations

Structural Model

Functional Model

Dynamic Model

Services Model

BPMN Extension Navigational &

Presentation Models

BP Model

M2M

Transf.

BPMN2BPEL Babel Tool

M2M and M2T Transf.

M2T Transf.

Navigational &

Presentation Models

1.1

1.2

1.3

1.4 2

3

4

Figure 10.1 Tool Support for the OOWS-BP Development Process

268 Chapter 10. Tool Support

Model editors and transformations used along the development

process have been built from a set of tools included in the Eclipse

project, specifically from the Eclipse Modeling Framework46

(EMF). EMF includes tools for the generation, edition and

serialization of models conforming to Ecore metamodels (an

implementation of the OMG’s Essential MOF to represent

metamodels). In the BIZZY tool, all the used metamodels (BPMN,

WS-BPEL and OOWS) are represented as Ecore metamodels. In

some cases, the Ecore metamodels were built from the

corresponding XML Schemas (EMF permits the generation of

Ecore metamodels from XML Schemas). In other cases, a new

Ecore metamodel had to be built.

With regard to model editors, most of the model editors included

in the BIZZY tool are provided as a tree-based EMF editor. The

only graphical editor included in the tool is the BPMN Modeller47

that has been developed in the SOA Tools Platform (STP).

With regard to model transformations, two different languages

have been used. On the one hand, the Atlas Transformation

Language48 (ATL) was used to deal with M2M transformations.

Specifically, we have implemented in this language the

transformations that allow transforming (1) the Business Process

Model (BPM) into the corresponding OOWS Navigational Model

46 http://www.eclipse.org/modeling/emf/

47 http://www.eclipse.org/stp/bpmn/

48 http://www.eclipse.org/m2m/atl/

Chapter 10. Tool Support 269

and (2) the BPM into BP format accepted by the BPMN2BPEL

Babel tool. On the other hand, the MOFScript Language was used

to deal with M2M transformations. Specifically, the

transformations that have been implemented in this language

allow generating (1) the interface (WSDL file) and the data types

(XSD file) used by the Web service represented by the WS-BPEL

BP and (2) the Web applications in terms of a Web Framework (in

particular to the Tapestry Web Framework).

Finally, in addition to these Eclipse-based model editors and

transformations, a Java tool has been used to perform the step

that partially builds the executable WS-BPEL document. This tool

is the Babel BPMN2BPEL49 tool. Its role is performing the

transformation between BPMN diagrams into WS-BPEL

definitions.

The following section presents in detail each of the steps of the

development process.

10.2 From a BP Specification to a Web Application:

Step by Step

According to Figure 10.1, the steps that have to be performed to

obtain a Web application supporting BPs are the following:

49 http://www.bpm.fit.qut.edu.au/projects/babel/tools/

270 Chapter 10. Tool Support

1. System System System System SSSSpecification:pecification:pecification:pecification: Specify the different aspects of the

system (Structure, behaviour) by means of the

corresponding editors.

2. Generation of the Web Generation of the Web Generation of the Web Generation of the Web System Navigation:System Navigation:System Navigation:System Navigation: Execute a M2M

transformation that generates the Navigational model

required to support the execution of the BPs defined in step

1. This is an ATL transformation that is executed from the

ATL plug-in for Eclipse.

3. Generation of the Web System GUI:Generation of the Web System GUI:Generation of the Web System GUI:Generation of the Web System GUI: Execute a set of M2T

transformations that generate the Web application in

terms of the Tapestry Web framework. These

transformations are implemented in MOFScript and are

executed from the MOFScript tool developed as an Eclipse

plug-in.

4. Generation of WSGeneration of WSGeneration of WSGeneration of WS----BPEL executable BPsBPEL executable BPsBPEL executable BPsBPEL executable BPs: Execute a set of

M2M, M2T and the BPMN2BPEL Babel tool to obtain an

executable definition of the BPs defined in step 1.

Depending on the case, these transformations have been

implemented in ATL and MOFScript.

The following subsections present each of these steps by means of

the “Book Request Purchase” long-running BP case study (a

complete description is provided in Appendix C). For each step we

detail its sub steps (if any), the required models, the tool used and

the produced artefacts.

Chapter 10. Tool Support 271

10.2.110.2.110.2.110.2.1 Step 1: System SpecificationStep 1: System SpecificationStep 1: System SpecificationStep 1: System Specification

Along this step the system is modelled by the developer in terms of

the models proposed by the method. These models represent the

system in an independent technology manner. This step is made

up in turn of four steps and the order in which these are built can

vary from case to case. However, since we start from a BP

specification, we propose the following order:

1.1 Build an initial BP definition. This step is performed by

means of the BPMN Modeller included in the STP (see

Figure 10.2). This step constitutes the first attempt to build

the Business Process Model (BPM) defined in the proposal.

Figure 10.2 STP BPMN Modeller

1.2 Build the Structural, Dynamic and Functional models

defined by the OO-Method approach. This step is

performed by means of the OLIVANOVA Modeller.

272 Chapter 10. Tool Support

Figure 10.3 Different Editors provided by the OLIVANOVA Modeller

These models are translated into code by means of the

OLIVANOVA Transformation Engines. The integration of the code

generated by these engines was solved in (Valverde et al., 2007).

In this work, authors developed a Business Façade interface which

exposes a set of methods that are redefined according to the

underlying business logic. This façade is used to build and send

XML messages to the components that encapsulate the business

logic specified in the OLIVANOVA Modeller.

1.3 Build the Services Model included in the OO-Method

approach. This model allows specifying the functionality

that is provided by external partners at the modelling level.

Nowadays, this model is built manually from the WSDL

interface provided by external partners. This is performed

by means of the tree-based EMF editor generated for the

Services Model.

Chapter 10. Tool Support 273

Figure 10.4 Tree-based EMF editor for the Services Model

1.4 Complete the BP definition that has been built in step 1.1

according the BPMN extension presented in chapter 5. This

extension allows specifying the functionality that supports

each of the BP activities and the behaviour of the human

roles involved in the BP. This completion is performed by

means of a three-based EMF editor which extends some of

the elements defined in the original BPMN notation (see

Figure 10.5). After this step, the BPM is completed and can

be used to produce different artefacts.

274 Chapter 10. Tool Support

Figure 10.5 Tree-based EMF editor for the Extension defined over the

BPMN notation

10.2.210.2.210.2.210.2.2 Step 2: Step 2: Step 2: Step 2: Generation of the Web System Generation of the Web System Generation of the Web System Generation of the Web System

NavigationNavigationNavigationNavigation

The result that is obtained in this step is the Navigational Model

corresponding to the system specified in the previous step. This

model represents the Navigation of the Web application in a

technology independent manner. The Navigational Model is

generated in one step; however, optionally, this model can be

improved manually in a second step (step 2.2):

2.1 The former step is performed automatically by means of a

M2M transformation (bpmn2oows). This transformation

generates, from the BPs specified in the BPM (steps 1.1

and 1.4), the Navigational model required to support the

execution of these BPs. This transformation has been

implemented as an ATL transformation and is executed

Chapter 10. Tool Support 275

from the ATL plug-in for Eclipse. This transformation50 has

been previously presented in chapter 9. Figure 10.6 shows

the input and output artefacts of the “bpmn2oows”

transformation.

Figure 10.6 From BPM to OOWS Navigational Model

2.2 Although the Navigational model obtained previously in

step 2.1 it already supports the execution of the defined

BPs, this model can be manually enriched to include

information to improve the final generated Web

application. Specifically, in this step we can include

complementary information that is kept in the system to

help users in completing their tasks. This step is performed

manually by the developer and it is done by means of the

tree-based EMF editor built for the Navigational model.

10.2.310.2.310.2.310.2.3 Step 3: Step 3: Step 3: Step 3: Generation of the Web System GUIGeneration of the Web System GUIGeneration of the Web System GUIGeneration of the Web System GUI

Once the whole system is specified at the problem space, we can

proceed with the execution of M2T transformations that generate

the Web application in terms of the Tapestry Web framework.

50 Available on-line at

http://www.dsic.upv.es/~vtorres/thesis/appendixes/appendixG

276 Chapter 10. Tool Support

These transformations require all the previously built models and

they produce the different files required by the Tapestry Web

framework which are Java, page and html files. These

transformations51 are implemented in MOFScript and are

executed form the MOFScript tool developed as an Eclipse plug-in.

�
�

�

BPM

Structural
Model

Services
Model

Nav & Pres
Models

Figure 10.7 M2T Transformations

After the execution of these transformations, a Tapestry Web

application is generated. The Web application is made up of files

that are dependent of the domain (files that are necessarily

generated for each Web application) and independent of the

domain (files that are always the same independently of the

specific Web application). To differentiate these types, the

dependent files are always contained within a folder named “gen”

(see Figure 10.9 and Figure 10.9). According to this criterion, as

Figure 10.8 shows, the structure of this application looks like the

same as a Java Web application. Specifically, the taskManager

51 Available on-line at

http://www.dsic.upv.es/~vtorres/thesis/appendixes/appendixH

Chapter 10. Tool Support 277

folder (which corresponds to the “Book Request Purchase” case

study) is made up of three folders (the “gen”, “images” and “WEB-

INF”) and a set of html, page and css files.

Figure 10.8 Web application folder within the TOMCAT Web server

The “gen” folder contains the html templates of the different Web

pages of the application and, when applies, the associated page

files (remember that these files specify the Tapestry components

used in the templates).

The html and page files contained in this folder are files

independent of the domain and correspond to the initial web page

when the Web application is started (Home.html) and the

navigation provided to a specific user regarding to BPs

(Processes.html).

The default.css file is the Cascading Style Sheet used in the Web

application which defines colours, fonts, layout and other aspects

of the presentation of the web pages. The images folder contains

the application’s images used by the Web pages.

278 Chapter 10. Tool Support

Figure 10.9 WEB-INF Folder Structure

Finally, the WEB-INF directory contains all the inner workings of

a Java Web application. This directory contains three subfolders

which are:

� classesclassesclassesclasses folder: This folder contains the Java classes that

implement the functionality of the Web application.

� liblibliblib folder: This folder contains all the libraries required by

the Web application. Specifically, the Tapestry libraries are

placed in this folder.

� METAMETAMETAMETA----INFINFINFINF folder: This directory contains the manifest file

which describes the package that is created from the Web

application.

� web.xmlweb.xmlweb.xmlweb.xml file: This file is the deployment descriptor which

serves to tell the Web server all of the most important

details about the Web application and its configuration.

Chapter 10. Tool Support 279

10.2.410.2.410.2.410.2.4 Step 4: Step 4: Step 4: Step 4: Generation of WSGeneration of WSGeneration of WSGeneration of WS----BPEL executable BPEL executable BPEL executable BPEL executable

BPsBPsBPsBPs

The generation of the WS-BPEL BP is performed in four steps.

The use of the BPMN2BPEL Babel tool to generate a partial

definition of the WS-BPEL document forces us to prepare BP

definitions (those modelled in the BPM) according to the format

required by this tool. Therefore, the steps required to obtain a

complete WS-BPEL document are the following:

4.1 Execute the bpmn2babel M2M transformation to prepare

the BPs defined in step 1.1 into the format accepted by the

BPMN2BPEL Babel tool. This transformation52 has been

implemented in ATL and it is executed from the ATL plug-

in for Eclipse. Figure 10.10 shows the models consumed

and generated by the bpmn2babel transformation.

Figure 10.10 M2M transformation to prepare BP definitions according to

the Babel tool

4.2 Execute the BPMN2BPEL Babel tool to obtain a partial

definition of the executable BP defined in step 1.1. This

52 Available on-line at

http://www.dsic.upv.es/~vtorres/thesis/appendixes/appendixD

280 Chapter 10. Tool Support

step is automated by means of an Ant script which defines

targets to invoke the Babel Java tool. Figure 10.11 shows

the consumed and generated models after the execution of

the BPMN2BPEL Babel tool.

Figure 10.11 Generation of a partial WS-BPEL BP

4.3 Execute the bpelRefinement M2M transformation which

completes the WS-BPEL document obtained in step 4.2. As

Figure 10.12 shows, this transformation uses the

Structural, Services and Business Process Model to

complete the WS-BPEL document generated previously in

step 4.2. This transformation53 has been implemented in

ATL and it is executed from the ATL plug-in for Eclipse.

BPM

Structural
Model

Services
Model

Figure 10.12 Generation of a complete WS-BPEL BP

53 Available on-line at

http://www.dsic.upv.es/~vtorres/thesis/appendixes/appendixF

Chapter 10. Tool Support 281

4.4 Execute the M2T transformations that generate the

interface and the data type files corresponding to the WS-

BPEL obtained previously. These files are necessary since

the WS-BPEL BP is in turn a Web service. These files are

generated from the Structural, Services and Business

Process Models. These transformations54 have been

implemented in MOFScript and it is executed from the

MOFScript plug-in for Eclipse.

BPM

Structural
Model

Services
Model

Figure 10.13 Generation of the Interface and Data types used by the WS-

BPEL BP

When the WS-BPEL document and the WSDL and XSD files have

been generated we can bring them into the ActiveBPEL Eclipse

environment to proceed with the deployment of the WS-BPEL BP

(see section 10.3.2).

10.3 Deployment

Once the system has been obtained in terms of an implementation

technology, this has to be deployed in a Web server. Both the Web

applications and the WS-BPEL are deployed in a Web server.

Then, when the server is started both applications will be served

54 Available on-line at

http://www.dsic.upv.es/~vtorres/thesis/appendixes/appendixE

282 Chapter 10. Tool Support

by the server. The following subsections explain how the interface

of the Web application and the WS-BPEL BP are deployed in the

Web server.

10.3.110.3.110.3.110.3.1 Web Application DeploymentWeb Application DeploymentWeb Application DeploymentWeb Application Deployment

Before deploying the Web application in a Web server it is

necessary to compile all the Java files generated in step 3. These

tasks (compilation and deployment) have been automated in an

Ant script (Code excerpt 10.1). After the execution of these tasks, a

Web application with the structure shown in section 10.2.3 is

created.

<target name="build"

 description="Compile main source tree java files">

 <mkdir dir="${build.dir}"/>

 <javac destdir="${build.dir}" target="1.5" debug="true"

 deprecation="false" optimize="false"

 failonerror="true">

 <src path="${src.dir}"/>

 <classpath refid="master-classpath"/>

 </javac>

</target>

<target name="deploy" depends="build"

 description="Deploy application">

 <copy todir="${deploy.path}/${name}"

 preservelastmodified="true">

 <fileset dir="${web.dir}">

 <include name="**/*.*"/>

 </fileset>

 </copy>

</target>

Code excerpt 10.1 Build.xml excerpt

Chapter 10. Tool Support 283

10.3.210.3.210.3.210.3.2 WSWSWSWS----BPEL DeploymentBPEL DeploymentBPEL DeploymentBPEL Deployment

The deployment of a WS-BPEL BP to a Web server is performed

from the ActiveBPEL Eclipse tool (see Figure 10.14). The steps

that have to be done to proceed with the deployment are the

following:

� Import a skeleton project for ActiveBPEL. This skeleton

includes:

o A WSDL folder which contains the wsdl files of the

external partners (in this case this corresponds to

the Central Library partner) and the task manager

(this service is always used by the generated WS-

BPEL process to deal with the human limitation

found in the WS-BPEL version used in this work

(version 1.1)).

o PDD (Process Deployment Description file): This file

indicates the urls where the different services

involved in the WS-BPEL are located.

� Copy the automatically generated .bpel file (see section

10.2.4) into the imported project (bookRequest.bpel in

Figure 10.14).

� Copy the generated wsdl and xsd files (10.2.4) into the

imported project (bookRequest.wsdl and

bookRequestSchema.xsd in Figure 10.14).

� Export the PDD file as a Business Process Archive (.bpr)

file. As a result, an archive deployment file is created

(bookRequest.bprd file in Figure 10.14).

284 Chapter 10. Tool Support

Figure 10.14 ActiveBPEL prepared environment

The WS-BPEL deployed process can be tested from the “BPEL

Administrative Console” which can be reached from the

“Administrative Servlets” provided with the activeBPEL engine.

This console allows checking that the deployment was successful.

After the deployment of the WS-BPEL processes, the active-bpel

folder shown in Figure 10.15 is created.

Figure 10.15 Active-bpel folder within the TOMCAT Web server

Chapter 10. Tool Support 285

10.4 Conclusions

In this chapter we have presented the set of model editors and

transformations used along the development process to generate a

BP-driven Web application. We have detailed for each step of the

process the artefacts consumed and generated and the tool used to

complete each step.

Model editors have been used to specify the different aspects that

characterize BP-driven Web applications. Most of them have been

provided as a tree-based EMF editor. On the other hand, model

transformations have been implemented to obtain (1) a Java Web

application and (2) the set of WS-BPEL BP according to the

system specified at the modelling level. To implement model

transformations we have used two different languages which are

ATL and MOFScript. These languages have been used to

implement model-to-model and model-to-text transformations

respectively.

Additionally, we have explained how the generated artefacts (Web

application in terms of the Tapestry Web Framework and WS-

BPEL processes) are deployed in a Web server. On the one hand,

the Web application has been generated according to the folder

structure required for a Java Web application. On the other hand,

the WS-BPEL process is automatically deployed to the Web server

through the ActiveBPEL Eclipse environment.

Chapter 11

11 Conclusions & Further Work

In this thesis, we have presented a methodological solution to cope

with the automatic generation of BP-driven Web applications. To

achieve this goal, we have developed a solution within the Web

engineering field that is inspired on the architecture of the

Business Process Management Solutions (BPMS). Furthermore,

the proposed solution is also based on the Model Driven

Engineering field, where the definition of model transformations

allows us to move the system that is specified at the modelling

level into a specific implementation technology.

This last chapter introduces the conclusions of the work developed

in this thesis. First, we present the main contributions to the Web

engineering community. Then, we outline the ongoing and future

work that has emerged from this thesis. Finally, we present the

publications that have been produced throughout the development

of this work.

11.1 Main Contributions

The main contributions of this work are:

288 Chapter 11. Conclusions & Further Work

� We have defined a complete process to carry out the

development of BP-driven Web applications. This process

extends from the modelling phase (the phase where the

system is represented in terms of a set of models) through

the generation phase (the phase that applies a set of

transformation rules to obtain the executable artefacts).

� At the modelling level, we have defined a set of

abstractions that represent navigational and presentation

properties found during the business process (BP)

execution. These abstractions have been introduced into

the OOWS Web Engineering method.

� We have modified the architecture of the generated Web

applications to properly handle BPs. As a result, we have

introduced a process engine into the architecture of these

systems. This process engine allows the construction of

more lightweight navigational models, where the process

flow is maintained inside the process definition.

� Based on the MDE, we have defined a set of model

transformations to obtain (1) executable process definitions

expressed in the WS-BPEL language and (2) the set of files

(.java, .html and .page) necessary to deploy an application

in terms of a Web framework, specifically the Tapestry Web

framework55.

� We have developed a tool (the BIZZY tool) that implements

the ideas presented in this work. The tool has been

developed applying the latest trends in the MDE field. It

55 http://tapestry.apache.org/

Chapter 11. Conclusions & Further Work 289

has been built using tools that are included in the Eclipse

development environment (the Eclipse Modeling project

and the SOA Tool Platform project) and the BPMN2BPEL

Java tool56. Tools such as ATL and MOFScript have been

used to implement the transformations defined in the

proposal and EMF has been used to manipulate the models

defined in the method. Finally, the BPMN editor from the

STP Project has been used to model BPs defined in the

Business Process Model included in the proposal.

11.2 Further Work

The research presented here is not a closed work and there are

several interesting directions that can be taken to provide the

proposal with a wider spectrum of application. The following list

summarizes the research activities that are planned to continue

this work.

� Business Business Business Business PPPProcess rocess rocess rocess SSSSemanticsemanticsemanticsemantics. We propose to present

semantic information related to the BPs supported by our

generated Web applications. This extra information will

provide potential consumers with a more complete

description of the offered functionality. To achieve this

goal, these services must be described in semantic

languages such as OWL-S (Burstein et al., 2004) or WSMO

(Roman et al., 2005). In keeping with the MDE trends

applied in this work, we should define mappings that allow

56 http://www.bpm.fit.qut.edu.au/projects/babel/tools/

290 Chapter 11. Conclusions & Further Work

us to translate the BPs represented in our systems into any

semantic language.

� Business Business Business Business RRRRulesulesulesules. Web service technology has propitiated the

existence of multiple service providers offering similar

services. Since performing an automatic selection based on

a set of variables is very important, we plan to study how

these business rules can be defined within the method

following the MDE trends on which this work is based.

� Assisting the User during Business PrAssisting the User during Business PrAssisting the User during Business PrAssisting the User during Business Process Definitionocess Definitionocess Definitionocess Definition. It is

of utmost importance to ensure that the developed system

satisfies user requirements. In order for the system to be

correct and valid and ensure that it corresponds to the user

requirements it is necessary to validate the specification of

the system at the problem space prior to its construction.

To do this, we plan to integrate a mechanism at the

modelling level that assists the user during the BP

specification phase. This mechanism is based on a

recommender system that can validate the semantics of the

BP (Hornung et al., 2007).

� Graphical EditorGraphical EditorGraphical EditorGraphical Editor. The current state of the BIZZY tool does

not provide a graphical editor for handling the

Navigational and Presentation models. Therefore, to

improve the developer’s experience, we plan to complete the

tool with graphical editors. Since the tool has been

developed within the Eclipse environment, the graphical

editor will be developed using the Eclipse Graphical

Modeling Framework (GMF), which allows visualizing

models in a graphical manner.

Chapter 11. Conclusions & Further Work 291

� Automatic generation of Web service adapters. Automatic generation of Web service adapters. Automatic generation of Web service adapters. Automatic generation of Web service adapters. Based on

research works such as (Benatallah et al., 2005), we want

to endow the tool with a mechanism for generating the

transformation service that is in charge of mapping the

data types used in the WS-BPEL process with the data

types that are used by external partners.

� Content Adaptation to Target Devices. Content Adaptation to Target Devices. Content Adaptation to Target Devices. Content Adaptation to Target Devices. We are aware of the

broad range of devices that can be used to access the

WWW. These include desktop computers, PDAs or mobile

phones among others. However, each device defines a set of

characteristics (i.e., small size, voice recognition

capabilities, etc.) that must necessarily be taken into

account when accessing Web applications. We have started

to deal with these issues by defining a model that allows us

to represent the characteristics of these devices to see how

they affect the data and functionality provided by the

accessed systems. This preliminary work has already been

done in (Torres et al., 2007). Extensions to this work will

improve the original proposal.

11.3 Publications

The work developed in this thesis has been published in the

following book chapters, conferences and workshops:

� Victoria TorresVictoria TorresVictoria TorresVictoria Torres, Vicente Pelechano, Marta Ruiz, Pedro

Valderas, “A Model Driven Approach for the Integration of

External Functionality in Web Applications. The Travel

292 Chapter 11. Conclusions & Further Work

Agency System”. Workshop on Model-driven Web

Engineering (MDWE), July, 2005, Sydney (Australia), pp.

1-11

� Victoria TorresVictoria TorresVictoria TorresVictoria Torres, Javier Muñoz, Vicente Pelechano

“A Model-Driven Method for the Integration of Web

Applications”. LA-WEB, October, 2005, Buenos Aires

(Argentina), pp. 32-41

� Victoria TorresVictoria TorresVictoria TorresVictoria Torres, Ricardo Quintero, Marta Ruiz, Vicente

Pelechano. “Towards the Integration of Data and

Functionality in Web Applications. A Model Driven

Approach”, Conference on Advanced Information Systems

Engineering Forum (CAiSE Forum), June, 2005, Porto

(Portugal), pp. 33-38

� Victoria TorresVictoria TorresVictoria TorresVictoria Torres, Vicente Pelechano. “Building business

process driven web applications”. In Dustdar, S., Fiadeiro,

J.L., Sheth, A.P., eds.: Business Process Management.

Volume 4102 of Lecture Notes in Computer Science.,

Springer (2006) 322-337

� Victoria TorresVictoria TorresVictoria TorresVictoria Torres, Vicente Pelechano, Pau Giner.

“Generación de Aplicaciones Web basadas en Procesos de

Negocio mediante Transformación de Modelos”.

XI Jornadas de Ingeniería del Software (JISBD), 2006, pp.

443-452

Chapter 11. Conclusions & Further Work 293

� Victoria TorresVictoria TorresVictoria TorresVictoria Torres, Pau Giner, Vicente Pelechano.

Eder, J.; Tomassen, S. L.; Opdahl, A. L. & Sindre, G. (ed.)

“Modeling Ubiquitous Business Process Driven

Applications”. Conference on Advanced Information

Systems Engineering Forum (CAiSE Forum), CEUR-

WS.org, 2007, 247

� Pau Giner, Victoria TorresVictoria TorresVictoria TorresVictoria Torres, Vicente Pelechano,

“Bridging the Gap between BPMN and WS-BPEL. M2M

Transformations in Practice”.

Proc. of the 3rd International Workshop on Model-Driven

Web Engineering (MDWE), July, 2007, Como (Italy)

� Victoria TorresVictoria TorresVictoria TorresVictoria Torres, Vicente Pelechano and Pau Giner,

"Building business process driven web applications based

on the service oriented paradigm," ERCIM News, vol. 70,

pp. 54-55, July 2007.

� Victoria TorresVictoria TorresVictoria TorresVictoria Torres, Pau Giner, Vicente Pelechano, “Web

Application Development Focused on BP Specifications”,

Taller sobre Procesos de Negocio e Ingeniería del Software

(PNIS), September, 2007, Zaragoza (Spain), pp. 1 - 7

� Pau Giner, Victoria TorresVictoria TorresVictoria TorresVictoria Torres, Vicente Pelechano. “Generation

of Business Process based Web Applications” (Demo). XII

Jornadas de Ingeniería del Software y Bases de Datos

(JISBD), September 2007, Zaragoza (Spain).

294 Chapter 11. Conclusions & Further Work

� Victoria TorresVictoria TorresVictoria TorresVictoria Torres, Joan Fons, Vicente Pelechano. “Building

Usable Business Process Driven Web Applications”. In

Calero, C.; Moraga, M. &A. & Piattini, M. (ed.) Handbook

of Research on Web Information Systems Quality Building

Usable Business Process Driven Web Applications IGI

Global, 2008, pp. 247-265.

� Joan Fons, Vicente Pelechano, Oscar Pastor, Pedro

Valderas, Victoria TorresVictoria TorresVictoria TorresVictoria Torres. “Applying the OOWS Model-

Driven Approach for Developing Web Applications. The

Internet Movie Database Case Study”. In Rossi, G.; Pastor,

O. S. D. O. L. (ed.) Web Engineering: Modelling and

Implementing Web Applications Springer London, 2008,

pp. 65-108

The following table summarizes the publications presented above

based on the place where these have been published.

Table Table Table Table 2222 Publication summary Publication summary Publication summary Publication summary

 PlacePlacePlacePlace #

Book chapters Springer(1), IGI Globlal (1) 2

International

Conferences

BPM(1), CAiSE Forum (2),

MDWE(2),

LA-WEB(1),

6

National Conferences JISBD (2), PNIS (1) 3

Journal ERCIM (1) 1

 TotalTotalTotalTotal 12

Appendix A

12 Lybrary4U Case Study

This appendix presents the Lybrary4U case study focusing on

those parts related with pure navigation. Then, appendixes B and

C will extend this part to provide support for short and long-

running Business Processes.

This appendix is structured as follows. First of all, a textual

description of the case study is presented. Then, based on this

description, sections A.2 and A.3 present the domain represented

in the Structural and the Services models respectively. Once these

models are completed, sections A.4 and A.5 develop the User,

Navigation and Presentation models following the OOWS

approach. These three models define (1) the kind of users that are

going to use the application (and the inheritance relationships

between them), (2) the visibility over the system for each kind of

user defined in the user model and (3) the organization of the

contents defined in the Navigational model.

A.1 Description

The Library4U case study is a web application developed basically

to support the information system related with a library. However,

the library also provides its members with an on-line book store

296 Appendix A. Library4U Case Study

service that sends members the shopped books to the address

provided by the member.

Therefore, it is necessary to provide mechanisms that allow users

looking for information contained in the system (for the shake of

simplicity it has been reduced to Authors and Books). Moreover,

this search functional is extended depending on the privileges

granted to specific users. For this reason, there are three levels of

privileges, which are Members, Librarians and Secretary Staff.

Members reference the group of users that can borrow books from

the library and buy books from the on-line store. The Librarian

group characterizes the users that make effective the loan of a

particular book to a particular member. Finally, the Secretary

Staff refers to users that validate proposals made by members (i.e.

including into the library catalogue a particular book).

A.2 Structural Model

According to the two main objectives of the Library4U system

(books loan and books sale), Figure 12.1 shows the class diagram

that represents the structure of the system in terms of classes and

relationships. On the one hand, classes such as copy, loan or

member are clearly associated to the books loan objective. On the

other hand, classes such as ShoppingCart, Offer or itemProduct

are clearly associated to the books sale objective. In addition, the

class Book represents the main class of this diagram being

connected with most of the remainder classes.

Appendix A. Library4U Case Study 297

Figure 12.1 Library4U Class Diagram

The class Book includes the following attributes: title, isbn,

editorial, number of edition, year of publication, price, stock and

asin (Amazon identifier number). This latter identifier number is

kept as book data since is going to be used for retrieving data from

the Amazon Web Service to complement the data that is kept in

the local Library4U database. Moreover, a book has been written

by many authors (represented by means of many-to-many

relationship between Book and Author classes) and it is

catalogued in many subjects (represented by means of many-to-

many relationship between Book and Subjects classes). The

library keeps several copies of the same book, being this

represented by the copy class (Copy) and the one-to-many

relationship. Then, book copies are loan to members in a

particular date, which is represented by the Loan class associated

298 Appendix A. Library4U Case Study

to the relationship between the Copy and Member classes. The

loanCopy() operation defined in the Copy class changes the state of

the copy and creates a loan for the specified member, establishing

the loan and return dates of the loan. Moreover, members can

propose the purchase of particular books. This is represented by

the specialized RequestBook class. When the book is finally

bought this is promoted to the Book class.

Regarding the on-line book store, the class diagram includes the

Shopping Cart class. This class is associated with just one member

(in case the member has already logged in the system). Moreover,

the Shopping Cart class is at list composed of one item

(itemProduct), which is associated with a book. Finally, the

shopping can be shipped to a particular address (Shipping) and

gift wrapped for a special occasion (GiftWrap).

A.3 Services Model

In order to complement the data and functionality provided by the

local system (whose structure has been represented in the

Structural Model), the Library4U web application makes use of

external services. In particular we are going to use the Amazon

Web Service to enrich the information kept in the local system

about books.

<portType name="AWSECommerceServicePortType">
 <operation name="ItemSearch">
 <input message="tns:ItemSearchRequestMsg"/>
 <output message="tns:ItemSearchResponseMsg"/>
 </operation>
</portType>

Code excerpt 12.1 WSDL Port type definition

Appendix A. Library4U Case Study 299

From the set of services provided by the Amazon Web Service we

are going to make use of the ItemSearch operation (see Code

excerpt 12.1). This operation returns items that satisfy the

specified search criteria. We are going to provide as search criteria

the book title kept in our system. This corresponds to one of the

elements defined in the request type of the ItemSearch operation

(see Code excerpt 12.2).

<xs:element name="ItemSearch">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="MarketplaceDomain" type="xs:string" minOccurs="0"/>
 <xs:element name="AWSAccessKeyId" type="xs:string" minOccurs="0"/>
 <xs:element name="SubscriptionId" type="xs:string" minOccurs="0"/>
 <xs:element name="AssociateTag" type="xs:string" minOccurs="0"/>
 <xs:element name="XMLEscaping" type="xs:string" minOccurs="0"/>
 <xs:element name="Validate" type="xs:string" minOccurs="0"/>
 <xs:element name="Shared" type="tns:ItemSearchRequest" minOccurs="0"/>
 <xs:element name="Request" type="tns:ItemSearchRequest" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:complexType name="ItemSearchRequest">
 <xs:sequence>
 …
 <xs:element name="Title" type="xs:string" minOccurs="0"/>
 …
 </xs:sequence>
</xs:complexType>

Code excerpt 12.2 ItemSearch Data Type

A.4 User Model

The kinds of users that can interact with the system are four,

which are categorized into two groups, one related to users that do

not have to be logged into the system (depicted in Figure 12.2 with

the “?” symbol) and another related to users that have to be logged

into the system (depicted in Figure 12.2 with the lock symbol). The

Anonymous user type has been included within the first group.

300 Appendix A. Library4U Case Study

Normally, the visibility of the system for this kind of users is quite

limited. Within the second group the Member, Librarian and

Secretary user types have been defined.

Figure 12.2 User Model

Moreover, all these kinds of users are connected through

inheritance relationships which allow propagating characteristics

(in particular navigational characteristics) from parents to

children.

The following section presents the Navigational Model defined for

each kind of user depending on their responsibilities.

A.5 Anonymous Navigational and Presentation

Model

This section present the Navigational and Presentation Models

defined for the Anonymous type of user identified in the User

Model. Attending to the two steps in which the Navigational

model is built first of all a global description of the navigation is

performed (the Authoring-in-the-large). Then, a detailed

description of the navigation is performed (Authoring-in-the-

small).

Appendix A. Library4U Case Study 301

A.5.1A.5.1A.5.1A.5.1 AuthoringAuthoringAuthoringAuthoring----inininin----thethethethe----largelargelargelarge

The Navigational Map for the Anonymous user is made up of four

navigational contexts providing each of them a different view over

the class diagram (see Figure 12.3).

Figure 12.3 Anonymous User Navigational Map

The “Home” navigational context has been designed to show the

new book purchases and also the available offers. The “H” label

included in the navigational link indicates that the target

navigational context is defined as the default context

(understanding default as home content). The “ShoppingCart”

navigational context shows to the user the state of her shopping

cart. It displays the books included in it, as well as the number of

units and the price of each book. The “Books” and “Authors”

navigational contexts allow the user searching for a particular

book and author respectively.

All these navigational contexts have been defined as Exploration

contexts. This means that anonymous users will be able to reach

any of them from any part of the web application. Moreover, the

Books and Authors contexts are connected through navigational

302 Appendix A. Library4U Case Study

links (solid arrows in Figure 12.3). This connection allows

propagating info that is used during the data retrieval of the

target context. As a result, the target context will show

information related with the received object.

A.5.1.1A.5.1.1A.5.1.1A.5.1.1 AuthoringAuthoringAuthoringAuthoring----inininin----thethethethe----smallsmallsmallsmall

Home Navigational ContextHome Navigational ContextHome Navigational ContextHome Navigational Context

The “Home” navigational context (see Figure 12.4) has been

defined to provide the user with information about (1) the new

books that have been purchased during the last month and (2) the

available book offers. This information is provided in two different

AIUs as it is shown in Figure 12.4.

Figure 12.4 Home Navigational Context

The Home context includes views over the Structural model (class

views defined over the Offer, Book and Copy classes) and the

Services model (a service-data-view defined over the AmazonAWS

web service). In addition, by means of the Context relationships

associated to the Copy and Offer views (solid arrows) we are

Appendix A. Library4U Case Study 303

defining a navigation capability to the Books context. The Offer

and the Copy class views include both a population filter. The

Offer class view retrieves just those offers that are still valid. On

the other hand, the Copy class view retrieves just the copies whose

purchase date is later than the specified date (Today() is a local

function that returns a particular date depending on the passed

arguments. If no arguments are provided, the function returns the

current date. On the contrary, the current date is incremented or

decremented with the provided parameters).

Once the navigational context has been defined we can proceed to

specify the presentation requirements. Figure 12.5 shows how the

elements defined in the navigational contexts are attached with

some properties regarding presentation issues. This information

states the way the data is going to be organized within the

graphical space according to the layout, order criteria, pagination

and occurrence order patterns.

Figure 12.5 Home Navigational Context (Presentation proprieties)

304 Appendix A. Library4U Case Study

Figure 12.6 presents a snapshot of the Home Navigational

Context. In it we can appreciate the navigational capability

defined by exploration navigational context, the images retrieved

from the Amazon web service and how the information has been

organized along the graphical space according to the presentation

properties associated to the context.

Figure 12.6 Implemented Home Navigational Context

Books Books Books Books Navigational ContextNavigational ContextNavigational ContextNavigational Context

Similar to the Home navigational context, the Books navigational

context defines views over the Structural model and the Services

model. Again, the retrieved information is related with books, but

Appendix A. Library4U Case Study 305

in this case, the class view does not define any population filter

(see Figure 12.7).

Figure 12.7 Books Navigational Context

In this case, the AIU defines an index (see bottom section of the

AIU Books) which gets activated when no data is passed to the

unit. This mechanism avoids overloading the web interfaces with

too much data. For instance, when the Books context is achieved

by means of the exploration context, the context retrieves all the

book instances displaying just the information that is indicated in

the index. Then, if an object of the recently obtained set is selected

(by means of the anchor attribute Book.title), the context will be

rendered but now with all the information defined in it.

306 Appendix A. Library4U Case Study

Related to presentation requirements, Figure 12.8 shows the

presentation attributes specified to the navigational elements.

Figure 12.8 Books Navigational Context (Presentation proprieties)

Figure 12.9 and Figure 12.10 correspond to the Book context in

both cases, when the index gets activated (Figure 12.9) and when

the context is passed with an object reference (Figure 12.10).

Appendix A. Library4U Case Study 307

Figure 12.9 Anonymous Book Navigational Context

Each book item shown in Figure 12.9 allows navigating either to

the details of the item book or to its authors (this is possible since

we have associated a context relationship between the book and

the author views).

308 Appendix A. Library4U Case Study

Figure 12.10 Anonymous Book Navigational Context (Detail)

Authors Authors Authors Authors Navigational ContextNavigational ContextNavigational ContextNavigational Context

From the Authors Navigational Context, the anonymous user can

get information about authors and their related books. Figure

12.11 and Figure 12.12 shows the navigational and presentation

details defined for this context.

Appendix A. Library4U Case Study 309

Figure 12.11 Authors Navigational

Context

Figure 12.12 Authors Navigational

Context (Presentation proprierties)

Figure 12.13 shows the implementation of the Authors

Navigational Context. In this case, as we have defined only two

attributes associated to the included view, it is not necessary to

define an index.

310 Appendix A. Library4U Case Study

Figure 12.13 Authors Navigational Context

Shopping Cart Shopping Cart Shopping Cart Shopping Cart NavigaNavigaNavigaNavigational Contexttional Contexttional Contexttional Context

From the Shopping cart Navigational Context, the anonymous

user can get information about the books added to it as well as

their price and the total amount of the cart. This information is

defined in the navigational context that is presented in Figure

12.14. Moreover, Figure 12.15 complements the navigational

elements defined in the navigational context with the presentation

properties that allow organizing the information along the

graphical space.

Appendix A. Library4U Case Study 311

Figure 12.14 Shopping Cart Navigational Context

Figure 12.15 Shopping Cart Navigational Context (Presentation

proprierties)

Finally, Figure 12.16 shows the Web page corresponding to the

previously modelled shopping cart Navigational context. In this

page we observe that the layout applied is the Tabular-Vertical.

Moreover, no pagination has been defined over the retrieve

312 Appendix A. Library4U Case Study

instances. Therefore, all instances are going to be included in a

unique block.

Figure 12.16 Shopping Cart Web page

Appendix B

B Short-running BP Case Study

This appendix extends the Library4U case study presented

previously to give support for a short-running BP. Therefore, a

description about the new requirement is presented in section B.1.

Then, from section B.2 to section B.5, the Structural Model,

Services Model, Business Process Model and Navigational Models

are developed to deal with the modelling step of the presented

short-running BP. Finally, section B.6 presents how usability

issues have been considered for this kind of BP.

B.1 Description

The checkout BP is usually found in Web sites that sell products

or services to their customers (sites commonly known as on-line

stores). Basically, this process consist of four activities, three

requiring interaction with the user (payment options, shipping

address details and gift wrapping) and one that is performed

completely by the system (placing the order). This BP has been

classified as a short-running BP because satisfies all the

characteristics found by this kind of BPs: it involves just one

human participant (in this case this refers to the customer) who

launches an instance of the BP. Moreover, the BP includes also

314 Appendix B. Short-running BP Case Study

collaboration with an external system which charges the shopping

to the customer account.

B.2 Structural Model

The part of the Structural model related to the Checkout BP is the

one presented in Figure 12.1. This model just includes the

operations that are invoked by the BPEL process in order to

perform a specific task.

+addToShoppingCart()

-title

-isbn

-editorial

-num_edition

-publish_date

-asin

-price

-stock

Book

Author

1..*

1..*

+liberate_sanction()

+sanction_member()

-dni

-name

-surname

-email

-is_sanctioned

-login

-password

Member

-date

-total

ShoppingCart

0..*

0..*

-units

-price

itemProduct

0..* 1

0..10..1

+addToShoppingCart()

-from_date

-to_date

-description

-price

-valid

Offer

1

1..*

+createShipping()

-address

-city

-postal_code

-country : Country

-telephone

-delivery_date

Shipping

1

0..1

+setWrapOptions()

-ocasion : ocasion_types

-message

GiftWrap

+Birthday

+Friends

+Love

+Birth

«enumeration»

ocasion_types

10..1

+Afghanistan

+Albania

+Algeria

+Andorra

+Angola

+Antigua & Barbuda

+Argentina

+Armenia

+Australia

+Austria

+Azerbaijan

+Bahamas

+Bahrain

+Bangladesh

+Barbados

+Belarus

+...

«enumeration»

Country

Editor

1..*

1..*

-id

-name

Person

Figure B.1 Structural Model

B.3 Services Model

The set of services that are going to be consumed in the current

BP involves just one partner which represents a service providing

Appendix B. Short-running BP Case Study 315

support to perform payments via Internet. The service provided by

this partner is used in the process to charge the user account with

the amount spent during the shopping.

The external functionality that is required in the Checkout BP is

provided by an on-line Payment Service. This functionality is

provided as a Web service in the corresponding WSDL file. Code

excerpt B.1 shows the port type section of the WSDL document

which defines the set of operations performed by the Web service.

<wsdl:portType name="onLinePaymentService">
 <wsdl:operation name=" DoDirectPayment ">
 <wsdl:input message=" ns:DoDirectPaymentRequest "></wsdl:input>
 <wsdl:output message=" ns: DoDirectPaymentResponse"></wsdl:output>
 </wsdl:operation>
</wsdl:portType>

Code excerpt B.1 WSDL PortType definition

Through the “DoDirectPaymentRequest” operation we can charge

the user with the amount of the order. This operation requires

data such as the credit card details and the amount to charge (see

Code excerpt B.2).

<complexType name="DoDirectPaymentRequestDetailsType">
 <sequence>
 <element name="CreditCard" type="tns:CreditCardDetailsType"></element>
 <element name="Payment" type="tns:PaymentDetailsType"></element>
 </sequence>
</complexType>

<complexType name="CreditCardDetailsType">
 <sequence>
 <element name="CreditCardType" type="ns:CreditCardTypeType" maxOccurs="1"
 minOccurs="1"/>
 <element name="CreditCardNumber" type="xs:string" maxOccurs="1"
 minOccurs="1"/>
 <element name="ExpMonth" type="xs:int" maxOccurs="1" minOccurs="1"/>
 <element name="ExpYear" type="xs:int" maxOccurs="1" minOccurs="1"/>
 <element name="SecurityCode" type="xs:string" maxOccurs="1" minOccurs="1"/>
 </sequence>
</complexType>

<complexType name="PaymentDetailsType">
 <sequence>

316 Appendix B. Short-running BP Case Study

 <element name="OrderTotal" type="ns:string" maxOccurs="1" minOccurs="1"/>
 <element name="ItemTotal" type="xs:string" maxOccurs="1" minOccurs="1"/>
 <element name="ShippingTotal" type="xs:string" maxOccurs="1" minOccurs="1"/>
 </sequence>
</complexType>

Code excerpt B.2 Data types used by the “DoDirectPayment” operation

B.4 Business Process Model

The BP defined in this case is made up of two entities, one

referring to the Library4U Company (the internal system) and

another referring to the payment service (provided by an external

system).

Valid?

No

Yes

«system»

Place Order

«user»

Shipping

«user»

Payment

«user»

Gift wrap

Figure B.2 Business Process Model

Moreover, within the internal system we distinguish two roles, the

human participant (being represented by the member) and the

system, referring this latter to the functionality that is provided

by the internal system and that do not requires interaction with

the user.

B.5 Navigational Model

This section presents the navigational model defined for the

member user.

Appendix B. Short-running BP Case Study 317

B.5.1B.5.1B.5.1B.5.1 AuthoringAuthoringAuthoringAuthoring----inininin----thethethethe----largelargelargelarge

The only navigational capability that we want to add to the

Navigational Model inherited from the anonymous user is the

possibility of proceeding with the check out of the shopping cart.

For this reason, as Figure B.3 shows, we have added just one

Process Context which represents the entry point to the process.

Figure B.3 Registered User Navigational Map

This Process Context has been defined as Exploration Context in

order to make it accessible to the user from any part of the

application. The details of this context are presented in the

following subsection.

B.5.2B.5.2B.5.2B.5.2 AuthoringAuthoringAuthoringAuthoring----inininin----thethethethe----smallsmallsmallsmall

The Checkout Process Context, as Figure B.4 shows, includes

three Activity Containers (one per each activity requiring

interaction with the user, see Member lane within the Library4U

pool in Figure B.2).

318 Appendix B. Short-running BP Case Study

Figure B.4 Checkout Navigational Context

From the set of Activity Containers included in the Checkout

process context, two include views over classes defined in the

Structural model (the Shipping and Gift wrap activity containers)

and one defines a view over a service from the Services model (the

Payment activity container). In this case, all the containers are

used to gather data from the user and no additional information is

shown to the user. Figure B.5, Figure B.6 and Figure B.7 show

respectively the Web pages equivalent to the activity containers

included in the Checkout Process Context.

In these figures we have stressed four areas which correspond to

(A) the set of tasks that has to be completed by the user in order to

complete the process, (B) the entry point to the process (the

context was defined as exploration), (C) the label indicating the

task being performed at each moment and (D) the area provided to

the user to introduce the information required to accomplish the

current activity.

Appendix B. Short-running BP Case Study 319

Figure B.5 Generated User Interface for the “Shipping” task

Figure B.6 Generated User Interface for the “Payment” task

320 Appendix B. Short-running BP Case Study

Figure B.7 Generated User Interface for the “Gift wrap” task

B.6 Usability Aspects

The application of a set of usability guidelines during the

transformation process ensures the production of usable web

applications. For instance, in this case, as the current case study

deals with a short-running process, the generated user interfaces

include the wizard pattern. This pattern can be seen in Figure B.5,

Figure B.6 and Figure B.7 in the remarked area labelled with an

“A” and allow displaying the user the set of tasks that made up

the process. Moreover, an indicator of the current task is also

included in the interface (see the remarked area labelled with a

“C” and also the colour of the corresponding task in the wizard in

Figure B.5, Figure B.6 and Figure B.7).

Appendix C

C Long-running BP Case Study

This appendix extends the case study presented in appendix A

with a long-running process. In particular the extension deals

with the Book Request Purchase BP (hereafter BRP-BP) which is

presented in detail in the first subsection. The remainder of the

appendix is structured as follows. Section C.2 rescues those parts

from the structural model presented in appendix A that are

related with the applicable BP. Section C.3 extends the Services

Model with the service and operations related to the BPR-BP.

Then, section C.4 presents the Business Process Diagram

representing the BRP-BP. Finally, section C.5 develops the

Navigational and Presentation models for the registered users

modelled in the User Model in Appendix A.

C.1 Description

The BRP-BP is a kind of process quite common in any

organization. This kind of processes basically consists in three

steps which are (1) someone applying for something (i.e. a

certificate, a service, a good, etc.) (2) someone validating the

application and (3) in case the validation was positive, provide the

322 Appendix C. Long-running BP Case Study

applicant with the requested thing. In this process, during the last

two steps more than one person or service can be involved.

In particular, the present case study deals with the purchase and

later loan of a book that is not in the library. The request is

launched by a member of the library, validated by the secretary

staff of the library based on a particular criterion, purchased by

the central library (an external system), and finally loan by the

librarian staff.

This BP has been classified as a long-running BP because satisfy

all the characteristics found by this kind of BPs. Multiple human

participants, corresponding to different roles within the

organization, are involved in the BP. Moreover, the BP includes

also collaboration with an external system which performs the

book purchase.

C.2 Structural Model

The excerpt of the structural model presented in this section

includes all the classes that are related to the RBP-BP. These

classes define the operations that are going to be associated to the

activities that make up the process.

Appendix C. Long-running BP Case Study 323

Figure C.1 Excerpt of the Structural Model

C.3 Services Model

The external functionality that is required in the BRP-BP is

provided by the central library of the university. This functionality

is provided as a Web service in the corresponding WSDL file. Code

excerpt B.1 shows the port type section of the WSDL document

which defines the set of operations performed by the Web service.

<wsdl:portType name="library">
 <wsdl:operation name="requestBookPurchase">
 <wsdl:input message="tns:requestBookPurchaseRequest"></wsdl:input>
 </wsdl:operation>
 <wsdl:operation name="notifyBookPurchase">
 <wsdl:input message="tns:notifyBookPurchaseResponse"></wsdl:input>
 </wsdl:operation>
 <wsdl:operation name="getOrganizationDetails">
 <wsdl:input message="tns:organizationDetailsResponse"></wsdl:input>
 </wsdl:operation>
</wsdl:portType>

Code excerpt C.1 WSDL PortType definition

324 Appendix C. Long-running BP Case Study

The “requestBookPurchase” operation allows us notifying the

central library about the necessity of buying a particular book.

This operation requires some data about the book requested such

as its “isbn” or “title” (see Code excerpt B.2).

<complexType name="book">
 <sequence>
 <choice>
 <sequence>
 <element name="isbn" type="string" maxOccurs="1" minOccurs="1" />
 <element name="title" type="string" maxOccurs="1" minOccurs="0" />
 </sequence>
 <sequence>
 <element name="isbn" type="string" maxOccurs="1" minOccurs="0" />
 <element name="title" type="string" maxOccurs="1" minOccurs="1" />
 </sequence>
 </choice>
 <element name="author" type="string" maxOccurs="1" minOccurs="0" />
 <element name="year" type="string" maxOccurs="1" minOccurs="0" />
 </sequence>
</complexType>

<element name="book" type="tns:book" />
<complexType name="bookRequest">
 <sequence>
 <element name="requestNumber" type="tns:requestNumber" />
 <element name="requester" type="tns:requester" />
 <element name="book" type="tns:book" />
 </sequence>
</complexType>

Code excerpt C.2 Message type required by “requestBookPurchase”

operation

C.4 Business Process Model

The Business Process Model allows defining the set of activities

that have to be performed in order to buy and loan a particular

book. Moreover, it allows distributing these activities among the

involved participants, being these humans or systems.

Appendix C. Long-running BP Case Study 325

Figure C.2 Business Process Model

In this particular case, the BP is made up of two entities

(represented graphically as pools), one referring to the Lybrary4U

system (the internal system) and another referring to the central

library (the external system). Moreover, within the internal

system we distinguish a set of human participants (which

correspond to different roles within the organization) and a non-

human participant, the system, which refers to the functionality

that is provided by the internal system. Each of the activities

included in the business process diagram has been associated to

operations defined either in the Structural or the Services models.

For instance, the first activity of the BP (the “Request for a Book

Purchase”) has been associated to the create_request() operation

defined in the RequestBook class. This operation creates an

instance of this class registering a new book purchase application.

In addition, this activity creates an instance of the BRP-BP.

C.5 Navigational and Presentation Models

This section develops the Navigational and Presentation models

for all the users involved in the process. These users, by means of

326 Appendix C. Long-running BP Case Study

the inheritance relationship, extend the navigational map defined

for the anonymous user presented in the appendix A. Again, the

following subsections are going to be organized in two parts

attending to the two steps in which the Navigational model is built

(Authoring-in-the-large and Authoring-in-the-small).

C.5.1C.5.1C.5.1C.5.1 Member Navigational Member Navigational Member Navigational Member Navigational and Presentation and Presentation and Presentation and Presentation ModelModelModelModel

C.5.1.1C.5.1.1C.5.1.1C.5.1.1 AuthoringAuthoringAuthoringAuthoring----inininin----thethethethe----largelargelargelarge

Since the member user is involved in the BRP-BP, a new context

is added into her Navigational map. However, in this case the

context refers to a process context. This new context extends the

navigational map inherited from the anonymous user. Figure C.3

depicts the Navigational Map for the member user. When the

inherited contexts are not modified it is not necessary to include

them in the map again.

Figure C.3 Member Navigational Map

This process context has been defined as Exploration Context

(context labelled with an “E” in Figure C.3) in order to make it

Appendix C. Long-running BP Case Study 327

accessible from any part of the application (see “Processes” link in

Figure C.4).

Figure C.4 Home page including the Processes Link

The “Processes” link included at the top of the Web page (Figure

C.4) constitutes the entry point to the Web application that

supports the execution of long-running processes. Figure C.5

shows the Web page displayed to the user after pressing over the

“Processes” link. In this page, the list of pending tasks associated

to the connected user is shown. On the one right hand side of the

page, the stressed navigation area allows the user (1) accessing to

her list of pending tasks and (2) launching instances of all those

328 Appendix C. Long-running BP Case Study

processes in which this particular user is involved. On the left

hand side of the page, the user is displayed with her current

pending tasks. This latter area allows the user completing the

tasks that are active at any moment.

Figure C.5 My TODO List for a Secretary user

Once the global view of the map has been defined, it is necessary

to specify the details of the new context.

C.5.1.2C.5.1.2C.5.1.2C.5.1.2 AuthoringAuthoringAuthoringAuthoring----inininin----thethethethe----smallsmallsmallsmall

The Request Book Purchase Process Context, as Figure B.4 shows,

includes just one activity container which represents the

interaction required with the user to launch an instance of the

process.

Appendix C. Long-running BP Case Study 329

Figure C.6 RBP Process Context for the Member user

The equivalent web page to the process context is shown in Figure

C.7. In this case, the left hand side of the page has been

substituted by the necessary interaction mechanisms that allow

the user providing the required data to complete the current

activity.

Figure C.7 Request Book Purchase task for the member user

330 Appendix C. Long-running BP Case Study

In this case, since the task simply involves the introduction of

some data from the user, it is not necessary the application of any

presentation pattern. For this reason the definition of

presentation requirements is skipped for this process context.

C.5.2C.5.2C.5.2C.5.2 Secretary Navigational ModelSecretary Navigational ModelSecretary Navigational ModelSecretary Navigational Model

C.5.2.1C.5.2.1C.5.2.1C.5.2.1 AuthoringAuthoringAuthoringAuthoring----inininin----thethethethe----largelargelargelarge

Similarly to the member user, the navigational map of the

secretary user includes a process context associated to the BRP-

BP. However, since we defined a inheritance relationship between

the member and the secretary user types, in this case the process

context is going to be redefined from the one inherited from the

member user (see Figure C.8).

Figure C.8 Secretary User Navigational Map

The redefinition of this context is presented in the following

subsection.

Appendix C. Long-running BP Case Study 331

C.5.2.2C.5.2.2C.5.2.2C.5.2.2 AuthoringAuthoringAuthoringAuthoring----inininin----thethethethe----smallsmallsmallsmall

In this case, the secretary user type participates in two of the

activities included in the BPR-BP, which correspond to the

“Validate the request” and the “pick up books” user and manual

tasks. For this reason, her associated process context includes two

activity containers, one per each interaction defined in the BPM

with the secretary user (see Figure C.10). On the one hand, the

Validate_request activity container allows the secretary user to

validate the requests that are pending to solve. This is specified by

means of the population filter applied to the Request_book view.

In this case only request book instances whose state attribute is

set to the values “pending” or “rejected” are going to be retrieved.

Figure C.9 shows the basic process context necessary to complete

the tasks committed to the secretary role.

Figure C.9 Details of the Request Book Purchase Process Context

However, activity containers can be enriched by adding new

constructs that help users in completing tasks (see Figure C.10).

332 Appendix C. Long-running BP Case Study

In particular, the Validate_request activity container has been

enriched with two complementary AIUs. These AIUs add some

useful information to help the user in the decision of validating or

rejecting the requests. In this case the Last Purchases

Complementary AIU shows the user the book copies that have

been purchased in the last month. On the other hand, the

Sanctioned Members Complementary-AIU shows the department

members that are sanctioned and that cannot apply for any book

purchase.

Figure C.10 RBP Process Context for the Secretary user

In addition, to avoid overloading the user interface with too many

information related to book requests, we have also introduced an

index. In this case, when the index gets activated just the

Appendix C. Long-running BP Case Study 333

attributes specified in the index definition are going to be

displayed (see Figure C.11).

In this case, we are going to specify a presentation requirement

associated to the “Validate_request” activity container. We want to

handle multiple request instances at the same time. For this

reason we have associated the List builder pattern to the activity

container.

Figure C.11 RBP Process Context for the Secretary user (Presentation

properties)

The application of this pattern allows the user solving multiple

activity instances at the same time (see Figure C.12). The

application of this pattern allows reducing the time invested in

some tasks as well as improving the user experience by avoid the

user completing each activity instance one by one. However, the

application of this pattern does not mean that the user cannot

334 Appendix C. Long-running BP Case Study

proceed with each activity instance separately. In fact, this

possibility is still provided to the user. In fact, by selecting the

title of the book she can retrieve all the data associated to the

particular activity instance.

Figure C.12 List Build pattern applied to the Request Validation Activity

Container

In addition, the Detail On Demand pattern has also been applied

(see Figure C.13). In this case we have used this pattern to display

more data related to a particular activity instance but without

leaving the current page. This information is contained in the

page but only shown when the cursor is positioned over the title

link.

Appendix C. Long-running BP Case Study 335

Figure C.13 Detail On Demand pattern applied to the Request Validation

Activity Container

On the other hand, the Pick_up_books activity container

represents a human activity and allows the secretary user to

notify the process when this task has been completed. Figure C.14

shows the web page associated to this activity container. In this

case, the web page simply provides information about the activity.

336 Appendix C. Long-running BP Case Study

Figure C.14 Generated interface for the “Pick Up Books” activity

C.5.3C.5.3C.5.3C.5.3 Librarian Navigational ModeLibrarian Navigational ModeLibrarian Navigational ModeLibrarian Navigational Modellll

C.5.3.1C.5.3.1C.5.3.1C.5.3.1 AuthoringAuthoringAuthoringAuthoring----inininin----thethethethe----largelargelargelarge

Similarly to the secretary user type, the librarian inherits the

navigational map defined for the member user type. Therefore, in

this case we have to redefine the inherited process context as

Figure C.15 shows.

Figure C.15 Librarians Navigational Map

Appendix C. Long-running BP Case Study 337

C.5.3.2C.5.3.2C.5.3.2C.5.3.2 AuthoringAuthoringAuthoringAuthoring----inininin----thethethethe----smallsmallsmallsmall

In this case, the librarian user type has only one responsibility

regarding the BPR-BP. This activity is related with the loan event

where the system registers that this book copy has been lent to a

particular user. For this reason, the Loan_book activity container

includes the loan_copy operation of the copy class (see Figure

C.16).

«process context»

Request book purchase

«activity container» Loan_book

«Main-AIU»

Loan_book

+loan_copy()

«view»

Copy

E

Figure C.16 Loan book Navigational Context

In this case, the librarian user is simply asked for certifying that

the loan has been performed. For this reason the generated web

interface associated to this activity container simply shows the

information associated to the loan transaction which is the book

copy and the applicant member (see Figure C.17).

338 Appendix C. Long-running BP Case Study

Figure C.17 Generated interface for the “Loan Book” activity

References

Abran, A., Khelifi, A., Suryn, W., & Seffah, A. (2003). Usability

meanings and interpretations in iso standards. Software

Quality Journal, 11(4), 325–338.

Agrawal, A., Amend, M., Das, M., Ford, M., Keller, C.,

Kloppmann, M., König, D., Leymann, F., Müller, R., Pfau, G.,

Plösser, K., Rangaswamy, R., Rickayzen, A., Patrick Schmidt,

M. R., Trickovic, I., Yiu, A., & Matthias, Z. (2007a). Ws-

humantask v1.0. Active Endpoints, Adobe, BEA Systems,

IBM, Oracle and SAP AG.

Agrawal, A., Amend, M., Das, M., Ford, M., Keller, C.,

Kloppmann, M., König, D., Leymann, F., Müller, R., Pfau, G.,

Plösser, K., Rangaswamy, R., Rickayzen, A., Rowley, M.,

Schmidt, P., Trickovic, I., Yiu, A., & Zeller, M. (2007b).

Bpel4people v1.0. Active Endpoints, Adobe, BEA Systems,

IBM, Oracle and SAP AG.

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J.,

Leymann, F., Liu, K., Roller, D., Smith, D., Thatte, S.,

Trickovic, I., & Weerawarana, S. (2003). Business process

execution language for web services version 1.1.

340 References

Atterer, R., Schmidt, A., & Hußmann, H. (2006). Extending web

engineering models and tools for automatic usability

validation. J. Web Eng., 5(1), 43–64.

Benatallah, B., Casati, F., Grigori, D., Nezhad, H. R. M., &

Toumani, F. (2005). Developing adapters for web services

integration. In O. Pastor, & J. F. e Cunha (Eds.) CAiSE, vol.

3520 of Lecture Notes in Computer Science, (pp. 415–429).

Springer.

Berners-Lee, T. (1996). WWW: past, present, and future. 29, 69–

77.

Bozzon, A., Comai, S., Fraternali, P., & Carughi, G. T. (2006).

Conceptual modeling and code generation for rich internet

applications. In D. Wolber, N. Calder, C. Brooks, & A. Ginige

(Eds.) ICWE, (pp. 353–360). ACM.

Brambilla, M. (2003). Extending hypertext conceptual models with

process-oriented primitives. In I.-Y. Song, S. W. Liddle, T. W.

Ling, & P. Scheuermann (Eds.) ER, vol. 2813 of Lecture Notes

in Computer Science, (pp. 246–262). Springer.

Brambilla, M., Celino, I., Ceri, S., Cerizza, D., Valle, E. D., &

Facca, F. M. (2006a). A software engineering approach to

design and development of semantic web service applications.

In I. F. Cruz, S. Decker, D. Allemang, C. Preist, D. Schwabe,

P. Mika, M. Uschold, & L. Aroyo (Eds.) International

References 341

Semantic Web Conference, vol. 4273 of Lecture Notes in

Computer Science, (pp. 172–186). Springer.

Brambilla, M., Ceri, S., Comai, S., & Fraternali, P. (2006b). A case

tool for modelling and automatically generating web service-

enabled applications. Int. J. Web Eng. Technol., 2(4), 354–372.

Brambilla, M., Ceri, S., Comai, S., Fraternali, P., & Manolescu, I.

(2003). Specification and design of workflow-driven

hypertexts. In WWW (Posters).

Brambilla, M., Ceri, S., Fraternali, P., & Manolescu, I. (2006c).

Process modeling in web applications. ACM Trans. Softw.

Eng. Methodol., 15(4), 360–409.

Brambilla, M., Comai, S., Fraternali, P., & Matera, M. (2008). Web

Engineering: Modelling and Implementing Web Applications,

chap. Designing Web Applications with Webml and Webratio,

(pp. 221–261). Human-Computer Interaction Series. Springer

London.

Burstein, M., Hobbs, J., Lassila, O., Mcdermott, D., Mcilraith, S.,

Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E.,

Srinivasan, N., & Sycara, K. (2004). Owl-s: Semantic markup

for web services. Website.

342 References

Cáceres, P., de Castro, V., & Marcos, E. (2004). Navigation

modelling from a user services oriented approach. In ADVIS,

(pp. 150–160).

Cachero, C., & Gómez, J. (2002). Advanced conceptual modeling of

web applications: Embedding operation interfaces in

navigation design. In M. Celma, O. Pastor, N. J. Juzgado, &

J. J. Moreno-Navarro (Eds.) JISBD, (pp. 235–248).

Casteleyn, S. (2005). Designer Specified Self Re-organizing

Websites,. Ph.D. thesis, Vrije Universiteit Brussel.

Ceri, S., Daniel, F., Facca, F. M., & Matera, M. (2007). Model-

driven engineering of active context-awareness. World Wide

Web, 10(4), 387–413.

Ceri, S., Fraternali, P., & Bongio, A. (2000). Web modeling

language (webml): a modeling language for designing web

sites. In Proceedings of the 9th international World Wide Web

conference on Computer networks : the international journal

of computer and telecommunications netowrking, (pp. 137–

157). Amsterdam, The Netherlands, The Netherlands: North-

Holland Publishing Co.

Cunin, P.-Y., Greenwood, R. M., Francou, L., Robertson, I., &

Warboys, B. (2001). The pie methodology - concept and

application. In V. Ambriola (Ed.) EWSPT, vol. 2077 of Lecture

Notes in Computer Science, (pp. 3–26). Springer.

References 343

Czarnecki, K., & Helsen, S. (2003). Classification of model

transformation approaches. In OOPSLA’03 Workshop on

Generative Techniques in the Context of Model-Driven

Architecture.

de Assis, P. S., Schwabe, D., & Nunes, D. A. (2006). Ashdm -

model-driven adaptation and meta-adaptation. In V. P. Wade,

H. Ashman, & B. Smyth (Eds.) AH, vol. 4018 of Lecture Notes

in Computer Science, (pp. 213–222). Springer.

Distante, D. (2004). Reengineering legacy applications and web

transactions: an extended version of the UWA transaction

design model. Ph.D. thesis, University of Lecce, Italy.

Distante, D., Rossi, G., & Canfora, G. (2007a). Modeling business

processes in web applications: an analysis framework. In

Y. Cho, R. L. Wainwright, H. Haddad, S. Y. Shin, & Y. W. Koo

(Eds.) SAC, (pp. 1677–1682). ACM.

Distante, D., Rossi, G., Canfora, G., & Tilley, S. R. (2007b). A

comprehensive design model for integrating business

processes in web applications. Int. J. Web Eng. Technol., 3(1),

43–72.

Fialho, A. T. S., & Schwabe, D. (2007). Enriching hypermedia

application interfaces. In L. Baresi, P. Fraternali, & G.-J.

Houben (Eds.) ICWE, vol. 4607 of Lecture Notes in Computer

Science, (pp. 188–193). Springer.

344 References

Firesmith, D. G., & Henderson-Sellers, B. (2001). The OPEN

Process Framework. Addison-Wesley Longman.

Fons, J. (2008). OOWS: A Model Driven Method for the

Development of Web Applications. Ph.D. thesis, Technical

University of Valencia.

Fons, J., Pelechano, V., Pastor, O., Valderas, P., & Torres, V.

(2008). Web Engineering: Modelling and Implementing Web

Applications, chap. Applying the OOWS Model-Driven

Approach for Developing Web Applications. The Internet

Movie Database Case Study, (pp. 65–108). Human-Computer

Interaction Series. Springer London.

Garrigós, I., Gomez, J., & Cachero, C. (2003). Modelling dynamic

personalization in web applications. In ICWE, (pp. 472–475).

Garzotto, F., & Perrone, V. (2007). Industrial acceptability of

design methods: an empirical study. Journal of Web

Engineering, 6, 73–96.

Ginige, A., & Murugesan, S. (2001a). Guest editors’ introduction:

The essence of web engineering-managing the diversity and

complexity of web application development. IEEE

MultiMedia, 8(2), 22–25.

References 345

Ginige, A., & Murugesan, S. (2001b). Guest editors’ introduction:

Web engineering an introduction. IEEE MultiMedia, 8(1), 14–

18.

Gómez, J., Cachero, C., & Pastor, O. (2000). Extending a

conceptual modelling approach to web application design. In

B. Wangler, & L. Bergman (Eds.) CAiSE, vol. 1789 of Lecture

Notes in Computer Science, (pp. 79–93). Springer.

Hollingsworth, D. (1995). The workflow reference model.

document number tc00-1003.

Hornung, T., Koschmider, A., & Oberweis, A. (2007). Rule-based

autocompletion of business process models. In CAiSE Forum.

Houben, G.-J. (2000). HERA: Automatically generating

hypermedia front-ends. In EFIS, (pp. 81–88).

Houben, G.-J., Barna, P., Frasincar, F., & Vdovjak, R. (2003).

Hera: Development of semantic web information systems. In

J. M. C. Lovelle, B. M. G. Rodríguez, L. J. Aguilar, J. E. L.

Gayo, & M. del Puerto Paule Ruíz (Eds.) ICWE, vol. 2722 of

Lecture Notes in Computer Science, (pp. 529–538). Springer.

Houben, G.-J., Frasincar, F., Barna, P., & Vdovjak, R. (2004).

Modeling user input and hypermedia dynamics in hera. In

N. Koch, P. Fraternali, & M. Wirsing (Eds.) ICWE, vol. 3140

of Lecture Notes in Computer Science, (pp. 60–73). Springer.

346 References

Houben, G.-J., van der Sluijs, K., Barna, P., Broekstra, J., , S. C.,

Fiala, Z., & Frasincar, F. (2008). Web Engineering: Modelling

and Implementing Web Applications, chap. HERA, (pp. 263–

301). Human-Computer Interaction Series. Springer London.

Jouault, F., & Kurtev, I. (2006). On the architectural alignment of

atl and qvt. In H. Haddad (Ed.) SAC, (pp. 1188–1195). ACM.

Kappel, G., Pröll, B., Reich, S., Retschitzegger, W., Grünbacher,

P., Schwinger, W., Koch, N., Eichinger, C., Austaller, G.,

Hartl, A., Lauff, M., Lyardet, F., Mühlhäuser, M.,

Nussbaumer, M., Gaedke, M., Steindl, C., Ramler, R.,

Altmann, J., Ebner, A., Pröll, B., Werthner, H., Mayr, H.,

Engels, G., Lohmann, M., Wagner, A., Hitz, M., Leitner, G.,

Melcher, R., Kotsis, G., Wimmer, M., Kemper, A., Seltzsam,

S., Behrendt, W., & Arora, N. (2006). Web Engineering. The

Discipline of Systematic Development of Web Applications.

John Wiley & Sons, Ltd.

Kloppmann, M., Koenig, D., Leymann, F., Pfau, G., Rickayzen, A.,

von Riegen, C., Schmidt, P., & Trickovic, I. (2005). Ws-bpel

extension for people – bpel4people.

Knapp, A., Koch, N., Zhang, G., & Hassler, H.-M. (2004). Modeling

business processes in web applications with argouwe. In

T. Baar, A. Strohmeier, A. M. D. Moreira, & S. J. Mellor (Eds.)

UML, vol. 3273 of Lecture Notes in Computer Science, (pp.

69–83). Springer.

References 347

Koch, N. (2001). Software Engineering for Adaptive Hypermedia

Systems: Reference Model, Modeling Techniques and

Development Process. Ph.D. thesis, Ludwig-Maximilians-

University Munich, Germany.

Koch, N. (2006). Transformation techniques in the model-driven

development process of uwe. In ICWE ’06: Workshop

proceedings of the sixth international conference on Web

engineering, (p. 3). New York, NY, USA: ACM.

Koch, N. (2007). Classification of model transformation techniques

used in uml-based web engineering. IET Software Journal,

1(3), 98–111.

Koch, N., Knapp, A., Zhang, G., & Baumeister, H. (2008). Web

Engineering: Modelling and Implementing Web Applications,

chap. Uml-Based Web Engineering, (pp. 157–191). Human-

Computer Interaction Series. Springer London.

Koch, N., & Kraus, A. (2002). The expressive power of uml-based

engineering. In Second International Workshop on Web

Oriented Software Techonlogy (CYTED), (pp. 105–119).

Koch, N., Kraus, A., Cachero, C., & Meliá, S. (2004). Integration of

business processes in web application models. J. Web Eng.,

3(1), 22–49.

348 References

Kraus, A., Knapp, A., & Koch, N. (2007). Model-driven generation

of web applications in uwe. In 3rd International Workshop on

Model-Driven Web Engineering. MDWE 2007 3rd

International Workshop on Model-Driven Web Engineering

(Proceedings) CEUR-WS, Vol 261, July 2007.

Lima, F., & Schwabe, D. (2003). Application modeling for the

semantic web. In Web Congress, 2003. Proceedings. First

Latin American, (pp. 93– 102).

Marcos, E., Cáceres, P., & Castro, V. D. (2004). An approach for

navigation model construction from the use cases model.

CAiSE Forum. Held in conjunction with the 16th Conference

On Advanced Information Systems Engineering.

Marcos, E., de Castro, V., & Vela, B. (2003a). Representing web

services with uml: A case study. In ICSOC, (pp. 17–27).

Marcos, E., Vela, B., & Cavero, J. M. (2003b). A methodological

approach for object-relational database design using uml.

Software and System Modeling, 2(1), 59–75.

Mayhew, D. J. (1992). Principles and guidelines in software user

interface design. Upper Saddle River, NJ, USA: Prentice-Hall,

Inc.

Mendes, E., & Mosley, N. (Eds.) (2006). Web Engineering.

Springer.

References 349

Miller, J., & Mukerji, J. (2003). MDA Guide Version 1.0.1. Tech.

Rep. omg/03-06-01, Object Management Group (OMG).

Murugesan, S., & Ginige, A. (2001). Web engineering: Introduction

and perspectives - overview. In S. Murugesan, &

Y. Deshpande (Eds.) Web Engineering, vol. 2016 of Lecture

Notes in Computer Science, (pp. 1–2). Springer.

Nielsen, J. (1999). Designing Web Usability. Peachpit Press.

OMG (2004). Unified modeling language specification: Version 2,

revised final adopted specification (ptc/04-10-02).

OMG (2005a). MOF QVT Final Adopted Specification.

OMG (2005b). Software process engineering metamodel

specification (SPEM), v1.1. Tech. rep., Object Manament

Group.

OMG (2006). Business process modeling notation (bpmn)

specification, omg final adopted specification. dtc/06-02-01.

OMG (2007a). Business process definition metamodel (bpdm), beta

1.

OMG (2007b). Business process model and notation (bpmn) 2.0

request for proposal, omg document: Bmi/2007-06-05.

350 References

Ouyang, C., van der Aalst, W. M., Dumas, M., & ter Hofstede,

A. H. (2006). From business process models to process-

oriented software systems: The bpmn to bpel way. Tech. rep.,

Queensland University of Technology.

Pastor, O., Gómez, J., Insfrán, E., & Pelechano, V. (2001). The OO-

method approach for information systems modeling: from

object-oriented conceptual modeling to automated

programming. Inf. Syst., 26(7), 507–534.

Paternò, F., Mancini, C., & Meniconi, S. (1997). Concurtasktrees:

A diagrammatic notation for specifying task models. In

INTERACT, (pp. 362–369).

Pressman, R. S., Lewis, T. G., Adida, B., Ullman, E., DeMarco, T.,

Gilb, T., Gorda, B. C., Humphrey, W. S., & Johnson, R. (1998).

Can internet-based applications be engineered? IEEE

Software, 15(5), 104–110.

Quintero, R. (2008). Desarrollo Dirigido por Modelos de

Aplicaciones Web que integran Datos y Funcionalidad a partir

de Servicios Web. Ph.D. thesis, Technical University of

Valencia.

Reenskaug, T. (1979). Models - views - controllers. Tech. rep.,

Technical Note, Xerox Parc.

References 351

Reenskaug, T. (2003). The model-view-controller (mvc) its past

and present.

Rojas, G. (2008). Modelling Adaptive Web Applications in OOWS.

Ph.D. thesis, Technical University of Valencia.

Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R.,

Stollberg, M., Polleres, A., Feier, C., Bussler, C., & Fensel, D.

(2005). Wsmo - web service modeling ontology. In DERI

Working Draft 14, vol. 1, (pp. 77–106). Digital Enterprise

Research Institute (DERI), BG Amsterdam: IOS Press.

Rossi, G., & Schwabe, D. (2008). Web Engineering: Modelling and

Implementing Web Applications, chap. Modeling and

Implementing Web Applications with Oohdm, (pp. 109–155).

Human-Computer Interaction Series. Springer London.

Schmid, H. A., & Rossi, G. (2004). Modeling and designing

processes in e-commerce applications. IEEE Internet

Computing, 8(1), 19–27.

Schmidt, D. C. (2006). Model-driven engineering. IEEE Computer,

39(2), 25–31.

Schwabe, D., & Rossi, G. (1998). An object oriented approach to

web-based applications design. Theor. Pract. Object Syst.,

4(4), 207–225.

352 References

Schwabe, D., Szundy, G., Silva de Moura, S., & Lima, F. (2004).

Design and implementation of semantic web applications. In

WWW Workshop on Application Design, Development and

Implementation Issues in the Semantic Web.

Selic, B. (2003). The pragmatics of model-driven development.

IEEE Software, 20(5), 19–25.

Sousa, K. S., Filho, H. M., & Vanderdonckt, J. (2007). Towards

method engineering of model-driven user interface

development. In M. Winckler, H. Johnson, & P. A. Palanque

(Eds.) TAMODIA, vol. 4849 of Lecture Notes in Computer

Science, (pp. 112–125). Springer.

S.T., M., & G.F., S. (1995). Design and natural science research on

information technology. Decision Support Systems, 15, 251–

266(16).

Torres, V., Giner, P., & Pelechano, V. (2007). Modeling ubiquitous

business process driven applications. In J. Eder, S. L.

Tomassen, A. L. Opdahl, & G. Sindre (Eds.) CAiSE Forum,

vol. 247 of CEUR Workshop Proceedings. CEUR-WS.org.

Torres, V., Pelechano, V., Ruíz, M., & Valderas, P. (2005). A model

driven approach for the integration of external functionality

in web applications. the travel agency system. In Proceedings

of the 1st Workshop on Model-driven Web Engineering

(MDWE 2005).

References 353

Troyer, O. D., & Casteleyn, S. (2004). Designing localized web

sites. In X. Zhou, S. Y. W. Su, M. P. Papazoglou, M. E.

Orlowska, & K. G. Jeffery (Eds.) WISE, vol. 3306 of Lecture

Notes in Computer Science, (pp. 547–558). Springer.

Troyer, O. D., Casteleyn, S., & Plessers, P. (2008). Web

Engineering: Modelling and Implementing Web Applications,

chap. WSDM: Web Semantics Design Method, (pp. 303–351).

Human-Computer Interaction Series. Springer London.

Troyer, O. D., & Leune, C. J. (1998). Wsdm: A user centered

design method for web sites. Computer Networks, 30(1-7), 85–

94.

UWA Consortium (2002). Ubiquitous web applications. In

Proceedings of e2002 eBusiness and eWork Conference.

Vaishnavi, V., & Kuechler, W. (2004). Design research in

information systems, last accessed on September 9th, 2004,

revision from February 20th.

Valderas, P. (2008). A Requirements Engineering Approach for the

Development of Web Applications. Ph.D. thesis, Technical

University of Valencia.

Vallecillo, A., Koch, N., Cachero, C., Comai, S., Fraternali, P.,

Garrigós, I., Gómez, J., Kappel, G., Knapp, A., Matera, M.,

Meliá, S., Moreno, N., Pröll, B., Reiter, T., Retschitzegger, W.,

354 References

Rivera, J. E., Schauerhuber, A., Schwinger, W., Wimmer, M.,

& Zhang, G. (2007). Mdwenet: A practical approach to

achieving interoperability of model-driven web engineering

methods. In Proceedings of the 3rd International Workshop

on Model-Driven Web Engineering. MDWE 2007.

Valverde, F., Valderas, P., Fons, J., & Pastor, O. (2007). A mda-

based environment for web applications development: From

conceptual models to code. In 6th International Workshop on

Web-Oriented Software Technologies (IWWOST). Como

(Italy).

van der Sluijs, K., Houben, G.-J., Broekstra, J., & Casteleyn, S.

(2006). Hera-s: web design using sesame. In D. Wolber,

N. Calder, C. Brooks, & A. Ginige (Eds.) ICWE, (pp. 337–344).

ACM.

van Welie, M. Patterns in interaction design.

http://www.welie.com/.

WfMC (1999). Terminology & glossary. document number wfmc-tc-

1011. document status - issue 3.0.

White, S. A. (2005). Using bpmn to model a bpel process. Object

Management Group. BPMN Articles.

