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Funciones Contractivas y Análisis de
Complejidad en Espacios Casi-métricos

Difusos

Pedro Tirado Peláez

En los últimos años se ha desarrollado una teoŕıa matemática con propieda-

des robustas con el fin de fundamentar la Ciencia de la Computación. En este

sentido, un avance significativo lo constituye el establecimiento de modelos

matemáticos que miden la ”distancia” entre programas y entre algoritmos,

analizados según su complejidad computacional.

En 1995, M. Schellekens inició el desarrollo de un modelo matemático

para el análisis de la complejidad algoŕıtmica basado en la construcción de

una casi-métrica definida en el espacio de las funciones de complejidad, pro-

porcionando una interpretación computacional adecuada del hecho de que

un programa o algoritmo sea más eficiente que otro en todos su ”inputs”.

Esta información puede extraerse en virtud del carácter asimétrico del mo-

delo. Sin embargo, esta estructura no es aplicable al análisis de algoritmos

cuya complejidad depende de dos parámetros. Por tanto, en esta tesis intro-

duciremos un nuevo espacio casi-métrico de complejidad que proporcionará

un modelo útil para el análisis de este tipo de algoritmos. Por otra parte, el

espacio casi-métrico de complejidad no da una interpretación computacional

del hecho de que un programa o algoritmo sea sólo asintóticamente más efi-

ciente que otro. Los espacios (casi-)métricos difusos aportan un parámetro

”t”, cuya adecuada utilización puede originar una información extra sobre

el proceso computacional a estudiar; por ello introduciremos la noción de

casi-métrica difusa de complejidad, que proporciona un modelo satisfactorio

para interpretar la eficiencia asintótica de las funciones de complejidad.

En este contexto extenderemos los principales teoremas de punto fijo en

espacios métricos difusos , utilizando una determinada noción de completi-

tud, y obtendremos otros nuevos. Algunos de estos teoremas también se
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establecerán en el contexto general de los espacios casi-métricos difusos in-

tuicionistas, de lo que resultarán condiciones de contracción menos fuertes.

Los resultados obtenidos se aplican a problemas interesantes en Ciencia de

la Computación, como es la determinación de solución única para ecuaciones

de recurrencia asociadas a determinados algoritmos, aśı como al análisis de

la eficiencia asintótica de algoritmos.
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Funcions Contractives i Análisi de
Complexitat en Espais Quasi-Mètrics Difusos

Pedro Tirado Peláez

En els últims anys s’ha desenrrollat una teoria matemàtica amb propi-

etats robustes a fi de fonamentar la Ciència de la Computació. En este sen-

tit, constituix un avaç significatiu l’establiment de models matemàtics que

mesuren la distància entre programes i entre algoritmes, analitzats segons la

complexitat computational respectiva.

En 1995, M. Schellekens va iniciar el desenrrollament d’un model matemàtic

per a l’análisis de la complexitat algoŕımica basat en la construcció d’una

quasi-métrica definida en l’espai de les funcions de complexitat, que propor-

cionava una intrepretació computacional adequada del fet que un programa

o un algoritme siga més eficient que un atre en totes les entrades o inputs.

Esta informació pot extraure’s en virtut del caràcter asimètric del model.

No obstante això, esta estructura no és aplicable a l’análisi d’algoritmes la

complexitat dels quals depèn de dos paràmetres. Per tant, en esta tesi intro-

duirem un nou espai quasi-mètric de complexitat que proporcionarà un model

útil per a l’anàlisis d’aquest darrer tipus d’algoritmes. D’atra banda, l’espai

quasi-mètric de complexitat no proporciona una interpretació computacional

del fet que un programa o un algoritme siga només asimptòticament més

eficient que un atre. Els espais (quasi-)mètrics difusos aporten un paràmetre

”t”, la utilització adecuada del qual pot aportar una informació extra sobre

el procés computacional que es vol estudiar; per això introduirem la noció de

quasi-mètrica difusa de complexitat, que proporciona un model satisfactori

per a interpretar l’eficiència asimptòtica de les funcions de complexitat.

En este context estendrem els principals teoremes de punt fix en es-

pais mètrics difusos, utilitzant una determinada noció de completitud, i

n’obtendrem uns atres de nous. Alguns d’estos teoremes també s’establiran

en el context general dels espais quasi-mètrics difusos intuicionistes, de la
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qual cosa resultaran unes condicions de contracció meyns fortes.

Els resultats obtinguts s’apliquen a problemes interessants en Ciència de

la Computació, com ara la determinació de solució única per a equacions

de recurrència associades a determinats algoritmes, aix́ı com a l’análisi de

l’eficiència asimptòtica d’algoritmes.
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Contractive Maps and Complexity Analysis
in Fuzzy Quasi-Metric Spaces

Pedro Tirado Peláez

In the last years a mathematical theory has been developed in order to

obtain a foundation for Computing Science. In this setting an important

progress is the establishment of mathematical models which are analyzed

according to their computational complexity and measure the ”distance”

between programs and between algorithms.

In 1995, M. Schellekens started the development of a mathematical model

to analyze the algorithmic complexity based on the construction of a quasi-

metric defined on the space of the complexity, providing an adequate com-

putational interpretation of the fact that a program or an algorithm is more

efficient than another in all of its inputs. This information can be extracted

by the asymmetric nature of the model. However, this framework can not

be applied to the analysis of those algorithms whose complexity depends on

two parameters. Motivated by this interesting fact, in this thesis we will in-

troduce a new complexity quasi-metric space which provides a useful model

to analyze such algorithms. On the other hand, the complexity quasi-metric

space does not give a computational interpretation of the fact that a program

or an algorithm is only asymptotically more efficient than another. The fuzzy

(quasi-)metric spaces provide a parameter ”t” such that a suitable use of this

ingredient may give rise to extra information on the involved computational

process; thus we will introduce the concept of complexity fuzzy quasi-metric

space, which provides a successful model to interpret the asymptotic effi-

ciency of the complexity functions.

In this context we will extend the main fixed-point theorems in fuzzy

metric spaces, using an appropriate notion of completeness, and get new ones.

Some of these theorems will be also established in the general framework of

the intuitionistic fuzzy quasi-metric spaces, with less restrictive conditions of

xiii



contraction.

From the obtained results we deduce a general method to identify the

(unique) solution of recurrence equations associated to certain algorithms,

as well as the analysis of asymptotic efficiency of such algorithms.
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Chapter 1

Preliminaries and basic notions

on fuzzy quasi-metric spaces

1.1 Introduction and basic notions

The theory of fuzzy sets was introduced by Zadeh in 1965. From then, the

research in many branches of fuzzy mathematics has received a great atten-

tion. In particular, and in the framework of fuzzy topology, one of the main

problems in the theory of fuzzy topological spaces is to obtain an appropriate

and consistent notion of a fuzzy metric space. Many authors have investi-

gated this question and several different notions of a fuzzy metric space have

been defined and studied. In [30], Kramosil and Michalek introduced and

studied and interesting notion of fuzzy metric space which is closely related

to a class of probabilistic metric spaces, the so-called (generalized) Menger

spaces. By using the notion of a fuzzy metric space in the sense of Kramosil

and Michalek [30], Grabiec proved in [21] fuzzy versions of the celebrated

Banach fixed point theorem and of the Edelstein fixed point theorem, re-

spectively. To this end, Grabiec introduced a notion of complete fuzzy metric

space and of compact fuzzy metric space, respectively. Later on, George and

Veeramani started in [19] the study of a stronger form of metric fuzziness.

5



6 Chapter 1. Preliminaries and basic notions

Further they modified the definition of Cauchy sequence given by Gabriec in

[21], because of the fact that the set of real numbers is not complete with

the definition given in [21].

On the other hand, it is well known that quasi-metric spaces constitute

an efficient tool to discuss and solve several problems in topological algebra,

approximation theory, theoretical computer science, etc.

In [22] Gregori and Romaguera introduced two notions of fuzzy quasi-

metric space that generalize the corresponding notions of fuzzy metric space

by Kramosil and Michalek, and by George and Veeramani, to the quasi-

metric context.

Our basic reference for quasi-metric spaces is [17].

In the sequel the letters R,R+, ω and N will denote the set of real num-

bers, the set of nonnegative real numbers, the set of nonnegative integer

numbers and the set of positive integer numbers, respectively.

Following the modern terminology, by a quasi-metric on a nonempty set

X we mean a nonnegative real valued function d on X ×X such that for all

x, y, z ∈ X :

(i) x = y if and only if d(x, y) = d(y, x) = 0;

(ii) d(x, z) ≤ d(x, y) + d(y, z).

If d satisfies condition (i) above and

(ii’) d(x, z) ≤ max{d(x, y), d(y, z)}
then, d is called a non-Archimedean quasi-metric on X.

If d satisfies the conditions (i), (ii) and

(ii”) d(x, y) = d(y, x)

then, d is called a metric on X.
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A (non-Archimedean) quasi-metric space is a pair (X, d) such that X is

a nonempty set and d is a (non-Archimedean) quasi-metric on X.

Each quasi-metric d on X generates a T0 topology τd onX which has

as a base the family of open balls {Bd(x, r) : x ∈ X, r > 0}, where

Bd(x, r) = {y ∈ X : d(x, y) < r} for all x ∈ X and r > 0.

A topological space (X, τ) is said to be (quasi-)metrizable if there is a

(quasi-)metric d on X such that τ = τd.

Given a (non-Archimedean) quasi-metric d on X, then the function d−1

defined on X ×X by d−1(x, y) = d(y, x), is also a (non-Archimedean) quasi-

metric on X, called the conjugate of d, and the function ds defined on X×X
by ds(x, y) = max{d(x, y), d−1(x, y)} is a (non-Archimedean) metric on X.

A quasi-metric space (X, d) is said to be bicomplete if (X, ds) is a com-

plete metric space. In this case, we say that d is a bicomplete quasi-metric

on X.

By a contraction map on a (quasi-)metric space (X, d) we mean a self-

map f on X such that d(fx, fy) ≤ kd(x, y) for all x, y ∈ X, where k is a

constant with 0 ≤ k < 1. The number k is called a contraction constant for

f.

It is clear that if f is a contraction map on a quasi-metric space (X, d)

with contraction constant k, then f is a contraction map on the metric space

(X, ds) with contraction constant k.

According to [55], a binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a con-

tinuous t-norm if ∗ satisfies the following conditions: (i) ∗ is associative and

commutative; (ii) ∗ is continuous; (iii) a ∗ 1 = a for every a ∈ [0, 1]; (iv)
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a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, with a, b, c, d ∈ [0, 1].

It is easy to see that the following statements hold:

(1) If 0 ≤ r < s ≤ 1, then r ∗ t < s for all t ∈ [0, 1].

(2) If 1> r > s ≥ 0, there exists t ∈ (s, 1) such that r ∗ t ≥ s.

(3) If 1> r ≥ 0, there exists t ∈ (r, 1) such that t ∗ t ≥ r.

Paradigmatic examples of continuous t-norm are Min, Prod, and TL (the

Lukasiewicz t-norm).

In the following Min will be denoted by ∧, Prod by · and TL by ∗L. Thus

we have a ∧ b = min{a, b}, aProdb = a.b and a ∗L b = max{a + b− 1, 0} for

all a, b ∈ [0, 1]. The following relations hold:

∧ > · > ∗L. In fact, ∧ > ∗ for any continuous t-norm ∗.

Similarly, a binary operation ♦ : [0, 1] × [0, 1] → [0, 1] is a continuous t-

conorm if ♦ satisfies the following conditions: (i) ♦ is associative and commu-

tative; (ii) ♦ is continuous; (iii) a♦0 = a for every a ∈ [0, 1]; (iv) a♦b ≤ c♦d

whenever a ≤ c and b ≤ d, with a, b, c, d ∈ [0, 1].

It is easy to see that the following statements hold:

(1) If 1 ≥ r > s ≥ 0, then r♦t > s for all t ∈ [0, 1].

(2) If 0 < r < s ≤ 1, there exists t ∈ (0, s) such that r♦t ≤ s.

(3) If 0 < r ≤ 1, there exists t ∈ (0, r) such that t♦t ≤ r.

If ∗ is any continuous t-norm we can define a continuous t-conorm ♦ as

follows:
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a♦b = 1− [(1− a) ∗ (1− b)] for all a, b ∈ [0, 1].

This continuous t-conorm ♦ is known as the continuous t-conorm associ-

ated to the continuous t-norm ∗.

Examples of continuous t-conorm are Max, which is the continuous t-

conorms associated to ∧, and the the continuous t-conorms associated to

· and ∗L respectively. In the following these continuous t-conorms will be

denoted by ∨, ♦P and ♦L, respectively. In particular we have a♦Lb =

min{1, a + b}. The continuous t-conorm ♦L will be called the Lukasiewicz

t-conorm.

It is well known, and easy to see, that if ∗ is a continuous t-norm and ♦

is a continuous t-conorm, then for all a, b, c, d ∈ [0, 1] :

a ∗ b ≤ a ∧ b ≤ a ∨ b ≤ a♦b.

Examples of classes of continuous t-norm and continuous t-conorm ([8]),

that cover the full ranges of these operations, are defined for all a, b ∈ [0, 1]

by:

{
a ∗α b = 1−min{1, [(1− a)1/α + (1− b)1/α]α}

a♦αb = min{1, (a1/α + b1/α)α}

where α is a parameter whose range is (0,∞). A particular continuous t-

norm and one particular continuous t-conorm are obtained for each value of

the parameter α. These operations are often referred to in the literature as

the Yager continuous t-norm and continuous t-conorm.
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It is easy to see that a∗α1 b ≥ a∗α2 b and a♦α1b ≤ a♦α2b whenever α1 ≤ α2,

with a, b ∈ [0, 1]. In particular a ∗n1 b ≥ a ∗n2 b and a♦n1b ≤ a♦n2b whenever

n1 ≤ n2, with n1, n2 ∈ N and a, b ∈ [0, 1].

A subclass of Yager continuous t-norm and continuous t-conorm is {∗α}α∈N

and {♦α}α∈N. In particular we have that ∗1 and ♦1 are the Lukasiewicz t-

norm and the Lukasiewicz t-conorm respectively. We will call these subclasses

as the N-Yager continuous t-norm and continuous t-conorm, respectively.

Definition 1.1 [24]. A KM-fuzzy quasi-metric on a set X is a pair (M, ∗)
such that ∗ is a continuous t-norm and M is a fuzzy set in X ×X × [0,∞)

such that for all x, y, z ∈ X :

(KM1) M(x, y, 0) = 0;

(KM2) x = y if and only if M(x, y, t) = M(y, x, t) = 1 for all t > 0;

(KM3) M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s) for all t, s > 0;

(KM4) M(x, y, ) : [0,∞)→ [0, 1] is left continuous.

Note that a KM-fuzzy quasi-metric (M, ∗) satisfying for all x, y ∈ X and

t > 0 the symmetry axiom M(x, y, t) = M(y, x, t), is a fuzzy metric in the

sense of Kramosil and Michalek [30].

Definition 1.2 [24]. A KM-fuzzy quasi-metric space is a triple (X,M, ∗)
such that X is a (nonempty) set and (M, ∗) is a KM-fuzzy quasi-metric on

X.

If (M, ∗) is a fuzzy metric in the sense of Kramosil and Michalek then

(X,M, ∗) is a fuzzy metric space in the sense of Kramosil and Michalek [30].

In the following, KM-fuzzy quasi-metrics and fuzzy metrics in the sense of

Kramosil and Michalek will be simply called fuzzy quasi-metrics and fuzzy
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metrics respectively, and KM-fuzzy quasi-metric spaces and fuzzy metric

spaces in the sense of Kramosil and Michalek will be simply called fuzzy

quasi-metric spaces and fuzzy metric spaces, respectively.

It was shown in Proposition 1 of [24] that if (M, ∗) is a fuzzy quasi-metric

on X, then for each x, y ∈ X, M(x, y, ) is nondecreasing, i.e. M(x, y, t) ≤
M(x, y, s) whenever t ≤ s.

If (M, ∗) is a fuzzy quasi-metric on X, then (M−1, ∗) is also a fuzzy

quasi-metric on X, where M−1 is the fuzzy set in X × X × [0,∞) defined

by M−1(x, y, t) = M(y, x, t). Moreover, if we denote by M i the fuzzy set in

X × X × [0,∞) given by M i(x, y, t) = min{M(x, y, t),M−1(x, y, t)}, then

(M i, ∗) is a fuzzy metric on X [24].

Given a fuzzy quasi-metric space (X,M, ∗) we define the open ballBM(x, r, t),

for x ∈ X, 0 < r < 1, and t > 0, as the set BM(x, r, t) = {y ∈ X :

M(x, y, t) > 1− r}. Obviously, x ∈ BM(x, r, t).

For each x ∈ X, 0 < r1 ≤ r2 < 1 and 0 < t1 ≤ t2, we have BM(x, r1, t1) ⊆
BM(x, r2, t2). Consequently, we may define a topology τM on X as

τM := {A ⊆ X : for each x ∈ A there are r ∈ (0, 1), t > 0, with BM(x, r, t) ⊆ A}

Moreover, for each x ∈ X the collection of open balls {BM(x, 1/n, 1/n) :

n = 2, 3...}, is a local base at x with respect to τM . It is clear, that for any

fuzzy quasi-metric space (X,M, ∗), τM is a T0 topology.

The topology τM is called the topology generated by the fuzzy quasi-

metric space (X,M, ∗). It is clear that each open ball BM(x, r, t) is an open

set for the topology τM .
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Definition 1.3 [24]. A GV-fuzzy quasi-metric on a set X is a pair (M, ∗)
such that ∗ is a continuous t-norm and M is a fuzzy set in X ×X × (0,∞)

such that for all x, y, z ∈ X; t, s > 0 :

(GV1) M(x, y, t) > 0;

(GV2) x = y if and only if M(x, y, t) = M(y, x, t) = 1;

(GV3) M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s);

(GV4) M(x, y, ) : (0,∞)→ (0, 1] is continuous.

Note that a GV-fuzzy quasi-metric (M, ∗) satisfying for all x, y ∈ X and

t > 0 the symmetry axiom M(x, y, t) = M(y, x, t), is a fuzzy metric in the

sense of George and Veeramani [19] (in the following a GV-fuzzy metric).

Definition 1.4 [24]. A GV-fuzzy quasi-metric space is a triple (X,M, ∗)
such that X is a (nonempty) set and (M, ∗) is a GV-fuzzy quasi-metric on

X.

If (M, ∗) is a GV-fuzzy metric then (X,M, ∗) is a fuzzy metric space in

the sense of George and Veeramani [19] (in the following a GV-fuzzy metric

space).

If (M, ∗) is a GV-fuzzy quasi-metric on X, then (M−1, ∗) is also a GV-

fuzzy quasi-metric on X, where M−1 is the fuzzy set in X × X × (0,∞)

defined by M−1(x, y, t) = M(y, x, t). Moreover, if we denote by M i the fuzzy

set in X × X × (0,∞) given by M i(x, y, t) = min{M(x, y, t),M−1(x, y, t)},
then (M i, ∗) is a GV-fuzzy metric on X [24].

Obviously, each GV-fuzzy (quasi-)metric (M, ∗) can be considered as a

fuzzy (quasi-)metric by defining M(x, y, 0) = 0 for all x, y ∈ X. Therefore,

each GV-fuzzy (quasi-)metric space generates a topology τM defined as in

the KM-case; thus if (X,M, ∗) is a GV-fuzzy (quasi-)metric space we have
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that for each x, y ∈ X, M(x, y, ) is nondecreasing and that each open ball

is an open set for the topology τM .

We say that a topological space (X, τ) admits a compatible (GV-)fuzzy

(quasi-)metric if there is a (GV-)fuzzy (quasi-)metric (M, ∗) on X such that

τ = τM .

Gregori and Romaguera showed in [22] and [24] that every (quasi-)metric

induces a fuzzy (quasi-)metric and, conversely, every fuzzy (quasi-)metric

space generates a (quasi-)metrizable topology. (See Example 1.1 and Theo-

rem 1.1, below).

Proposition 1.1. [24, 19]. A sequence {xn}n in a fuzzy (quasi-)metric

space (X,M, ∗) converges to a point x ∈ X with respect to τM if and only if

limnM(x, xn, t) = 1, for all t > 0.

Example 1.1 [24, 19]. Let (X, d) be a (quasi-)metric space, let ∗ be any

continuous t-norm and let Md be the function defined on X ×X × (0,∞) by

Md(x, y, t) =
t

t+ d(x, y)

Then (X,Md, ∗) is a GV-fuzzy (quasi-)metric space called standard GV-

fuzzy (quasi-)metric space and (Md, ∗) is the fuzzy (quasi-)metric induced by

d. Furthermore, it is easy to check that (Md)
−1 = Md−1 and (Md)

i = Mds,

and the topology τd, generates by d, coincides with the topology τMd
generated

by the induced GV-fuzzy (quasi-)metric (M, ∗).

Theorem 1.1 [22, 24]. For a topological space (X, τ) the following are equiv-

alent.

(1) (X, τ) is (quasi-)metrizable.

(2) (X, τ) admits a compatible GV-fuzzy (quasi-)metric.
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(3) (X, τ) admits a compatible fuzzy (quasi-)metric.

As we indicated above, by using the notion of a fuzzy metric space in

the sense of Kramosil and Michalek [30], Grabiec proved in [21] fuzzy ver-

sions of the celebrated Banach fixed point theorem and Edelstein fixed point

theorem respectively. To this end, Grabiec introduced a notion of complete

fuzzy metric space and of compact fuzzy metric space respectively. Next we

present the definitions and theorems given by Grabiec in [21]. These notions

will be termed as G-Cauchy sequence and G-complete, respectively.

Definition 1.5 [21]. A sequence {xn}n in a fuzzy metric space (X,M, ∗) is

called G-Cauchy if limn→∞M(xn, xn+p, t) = 1 for each t > 0 and p ∈ N.

Note that {xn}n is a G-Cauchy sequence if and only if for each ε ∈
(0, 1), p ∈ N, t > 0 there exists n0 ∈ N such that M(xn, xn+p, t) > 1 − ε for

all n > n0.

Definition 1.6 [21]. A fuzzy metric space (X,M, ∗) is called G-complete

if every G-Cauchy sequence in X is convergent with respect to τM . In this

case, (M, ∗) is called a G-complete fuzzy metric on X.

Theorem 1.2 [21]. Let (X,M, ∗) be a G-complete fuzzy metric space such

that limt→∞M(x, y, t) = 1 for all x, y ∈ X. Let T : X → X be a self-map

satisfying:

M(Tx, Ty, kt) ≥M(x, y, t)

for all x, y ∈ X,and t > 0, with k ∈ (0, 1). Then T has a unique fixed point.

By Theorem 1.1, the topology τM generated by a fuzzy metric space

(X,M, ∗) is a metrizable topology. Following [22], a fuzzy metric space
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(X,M, ∗) is called compact if (X, τM) is a compact topological space. There-

fore a definition of compact fuzzy metric space can be equivalently given as

follows:

Definition 1.7 [21]. A fuzzy metric space (X,M, ∗) is called compact if ev-

ery sequence has a convergent subsequence.

Theorem 1.3 [21]. Let (X,M, ∗) be a compact fuzzy metric space and let

T : X → X be a self-map satisfying:

M(Tx, Ty, t) > M(x, y, t)

for all x, y ∈ X such that x 6= y, and t > 0. Then T has a unique fixed point.

George and Veeramani gave in [19] the following example which shows

that with Grabiec´s notion of completeness, R fails to be complete.

Example 1.2 [19]. For x, y ∈ R , t > 0, define

Md(x, y, t) =
t

t+ d(x, y)

( d is the Euclidean metric on R).

Then (Md, ∗) is the standard GV-fuzzy metric induced by d on R.

Let sn = 1 + 1
2

+ 1
3

+ · · ·+ 1
n

, for n ∈ N.

Thus

Md(sn+p, sn, t) =
t

t+ 1/(n+ 1) + · · ·+ 1/(n+ p)
,

so

lim
n
Md(sn+p, sn, t) = 1,

for all p ∈ N and t > 0.
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Thus {sn}n is a G-Cauchy sequence in (R,Md, ∗).

It is well known that {sn}n is not convergent, therefore (R,Md, ∗) fails

to be G-complete.

Because of this fact, George and Veeramani modified the definitions of

Cauchy sequence and completeness due to Grabiec, as follows:

Definition 1.8 [19]. A sequence {xn}n in a fuzzy metric space (X,M, ∗) is

called a Cauchy sequence if for each ε ∈ (0, 1), t > 0 there exists n0 ∈ N
such that M(xn, xm, t) > 1− ε for all n,m > n0.

Definition 1.9 [19]. A fuzzy metric space (X,M, ∗) is called complete if

every Cauchy sequence is convergent with respect to τM .

It follows from Definition 1.9 that (R,Md, ∗) is a complete GV-fuzzy

quasi-metric space.

Next we present the generalization of the above definitions to the fuzzy

quasi-metric setting.

Definition 1.10. A sequence {xn}n in a fuzzy quasi-metric space (X,M, ∗)
is called G-Cauchy if {xn}n is a G-Cauchy sequence in (X,M i, ∗).

Definition 1.11. A fuzzy quasi-metric space (X,M, ∗) is called G-bicomplete

if (X,M i, ∗) is a G-complete fuzzy metric space. In this case, (M, ∗) is called

a G-bicomplete fuzzy quasi-metric on X.

It follows from the preceding definitions that a fuzzy quasi-metric space

(X,M, ∗) is G-bicomplete if and only if every G-Cauchy sequence converges

with respect to τM i .
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Definition 1.12 (compare [19]). A sequence {xn}n in a fuzzy quasi-metric

space (X,M, ∗) is called a Cauchy sequence if for each ε ∈ (0, 1), t > 0, there

exists n0 ∈ N such that M(xn, xm, t) > 1− ε for all n,m > n0.

Definition 1.13. A fuzzy quasi-metric space (X,M, ∗) is called bicomplete

if (X,M i, ∗) is a complete fuzzy metric space. In this case, (M, ∗) is called

a bicomplete fuzzy quasi-metric on X.

It follows from the preceding definitions that a fuzzy quasi-metric space

(X,M, ∗) is bicomplete if and only if every Cauchy sequence converges with

respect to τM i .

A metrizable topological space (X, τ) is said to be completely metrizable

if it admits a compatible complete metric. It was proved in [22] that a topo-

logical space is completely metrizable if and only if it admits a compatible

complete fuzzy metric.

Proposition 1.2 [24]. (a) Let (X,M, ∗) be a bicomplete fuzzy quasi-metric

space. Then (X, τM) admits a compatible bicomplete quasi-metric.

(b) Let (X, d) be a bicomplete quasi-metric space. Then (X,Md, ∗) is a

bicomplete GV-fuzzy quasi-metric space.
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Chapter 2

Some remarks and examples on

the topology of fuzzy metric

spaces

2.1 Introduction

In this chapter we give some results on the topology of fuzzy metric spaces

in the sense of Kramosil and Michalek. In particular we present an example

of a closed ball that is not a closed set in a fuzzy metric space. On the other

hand, we observe that the open sets of this topology can be defined by means

of open balls with t ∈ (0, ε) and ε > 0. From this fact we give a generalized

version of Grabiec´s version of the Edelstein fixed point theorem. Finally we

give a new example of a complete fuzzy metric space which is not G-complete

and two essentially different examples of compact fuzzy metric spaces that

are not G-complete. These results are contained in [58].

19
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2.2 Some basic results

Given a fuzzy (quasi-)metric space (X,M, ∗) we define the closed ballBM(x, r, t),

for x ∈ X, 0 < r < 1, and t > 0, as the set BM(x, r, t) = {y ∈ X :

M(x, y, t) ≥ 1− r}. Obviously, x ∈ BM(x, r, t).

George and Veeramani proved in [19] that every closed ball is a closed

set in a GV-fuzzy metric space. Nevertheless it is not true in a fuzzy metric

space in the sense of Kramosil and Michalek as the following example shows.

Example 2.1. Let (X, d) be the metric space where X = [0, 1] and d is

the Euclidean metric on X. In [35] it is shown that (X,M, ∗) is a fuzzy

metric space, where ∗ is any continuous t-norm and M is the fuzzy set in

X ×X × [0,+∞) given in the following way:

M(x, y, t) = 1, if d(x, y) < t

M(x, y, t) = 0, if d(x, y) ≥ t.

We will show that there exists a closed ball BM(x, r, t), and a point z ∈ X
such that z ∈ BM(x, r, t)\BM(x, r, t).

Let BM(0, 1/2, 1) = {y : M(0, y, 1) > 1/2}. According to the definition of

M(x, y, t) we deduce that BM(0, 1/2, 1) = {y : M(0, y, 1) = 1} = {y : d(0, y) < 1} =

[0, 1).

Let {xn}n be the sequence in (X,M, ∗), where xn = 1 − 1
n

, for all

n ∈ N. Obviously this sequence converges to z = 1. On the other hand

we have that xn ∈ BM(0, 1/2, 1) for all n ∈ N. So, for z = 1 we have that

z ∈ BM(0, 1/2, 1), and nevertheless z /∈ BM(0, 1/2, 1).

Remark 2.1. Fix ε ∈ (0, 1). Given t ∈ (0, ε) there exists n ∈ N such that

1/n < t, so BM(x, r, 1/n) ⊆ BM(x, r, t) for all r ∈ (0, 1). On the other hand
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given n ∈ N there exists t ∈ (0, ε) such that BM(x, r, t) ⊆ BM(x, r, 1/n).

Therefore the collection {BM(x, r, t) : t ∈ (0, ε)} is a base for the topology

τM .

We consider the above observation to generalize the fuzzy metric version

of fixed point theorem of Edelstein given by Grabiec (Theorem 1.3). Next

we show an example where Theorem 1.3 can not be applied.

Example 2.2. Let (X, d) be the metric space where X = [0, 1] and d the

Euclidean metric on X. Let ∗L be the Lukasiewicz continuous t-norm. We

define a fuzzy set M in X ×X × [0,+∞) given in the following way:

M(x, y, 0) = 0,

M(x, y, t) = 1− d(x, y), if 0 < t 6 1,

M(x, y, t) = 1, if t > 1.

It is clear that (X,M, ∗L) is a compact fuzzy metric space.

Let T : X → X be given by Tx = x/2 for all x ∈ X (obviously T has

a unique fixed point x = 0). Nevertheless the conditions of Theorem 1.3 are

not satisfied because M(Tx, Ty, t) = M(x, y, t) = 1 for all t > 1, and for all

x, y ∈ X.

Since the topology τM can be defined by means of open balls with t ∈
(0, ε), ε ∈ (0, 1), and for each x, y ∈ X, M(x, y, ) is nondecreasing, following

the proof of Edelstein ´s theorem given in [21] we can generalize the fuzzy

metric version of the fixed point theorem of Edelstein given by Grabiec as

follows:

Theorem 2.1. Let (X,M, ∗) be a compact fuzzy metric space and let T :

X → X be a self-map satisfying:
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M(Tx, Ty, t) > M(x, y, t)

for all x, y ∈ X such that x 6= y, and for all t ∈ (0, ε), with ε > 0. Then T

has a unique fixed point.

Observe that the conditions of Theorem 2.1 are satisfied in Example 2.2.

2.3 Examples on G-completeness and com-

pactness

We start this section giving the corresponding notions of G-Cauchyness and

G-completeness for metric spaces.

Definition 2.2 A sequence {xn}n in a metric space (X, d) is called G-

Cauchy sequence if limn→∞ d(xn, xn+p) = 0 for each p ∈ N.

Definition 2.3 A metric space (X, d) is called G-complete if every G-Cauchy

sequence in X is convergent with respect to τd. In this case, d is called a G-

complete metric on X.

Let (X, d) be a metric space and let (X,Md, ∗) be the standard fuzzy met-

ric space. Recall (Example 1.1) that the topology τd, generated by d, coin-

cides with the topology τMd
. Furthermore a sequence {xn}n in X is a Cauchy

sequence in (X, d) if and only if {xn}n is a Cauchy sequence in (X,Md, ∗). In-

deed, let {xn}n be a Cauchy sequence in (X, d). Fix t > 0. Let ε ∈ (0, 1) such

that t > 1−ε. There exists n0 ∈ N such that d(xn, xm) < ε for all m,n ≥ n0.

ThereforeM(xn, xm, t) = t/(t+d(xn, xm)) > t/(t+ε) > 1−ε for allm,n ≥ n0.

So {xn} is a Cauchy sequence in (X,Md, ∗). Conversely, if {xn}n is a Cauchy
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sequence in (X,Md, ∗), given ε ∈ (0, 1/2) there exists n0 ∈ N such that

M(xn, xm, 1) > 1 − ε for all m,n ≥ n0. So 1/(1 + d(xn, xm)) > 1 − ε for all

m,n ≥ n0, thus d(xn, xm) < ε/(1 − ε) < 2ε for all m,n ≥ n0. We conclude

that {xn}n is a Cauchy sequence in (X, d). Therefore (X,Md, ∗) is a complete

GV-fuzzy metric space if and only if (X, d) is a complete metric space.

In the same way we obtain that a sequence {xn}n in X is a G-Cauchy

sequence in (X, d) if and only if {xn}n is a G-Cauchy sequence in (X,Md, ∗)
and that (X,Md, ∗) is a G-complete fuzzy metric space if and only if (X, d)

is a G-complete metric space.

George and Veeramani showed (Example 1.2) that with Grabiec´s notion

of completeness, R fails to be complete. Next we give another example of a

complete fuzzy metric space which is not G-complete.

Example 2.3. Let C([0, 1]) be the set of all continuous functions from

[0, 1] into itself and let ds be the metric on C([0, 1]) given by ds(f, g) =

supx∈[0,1] |f(x)− g(x)|. It is known that (C([0, 1]), ds) is a complete metric

space, therefore (C([0, 1]),Mds , ∗) is a complete fuzzy metric space.

Let {fn}n be the sequence in (C([0, 1]),Mds , ·) given by fn(x) = xn. It is

well known that {fn}n is a non-convergent sequence in (C([0, 1]), ds), there-

fore {fn}n is a non-convergent sequence in (C([0, 1]),Mds , ∗). We will show

that {fn}n is a G-Cauchy sequence in (C([0, 1]), ds), and hence it is a non-

convergent G-Cauchy sequence in (C([0, 1]),Mds , ∗), so that (C([0, 1]),Mds , ∗)
is not G-complete.

Indeed, let p ∈ N, then:

d(fn, fn+p) = sup
x∈[0,1]

∣∣xn − xn+p
∣∣ = max

x∈[0,1]

∣∣xn − xn+p
∣∣ ,

An easy computation, based in optimization, shows that this maximum is
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obtained in the point x = ( n
n+p

)1/p, thus:

lim
n→∞

d(fn, fn+p) = lim
n→∞

max
x∈[0,1]

∣∣xn − xn+p
∣∣ = lim

n→∞
(

n

n+ p
)n/p(1− n

n+ p
),

so

lim
n→∞

d(fn, fn+p) = 0.

Thus {fn}n is a G-Cauchy sequence in (C([0, 1]), ds). We conclude that

(C([0, 1]),Mds , ∗) is not G-complete.

Next we show that G-completeness is a very strong kind of completeness.

In fact, we here present two essentially different examples of compact fuzzy

metric spaces that are not complete in Grabiec´s sense.

Gregori and Romaguera obtained the following theorem:

Theorem 2.2 [22]. A fuzzy metric space is compact if and only if it is pre-

compact and complete.

Hence every compact fuzzy metric space is complete (in George and Veera-

mani´s sense).

Example 2.4. Let X = [0, 1/2] × [0, 1/2]. Obviously (X, d) is a compact

metric space, where d is the metric on X given by d(x, y) = |y1 − x1| +
|y2 − x2|, with x = (x1, x2) and y = (y1, y2). Therefore (X,Md, ∗) is a

compact fuzzy metric space.

Construct a sequence {xm}m>2, in (X,Md, ∗) as follows:

Given m > 2, we have:
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i) m = 22nm−1+j for some nm ∈ N and some j ∈ w with 0 6 j 6 22nm−1,

or

ii) m = 22nm + j for some nm ∈ N and some j ∈ w with 0 6 j 6 22nm.

In case i) put:

xm = (
m− 22nm−1

22nm
,

1

22nm−1
− m− 22nm−1

22nm22nm−1
).

In case ii) put:

xm = (
22nm+1 −m

22nm+1
,

1

22nm
− m− 22nm

22nm+122nm
).

It is easy to see (see Figure 2.1) that {x22n−1}n and {x22n}n are subse-

quences of {xm}m>2 where x22n−1 = (0, 1/22n−1) and x22n = (1/2, 1/22n),

n ∈ N (see figure 2.1). We have that limn x22n−1 = (0, 0) and limn x22n =

(1/2, 0), and thus {xm}m>2 is not convergent.
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Fig. 2.1. Let the rectangle whose corners are the points of coordinates

(0,0), (1/2,0), (0,1/2) and (1/2,1/2). In this figure we can see a representation

of some elements of the sequence {xm}m>2 of the Example 2.4. In particular,

we can see a representation, on both sides of the rectangle, of some elements of

the subsequences {x22n−1}n and {x22n}n, respectively. This yields, in part, a

visual intuition of the convergence of these subsequences to (0,0) and (1/2,0),

respectively.
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On the other hand, given p ∈ N there exists mp such that if m > mp then :

In case i) we have:

i.1) m+ p is an element of the set {22nm−1 + j + 1, ..., 22nm − 1, 22nm} or,

i.2) m+ p is an element of the set {22nm + 1, ..., 22nm+1 − 2, 22nm+1 − 1}.

In case ii) we have:

ii.1) m+ p is an element of the set {22nm + j + 1, ..., 22nm+1 − 1, 22nm+1}
or,

ii.2) m+p is an element of the set {22nm+1 +1, ..., 22nm+2−2, 22nm+2−1}.

Next we show that {xm}m>2 is G-Cauchy.

In case i.1) we have:

d(xm, xm+p) =
m+ p− 22nm−1

22nm
− m− 22nm−1

22nm
+

1

22nm−1

−m− 22nm−1

22nm22nm−1
− 1

22nm−1
+
m+ p− 22nm−1

22nm22nm−1

=
p

22nm
+

p

22nm22nm−1
<

p

22nm
+

p

22nm
=

p

22nm−1
.

In case ii.1) we have:

d(xm, xm+p) =
p

22nm+1
+

p

22nm22nm+1

<
p

22nm+1
+

p

22nm+1
=

p

22nm
.

In case i.2) we put:
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p1 = 22nm −m,
p2 = m+ p− 22nm, p1 + p2 = p, and we shall use the following relation:

d(xm, xm+p) 6 d(xm, x22nm ) + d(x22nm , xm+p).

The computation of d(xm, x22nm ) follows from case i.1) and we can put

d(xm, x22nm ) = d(xm, xm+p1), therefore:

d(xm, xm+p1) <
p1

22nm−1
.

The computation of d(x22nm , xm+p) follows from case ii.1), and thus:

d(x22nm , xm+p) <
p2

22nm

so:

d(xm, xm+p) 6 d(xm, x22nm ) + d(x22nm , xm+p)

<
p1

22nm−1
+

p2

22nm

<
p1

22nm−1
+

p2

22nm−1
=

p

22nm−1
.

In case ii.2) we put:

p1 = 22nm+1 −m
p2 = m+ p− 22nm+1, p1 + p2 = p, and we shall use the following relation:

d(xm, xm+p) 6 d(xm, x22nm+1) + d(x22nm+1 , xm+p).

The computation of d(xm, x22nm+1) follows from case ii.1) and we can put

d(xm, x22nm+1) = d(xm, xm+p1), therefore:
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d(xm, xm+p1) <
p1

22nm
.

The computation of d(x22nm+1 , xm+p) follows from case i.1) and thus:

d(x22nm+1 , xm+p) <
p2

22nm+1

so:

d(xm, xm+p) 6 d(xm, x22nm+1) + d(x22nm+1 , xm+p)

<
p1

22nm
+

p2

22nm+1

<
p1

22nm
+

p2

22nm
=

p

22nm
.

We deduce that d(xm, xm+p) <
p

22nm−1 , and for some nm ∈ N, for all

m > mp.

Therefore for each t > 0 and p ∈ N:

lim
m
Md(xm+p, xm, t) = lim

m

t

t+ d(xm, xm+p)
= lim

m

t

t+ p
22nm−1

= 1.

So, {xm}m>2, is a non-convergent G-Cauchy sequence in the compact fuzzy

metric space (X,Md, ∗). Thus the compact fuzzy metric space (X,Md, ∗) is

not G-complete.

Example 2.5. Let X = {(x1, x2, x3) ∈ R3: x2
1 + x2

2 = 1 and 0 6 x3 6 1
2
}.

Obviously (X, d) is a compact metric space, where d is the metric given by

d(x, y) = |y1 − x1|+|y2 − x2|+|y3 − x3|, with x = (x1, x2, x3), y = (y1, y2, y3)

and z = (z1, z2, z3). Hence (X,Md, ∗) is a compact fuzzy metric space.

Construct a sequence {xm}m>2, in (X,Md, ∗) as follows:

Since for a given m > 2 there exists nm such that 2nm 6 m < 2nm+1, we

define:
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xm = (cos(
2π(m− 2nm)

2nm
), sin(

2π(m− 2nm)

2nm
),

1

m
).

It is easy to check (see Figure 2.2) that {x2n}n and {x3.2n}n are sub-

sequences of {xm}m>2, where x2n = (1, 0, 1
2n ) and x3.2n = (−1, 0, 1

3.2n ),

n ∈ N. We have that limn x2n = (1, 0, 0) and limn x3.2n = (−1, 0, 0), and

thus {xm}m>2 is not convergent.
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Fig. 2.2. Helix with radius 1 and decreasing step.
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Given p ∈ N there exists mp such that if m > mp then:

i) 2nm 6 m < 2nm+1 and 2nm 6 m+ p < 2nm+1,

or

ii) 2nm 6 m < 2nm+1 and 2nm+1 6 m+ p < 2nm+2

In case i) we have:

d(xm, xm+p) =

∣∣∣∣cos(
2π(m− 2nm)

2nm
)− cos(

2π(m+ p− 2nm)

2nm
)

∣∣∣∣
+

∣∣∣∣sin(
2π(m− 2nm)

2nm
)− sin(

2π(m+ p− 2nm)

2nm
)

∣∣∣∣
+

∣∣∣∣ 1

m
− 1

m+ p

∣∣∣∣
6 4

∣∣∣∣sin(
2πp

2nm+1
)

∣∣∣∣+
1

m
− 1

m+ p
.

In case ii) we put:

p1 = 2nm+1 −m
p2 = m+ p− 2nm+1, p1 + p2 = p

d(xm, xm+p) 6 d(xm, x2nm ) + d(x2nm , xm+p)

6 4

∣∣∣∣sin(
2πp1

2nm+1
)

∣∣∣∣+ 4

∣∣∣∣sin(
2πp2

2nm+2
)

∣∣∣∣+
1

m
− 1

m+ p
.

Therefore for each t > 0 and p ∈ N:

lim
m
Md(xm+p, xm, t) = lim

m

t

t+ d(xm, xm+p)
= 1.

So, {xm}m>2, is a non-convergent G-Cauchy sequence in the compact

fuzzy metric space (X,Md, ∗). Thus the compact fuzzy metric space (X,Md, ∗)
is not G-complete.



Chapter 3

Complexity analysis

3.1 Introduction

The complexity (quasi-metric) space has been introduced as a part of the

development of a topological foundation for the complexity analysis of algo-

rithms (see [50]). Applications of this theory to the complexity analysis of

Divide and Conquer algorithms has been discussed by Schellekens in [50].

In Section 3.2 we recall the notion of complexity space and in Section

3.3 we recall the recurrence equation associated to Divide and Conquer al-

gorithms. In Section 3.4 we introduce a new complexity quasi-metric space

whose complexity functions are defined on N×N, and show that it provides a

suitable framework for the complexity analysis of the expoDC algorithm (see

[6]) whose complexity depends on two parameters. In fact, the model pro-

vided by Schellekens´s construction does not provide a suitable framework

to analyze those algorithms whose execution time depends on more than one

parameter.

The main results of Section 3.4 are contained in [44].

In the rest of Section 3.4 we recall some well-known concepts and ideas

from the classical theory of complexity (see [42], [43], [50] and [51]).

33
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Given a partial recursive function f , and a programming language L, let

[f ] be the set of all programs of L computing a partial recursive function

which approximates f (in the usual pointwise ordering on partial functions).

We will use P,Q, ... in what follows to denote programs.

A complexity (function) measure is a binary partial function C(k, n) on

N2 satisfying the Blum axioms:

1) C(k, n) is defined if and only if the program with coding k converges

on input n.

2) the predicate C(k, n) ≤ y is recursive.

So C(k, n) represents the complexity of a program P (with code k) on

input n.

We denote the complexity of a given program P for a given complexity

measure C by CP . We assume that for any given program and complexity

measure C, CP is non-zero on all inputs and in case CP is not defined on

input n, we let CP (n) = ∞. This last convention is standard in the theory

of abstract complexity measures.

We reserve the symbol > to indicate the function on the natural numbers

with constant value ∞. A program which is undefined on every input thus

has > as complexity function. The requirement that complexity measures

take non zero values is made to eliminate division by zero in the definition

of the complexity distance. The requirement is convenient but not essential.

In fact, for the case of asymptotic complexity analysis, the condition can

for instance be guaranteed by requiring that complexity measures count the

reading of an input as one step, when this is not already the case. This shift

of the complexity measure by one unit obviously will not affect the result of

the asymptotic analysis.
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In practice complexity measures typically count ”steps” (increments, com-

parisons, space allocations, etc) made during the calculation of an output

value. So by requirement that complexity measures take non zero values, the

complexity functions are guaranteed to be bounded from below, that is for

all k there exists c > 0 such that for all n we have C(k, n) ≥ c. Typically

the constant c will be a unit value used to measure steps carried out by the

program. Even if one allows different steps to be measured by different con-

stant values, since only finitely many different kinds of steps will occur in the

code of a given program, the condition will not be violated. Neither will the

average-case, worst-case or asymptotic approach to complexity violate the

condition, as one can easily verify.

Let C be the set of all functions from (0,∞]w which are bounded from below.

This set includes all complexity function which can occur in practice, but of

course not every element of the space corresponds to a complexity function

of a program.

The set contains functions which take values in the reals, rather than the

natural numbers, in order to include complexities obtained by average-case

or asymptotic analysis.

As mentioned above, the value∞ for a complexity function of a program

corresponds to an undefined output value for this program, which motivates

the inclusión of infinity as a possible function value.

Following the usual terminology of ”asymptotic time”, for each g ∈ C we

define:

O(g) := {f ∈ C : there exists c > 0 and n0 ∈ w such that f(n) ≤ cg(n)

for all n ≥ n0}.
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3.2 The complexity space

The theory of complexity (quasi-metric) spaces, introduced by M. Schellekens

in [50], constitutes a part of the research in Theoretical Computer Science

and Topology and provides a mathematical model for the complexity analysis

of algorithms. Applications of fixed point methods on complexity spaces to

the complexity analysis of Divide and Conquer algorithms are also presented

in [50].

Further contributions to the development of the theory of complexity

spaces and other related structures, and its application to Quicksort algo-

rithm may be found in [18], [38], [42], [43] and [40], and in [39] and [51]

respectively.

Definition 3.1 [50].The complexity (quasi-metric) space is the pair (C, dC),
where

C = {f : ω → (0,∞] :
∞∑
n=0

2−n
1

f(n)
<∞},

and dC is the quasi-metric on C given by

dC(f, g) =
∞∑
n=0

2−n
(

(
1

g(n)
− 1

f(n)
) ∨ 0

)
,

for all f, g ∈ C. (We adopt the convention that 1/∞ = 0.) The elements of

C are called complexity functions.

According to [50, Section 4] the intuition behind the complexity distance

dC(f, g) measures relative progress made in lowering the complexity by replac-

ing the complexity function f by the complexity function g. Thus dC(f, g) = 0

if and only if f(n) ≤ g(n) for all n ∈ ω; and, hence, condition dC(f, g) = 0,

with f 6= g, can be interpreted as f is more efficient than g on all inputs.

Observe that the above information is not provided by using the metric (dC)
s
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because from the value (dC)
s(f, g) is not possible to determine which com-

plexity function would be more efficient.

Let us recall that a quasi-metric d on a set X induces a partial order ≤d
on X given by

x ≤d y ⇔ d(x, y) = 0.

If we denote by > the complexity function on ω with constant value ∞,
then it is clear that > is the maximum of C for the partial order ≤dC

.

3.3 Recursive algorithms

Computer scientists sometimes classify algorithms according to the design

strategies they employ. Three of the most commonly used types of algorithms

are called Greedy algorithms, Divide & Conquer algorithms, and Backtrack-

ing algorithms.

Recall that in Divide & Conquer algorithms, we divide a large problem

into smaller subproblems. We then solve each subproblem separately and

combine the results into a solution to the whole problem. The procedure

is particularly attractive when each subproblem is of the same type as the

original so that it can be solved by reapplying the technique, until finally

sub-subproblems are reached which are trivially simple to solve. This partic-

ular approach to Divide & Conquer algorithms is called recursion. In other

words a Divide & Conquer algorithm solve a problem by recursively splitting

it into subproblems each of which is solved separately by the same algorithm,

after which the results are combined into a solution of the original problem.
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The complexity C of a Divide & Conquer algorithm typically is the solu-

tion to a recurrence equation ε of the form C(1) = c and C(n) = aC(n
b
)+h(n)

for all n > 1, where a > 1 represents the number of subproblems a problem

is divided into, n
b

represents the size of each subproblem and h(n) represents

the complexity required to combine the subproblems of a problem of size n

into the solution, (see, for instance [6], [50] and [51]).

A Divide & Conquer algorithm with a recurrence equation ε of the kind

defined above, induces a functional Φε on the complexity space (C, d) defined

by Φε = λfλn. If n = 1 then c else af(n
b
) + h(n), where n ranges over

powers of the form bk for k ≥ 0. Such functionals are used in carrying out

the complexity analysis of programs and map any function of the complexity

space to a function defined via pointwise addition and scalar multiplication,

where the operations correspond to operations carried out by the Divide &

Conquer algorithm on the datastructures. In general any recursive algorithm

induces a functional on the complexity space (C, d).

3.4 Contraction maps on complexity spaces

and expoDC algorithms

ExpoDC algorithms (see [6]) compute the exponentiation x = an, with a and

n two integers by using “Divide and Conquer” techniques. For simplicity, we

will assume that n > 0.

Next we discuss the complexity analysis of expoDC algorithms by using

techniques of Denotational Semantics. This is done by showing that the

recurrence inequation associated to an expoDC algorithm gives rise to a con-

traction map on a suitable quasi-metric space which is constructed here and
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whose elements are “complexity” functions of the function space [0,∞)N×N.

We prove that this contraction map has a unique fixed point, which is the

maximal element, with respect to the partial order induced by the quasi-

metric, of the set of solutions of the recurrence inequation. The complexity

of such an algorithm is represented via this maximal element.

Recall that by a contraction map on a quasi-metric space (X, d) we mean

a self-map f on X such that d(fx, fy) ≤ kd(x, y) for all x, y ∈ X, where k

is a constant with 0 ≤ k < 1. The number k is called a contraction constant

for f.

It is clear that if f is a contraction map on a quasi-metric space (X, d)

with contraction constant k, then f is a contraction map on the metric space

(X, ds) with contraction constant k.

We formulate the following detailed form of the Banach contraction prin-

ciple, which will be useful later on.

Theorem 3.1. Let f be a contraction map on a complete metric space (X,d).

Then, for any x ∈ X, the sequence of iterations (fnx)n∈ω is convergent in

(X, d) to a point x0 which is the unique fixed point of f.

The following useful result is an immediate consequence of [42, Theorem

1 and Remark on p. 317].

Theorem 3.2. The quasi-metric space (C, dC) is bicomplete.

Since complexity functions are defined on ω, the quasi-metric space (C, dC)
does not provide a suitable framework to analyze an algorithm for which the

execution time depends on more than one parameter. Here we introduce a

new complexity quasi-metric space whose complexity functions are defined
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on N×N, and show that it provides a suitable framework for the complexity

analysis of the expoDC algorithm which takes two parameters a and n as in-

puts and computes the n-th power of the value a (see for instance [6, Section

7.7] for a detailed discussion on this kind of algorithm). In particular, we

show that the recurrence inequation associated to an expoDC algorithm gives

rise to a contraction map on the new complexity space. The complexity of

such an algorithm is represented via the fixed point of this contraction map,

which is the maximal element, with respect to the partial order induced by

the quasi-metric, of the set of solutions of the recurrence inequation. This ap-

proach provides an application of typical Denotational Semantics techniques

to the context of Complexity Theory.

In order to obtain, in this context, an appropriate mathematical model to

analyze those algorithms whose execution time depends on two parameters

it seems natural to consider complexity functions belonging to the function

space (0,∞]ω×ω, and then construct a suitable modification of the complexity

quasi-metric dC that preserves its nice properties. A detailed study of this

general approach will be discussed elsewhere. However, for our purposes here

it suffices to consider the following subset of [0,∞)N×N :

C0,c := {f : N× N→ [0,∞) : f(m, 1) = 0, and f(m,n) ≥ c for n > 1},

where c is a positive real number.

Now, for each f ∈ C0,c and each m ∈ N, define the function f(m) : ω →
(0,∞] by

f(m)(0) = f(m)(1) =∞, and f(m)(n) = f(m,n) for n > 1.

Then it is clear that f(m) ∈ C.

Next we define a function dC0,c : C0,c × C0,c → [0,∞) by



3.4. Contraction maps and expoDC algorithms 41

dC0,c(f, g) =
∞∑
m=1

2−m

[
∞∑
n=2

2−n
(

(
1

g(m,n)
− 1

f(m,n)
) ∨ 0

)]
,

for all f, g ∈ C0,c.

Note that, indeed, dC0,c is well-defined because dC0,c(f, g) ≤ 1/2c, for all

f, g ∈ C0,c.

Note also that

dC0,c(f, g) =
∞∑
m=1

2−mdC(f(m), g(m)),

for all f, g ∈ C0,c.

Theorem 3.3 below will be crucial in the following.

Proposition 3.1. For each m ∈ N, the set

Cm := {f(m) : f ∈ C0,c}

is closed in the metric space (C, (dC)s).

Proof. Fix m0 ∈ N. Let f ∈ C and let (fk)k∈N be a sequence in C0,c

such that (dC)
s(f, fk(m0)) → 0 whenever k → ∞. Then f(0) = f(1) = ∞

and f(n) ≥ c for all n > 1. Define h : N× N→ [0,∞) by h(m, 1) = 0 and

h(m,n) = f(n) for all n > 1, m ∈ N. Clearly h ∈ C0,c. Since f(n) = h(m0)(n)

for all n > 1, it follows that f ∈ Cm0 . We conclude that Cm0 is closed in

(C, (dC)s).�

Corollary 3.1. For each m ∈ N, the quasi-metric space (Cm, dC |Cm) is bi-

complete.
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Proof. By Theorem 3.2, (C, (dC)s) is a complete metric space. Since, by

Proposition 3.1, Cm0 is closed in (C, (dC)s), the result follows from [14, The-

orem 4.3.11].�

Theorem 3.3. The quasi-metric space (C0,c, dC0,c) is bicomplete.

Proof. For each m ∈ N, the metric space (Cm, (dC |Cm)s) is bounded. Fur-

thermore, it is complete by Corollary 3.1. Hence, the metric space (C0,c, (dC0,c)
s)

is complete by [14, Theorem 4.3.12].�

We shall prove that the recurrence inequation associated to an expoDC

algorithm gives rise to a contraction map on (C0,c, dC0,c). Then, by the Banach

contraction principle, the contraction map has a unique fixed point, and then

the complexity of the algorithm is represented via this fixed point because it

is the maximal element with respect to the partial order ≤dC0,c
, of the set of

solutions of the recurrence inequation.

As we indicated above, the analysis of expoDC algorithm is for instance

discussed in [6, Section 7.7], where the following recurrence inequation for

this algorithm is obtained:

T (m,n) ≤


0, if n = 1,

T (m,n/2) +M(mn/2,mn/2), if n is even,

T (m,n− 1) +M(m, (n− 1)m), otherwise,

(1)

for all (m,n) ∈ N× N.
According to [6, Section 7.7], M(m,n) denotes the time needed to mul-

tiply two integers of sizes m and n, and T (m,n) denotes the time spent

multiplying when computing an, where m is the size of a.

Moreover, we can assume thatM is monotone increasing, i.e., M(m2, n2) ≥
M(m1, n1) whenever m2 ≥ m1 and n2 ≥ n1. By using the classical multipli-

cation algorithm it then follows that M(m,n) ∈ O(mn) ([6, Section 7.7]).



3.4. Contraction maps and expoDC algorithms 43

Let M(1, 1) = c > 0. Then, the recurrence (1) induces, in a natural way,

the functional Φ defined on C0,c by

Φf(m,n) =


0, if n = 1,

f(m,n/2) +M(mn/2,mn/2), if n is even,

f(m,n− 1) +M(m, (n− 1)m), otherwise.

(2)

Observe that Φ is a self-map on C0,c, because for any f ∈ C0,c, we have

Φf(m, 1) = 0, and for n > 1, Φf(m,n) ≥M(1, 1) = c.

Note also that Φ is monotone increasing, i.e. Φf ≤ Φg whenever f ≤ g.

Next we shall show that Φ is a contraction map on (C0,c, dC0,c) with con-

traction constant 3/4.

Indeed, let f ∈ C0,c. Then Φf(m, 1) = 0, and for n > 1, Φf(m,n) ≥
M(1, 1) = c. So Φf ∈ C0,c.

Now, given f, g ∈ C0,c, we have:

dC0,c(Φf,Φg) =
∞∑
m=1

2−mdC(Φf(m),Φg(m)).

Choose an arbitrary m ∈ N. Then

dC(Φf(m),Φg(m)) =
∞∑
n=2

2−n
(

(
1

Φg(m,n)
− 1

Φf(m,n)
) ∨ 0

)
.

Put

an = 2−n
(

(
1

Φg(m,n)
− 1

Φf(m,n)
) ∨ 0

)
,

for all n ≥ 2. Observe that, in particular, a2 = 0. Hence

dC(Φf(m),Φg(m)) =
∞∑
n=3

an.
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So, by reordering the serie
∑∞

n=3 an, we obtain that

dC(Φf(m),Φg(m)) =
∞∑
n=1

(a2n+1 + a4n + a2(2n+1)).

Therefore

a2n+1 = 2−(2n+1)

(
(

1

Φg(m, 2n+ 1)
− 1

Φf(m, 2n+ 1)
) ∨ 0

)

= 2−(2n+1)

(
(

1

g(m, 2n) +M(m, 2mn)
− 1

f(m, 2n) +M(m, 2mn)
) ∨ 0

)

= 2−(2n+1)

(
(

f(m, 2n)− g(m, 2n)

(g(m, 2n) +M(m, 2mn))f(m, 2n) +M(m, 2mn)
) ∨ 0

)

≤ 2−(2n+1)

(
(
f(m, 2n)− g(m, 2n)

g(m, 2n)f(m, 2n)
) ∨ 0

)

= 2−(2n+1)

(
(

1

g(m, 2n)
− 1

f(m, 2n)
) ∨ 0

)
.

Similarly

a4n = 2−4n

(
(

1

Φg(m, 4n)
− 1

Φf(m, 4n)
) ∨ 0

)

= 2−4n

(
(

1

g(m, 2n) +M(2mn, 2mn)
− 1

f(m, 2n) +M(2mn, 2mn)
) ∨ 0

)

≤ 2−4n

(
(

1

g(m, 2n)
− 1

f(m, 2n)
) ∨ 0

)
,

and, also,



3.4. Contraction maps and expoDC algorithms 45

a2(2n+1) = 2−2(2n+1)

(
(

1

Φg(m, 2(2n+ 1))
− 1

Φf(m, 2(2n+ 1))
) ∨ 0

)

≤ 2−2(2n+1)

(
(

1

g(m, 2n+ 1)
− 1

f(m, 2n+ 1)
) ∨ 0

)
.

Putting, for each n ≥ 2,

bn = 2−n
(

(
1

g(m,n)
− 1

f(m,n)
) ∨ 0

)
,

we deduce that

dC(Φf(m),Φg(m)) ≤
∞∑
n=1

(
(2−1 + 2−2n)b2n + 2−(2n+1)b2n+1

)
≤ 3

4

∞∑
n=1

(b2n + b2n+1)

=
3

4

∞∑
n=2

2−n
(

(
1

g(m,n)
− 1

f(m,n)
) ∨ 0

)

=
3

4
dC(f(m), g(m)).

Consequently

dC0,c(Φf,Φg) ≤ 3

4

∞∑
m=1

2−mdC(f(m), g(m)) =
3

4
dC0,c(f, g),

and hence

(dC0,c)
s(Φf,Φg) ≤ 3

4
(dC0,c)

s(f, g),

for all f, g ∈ C0,c.

Since, by Theorem 3.3, (C0,c, (dC0,c)
s) is a complete metric space, it follows

from Theorem 3.1 that there exists a unique f0 ∈ C0,c such that Φf0 = f0.

Therefore f0 is a solution for the recurrence inequation (1).
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Next we shall deduce from our methods the known fact that f0 ∈ O(m2n2).

Indeed, since M(m,n) ∈ O(mn) and M(1, 1) = c, it follows that there

exist K ≥ c and n0 > 1 such that M(m,n) ≤ Kmn for all m,n ≥ n0.

Now define a function h ∈ C0,c by h(m, 1) = 0, and h(m,n) = Kn2
0m

2n2

whenever n > 1. An easy computation, taking into account that M is mono-

tone increasing, shows that Φh ≤ h. Since Φ is also monotone increasing

we obtain that Φkh ≤ h, for all k ∈ N, and thus dC0,c(Φ
kh, h) = 0, for all

k ∈ N. On the other hand, it follows from the Banach contraction principle

that (dC0,c)
s(f0,Φ

kh) → 0 whenever k → ∞; so, by the triangle inequality,

dC0,c(f0, h) = 0; and thus f0 ≤ h.We conclude that f0 ∈ O(m2n2).

Finally, we shall prove that f0 is the maximal element of the set of solu-

tions of (1), with respect to the partial order ≤dC0,c
.

To this end, let g ∈ C0,c satisfying the recurrence inequation (1). Then

g ≤ Φg, and, hence, dC0,c(g,Φg) = 0. Therefore

dC0,c(g, f0) ≤ dC0,c(g,Φg) + dC0,c(Φg,Φf0) + dC0,c(Φf0, f0)

= dC0,c(Φg,Φf0)

≤ 3

4
dC0,c(g, f0).

Consequently dC0,c(g, f0) = 0, and thus g ≤dC0,c
f0, or, equivalently, g ≤

f0.

We conclude that f0 is the maximal element of the set of solutions of (1),

with respect to the partial order ≤dC0,c
.

Remark 3.1. Note that the requirement that f(m,n) ≥ c for all n > 1, in
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the definition of C0,c is justified by the fact that

T (m,n) ≥
n−1∑
j=1

M(m, jm− j + 1),

for all (m,n) ∈ N× N (see [6, p. 244]), and hence

T (m,n) ≥M(m,m) ≥M(1, 1) = c.
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Chapter 4

Application of fuzzy

quasi-metrics to the theory of

asymptotic complexity of

algorithms

4.1 Introduction

In [50], M. Schellekens began the development of complexity (quasi-metric)

space (Chapter 3). The intuition behind the ”complexity distance” between

complexity functions f and g, is that d(f, g) measures relative progress in

lowering the complexity by replacing f by g, therefore this model gives a

suitable computational interpretation of the fact that a program P is more

efficient than other program Q on all the inputs. However this model does

not provide a suitable framework to measure the relative progress between

complexity functions f and g in the case of f is ”only” asymptotically more

efficient than g.

We introduce and study in this chapter a fuzzy quasi-metric on the set

49
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of complexity functions, which provides a satisfactory measurement of the

distance from the complexity function f to the complexity function g in the

case of f is asymptotically more efficient than g. We also obtain a version

of the Banach fixed point theorem in this context which is applied to the

asymptotic complexity analysis of Divide & Conquer algorithms an Quick-

sort algorithms, respectively.

The main results of this chapter may be found in [46].

Let us recall (Section 3.2) that given the complexity quasi-metric space

(C, dC), then the condition dC(f, g) = 0 is equivalent to the fact that f(n) ≤
g(n) for all n ∈ w. Hence, if the measure of complexity is the running time

of computing, and f and g, with f 6= g, represent the running time of two

different algoritms, then dC(f, g) = 0 can be interpreted as ”the efficiency of

P is better than Q on all inputs” or simply, f is ”more efficient” than g on

all inputs.

We say that f ∈ C is asymptotically more efficient than g ∈ C if f ∈ O(g)

with f 6= g and c ≤ 1.

Therefore, it appears in a natural way the interesting problem of construc-

tion a kind of quasi-metric which provides a satisfactory measurement of the

distance from f to g in the case that f is asymptotically more efficient than g.

The following example shows that dC is not sensitive to describe this sit-

uation in general.

Example 4.1. Consider de functions f, g, h ∈ C given by f(n) = n + 2,

g(n) = 2n/(n2 + 1) and h(n) = n + 1 for all n ∈ w. An easy computation

shows that f(n) > g(n) for n = 0, 1, ..., 10, and f(n) < g(n) for n ≥ 11.
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Hence f is asymptotically more efficient than g. Moreover, we have that

h(n) < f(n) for all n ∈ w. However dC(f, g) > 5/6 > dC(f, h).

4.2 The complexity fuzzy quasi-metric space

In order to define the complexity fuzzy quasi-metric space we construct the

following auxiliary function.

For each f, g ∈ C and t > 0 let:

DC(f, g, t) =
∞∑
k=n

2−k
(

(
1

g(k)
− 1

f(k)
) ∨ 0

)
,

where t ∈ (n, n+ 1], n ∈ ω.

Remark 4.1. Note that, for each f, g ∈ C and t > 0, we have:

DC(f, g, t) 6
∞∑
k=0

2−k
(

(
1

g(k)
− 1

f(k)
) ∨ 0

)
= dC(f, g).

In particular, for each f, g ∈ C and t ∈ (0, 1], we obtain DC(f, g, t) =

dC(f, g).

Lemma 4.1. For each f, g, h ∈ C and t, s > 0, it follows:

DC(f, g, t+ s) 6 DC(f, h, t) +DC(h, g, s).

Proof. Let t ∈ (n, n + 1] and s ∈ (m,m + 1], with n,m ∈ w. Then

t+ s ∈ (n+m,n+m+ 1] or t+ s ∈ (n+m+ 1, n+m+ 2]. Consequently:
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DC(f, g, t+ s) 6
∞∑

k=n+m

2−k
(

(
1

g(k)
− 1

f(k)
) ∨ 0

)

6
∞∑

k=n+m

2−k
(

(
1

h(k)
− 1

f(k)
) ∨ 0

)
+

∞∑
k=n+m

2−k
(

(
1

g(k)
− 1

h(k)
) ∨ 0

)

6
∞∑
k=n

2−k
(

(
1

h(k)
− 1

f(k)
) ∨ 0

)
+
∞∑
k=m

2−k
(

(
1

g(k)
− 1

h(k)
) ∨ 0

)

= DC(f, h, t) +DC(h, g, s).

The proof is finished.�

Theorem 4.1. For each (f, g, t) ∈ C × C × [0,∞) let

MC(f, g, 0) = 0,

MC(f, g, t) =
t

t+DC(f, g, t)
,

whenever t > 0. Then (MC,∧) is a fuzzy quasi-metric on C.

Furthermore for each f, g ∈ C, MC(f, g, t) = MdC(f, g, t) whenever t ∈
(0, 1], and MC(f, g, t) ≥ MdC(f, g, t) whenever t > 1, where (MdC ,∧) is the

standard fuzzy quasi-metric induced by dC.

Proof. Let us recall that MdC(f, g, t) = t/(t+dC(f, g)) for all f, g ∈ C and

t > 0. Thus by Remark 4.1 we have that MC(f, g, t) = MdC(f, g, t) whenever

t ∈ (0, 1] and MC(f, g, t) > MdC(f, g, t) whenever t > 1. Next we show that

(MC,∧) is a fuzzy quasi-metric on C.

Clearly 0 < MC(f, g, t) 6 1 for all f, g ∈ C and t > 0. In order to show

condition(ii) of a fuzzy quasi-metric, let f, g ∈ C such that MC(f, g, t) =
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MC(g, f, t) = 1 for all t > 0, and hence DC(f, g, 1) = DC(g, h, 1) = 0. By

Remark 4.1 dC(f, g) = dC(g, f) = 0, so f = g. Moreover, given f ∈ C and

t > 0, it is clear that MC(f, f, t) = 1 because DC(f, f, t) = 0.

Now let f, g, h ∈ C and t, s > 0. We want to show that MC(f, g, t +

s) ≥ MC(f, h, t) ∧ MC(h, g, s). Assume, without loss of generality, that

MC(f, h, t) 6 MC(h, g, s). Then tDC(h, g, s) 6 sDC(f, h, t). So, by using

Lemma 4.1 and the above inequality, we obtain:

tDC(f, g, t+ s) 6 tDC(f, h, t) + tDC(h, g, s) 6 (t+ s)DC(f, h, t),

therefore

MC(f, g, t+ s) =
t+ s

t+ s+DC(f, g, t+ s)
>

t

t+DC(f, h, t)
= MC(f, h, t).

Thus we have shown condition (iii) of a fuzzy quasi-metric.

Finally, for f, g ∈ C fixed, it is clear that MC(f, g, ) is left continuous in

[0,∞), because if tm → t−, there is an m0 such that DC(f, g, tm) = DC(f, g, t)

for all m > m0, and thus limmMC(f, g, tm) = MC(f, g, t).

We conclude that (MC,∧) is a fuzzy quasi-metric on C.�

Corollary 4.1. For each continuous t-norm ∗, (MC, ∗) is a fuzzy quasi-

metric on C.

Definition 4.1. The fuzzy quasi-metric (MC,∧) is said to be the complexity

fuzzy quasi-metric and the space (C,MC,∧) is said to be the complexity fuzzy

quasi-metric space.
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Remark 4.2. Observe that this space provides a suitable model to interpret

the asymptotic efficiency of the complexity functions. Indeed, if f, g ∈ C sat-

isfy that f is asymptotically more efficient than g, there exists n0 ∈ w such

that f(n) ≤ g(n) for all n ≥ n0, and then MC(f, g, t) = 1 for all t > n0.

Reciprocally, if we compute the complexity fuzzy quasi-metric in f, g, t and

obtain that MC(f, g, t) = 1 for t ∈ (n0, n0 + 1], it follows that f(n) ≤ g(n)

for all n ≥ n0. Hence if f 6= g we have that f is asymptotically more effi-

cient than g. In this way, we have a model to measure complexity distances

that gives more information on the computational process than the model of

Schellekens.

Remark 4.3. Note that for each f, g ∈ C and t ∈ (0, 1], we have DC(f, g, tm) =

dC(f, g). Therefore

MC(f, g, t) = MdC(f, g, t),

for all f, g ∈ C and t ∈ [0, 1], where (MdC ,∧) is the fuzzy quasi-metric in-

duced by dC.

4.3 Fuzzy contractive maps and fixed point

theorems

Next we present fixed point theorems that we apply to deduce the solution

to the recurrence equation associated to Divide & Conquer algorithms and

Quicksort algorithms, respectively. Let us recall (Section 1.1) that by a con-

tractive map on a quasi-metric space (X, d) we mean a self-map f on X

such that d(fx, fy) ≤ kd(x, y) for all x, y ∈ X, where k is a constant with

0 ≤ k < 1, (the number k is called a contraction constant for f).
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Definition 4.2 [35, 26]. Let (X,M, ∗) be a fuzzy quasi-metric space and

f : X → X a self-map. It is said that f is a fuzzy contractive map if there

exists k ∈ (0, 1) such that:

M(f(x), f(y), t) ≥ M(x, y, t)

M(x, y, t) + k(1−M(x, y, t))
,

for all x, y ∈ X and t > 0.

Definition 4.3. Let (X,M, ∗) be a fuzzy quasi-metric space and f : X → X

a self-map. It is said that f is an (0,1]-fuzzy contractive map if there exists

k ∈ (0, 1) such that:

M(f(x), f(y), t) ≥ M(x, y, t)

M(x, y, t) + k(1−M(x, y, t))
,

for all x, y ∈ X and t ∈ (0, 1].

Theorem 4.2. Let (X, d) be a quasi-metric space and let (M, ∗) a fuzzy

quasi-metric on X satisfying:

M(x, y, t) =
t

t+ d(x, y)
, t ∈ (0, 1].

Then:

(a) The topologies τd and τM are the same.

(b) A sequence {xn}n in X is a Cauchy sequence in the metric space

(X, ds) if and only if it is a Cauchy sequence in the fuzzy metric space

(X,M i, ∗).

(c) The fuzzy quasi-metric space (X,M, ∗) is bicomplete if and only if the

quasi-metric space (X, d) is bicomplete.
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(d) A map f : X → X is (0,1]-fuzzy contractive if and only if it is a

contractive map on the quasi-metric space (X, d).

Proof.

(a) We have that:

xn → x with respect to τd,

⇐⇒ d(x, xn)→ 0,

⇐⇒M(x, xn, t)→ 1 for each t ∈ (0, 1],

⇐⇒ xn → x with respect toτM . So τd = τM in X.

(b) Let {xn}n be a Cauchy sequence in (X, ds). Fix t ∈ (0, 1). Let

ε ∈ (0, 1) with t > 1− ε. There exists n0 ∈ N such that ds(xn, xm) < ε for all

n,m ≥ n0. So M(xn, xm, t) > t/(t+ε) > 1−ε for all n,m ≥ n0. So, (xn)n is a

Cauchy sequence in (X,M i, ∗). Reciprocally if {xn}n is a Cauchy sequence in

the fuzzy metric space (X,M i, ∗), given ε ∈ (0, 1/2) there exists n0 ∈ N such

that M i(xn, xm, 1) > 1 − ε for all n,m ≥ n0. So 1/(1 + ds(xn, xm)) > 1 − ε
for all n,m ≥ n0. Hence ds(xn, xm) < ε/(1 − ε) < 2ε for all n,m ≥ n0. We

conclude that (xn)n is a Cauchy sequence in (X, ds).

(c) It is follows from (a) and (b).

(d) Let f : X → X and k ∈ (0, 1). Then we have that for all t ∈ (0, 1]

M(x, y, t)

M(x, y, t) + k(1−M(x, y, t))
=

t

t+ kd(x, y)
,

and

M(f(x), f(y), t) =
t

t+ d(f(x), f(y))
.

Therefore
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d(f(x), f(y)) ≤ kd(x, y)

⇔ M(x, y, t)

M(x, y, t) + k(1−M(x, y, t))
≤M(f(x), f(y), t),

for all x, y ∈ X. This shows that f is an (0,1]-fuzzy contractive map on

(X,M, ∗) if and only if it is a contractive map on the quasi-metric space

(X, d).�

Theorem 4.3. Let (X, d) be a bicomplete quasi-metric space and let (M, ∗)
be a fuzzy quasi-metric on X such that:

M(x, y, t) =
t

t+ d(x, y)
,

with t ∈ (0, 1]. If f : X → X is a (0,1]-fuzzy contractive map, then f has a

unique fixed point.

Proof. If f : X → X is a (0,1]-fuzzy contractive map by Theorem 3.2 f

is a contractive map on the bicomplete quasi-metric space (X, d), so, it is a

contractive map on the complete metric space (X, ds). Hence, by the Banach

fixed point theorem f has a unique fixed point.�

4.4 Applications

Example 4.2. If Φ is a functional associated to a Divide & Conquer algo-

rithm, then



58 Chapter 4. Application of fuzzy quasi-metrics

Φ(f)(1) = c, and Φ(f)(n) = af(n/b) + h(n)

if n ∈ {bk : k ∈ N}, where a, b, c ∈ N, a, b ≥ 2, and h ∈ C with h(n) < ∞.

Then Φ is a contraction on a closed subspace of the complexity space (C, dC)
with contraction constant k = 1/a [50]. We deduce from Theorem 4.2 that

Φ is an (0,1]-fuzzy contraction on a closed subspace of the complexity fuzzy

quasi-metric space, with contraction constant 1/a [50]. Since the complexity

space (C, dC) is bicomplete [42], by Theorem 4.3, Φ has a unique fixed point

which is obviously the unique solution to the recurrence equation associated

to the algorithm.

Example 4.3. Let T be the recurrence equation of a Quicksort algorithm

given by:

T (1) = 0, and

T (n) =
2(n− 1)

n
+
n+ 1

n
T (n− 1), n ≥ 2.

We associate to T the functional Φ : C → C given by: (Φ(f))1 = T (1) and

(Φ(f))n =
2(n− 1)

n
+
n+ 1

n
fn−1

for all n ≥ 2. Next we show that Φ is a contraction on the bicomplete

quasi-metric space (C, dC), with contraction constant 1/2. We have:
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dC(Φf(n),Φg(n)) =
∞∑
n=1

2−n
(

(
1

Φg(n)
− 1

Φf(n)
) ∨ 0

)
=

∞∑
n=2

2−n

(
(

1
2(n−1)
n

+ n+1
n
gn−1

− 1
2(n−1)
n

+ n+1
n
fn−1

) ∨ 0

)

≤
∞∑
n=2

2−n

(
(

n+1
n

(fn−1 − gn−1)

(2(n−1)
n

+ n+1
n
gn−1)(2(n−1)

n
+ n+1

n
fn−1)

) ∨ 0

)

≤
∞∑
n=2

2−n
(

(
(fn−1 − gn−1)

gn−1fn−1

) ∨ 0

)

≤ 1/2
∞∑
n=1

2−n
(

(
(fn − gn)

gnfn
) ∨ 0

)

≤ 1/2
∞∑
n=1

2−n
(

(
1

g(n)
− 1

f(n)
) ∨ 0

)
= 1/2dC(f(n), g(n)).

So, by Theorem 4.2, we have that Φ is an (0,1]-fuzzy contraction on

the complexity fuzzy quasi-metric space (C,MC,∧), with contraction constant

1/2, so by Theorem 4.3 we conclude that Φ has a unique fixed point which

is, obviously, the unique solution to the recurrence equation T associated to

the Quicksort algorithm.
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Chapter 5

The Banach fixed point

theorem in fuzzy quasi-metric

spaces with application to the

domain of words

5.1 Introduction

In this chapter we present a fuzzy quasi-metric version of the Banach con-

traction principle, which constitutes an extension of the famous Grabiec fixed

point theorem. By using this result we show the existence of fixed point for

contraction mappings on the domain of words when it is endowed with cer-

tain fuzzy quasi-metrics of Baire type. We apply this approach to deduce the

existence of solution for some recurrence equations associated to the analysis

of Quicksort algorithms and Divide & Conquer algorithms, respectively.

By using the notion of a fuzzy metric space in the sense of Kramosil

and Michalek [30], Grabiec proved in [21] a celebrated fuzzy version of the

Banach contraction principle. Although Grabiec’s fixed point theorem has

61
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the disadvantage that it cannot be applied to the fuzzy metric induced by

the Euclidean metric on R (see [19, 59]), we here show that, nevertheless, it

provides an efficient tool to obtain fixed points for (fuzzy) contraction map-

pings on complete non-Archimedean fuzzy metric spaces, and thus it can be

applied, for instance, to the domain of words endowed with the fuzzy metric

induced by the Baire metric. (Let us recall that the Baire metric provides

a suitable mathematical model in denotational semantics of programming

languages [3, 4, 5, 29, 34], etc.)

Actually, we will establish our results in the more general framework of

fuzzy quasi-metric spaces because, in this context, the measurement of the

distance from a word x to another word y, automatically indicates if x is a

prefix of y or not, while the Baire metric does not provide this information.

Finally, we will apply our methods to prove the existence (and uniqueness)

of solution for some recurrence equations associated to the asymptotic com-

plexity analysis of Quicksort algorithms and Divide & Conquer algorithms,

respectively.

The main results of this chapter have been published in [41].

5.2 The Banach fixed point theorem in fuzzy

quasi-metric spaces

In this section we extend Grabiec’s fuzzy version of the Banach fixed point

theorem to fuzzy quasi-metric spaces.

According to [54], a B-contraction on a fuzzy metric space (X,M, ∗) is a

self-map f on X such that there is a constant k ∈ (0, 1) satisfying

M(f(x), f(y), kt) ≥M(x, y, t)

for all x, y ∈ X, t > 0.

In [21], M. Grabiec introduced the notions of G-Cauchy sequence (Def-

inition 1.5) and G-complete fuzzy metric space (Definition 1.6) in order to
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obtain a fuzzy version of the classical Banach fixed point theorem (Theorem

1.2).

Generalizing in a natural way the notions of B-contraction to fuzzy quasi-

metric spaces we introduce the following concept.

Definition 5.1. A B-contraction on a fuzzy quasi-metric space (X,M, ∗) is

a self-map f on X such that there is a constant k ∈]0, 1[ satisfying

M(f(x), f(y), kt) ≥M(x, y, t)

for all x, y ∈ X, t > 0. The number k is then called a contraction constant

of f.

Recall (Definition 1.10) that a sequence {xn}n in a fuzzy quasi-metric

space (X,M, ∗) is called G-Cauchy if it is a G-Cauchy sequence in the fuzzy

metric space (X,M i, ∗), and that (Definition 1.11) a fuzzy quasi-metric space

(X,M, ∗) is called G-bicomplete if the fuzzy metric space (X,M i, ∗) is G-

complete (in this case, we say that (M, ∗) is a G-bicomplete fuzzy quasi-

metric on X).

Then, Grabiec’s theorem can be extended to fuzzy quasi-metric spaces as

follows.

Theorem 5.1. Let (X,M, ∗) be a G-bicomplete fuzzy quasi-metric space such

that limt→∞M(x, y, t) = 1 for all x, y ∈ X. Then every B-contraction on X

has a unique fixed point.

Proof. Let f : X → X be a B-contraction on X with contraction constant

k ∈ (0, 1). Then

M(f(x), f(y), kt) ≥M(x, y, t)
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for all x, y ∈ X, t > 0. It immediately follows that

M i(f(x), f(y), kt) ≥M i(x, y, t)

for all x, y ∈ X, t > 0. Hence f is a B-contraction on the G-complete fuzzy

metric space (X,M i, ∗) and, by Theorem 1.2, f has a unique fixed point.�

5.3 G-bicompleteness in non-Archimedean fuzzy

quasi-metric spaces

As we indicated above, G-completeness has the disadvantage that the fuzzy

metric induced by the Euclidean metric on R is not G-complete. This fact

motivates Definitions 1.9 and 1.13 respectively.

It is obvious that each G-(bi)complete fuzzy (quasi-)metric space is (bi)complete,

but the fuzzy metric induced by the Euclidean metric on R provides an ex-

ample (Example 1.2) of a complete non G-complete fuzzy metric [59].

Next we shall show that each (bi)complete non-Archimedean fuzzy (quasi-

)metric space is G-(bi)complete. Thus, we obtain an interesting class of

spaces for which Theorem 5.1 applies.

The notion of a non-Archimedean fuzzy metric space was introduced by

Sapena [49]. We give a natural generalization of this concept to the quasi-

metric setting.

Definition 5.2. A fuzzy quasi-metric space (X,M, ∗) such that M(x, y, t) ≥
min{M(x, z, t),M(z, y, t)} for all x, y, z,∈ X, t > 0, is called a non-Archimedean

fuzzy quasi-metric space, and (M, ∗) is called a non-Archimedean fuzzy quasi-

metric.

Example 5.1. Let (X, d) be a quasi-metric space. It is immediate to show
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that (X, d) is a non-Archimedean quasi-metric space if and only if (X,Md, ·)
is a non-Archimedean fuzzy quasi-metric space.

Lemma 5.1. Each G-Cauchy sequence in a non-Archimedean fuzzy quasi-

metric space is a Cauchy sequence.

Proof. Let {xn}n be a G-Cauchy sequence in the non-Archimedean fuzzy

quasi-metric space (X,M, ∗). Fix ε ∈ (0, 1) and t > 0. Since

lim
n→∞

M i(xn, xn+1, t) = 1,

there is n0 ∈ N such that M i(xn, xn+1, t) > 1− ε for all n ≥ n0.

Now let n,m ≥ n0 with m > n. Then m = n+ j, for some j ∈ N. So

M i(xn, xm, t) ≥ min
{
M i(xn, xn+1, t), ...,M

i(xn+j−1, xn+j, t)
}
> 1− ε.

We conclude that (xn)n is a Cauchy sequence in (X,M, ∗).�

Theorem 5.2. Each bicomplete non-Archimedean fuzzy quasi-metric space

is G-bicomplete.

Proof. Let {xn}n be a G-Cauchy sequence in the bicomplete non-Archimedean

fuzzy quasi-metric space (X,M, ∗). By Lemma 5.1, (xn)n is a Cauchy se-

quence in (X,M, ∗). Hence, there is x ∈ X such that limn→∞M
i(x, xn, t) = 1

for all t > 0. We conclude that (X,M i, ∗) is G-complete, i.e. (X,M, ∗) is

G-bicomplete.�

Corollary 5.1. Each complete non-Archimedean fuzzy metric space is G-

complete.

The following result permits us to construct in an easy way a non-

Archimedean fuzzy quasi-metric from a bounded non-Archimedean quasi-
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metric d, which is different from the fuzzy quasi-metric induced by d. It will

be consider in the next section.

Proposition 5.1. Let d be a non-Archimedean quasi-metric on a set X such

that d(x, y) ≤ 1 for all x, y ∈ X. Let

Md1(x, y, 0) = 0 for all x, y ∈ X,

Md1(x, y, t) = 1− d(x, y) for all x, y ∈ X and t ∈]0, 1],

Md1(x, y, t) = 1 for all x, y ∈ X and t > 1.

Then the following statements hold.

(1) (Md1,∧) is a non-Archimedean fuzzy quasi-metric on X.

(2) For each x, y ∈ X, t ∈]0, 1] and ε ∈]0, 1[:

Md1(x, y, t) > 1− ε⇐⇒ d(x, y) < ε.

(3) τMd1
= τd and τ(Md1)−1 = τd−1 .

(4) A sequence in X is Cauchy in (X, (Md1)i,∧) if and only if it is Cauchy

in (X, ds).

(5) (X,Md1,∧) is G-bicomplete if and only if (X, d) is bicomplete.

5.4 Application to the domain of words

Let Σ be a nonempty alphabet. Let Σ∞ be the set of all finite and infinite

sequences (“words”) over Σ, where we adopt the convention that the empty

sequence φ is an element of Σ∞. Denote by v the prefix order on Σ∞, i.e.

x v y ⇔ x is a prefix of y.

Now, for each x ∈ Σ∞ denote by `(x) the length of x. Then `(x) ∈ [1,∞]

whenever x 6= φ and `(φ) = 0. For each x, y ∈ Σ∞ let x u y be the common

prefix of x and y.

Thus, the function dv defined on Σ∞ × Σ∞ by

dv(x, y) = 0 if x v y,
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dv(x, y) = 2−`(xuy) otherwise,

is a quasi-metric on Σ∞. (We adopt the convention that 2−∞ = 0).

Actually dv is a non-Archimedean quasi-metric on Σ∞ (see, for instance,

[32] Example 8 (b)).

We also observe that the non-Archimedean metric (dv)s is the Baire met-

ric on Σ∞, i.e.

(dv)s(x, x) = 0

and

(dv)s(x, y) = 2−`(xuy)

for all x, y ∈ Σ∞ such that x 6= y.

It is well known that (dv)s is complete. From this fact it clearly follows

that dv is bicomplete.

The quasi-metric dv, which was introduced by Smyth [57], will be called

the Baire quasi-metric. Observe that condition dv(x, y) = 0 can be used to

distinguish between the case that x is a prefix of y and the remaining cases.

From Example 5.1 and Theorem 5.2 we obtain the following.

Proposition 5.2. (Σ∞,Mdv , ·) is a G-bicomplete non-Archimedean fuzzy

quasi-metric space.

Consequently, Theorem 5.1 can be applied to this useful space. Next we

construct other examples of bicomplete non-Archimedean fuzzy quasi-metrics

on Σ∞ that are related to the Baire quasi-metric defined above.

Example 5.2. Let d be a (non-Archimedean) quasi-metric on a set X and

let Md exp be the fuzzy set in X×X× [0,∞) given by Md exp(x, y, 0) = 0 and

Md exp(x, y, t) = exp

(
−d(x, y)

t

)
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for all x, y ∈ X and t > 0. Then (Md exp,∧) is a (non-Archimedean) fuzzy

quasi-metric on X (compare [19] for the fuzzy metric case). Furthermore, it

is easy to see that

Md exp(x, y, t) ≤Md(x, y, t),

for all x, y ∈ X and t ≥ 0. It is also immediate to show that τMd exp
= τd and

that (X,Md exp,∧) is bicomplete if and only if (X, d) is bicomplete.

From Example 5.2 and Theorem 5.2 we obtain the following.

Proposition 5.3. (Σ∞,Mdv exp,∧) is a G-bicomplete non-Archimedean fuzzy

quasi-metric space.

On the other hand, since dv(x, y) ≤ 1 for all x, y ∈ Σ∞, we deduce from

Proposition 5.1 the following.

Proposition 5.4. (Σ∞,Mdv1,∧) is a G-bicomplete non-Archimedean fuzzy

quasi-metric space.

Note (see Proposition 5.1) that the fuzzy non-Archimedean quasi-metric

(Mdv1,∧) is given by

Mdv1(x, y, 0) = 0 for all x, y ∈ Σ∞,

Mdv1(x, y, t) = 1 if x is a prefix of y, and t > 0,

Mdv1(x, y, t) = 1− 2−`(xuy) if x is not a prefix of y, and t ∈]0, 1],

Mdv1(x, y, t) = 1 if x is not a prefix of y, and t > 1.

Example 5.3. Next we apply any of Proposition 5.2 and Theorem 5.1 to

the complexity analysis of Quicksort algorithms. The average case analysis of

Quicksort is discussed in [31] (see also [16]), where the following recurrence
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equation is obtained:

T (1) = 0, and

T (n) =
2(n− 1)

n
+
n+ 1

n
T (n− 1), n ≥ 2.

Consider as an alphabet Σ the set of nonnegative real numbers, i.e. Σ =

[0,∞). We associate to T the functional Φ : Σ∞ → Σ∞ given by (Φ(x))1 =

T (1) and

(Φ(x))n =
2(n− 1)

n
+
n+ 1

n
xn−1

for all n ≥ 2 (if x ∈ Σ∞ has length n <∞, we write x := x1x2...xn, and if

x is an infinite word we write x := x1x2...).

Next we show that Φ is a B-contraction on the G-bicomplete non-Archimedean

fuzzy quasi-metric space (Σ∞,Mdv , ·), with contraction constant 1/2.

To this end, we first note that, by construction, we have `(Φ(x)) = `(x)+1

for all x ∈ Σ∞ (in particular, `(Φ(x)) =∞ whenever `(x) =∞).

Furthermore, it is clear that x v y ⇐⇒ Φ(x) v Φ(y),

and consequently

Φ(x u y) v Φ(x) u Φ(y)

for all x, y ∈ Σ∞. Hence

`(Φ(x u y)) ≤ `(Φ(x) u Φ(y))

for all x, y ∈ Σ∞.

From the preceding observations we deduce that if x is a prefix of y, then

Mdv(Φ(x),Φ(y), t/2) = Mdv(x, y, t) = 1,

and if x is not a prefix of y, then

Mdv(Φ(x),Φ(y), t/2) =
t/2

(t/2) + 2−`(Φ(x)uΦ(y))

≥ t/2

(t/2) + 2−`(Φ(xuy))
=

t/2

(t/2) + 2−(`(xuy)+1)

=
t

t+ 2−`(xuy)
= Mdv(x, y, t)
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for all t > 0.

Therefore Φ is a B-contraction on (Σ∞,Mdv , ·) with contraction constant

1/2 . So, by Theorem 5.1, Φ has a unique fixed point z = z1z2..., which is

obviously the unique solution to the recurrence equation T, i.e. z1 = 0 and

zn =
2(n− 1)

n
+
n+ 1

n
zn−1

for all n ≥ 2.

Remark 5.1. Note that in the above procedure we can use (Σ∞,Mdvexp
,∧)

instead of (Σ∞,Mdv , ·), to deduce the existence of a unique solution for the

recurrence T.

Example 5.4. We conclude the chapter by applying our results to the com-

plexity analysis of Divide & Conquer algorithms. Recall (see Section 3.3) that

Divide & Conquer algorithms solve a problem by recursively splitting it into

subproblems each of which is solved separately by the same algorithm, after

which the results are combined into a solution of the original problem. Thus,

the complexity of a Divide & Conquer algorithm typically is the solution to

the recurrence equation given by

T (1) = c, and

T (n) = aT (
n

b
) + h(n),

where a, b, c ∈ N with a, b ≥ 2, n range over the set {bp : p = 0, 1, 2, ...} , and

h(n) ≥ 0 for all n ∈ N.

As in the case of Quicksort algorithm, take Σ = [0,∞) and put

ΣN := {x ∈ Σ∞ : `(x) =∞}.

Clearly ΣN is a closed subset of (Σ∞, (Mdv)i, ·), so (ΣN,Mdv , ·) is a non-

Archimedean G-bicomplete fuzzy quasi-metric space by Proposition 5.2.
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Now we associate to T the functional Φ : ΣN → ΣN given by (Φ(x))1 =

T (1), and

(Φ(x))n = axn/b + h(n) if n ∈ {bp : p = 1, 2, ...} , and

(Φ(x))n = 0 otherwise.

for all x ∈ ΣN.

For our purposes here it suffices to observe that for each x, y ∈ ΣN, the

following inequality holds

`(Φ(x) u Φ(y)) ≥ 1 + `(x u y).

In fact, if `(x u y) = 0, then `(Φ(x) u Φ(y)) ≥ 1; and if bp > `(x u y) ≥
bp−1, p ≥ 1, then bp+1 > `(Φ(x) u Φ(y)) ≥ bp.

Hence, for each x, y ∈ ΣN and t > 0, we obtain

Mdv(Φ(x),Φ(y), t/2) =
t/2

(t/2) + 2−`(Φ(x)uΦ(y))

≥ t/2

(t/2) + 2−(`(xuy)+1)
=

t

t+ 2−`(xuy)

= Mdv(x, y, t).

Therefore Φ is a B-contraction on (ΣN,Mdv , ·) with contraction constant

1/2 . So, by Theorem 5.1, Φ has a unique fixed point z = z1z2....

Consequently, the function F defined on {bp : p = 0, 1, 2...} by F (bp) = zbp

for all p ≥ 0, is the unique solution to the recurrence equation of the given

Divide & Conquer algorithm.

Remark 5.2. It is well known that every compact fuzzy metric space is com-

plete (in George and Veeramani´s sense). In Chapter 2 it is shown that, in

general, a compact fuzzy metric space is not G-complete. Since each com-

plete non-Archimedean fuzzy metric space is G-complete, we have that each

compact non-Archimedean fuzzy metric space is G-complete.
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Chapter 6

Contraction maps on fuzzy

quasi-metric spaces and

[0,1]-fuzzy posets

6.1 Introduction

It is well known ([15]) that each bounded non-Archimedean quasi-metric on

a set induces, in a natural way, an [0,1]-fuzzy poset. On the other hand, each

[0,1]-fuzzy poset can be seen as a stationary non-Archimedean fuzzy quasi-

metric space for the continuous t-norm ∧. By extending this construction

to any continuous t-norm, a stationary fuzzy quasi-metric space is obtained.

Motivated by these facts, we present several contraction principles on fuzzy

quasi-metric spaces that are applied to the class of spaces described above.

Some illustrative examples are also given. Finally, we use our approach to

deduce in an easy fashion the existence and uniqueness of solution for the

recurrence equations typically associated to the analysis of Probabilistic Di-

vide and Conquer Algorithms.

A quasi-metric d on a set X is said to be bounded if there is K > 0 such

73
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that d(x, y) 6 K for all x, y ∈ X. In this case we say that K is a bound for

d.

Recall that continuous t-norms are closely related to basic fuzzy logic

BL as investigated in [27]; in particular, each continuous t-norm induces a

(linearly ordered) BL-algebra ([28]).

A fuzzy (quasi-)metric (M, ∗) on X is called stationary if for each x, y ∈
X, M(x, y, ) is a constant function on (0,∞). In this case we say that

(X,M, ∗) is a stationary fuzzy (quasi-)metric space.

Definition 6.1 ([15],[60]). Let X be a nonempty set and L be a complete

lattice. A mapping e : X ×X → L is called an L-fuzzy partial order on X if

it satisfies the following conditions for all x, y, z ∈ X:

(i) e(x, y) = e(y, x) = 1 if and only if x = y;

(ii) e(x, z) ∧ e(z, y) 6 e(x, y).

An L-fuzzy partial ordered set (in short, an L-fuzzy poset) is a pair (X, e)

such that X is a (nonempty) set and e is an L-fuzzy partial order on X. If

L = [0, 1], we say that (X, e) is an [0,1]-fuzzy poset.

6.2 Fuzzy quasi-metric spaces and general-

ized [0,1]-fuzzy posets

Let d be a non-Archimedean bounded quasi-metric on a set X, with bound

K > 0, then the fuzzy set e in X ×X given by

e(x, y) = 1− d(x, y)/K

is a [0,1]-fuzzy partial order on X and hence (X, e) is an [0,1]-fuzzy poset

([15]).
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Conversely, if (X, e) is an [0,1]-fuzzy poset, then it is clear that (X, e,∧)

is a stationary non-Archimedean fuzzy quasi-metric space.

In the light of these facts it seems natural to extend the notion of an [0,1]-

fuzzy poset to any continuous t-norm and establish the relationship between

this structure and the notion of a stationary fuzzy quasi-metric space. Thus

Definition 6.1 suggests the following notion.

Definition 6.2. A generalized [0,1]-fuzzy partial order on a (nonempty) set

X is a pair (e, ∗) such that ∗ be a continuous t-norm and e is a fuzzy set in

X ×X such that for all x, y, z ∈ X :

(i) e(x, y) = e(y, x) = 1 if and only if x = y;

(ii) e(x, z) ∗ e(z, y) 6 e(x, y).

By a generalized [0,1]-fuzzy poset we mean a triple (X, e, ∗) such that X

is a (nonempty) set and (e, ∗) is a generalized [0,1]-fuzzy partial order on X.

Then, the following facts are immediate consequences of Definition 6.2.

Proposition 6.1. Let d be a bounded quasi-metric on a set X, with bound

K > 0. Then for each continuous t-norm ∗ such that ∗ > ∗L, the pair (e, ∗)
is a stationary fuzzy quasi-metric on X, where e is the fuzzy set in X × X
given by

e(x, y) = 1− d(x, y)

K
,

for all x, y ∈ X.

Proposition 6.2. Let (X, e, ∗) be a generalized [0, 1]-fuzzy poset. Then

(X, e, ∗) is a stationary fuzzy quasi-metric space.
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6.3 Contraction maps and fixed points

Fixed point theory of fuzzy metric spaces, in the sense of Kramosil and

Michalek, began with the well-known theorem of M. Grabiec [21], which is a

nice fuzzy metric version of the Banach contraction principle endowed with

a nice contraction condition.

On the other hand, condition limt→∞M(x, y, t) = 1 cause Grabiec’s the-

orem cannot be applied to stationary fuzzy (quasi-)metric spaces, and hence

to generalized [0,1]-fuzzy posets.

In our next results we shall obtain some contraction map results which

avoid these inconveniences of Grabiec‘s theorem. To this end, the following

notions of a Cauchy sequence and of a complete fuzzy quasi-metric space will

be suitable.

Definition 6.3. Let (X,M, ∗) be a fuzzy quasi-metric space. A sequence

{xn}n in X is called forward Cauchy if for each ε ∈ (0, 1) and each t > 0

there is n0 ∈ N such that M(xn, xm, t) > 1 − ε whenever n0 6 n 6 m. We

say that (X,M, ∗) is forward complete if every forward Cauchy sequence is

convergent with respect to the topology τM−1 , i.e. if there exists y ∈ X such

that limn→∞M(xn, y, t) = 1 for all t > 0.

A generalized [0,1]-fuzzy poset (X, e, ∗) is called complete if it is forward

complete as a stationary fuzzy quasi-metric space.

Note that each complete fuzzy metric space is forward complete.

Theorem 6.1. Let (X,M, ∗) be a forward complete fuzzy quasi-metric space

such that ∗ > ∗L. If f is a self-map on X such that there exist x0 ∈ X and
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k ∈ (0, 1) satisfying

M(fnx0, f
n+1x0, t) > 1− k + kM(fn−1x0, f

nx0, t)

for all n ∈ N and t > 0, then the sequence (fnx0)n converges to some y ∈ X
with respect to τM−1 .

If, in addition, (X, τM−1) is a Hausdorff topological space and f is con-

tinuous from (X, τM−1) into itself, then y is a fixed point of f.

Proof . We first show that M(fnx0, f
n+1x0, t) > 1− kn for all n ∈ N and

t > 0.

Indeed, for n = 1 we have

M(fx0, f
2x0, t) ≥ 1− k + kM(x0, fx0) ≥ 1− k.

So

M(f 2x0, f
3x0, t) ≥ 1− k + kM(fx0, f

2x0, t)

≥ 1− k + k(1− k)

= 1− k2.

Now assume that the inequality holds for n− 1, with n > 3. Then

M(fnx0, f
n+1x0, t) > 1− k + kM(fn−1x0, f

nx0, t)

> 1− k + k(1− kn−1)

= 1− kn.

Next we show that (fnx0)n is a forward Cauchy sequence in (X,M, ∗).
Indeed, for each n,m ∈ N (we assume without loss of generality that

m = n+ j for some j ∈ N)), we obtain
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M(fnx0, f
mx0, t) = M(fnx0, f

n+jx0, t)

> M(fnx, fn+1x, t/j) ∗M(fn+1x, fn+2x, t/j) ∗ ... ∗M(fn+j−1x, fn+jx, t/j)

> (1− kn) ∗ (1− kn+1) ∗ ... ∗ (1− kn+j−1)

> (1− kn) ∗L (1− kn+1) ∗L ... ∗L (1− kn+j−1).

Given ε > 0, there is n0 ∈ N such that

∞∑
n=n0

kn < ε.

Therefore, for n,m > n0, with n = m+ j, it follows that kn + kn+1 + ...+

kn+j−1 < ε, and hence

M(fnx0, f
mx0, t) > (1− kn) ∗L (1− kn+1) ∗L ... ∗L (1− kn+j−1)

= 1− (kn + kn+1 + ...+ kn+j−1)

> 1− ε.

Consequently (fnx0)n is a forward Cauchy sequence in (X,M, ∗). Then,

there is y ∈ X such that (fnx0)n converges to y with respect to τM−1 .

Finally, if (X, τM−1) is a Hausdorff topological space and f is continuous

from (X, τM−1) into itself, then (fnx0)n converges to f(y) with respect to

τM−1 , and by Hausdorffness, y = f(y). The proof is complete.�

Corollary 6.1. Let (X,M, ∗) be a forward complete fuzzy quasi-metric space

such that (X, τM−1) is a Hausdorff topological space and ∗ > ∗L. If f is a

self-map on X such that there is k ∈ (0, 1) satisfying

M(fx, fy, t) > 1− k + kM(x, y, t)

for all x, y ∈ X and t > 0, then f has a unique fixed point.
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Corollary 6.2. Let (X,M, ∗) be a complete fuzzy metric space such that

∗ > ∗L. If f is a self-map on X such that there is k ∈ (0, 1) satisfying

M(fx, fy, t) > 1− k + kM(x, y, t)

for all x, y ∈ X and t > 0, then f has a unique fixed point.

Next we shall obtain a “G-complete” version of Theorem 6.2 and its corol-

laries. In this way, a fixed point theorem for [0,1]-fuzzy posets will be derived

by virtue of Lemma 5.1.

Definition 6.4. Let (X,M, ∗) be a fuzzy quasi-metric space. A sequence

{xn}n in X is called forward G-Cauchy if for each p ∈ N and each t > 0,

limn→∞M(xn, xn+p, t) = 1. We say that (X,M, ∗) is forward G-complete if

every forward G-Cauchy sequence is convergent with respect to the topology

τM−1 .

A generalized [0,1]-fuzzy poset (X, e, ∗) is called G-complete if it is for-

ward G-complete as a stationary fuzzy quasi-metric space.

Note that each G-complete fuzzy metric space is forward G-complete.

Theorem 6.2. Let (X,M, ∗) be a forward G-complete fuzzy quasi-metric

space. If f is a self-map on X such that there exist x0 ∈ X and k ∈ (0, 1)

satisfying

M(fnx0, f
n+1x0, t) > 1− k + kM(fn−1x0, f

nx0, t)

for all n ∈ N and t > 0, then the sequence (fnx0)n converges to some y ∈ X
with respect to τM−1 .

If, in addition, (X, τM−1) is a Hausdorff topological space and f is con-

tinuous from (X, τM−1) into itself, then y is a fixed point of f.
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Proof . As in the proof of Theorem 6.1 we obtain thatM(fnx0, f
n+1x0, t) >

1− kn for all n ∈ N and t > 0.

Next we show that (fnx0)n is a forward G-Cauchy sequence in (X,M, ∗).
Fix p ∈ N. Thus we have:

M(fnx0, f
n+px0, t) > M(fnx0, f

n+1x0, t/p)∗ (p)... ∗M(fn+p−1x0, f
n+px0, t/p)

> (1− kn)∗ (p)... ∗(1− kn+p−1)

> (1− kn)∗ (p)... ∗(1− kn)

Now given ε > 0, there is n0 ∈ N such that

(1− kn0)∗ (p)... ∗(1− kn0) > 1− ε

So for n > n0 it follows that

M(fnx0, f
n+px0, t) > (1−kn)∗ (p)... ∗(1−kn) > (1−kn0)∗ (p)... ∗(1−kn0) > 1−ε

Consequently (fnx0)n is a forward G-Cauchy sequence in (X,M, ∗). Then,

there is y ∈ X such that (fnx0)n converges to y with respect to τM−1 .

Finally, if (X, τM−1) is a Hausdorff topological space and f is continuous

from (X, τM−1) into itself, then (fnx0)n converges to f(y) with respect to

τM−1 , and by Hausdorffness, y = f(y). The proof is complete.�

Corollary 6.3. Let (X,M, ∗) be a forward G-complete fuzzy quasi-metric

space such that (X, τM−1) is a Hausdorff topological space. If f is a self-map

on X such that there is k ∈ (0, 1) satisfying

M(fx, fy, t) > 1− k + kM(x, y, t)

for all x, y ∈ X and t > 0, then f has a unique fixed point.
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Corollary 6.4. Let (X,M, ∗) be a G-complete fuzzy metric space. If f is a

self-map on X such that there is k ∈ (0, 1) satisfying

M(fx, fy, t) > 1− k + kM(x, y, t)

for all x, y ∈ X and t > 0, then f has a unique fixed point.

Recall that Lemma 5.1 establishes that each G-Cauchy sequence in a non-

Archimedean fuzzy quasi-metric space is a Cauchy sequence.

Theorem 6.3. Let (X, e) be a complete [0, 1]-fuzzy poset such that (X, τe−1)

is a Hausdorff topological space. If f is a self-map on X such that there is

k ∈ (0, 1) satisfying

e(fx, fy) > 1− k + ke(x, y)

for all x, y ∈ X, then f has a unique fixed point.

Proof . We show that (X, e) is G-complete. Indeed, let {xn}n be a G-

Cauchy sequence in the non-Archimedean fuzzy quasi-metric space (X, e,∧).

By Lemma 5.1, {xn}n is a Cauchy sequence. Since (X, e) is complete, {xn}n
converges with respect to τe−1 . Therefore (X, e) is G-complete. Theorem 6.2

concludes the proof.�

Corollary 6.5. Let (X,M, ∗) be a complete non-Archimedean fuzzy metric

space. If f is a self-map on X such that there is k ∈ (0, 1) satisfying

M(fx, fy, t) > 1− k + kM(x, y, t)

for all x, y ∈ X and t > 0, then f has a unique fixed point.

Proof. Apply Lemma 5.1 and Corollary 6.4.�
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6.4 Application to recurrence equations

We conclude the chapter by applying the results obtained in Section 6.3 to

show, in a direct and easy way, the existence and uniqueness of solution for

the following general recurrence equation

T (n) = p(n) +
n−1∑
k=1

q(n, k)T (k) (1)

for n > 2, where T (1) > 0, p(n) > 0, and q(n, k) > 0.

Equations of type (1) appear when discussing the analysis of Probabilistic

Divide and Conquer Algorithms by means of recurrences (see, for instance,

Section 4 of [16]):

Denote by Σ∞ the set of all (nonempty) finite and infinite sequences of

nonnegative real numbers. If w is a finite sequence, with w := w1, w2,...,wn,

we write `(w) = n, and we say that the length of w is n. If w is an infinite

sequence we write `(w) =∞.
Given v, w ∈ Σ∞, we say that v is a prefix of w, and we write v v w, if

`(v) ≤ `(w) and vk = wk for all k ∈ {1, ..., `(v)}.
Now define a fuzzy set M in Σ∞ × Σ∞ by M(v, w, t) = 1 if v = w and

t > 0; M(v, w, t) = 1 − 2−`(v) if v v w and t > 0; and M(v, w, t) = 0,

otherwise.

It is routine to show that (M,∧) is a forward G-complete stationary non-

Archimedean fuzzy quasi-metric on Σ∞ with (X, τM−1) a Hausdorff topolog-

ical space.

Let T be a recurrence equation of type (1). We associate to T the func-

tional ΦT : Σ∞ → Σ∞ given by (ΦTw)1 = T (1) and

(ΦTw)n = p(n) +
n−1∑
k=1

q(n, k)wk

for all n > 2.
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It is clear by the construction that if `(w) = n then `(ΦTw) = n + 1 (in

particular, `(ΦTw) =∞ whenever `(w) =∞).

Moreover, we have that ΦTv v ΦTw whenever v v w. Hence, for v v w

with `(w) =∞ we deduce

M(ΦTv,ΦTw, t) = 1− 2−`(ΦT v) > 1− 2−`(v) = M(v, w, t),

which implies that ΦT is continuous with respect to τM−1 .

Now let w be the element of Σ∞ given by w := T (1). Then `(w) = 1.

Since w v ΦTw, it follows that Φn
Tw v Φn+1

T w for each n ∈ N, so

M(Φn
Tw,Φ

n+1
T w, t) = 1− 2−`(Φ

n
Tw) = 2−1M(Φn−1

T w,Φn
Tw, t) + 2−1,

for all n ∈ N. It follows from Theorem 6.1 (or Theorem 6.2), for k = 1/2,

that ΦT has a fixed point which is clearly unique by the construction of ΦT .

Hence it is the unique solution of the recurrence T.
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Chapter 7

Some additional remarks on

the fixed point theory for fuzzy

(quasi-)metric spaces

7.1 Introduction

In this chapter we will establish versions of Corollaries 6.2, 6.4 and 6.5,

respectively, in the more general framework of fuzzy quasi-metric spaces.

Moreover, we will replace the condition ∗ > ∗L by the more general case

∗ > ∗n, for some n ∈ N, where {∗n}n∈N, (Chapter 1) is the N-Yager subclass

of continuous t-norms.

We present some examples for which well-known fixed point theorems can-

not be applied, and nevertheless, our results can be applied to such examples.

85
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7.2 Contraction maps and fixed point theo-

rems

Recall that the N-Yager subclass of continuous t-norms is given by:

a ∗n b = 1−min{1, [(1− a)1/n + (1− b)1/n]n}

with n ∈ N.

We modify Corollary 6.2 in the following manner:

Theorem 7.1. Let (X,M, ∗) be a complete fuzzy metric space such that

∗ > ∗α, for some α ∈ N. If f is a self-map on X such that there is k ∈ (0, 1)

satisfying

M(fx, fy, t) > 1− k + kM(x, y, t)

for all x, y ∈ X and t > 0, then f has a unique fixed point.

Proof . Fix x ∈ X. We first show that M(fnx, fn+1x, t) > 1− kn for all

n ∈ N and t > 0.

Indeed, for n = 1 we have

M(fx, f 2x, t) ≥ 1− k + kM(x, fx) ≥ 1− k.

So

M(f 2x, f 3x, t) ≥ 1− k + kM(fx, f 2x, t)

≥ 1− k + k(1− k)

= 1− k2.

Now assume that the inequality holds for n− 1, with n > 3. Then
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M(fnx, fn+1x, t) > 1− k + kM(fn−1x, fnx, t)

> 1− k + k(1− kn−1)

= 1− kn.

Next we show that (fnx)n is a Cauchy sequence in (X,M, ∗).
Indeed, for each n,m ∈ N (we assume without loss of generality that

m = n+ j for some j ∈ N), we obtain

M(fnx, fmx, t) = M(fnx, fn+jx, t)

> M(fnx, fn+1x, t/j) ∗M(fn+1x, fn+2x, t/j) ∗ ... ∗M(fn+j−1x, fn+jx, t/j)

> (1− kn) ∗ (1− kn+1) ∗ ... ∗ (1− kn+j−1)

> (1− kn) ∗α (1− kn+1) ∗α ... ∗α (1− kn+j−1).

Given ε > 0, there is n0 ∈ N such that

∞∑
n=n0

kn/α < ε1/α.

Therefore, for n,m > n0, with n = m+ j, it follows that:

kn/α + k(n+1)/α + ...+ k(n+j−1)/α < ε1/α,

and hence

M(fnx, fmx, t) > (1− kn) ∗α (1− kn+1) ∗α ... ∗α (1− kn+j−1)

= 1− (kn/α + k(n+1)/α + ...+ k(n+j−1)/α)α

> 1− ε.
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Consequently (fnx)n is a Cauchy sequence in (X,M, ∗). Then, there is

y ∈ X such that (fnx)n converges to y with respect to τM .

Since

M(fny, fn+1x, t) ≥ 1− k + kM(y, fnx, t), and

lim
n→∞

M(y, fnx, t) = 1,

it is follows that

lim
n→∞

M(fny, fn+1x, t) = 1,

therefore (fnx)n converges to fy, so fy = y.

Finally, suppose that z ∈ X satisfies fz = z, then:

M(y, z, t) = M(fy, fz, t) ≥ 1− k + kM(y, z, t),

so

(1− k)M(y, z, t) ≥ (1− k),

and, thus

M(y, z, t) = 1,

for all t > 0. We conclude that z = y. We have shown that y is the unique

fixed point for f .�

In the three next theorems we extend Theorem 7.1 and Corollaries 6.4

and 6.5, respectively, to fuzzy quasi-metrics spaces.
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Theorem 7.2. Let (X,M, ∗) be a bicomplete fuzzy quasi-metric space such

that ∗ > ∗α, for some α ∈ N. If f is a self-map on X such that there is

k ∈ (0, 1) satisfying

M(fx, fy, t) > 1− k + kM(x, y, t)

for all x, y ∈ X and t > 0, then f has a unique fixed point.

Proof. It immediately follows that

M i(fx, fy, t) > 1− k + kM i(x, y, t)

for all x, y ∈ X and t > 0. Hence f is a contraction in the sense of Theorem

7.1 on the complete fuzzy metric space (X,M i, ∗), and, by Theorem 7.1, f

has a unique fixed point.�

Theorem 7.3. Let (X,M, ∗) be a G-bicomplete fuzzy quasi-metric space. If

f is a self-map on X such that there is k ∈ (0, 1) satisfying

M(fx, fy, t) > 1− k + kM(x, y, t)

for all x, y ∈ X and t > 0, then f has a unique fixed point.

Proof. It immediately follows that

M i(fx, fy, t) > 1− k + kM i(x, y, t)

for all x, y ∈ X and t > 0. Hence f is a contraction in the sense of Corollary

6.4 on the G-complete fuzzy metric space (X,M i, ∗), and, by Corollary 6.4,

f has a unique fixed point.�

Theorem 7.4. Let (X,M, ∗) be a bicomplete non-Archimedean fuzzy quasi-

metric space. If f is a self-map on X such that there is k ∈ (0, 1) satisfying
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M(fx, fy, t) > 1− k + kM(x, y, t)

for all x, y ∈ X and t > 0, then f has a unique fixed point.

Proof. It immediately follows that

M i(fx, fy, t) > 1− k + kM i(x, y, t)

for all x, y ∈ X and t > 0. Hence f is a contraction in the sense of Corollary

6.5 on the complete non-Archimedean fuzzy metric space (X,M i, ∗), and, by

Corollary 6.5, f has a unique fixed point.�

Next we present an example where the quasi-metric version of the famous

Grabiec’s fixed point theorem cannot be applied (Theorem 5.1).

Example 7.1. Proposition 5.4 held that (Σ∞,Mdv1,∧) is a G-bicomplete

non-Archimedean fuzzy quasi-metric space. It is shown in Example 5.3 that

Φ, the functional associated to recurrence equation, T , of the average case of

Quicksort algorithm, has a unique fixed point z = z1z2..., which is obviously

the unique solution to the recurrence equation T, i.e. z1 = 0 and

zn =
2(n− 1)

n
+
n+ 1

n
zn−1

for all n ≥ 2.

Suppose that there exists a contraction constant k ∈ (0, 1) such that

Mdv(Φ(x),Φ(y), kt) ≥Mdv(x, y, t),

for all x, y ∈ Σ∞ and t > 0. Fix t = 1/k, then we have:

Mdv(Φ(x),Φ(y), 1) = 1− 2−`(Φ(x)uΦ(y)) ≥Mdv(x, y, 1/k) = 1,
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which is a contradiction. Therefore the conditions of the quasi-metric version

of the Grabiec’s fixed point theorem (Theorem 5.1) are not satisfied.

Nevertheless, the following example shows that Theorem 7.3 can be ap-

plied to deduce the existence of solution for the recurrence equations associ-

ated to the analysis of Quicksort algorithms.

Example 7.2. We shall show that Φ is a contraction (in the sense of

Theorem 7.3) on the G-bicomplete fuzzy quasi-metric space (Σ∞,Mdv1,∧),

with contraction constant, k = 1/2.

In Example 5.3 it is shown that `(Φ(x)) = `(x) + 1 for all x ∈ Σ∞ (in

particular, `(Φ(x)) = ∞ whenever `(x) = ∞). Furthermore `(Φ(x u y)) ≤
`(Φ(x) u Φ(y))

for all x, y ∈ Σ∞. Then we have:

Mdv1(Φ(x),Φ(y), t) = 1− 2−`(ΦxuΦy)

≥ 1− 2−`(Φ(xuy)) = 1− 2−(`(xuy)+1)

= 1− 1

2
2−`(xuy) = 1− 1

2
+

1

2
Mdv1(x, y, t)

for all t ∈ (0, 1], and

Mdv1(Φ(x),Φ(y), t) = 1 ≥ 1− 1

2
+

1

2
Mdv1(x, y, t) = 1,

for all t > 1.

Therefore Φ is a contraction on (Σ∞,Mdv1,∧) with contraction constant

1/2 . So, by Theorem 7.3, Φ has a unique fixed point z = z1z2..., which is

obviously the unique solution to the recurrence equation T, i.e. z1 = 0 and

zn =
2(n− 1)

n
+
n+ 1

n
zn−1

for all n ≥ 2.
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In [26], V. Gregori and A. Sapena gave fixed point theorems for complete

GV-fuzzy metric spaces. To this end they introduce the following defintions.

Definition 7.1 [26]. Let (X,M, ∗) be a GV-fuzzy metric space. We will say

the map f : X → X is fuzzy contractive if there exists k ∈ (0, 1) such that

1

M(fx, fy, t)
− 1 ≤ k(

1

M(x, y, t)
− 1)

for all x, y ∈ X and t > 0. ( k is called the contractive constant of f).

In [35], Mihet adapted Gregori and Sapena´s contractive condition to

fuzzy metric spaces (in the sense of Kramosil and Michalek) as follows:

M(fx, fy, t) ≥ M(x, y, t)

M(x, y, t) + k(1−M(x, y, t))

for all x, y ∈ X and t > 0.

Definition 7.2 [26]. Let (X,M, ∗) be a GV-fuzzy metric space. We will say

that the sequence {xn}n in X is fuzzy contractive if there exists k ∈ (0, 1)

such that

1

M(xn+1, xn+2, t)
− 1 ≤ k(

1

M(xn, xn+1, t)
− 1)

for all t > 0 and n ∈ N.

Following Mihet, we adapte the previous condition to fuzzy metric spaces

in the sense of Kramosil and Michalek as follows:

M(xn+1, xn+2, t) ≥
M(xn, xn+1, t)

M(xn, xn+1, t) + k(1−M(xn, xn+1, t))
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for all t > 0 and n ∈ N.

The next theorem was proved by Gregori and Sapena in [26] for GV-fuzzy

metric spaces. However the proof remains valid for fuzzy metric spaces in

the sense of Kramosil and Michalek.

Theorem 7.5 [26]. Let (X,M, ∗) be a complete fuzzy metric space in which

fuzzy contractive sequences are Cauchy. Let f : X → X be a fuzzy contrac-

tive map being k the contractive constant. Then f has a unique fixed point.

Gregori and Sapena showed in [26] that each fuzzy contractive sequence

is G-Cauchy and asked if a fuzzy contractive sequence is Cauchy. Mihet gave

in [35] the following example which shows that the answer is negative in the

case of fuzzy metric spaces in the sense of Kramosil and Michalek.

Example 7.3 [35]. Let X = [0,∞) and d(x, y) = |x− y|. Then (X, d) is a

complete metric space. In [56] it is shown that (X,M, ∗) is a complete fuzzy

metric space, where ∗ is any continuous t-norm and M is the fuzzy set in

X ×X × [0,+∞) given in the following way:

M(x, y, t) = 1, if d(x, y) < t

M(x, y, t) = 0, if d(x, y) ≥ t.

Since

M(x, y, t)

M(x, y, t) + k(1−M(x, y, t)
= M(x, y, t),

the contraction condition can be written as:

M(fx, fy, t) ≥M(x, y, t),

for all x, y ∈ X and t > 0, or equivalently,
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d(fx, fy) ≤ d(x, y),

for all x, y ∈ X. Thus , the map f : X → X, f(x) = x + 1 is a fuzzy

contractive map and so every sequence {xn}n, xn = fn(x) is a contractive

sequence.

On the other hand, since f is a fixed point free mapping on (X,M, ∗) it

follows from Theorem 7.5 that {xn}n is not a Cauchy sequence.

Next we present an example for which Theorem 7.5 cannot be applied,

and nevertheless, Theorem 7.1 works to such an example.

Example 7.4. Let (X,M, ∗) be a fuzzy metric space, where ∗ is any contin-

uous t-norm satisfying ∗ > ∗α, for some α ∈ N, X = [0,∞) and M is the

fuzzy set in X ×X × [0,+∞) given in the following way:

M(x, y, t) = 1, if d(x, y) < t,

M(x, y, t) = 0, if d(x, y) ≥ t.

Let f : X → X be the function given by f(x) = 0 for all x ∈ X. It is

obvious that f has a unique fixed point which is x = 0. Example 7.3 shows

that Theorem 7.5 cannot be applied to deduce the existence of the unique fixed

point of f . On the other hand we have that:

M(fx, fy, t) > 1− k + kM(x, y, t),

for all x, y ∈ X and t > 0, because

M(fx, fy, t) = M(0, 0, t) = 1 > 1− k + kM(x, y, t),

for all x, y ∈ X and t > 0. Since (X,M, ∗) is a complete fuzzy metric space

and ∗ > ∗α, for some α ∈ N, we can applied Theorem 7.1 to deduce the



7.2. Fixed point theorems 95

existence of the unique fixed point of f , x = 0.

Remark 7.1. Note that if it is satisfied the contraction in the sense of The-

orem 7.1, i.e

M(fx, fy, t) > 1− k + kM(x, y, t),

for all x, y ∈ X and t > 0, then it is satisfied the contraction in the sense of

Definition 7.1, i.e

M(fx, fy, t) ≥ M(x, y, t)

M(x, y, t) + k(1−M(x, y, t)

for all x, y ∈ X and t > 0.

Indeed, if

M(fx, fy, t) > 1− k + kM(x, y, t),

then

k(1−M(x, y, t)) ≥ 1−M(fx, fy, t),

therefore

k(1−M(x, y, t))

M(x, y, t)
≥ 1−M(fx, fy, t)

M(fx, fy, t)
,

and so

k(
1

M(x, y, t)
− 1) ≥ 1

M(fx, fy, t)
− 1,

i.e.

M(x, y, t)

M(x, y, t) + k(1−M(x, y, t)
≤M(fx, fy, t)
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Gregori and Sapena established in [26] the following theorem:

Theorem 7.6. Let (X,M, ∗) be a G-complete fuzzy metric space and let

f : X → X be a fuzzy contractive map. Then f has a unique fixed point.

Remark 7.2. Note that Corollary 6.4 can be also deduced from Theorem

7.6.



Chapter 8

On fixed point theorems in

intuitionistic fuzzy

(quasi-)metric spaces

8.1 Introduction

In [36] J.H. Park introduced and studied a notion of intuitionistic fuzzy metric

space that generalizes the concept of fuzzy metric space due to A. George and

P. Veeramani [19]. A motivation to this study is the potential applicability

of fuzzy intuitionistic topology to quantum particle physics, particularly in

connection with both string and ε(∞) theory developed by M.S. El Naschie [9,

10, 12, 13]. Recently, V. Gregori, S. Romaguera and P. Veeramani have shown

[25] that the main metric and topological properties of Park’s intuitionistic

fuzzy metric spaces can be easily derived from the corresponding ones for

fuzzy metric spaces and that such spaces can be motivated from a physic

point of view in the context of the two-slit experiment as the foundation of

E-infinity of high energy physics, recently studied by El Naschie in [12, 11, 13].

On the other hand, and almost simultaneously, C. Alaca, D. Turkoglu and C.

Yildiz [2] have proved intuitionistic fuzzy versions of the celebrated Banach

97
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fixed point theorem and Edelstein fixed point theorem by using a notion of

intuitionistic fuzzy metric space which is based on the concept of fuzzy metric

space introduced by I. Kramosil and J. Michalek [30].

Here we show that each intuitionistic fuzzy metric space (X,M,N, ∗,♦) in

the sense of [2] generates a (metrizable) topology τ(M,N) which coincides with

the topology τM generated by the fuzzy metric space (X,M, ∗). Furthermore

completeness (respectively, compactness) of (X,M,N, ∗,♦) is equivalent to

completeness (respectively, compactness) of (X,M, ∗), and then we deduce

that the fixed point theorems obtained in [2] are immediate consequences

of the fixed point theorems for fuzzy metric spaces proved by M. Grabiec

[21]. Actually, we obtain improved versions of such results and we present

an illustrative example.

On the other hand, we show that for each intuitionistic fuzzy metric space

(X,M,N, ∗,♦), the topology generated by the ”co-fuzzy” metric N in X is

also a metrizable topology, and we obtain fixed point theorems by considering

completeness of (X,N,♦).

Finally we generalize the notions of intuitionistic fuzzy metric space to

the quasi-metric setting and we present intuitionistic fuzzy quasi-metric ver-

sions of the Banach contraction principle.

The main results of this chapter may be found in [47] and [48].

8.2 Intuitionistic fuzzy metric spaces and fixed

point theorems

Recently, Alaca, Turkoglu and Yildiz have introduced in [2] the following

notion.

Definition 8.1. An intuitionistic fuzzy metric space is a 5-tuple (X,M,N, ∗,♦)
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such that X is a (nonempty) set, ∗ is a continuous t-norm, ♦ is a continuous

t-conorm and M,N are fuzzy sets on X×X× [0,∞) satisfying the following

conditions, for all x, y, z ∈ X :

(a) M(x, y, t) +N(x, y, t) ≤ 1;

(b) M(x, y, 0) = 0;

(c) M(x, y, t) = 1 for all t > 0 if and only if x = y;

(d) M(x, y, t) = M(y, x, t) for all t > 0;

(e) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s) for all t, s ≥ 0;

(f) M(x, y, ) : [0,∞)→ [0, 1] is left continuous;

(g) limt→∞M(x, y, t) = 1;

(h) N(x, y, 0) = 1;

(i) N(x, y, t) = 0 for all t > 0 if and only if x = y;

(j) N(x, y, t) = N(y, x, t) for all t > 0;

(k) N(x, y, t)♦N(y, z, s) ≥ N(x, z, t+ s) for all t, s ≥ 0;

(l) N(x, y, ) : [0,∞)→ [0, 1] is left continuous.

(m) limt→∞N(x, y, t) = 0.

Remark 8.1. Observe that, in Definition 8.1, condition (m) follows imme-

diately from (a) and (g).

Remark 8.2. It is clear that if (X,M,N, ∗,♦) is an intuitionistic fuzzy met-

ric space, then (X,M, ∗) is a fuzzy metric space. Conversely, if (X,M, ∗)
is a fuzzy metric space, then (X,M, 1 − M, ∗,♦) is an intuitionistic fuzzy

metric space, where a♦b = 1− [(1− a) ∗ (1− b)] for all a, b ∈ [0, 1].

Definition 8.2 [2]. Let {xn}n be a sequence in an intuitionistic fuzzy metric

space (X,M,N, ∗,♦). Then:

(a) The sequence {xn}n is called a G-Cauchy sequence if for each p ∈ N
and each t > 0, we have

limn→∞M(xn+p, xn, t) = 1 and limn→∞N(xn+p, xn, t) = 0.
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(b) The sequence {xn}n is convergent to x ∈ X if for each t > 0, we have

limn→∞M(x, xn, t) = 1 and limn→∞N(x, xn, t) = 0.

Definition 8.3 [2]. An intuitionistic fuzzy metric space (X,M,N, ∗,♦) is

called G-complete if every G-Cauchy sequence is convergent.

In order to construct a suitable topology on an intuitionistic fuzzy metric

space (X,M,N, ∗,♦) it seems natural to consider “balls” B(x, r, t) defined,

similarly to [36], by:

B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r,N(x, y, t) < r}

for all x ∈ X, r ∈ (0, 1) and t > 0.

Then, one can prove as in [36] that the family of sets of the form {B(x, r, t) :

x ∈ X, r ∈ (0, 1), t > 0} is a base for a topology τ(M,N) on X.

However, we obtain the following result (compare Proposition 1 of [25]).

Theorem 8.1. Let (X,M,N, ∗,♦) be an intuitionistic fuzzy metric space.

Then, for each x ∈ X, r ∈ (0, 1), t > 0, we have B(x, r, t) = BM(x, r, t).

Proof. It is clear that B(x, r, t) ⊆ BM(x, r, t).

Now suppose that y ∈ BM(x, r, t). Then M(x, y, t) > 1− r, so, by condi-

tion (a) of Definition 8.1, we have:

N(x, y, t) ≤ 1−M(x, y, t) < 1− (1− r) = r.

Consequently y ∈ B(x, r, t). This concludes the proof.�

From Theorem 8.1 we immediately deduce the following results.

Corollary 8.1. Let (X,M,N, ∗,♦) be an intuitionistic fuzzy metric space.

Then the topologies τ(M,N) and τM coincide on X.
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Corollary 8.2. Let (X,M,N, ∗,♦) be an intuitionistic fuzzy metric space.

Then (X, τ(M,N)) is a metrizable topological space.

Proposition 8.1 (see [25]). Let (X,M,N, ∗,♦) be an intuitionistic fuzzy

metric space. Then the pair (MN , ?) is a fuzzy metric on X where MN is

defined on X × X × [0,∞) by MN(x, y, t) = 1 − N(x, y, t), and ? is the

continuous t-norm defined by a ? b = 1− [(1− a)♦(1− b)].

In the next section we focus our attention on the structure (N,♦), which

will be called a co-fuzzy metric.

Corollary 8.3. Let {xn}n be a sequence in an intuitionistic fuzzy metric

space (X,M,N, ∗,♦) and let x ∈ X. Then, the following statements are

equivalent.

(1) The sequence {xn}n converges to x with respect to τ(M,N).

(2) The sequence {xn}n converges to x with respect to τM .

(3) limn→∞M(x, xn, t) = 1 for all t > 0.

(4) limn→∞M(x, xn, t) = 1 and limn→∞N(x, xn, t) = 0 for all t > 0.

Proof. (1)⇐⇒ (2). Apply Corollary 8.1.

(2)⇐⇒ (3). This is well known.

(3) =⇒ (4). By hypothesis, for each r ∈ (0, 1) and each t > 0 there is

n0 ∈ N such that xn ∈ BM(x, r, t) for all n ≥ n0, i.e. xn ∈ B(x, r, t) for all

n ≥ n0, by Theorem 8.1. Hence N(x, xn, t) < r for all n ≥ n0. We conclude

that limn→∞N(x, xn, t) = 0 for all t > 0.

(4) =⇒ (3). Obvious.�

Next we deduce the following easy but crucial results.

Proposition 8.2. A sequence in an intuitionistic fuzzy metric space (X,M,N, ∗,♦) is
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G-Cauchy if and only if it is G-Cauchy in the fuzzy metric space (X,M, ∗).

Proof. Clearly, every G-Cauchy sequence in (X,M,N, ∗,♦) is G-Cauchy

in (X,M, ∗).
Conversely, suppose that {xn}n is a G-Cauchy sequence in (X,M, ∗).

Fix p ∈ N and t > 0. For each r ∈ (0, 1), there is n0 ∈ N such that

M(xn+p, xn, t) > 1− r for all n ≥ n0. Then

N(xn+p, xn, t) ≤ 1−M(xn+p, xn, t) < r

for all n ≥ n0. We conclude that limn→∞N(xn+p, xn, t) = 0. Therefore (xn)n

is a G-Cauchy sequence in (X,M,N, ∗,♦).�

Proposition 8.3. An intuitionistic fuzzy metric space (X,M,N, ∗,♦) is G-

complete if and only if the fuzzy metric space (X,M, ∗) is G-complete.

Proof. Apply Proposition 8.2 and Corollary 8.3, (3)⇐⇒ 4.�

Corollary 8.4. Let (X,M,N, ∗,♦) be a G-complete intuitionistic fuzzy met-

ric space and let T : X → X be a self-map such that

M(Tx, Ty, kt) ≥M(x, y, t)

for all x, y ∈ X and t > 0, (with k ∈ (0, 1)). Then T has a unique fixed point.

Proof. Apply Proposition 8.3 and Theorem 1.2.�

Corollary 8.5 [2]. Let (X,M,N, ∗,♦) be a G-complete intuitionistic fuzzy

metric space and let T : X → X be a self-map such that

M(Tx, Ty, kt) ≥M(x, y, t) and N(Tx, Ty, kt) ≤ N(x, y, t)

for all x, y ∈ X, and t > 0, (with k ∈ (0, 1)). Then T has a unique fixed point.
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Definition 8.4 [2]. An intuitionistic fuzzy metric space is called compact if

every sequence has a convergent subsequence in the sense of Definition 8.2

(b).

Our next result shows that compactness in the sense of Definition 8.4 admits

a natural topological characterization.

Proposition 8.4. For an intuitionistic fuzzy metric space (X,M,N, ∗,♦)

the following statements are equivalent.

(1) (X,M,N, ∗,♦) is compact.

(2) (X,M, ∗) is compact.

(3) (X, τM) is a compact topological space.

Proof. (1) =⇒ (2). Obvious.

(2) =⇒ (3). Let {xn}n be a sequence in X. By hypothesis, there exist a

subsequence {xnk
}k of {xn}n and a point x ∈ X such that limk→∞M(x, xnk

, t) =

1 for all t > 0. By Corollary 8.3, {xnk
}k converges to x with respect to τM .

Since (X, τM) is metrizable, we conclude that it is compact.

(3) =⇒ (1). If (X, τM) is compact, then every sequence in X has a con-

vergent subsequence with respect to τM . Thus, by Corollary 8.3, (2) =⇒ (4),

it follows that (X,M,N, ∗,♦) is compact.�

Corollary 8.6. Let (X,M,N, ∗,♦) be a compact intuitionistic fuzzy metric

space and let T : X → X be a self-map such that

M(Tx, Ty, t) > M(x, y, t)

for all x, y ∈ X with x 6= y, and t > 0. Then T has a unique fixed point.

Proof. Apply Proposition 8.4 and Theorem 1.3.�

Corollary 8.7 [2]. Let (X,M,N, ∗,♦) be a compact intuitionistic fuzzy



104 Chapter 8. Intuitionistic fixed point theorems

metric space and let T : X → X be a self-map such that

M(Tx, Ty, t) > M(x, y, t) and N(Tx, Ty, t) < N(x, y, t)

for all x, y ∈ X with x 6= y, and t > 0. Then T has a unique fixed point.

Next we present an example which shows that, in fact, Corollary 8.4 im-

proves Corollary 8.5 and Corollary 8.6 improves Corollary 8.7.

Example 8.1. Let X := {0} ∪ {1/n : n ∈ N} and let d be the metric on X

given by d(x, x) = 0 and

d(x, y) = max{x, y}

for all x, y ∈ X with x 6= y. Let (Md, ·) be the fuzzy metric on X induced by

d and let N be the fuzzy set in X ×X × [0,∞) given by

N(x, y, t) = 1−Md(x, y, t) if 0 ≤ t < 1, and

N(x, y, t) = 0 if t ≥ 1.

It is routine to show that (X,Md, N, ·,♦) is an intuitionistic fuzzy metric

space, where ♦ is the t-conorm associated to ·, i.e. a♦b = 1−((1−a) ·(1−b))
for all a, b ∈ [0, 1].

Since every sequence of distinct points in X converges to 0 with respect to

τd and τd = τM , it follows that (X,Md, N, ·,♦) is G-complete and compact.

Now let T : X → X be given by Tx = x/2 for all x ∈ X. Then, for each

x, y ∈ X, with x 6= y, and t > 0 we obtain:

Md(Tx, Ty, t/2) =
t/2

(t/2) + max{x/2, y/2}

=
t

t+ max{x, y}
= Md(x, y, t).

Therefore, the condition of Corollary 8.4 are satisfied for k = 1/2.
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Furthermore, for each x, y ∈ X, with x 6= y, and t > 0 we obtain:

Md(Tx, Ty, t) =
t

t+ max{x/2, y/2}
>

t

t+ max{x, y}
= Md(x, y, t).

Therefore, the conditions of Corollary 8.6 are satisfied.

Finally, for x 6= y and k ∈ (0, 1), we have Md(Tx, Ty, k) < 1, and thus

N(Tx, Ty, k) > 0. Since N(Tx, Ty, 1) = N(x, y, 1) = 0, we conclude that

N(Tx, Ty, k) > N(x, y, 1) and N(Tx, Ty, 1) = N(x, y, 1).

We have shown that Corollaries 8.5 and 8.7 cannot be applied to the self-

map T.

Based in the concept of Cauchy sequence and complete fuzzy metric space

in the sense of George and Veeramani, Park introduce in [36] the following

definitions, which can be given in the sense of Definition 8.1 as follows.

Definition 8.5 [36]. Let (X,M,N, ∗,♦) be an intuitionistic fuzzy metric

space. Then

a) a sequence {xn}n in X is said to be Cauchy if for each ε > 0 and each

t > 0, there exists n0 ∈ N such that M(xn, xm, t) > 1− ε and N(xn, xm, t) <

ε, for all n,m ≥ n0.

b) (X,M,N, ∗,♦) is called complete if every Cauchy sequence is conver-

gent with respect to τ(M,N).

Proposition 8.5. A sequence in an intuitionistic fuzzy metric space (X,M,N, ∗,♦) is

a Cauchy sequence if and only if it is a Cauchy sequence in the fuzzy metric

space (X,M, ∗).

Proof. Clearly, every Cauchy sequence in (X,M,N, ∗,♦) is a Cauchy

sequence in (X,M, ∗).
Conversely, suppose that {xn}n is a Cauchy sequence in (X,M, ∗). Fix

ε ∈ (0, 1) and t > 0; then, there is n0 ∈ N such that M(xn, xm, t) > 1− ε for
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all n,m ≥ n0. Hence

N(xn, xm, t) ≤ 1−M(xn, xm, t) < ε

for all n,m ≥ n0. So limn→∞M(xn, xm, t) = 1 and limn→∞N(xn, xm, t) = 0.

Therefore (xn)n is a Cauchy sequence in (X,M,N, ∗,♦).�

Proposition 8.6. An intuitionistic fuzzy metric space (X,M,N, ∗,♦) is

complete if and only if the fuzzy metric space (X,M, ∗) is complete.

Proof. Apply Proposition 8.5 and Corollary 8.3, (3)⇐⇒ (4).�

8.3 Co-fuzzy metric spaces

Definition 8.6. A co-fuzzy metric space is a triple (X,N,♦) such that X

is a (nonempty) set, ♦ is a continuous t-conorm and N is a fuzzy set on

X ×X × [0,∞) satisfying the following conditions, for all x, y, z ∈ X :

(i) N(x, y, 0) = 1;

(ii) N(x, y, t) = 0 for all t > 0 if and only if x = y;

(iii) N(x, y, t) = N(y, x, t) for all t > 0;

(iv) N(x, y, t) �N(y, z, s) ≥ N(x, z, t+ s) for all t, s > 0;

(v) N(x, y, ) : [0,∞)→ [0, 1] is left continuous,

(vi) limt→∞N(x, y, t) = 0.

If (X,N,♦) is a co-fuzzy metric space, we will say that (N, �) (or simply

N) is a co-fuzzy metric on X.

If (X,M,N, ∗,♦) is an intuitionistic fuzzy metric space, (X,M, ∗) will

be called the associated fuzzy metric space, and (X,N,♦) the associated co-

fuzzy metric space.
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Given an co-fuzzy metric space (X,N,♦) we define the open ballBN(x, r, t),

for x ∈ X, r ∈ (0, 1), and t > 0, as the set BN(x, r, t) = {y ∈ X : N(x, y, t) <

r}. Obviously, x ∈ BN(x, r, t).

For each x ∈ X, 0 < r1 ≤ r2 < 1 and 0 < t1 ≤ t2, we have BN(x, r1, t1) ⊆
BN(x, r2, t2). Consequently, we may define a topology τN on X as

τN := {A ⊆ X : for each x ∈ A there are r ∈ (0, 1), t > 0, with BN(x, r, t) ⊆ A}

Remark 8.3. Let (X,M,N, ∗,♦) be an intuitionistic fuzzy metric space

and let (MN , ?) be the fuzzy metric constructed in Proposition 8.1. Then

τMN
⊆ τM , because for each x ∈ X, r ∈ (0, 1) and t > 0 we have, by The-

orem 8.1, that BM(x, r, t) ⊆ {y ∈ X : N(x, y, t) < r} = BMN
(x, r, t). It is

obvious that τMN
= τN , so τN is a metrizable topology on X.

Remark 8.4. If (X,N,♦) is a co-fuzzy metric space, then (X,MN , N, ?,♦)

is an intuitionistic fuzzy metric space, where a ? b = 1− [(1− a)♦(1− b)] for

all a, b ∈ [0, 1], where MN is the fuzzy set of Proposition 8.1.

Proposition 8.7. Let (X,M,N, ∗,♦) be an intuitionistic fuzzy metric space

and let τN be the topology on X induced by the co-fuzzy metric (N,♦). A

sequence {xn}n in X converges to x with respect to τN , limn→∞ xn = 0 if

and only if limn→∞N(x, xn, t) = 0.

Recall that a sequence {xn}n converges to x with respect to τ(M,N) if and

only if {xn}n converges to x with respect to τM . We also know that τN ⊆
τ(M,N) = τM , so, the convergence with respect to τM implies the convergence
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with respect to τN .

Next we present an example which shows that the convergence with re-

spect to τN does not imply the convergence with respect to τ(M,N) or τM , so

τM * τN in general.

Example 8.2. Let X := {0} ∪ { 1
4n

: n ∈ N} and let d be the metric on X

given by d(x, x) = 0 and d(x, y) = max{x, y} for all x, y ∈ X with x 6= y.

Define two fuzzy sets, M and N on X ×X × [0,∞) by:

M(x, y, 0) = 0, for all x, y ∈ X,
M(x, y, t) = 1

2
− d(x, y) if x 6= y and

M(x, y, t) = 1 if x = y,

N(x, y, t) = d(x, y), for all x, y ∈ X.

Then (X,M,N,∧,∨) is an intuitionistic fuzzy metric space. Let {xn}n be

the sequence in X such that xn = 1
4n

. It is clear that limn→∞N(xn, 0, t) = 0.

Nevertheless limn→∞M(xn, 0, t) = 1
2
.

Definition 8.7. Let (X,M,N, ∗,♦) be an intuitionistic fuzzy metric space.

Then

a) a sequence {xn}n in X is said to be N-Cauchy if for each ε > 0 and

each t > 0, there exists n0 ∈ N such that N(xn, xm, t) < ε for all n,m ≥ n0.

b) (X,M,N, ∗,♦) is called N-complete if every N-Cauchy sequence is con-

vergent with respect to τN .

Every Cauchy sequence in (X,M,N, ∗,♦) is an N-Cauchy sequence, al-

though the opposite is not true as Example 8.2 shows. On the other hand,

since τN ⊆ τ(M,N) = τM , it is easy to see that the completeness of (X,M,N, ∗,♦)

and the N-completeness are not related.

Definition 8.8. Let (X,N,♦) be a co-fuzzy metric space. A sequence {xn}n
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in X is said to be Cauchy if for each ε > 0 and each t > 0, there exists

n0 ∈ N such that N(xn, xm, t) < ε for all n,m ≥ n0. (X,N, �) is called

complete if every Cauchy sequence is convergent with respect to τN .

Let (X,M,N, ∗, �) be an intuitionistic fuzzy metric space, then a sequence

{xn}n is an N-Cauchy sequence if and only if it is a Cauchy sequence in the

associated co-fuzzy metric space (X,N,♦), and the intuitionistic fuzzy met-

ric space (X,M,N, ∗, �) is N-complete if and only if its associated co-fuzzy

metric space (X,N,♦) is complete. Moreover, it is easy to see that a se-

quence {xn}n in (X,N,♦) is a Cauchy sequence if and only if it is a Cauchy

sequence in (X,MN , ?).

8.4 N-contractions and fixed point theorems

Since τMN
= τN , we have that an intuitionistic fuzzy metric space (X,M,N, ∗,♦)

is N-complete if and only if its associated co-fuzzy metric space (X,N,♦) is

complete, if and only if the fuzzy metric space (X,MN , ?) is complete, if

and only if the intuitionistic fuzzy metric space (X,MN , N, ?,♦) is complete.

So, we can give some fixed point theorems satisfaying contraction conditions

with respect to N .

Theorem 8.2. Let (X,M,N, ∗,♦) be an N-complete intuitionistic fuzzy met-

ric space such that ♦ ≤ ♦n, for some n ∈ N, and let T : X → X a self-map

satisfying

N(Tx, Ty, t) ≤ kN(x, y, t)

for all x, y ∈ X and t > 0 (with k ∈ (0, 1)). Then T has a unique fixed point.
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Proof. It is clear that (X,MN , ?) is a complete fuzzy metric space satis-

faying ? ≥ ∗n, for some n ∈ N. Moreover, the self mapping T satisfies

MN(Tx, Ty, t) > 1− k + kMN(x, y, t)

for all x, y ∈ X and t > 0. By Theorem 7.1, T has a unique fixed point.�

Then, by Theorem 7.1 and Theorem 8.2 we have the following theorem

Theorem 8.3. Let (X,M,N, ∗,♦) be an intuitionistic fuzzy metric space,

and let T : X → X a self-map satisfying

(1) M(Tx, Ty, t) ≥ 1− k + kM(x, y, t)

or

(2) N(Tx, Ty, t) ≤ kN(x, y, t)

for all x, y ∈ X and t > 0 (with k ∈ (0, 1)). If (X,M,N, ∗, �) is a complete

intuitionistic fuzzy metric space satisfying (1), with ∗ ≥ ∗n, for some n ∈ N
or, if (X,M,N, ∗,♦) is a N-complete intuitionistic fuzzy metric space satis-

fying (2), with ♦ ≤ ♦n, for some n ∈ N,then T has a unique fixed point.

Definition 8.9. Let (X,M,N, ∗,♦) be an intuitionistic fuzzy metric space.

Then

a) a sequence {xn}n in X is said to be NG-Cauchy if for each ε > 0,

p ∈ N and t > 0, there exists n0 ∈ N such that N(xn, xn+p, t) < ε for all

n ≥ n0.

b) (X,M,N, ∗,♦) is called NG-complete if every NG-Cauchy sequence is

convergent with respect to τN .

Every G-Cauchy sequence is an NG-Cauchy sequence, although the oppo-

site is not true. On the other hand, it is easy to see that the G-completeness
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and the NG-completeness are not related.

Definition 8.10. Let (X,N,♦) be a co-fuzzy metric space. A sequence {xn}n
in X is said to be G-Cauchy if for each ε > 0, p ∈ N and each t > 0, there

exists n0 ∈ N such that N(xn, xn+p, t) < ε for all n ≥ n0. (X,N,♦) is called

G-complete if every G-Cauchy sequence is convergent with respect to τN .

Let (X,M,N, ∗, �) be an intuitionistic fuzzy metric space, then a sequence

{xn}n is a NG-Cauchy sequence if and only if it is a G-Cauchy sequence in

the associated co-fuzzy metric space (X,N,♦), and the intuitionistic fuzzy

metric space (X,M,N, ∗,♦) is NG-complete if and only if its associated co-

fuzzy metric space (X,N,♦) is G-complete. Moreover it is easy to see that

a sequence {xn}n in (X,N,♦) is a G-Cauchy sequence if and only if it is a

G-Cauchy sequence in (X,MN , ?).

Since τMN
= τN , we have that an intuitionistic fuzzy metric space (X,M,N, ∗,♦)

is NG-complete if and only if its associated co-fuzzy metric space (X,N,♦)

is G-complete if and only if the fuzzy metric space (X,MN , ?) is G-complete

if and only if the intuitionistic fuzzy metric space (X,MN , N, ?,♦) is G-

complete. So, we give some fixed point theorems satisfaying contraction

conditions with respect to N .

Theorem 8.4. Let (X,M,N, ∗,♦) be an NG-complete intuitionistic fuzzy

metric space, and let T : X → X a self-map satisfying

N(Tx, Ty, t) ≤ kN(x, y, t)

for all x, y ∈ X and t > 0 (with k ∈ (0, 1)). Then T has a unique fixed point.

Proof. It is clear that (X,MN , ?) is a G-complete fuzzy metric space.

Moreover, the self-map T satisfies
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MN(Tx, Ty, t) > 1− k + kMN(x, y, t)

for all x, y ∈ X and t > 0. By Corollary 6.4 T has a unique fixed point.�

Then, by Corollary 6.4 and Theorem 8.4 we have the following theorem

Theorem 8.5. Let (X,M,N, ∗,♦) be an intuitionistic fuzzy metric space,

and let T : X → X a self-map satisfying

(1) M(Tx, Ty, t) ≥ 1− k + kM(x, y, t)

or

(2) N(Tx, Ty, t) ≤ kN(x, y, t)

for all x, y ∈ X and t > 0 (with k ∈ (0, 1)). If (X,M,N, ∗, �) is a G-

complete intuitionistic fuzzy metric space satisfying (1), or, if (X,M,N, ∗,♦)

is an NG-complete intuitionistic fuzzy metric space satisfying (2), then T has

a unique fixed point.

Theorem 8.6. Let (X,M,N, ∗,♦) be an NG-complete intuitionistic fuzzy

metric space, and let T : X → X a self-map satisfying

N(Tx, Ty, kt) ≤ N(x, y, t)

for all x, y ∈ X and t > 0 (with k ∈ (0, 1)). Then T has a unique fixed point.

Proof. It is clear that (X,MN , ?) is a G-complete fuzzy metric space,

moreover the self-map satisfies

MN(Tx, Ty, kt) ≥MN(x, y, t)
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f or all x, y ∈ X and t > 0. By Theorem 1.2 T has a unique fixed point.

So, by Corollary 8.4 and Theorem 8.6 we have the following theorem

Theorem 8.7. Let (X,M,N, ∗,♦) be an intuitionistic fuzzy metric space,

and let T : X → X a self-map satisfying

(1) M(Tx, Ty, kt) ≥M(x, y, t)

or

(2) N(Tx, Ty, kt) ≤ N(x, y, t)

for all x, y ∈ X and t > 0 (with k ∈ (0, 1)). If (X,M,N, ∗,♦) is a G-

complete intuitionistic fuzzy metric space satisfying (1) or (X,M,N, ∗, �)
is an NG-complete intuitionistic fuzzy metric space satisfying (2), T has a

unique fixed point.

The notion of a non-Archimedean fuzzy metric space was introduced by

Sapena [49]. We gave in Chapter 5 a natural generalization of this concept

to the quasi-metric setting. Next we give a natural generalization of this

concept to the intuitionistic fuzzy metric setting.

Definition 8.11. An intuitionistic fuzzy metric space (X,M,N, ∗,♦) such

that (M, ∗) is an non-Archimedean fuzzy metric on X and N(x, z, t) 6

max{N(x, y, t), N(y, z, t)} for all x, y, z ∈ X, t > 0, is called a non-Archimedean

intuitionistic fuzzy metric space, and (M,N, ∗,♦) is called a non-Archimedean

intuitionistic fuzzy metric on X.

Definition 8.12. A co-fuzzy metric space (X,N,♦) such that N(x, z, t) 6

max{N(x, y, t), N(y, z, t)} for all x, y, z ∈ X, t > 0, is called a non-Archimedean
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co-fuzzy metric space, and (N,♦) is called a non-Archimedean co-fuzzy met-

ric on X.

It is clear that if (X,M, ∗) is a non-Archimedean fuzzy metric space,

then (X,M, 1 − M, ∗,♦) is a non-Archimedan intuitionistic fuzzy metric

space, where a♦b = 1 − [(1 − a) ∗ (1 − b)] for all a, b ∈ [0, 1]. Conversely, if

(X,M,N, ∗,♦) is a non-Archimedean intuitionistic fuzzy metric space, then

(X,M, ∗) is a non-Archimedean fuzzy metric space. In the same way, if

(X,N,♦) is a non-Archimedan co-fuzzy metric space, then (X,MN , N, ?,♦)

is a non-Archimedean intuitionistic fuzzy metric space, where a ? b = 1 −
[(1 − a)♦(1 − b)] for all a, b ∈ [0, 1]. Conversely, if (X,M,N, ∗,♦) is a

non-Archimedean intuitionistic fuzzy metric space, then (X,N,♦) is a non-

Archimedean co-fuzzy metric space.

Theorem 8.8. Let (X,M,N, ∗,♦) be an N-complete non-Arquimedean in-

tuitionistic fuzzy metric space, and let T : X → X a self-map satisfying

N(Tx, Ty, t) ≤ kN(x, y, t)

for all x, y ∈ X and t > 0 (with k ∈ (0, 1)). Then T has a unique fixed point.

Proof. It is clear that (X,MN , ?) is a complete non-Arquimedean fuzzy

metric space. Moreover, the self-map T satisfies

MN(Tx, Ty, t) > 1− k + kMN(x, y, t)

for all x, y ∈ X and t > 0. By Corollary 6.5 T has a unique fixed point.�

Then, by Corollary 6.5 and Theorem 8.8 we have the following theorem

Theorem 8.9. Let (X,M,N, ∗,♦) be a non-Archimedean intuitionistic fuzzy

metric space, and let T : X → X a self-map satisfying



8.4. N-contractions and Fixed point theorems 115

(1) M(Tx, Ty, t) ≥ 1− k + kM(x, y, t)

or

(2) N(Tx, Ty, t) ≤ kN(x, y, t)

for all x, y ∈ X and t > 0 (with k ∈ (0, 1)). If (X,M,N, ∗,♦) is a com-

plete intuitionistic fuzzy metric space satisfying (1), or, if (X,M,N, ∗,♦) is

an N-complete intuitionistic fuzzy metric space satisfying (2),then T has a

unique fixed point.

Remark 8.5. Note that conditions (g) and (m) are not necesary in the con-

text of Theorems 8.2, 8.3, 8.4, 8.5, 8.8 and 8.9.

We present an example for which Corollary 8.4 cannot be applied to de-

duce the existence of a unique fixed point, and nevertheless, Theorem 8.7

can be applied.

Example 8.3. Let X := { 1
2n

: n ∈ N} and let d be the metric on X given

by d(x, x) = 0 and d(x, y) = max{x, y} for all x, y ∈ X with x 6= y. Define

two fuzzy sets, M and N on X ×X × [0,∞) by:

M(x, y, 0) = 0,

M(x, y, t) = 1
2
− d(x, y) if x 6= y and, 0 < t ≤ 1,

M(x, y, t) = 1− d(x,y)
t

if x 6= y and, t > 1,

M(x, x, t) = 1,

N(x, y, 0) = 1,

N(x, y, t) = d(x, y),if x 6= y and 0 < t ≤ 1,

N(x, y, t) = d(x,y)
t

,if x 6= y and t > 1,

N(x, x, t) = 0.

It is routine to show that (X,M,N,∧,∨) is an intuitionistic fuzzy metric

space. Since every sequence of dictinct points in X conveges to 0 with respec
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to τd, and τN = τd, it follws that (X,M,N,∧,∨) is NG-complete.

Now let T : X → X be given by Tx = x/2 for all x ∈ X. An easy

computation shows that there is not a k ∈ (0, 1) such that M(Tx, Ty, kt) ≥
M(x, y, t) for all x, y ∈ X and t > 0, however N(Tx, Ty, t/2) ≤ N(x, y, t)

for all x, y ∈ X and t > 0. Therefore, the conditions of previous theorem are

satisfied for k = 1/2. Then T has a unique fixed point which is, obviously,

x = 0.

8.5 Intuitionistic fuzzy quasi-metric spaces (ifqm-

spaces) and fixed point theorems

We generalize the notions of intuitionistic fuzzy metric space by Alaca,

Turkoglu and Yildiz to the quasi-metric setting and we present intuition-

istic fuzzy quasi-metric versions of the Banach contraction principle. We

apply this approach to deduce the existence of solution for the recurrence

equations associated to the analysis of Quicksort algorithm in the framework

of intuitionistic fuzzy quasi-metric spaces (ifqm-spaces, in short).

Definition 8.13. An intuitionistic fuzzy quasi-metric space (in the following,

an ifqm-space) is a 5-tuple (X,M,N, ∗,♦) such that X is a (nonempty) set,

∗ is a continuous t-norm, ♦ is a continuous t-conorm and M,N are fuzzy

sets on X×X×[0,∞) satisfying the following conditions, for all x, y, z ∈ X :

(a) M(x, y, t) +N(x, y, t) ≤ 1 for all t ≥ 0;

(b) M(x, y, 0) = 0;

(c) x = y if and only if M(x, y, t) = M(y, x, t) = 1 for all t > 0;

(d) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s) for all t, s ≥ 0;

(e) M(x, y, ) : [0,∞)→ [0, 1] is left continuous;



8.5. Ifqm-spaces 117

(f) N(x, y, 0) = 1;

(g) x = y if and only if N(x, y, t) = N(y, x, t) = 0 for all t > 0;

(h) N(x, y, t)♦N(y, z, s) ≥ N(x, z, t+ s) for all t, s ≥ 0;

(i) N(x, y, ) : [0,∞)→ [0, 1] is left continuous.

In this case we say that (M,N, ∗,♦) is an intuitionistic fuzzy quasi-metric

(in the following, an ifqm) on X.

If in addition, M andN satisfy thatM(x, y, t) = M(y, x, t) andN(x, y, t) =

N(y, x, t) for all x, y ∈ X and t > 0, then (M,N, ∗,♦) is called an intuition-

istic fuzzy metric on X and (X,M,N, ∗,♦) is called an intuitionistic fuzzy

metric space.

Note that the authors of [2] require conditions limt→∞M(x, y, t) = 1 and

limt→∞N(x, y, t) = 0 in their notion of intuitionistic fuzzy metric space.

Remark 8.6. It is clear that if (X,M,N, ∗,♦) is an ifqm-space, then (X,M, ∗)
is a fuzzy quasi-metric space. Conversely, if (X,M, ∗) is a fuzzy quasi-metric

space, then (X,M, 1−M, ∗,♦) is an ifqm-space, where a♦b = 1− [(1− a) ∗
(1− b)] for all a, b ∈ [0, 1].

If (M,N, ∗,♦) is an ifqm on X, then (M−1, N−1, ∗,♦) is also an ifqm on

X, where M−1 is the fuzzy set in X ×X × [0,∞) defined by M−1(x, y, t) =

M(y, x, t) and N−1 is the fuzzy set in X×X×[0,∞) defined by N−1(x, y, t) =

N(y, x, t). Moreover, if we define M i as above and denote by N s the fuzzy

set in X × X × [0,∞) given by N s(x, y, t) = max{N(x, y, t), N−1(x, y, t)}
then (M i, N s, ∗,♦) is an intuitionistic fuzzy metric on X.

In order to construct a suitable topology on an ifqm-space (X,M,N, ∗,♦)

it seems natural to consider “balls” B(x, r, t) defined, similarly to [36] and

[2], by:

B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r,N(x, y, t) < r}
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for all x ∈ X, r ∈ (0, 1) and t > 0.

Then, one can prove, as in [36], that the family of sets of the form

{B(x, r, t) : x ∈ X, r ∈ (0, 1), t > 0} is a base for a topology τ(M,N) on

X.

The following result is analogous to Proposition 1 of [25].

Proposition 8.8. Let (X,M,N, ∗,♦) be an ifqm-space. Then, for each

x ∈ X, r ∈ (0, 1), t > 0, we have B(x, r, t) = BM(x, r, t).

Proof. It is clear that B(x, r, t) ⊆ BM(x, r, t).

Now suppose that y ∈ BM(x, r, t). Then M(x, y, t) > 1− r, so, by condi-

tion (a) of Definition 8.10, we have:

N(x, y, t) ≤ 1−M(x, y, t) < 1− (1− r) = r.

Consequently y ∈ B(x, r, t). This concludes the proof.�

From Proposition 8.8 we immediately deduce the following results.

Corollary 8.8. Let (X,M,N, ∗,♦) be an ifqm-space. Then τ(M,N) = τM ,

τ(M−1,N−1) = τM−1 and τ(M i,Ns) = τM i on X.

Corollary 8.9. Let {xn}n be a sequence in an ifqm-space (X,M,N, ∗,♦)

and let x ∈ X. Then, the following statements are equivalent.

(1) The sequence {xn}n converges to x with respect to τ(M i,Ns).

(2) The sequence {xn}n converges to x with respect to τM i .

(3) limn→∞M
i(x, xn, t) = 1 for all t > 0.

(4) limn→∞M
i(x, xn, t) = 1 and limn→∞N

s(x, xn, t) = 0 for all t > 0.

Corollary 8.10. Let (X,M,N, ∗,♦) be an ifqm-space. Then (X, τ(M,N)) is a

quasi-metrizable topological space and (X, τ(M i,Ns)) is a metrizable topological
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space.

Definition 8.14. A co-fuzzy quasi-metric space is a triple (X,N,♦) such

that X is a (nonempty) set, � is a continuous t-conorm and N is a fuzzy set

on X ×X × [0,∞) satisfying the following conditions, for all x, y, z ∈ X :

(i) N(x, y, 0) = 1;

(ii) x = y if and only if N(x, y, t) = N(y, x, t) = 0 for all t > 0;

(iii) N(x, y, t)♦N(y, z, s) ≥ N(x, z, t+ s) for all t, s ≥ 0;

(iv) N(x, y, ) : [0,∞)→ [0, 1] is left continuous.

If (X,N,♦) is a co-fuzzy quasi-metric space, we will say that (N, �) (or

simply N) is a co-fuzzy quasi-metric on X.

If (X,M,N, ∗,♦) is an intuitionistic fuzzy quasi-metric space, we will

called to (X,M, ∗) the associated cfuzzy quasi-metric space, and to (X,N,♦)

the associated co-fuzzy quasi-metric space.

Given a co-fuzzy quasi-metric space (X,N,♦) we define the open ball

BN(x, r, t), for x ∈ X, r ∈ (0, 1), and t > 0, as the set BN(x, r, t) = {y ∈ X :

N(x, y, t) < r}. Obviously, x ∈ BN(x, r, t).

For each x ∈ X, 0 < r1 ≤ r2 < 1 and 0 < t1 ≤ t2, we have BN(x, r1, t1) ⊆
BN(x, r2, t2). Consequently, we may define a topology τN on X as

τN := {A ⊆ X : for each x ∈ A there are r ∈ (0, 1), t > 0, with BN(x, r, t) ⊆ A}

Proposition 8.9. Let (X,M,N, ∗,♦) be an ifqm-space. Then the pair (MN , ?)

is a fuzzy quasi-metric on X where MN is defined on X × X × [0,∞) by
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MN(x, y, t) = 1 − N(x, y, t), and ? is the continuous t-norm defined by

a ? b = 1− [(1− a) � (1− b)], for all a, b ∈ [0, 1].

Remark 8.7. Let (X,M,N, ∗,♦) be an ifqm-space and let (MN , ?) be the

fuzzy quasi-metric constructed in Proposition 8.9. Then τMN
⊆ τM , because

for each x ∈ X, r ∈ (0, 1) and t > 0 we have, by Proposition 8.8, that

BM(x, r, t) ⊆ {y ∈ X : N(x, y, t) < r} = BMN
(x, r, t). It is obvious that

τMN
= τN , so τN is a quasi-metrizable topology on X.

Remark 8.8. It is clear that if (X,M,N, ∗,♦) is an ifqm-space, then (X,N,♦)

is a co-fuzzy quasi-metric space. Conversely, if (X,N,♦) is a co-fuzzy

quasi-metric space, then (X,MN , N, ?,♦) is an ifqm-space, where a ? b =

1− [(1− a)♦(1− b)] for all a, b ∈ [0, 1].

Remark 8.9. If (X,M,N, ∗,♦) is an ifqm-space and M satisfies the sym-

metry axiom, then (X,M1, N1, ∗,♦∗) is an intuitionistic fuzzy metric space,

where M1 = M , N1 = 1 − M and a♦∗b = 1 − [(1 − a) ∗ (1 − b)] for all

a, b ∈ [0, 1]. Moreover τM,N = τM1N1. Reciprocally if (X,M,N, ∗,♦) is

an ifqm-space and N satisfies the symmetry axiom then (X,M2, N2, ?,♦)

is an intuitionistic fuzzy metric space, where M2 = MN , N2 = N and

a?b = 1− [(1−a)♦(1−b)], for all a, b ∈ [0, 1]. Moreover τN = τM2N2 ⊆ τM,N ,

so, in this case, τM,N is a metrizable topology on X.

Next we present some fixed point theorems in the framework of ifqm-

spaces.

Definition 8.15. A sequence {xn}n in an ifqm-space (X,M,N, ∗,♦) is called

sequence if for each ε ∈ (0, 1), t > 0, there exists n0 ∈ N such that M(xn, xm, t) >

1− ε, and N(xn, xm, t) < ε, for all n,m > n0.
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Proposition 8.10. A sequence in an ifqm-space (X,M,N, ∗,♦) is a Cauchy

sequence if and only if it is a Cauchy sequence in the fuzzy quasi-metric space

(X,M, ∗).

Proof. Clearly, every Cauchy sequence in (X,M,N, ∗,♦) is a Cauchy

sequence in (X,M, ∗).
Conversely, suppose that {xn}n is a Cauchy sequence in (X,M, ∗). Fix

ε ∈ (0, 1) and t > 0; then, there is n0 ∈ N such that M i(xn, xm, t) > 1 − ε
for all n,m ≥ n0. Hence

N s(xn, xm, t) ≤ 1−M i(xn, xm, t) < ε

for all n,m ≥ n0. So limn→∞M
i(xn, xm, t) = 1 and limn→∞N

s(xn, xm, t) = 0.

Therefore {xn}n is a Cauchy sequence in (X,M,N, ∗,♦).�

It is proved in Propositio 8.6 that an intuitionistic fuzzy metric space

(X,M,N, ∗,♦) is complete if and only if (X,M, ∗) is complete.

Definition 8.16. An ifqm-space (X,M,N, ∗,♦) is called bicomplete if the

intuitionistic fuzzy metric space (X,M i, N s, ∗,♦) is complete.

Proposition 8.11. An ifqm-space (X,M,N, ∗,♦) is bicomplete if and only

if the fuzzy quasi-metric space (X,M, ∗) is bicomplete.

Definition 8.17. A sequence {xn}n in an ifqm-space (X,M,N, ∗,♦) is called

N-Cauchy if for each ε ∈ (0, 1), t > 0, there exists n0 ∈ N such that

N(xn, xm, t) < ε, for all n,m > n0.

Definition 8.18. An ifqm-space (X,M,N, ∗,♦) is called N-bicomplete if ev-

ery N-Cauchy sequence is convergent with respect to τNs.
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Definition 8.19. A sequence {xn}n in a co-fuzzy quasi-metric space (X,N,♦)

is called Cauchy if for each ε > 0 and each t > 0, there exists n0 ∈ N such

that N(xn, xm, t) < ε for all n,m ≥ n0.

Definition 8.20. A co-fuzzy quasi-metric space (X,N,♦) is called bicom-

plete if every Cauchy sequence is convergent with respect to τNs.

Let (X,M,N, ∗,♦) be an intuitionistic fuzzy quasi-metric space, then a

sequence {xn}n is a N-Cauchy sequence if and only if it is a Cauchy sequence

in the associated co-fuzzy quasi-metric space (X,N,♦), and the intuition-

istic fuzzy quasi-metric space (X,M,N, ∗,♦) is N-bicomplete if and only if

its associated co-fuzzy quasi-metric space (X,N,♦) is bicomplete. Moreover,

it is easy to see that a sequence {xn}n in the co-fuzzy quasi-metric spaces

(X,N,♦) is a Cauchy sequence if and only if it is a Cauchy sequence in its

associated fuzzy quasi-metric space (X,MN , ?).

Since τMN
= τN , we have that an intuitionistic fuzzy quasi-metric space

(X,M,N, ∗,♦) is N-bicomplete if and only if its associated co-fuzzy quasi-

metric space (X,N,♦) is bi-complete if and only if the fuzzy quasi-metric

space (X,MN , ?) is bicomplete if and only if the intuitionistic fuzzy quasi-

metric space (X,MN , N, ?,♦) is bicomplete.

Theorem 8.10. Let (X,M,N, ∗,♦) be an intuitionistic fuzzy quasi-metric

space, and let T : X → X a self map satisfying

(1) M(Tx, Ty, t) ≥ 1− k + kM(x, y, t)

or

(2) N(Tx, Ty, t) ≤ kN(x, y, t)

for all x, y ∈ X and t > 0 (with k ∈ (0, 1)). If (X,M,N, ∗,♦) is a bicom-

plete intuitionistic fuzzy metric space satisfying (1), with ∗ ≥ ∗n, for some
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n ∈ N or, if (X,M,N, ∗,♦) is a N-bicomplete intuitionistic fuzzy metric

space satisfying (2), with ♦ ≤ ♦n, for some n ∈ N, then T has a unique fixed

point.

Proof. (X,M i, N s, ∗, �) is an intuitionistic fuzzy metric space and T a

self-mapping satisfying the conditions of Theorem 8.3 Apply. Theorem 8.3.�

Definition 8.21. A sequence {xn}n in an ifqm-space (X,M,N, ∗,♦) is called

G-Cauchy if {xn}n is a G-Cauchy sequence in (X,M i, N s, ∗,♦).

Definition 8.22. An ifqm-space (X,M,N, ∗,♦) is called G-bicomplete if

(X,M i, N s, ∗,♦) is a G-complete intuitionistic fuzzy metric space.

Proposition 8.12. A sequence in an ifqm-space (X,M,N, ∗,♦) is a G-

Cauchy sequence if and only if it is a G-Cauchy sequence in the fuzzy quasi-

metric space (X,M, ∗).

Proposition 8.13. An ifqm-space (X,M,N, ∗,♦) is G-bicomplete if and

only if the fuzzy quasi-metric space (X,M, ∗) is G-bicomplete.

Definition 8.23. A sequence {xn}n in an ifqm-space (X,M,N, ∗,♦) is called

NG-Cauchy if {xn}n is an NG-Cauchy sequence in (X,M i, N s, ∗,♦).

Definition 8.24. An ifqm-space (X,M,N, ∗,♦) is called NG-bicomplete if

(X,M i, N s, ∗,♦) is an NG-complete intuitionistic fuzzy metric space.

Let (X,N,♦) be a co-fuzzy quasi-metric space. A sequence {xn}n in X is

said to be G-Cauchy if {xn}n is a G-Cauchy sequence in (X,N s,♦). (X,N,♦)

is called G-bicomplete if every G-Cauchy sequence is convergent with respect

to τNs . Let (X,M,N, ∗,♦) be an intuitionistic fuzzy quasi-metric space, then
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a sequence {xn}n is a NG-Cauchy sequence if and only if it is a G-Cauchy

sequence in the associated co-fuzzy quasi-metric space (X,N,♦), and the in-

tuitionistic fuzzy quasi-metric space (X,M,N, ∗,♦) is NG-bicomplete if and

only if its associated co-fuzzy quasi-metric space (X,N,♦) is G-bicomplete.

Moreover, it is easy to see that a sequence {xn}n in the co-fuzzy quasi-metric

space (X,N,♦) is a G-Cauchy sequence if and only if it is a G-Cauchy se-

quence in its associated fuzzy quasi-metric space (X,MN , ?)

Since τMN
= τN , we have that an intuitionistic fuzzy quasi-metric space

(X,M,N, ∗,♦) is NG-bicomplete if and only if its associated co-fuzzy quasi-

metric space (X,N,♦) is G-bicomplete if and only if the fuzzy quasi-metric

space (X,MN , ?) is G-bicomplete if and only if the intuitionistic fuzzy quasi-

metric space (X,MN , N, ?,♦) is G-bicomplete. So, we give some fixed point

theorems satisfaying contraction conditions in N or M .

Theorem 8.11. Let (X,M,N, ∗,♦) be an intuitionistic fuzzy quasi-metric

space, and let T : X → X a self-map satisfying

(1) M(Tx, Ty, t) ≥ 1− k + kM(x, y, t)

or

(2) N(Tx, Ty, t) ≤ kN(x, y, t)

for all x, y ∈ X and t > 0 (with k ∈ (0, 1)). If (X,M,N, ∗,♦) is a G-

bicomplete intuitionistic fuzzy metric space satisfying (1), or, if (X,M,N, ∗,♦)

is an NG-bicomplete intuitionistic fuzzy metric space satisfying (2), then T

has a unique fixed point.

Proof. (X,M i, N s, ∗,♦) is an intuitionistic fuzzy metric space and T a

self-mapping satisfying the conditons of Theorem 8.5. Apply Theorem 8.5.�
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Theorem 8.12. Let (X,M,N, ∗,♦) be an intuitionistic fuzzy quasi- metric

space, and let T : X → X a self-map satisfying

(1) M(Tx, Ty, kt) ≥M(x, y, t) and limt→∞M(x, y, t) = 1,

or

(2) N(Tx, Ty, kt) ≤ N(x, y, t) and limt→∞N(x, y, t) = 0,

for all x, y ∈ X and t > 0 (with k ∈ (0, 1)). If (X,M,N, ∗,♦) is a G-

bicomplete intuitionistic fuzzy metric space satisfying (1) or (X,M,N, ∗, �)
is an NG-bicomplete intuitionistic fuzzy metric space satisfying (2), then T

has a unique fixed point.

Proof. (X,M i, N s, ∗, �) is an intuitionistic fuzzy metric space and T a

self-map satisfying the conditons of Theorem 8.7. Apply Theorem 8.7.�

The notion of a non-Archimedean fuzzy metric space was introduced by

Sapena [49]. We gave in Chapter 4 a natural generalization of this concept to

the quasi.metric setting. Nex we give a natural generalization of this concept

to the intuitionistic fuzzy quasi-metric setting.

Definition 8.25. An ifqm-space (X,M,N, ∗,♦) such that (M, ∗) is an non-

Archimedean fuzzy quasi-metric on X and N(x, z, t) 6 max{N(x, y, t), N(y, z, t)}
for all x, y, z ∈ X, t > 0, is called a non-Archimedean ifqm-space, and

(M,N, ∗,♦) is called a non-Archimedean ifqm on X.

Definition 8.26. A co-fuzzy quasi-metric space (X,N,♦) such that N(x, z, t) 6

max{N(x, y, t), N(y, z, t)} for all x, y, z ∈ X, t > 0, is called a non-Archimedan

co-fuzzy quasi-metric space, and (N, �) is called a non-Archimedan co-fuzzy

quasi-metric on X.
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It is clear that if (X,M, ∗) is a non-Archimedean fuzzy quasi-metric

space, then (X,M, 1−M, ∗, �) is a non-Archimedan intuitionistic fuzzy quasi-

metric space, where a♦b = 1 − [(1 − a) ∗ (1 − b)] for all a, b ∈ [0, 1]. Con-

versely, if (X,M,N, ∗,♦) is a non-Archimedean intuitionistic fuzzy quasi-

metric space, then (X,M, ∗) is a non-Archimedean fuzzy quasi-metric space.

In the same way, if (X,N,♦) is a non-Archimedan co-fuzzy quasi-metric

space, then (X,MN , N, ?,♦) is a non-Archimedean intuitionistic fuzzy quasi-

metric space, where a?b = 1−[(1−a)♦(1−b)] for all a, b ∈ [0, 1]. Conversely, if

(X,M,N, ∗,♦) is a non-Archimedean intuitionistic fuzzy quasi-metric space,

then (X,N,♦) is a non-Archimedean co-fuzzy quasi-metric space.

Theorem 8.13. Let (X,M,N, ∗,♦) be a non-Archimedean intuitionistic

fuzzy quasi-metric space, and let T : X → X a self-map satisfying

(1) M(Tx, Ty, t) ≥ 1− k + kM(x, y, t)

or

(2) N(Tx, Ty, t) ≤ kN(x, y, t)

for all x, y ∈ X and t > 0 (with k ∈ (0, 1)). If (X,M,N, ∗,♦) is a bicom-

plete intuitionistic fuzzy metric space satisfying (1), or, if (X,M,N, ∗,♦) is

an N-bicomplete intuitionistic fuzzy metric space satisfying (2), then T has

a unique fixed point.

Proof. (X,M i, N s, ∗,♦) is a non-Archimedean intuitionistic fuzzy met-

ric space and T a self-map satisfying the conditions of Theorem 8.9. Apply

Theorem 8.9.�

Example 8.4. Let (X, d) be a quasi-metric space. It is immediate to show

that d is a non-Archimedean quasi-metric if and only if (Md, 1−Md,·,♦) is
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a non-Archimedean ifqm, where a♦b = 1− [(1−a) ·(1−b)] for all a, b ∈ [0, 1].

The following result, permits us to construct in an easy way a non-

Archimedean ifqm from a bounded non-Archimedean quasi-metric d, which

is different from the ifqm as defined in Example 8.4.

Proposition 8.14. Let d be a non-Archimedean quasi-metric on a set X

such that d(x, y) ≤ 1 for all x, y ∈ X. Let

Md1(x, y, 0) = 0 for all x, y ∈ X,

Md1(x, y, t) = 1− d(x, y) for all x, y ∈ X and t > 0,

Nd1(x, y, 0) = 1 for all x, y ∈ X,

Nd1(x, y, t) = d(x, y) for all x, y ∈ X and t > 0,

Then the following statements hold.

(1) (Md1, Nd1, ∗,♦) is a non-Archimedean ifqm on X, where by ∗ we de-

note any continuous t-norm and by ♦ we denote the t-conorm associated to

∗, and given by a♦b = 1− [(1− a) ∗ (1− b)], for all a, b ∈ [0, 1]

(2) For each x, y ∈ X, t ∈ (0, 1) and ε ∈ (0, 1) :

M(x, y, t) > 1− ε and N(x, y, t) < ε⇔ d(x, y) < ε⇔M(x, y, t) > 1− ε

(3) τ(Md1,Nd1) = τd = τMd1
, and τ((Md1)−1,(Nd1)−1) = τd−1 = τ(Md1)−1

(4) A sequence in X is Cauchy in (X,Md1, Nd1, ∗,♦) if and only if it is

Cauchy in (X, d).

(5) (X,Md1, Nd1, ∗,♦) is bicomplete if and only if (X, d) is bicomplete.

8.6 Application to recurrence equations of Quick-

sort

Next we construct an example of bicomplete non-Archimedean ifqm on Σ∞

(see Section 5.4) that are related to the Baire quasi-metric defined in Section
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5.4 and for which Theorem 8.13 applies.

Remark 8.10. Let dv be the Baire quasi-metric on Σ∞. Then dv is a

non-Archimedean quasi-metric on Σ∞ and dv(x, y) ≤ 1 for all x, y ∈ Σ∞.

Let

Mdv1(x, y, 0) = 0 for all x, y ∈ Σ∞,

Mdv1(x, y, t) = 1− dv(x, y) for all x, y ∈ Σ∞ and t > 0,

Ndv1(x, y, 0) = 1 for all x, y ∈ Σ∞,

Ndv1(x, y, t) = dv(x, y) for all x, y ∈ Σ∞ and t > 0.

It follows from Proposition 8.14 that (Σ∞,Mdv1, Ndv1, ∗,♦) is a bicomplete

non-Archimedean ifqm-space, where ∗ is any continuous t-norm and ♦ is its

associated continuous t-conorm.

Next we apply Remark 8.10 and Theorem 8.13 to the complexity analysis

of Quicksort algorithm.

Example 8.5. Let Φ : Σ∞ → Σ∞ be the functional associated to the recur-

rence equation of the complexity analysis of Quicksort algorithm (Example

5.3). Next we show that Φ is a contraction (in the sense of Theorem 8.13)

on the bicomplete ifqm-space (Σ∞,Mdv1, Ndv1, ∗,♦), with contraction con-

stant, k = 1/2.

From Example 5.3 we have that `(Φ(x) u Φ(y)) ≥ `(x u y) + 1 for all

x, y ∈ Σ∞. So we have:

Mdv1(Φ(x),Φ(y), t) = 1− 2−`(ΦxuΦy)

≥ 1− 2−`(Φ(xuy)) = 1− 2−(`(xuy)+1)

= 1− 1

2
2−`(xuy) = 1− 1

2
+

1

2
Mdv1(x, y, t)

for all t > 0.



8.5. Ifqm-spaces 129

Therefore Φ is a contraction on the bicomplete non-Archimedean ifqm-

space (Σ∞,Mdv1, Ndv1, ∗,♦) with contraction constant 1/2 . So, by Theorem

8.13, Φ has a unique fixed point z = z1z2..., which is obviously the unique

solution to the recurrence equation T, i.e. z1 = 0 and

zn =
2(n− 1)

n
+
n+ 1

n
zn−1

for all n ≥ 2.
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Chapter 9

Contraction maps on fuzzy

complexity spaces and expoDC

algorithms

9.1 Introduction

In Chapter 3 we discussed the complexity analysis of expoDC algorithms

by using techniques of Denotational Semantics. To this end we constructed

a suitable quasi-metric space, showing that the recurrence inequation as-

sociated to an expoDC algorithm gives rise to a contraction map on this

quasi-metric space.

On the other hand, the extra general framework of fuzzy quasi-metric

spaces provides extra information about the computational process because,

in this context, the measurement of the distance from a ”word” x to another

”word” y, automatically indicates if x is a prefix of y or not. In this chap-

ter we discuss the complexity analysis of expoDC algorithms in the fuzzy

quasi-metric context. This is done by showing that the recurrence inequa-

tion associated to an expoDC algorithm gives rise to a contraction map on a

131
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fuzzy quasi-metric space which is constructed here and whose elements are

”complexity” functions of the function space [0,∞)N×N. We prove that this

contraction map has a unique fixed point, which, as in the construction given

in Chapter 3, is the maximal element of the set of solutions of the recurrence

inequation.

Let dv be the Baire quasi-metric defined on Σ∞ (Example 5.3). It is well

known that the quasi-metric space (Σ∞, dv) is bicomplete. Let Σω be the

set of all infinite sequences (”words”) over Σ. Then Σω is a closed subset in

(Σ∞, dsv). Indeed, let w ∈ Σ∞ and let {wn}n be a sequence in Σω such that

limn→∞ d
s
v(w,wn) = 0. Suppose that `(w) < ∞, then dsv(w,wn) > 2−`(w),

which is a contradiction, hence `(w) = ∞, i.e. w ∈ Σω. So (Σω, dv) is a

bicomplete quasi-metric space.

Let C := {f : N× N→ Σ}. We can define:

Cm :=

{
fm : N→ Σ,

fm(n) = f(m,n), for each m ∈ N, and f ∈ C

}

It is clear that for each m ∈ N, Cm can be identified with Σω, so, (Cm, dv) is

a bicomplete quasi-metric space for each m ∈ N.

Next we construct, for each m ∈ N the function Mm on Cm × Cm , given

in the following way:

Mm(fm, gm, 0) = 0 for all fm, gm ∈ Cm,

Mm(fm, gm, t) = 1 if fm is a prefix of gm, and t > 0,

Mm(fm, gm, t) = 1− dv(fm(n), gm(n)) = 1− 2−`(fmugm) if fm is not

a prefix of gm, and t > 0.

Then, by Proposition 5.4 (Cm,Mm,∧) is a G-bicomplete non-Archimedean
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fuzzy quasi-metric space.

We can define Mm on C × C in the following way:

Mm(f, g, t) = Mm(fm, gm, t)

It is clear that

Mm(fm, gm, t) ≥Mm(fm, hm, t) ∧Mm(hm, gm, t)

We define M : C × C×[0,∞)→ [0, 1] as follows:

M(f, g, 0) = 0,

M(f, g, t) = inf
m>n

Mm(f, g), t ∈ (n, n+ 1], n ∈ w

for all f, g ∈ C and t > 0. Then, we have the following theorem:

Theorem 9.1. (C,M,∧) is a non-Archimedean fuzzy quasi-metric space.

Proof. It is obvious that M is a fuzzy set on C ×C×[0,∞) which satisfies

the following conditions for all f, g ∈ C:
M(f, g, 0) = 0,

M(f, g, t) = M(g, f, t) = 1 for all t > 0 if and only if f = g,

M(f, g, ) is left continuous.

Let us see that:

M(f, g, t+ s) ≥M(f, h, t) ∧M(h, g, s).

Indeed, let t ∈ (l, l + 1], s ∈ (p, p + 1] and t + s ∈ (l + p + 1, l + p + 2],

then we have:
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M(f, g, t+ s) = inf
m>l+p+1

Mm(f, g) ≥ inf
m>l+p+1

(Mm(f, h) ∧Mm(h, g))

= inf
m>l+p+1

Mm(f, h) ∧ inf
m>l+p+1

Mm(h, g),

therefore

M(f, g, t+ s) ≥ inf
m>l+p+1

Mm(f, h) ∧ inf
m>l+p+1

Mm(h, g)

≥ inf
m>l

Mm(f, h) ∧ inf
m>p

Mm(h, g)

= M(f, h, t) ∧M(h, g, s).

Note that:

M(f, g, t+ s) ≥ inf
m>l+p+1

Mm(f, h) ∧ inf
m>l+p+1

Mm(h, g)

= min {M(f, h, t+ s),M(h, g, t+ s)}

for all f, g ∈ C and t+ s > 0, so (C,M,∧) is a non-Archimedean fuzzy quasi-

metric space.�

It is well known that if (Cm, dv) is a bicomplete quasi-metric space, for

each m ∈ N, then (C, ds) is a bicomplete quasi-metric space, where

ds(f, g) = sup
m∈N

dv(fm, gm).

So, by Proposition 5.1 (C,Mds1,∧) is a G-bicomplete non-Archimedean

fuzzy quasi-metric space. It easy to see that M(f, g, t) = Mds1(f, g, t) if t ∈
(0, 1], so (see Remark 2.1) the topoligies τM and τMds1

are the same. Moreover

(C,M,∧) is G-bicomplete if and only if (C,Mds1,∧) is G-bicomplete. Hence,

(C,M,∧) is a G-bicomplete non-Archimedean fuzzy quasi-metric space.
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9.2 Complexity fuzzy quasi-metric spaces and

expoDC algorithms

Following Remak 2.1 and Theorem 7.3 we present the following theorem.

Theorem 9.2. Let (X,M, ∗) be a G-bicomplete fuzzy quasi-metric space. If

T is a self-map on X such that there is k ∈ (0, 1) satisfying

M(Tx, Ty, t) > 1− k + kM(x, y, t)

for all x, y ∈ X and t ∈ (0, ε), with ε > 0, then f has a unique fixed point.

We shall prove that the recurrence inequation associated to an expoDC

algorithm gives rise to a contraction map on (C,M,∧) in the sense of The-

orem 9.2, so the contraction map has a unique fixed point, and then the

complexity of the algorithm is represented via this fixed point.

Example 9.1. Let Φ : C → C be the functional associated to the recurrence

inequation of the complexity analysis of expoDC algorithm (see Section 3.4).

Next we show that Φ is a contraction (in the sense of Theorem 9.2) on the

G-bicomplete non-Archimedean fuzzy quasi-metric space (C,M,∧), with con-

traction constant 1/2.

To this end, we first note that, by construction, given m ∈ N, we have

`(Φ(fm)) ≥ `(fm)+1 for all fm ∈ Cm (in particular, `(Φ(fm)) =∞ whenever

`(fm) =∞).

Furthermore, it is clear that

fm v gm ⇐⇒ Φ(fm) v Φ(gm),

and consequently

Φ(fm u gm) v Φ(fm) u Φ(gm)
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for all fm, gm ∈ Cm. Hence

`(Φ(fm) u Φ(gm)) ≥ `(Φ(fm u gm)) ≥ `(fm u gm) + 1

for all fm, gm ∈ Cm.

For each m ∈ N we have:

Mm(Φf,Φg, t) = Mm(Φfm,Φgm, t) = 1− 2−`(ΦfmuΦgm)

≥ 1− 2−`(Φ(fmugm)) ≥ 1− 2−(`(fmugm)+1)

= 1− 1

2
2−`(fmugm)

= 1− 1

2
+

1

2
Mm(f, g, t)

for all f, g ∈ C.

So, we have:

M(Φf,Φg, t) = inf
m≥1

Mm(Φf,Φg, t) ≥ inf
m≥1

(1− 1

2
+

1

2
Mm(f, g, t))

= 1− 1

2
+

1

2
M(f, g, t)

for all t ∈ (0, ε), with ε > 0, and for all f, g ∈ C. Hence Φ is a contraction on

the G-bicomplete non-Archimedean fuzzy quasi-metric space (C,M,∧), with

contraction constant 1/2, and the conditions of Theorem 9.2 are satisfied,

therefore Φ has a unique fixed point f0.

Finally we claim that f0 is the maximal element of the set of solutions

of the recurrence inequation associated to expoDC algorithm (Section 3.4).

Indeed, by construction if g satisfies this inequation then Φg satisfies this

inequation too, so we have
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g ≤ Φg ≤ ΦΦg ≤ ... ≤ Φng

so

g ≤ lim
n→∞

Φng = f0

i.e

g ≤ f0.
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