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Abstract 

This thesis is focused on the Mode S Multilateration (MLAT) systems for 
the Air Traffic Control (ATC) operations, specifically on their layout design 
and on the process of cooperative targets localization performed by them. It 
addresses the development of new design and localization strategies. The 
design strategies are based on the application of metaheuristic optimization 
techniques, whilst the localization ones are based on the application and 
combination of regularization methods along with some current localization 
algorithms. 

The design strategies are composed of an effective, general procedure to 
emplace both the standard and enhanced MLAT receiving stations on a 
surveillance volume, and a set of design strategies to be used with such a 
proposed procedure. This procedure uses the metaheuristic of Genetic 
Algorithms (GA), and is intended to obtain useful design parameters that 
allow optimal system configurations that provide suitable performance 
levels. Furthermore, the procedure developed in this thesis is able to 
evaluate and improve previous system designs, as well as possible system 
enhancements. For this context, we overcome several issues like the lack of 
a general model that relates the system performance parameters with those 
ones that can be simulated on a computer, the setting of the design 
problem as a computer optimization one, the development and application 
of the numerical tools to analyze and evaluate the MLAT systems 
performance, the complexity evaluation of the resulting computer 
optimization problem, and the application and modification of the GA 
components for solving such a optimization problem. To validate the 
contributions in this context, some simulations are performed on a real 
airport scenario. 

The localization strategies are composed of a set of developed regularized 
location estimators, a set of developed additional improvements, and the 
use of some current localization algorithms. These strategies can be used for 
both surface and wide areas surveillance, and solve some practical problems 
like the loss of position accuracy when using a small number of stations, or 
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for small areas where the stations are close to each other (e.g., airport 
surface surveillance), and the mitigation of some errors due to multipath 
effect. Moreover, the proposed localization strategies are found to be highly 
statistically and numerically efficient, in contrast to current ones that are 
efficient in only one sense (i.e., statistically or numerically). For this 
context, we overcome several issues like the identification and evaluation of 
the numerical causes of the above mentioned problems, the analysis of the 
current localization algorithms, the adaptation of the regularization 
methods theory for solving the localization problem, the development of 
some numerical additional tools that allows the real time implementation of 
such proposed algorithms, and the combination of the current algorithms 
with the proposed ones. To validate the contributions in this context, some 
simulations with both simulated and real data scenarios are performed. 

Keywords: Multilateration, Passive Localization, Mode S, Airport 
Surveillance, Combinatorial Optimization, Metaheuristic Techniques, Radar 
Architectures and Systems, Air Traffic Control, Regularization Methods, 
Inverse Problems. 

 

 

 

 

 

 



 

Resumen 

Esta tesis está centrada en los sistemas de Multilateración (MLAT) Modo S 
para las operaciones de control de tráfico aéreo (ATC), específicamente en 
su diseño y en el proceso de localización de blancos cooperativos realizado 
por los mismos. Ésta aborda el desarrollo de nuevas estrategias de diseño y 
de localización. Las estrategias de diseño se basan en la aplicación de 
técnicas de optimización metaheurística, mientras que las de localización 
están basadas en la aplicación y combinación de métodos de regularización 
junto con algunos algoritmos actuales. 

Las estrategias de diseño están compuestas por un procedimiento 
general, y efectivo, que permite la ubicación, en el volumen de vigilancia, de 
estaciones receptoras para sistemas MLAT estándar y mejorados, así como 
de un conjunto de estrategias que se utilizan con dicho procedimiento. Este 
procedimiento utiliza la metaheurística de los Algoritmos Genéticos (GA), y 
tiene como objetivo el cálculo de parámetros de diseño útiles, que permiten 
obtener configuraciones de sistema que proveen los niveles de rendimiento 
adecuados. Además, el procedimiento propuesto en esta tesis se puede 
utilizar también para la evaluación y mejora de otros diseños previos, así 
como para la mejora o ampliación de sistemas ya desplegados. En este 
contexto, se han superado ciertos problemas como la escasez de modelos 
generales que relacionen los parámetros de rendimiento del sistema, con 
aquellos que pueden ser simulados por ordenador, la configuración del 
problema de diseño como un problema de optimización por ordenador, el 
desarrollo y aplicación de herramientas numéricas para analizar y evaluar el 
rendimiento de los sistemas MLAT, la evaluación de la complejidad del 
problema de optimización resultante, y la aplicación y modificación de 
algunos componentes de los GA para la solución de dicho problema de 
optimización. Las contribuciones de esta parte se validan por medio de 
simulaciones de un escenario aeroportuario real. 

Las estrategias de localización están compuestas por un conjunto de 
algoritmos regularizados de localización, desarrollados en esta tesis, por un 
conjunto de mejoras adicionales, y por ciertos algoritmos actuales de 
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localización. Dichas estrategias pueden ser utilizadas tanto para vigilancia 
en superficie como para área amplia, y solucionan algunos problemas reales 
como la pérdida de precisión cuando se dispone de un número reducido de 
estaciones, o para áreas pequeñas donde todas las estaciones están muy 
cercanas unas de otras (por ejemplo, para vigilancia de superficie 
aeroportuaria), y la reducción de algunos errores debidos al efecto 
multicamino. Además, las estrategias de localización desarrolladas en esta 
tesis son altamente eficientes en sentido estadístico y numérico, en contraste 
con las actuales que lo son únicamente en un sentido (estadístico o 
numérico). En este contexto, se han superado ciertos problemas como la 
identificación y evaluación de las causas numéricas de los problemas 
anteriormente mencionados, el análisis de los algoritmos de localización 
actuales, la adaptación de la teoría de los métodos de regularización a la 
solución de los problemas de localización, el desarrollo de algunas 
herramientas numéricas adicionales que permitan la implementación, en 
tiempo real, de los algoritmos propuestos, y la combinación de los 
algoritmos actuales con los propuestos. Las contribuciones de esta parte se 
validan con simulaciones en escenarios con datos de medidas simuladas y en 
escenarios con datos de medidas reales. 

Palabras claves: Multilateración, Localización Pasiva, Modo S, Vigilancia 
de Superficie, Optimización Combinatoria, Técnicas Metaheurísticas, 
Arquitecturas y Sistemas Radar, Control de Tráfico Aéreo, Métodos de 
Regularización, Problemas Inversos. 

 

 

 

 



 

Resum 

Esta tesi està centrada en els sistemes de Multilateració (MLAT) Mode S 
per a les operacions de control de trànsit aeri (ATC), específicament en el 
seu disseny i en el procés de localització de blancs cooperatius realitzat pels 
mateixos. Esta aborda el desenvolupament de noves estratègies de disseny i 
de localització. Les estratègies de disseny es basen en l'aplicació de tècniques 
d'optimització metaheurística, mentre que les de localització estan basades 
en l'aplicació i combinació de mètodes de regularització junt amb alguns 
algoritmes actuals. 

Les estratègies de disseny estan compostes per un procediment general, i 
efectiu, que permet la ubicació, en el volum de vigilància, d'estacions 
receptores per a sistemes MLAT estàndard i millorats, així com d'un 
conjunt d'estratègies que s'utilitzen amb el l’anomenat procediment. Este 
procediment utilitza la metaheurística dels Algoritmes Genètics (GA), i té 
com a objectiu el càlcul de paràmetres de disseny útils, que permeten 
obtindre configuracions de sistema que proveïxen els nivells de rendiment 
adequats. A més, el procediment proposat en esta tesi es pot utilitzar també 
per a l'avaluació i millora d'altres dissenys previs, així com per a la millora 
o ampliació de sistemes ja desplegats. En este context, s'han superat certs 
problemes com l'escassetat de models generals que relacionen els paràmetres 
de rendiment del sistema, amb aquells que poden ser simulats per 
ordinador, la configuració del problema de disseny com un problema 
d'optimització per ordinador, el desplegament i aplicació de ferramentes 
numèriques per a analitzar i avaluar el rendiment dels sistemes MLAT, 
l'avaluació de la complexitat del problema d'optimització resultant, i 
l'aplicació i modificació d'alguns components dels GA per a la solució del 
mencionat problema d'optimització. Les contribucions d'esta part es validen 
per mitjà de simulacions d'un escenari aeroportuari real. 

Les estratègies de localització estan compostes per un conjunt 
d'algoritmes regularitzats de localització, desenvolupats en esta tesi, per un 
conjunt de millores addicionals, i per certs algoritmes actuals de 
localització. Les anomenades estratègies poden ser utilitzades tant per a 
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vigilància en superfície com per a àrea àmplia, i solucionen alguns 
problemes reals com la pèrdua de precisió quan es disposa d'un número 
reduït d'estacions, o per a àrees xicotetes on totes les estacions estan molt 
pròximes les unes de les altres (per exemple, per a vigilància de superfície 
aeroportuària), i la reducció d'alguns errors deguts a este efecte multicamí. 
A més, les estratègies de localització desenvolupades en esta tesi són 
altament eficients en sentit estadístic i numèric, en contrast amb les actuals 
que ho són únicament en un sentit (estadístic o numèric). En este context, 
s'han superat certs problemes com la identificació i avaluació de les causes 
numèriques dels problemes anteriorment mencionats, l'anàlisi dels 
algoritmes de localització actuals, l'adaptació de la teoria dels mètodes de 
regularització a la solució dels problemes de localització, el 
desenvolupament d'algunes ferramentes numèriques addicionals que 
permeten la implementació, en temps real, dels algoritmes proposats, i la 
combinació dels algoritmes actuals amb els proposats. Les contribucions 
d'esta part es validen amb simulacions en escenaris amb dades de mesures 
simulades i en escenaris amb dades de mesures reals. 

Paraules claus: Multilateració, Localització Passiva, Mode S, Vigilància 
de Superfície, Optimització Combinatòria, Tècniques Metaheurísticas, 
Arquitectures i Sistemes Radar, Control de Trànsit Aeri, Mètodes de 
Regularització, Problemes Inversos. 

 

 

 

 

 

 



 

Acknowledgements 

The beginning, development and achievement of this thesis would not have 
been possible without the invaluable help of many people. First and 
foremost, I want to thank specially the infinite support of my mom, Cecilia, 
whom this work is dedicated, and who always gave me the best advices and 
encouragements to never give up and always reach my goals. Thanks a lot 
for ever. 

Thanks to my God for everything received and the opportunities that 
arise in my life. 

I offer my special gratitude to my supervisor, Dr. Juan V. Balbastre, 
who gave me the opportunity to come Spain, who has personally and 
technically supported me throughout these years with his knowledge and 
advice, and who has helped me to growth as a person and researcher, 
allowing me the space to conduct my own experiences. 

I am very grateful with my external supervisor, Dr. Gaspare Galati, for 
his invaluable scientific support, very important to the successful 
achievement of this thesis, and also for hosting me in his research group, 
the Radar and Navigation Laboratory, at Tor Vergata University (Rome, 
Italy) during my two research periods there. 

I am also very grateful with Dr. Mauro Leonardi from Tor Vergata 
University (Rome, Italy), and member of the Radar and Navigation 
Laboratory. I really appreciate his personal and scientific help during my 
time in Italy. Thanks for all the time we spent discussing about the 
usefulness of regularization methods for MLAT localization, and for your 
touristic information for traveling in Italy. 

I would like to thank to Dr. Alejandro Díaz from Universidad 
Politécnica de Cartagena (Cartagena, Spain) for his teachings when 
investigated in optimization of microwave devices for my Master Thesis. I 
really appreciate his advices and all the time he spent working with me. 
The acquired knowledge in research and optimization methods has been 
very useful for me during these years. 



xiv Acknowledgements 

I would like to show my gratitude to all the colleagues and friends that I 
have known over these years in the research group GEA at the Universidad 
Politécnica de Valencia. I would like to mention Ruy, Tatitana, Silvia, 
Oscar, Oneira, Mauricio, Emilio, Catalina, and Camilo. Each of them 
helped me to have good moments in the day to day work. Likewise, I do 
not forget the administrative staff, Isidora and Mati, for her support in 
managing all the administrative aspects for conferences trips, scholarship 
payments, and university certifications. 

Thanks to the Indra S.A. CNS/ATM department. Part of this thesis was 
motivated by the projects with this company about software tools for 
designing and evaluating MLAT systems. Specially thanks to Eng. Ramón 
Flores and Eng. Miguel Muñoz. All our discussions about the design and 
evaluation of MLAT systems have been of great help for developing the 
second part of this thesis. 

Thanks for the company ERA A.S. for proviging the real recording data 
for testing the localization algorithms. These data have helped me to 
validate the usefulness of the third part of this thesis and to reach more 
suitable results. 

A special word of thanks to Dr. Fernando Niño, who was the promoter 
of my trip to Spain. My doctoral studies and thesis are also part of his 
important efforts for promoting the international educational exchanges for 
Colombian students. 

I wish also to thank the Spansh Ministry of Education for the financial 
support of this thesis under the FPU shoclarships program. 

Many special thanks to my father, Ivan José, to my brother, Habib, and 
to my sister, Nohora. It is a pleasure for me to acknowledge the help given 
by them during these years. Thanks for their calls, emails, confidence and 
fondness. 

A special thanks to my Spanish friend, Luis, for his personal advices and 
support during the last year of this work. 

I would also like to thank to all of my friends that have helped me in 
one way or another. Thanks a lot. 

 

Ivan A. Mantilla Gaviria 
Valencia, Spain, 2013 

 

 



 

Contents 

Abstract ..................................................................................................... vii 

Resumen ..................................................................................................... ix 

Resum ......................................................................................................... xi 

Acknowledgements .................................................................................... xiii 

Contents ......................................................................................................xv 

List of Figures ............................................................................................xxi 

List of Tables .......................................................................................... xxvii 

List of Symbols ......................................................................................... xxix 

Abbreviations and Acronyms ................................................................... xxxi 

Part I Introduction 

1 General Information About This Thesis ................................................1 
1.1 Framework ..................................................................................1 
1.2 Motivation ...................................................................................3 
1.3 Objectives ....................................................................................4 
1.4 Novelties ......................................................................................6 
1.5 Organization of the Thesis ..........................................................6 

2 Multilateration Systems Review ............................................................9 
2.1 Operating Principles of Multilateration ......................................9 

2.1.1 A Brief History ........................................................................9 
2.1.2 Definition and Theoretical Foundations ................................ 13 
2.1.3 Signals Used in MLAT Systems ............................................ 29 

2.2 Multilateration Systems in the CNS/ATM Scheme .................. 32 
2.3 A General Scheme for Multilateration Systems ........................ 33 



xvi Contents 

2.3.1 General Architecture for MLAT Systems .............................. 33 

Part II Multilateration Systems Design and Deployment 

3 Overall Frame and Design Problem .................................................... 41 
3.1 Multilateration System Design and its Particularities .............. 41 

3.1.1 Performance Parameters for MLAT Systems ........................ 43 
3.1.2 Design System Parameters .................................................... 45 
3.1.3 Performance Parameters vs. Design Parameters ................... 50 
3.1.4 Particularities for the MLAT Stations Deployment .............. 52 

3.2 Solutions for MLAT Systems Design: State of the Art ............. 53 

4 Optimization Theory: A Short Review ................................................ 59 
4.1 Combinatorial Optimization Problems ...................................... 59 

4.1.1 Complexity of a CO Problem ................................................ 61 
4.1.2 On the Solution of CO problems ........................................... 62 

4.2 Introduction to Metaheuristic Optimization Methods ............... 63 
4.3 Review on Genetic Algorithms .................................................. 65 

4.3.1 Evolutionary Computation .................................................... 65 
4.3.2 Genetic Algorithms ................................................................ 66 

5 General Procedures for Optimizing the Multilateration Layout ......... 73 
5.1 The Multilateration System Design as a Combinatorial 
Optimization Problem ............................................................................. 73 

5.1.1 Mapping the MLAT System Design to a CO Problem .......... 75 
5.2 Complexity Analysis of the MLAT Design Problem ................. 78 
5.3 Description of the Overall Design Procedure ............................ 84 

5.3.1 General Framework ............................................................... 84 
5.3.2 Iterative Numerical Procedure ............................................... 87 

5.4 Proposed Design Strategies ....................................................... 90 
5.4.1 Standard MLAT System with a Fixed Number of Stations .. 91 
5.4.2 Standard MLAT System with a Variable Number of Stations . 
  .............................................................................................. 93 
5.4.3 Enhanced MLAT System with a Fixed Number of Stations . 94 

5.5 Simulation and Results ............................................................. 95 
5.5.1 MLAT System with a Fixed Number of TDOA Stations ...... 96 
5.5.2 MLAT System with a Variable Number of TDOA Stations . 98 
5.5.3 MLAT System with a Fixed Number of TDOA/AOA Stations 
  ............................................................................................ 100 



Contents xvii 

Part III Multilateration Algorithms and Their Improvements 

6 Setting the Stage ............................................................................... 105 
6.1 Localization Problem in Mode S Multilateration .................... 105 

6.1.1 General Problem Description ............................................... 106 
6.2 An Inverse Problem Description ............................................. 109 

6.2.1 Ill-Conditioned Problems ..................................................... 110 
6.2.2 Solving Ill-Conditioned Problems ........................................ 111 

6.3 Singular Value Decomposition (SVD) and Other Numerical 
Tools  ................................................................................................ 113 

6.3.1 The Ordinary SVD .............................................................. 113 
6.3.2 Null Space and Range of a Matrix ...................................... 114 
6.3.3 The Generalized SVD (GSVD) ............................................ 114 
6.3.4 Classification of the Ill-Conditioned Problems ..................... 115 
6.3.5 Basic Parameters to Analyze Ill-Conditioned Problems ...... 116 

6.4 Least Squares (LS) and the Pseudoinverse ............................. 117 

7 Localization Algorithms for Mode S Multilateration ......................... 119 
7.1 A Prelude to Localization Algorithms ..................................... 119 

7.1.1 The Data Model .................................................................. 120 
7.1.2 The Numerical Algorithm .................................................... 122 
7.1.3 The General Framework for Localization Algorithms ......... 122 
7.1.4 Setting a General Notation .................................................. 123 

7.2 Open Form Algorithms ........................................................... 125 
7.2.1 Taylor-Series Expansion Algorithm ..................................... 125 

7.3 Closed Form Algorithms ......................................................... 129 
7.3.1 Schmidt Algorithm (Plane Intersection) .............................. 130 
7.3.2 Smith and Abel Algorithm (Spherical Interpolation) .......... 132 
7.3.3 Friedlander Algorithm (Spherical Interpolation) ................. 134 
7.3.4 Schau and Robinson Algorithm (Spherical Intersection) ..... 137 
7.3.5 Chan and Ho Algorithm (Spherical Interpolation with 
Quadratic Correction) ........................................................................ 139 
7.3.6 Bancroft Algorithm ............................................................. 144 
7.3.7 Wikipedia Algorithm (Plane Intersection) ........................... 146 
7.3.8 Summary of Localization Algorithms .................................. 147 

7.4 Projected Algorithms .............................................................. 148 
7.5 Analysis of Ill-Conditioned Problems in Mode S Multilateration . 
  ................................................................................................ 150 



xviii Contents 

7.6 Simulation and Results: Comparison of Localization Algorithms
 155 

7.6.1 Innsbruck WAM System ..................................................... 156 
7.6.2 Malpensa System ................................................................. 161 
7.6.3 Linate System (Surface Movement) ..................................... 164 
7.6.4 Numerical Comparison and General Conclusions for Simulated 
Scenarios ............................................................................................ 170 

7.7 Experimental With Real Data ................................................ 175 

8 Multilateration Localization by Using Regularization Algorithms .... 185 
8.1 Solving Localization Problem by Tikhonov Regularization ..... 187 

8.1.1 Solving Regularized MLE by SVD ...................................... 189 
8.1.2 Effect of Tikhonov Regularization on the Localization 
Problem  ............................................................................................ 190 
8.1.3 Regularization Error of Tikhonov Regularization ................ 191 
8.1.4 Estimation of the Regularization Parameter for Tikhonov .. 192 

8.2 Solution by SVD Based Methods ............................................ 197 
8.2.1 Solution by Truncated SVD (T-SVD) ................................. 198 
8.2.2 Estimation of the Regularization Parameter for T-SVD ..... 200 
8.2.3 Solution by T-SVD with a Sub-Set Selection (T-SVD SS) .. 201 

8.3 Solution by Total Least Squares (TLS) Based Methods ......... 201 
8.3.1 Solution by Truncated TLS (T-TLS) .................................. 202 

8.4 General Localization Strategy and Additional Improvements . 203 
8.4.1 Additional Improvements .................................................... 206 

8.5 Simulation and Results: Analysis for Regularized Location 
Estimators ............................................................................................. 210 

8.5.1 Accuracy Analysis for Innsbruck WAM System .................. 211 
8.5.2 Accuracy Analysis for Malpensa WAM System .................. 213 
8.5.3 Accuracy Analysis for Linate (Surface) LAM System ......... 219 

8.6 Simulation and Results: Analysis of the Starting Point Quality .. 
  ................................................................................................ 226 

8.6.1 Feasible Options for LAM Operations ................................. 227 
8.6.2 Feasible Options for WAM Operations ............................... 228 
8.6.3 Accuracy Analysis for LAM Operations .............................. 229 
8.6.4 Accuracy Analysis for WAM Operations ............................. 238 

8.7 Experimental With Real Data: General Localization Strategy 247 

9 Conclusions and Perspectives ............................................................ 255 
9.1 Conclusions for Design Strategies ............................................ 255 
9.2 Conclusions for Localization Strategies ................................... 257 



Contents xix 

9.3 Future Work ........................................................................... 261 
9.4 Author’s Merits ....................................................................... 262 

A Development of Combinatorial by Means of Stirling’s Approximation .. 
  ........................................................................................................... 267 

B Development of Averaging Kernels for Tikhonov Regularization ..... 269 

C Simulated Scenarios ........................................................................... 271 
C.1 Scenarios with Real Geometry and Simulated Measurements . 271 

C.1.1 Innsbruck System ................................................................ 272 
C.1.2 Malpensa System ................................................................. 273 
C.1.3 Linate System ...................................................................... 274 

C.2 Scenario with Real Data ......................................................... 275 
C.2.1 Tallinn LAM System (ERA A.S.) ....................................... 275 

Bibliography .............................................................................................. 277 
 

 

 

 

 

 



 

 

 

 

 

 

 



 

List of Figures 

Fig. 1.1 Organization of the thesis. ...............................................................7 
Fig. 2.1 The first hyperbolic positioning system: “Hyperbolic Audio 
Location System”. ....................................................................................... 10 
Fig. 2.2 Hyperbolic navigation system principle.......................................... 11 
Fig. 2.3 General scheme for a MLAT system. ............................................. 15 
Fig. 2.4 Section of a hyperboloid for a pair of receiving stations in MLAT 
systems. ....................................................................................................... 18 
Fig. 2.5 Intersection of three hyperboloids. ................................................. 18 
Fig. 2.6 Hyperbolas for four stations and a target located in an arbitrary 
position. The reference station is the station number one (the black one) 
and the target is represented by the magenta circle. .................................. 19 
Fig. 2.7 Error sources classification for MLAT systems. ............................. 22 
Fig. 2.8 Eccentricity and perpendicularity of the hyperbolas. ..................... 27 
Fig. 2.9 Mode S reply structure. ................................................................. 30 
Fig. 2.10 A classification of the main surveillance systems. ........................ 33 
Fig. 2.11 General logic architecture for an MLAT system. ......................... 34 
Fig. 2.12 General flowchart of MLAT functions. ........................................ 35 
Fig. 3.1 Examples of LoS and NLOS scenarios. .......................................... 46 
Fig. 3.2 Forms to analyze the DOP. ........................................................... 47 
Fig. 3.3 Performance parameters vs. design parameters. ............................ 50 
Fig. 4.1 Trajectory-based methods vs. Population-based methods: 
Illustration of the search space exploration. ................................................ 64 
Fig. 4.2 General algorithm for EC............................................................... 66 
Fig. 4.3 Canonical algorithm for GA. .......................................................... 67 
Fig. 4.4 Stochastic uniform selection operator. ........................................... 70 
Fig. 5.1 System design elements. ................................................................. 74 



xxii List of Figures 

Fig. 5.2 Number of possible solutions in respect of the search space size and 
of the number of required stations. The vertical scales are logarithmic. ..... 81 
Fig. 5.3 Joint analysis of the problem complexity. ...................................... 83 
Fig. 5.4 General framework for designing MLAT systems. ......................... 85 
Fig. 5.5 Flowchart for the iterative procedure (the framework core). ......... 87 
Fig. 5.6 Barcelona – El Prat airport layout with the possible sites to 
emplace the stations. ................................................................................... 95 
Fig. 5.7 Horizontal accuracy for the design with a fixed number of TDOA 
stations. ....................................................................................................... 97 
Fig. 5.8 GA convergence for the design with a fixed number of TDOA 
stations. ....................................................................................................... 97 
Fig. 5.9 SPoD for the design with a fixed number of TDOA stations......... 98 
Fig. 5.10 Horizontal accuracy for the design with a variable number of 
TDOA stations. ........................................................................................... 99 
Fig. 5.11 GA convergence for the design with a variable number of TDOA 
stations. ....................................................................................................... 99 
Fig. 5.12 SPoD for the design with a variable number of TDOA stations.
 .................................................................................................................. 100 
Fig. 5.13 Horizontal accuracy for the design with a fixed number of 
TDOA/AOA stations. ............................................................................... 101 
Fig. 5.14 GA convergence for the design with a fixed number of 
TDOA/AOA stations. ............................................................................... 101 
Fig. 5.15 SPoD for the design with a fixed number of TDOA/AOA stations.
 .................................................................................................................. 102 
Fig. 6.1 Localization problem in Mode S Multilateration.......................... 106 
Fig. 6.2 General scheme of a localization problem in MLAT. ................... 108 
Fig. 6.3 Regularization strategy. ............................................................... 111 
Fig. 7.1 General framework for localization algorithms. ............................ 123 
Fig. 7.2 General notation for localization algorithms. ............................... 124 
Fig. 7.3 Geometrical interpretation of projected algorithms. .................... 149 
Fig. 7.4 Ill-conditioned problem in MLAT systems: an example. .............. 151 
Fig. 7.5 Condition number for the first seven Taylor iterations. Vertical 
axis represents the condition number and horizontal axis the Monte-Carlo 
trials. ......................................................................................................... 152 
Fig. 7.6 Characterization of the singular value spectrum for the MLAT 
localization problem (vertical axes in log scale). ....................................... 154 
Fig. 7.7 2D R.M.S error for Innsbruck system: comparison of localization 
algorithms. ................................................................................................ 158 



List of Figures xxiii 

Fig. 7.8 Vertical R.M.S error for Innsbruck system: comparison of 
localization algorithms. ............................................................................. 158 
Fig. 7.9 2D bias for Innsbruck system: comparison of localization 
algorithms. ................................................................................................ 159 
Fig. 7.10 Vertical bias for Innsbruck system: comparison of localization 
algorithms. ................................................................................................ 160 
Fig. 7.11 2D R.M.S error for Innsbruck system: comparison of projected 
localization algorithms. ............................................................................. 160 
Fig. 7.12 2D bias for Innsbruck system: comparison of projected localization 
algorithms. ................................................................................................ 161 
Fig. 7.13 2D R.M.S error for Malpensa system: comparison of localization 
algorithms. ................................................................................................ 162 
Fig. 7.14 Vertical R.M.S for Malpensa system: comparison of localization 
algorithms. ................................................................................................ 163 
Fig. 7.15 2D bias for Malpensa system: comparison of localization 
algorithms. ................................................................................................ 163 
Fig. 7.16 Vertical bias for Malpensa system: comparison of localization 
algorithms. ................................................................................................ 163 
Fig. 7.17 2D R.M.S error for Malpensa system: comparison of projected 
localization algorithms. ............................................................................. 165 
Fig. 7.18 2D bias for Malpensa system: comparison of projected localization 
algorithms. ................................................................................................ 165 
Fig. 7.19 2D R.M.S error for Linate system: comparison of localization 
algorithms. ................................................................................................ 166 
Fig. 7.20 2D bias for Linate system: comparison of localization algorithms.
 .................................................................................................................. 166 
Fig. 7.21 2D R.M.S error for Linate system: comparison of projected 
localization algorithms. ............................................................................. 167 
Fig. 7.22 2D bias for Linate system: comparison of projected localization 
algorithms. ................................................................................................ 167 
Fig. 7.23 2D R.M.S error for Linate system in the presence of the failure of 
station 1: comparison of localization algorithms. ...................................... 169 
Fig. 7.24 2D bias for Linate system in the presence of the failure of station 
1: comparison of localization algorithms. .................................................. 169 
Fig. 7.25 2D R.M.S error for Linate system in the presence of the failure of 
station 1: comparison of projected localization algorithms. ....................... 169 
Fig. 7.26 2D bias for Linate system in the presence of the failure of station 
1: comparison of projected localization algorithms. ................................... 170 



xxiv List of Figures 

Fig. 7.27 X(t) for statistical and algebraic approach based models: 
comparison of localization algorithms. ...................................................... 179 
Fig. 7.28 X(t) for numerical approach based models: comparison of 
localization algorithms. ............................................................................. 179 
Fig. 7.29 Y(t) for statistical and algebraic approach based models: 
comparison of localization algorithms. ...................................................... 180 
Fig. 7.30 Y(t) for numerical approach based models: comparison of 
localization algorithms. ............................................................................. 180 
Fig. 7.31 X(t) for statistical and algebraic approach based models: 
comparison of projected localization algorithms. ....................................... 181 
Fig. 7.32 X(t) for numerical approach based models: comparison of 
projected localization algorithms. .............................................................. 181 
Fig. 7.33 Y(t) for statistical and algebraic approach based models: 
comparison of projected localization algorithms. ....................................... 182 
Fig. 7.34 Y(t) for numerical approach based models: comparison of 
projected localization algorithms. .............................................................. 182 
Fig. 8.1 Basic scheme for the general localization strategy. ...................... 205 
Fig. 8.2 Solution selection by nearest estimated neighbour. ...................... 207 
Fig. 8.3 Flowchart for the general strategy with the additional 
improvements. ........................................................................................... 209 
Fig. 8.4 2D R.M.S error for Innsbruck system. ......................................... 212 
Fig. 8.5 Vertical R.M.S error for Innsbruck system. ................................. 212 
Fig. 8.6 2D bias for Innsbruck system. ...................................................... 213 
Fig. 8.7 Vertical bias for Innsbruck system. .............................................. 213 
Fig. 8.8 2D R.M.S error for Malpensa system. .......................................... 214 
Fig. 8.9 Vertical R.M.S error for Malpensa system. .................................. 214 
Fig. 8.10 2D bias for Malpensa system. ..................................................... 214 
Fig. 8.11 2D R.M.S error for Malpensa system by using barometric altitude.
 .................................................................................................................. 216 
Fig. 8.12 Vertical R.M.S error for Malpensa system by using barometric 
altitude. ..................................................................................................... 216 
Fig. 8.13 2D bias for Malpensa system by using barometric altitude. ....... 217 
Fig. 8.14 Vertical bias for Malpensa system by using barometric altitude.
 .................................................................................................................. 217 
Fig. 8.15 2D R.M.S error for Linate system with a fixed starting point. .. 221 
Fig. 8.16 2D bias for Linate system with a fixed starting point. ............... 221 
Fig. 8.17 2D R.M.S error for Linate system with starting point from 
projected version of Schau&Robinson algorithm. ...................................... 222 



List of Figures xxv 

Fig. 8.18 2D bias for Linate system with starting point from projected 
version of Schau&Robinson algorithm. ..................................................... 223 
Fig. 8.19 2D R.M.S error for Linate system with a fixed starting point: 
failure of station 1. .................................................................................... 224 
Fig. 8.20 2D bias for Linate system with a fixed starting point: failure of 
station 1 .................................................................................................... 224 
Fig. 8.21 2D R.M.S error for Linate system with starting point from 
projected version of Schau&Robinson algorithm: failure of station 1. ....... 225 
Fig. 8.22 2D bias for Linate system with starting point from projected 
version of Schau&Robinson algorithm: failure of station 1. ...................... 225 
Fig. 8.23 Feasible options for the starting point in LAM operations for the 
non-projected version of Taylor based algorithms. .................................... 228 
Fig. 8.24 Feasible options for the starting point in LAM operations for the 
projected version of Taylor based algorithms. ........................................... 228 
Fig. 8.25 Feasible options for the starting point in WAM operations for the 
non-projected version of Taylor based algorithms. .................................... 228 
Fig. 8.26 2D R.M.S error with starting point provided by Schau3D. ......... 230 
Fig. 8.27 2D bias with starting point provided by Schau3D. ...................... 230 
Fig. 8.28 2D R.M.S error with starting point provided by Schau3D: failure of 
station 1. ................................................................................................... 230 
Fig. 8.29 2D bias with starting point provided by Schau3D: failure of station 
1. ............................................................................................................... 231 
Fig. 8.30 2D R.M.S error with starting point provided by Schau3D + fixed 
altitude. ..................................................................................................... 232 
Fig. 8.31 2D bias with starting point provided by Schau3D + fixed altitude.
 .................................................................................................................. 232 
Fig. 8.32 2D R.M.S error with starting point provided by Schau3D + fixed 
altitude: failure of station 1. ...................................................................... 232 
Fig. 8.33 2D bias with starting point provided by Schau3D + fixed altitude: 
failure of station 1. .................................................................................... 233 
Fig. 8.34 2D R.M.S error with starting point set to a fixed coordinate. ... 234 
Fig. 8.35 2D bias with starting point set to a fixed coordinate. ................ 234 
Fig. 8.36 2D R.M.S error with starting point set to a fixed coordinate: 
failure of station 1. .................................................................................... 234 
Fig. 8.37 2D bias with starting point set to a fixed coordinate: failure of 
station 1. ................................................................................................... 235 
Fig. 8.38 2D R.M.S error with starting point provided by Schau2D + fixed 
altitude. ..................................................................................................... 236 



xxvi List of Figures 

Fig. 8.39 2D bias with starting point provided by Schau2D + fixed altitude.
 .................................................................................................................. 236 
Fig. 8.40 2D R.M.S error with starting point provided by Schau2D + fixed 
altitude: failure of station 1. ...................................................................... 236 
Fig. 8.41 2D bias with starting point provided by Schau2D + fixed altitude: 
failure of station 1. .................................................................................... 237 
Fig. 8.42 2D R.M.S error with starting point provided by Schau3D. ......... 239 
Fig. 8.43 Vertical R.M.S error with starting point provided by Schau3D. . 240 
Fig. 8.44 2D bias with starting point provided by Schau3D. ...................... 240 
Fig. 8.45 2D R.M.S error with starting point provided by Schau3D + fixed 
altitude. ..................................................................................................... 241 
Fig. 8.46 2D bias with starting point provided by Schau3D + fixed altitude.
 .................................................................................................................. 241 
Fig. 8.47 2D R.M.S error with starting point set to a fixed coordinate. ... 242 
Fig. 8.48 2D bias with starting point set to a fixed coordinate. ................ 242 
Fig. 8.49 2D R.M.S error with starting point provided by Schau2D + fixed 
altitude. ..................................................................................................... 243 
Fig. 8.50 2D bias with starting point provided by Schau2D + fixed altitude.
 .................................................................................................................. 243 
Fig. 8.51 2D R.M.S error with starting point provided by Schau3D + 
barometric altitude. ................................................................................... 244 
Fig. 8.52 Vertical R.M.S error with starting point provided by Schau3D + 
barometric altitude. ................................................................................... 244 
Fig. 8.53 2D bias with starting point provided by Schau3D + barometric 
altitude. ..................................................................................................... 245 
Fig. 8.54 X(t) for Tikhonov based RLE. ................................................... 250 
Fig. 8.55 Y(t) for Tikhonov based RLE. ................................................... 251 
Fig. 8.56 X(t) for T-SVD based RLE. ....................................................... 252 
Fig. 8.57 Y(t) for T-SVD based RLE. ....................................................... 253 

Fig. C.1 Innsbruck system layout (top: vertical profile, bottom: horizontal 
profile). ...................................................................................................... 272 
Fig. C.2 Malpensa system layout for the first takeoff line: Malpensa 1 (top: 
horizontal profile, bottom: vertical profile). .............................................. 273 
Fig. C.3 Linate system layout and the simulated surface movement. ....... 274 
Fig. C.4 Tallinn system layout. ................................................................. 275 
Fig. C.5 Line of sight profile for Tallinn system. ...................................... 276 

 

 



 

List of Tables 

Table 2.1 Summary of MLAT measurement errors. .................................... 24 
Table 3.1 Qualitative scale for the PDOP. ................................................. 46 
Table 5.1 Parameters for GA. ..................................................................... 90 
Table 7.1 Summary of localization algorithms. A: Alegbraic, S: Statistical, 
N: Numerical. ............................................................................................ 148 
Table 7.2 Mean 2D R.M.S error and 2D bias values for localization 
algorithms. Values given in meters. .......................................................... 173 
Table 7.3 Mean vertical R.M.S error and vertical bias values for localization 
algorithms. Values given in meters. .......................................................... 173 
Table 7.4 Mean 2D R.M.S error and 2D bias values for projected 
localization algorithms. Values given in meters. ....................................... 174 
Table 7.5 Mean 2D R.M.S error and 2D bias values for the localization 
algorithms, at Linate scenario, in the presence of a failure of station 1. 
Values given in meters. ............................................................................. 174 
Table 7.6 Statistical parameters for the error distributions of localization 
algorithms. Values given in meters. .......................................................... 183 
Table 7.7 Statistical parameters for the error distributions of projected 
localization algorithms. Values given in meters. ....................................... 183 
Table 8.1 Possible sources for the starting point. ..................................... 227 
Table 8.2 Mean of the 2D bias over the simulated path of Linate system. 
Values given in meters. ............................................................................. 237 
Table 8.3 Mean of the 2D R.M.S error over the simulated path of Linate 
system. Values given in meters. ................................................................ 238 
Table 8.4 Mean of the 2D bias over the simulated path of Linate system: 
failure of station 1. Values given in meters. .............................................. 238 
Table 8.5 Mean of the 2D R.M.S error over the simulated path of Linate 
system: failure of station 1. Values given in meters. ................................. 238 



xxviii List of Tables 

Table 8.6 Mean of the 2D bias over the entire takeoff line of Malpensa 
system. Values given in meters. ................................................................ 246 
Table 8.7 Mean of the 2D R.M.S error over the entire takeoff line of 
Malpensa system. Values given in meters. ................................................ 247 
Table 8.8 Statistical parameters for the error distributions of the Tikhonov 
based RLE. Values given in meters. .......................................................... 254 
Table 8.9 Statistical parameters for the error distributions of the T-SVD 
based RLE. Values given in meters. .......................................................... 254 

Table C.1 Stations coordinates for the Innsbruck WAM system. ............. 272 
Table C.2 Stations coordinates for the Malpensa WAM system. .............. 273 
Table C.3 Stations coordinates for the Linate LAM system. .................... 274 

 

 

 

 

 



 

List of Symbols 

Generic notation for ࢞Generic notation for a matrix ࢄ a vectorݔ Generic notation for a scalar(∙)் Transpose (∙)ିଵ Inverse matrix (∙)ற Moore-Penrose pseudoinverse (or simply pseudoinverse matrix) (∙)! Factorial number‖⋅‖௣ p-norm operator‖⋅‖ி Frobenius norm ∙ ̂ Estimated value〈∙,∙〉 Lorenz inner productܧሾ∙ሿ Expected value of random variableघ(∙) Null space operatorࡺ(∙) Covariance matrix for the random error vectorࢁ Left singular matrix઱ Matrix of singular valuesࢂ Right singular matrixࡸ Regularization matrix of Tikhonov࡭ఒି ଵ Regularized inverse matrix of Tikhonovબ Resolution matrixમ Permutation matrixࡵ௡ ݊ × ݊ identity matrixࣂ Target position vectorࣖ௜ Position vector for the ith receiving station࢓ Measurement vector࢔ Random error vector࢛௜ ith left singular vector࢜௜ ith right singular vectorࣈ௜்  ith averaging kernelߩ(∙) Residual error norm functionΩ(∙) Smooting norm function



xxx List of Symbols Λ(∙) Likelihood functionܲ(ܤ|ܣ) Condition probability of A, given B்ߪை஺೔ଶ  Variance for the ith TOA measurement error஺ܰ Number of stations forming an array௦ܰ Number of stations݊ Number of coordinates to be estimatedݎ௜ Propagation distance from the target to the ith station ݐ௘ Emission time ߪ௜ ith singular valueݎఢ Numerical rank of a matrixܴ௦ Target range ܭ Number of Taylor iterationsߣ Regularization parameter of Tikhonov௜݂ ith filter factor of Tikhonov݇ఢ Discrete regularization parameter for T-SVD

 

 

 

 

 



 

Abbreviations and Acronyms 

A.M.S.L Above Mean Sea Level
ADS Automatic Dependent Surveillance
ADS-B Automatic Dependent Surveillance - Broadcast 
ANSP Air Navigation Services Provider
AOA Angle of Arrival
ASDE Airport Surface Detection Equipment
ATC Air Traffic Control
ATCRBS Air Traffic Control Radar Beacon System
ATM Air Traffic Management
CNS Communication Navigation and Surveillance 
CO Combinatorial Optimization
CPS Central Processing Subsystem
CRLB Cràmer-Rao Lower Bound
DF Downlink Format
DGPS Differential Global Positioning System
DOP Dilution of Precision
DTM Digital Terrain Model
DXF Data Exchange Format
ECAC European Civil Aviation Conference
EUROCAE European Organisation for Civil Aviation Equipment 
EUROCONTROL European Organisation for the Safety of Air Navigation 
FIM Fisher Information Matrix
FRUIT False Replies Unsynchronized in Time
GA Genetic Algorithm
GCV Generalized Cross Validation
GPS Global Positioning System
GSVD Generalized Singular Value Decomposition
HAOA Horizontal Angle of Arrival
HDOP Horizontal Dilution of Precision
IATA International Air Transport Association
ICAO International Civil Aviation Organization



xxxii Abbreviations and Acronyms 

KF Kalman Filter
LAM Local Area Multilateration
LORAN LOng RAnge Navigation
LoS Line of Sight
LP Linear Programming
LS Least Squares
ML Maximum Likelihood
MLAT Multilateration
MLE Maximum Likelihood Estimator
MOPS Minimum Operational Performance Specification 
MSSR Monopulse Secondary Surveillance Radar
NaN Not a Number
NLOS Non Line of Sight
NP Nondeterministic Polynomial
NP Nonlinear Programming 
PDOP Position Dillution of Precision
PoD Probability of Detection
PoFD Probability of False Detection
PoFID Probability of False Identification
PoI Probability of Identification
PoL Probability of Localization
PSR Primary Surveillance Radar
QP Quadratic Programming
R.M.S Root Mean Square
RLE Regularized Location Estimator
RTD Rount Trip Delay
SM Measurement Selection
SNR Signal to Noise Ration
SPoD System Probability of Detection
SS Solution Selection
SSR Secondary Surveillance Radar
SVD Singular Value Decomposition
TCAS Traffic alert  and Collision Avoidance System 
TDOA Time Difference of Arrival
TLS Total Least Squares
TMA Terminal Manoeuvring Area
TOA Time Of Arrival
T-SVD Truncated - Singular Value Decomposition

T-SVD SS 
Truncated - Singular Value Decomposition Subset 
Selection

T-TLS Truncated - Total Least Squares
UAT Universal Access Transceiver
VAOA Vertical Angle of Arrival
VDOP Vertical Dilution of Precision



Abbreviations and Acronyms xxxiii 

VHF Very High Frequency
WAM Wide Area Multilateration

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 



 

 

Part I 

 

 

 

 

 

 

 

 

 

Introduction 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 
General Information About This Thesis 

1 General Information About This Thesis 

1.1 Framework 

Multilateration (MLAT) systems are a powerful means for the surveillance 
function of Air Traffic Control (ATC) operations. These systems are 
intended to extract, and display to air traffic controllers, the position and 
identification of aircrafts (taxiing, taking off/landing, in the approach or en-
route phases of flight) or vehicles equipped with a Secondary Surveillance 
Radar (SSR) transponder [1-2]. In these systems, a number of ground 
receiving stations, with capabilities to measure some physical characteristics 
of signals emitted by transponders, such as Time of Arrival (TOA) –for the 
standard version-, Round Trip Delay (RTD) or Angle of Arrival (AOA) –
for the enhanced versions-, are placed in some strategic locations around 
the coverage area, and they are connected with a Central Processing 
Subsystem (CPS) to compute the target (i.e., aircraft or vehicle) position. 
In the standard, and most widely extended, configuration of MLAT 
systems, the Mode S transmissions and the unsolicited transponder 
emissions (i.e., the squitter) as well as the responses to interrogations 
elicited by the MLAT system, can be used. These signals are received by 
the ground stations and their TOAs are measured and sent to the CPS, 
where the transponder position is calculated. This calculation is based on 
the Time Difference of Arrival (TDOA) principle, where mathematical 
intersections of multiples hyperbolas (or hyperboloids), which have been 
created with relative time differences, are solved. 

These systems include both hardware and software (as most systems do) 
components. The hardware is mainly composed by the ground stations, the 
CPS, other auxiliary electronic devices and communication data links, and 
the software one is composed by a set of procedures which perform some 
specific functions in both ground stations and CPS.  

For the hardware implementation, a design must be carried out to 
choose a suitable number of stations and to set them up around the 
coverage area, in order to satisfy some specific requirements and 
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restrictions. This is an ad-hoc process (particular for every scenario), which 
is usually achieved by trial and error and is subject to the particular 
experience of system dealers. Through this process, the most important 
aspect is the spatial distribution of the stations, relative to the coverage 
area, as the system accuracy strongly depends on that factor. Once the 
hardware implementation is finalized, the system is ready to perform the 
set of specific functions. 

Basically, the elementary MLAT system functions are: the TOA 
measurements, the target identification, the target position estimation, the 
integrity analysis, the target tracking, and the system synchronization. As a 
matter of fact, each of such functions always introduces a disturbance 
(noise) term, whose orders of magnitudes have a big influence on the 
maximum achievable system accuracy. On the other hand, in order to 
reduce the position errors, a post MLAT function, called data fusion, and 
which is common to all surveillance systems (e.g., primary radar, secondary 
radar, MLAT and Automatic Dependant Surveillance – Broadcast -ADS-B-
) deployed in the coverage area, can be implemented to combine the 
position estimated by them and thus obtaining a final position, which 
generally could be more accurate and reliable than the individual ones. 

The overall MLAT performance strongly depends on three aspects: the 
quality of the system layout design, on the kind of measurements and their 
accuracy, and the quality of the localization process, which can involve the 
target position estimation, which is the localization itself, and the tracking. 

Regarding to the first aspect (system layout design), its main goal is to 
deploy the minimum number of stations, in order to obtain the requested 
system coverage and performance, meeting all the regulatory standards, and 
the constraints imposed by each particular scenario, with the minimum 
cost. In general, choosing the number of stations and their locations to cope 
with all the requirements is not an obvious task and the system designer 
has to make several attempts, by trial and error, before obtaining a 
satisfactory spatial distribution of the stations. Moreover, an important 
number of parameters, like Line of Sight (LoS), Probability of Detection 
(PoD), Position Dilution of Precision (PDOP), Signal-to-Noise Ratio 
(SNR), multipath effects, instrumental errors, the kind of measurements to 
be used (e.g., TOA/TDOA, RTD, AOA), etc., must be taken into account 
when designing these systems. As it can be expected, the system design 
process, performed by trial and error, is subject to several non controllable 
and subjective parameters which can lead to non optimal designs. 

The localization is the function that determines the target position by 
using, as inputs, the measurements and the system geometry. The 
algorithms that calculate the position are currently classified into two 
families: closed form algorithms and open form algorithms. In both cases, a 
system of highly nonlinear equations must be solved to obtain the aircraft 
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position (more exactly, the transponder one). On the other hand, the error 
at this stage mainly depends on the spatial distribution of the ground 
stations (system geometry), the SNR, multipath, measurements accuracy 
(noise presented in the TOA, TDOA, RTD or AOA), the system transient 
performance, an on the efficiency on the localization algorithm to construct 
and to solve the system of equations. There are several works where the 
total error at this stage is studied [3-7]. It can be seen that in normal 
conditions the total Root Mean Square (R.M.S) error is between 5 – 100 m, 
depending on the scenario characteristics. However, in those publications 
the authors comment about an important and critical phenomenon in the 
system of equations called ill-conditioning of the problem. This means that 
the system of equations does not meet the three Hadamard conditions [8], 
namely: the solution exists, the solution is unique and the solutions 
continuously depends on the problem data. The effect of this problem is 
that the system accuracy became very bad (e.g., errors greater than 500 m) 
or simply the solution (aircraft position) does not exists. Likewise, this 
problem is present in all the state of the art of the localization algorithms. 

The system synchronization is another critical function, which also can 
be an error source. However, this function is not directly related to the 
target localization process. Therefore, its study is not part of this thesis, 
wherein a perfect synchronization is assumed. Finally, the integrity function 
is another additional function that can be embedded or not in the system 
and it is neither studied in this thesis. 

Few works have been found regarding to the two situations commented 
above, for this reason, we propose new strategies, for the system design and 
target localization, that allow improving the overall system performance for 
ATC operations. 

1.2 Motivation 

The multilateration systems are being widely deployed over a high number 
of airports around the world, for the aircraft surveillance and control in all 
flight phases, and in many cases they are replacing the classical secondary 
surveillance radar. The European Organisation for the Safety of Air 
Navigation (EUROCONTROL) has published in his report “The ATM 
Surveillance Strategy for ECAC” [9] that the MLAT systems will be one of 
the three pillars for the ATC infrastructures after 2020. The latter shows 
the present and future relevance that these systems have in the operations 
of all air spaces around the world. Likewise, the international scientific 
community has made clear that problems like the position uncertainty, for 
some coverage areas, or poor accuracies in other ones, are the main 
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challenges, which can be solved in order to make these systems 100% 
reliable, allowing an optimum management of the growing world air traffic. 

Regarding to the efficient MLAT systems design, no relevant works have 
been proposed, and currently this process must be performed by trial and 
error. On the other hand, for the target localization process, two interesting 
lines have been explored. One of them consists of developing an important 
number of localization strategies, which are intended to efficiently estimate 
the target position. However, besides these algorithms are also subject to 
the same problems commented before in §1.1, they are only efficient in one 
sense: statistically or numerically, but not in both. It is a current limitation 
of the state of the art which has motivated us to develop the present thesis. 
The second solution that has been proposed in the recent years is the data 
fusion, which basically consists of combining the information provided by 
more than one system and thus obtaining a final position more “accurate 
and reliable”. This solution, although has been successfully applied, it does 
not solve the root of the problems, commented before in §1.1, because it is a 
post-process that, first, in many cases it can has inputs with a high level of 
errors and, it always requires more than one deployed system. Therefore, 
the researches proposed in this thesis are focused on improving these 
systems from their more elementary structures: before operations -system 
design- and before data fusion -localization-. This is achieved by means of 
new strategies, based on metaheuristic optimization techniques and 
regularization methods, some of which have already been successfully tested 
in other scientific fields, like the image processing or geophysics. 

1.3 Objectives 

The general objective of this thesis is to develop new strategies to design 
and operate the MLAT systems, used for ATC operations, in a more 
efficient way. The design strategies are based on the utilization of 
metaheuristic optimization techniques and they are intended to find the 
optimal spatial distribution of the system ground stations, taking into 
account the most relevant system operation parameters. The strategies to 
operate the systems are based on the development of new localization 
algorithms which allow solving the problems of position uncertainty and 
poor accuracy that the current systems can present. Moreover, these 
algorithms are intended to be more statistically and numerically efficient 
than the current state of the art. The new strategies can be applied to 
design, deploy and operate the MLAT systems for airport surface 
surveillance as well as for takeoff-landing, approach and enroute control. An 
important advance in the current knowledge of air traffic control is 
expected from the development of these strategies, because they solve 
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several deficiencies that have been made clear, by the international 
scientific community, in the last years. 

To reach the general idea of this thesis we propose the following 
particular objectives: 

• To develop, adapt and apply some metaheuristic optimization 
techniques, in order to obtain new strategies that can be applied in 
the efficient and automatic design of the MLAT systems layout. 
With these strategies, it will be possible to obtain the optimal spatial 
distribution of the system ground stations, taking into account all 
the relevant parameters which influence the accuracy, for any 
scenario. These strategies will allow designing and deploying the 
MLAT systems in a more efficient way, leading to an important 
reduction of the time and economic costs with regard to the classical 
procedures based on a trial and error approach. 

• To develop a general, novel framework to understand, evaluate and 
compare the localization algorithms. This new framework allows the 
classification of localization algorithms in a wider sense than the 
classical one of open and closed form algorithms. 

• To simulate and evaluate the efficiency of the most representative 
localization algorithms, in order to identify the ones that provides 
the better statistical or numerical characteristics. 

• To develop and adapt the mathematical theory of regularization 
methods to solve the target localization in MLAT systems. It allow 
us to overcome the ill-conditioning of the resulting system of 
equations (i.e., of an inverse problem), to reduce the errors due to 
measurements noise and those due to a potential reduction of the 
number of system ground stations and, possibly, to mitigate errors 
which can be originated by external factors like those produced by 
the multipath effect. With this theory it will be possible to 
implement more accurate, reliable and fault-tolerant systems. 

• To develop a general localization strategy that combines the 
proposed localization algorithms, a set of proposed additional 
improvements, and the tracking algorithms. It allows the general 
improvement of the localization process by making use of all the 
available resources in the general ATC infrastructure. 

• To simulate and analyze the full MLAT system performance, in 
order to validate the design, deployment and operations process. It 
allows to evaluate the proposed strategies as well as to implement 
the necessaries adjustments to obtain the best possible accuracy 
levels. To reach this objective, simulated and real data will be used. 
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1.4 Novelties 

As we have stated before, in this thesis new design and localization 
strategies, which allow improving the overall MLAT system performance, 
are proposed. In this sense, the particular novelties and contributions of 
this thesis can by summarized as follows: 

• We have unified all the relevant aspects for MLAT system design 
into a unique source. 

• We have set the MLAT system design as a Combinatorial 
Optimization (CO) problem, demonstrating also that there is no a 
deterministic algorithm that solves this problem in a polynomial 
computer time. 

• We have developed and general strategy to the efficient and 
automatic design of MLAT systems. This strategy makes use of all 
the real parameters that control the overall system accuracy, as well 
as, of any kind of restriction under any kind of scenario. 

• We have developed a new general framework that classifies the 
localization algorithms, and define them as the pair composed by a 
data model and a numerical algorithm. 

• We have developed some regularized location estimators that are 
more statistically and numerically efficient than the current ones in 
the state of the art. 

• We have developed a general localization strategy, which can be used 
for any surveillance scenario, and which shows certain robustness 
under situations of measurements perturbed by random noises and 
by the corresponding ones produced by the multipath effect. 

1.5 Organization of the Thesis 

Since this thesis describes the research of two contexts for MLAT systems, 
we have structured it into three parts, nine chapters, and three annexes, as 
shown in Fig. 1.1. 

The first part, Introduction, is composed of two chapters, 1 and 2, that 
are horizontal to the entire thesis. The Chapter 1 describes the general 
information of this thesis, whereas the Chapter 2 provides a short, but 
complete review for the theory of MLAT systems. 

The second part, Multilateration Systems Design and 
Deployment, is composed of three chapters: 3, 4, and 5. The Chapter 3 
provides a complete description of the design of MLAT systems, describing 
all the parameters that have been taken into account, and the state of the 
art for the different solutions already in the literature. The Chapter 4 
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provides a short revision of the optimization theory, describing the 
combinatorial optimization problems, and the optimization algorithms used 
and adapted for this thesis. Finally, the Chapter 5 provides the complexity 
analysis for the MLAT design problem as a combinatorial optimization one, 
and the proposed general procedures for optimizing the MLAT systems 
layout. 

The third part, Multilateration Algorithms and Their 
Improvements, is composed of three chapters: 6, 7, and 8. The Chapter 6 
provides a short revision of the mathematics for analyzing and solving 
inverse problems. The Chapter 7 provides a complete analysis for the 
current localization algorithms for MLAT systems, the proposed general 
framework for them, and the corresponding accuracy analysis. In this 
chapter, the simulations are performed with both simulated and real data 
scenarios. Finally, the Chapter 8 provides the proposed regularized location 
estimators, and the proposed general localization strategy with a set of 
additional improvements. Also for this chapter, the simulations are 
performed with both simulated and real data scenarios. 

 
Fig. 1.1 Organization of the thesis. 
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Finally, the Chapter 9 provides the general conclusions, perspectives, 
and contribution to the knowledge reached in this thesis. The Annex A 
provide a mathematical demonstration required for Chapter 5, the Annex B 
a mathematical demonstration required for Chapter 8, the Annex C 
describes the simulated and real data scenarios used for the simulations in 
Chapter 7 and Chapter 8. 
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2 Multilateration Systems Review 

In this chapter, we provide a general review for the Multilateration 
(MLAT) systems context. We start by providing a description of the 
operating principles of these systems, covering from their history, the 
definition and theoretical foundations, and the different signals that are 
used for target localization with those systems. Then, we briefly describe 
the position of MLAT systems within the Air Traffic Control (ATC) 
infrastructures, and finalize the chapter by providing a general scheme for 
understanding the complete operation of MLAT as a surveillance system. 
The main purpose of this chapter is to place the reader into the scientific 
and technological field this thesis is dealing. 

2.1 Operating Principles of Multilateration 

In this section, we describe the operating principle of MLAT systems. Their 
history, from their first development, going through their evolution toward 
the navigation systems, until the current application as cooperative and 
independent surveillance systems, is described. Then, the definition and 
theoretical foundations are also provided. The basic mathematical principle, 
its geometrical interpretation, the kind of measurements that are used, the 
noises affecting them, and the influence of these noisy measurements into 
the target localization process are thoroughly described. Finally, this section 
is finalized by describing the different signals available for using along with 
the MLAT systems in the ATC infrastructures. 

2.1.1 A Brief History 

The multilateration systems, also commonly as a kind of hyperbolic 
positioning systems, arose during the First World War. From that time 
dates the first localization application based on the hyperbolic positioning 
principle, which was called “Hyperbolic Audio Location System” [10]. This 
application was based on the relative time of arrival measurements of sound 
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signals. Such a system was used for determining the hidden war cannons 
location in the battlefields. The original scheme of this system, taken from 
[10], is reproduced in Fig. 2.1. 

In that system, the time of arrivals, of the sounds of explosions, to the 
receiving stations (A, B and C in Fig. 2.1), were determined by using a 
chronograph installed in the “computing center”. Then, these measurements 
were used to manually determine how far was the cannon from the station 
B in respect of station A and how far from the station C in respect of 
station B. Finally, the user drew two hyperbolas ( ஻ܶ − ஺ܶ and ஼ܶ − ஻ܶ in 
Fig. 2.1), whose intersection was taken as the cannon location. The main 
limitations of this system were the short-range of the sound waves and the 
low accuracy of the time measurements device. 

From the First World War, during the emergence of civil commercial 
aviation, came up the need of accurately know the location of the aircrafts 
in respect of the departure and arrival fields. In that time started the 
development of the aids for air navigation. Later, during the Second World 
War, radiofrequency generators capable of delivering signals of kilowatts of 
power and devices capable of measuring the time of arrival, with a precision 
of one millionth of a second, were developed. With these tools, the first 
hyperbolic navigation systems [11] were created within the class of radio 
navigation systems. These systems can be considered as an inverse1 
evolution of that one shown in Fig. 2.1. 

One of the first hyperbolic navigation systems was the GEE2, which was 
fully operative in 1942, and used by the British Royal Air Force during the 

                                         
1 Note the term “inverse” refers to the fact that in the first application in Fig. 2.1, 
the signal source location was variable, its position was calculated in a fixed central 
site and the corresponding receiving stations were also fixed. By the contrary, in 
the hyperbolic navigation systems, the signal sources are fixed (system stations) 
and the aircraft, whose location is evidently not fixed, is at the same time receiver 
and the site where the position is calculated. 
2 GEE is not an acronym, it is really the short for “Grid”. 

 
Fig. 2.1 The first hyperbolic positioning system: “Hyperbolic Audio Location System”. 



2.1 Operating Principles of Multilateration 11 

Second World War. Another one was the LORAN (LOng RAnge 
Navigation), which was fully operative in the spring of 1943. Finally, it is 
worth mentioning also other posterior/improved systems as DECCA, 
LORAN-B, LORAN-C and the OMEGA. 

The hyperbolic navigation systems use a set of ground stations, deployed 
in sites with known locations and synchronized in time and phase. These 
stations transmit electromagnetic signals, which are received by the aircraft, 
where a physical parameter such as time of arrival or phase is measured. 
With the measurements and the adequate navigation algorithms, the 
aircraft position, in respect of a reference site, is calculated by the airborne 
navigation equipment. The principle governing this kind of navigation 
systems is shown in Fig. 2.2. 

Fig. 2.2 shows a scenario with two transmitting stations, denoted for 
convenience as A and B, and an aircraft located in a point P in the space3. 
Both stations transmit electromagnetic signals at the same time4 (due to 
the synchronization scheme) and, because the distance from the aircraft to 
each station is, in general, different, it receives the signals at different time 
instants. The signal propagation delays, from each station to the aircraft, 
are directly related to the corresponding distance between each station and 
aircraft. If we denote these propagation times by Δݐ஺௉തതതത and Δݐ஻௉തതതത 
respectively, they can be defined as: Δݐ஺௉തതതത = തതതതܿܲܣ = ܴ஺ܿ

 (2.1) 

                                         
3 For practical issues, we consider a two-dimensional example, although the same 
concepts can be straightforwardly extended to the three-dimensional case. 
4 For the sake of simplicity, simultaneous transmissions are considered. However, is 
more usual to find systems synchronized in such a way that stations transmit at 
different times. 

 
Fig. 2.2 Hyperbolic navigation system principle. 
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Δݐ஻௉തതതത = തതതതܿܲܤ = ܴ஻ܿ
 

where ܿ is the speed of light in free space (3 × 10଼ 	݉ ⁄ݏ ) and, ܴ஺ and ܴ஻ are 
the distances from the station A and B to the aircraft, respectively. 

The mathematical principle of these systems lies in the fact that the 
difference between the distances from each station to the aircraft is equal to 
a constant that represents a hyperbola (or hyperboloid for 3D case) in the 
space, whose foci are located at the station positions. Such a hyperbola is 
known as “localization hyperbola” and it defines a line (or surface for 3D 
case) over which the aircraft should be located, as shown in Fig. 2.2. 
Mathematically, it is expressed by: ܲܣതതതത − തതതതܲܤ = ܿ(Δݐ஺௉തതതത − Δݐ஻௉തതതത) =  (2.2) ߛ

where, clearly, the constant ߛ depends on the distances difference or, 
equivalently, on the differences between the corresponding propagation 
times. If a third station is used, a new localization hyperbola can be 
determined thus reducing the number of possible location points only to the 
intersections of these two hyperbolas. Theoretically, with three stations, a 
two-dimensional position can be calculated, whilst with four, the three-
dimensional case is solved. 

The concepts described above, although something differently, have 
allowed the development of Multilateration (MLAT) systems for Air Traffic 
Control (ATC). As it will be shown later, one of the main differences 
between the MLAT systems and hyperbolic navigation systems is that for 
the first ones, due to the fact that they are essentially surveillance systems, 
the target position is calculated in a central station rather than in the 
target itself. It is clear to see that this concept is more similar to that one 
described by Fig. 2.1. 

With the rise and growth of civil aviation, the highly precise control and 
surveillance of air space became mandatory. The latter drove the 
development of surveillance and control systems for civil aviation 
applications. Chronologically, the surveillance systems evolution can be 
cited as follows: Primary Surveillance Radar (PSR), Secondary Surveillance 
Radar (SSR), Monopulse Secondary Surveillance Radar (MSSR), Secondary 
Surveillance Radar – Selective Mode (SSR – Mode S) and followed by the 
Multilateration (MLAT) systems. Furthermore, the development of satellite 
navigation allowed the Automatic Dependent Surveillance (ADS), whose 
main application nowadays is the ADS Broadcast (ADS – B). 

The reasons behind the development of MLAT systems arise from the 
necessity of automatically obtaining the target identification and to increase 
the accuracy and coverage levels for surface surveillance, because the 
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classical systems, like Airport Surface Detection Equipment (ASDE) which 
is based on PSR, did not allow such features. Moreover, these systems 
suffered false target detections and performance degradation due to rain. 
On the other hand, the performance characteristics of the surveillance and 
control systems for wide areas (flight phases) did not provided enough 
accuracy for surface operations5. 

The first test of a MLAT system, which had been published, was made 
in 1970 (previously to the Mode S development) by the Bendix Corporation 
[12] (USA). This system used interrogation directive beams to elicit replies 
to an Air Traffic Control Radar Beacon System (ATCRBS) transponder. 
The time of arrival was estimated and then sent to a central computer, 
which calculated the transponder position by using similar algorithms to 
those used in LORAN and Global Positioning System (GPS). The tests for 
this system were carried out only for surface targets in the Logan 
International Airport at Boston, Massachusetts, USA. The result of these 
tests showed the feasibility of implementing such system for air traffic 
control and surveillance. However, by that time, this system was considered 
highly expensive. Thereafter, with the development and the commissioning 
of Mode S, and the Traffic alert and Collision Avoidance System (TCAS), 
the need to know whether MLAT systems could be implemented on this 
kind of new signals arose. One of the tests to proof the latter was carried 
out also in the Logan International Airport by the Lincoln Laboratory in 
1986 [13]. The new results indicated the viability of implementing these 
systems with these signals for air traffic control and surveillance operations. 
Finally, as it will be shown later, the overall performance of these systems 
has been so good that, nowadays, there exits the corresponding version for 
flight phases. 

2.1.2 Definition and Theoretical Foundations 

In this part, a formal and more modern definition of MLAT systems for air 
traffic control and surveillance, as well as the theoretical foundations of 
them, are provided. As it has been commented before, such a foundation is 
based on the mathematical intersection of multiples spatial hyperbolas (or 
hyperboloids). So, in this part, this foundation is described in depth and 
focused on MLAT systems. 

Before continuing with the definition of a MLAT system, it is worth 
mentioning that the air traffic control and surveillance systems can be 
classified into two groups, according to the roll the target plays in its 

                                         
5 Due to the small spatial separations among surface targets and due to the high 
acceleration levels which are experimented by them, the accuracy levels required 
for surface surveillance and control are higher than those required for flight phases. 
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positioning (see Fig. 2.10 later). These two groups are non-cooperative 
systems and cooperative systems. In the first group, the target position 
calculation does not depend on any event or function executed by the 
target itself. An example of this group is the PSR, where a rotating antenna 
transmits high power electromagnetic signals which propagate to the target, 
then, these signals are reflected by the target structure (e.g., aircraft 
fuselage), received again by the rotated antenna and, finally, by means of 
advanced correlation techniques the target position is obtained [14]. On the 
other hand, in the second group, the target actively participates in its 
positioning. In these systems the target position calculation directly 
depends on the reception of an electromagnetic signal emitted by the target. 
Examples of these systems are the SSR Mode S, MLAT systems and ADS – 
B. Moreover, another important classification of the air traffic control and 
surveillance systems is related with the entity where the target position is 
calculated. In this sense, if the target position is calculated by the system 
itself, this is called independent system, whilst if the position is calculated 
by an external entity and the particular system only read the data, this is 
called dependent system. 

Definition 

A MLAT system is a cooperative/independent positioning system, which is 
basically composed by a set of receiving stations (generally jointly 
synchronized) and one or more interrogating stations deployed throughout 
a coverage area, and a computing center where a set of algorithms are 
executed to obtain the position of either surface or air targets. Such 
algorithms are based on the differences of some measured parameter, of a 
signal emitted by a target device commonly called transponder (for surface 
vehicles it is called “non-transponder” device because, although it plays the 
same role than a transponder, it has non-avionics requirements), in each of 
the receiving stations. In these systems, the signal emitted by target 
transponders can be generated due to an external request, i.e., an 
interrogation made by an interrogating station that can be either part of 
the system itself or external to it, or synchronously and spontaneously by 
the target itself. 

Nowadays, MLAT systems have become an important part of the ATC 
infrastructures. In this field, MLAT systems are used to inform air traffic 
controllers of the presence, identification and position of aircrafts or vehicles 
within the corresponding coverage area. To do this, they measure some 
physical parameter of the signal emitted by the target transponders, which, 
for its standard form, is the Time of Arrival (TOA) of the signal to every 
receiving station. These measurements are sent to a Central Processing 
Subsystem (CPS) where they are processed to detect the target presence, to 
obtain its identification and to estimate the transponder position (i.e., that 
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of the aircrafts or vehicles). Besides the TOA measurements, other kinds of 
measurements are possible, like: the Round-Trip Delay (RTD), which is 
basically the time between the transmission of an interrogation signal and 
the reception of its corresponding reply; the Angle of Arrival (AOA) which 
can be vertical (VAOA) or horizontal (HAOA), and the time integration, 
which basically consists in the use of several TOA measurements, coming 
from the same target, at consecutive instants. When MLAT systems 
implement these kinds of measurements, in addition to the TOA ones, they 
are referred as enhanced MLAT systems (henceforth the enhanced form). 

MLAT systems can be deployed for almost any kind of air space. In this 
sense, when MLAT systems are used for airport and approach surveillance, 
they are called Local Area Multilateration (LAM) and, when they are used 
for wider areas (e.g., en-route areas), they are called Wide Area 
Multilateration (WAM). 

A general scheme for a MLAT system is shown in Fig. 2.3. This figure 
shows an on-board transponder device (or the “non-transponder” device for 
surface vehicles) emitting a signal, which can be a spontaneous transmission 
or elicited by the interrogating station, that is received by a set of ௦ܰ 
ground stations. These stations measure the signal TOA and send this data 
to the CPS by using a communication network, which can be either a wired 
(e.g., twisted pair, coaxial, optical fibre) or wireless (e.g., radio) one. In the 

 
Fig. 2.3 General scheme for a MLAT system. 
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CPS, the target identification and position are obtained and, finally, this 
information is sent to the air traffic controller display6. 

In a general frame, it is considered that every station is capable of 
measuring the signal TOA; however, there exist other MLAT architectures 
in which the corresponding TOAs are measured in the CPS instead of at 
the receiving station. In this kind of architecture, the time delay between 
the receiving station antenna and the CPS must be precisely characterized 
and then added to the TOA values. 

The target detection and identification are performed by means of the 
decoding and processing of the data contained in the signal emitted by the 
on-board transponder. Both decoding and processing are out of the scope of 
this thesis, so, we assume the systems we analyze perform these functions 
properly. On the other hand, the localization process, its accuracy and its 
reliability are the core of this thesis. For this reason, the theoretical 
foundations of MLAT systems discussed in the next subsection are focused 
on these particular topics. 

Theoretical Foundations 

As it has been commented before, a MLAT system is composed of a 
number of receiving stations, whose positions are accurately known, which 
measure, in a synchronized way, the time of reception/arrival to them, of a 
signal emitted by an on-board transponder device. These data are sent to 
the CPS, where they are used to obtain the information about the target 
situation (i.e., basically the target position) by means of the Time 
Difference of Arrival (TDOA) technique, as depicted in Fig. 2.3. 

The TDOA technique calculates the difference between the signal TOAs 
to each station in respect of the TOA of one of them, which is designated 
as the reference station. Such a quantity, commonly denoted as TDOA, 
mathematically represents a spatial hyperboloid (or hyperbola) on which 
the target (specifically the transponder device) should be located. Thus, 
with one TDOA value (i.e., two stations) the target can be located on a 
hyperbolic surface characterized by the TDOA quantity and the 
corresponding stations position, which are the foci of such a hyperbola. The 
Fig. 2.2 also holds for this principle. Therefore, with more than one TDOA, 
all the possible target situations can be reduced only to those points 
belonging to the spatial intersection (or intersections) of the hyperbolic 
surfaces. Numerically, it means that, with a suitable number of stations, the 
target position can be calculated as the solution to the mathematical 
problem of estimating the intersection point (or points) of the hyperbolic 
surfaces represented by each available TDOA. This problem is stated as a 

                                         
6 As shown later, this information can be previously processed by a tracking and 
data fusion modules before it is sent to the air traffic controller display. 



2.1 Operating Principles of Multilateration 17 

highly non-linear system of hyperbolic equations, where, in general sense, 
the unknowns are the intersection points (i.e., the possible target positions). 
This concept is described below. 

The TOA quantity measured by each station is a relative clock time (not 
an absolute propagation time), which can be expressed in any time unit, 
generally in seconds, and mathematically it can be described as follows: ܱܶܣ෣௜ = ௘ݐ + ௜ܿݎ + ݊௜ ܱܶܣ෣௜ = ௘ݐ + 1ܿඥ(ݔ − ௜)ଶݔ + ݕ) − ௜)ଶݕ + ݖ) − ௜)ଶݖ + ݊௜ (2.3) 

where the superscript “^” denotes a measured quantity, ݐ௘ is the signal 
emission time in the transponder, which is also an unknown clock time, ݎ௜ is 
the exact distance (obviously unknown) from the target to the ith station, ܿ 
is the speed of light in free-space and ݊௜ is a term that represents the TOA 
measurement error, whose magnitude depends on several parameters like 
the hardware instrumental errors, the quality of the received signal 
(commonly measured by the Signal-to-Noise Ratio -SNR-), the transmission 
and reception antenna gains, the synchronization scheme, analogue-to-
digital converter sampling errors, quantisation errors, multipath effect, etc. 
For the MLAT localization problem this term is treated in a statistical 
sense rather than with the punctual values. The exact transponder position 
is denoted as (ݔ, ,ݕ ,௜ݔ) and the one of each station as (ݖ ,௜ݕ  .(௜ݖ

If we designate, without loss of generality, the reference station as the 
station number 1, the TDOA between the ith station and the reference one 
can be expressed as the following non-linear equation: ܶܣܱܦ෣ ௜,ଵ = ෣௜ܣܱܶ − ෣ܣܱܦܶ ෣ଵܣܱܶ ௜,ଵ = 1ܿඥ(ݔ − ௜)ଶݔ + ݕ) − ௜)ଶݕ + ݖ) − −௜)ଶݖ 1ܿඥ(ݔ − ଵ)ଶݔ + ݕ) − ଵ)ଶݕ + ݖ) − ଵ)ଶݖ + ݊௜,ଵ (2.4) 

where ݊௜,ଵ is the equivalent measurement error term for the TDOA 
quantity, which is also treated in a statistical sense. 

In (2.4) it can be observed that the unknown term of signal emission 
time ݐ௘ has been eliminated from the TOA model (2.3) to the TDOA one, 
thus avoiding the need to know or to estimate it. This is one of the 
advantages of using the TDOA technique. On the other hand, (2.4) 
represents a hyperboloid whose foci are in the stations position and on 
which, in the noiseless case, the target is located, as shown in Fig. 2.4. In 
this figure, for clarity, only a section of the hyperboloid is shown. From this 
figure is clear to see how with only a pair of receiving stations the target 
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can be located on a hyperbolic surface of the space. Because we are 
interested in a punctual (numerical) position value rather than in a surface 
or volume, it is necessary to obtain more than one hyperboloid in the form 
of (2.4), i.e., the use of more than two receiving stations is required. As it 
has been commented before, to obtain this numerical value, the most 
general is to set a system of hyperbolic equations in the form of (2.4) and 
solve it under some conditions. This system of equations is highly non-
linear on the target position and must be solved by any available and 
reliable analytical or numerical tool. More details about it are given later. 

 
Fig. 2.4 Section of a hyperboloid for a pair of receiving stations in MLAT systems. 

 
Fig. 2.5 Intersection of three hyperboloids. 
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Mathematically, we require at least three stations (i.e., two hyperbolic 
equations) to calculate a position in a spatial reference frame with two 
dimensions (henceforth called 2D localization), typically (ݔ,  and, at least (ݕ
four (i.e., three hyperbolic equations) for three dimensions (henceforth 
called 3D localization), i.e., the full Cartesian set (ݔ, ,ݕ  Nevertheless, due .(ݖ
to the measurement errors, which are contained in the term ݊௜,ଵ in (2.4), 
the hyperboloids intersection is really an intersection dynamic area (or 
volume) rather than purely a point. However, by the moment we assume, 
for the sake of simplicity, the intersection is only a point, and in a posterior 
chapter we will emphasize on its actual characteristics. The latter is 
illustrated in Fig. 2.5. 

For a clearer illustration, Fig. 2.6 shows an example for a 2D localization 
situation. Thus, the locus of points on which the target is located is a 
hyperbola instead of a hyperboloid. It can be observed, for example, for the 
TDOA obtained from the station number 2 and the reference one that, with 
this value (ܱܶܣଶ −  ଵ), the target can only be located on the blueܣܱܶ
hyperbola. The same hold for the other TDOA lines. Finally, if at least two 
hyperbolas are mathematically combined, the possible target localizations 
can be reduced, normally, to a spatial point, as shown in Fig. 2.6. 
Furthermore, it is worth to comment that more than one intersection point 
(or area) can appear; it depends on the particular system geometry (i.e., the 
spatial distribution of the station) and the target position relative to this. If 
it happens, it is necessary to find any redundant information which allows 
discarding the remaining (false) intersections. This redundant information 
can come from adding more stations (i.e., more hyperbolic equations), by 

 
Fig. 2.6 Hyperbolas for four stations and a target located in an arbitrary position. The 

reference station is the station number one (the black one) and the target is represented by 
the magenta circle. 
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using other kind of measurements (e.g., RTD, AOA, etc.), by using a priori 
information collected by the system itself (e.g., predicted positions from 
tracking algorithms), or by using information about the target position 
coming from other, external, sources or systems. 

As it has been stated before, when the transponder emitted signal is 
received by only three stations, in this case a two dimensional position (ݔ,  .can be calculated and this solution is referred as 2D solution (ݕ
Nevertheless, with the use of an external source that provides the target 
altitude, e.g., the barometric altitude contained in a Mode C reply [15], a 
three dimensional position can be obtained based on both 2D solution and 
target altitude. However, it is worth saying that due to the difference 
between the barometric altitude and the target height over a geographical 
reference frame (commonly known as geometric altitude), this kind of 
solution can be less accurate than the one obtained when four stations (or 
more than four) receive the signal, in which case is referred as the 3D 
solution. Finally, when more than four stations receive the transponder 
emitted signal, with the use of adequate mathematical algorithms, all of 
these measurements can be combined in such a way that the final solution, 
in principle, is more accurate than that one obtained only with four 
stations, as it will be shown later in this thesis. 

We have seen that the MLAT systems collect a certain set of 
measurements, from a set or receiving stations, and then obtain a target 
position by solving a numerical problem (i.e., a system of hyperbolic 
equations). So, this process can be mathematically seen as a domain change 
in which the measurements, a domain, are converted into another domain, 
the spatial one. If we denote the target position as the column vector ࣂ = ሾݔ, ,ݕ ෝெ௅஺்࢓ ሿ் and the set of measurements asݖ = ሾ ෝ݉ଵ, … , ෝ݉ ௜, … , ෝ݉ெሿ், 
where ෝ݉ ௜ represents any kind of measurement available for MLAT systems 
(e.g., TOA, TDOA, RTD, AOA, etc.), and ܯ is the total number of 
measurements, the MLAT localization problem can be comprised into a 
mathematical operator form as follows: ࣂ෡ = ℳሼ࢓ෝெ௅஺்ሽ (2.5) 

where we have used ࣂ෡ to emphasize that the target position as obtained by 
a MLAT system is an estimated parameter, and ℳ is an operator we have 
called MLAT operator, which converts a ℝெ vector space element into a ℝଷ vector space one, in the most general case. This operator is essentially a 
numerical inverse problem and the particular form depends on the kind of 
measurements comprised in vector ࢓ෝெ௅஺் and the particular method used 
to solve it. The MLAT operator has some characteristics; it is a highly non-
linear operator, although it can be linearly approximated, it amplifies the 
measurement errors contained in ࢓ෝெ௅஺், by a factor that depends on the 
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system geometry, and introduces them into the target position ࣂ෡. 
Therefore, it is considered as a non-exact operator. In this sense, the 
accuracy of the MLAT operator (i.e., that of the MLAT system, which 
henceforth is called system accuracy) mainly depends on three factors, 
namely, the system geometry, the measurement noise, and the robustness of 
the methodology used to form and to solve the numerical problem, the 
latter commonly known as localization algorithm. The system geometry and 
the measurement noise set the best system accuracy that can be achieved 
with the particular MLAT system, whereas the possibility to reach this best 
accuracy depends directly on the localization algorithm. In other words, the 
system geometry and the measurement noise set the best case and the 
localization algorithm set the efficiency of the MLAT operator to achieve it. 
Thus, it is clear to understand that the best system accuracy can be 
obtained by using the adequate system geometry, the measurements with 
the possible lowest noise, and the most efficient localization algorithm. The 
basics and the relation among these three aspects are briefly discussed 
below. 

The measurements made by the MLAT system stations can be affected 
by several phenomena, which produce certain amount of error on them and 
which, at the same time, produce inaccuracies in the target localization. 
There exist several classifications for the sources generating these errors, for 
example, according with their origin, whether they come from an internal or 
external source to the system, according to the system component which is 
affected by them or depending whether all the receiving stations are equally 
affected or not. In the following we will briefly comment a classification of 
these error sources based on whether they are internal or external to the 
system. Moreover, although we will mainly focus the description for the 
TOA/TDOA measurements, most of the developments also apply for other 
measurements like RTD or AOA. In Fig. 2.7 the main errors, according to 
this classification, are summarized. 

Fig. 2.7 shows the classification of the error sources into two sets. The 
first one comprises those errors that are externally generated to the system 
and the other one comprises those that are internally generated. The 
phenomena generating these errors (external or internal) can equally or 
unequally affect all the receiving stations. In this sense, every station is 
affected by a certain amount of error sources, whose effects can be 
represented by an error term (݊௜ in Fig. 2.7) contained in the corresponding 
measurement and whose value is, in a wide sense, time-dependent. 
Generally, this is a random term and, therefore, it must be statistically 
analyzed. The statistical characteristics of this error term are discussed 
later. Before it, we will provide a short conceptual description of the error 
sources. 
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As far as the measurement errors originated for reasons external to the 
system operation itself, they cannot be adjusted in the system, although 
some advanced techniques can be implemented to compensate the 
inaccuracies produced by them. Among these errors are those due to the 
signal propagation losses, to the multipath effect, to any transponder losses 
and to any bias (time delay) or jitter on the transponder. The signal 
propagation losses are directly related with the Signal-to-Noise Ratio 
(SNR), and the greater the distance from the target to the receiving 
stations, the lower the SNR. This kind of error, as it is evident, differently 
affects each station. The multipath effect produces the station receives 
several copies of the same signal. It can be due to reflections from building 
or mountains, even from other targets. This error differently affects each 
station and can severely degrade the system accuracy. However, due to the 
fact that this error is highly terrain model dependant, and because it can be 
mitigated by simply changing the station position, among other simple 
strategies, it is normally not taken into account in a theoretical system 
analysis. The transponder losses are related to the signal propagation ones, 
because, as in any transmission/reception system, the quality of the 
received signal depends also on the quality of the transmitted one. In this 
sense, any transponder deficiency, low amplification or low transmitting 
antenna gain will reduce the SNR at the receiving station, thus increasing 
also the signal propagation losses. This effect, for the same target, equally 
affects all the receiving stations. Finally, the errors originated by the 

 
Fig. 2.7 Error sources classification for MLAT systems. 
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transponder bias and jitter are very important but for RTD measurements, 
not for TOA/TDOA, AOA or time integration. 

On the other hand, the measurement errors generated by internal 
sources are errors which appear for reasons internal to the system 
operation, architecture itself. Therefore, the magnitude of these errors 
directly depends on the manufacture of devices and on the general system 
architecture, among others. Among this kind of errors are those due to 
manufacturing defects (instrumental error), to the Analog-to-Digital (A/D) 
conversion process, to the synchronization scheme, to inaccuracies on the 
stations position data, to the receiving antennas and to the transmission 
lines and/or microwave links losses and delays. The instrumental error is 
due to any manufacturing defect. This error is always present and equally 
affects all stations independently of the target position. The A/D 
conversion process errors appear due to the sample, quantisation and 
codification steps that must be performed on this process. This error is 
always present and the magnitude of this directly depends on the hardware 
quality. For the same manufacturer, this error equally affects all the 
receiving stations. The error due to the synchronization scheme appears if 
the stations are not equally aligned on time. It depends on the 
synchronization scheme used (they are commented later) and can severely 
affect the system accuracy. The error due to the receiving antennas is 
directly related to the errors due to signal propagation losses, because, 
depending on the receiving antenna used (mainly to his gain parameter) 
these errors can be mitigated or even augmented. This error equally affects 
the receiving stations in the sense that, maybe, all of them use the same 
antenna, but it can also differently affect them because several antenna 
parameters depend on the target position (like antenna gain which normally 
is not constant for all the directions). The error due to the transmission 
lines losses and delays appears because when signals propagate along them, 
they experiment electromagnetic losses and time delays. This kind of error 
differently affects each station. Finally, the errors due to possible 
inaccuracies on the station positions data are not relevant and are negligible 
when advanced topographic equipments are used. 

All the measurement errors described above, as we have previously 
commented, can be comprised into an equivalent error term ݊௜, which 
possesses some statistical characteristics. In this sense, all the measurement 
errors described above can be statistically classified as random and 
systematic errors. As was demonstrated in [16], the errors of random nature 
can be assumed, for every receiving station, as jointly Gaussian distributed 
with zero mean and standard deviation ߪ, where the value of the latter 
depends on the MLAT architecture used and the sources affecting the 
particular station. On the other hand, the systematic errors are, in general 
sense, time invariant and they are always present with the same magnitude, 
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for example, the time delays in the transmission lines from the receiving 
antenna to the CPS. Such errors can be fully monitored, accurately 
measured and corrected. For this reason, in all the mathematical analysis of 
MLAT systems is totally valid to neglect the effect of these errors and 
assume the MLAT measurement errors as only jointly Gaussian distributed. 

Particularly, each measurement error due either to internal or external 
sources can be characterized by an individual Gaussian distribution which 
is also zero-mean and with a given standard deviation. In the following 
table the most relevant random errors are summarized along with their 
main characteristics. 

Table 2.1 Summary of MLAT measurement errors. 

Error Characteristics

Instrumental 
The corresponding standard deviation must be provided 
by the system manufacturer.

A/D conversion 
The corresponding standard deviation must be provided 
by the system manufacturer.

Synchronization 

The standard deviation depends on the synchronization 
scheme used and the corresponding standard deviation 
value must be provided by the system manufacturer. 
Depending on the synchronization scheme this standard 
deviation can be equal or not for all stations. 

Signal 
propagation 

The standard deviation for this kind of errors depends 
on the SNR at the reception point. Therefore, this error 
is particular for every spatial point and for every 
receiving station. Due to the fact that SNR depends, in 
addition to the propagation losses, on the transmission 
and reception hardware, this error can include also 
other kind of errors which were separately described 
before. These errors are those due to the transponder 
losses and those due to the receiving station losses (e.g., 
due to the antenna gain).

Transponder bias 
and jitter 

This error is present and is relevant for RTD 
measurements. The magnitude of the standard 
deviation depends on the transponder device and it is 
equal for all stations. 

Finally, once known the standard deviations for every error source, 
affecting a particular station, the corresponding standard deviation for the 
Gaussian distribution which describes the total measurement error can be 
estimated as the root-sum-square of all contributions as follows: 
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ை஺೔ଶ்ߪ =෍ߪ௦௢௨௥௖௘ೕ,೔ଶ௝  (2.6) 

where ்ߪை஺೔ is the corresponding standard deviation for the ith receiving 
station and ߪ௦௢௨௥௖௘ೕ,೔ is the corresponding one of the jth error source 
affecting the ith receiving station. Furthermore, it is important to 
emphasize that, although (2.6) has been described for TOA/TDOA 
measurements, exactly the same equation holds for other kind of 
measurements like RTD or AOA. In order to standardize some terminology, 
hereafter we will refer to the measurements errors effect as measurement 
accuracy, which for the TOA case is called TOA accuracy. 

The measurement vector ࢓ෝ ்஽ை஺ (cf. (2.5)), for the TDOA measurements 
case with a number of ௦ܰ receiving stations, and for any target position ࣂ, 
can be expressed as follows: 

ෝ࢓ ்஽ை஺(ࣂ) = ێێێۏ
ۍ (ࣂ)෣ଶܣܱܶ − (ࣂ)෣ଷܣܱܶ(ࣂ)෣ଵܣܱܶ − (ࣂ)෣ேೞܣܱܶ⋮(ࣂ)෣ଵܣܱܶ − ۑۑۑے(ࣂ)෣ଵܣܱܶ

ې + (ࣂ)࢔
= ێێێۏ
ۍ ෣ܣܱܦܶ ଶ,ଵ(ࣂ)ܶܣܱܦ෣ ଷ,ଵ(ࣂ)⋮ܶܣܱܦ෣ ேೞ,ଵ(ࣂ)ۑۑے

ېۑ +  (2.7) (ࣂ)࢔

being ࢔ the corresponding TDOA measurement error vector, which is zero 
mean Gaussian distributed with covariance matrix defined by: (ࣂ)ࡺ
= ێێێۏ
ை஺మଶ்ߪۍ (ࣂ) + ை஺భଶ்ߪ (ࣂ) ை஺భଶ்ߪ (ࣂ) ⋯ ை஺భଶ்ߪ ை஺భଶ்ߪ(ࣂ) (ࣂ) ை஺యଶ்ߪ (ࣂ) + ை஺భଶ்ߪ (ࣂ) ⋯ ை஺భଶ்ߪ ⋮(ࣂ) ⋮ ⋱ ை஺భଶ்ߪ⋮ (ࣂ) ை஺భଶ்ߪ (ࣂ) ⋯ ை஺ಿೞଶ்ߪ (ࣂ) + ை஺భଶ்ߪ ۑۑۑے(ࣂ)

ې
 (2.8) 

This covariance matrix can be considered as the noise covariance that is 
introduced into the MLAT operator in (2.5). Nevertheless, as we 
commented before, the MLAT operator accuracy does not depend only on 
this noise covariance but also on the spatial distribution of the stations 
(i.e., the system geometry) relative to the corresponding coverage area. 
Moreover, the influence of the measurement errors is magnified by the 
system geometry in the MLAT operator. In the following, the system 
geometry influence and how much it magnifies the measurement errors is 
described. 
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The system geometry refers to the spatial arrangement of the receiving 
stations relative to the coverage area. Furthermore, the system geometry 
also depends on the kind of measurements which are used by the receiving 
stations, e.g., TOA/TDOA, RTD or AOA. It is because each of these 
measurements spatially represents a specific geometric figure; for instance, 
in the case of TOA/TDOA is a hyperboloid or hyperbola, and in the case of 
RTD is a sphere or circumference. Nevertheless, for the sake of simplicity, 
we will focus this description only on TOA/TDOA measurements, although 
the same theory fully holds for the other ones. 

The system geometry influence on the system accuracy is directly related 
with the eccentricity of the hyperboloids or hyperbolas derived from each 
TDOA measurement and on their perpendicularity. This idea is described 
in Fig. 2.8. As we have commented, every TDOA measurement contains 
some amount of error (cf. (2.4) or (2.7)), which is characterized by a 
Gaussian distribution of zero-mean and the standard deviation given by 
(2.6). This fact makes TDOA measurements to be non-exact but lying on a 
strip centred at the theoretical curve. The strip width depends on the 
standard deviation magnitude of each measurement error distribution. The 
latter is illustrated in Fig. 2.8 for a system composed by four stations 
deployed in a square geometry and for two different points in the coverage 
area, part (a) and part (b) respectively. In this figure, for clarity only two 
hyperbolas are shown for every point, with the solid lines representing the 
exact measurement values and the dotted ones the boundaries set by the 
measurements noise errors. Under this situation, we can clearly see in Fig. 
2.8 that the target can be located (with a given probability) in an area 
rather than at a point. This area is called uncertainty area and the 
smaller it is the higher the system accuracy is and vice versa. By comparing 
both parts of Fig. 2.8 it can be seen that the size of the uncertainty areas is 
different, although they are depicted by assuming the same amount of 
measurement errors. This size difference is due to the eccentricity of the 
hyperbolas and also on how much perpendicular are the sheets of them. For 
example, in part (a) of Fig. 2.8 we can see two hyperbolas with relative 
high eccentricity and nearly perpendicular. In this case, the uncertainty 
area has a smaller size than that one of the part (b) of Fig. 2.8, whose 
hyperbolas are clearly not orthogonal, and one of these (ܱܶܣସ −  ଵ: theܣܱܶ
green one) has a small eccentricity. Both eccentricity and the 
perpendicularity of the hyperbolas are mathematically comprised in a factor 
called Dilution of Precision (DOP), which is a unit-less deterministic 
quantity that represent the quality of the system geometry for calculating 
the target position in a particular point in the coverage area (or volume), 
i.e., how much the system geometry magnifies the measurement errors into 
the system accuracy. Such a quantity is a property of the system and it is 
particular to each configuration. The DOP is, in a general sense, space-
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variant. Therefore, it is right to think that, with the same measurement 
accuracy and the same system geometry, the system accuracy for different 
points within the coverage area will be different. 

The most general form of the DOP is the Position Dilution of Precision 
(PDOP), which is a factor (also unit-less) representing the magnification of 
the measurement errors in a three-dimensional space, usually in a 
rectangular frame (ݔ, ,ݕ  The ideal value of PDOP is the unity and the .(ݖ
greater this parameter is the higher is the noise magnification. There are 

 

(a) A point inside the square geometry. 

 

(b) A point outside the square geometry. 

Fig. 2.8 Eccentricity and perpendicularity of the hyperbolas. 
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other two forms of the DOP, derived from the PDOP, which are relevant in 
the theoretical system accuracy analysis. These are the Horizontal Dilution 
of Precision (HDOP) and the Vertical Dilution of Precision (VDOP). The 
HDOP represents the quality of the system geometry for calculating the 2D 
target position, commonly referred to a (ݔ,  plane, whereas the VDOP (ݕ
represents the same but for the vertical component (i.e., the ݖ) of the target 
position vector. 

The PDOP does not depend only on the system geometry but it is also 
related with the number of stations. For example, in Fig. 2.8, if the same 
squared geometry is formed by more than four stations, the PDOP 
decreases (i.e., it is improved). So, in a wide sense, but not fully general, 
the greater the number of stations is the smaller the PDOP, and also the 
HDOP and VDOP. 

Both measurements accuracy and the DOP provide the theoretical 
system accuracy, that is, the best accuracy that can be achieved with a 
particular MLAT system composed by a set of stations, drawing a specific 
geometry, where each of these measure some parameter(s) with a specific 
and statistically definable measurement accuracy. From a mathematical 
point of view, this is also the theoretical accuracy of the MLAT operator in 
(2.5). Equivalently to the case of the DOP, the theoretical system accuracy 
also can be divided into three forms. These are the 3D accuracy that is 
denoted by ߪ௫௬௭ or ߪଷ஽, the 2D (or horizontal) accuracy that is denoted as ߪ௫௬ or ߪଶ஽, and the vertical accuracy that is denoted as ߪ௭. The 
measurement accuracy and DOP must be analyzed and adjusted in a 
system design process, in order to obtain an adequate configuration that 
provides the best possible theoretical system accuracy. 

Due to the fact that the DOP is a deterministic quantity, it is right to 
say that the target position, as provided by the MLAT system, 
theoretically has the same statistical behaviour of the measurement noises, 
i.e., the target position in MLAT system can be modelled as a Gaussian 
distribution whose mean is the exact target position value and whose 
standard deviation is provided by the measurement noises and DOP. 

Finally, the third element of the MLAT operator in (2.5) is the 
localization algorithm, which is the one that provides a numerical value for 
the target position. In the ideal case, the target position as provided by this 
algorithm should only have the inaccuracies due to the measurements noise 
and DOP. However, this is not always true and the algorithm also 
introduces errors into the system accuracy but in a different way than those 
due to the measurement accuracy or DOP. The errors introduced by the 
localization algorithm have their origin in the problem definition and 
numerical solution of it, and they can be treated in terms of efficiency, i.e., 
how much the localization algorithm reaches the theoretical accuracy as set 
by the measurements accuracy and DOP. There are a considerable number 
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of localization algorithms, but a detailed description of this aspect is the 
aim of Chapter 7 of this thesis. 

Summarizing this subsection, we can consider the MLAT localization 
problem as a mathematical operator, whose accuracy depends on three 
elements. The first two elements, the measurements and the system 
geometry, set the best accuracy levels (or lower bounds of accuracy) that 
can be reached by the system. On the other hand, the third one is the 
localization algorithm, which provides a target position value making use of 
the measurements and the system geometry, and whose final accuracy, 
which henceforth we will call operational system accuracy, can reach 
the theoretical one depending on its efficiency. 

2.1.3 Signals Used in MLAT Systems 

Until now we have described a brief history of multilateration, its definition 
and its theoretical foundations. In these subsections we have stated that a 
MLAT system measures the TOA, or other physical parameter, of signals 
emitted by the on-board transponder device, which can be installed either 
in an aircraft or in a surface vehicle. Thereby, the aim of this subsection is 
to describe those signals, and their main characteristics, including the 
corresponding message format. 

Secondary Surveillance Radar (SSR) Signals 

The SSR system is basically composed by a ground rotating antenna, which 
transmits interrogation signals at 1030 MHz [17]. Such an interrogation 
signal is received by the aircrafts within the SSR coverage area, processed, 
and then, replied with a 1090 MHz signal. This signal is called Mode A/C 
reply because the kind of information it contains, which are the 
identification in Code A and the barometric altitude codified in a Code C 
(with a resolution of 100 feet). Due to the fact that all aircrafts are 
equipped with the corresponding transponder device, called Mode A/C 
transponder, this signal can be used by the MLAT receiving stations for 
measuring the TOA, and also for the CPS to automatically identify the 
target. 

On the other hand, the use of Mode A/C signals has some limitations 
related with the quality of the signal. Regarding to the identification issues, 
the problem of code swaps can sometimes appears, because the codes A are 
not unique. Furthermore, the TOA (or other parameter) measurement 
accuracy mainly depends on the quality of the received signal, which can be 
negatively affected by some propagation effects (e.g., scattering, reflections, 
multipath effects, etc.). However, this last limitation is inherent to MLAT 
systems and does not represent a strong operative problem, due to the fact 
that it is taken into account during the design process. Another limitation 
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of the SSR signals is the update rate, because it directly depends on the 
corresponding interrogation rate, which is commonly limited to reduce the 
effect of FRUIT7. In high/medium traffic density scenarios it can be an 
important limitation for the MLAT system because the excess of 
interrogations/replies can generates capacity channel problems. Finally, the 
range of these signals is around 250 NM [17], although it depends on the 
propagation degradations and the traffic density in the coverage area. 

Secondary Surveillance Radar (SSR) Mode S Signals 

The SSR Mode S system operation is similar to that of the SSR. The signal 
physical characteristics and limitations are the same than those of the SSR 
Mode A/C signals, i.e., the SSR Mode S signal is also a 1090 MHz signal 
which is transmitted as a reply to a 1030 MHz interrogation signal. 

The main difference with the SSR Mode A/C signals is that the Mode S 
allows a selective interrogation, i.e., the Mode S only interrogates those 
targets of interest. These selective interrogations are possible because the 
aircrafts (or surface vehicles) transmit, within the reply message, a globally-
unique identification called ICAO address [15]. Thus the SSR Mode S 
system interrogates only one particular aircraft. The ICAO address is 
composed by 24 bits and for sending this kind of signal the aircraft must be 
equipped with a Mode S transponder. The Mode S replies are made up from 
a train of pulses, modulated on the 1090 MHz carrier, according to the 
ICAO recommendations [15], as shown in Fig. 2.9. 

The signal preamble is used to detect the reply and to measure its TOA 
(usually by using the leading and trailing edges of the pulses) or, better, by 
maximum likelihood estimation [18]. Mathematically, each pulse can be 
defined as follows: ݃(ݐ) = rect ൬ ଵ൰⨂rectݐܶ ൬  ଶ൰ (2.9)ݐܶ

                                         
7 FRUIT: False Replies Unsynchronized in Time. 

 
Fig. 2.9 Mode S reply structure. 
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where ଵܶ (0.05 – 0.1 ݏߤ) is the edge duration, ଶܶ (0.5 ݏߤ) is the pulse 
duration and ⨂ is the convolution operator. From these pulses not only the 
TOA can be measured but also other parameters like the direction of 
arrival. The Data Block section in Fig. 2.9 is the reply part that contains 
the particular message, e.g., the ICAO address, barometric altitude or any 
other information. 

The use of Mode S signals allows MLAT systems to unambiguously 
identify every target present in its coverage area. Furthermore, the 
resolution of the barometric altitude contained in one of its messages is 25 
feet, which is higher than that of the SSR Mode A/C. 

Regarding to the system update rate, which can be achieved with these 
signals, it is still low, but due to the selective interrogation capabilities it is 
better than that provided by the SSR Mode A/C signals. Finally, the range 
of these signals is also around 250 NM. 

Mode S Squitter 

The aircrafts that are equipped with a Mode S transponder device have also 
the capability of sending, periodically and without the need of any 
interrogation, a signal which contains a message with only the ICAO 
address. Such a signal is called Mode S acquisition squitter (or simply Mode 
S squitter). The Mode S transponders with this option activated send this 
signal every second. 

The Mode S squitter allows the implementation of a MLAT system 
without the need of an external system with interrogation capabilities or its 
own interrogation module. This operation mode is called passive 
multilateration and it is described later. 

The Mode S squitter signal is physically the same than SSR Mode S 
signal, with the only difference of the update rate and the message content. 
Therefore, the limitations and range are the same for both. 

ADS – B Data Links 

The ADS – B technology transmits, by a data radio-link, data about the 
target state (e.g., position, velocity, intended trajectory, identification, etc.) 
that are obtained from its navigation systems, including the on-board 
GNSS devices. The main radio-links used by this technology are the 1090 
MHz channel, whose corresponding signal is called Mode S 1090 MHz 
Extended Squitter (Mode S ES), the VHF Digital Link Mode 4 (VHF Mode 
4), and the Universal Access Transceiver (UAT). Nowadays, the most used 
and widely extended signal for MLAT systems is the Mode S ES; therefore, 
it is the only one described in this thesis. 

The Mode S ES is essentially the same signal than the Mode S squitter 
but with an extension (this is why it is called Extended) in the message 
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content. The message extension can include (depending on the phase of 
flight) the data obtained from the on-board navigation systems, for 
example, the GPS position (Latitude, Longitude and geometric height), 
velocity, position uncertainty, etc. 

The update rate for this message, when the corresponding option is 
activated, is 6 Hz. Finally, physically the Mode S ES has the same 
characteristics and limitations than those of the SSR Mode S and the Mode 
S squitter. 

2.2 Multilateration Systems in the CNS/ATM 
Scheme 

The civil aviation operations are organized, technically and operationally 
speaking, under the scheme denominated as Communications, Navigation 
and Surveillance / Air Traffic Management (CNS / ATM). In this scheme, 
the term Communications refers to the entire infrastructure used for the 
information (data and voice) interchange either air-to-ground or ground-to-
ground. The term Navigation refers to the ground and on-board (avionics) 
infrastructure that allow the aircrafts to know their situation at any time 
and thus navigate from one point to another one in the airspace. 
Surveillance refers to the specific ground infrastructure that allows to the 
air traffic controllers to know, at any time, the identification, position, 
course and intended route of all the aircrafts and surface vehicles present in 
the airspace under their responsibility. Finally, Air Traffic Management 
refers to the organization and management of the airspace, which allows to 
the aircrafts operators to fulfil with their flight plans, providing at the same 
time the maximum safety levels. 

The MLAT systems are framed within the term Surveillance as a 
ground-based cooperative/independent system. Cooperative because they 
use signals that are emitted by an on-board transponder device, generally 
Mode S signals, and independent because they calculate the target position 
autonomously from other information sources. These systems can be seen as 
the direct replacement of the classical SSR Mode S, because they allow  to 
provide much more services than the classical SSR based systems [9]. The 
Fig. 2.10 shows a brief summary of the most important surveillance 
systems. 
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2.3 A General Scheme for Multilateration Systems 

In this subsection the different functions of MLAT systems are introduced. 
A general architecture is described and then each of its components, 
focusing on those relevant for this thesis. 

2.3.1 General Architecture for MLAT Systems 

A MLAT system is composed by a set of equipments performing a set of 
functions, which allow achieving the main purposes of these systems: the 
automatic identification and localization of a target emitting any of the 
available signals. The MLAT architecture depends on the equipments used 
to perform the system functions and their configurations. In Fig. 2.11 a 
general logical architecture of a MLAT system is shown. Hereafter, the 
different architectures are discussed based on this general scheme, 
describing also each of its functions and parts. 

The Fig. 2.11 shows a MLAT system in his more general and full 
version, which is composed by set of receiving stations -Rx- (which in turn 
are composed of other devices), interrogation stations (Int.), a 

Fig. 2.10 A classification of the main surveillance systems. 
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communication subsystem, a Central Processing Subsystem (CPS), a time 
reference system, and an external data network. Within this scheme other 
equipments that make part of the general ATC infrastructure can be 
mentioned but, for the sake of simplicity, they are omitted. On the other 
hand, all the elements mentioned above run some functions that allow the 
main purposes of MLAT systems. Within these functions are the signals 
detection, the target identification, the TOA/TDOA (or other physical 
parameters) measurements, the target position calculation, the stations 
(interrogating and receiving) and CPS synchronization, the data 
transmission/reception among the different system components, the control 
and monitoring, the data integrity evaluation, the calculated/obtained data 
format and the transmission of these to a control centre. 

In general terms, one (or more than one) interrogating station sends an 
interrogation signal (normally at 1030 MHz); then, the receiving stations 
receive the corresponding reply signal sent by a transponder device, 
measure its TOA and send such data, along with the message contained in 
the signal, to the CPS by means of the communication subsystem. In the 
CPS, the target is identified, its position is calculated and the data 
contained in the signal message is analyzed. Then, the CPS sends to the 
control centre, by using the data network, all the calculated and read data 
in a specific format (usually in ASTERIX [19] format) for presentation on 
the air traffic controllers displays. Other data processing functions can be 

 
Fig. 2.11 General logic architecture for an MLAT system. 
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used like the data integrity analysis and evaluation, as well as possible 
failures detection. It is important to emphasize that before sending the data 
from the CPS to the control centre, the position data are processed by 
tracking and data fusion modules, the latter in the case of existing another 
surveillance system (e.g., PSR, SSR, ADS-B, etc.). Additionally, in the 
CPS, a synchronization scheme is continuously running to fix all the 
stations (interrogating and receiving) on the same time reference frame for 
the TOA measurements. Finally, the time reference module provides to the 
system a unified and highly precise time reference. The control and 
monitoring system allows the system configuration (locally or remotely) as 
well as the monitoring of all its parts. All these functions are summarized in 
Fig. 2.12. 

As we have already stated, each element of the MLAT system 
architecture depends on the type of scheme used to execute the functions 
described in Fig. 2.12. Of particular interest to this thesis are the functions 
of interrogation (which can be considered as a part of the measurement 
function), measurement, synchronization and positioning. Therefore, in the 
following paragraphs, the most important aspects about them are shortly 
described. 

According to the interrogation function, the MLAT system can 
operate in active mode (also called active multilateration) or passive mode 
(also called passive multilateration). In the active mode, at least a 
dedicated and synchronized interrogation station (or several ones) is present 

 
Fig. 2.12 General flowchart of MLAT functions. 
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in the system coverage area; thus, the system itself requests the reply 
signals from the transponders present in the coverage area, in addition to 
those that are spontaneously sent by them (e.g., squitters and extended 
squitters). On the other hand, in passive mode the system does not have 
any dedicated interrogation station and, therefore, it only uses the signals 
spontaneously sent by transponders and those that are elicited by external 
interrogating stations of other surveillance system present in the coverage 
area (e.g., SSR Mode S). 

According to the measurement function (particularly for 
TOA/TDOA measurements) the MLAT system can use a direct 
measurement scheme or a cross-correlation scheme. In the direct 
measurement scheme, the MLAT system directly measures the signals 
TOAs either in each station or in the CPS and then obtains the TDOA 
quantities by using the expression described by (2.4). On the other hand, in 
the cross-correlation scheme the system directly measures (or estimates) the 
TDOA quantities in the CPS. It is worth saying that the TOA/TDOA 
measurement function is also called time-stamping. 

According to the synchronization function the MLAT system can use 
a common clock scheme or a distributed clock scheme. In the common clock 
scheme the system uses only one8 clock allocated in the CPS to perform the 
TOA/TDOA measurements. On the other hand, in the distributed clock 
scheme a local clock is implemented for every receiving station and 
therefore, the TOA measurements are performed in each of these. So an 
additional tool must be used to time align all the local clocks. Among these 
additional tools there are mainly three options, namely, the reference 
transponder, standalone GNSS and common-view GNSS. The reference 
transponder option uses a reference transponder that sends synchronization 
signals to all the stations. The standalone GNSSS option implement a 
GNSS receiver and time aligns all the receiving stations clocks with some 
GNSS constellation, like GPS. Finally, the common-view GNSS also time 
aligns all the receiving stations clocks with a GNSS constellation, but by 
using the same satellite(s) for all the stations (from this comes the name 
common-view); so, additional processing must be implemented for this 
option. 

According to the positioning function the MLAT system can obtains 
the target position in 3D or 2D, and for each of these it can use different 
strategies. In the case of 3D, the MLAT system can directly calculate the 
three coordinates or it can use additional/external information about the 
target height. In the case of 2D, the system can use the two coordinates as 
extracted from the 3D localization or it can use projected models. For now, 
the important aspect is to know that there exist these possibilities to obtain 

                                         
8 Regardless of the redundant parts for reliability and availability issues. 
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the target position, because the full description of all these is one of the 
objectives of the third part of this thesis. 
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3 
Overall Frame and Design Problem

3 Overall Frame and Design Problem 

The second part of this thesis covers all related with development of new 
strategies to design and deploy MLAT systems. In Chapter 2, we have 
studied all the basic theory of these systems, their origin, the theoretical 
foundations, their geometrical interpretation, their different functions as a 
surveillance system, and the influence of the system geometry and the 
measurement noise on the target localization process. Now, in this chapter, 
we use that theory to describe the overall frame and design problem for 
MLAT systems. We describe the design problem from technical point of 
view and its particularities. In this part, we study all the necessary concepts 
to understand the key idea of designing MLAT systems. Finally, a complete 
review of the state of the art, for the current solutions for designing MLAT 
systems, is provided. The purpose of this chapter is to provide the reader 
all the necessary concepts to design MLAT systems, and to prepare it for 
understanding the proposed general design strategies, which are described 
in Chapter 5. 

3.1 Multilateration System Design and its 
Particularities 

In general, the MLAT system design starts with a set of requirements and 
restrictions which must be satisfied with a limited amount of resources 
(e.g., economics, logistics, time, etc.). Within the requirements, aspects such 
as the coverage area size (commonly known as surveillance volume), system 
accuracy, update rate, minimum probability of detection, minimum 
probability of identification or maximum probability of false alarm, among 
others, can be found. On the other hand, within the restrictions are those 
imposed by the regulatory bodies either internationals, like the 
International Civil Aviation Organization (ICAO), nationals, like the 
corresponding National Supervisory Authority (NSA), and even the Air 
Navigation Service Provider (ANSP). Other kinds of restrictions that can 
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be found are those imposed by the nature of the scenario to be covered, for 
example, the presence of high density urban areas can limit the 
emplacement of some stations, the airport buildings (in the case of airport 
surveillance) can significantly affect the number of required stations (both 
receiving and interrogating). In the same sense, other restrictions are those 
imposed by the presence, in the surveillance volume of interest, of other 
surveillance systems like an SSR (either Mode A/C or Mode S), because it 
can make the difference between installing or not dedicated interrogating 
stations for the MLAT system. 

Based on the stated above, it is clear that a MLAT system design 
consists in the maximization of the requirements compliance (e.g., of the 
theoretical system performance), by using the fewest amount of resources, 
and satisfying all the restrictions. To do this, basically a set of performance 
parameters must be analyzed and calibrated, at the same time the stations 
are suitably deployed, and the remaining infrastructure is selected. 

As we have seen in Fig. 2.12, a MLAT system is composed of a set of 
hardware on which a certain set of functions are executed. Therefore, in a 
MLAT system each of these components, hardware and functions, should be 
calibrated and optimized to meet the main system design objective 
described before. The hardware design and optimization is out of the scope 
of this thesis. Regarding to the functions, some of these are associated to a 
specific hardware, e.g., a receiving station or the CPS, and other ones are 
related to the whole system. The functions associated only to a specific part 
of the system can be individually designed, calibrated and optimized. This 
is the case of the synchronization, measurement and identification 
functions, which can be run either on a receiving station or on the CPS, 
and the integrity and tracking functions that are always run on the CPS. 
On the other hand, the positioning (or localization) function, although it is 
executed on the CPS, depends on the whole system as we have seen in 
§2.1.2; i.e., this function strongly depends on the system geometry, as well 
as on the measurements accuracy, which also depends on the 
synchronization scheme and on other factors, and the particular localization 
algorithms that are implemented on the CPS. So, this function cannot be 
individually designed, calibrated and optimized. On the contrary, it must 
be designed by taking into account the whole system. In this sense, the 
measurement function is adjusted in every station (or CPS) and the 
localization algorithms can be implemented individually in the CPS and 
easily modified after the system is operative. However, obtaining the 
suitable system geometry is not trivial, and the higher the number of 
stations or the complexity of the coverage area the more complex the design 
process can be. Moreover, measurements or synchronization functions, and 
the remaining ones, can be easily (and economically) modified but not the 
system geometry, which can imply strong expenses due to civil engineering 
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changes or new communication links. For this reason, the design process in 
this thesis is oriented to the system performance optimization based on all 
those aspects related to the system geometry, i.e., the number of stations 
and their position in the surveillance volume of interest, but taking also 
into account the other related functions. 

There exist a variety of parameters to evaluate the MLAT system 
performance once it is operative, which we call system performance 
parameters. Most of them strongly depend on the positioning function, 
which essentially is the core function of MLAT systems and, as it has been 
commented before, they are usually set as the system requirements to be 
satisfied by the final design. However, such a set of performance 
parameters, due to their nature, cannot be taken into account directly from 
the system design and, therefore, they have to be taken into account by 
means of another set of parameters, which we have defined as system 
design parameters. In other words, the system design parameters allows 
the optimization of the positioning function from a theoretical perspective 
which, at the same time, is one the functions that optimize (or maximize) 
the system performance. 

In the following we briefly describe the most important performance 
parameters for MLAT systems and the corresponding design parameters 
along with the particularities to introduce them into a design process. 
Furthermore, a general scheme to illustrate the relation between 
performance and design parameters is shown. Additionally, some guidelines 
about the stations deployment are provided in the last part of this 
subsection. 

3.1.1 Performance Parameters for MLAT Systems 

The most relevant parameters to analyze and evaluate the MLAT system 
performance are [1-2]: the System Probability of Detection (SPoD), the 
Probability of Identification (PoI), system capacity, latency, start-up time, 
the Probability of False Detection (PoFD), the Probability of False 
Identification (PoFID) and the system availability. Each of these is 
described below. 

System Probability of Detection (SPoD) 

The SPoD is the probability of generating a valid position report, within 
the predefined accuracy requirements, every time period (the system 
updating period). The position must be only calculated by the MLAT 
system. It is, position data obtained from other systems like the ADS-B are 
not valid reports for the SPoD computation. 

Another concept related with the SPoD is the probability of detection of 
one station, which is related to the time percentage that the station is 



44 3 Overall Frame and Design Problem 

available and working under the required standards. This kind of 
probability must be provided by the manufacturer and in this thesis it is 
denoted as PoDstation. 

Probability of Identification (PoI) 

The PoI is the probability of generating a valid target identification report 
every time period. 

System Capacity 

The system capacity is defined as the number of targets that can be 
processed by the CPS without introducing additional time delays rather 
than those previously stipulated. 

Latency 

The latency is defined as the elapsed time since a Mode S signal is detected 
and the corresponding target report is generated. 

Start – Up Time 

The start-up time is defined as the elapsed time since the system is 
switched on and it is fully operative. The switch on time also includes the 
time restoration due to possible power losses. 

Probability of False Detection (PoFD) 

The PoFD is the probability of generating a report corresponding to a false 
target. 

Probability of False Identification (PoFID) 

The PoFID is the probability of providing an invalid identification of a 
valid target. 

Operational System Accuracy 

The operational system accuracy is the one that must be provided by the 
system once it is operative. As we have stated before, it is not always the 
same than the theoretical one, which is the accuracy allowed by the system 
geometry and the measurement noises, because during the design process 
the effects of the localization algorithms are not taken into account. 

This accuracy is obtained as the mean square error between the positions 
obtained from a system measurement campaign and those provided by a 
reference system, like a GPS with differential capabilities (Differential GPS 
-DGPS-), another already accepted and certified surveillance system present 
in the surveillance volume or, even with trajectory reconstruction 
algorithms.  
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Availability 

The availability refers to the probability of the system being able to 
perform the corresponding function at the start time of any operation. In 
other terms, this is the parameter measuring how reliable is the system 
under any eventuality. 

3.1.2 Design System Parameters 

The most relevant parameters to design a MLAT system, based on the 
positioning function, are the DOP (PDOP, HDOP and VDOP can be used), 
the Line of Sight (LoS) coverage, the theoretical system accuracy, the 
measurements error balance and the redundancy. Each of these is described 
below. 

Line of Sight (LoS) Coverage 

The LoS coverage is a parameter particular to each station and is related 
with the propagation path followed by the signal emitted by the 
transponder from the target to the receiving station. In this sense, it is 
considered that a station has LoS to a particular spatial point if the emitted 
signal propagates from this point through the receiving station without 
being obstructed or perturbed by any natural or artificial obstacle, i.e., in a 
straight line. On the contrary, if the signal is received by the station being 
only propagated by any path different to the shortest path (the straight 
line) between transponder and the receiving station, then it is considered 
that such station does not have LoS to that point. The latter is known as a 
Non LoS situation, or simply NLOS. This concept is depicted in Fig. 3.1. In 
part (a) of this figure, a scenario of LoS situations is shown whereas in part 
(b) two possible situations of NLOS are shown. The fixed NLOS situation 
can be (and must be) taken into account in the design process, whilst the 
temporary one cannot be taken into account and the possible errors due to 
it must be corrected in the measurement or localization functions. 

It is evident from the analysis of this parameter that, after defining the 
surveillance volume, the set of those sites where the stations provide the 
highest percentage of LoS over the entire volume must be identified. 

Dilution Of Precision (DOP) 

Although we have previously defined this parameter, in this part a 
description focused on the design process is provided. As we have 
commented, the DOP is a unit-less factor that provides information about 
the quality of the system geometry for calculating the target position in a 
spatial point. Furthermore, the corresponding parameters to analyze the 
quality of the system geometry for 3D, 2D and vertical localization are the 
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PDOP, HDOP and VDOP respectively. Because the DOP is unit-less, its 
interpretation is not trivial and, therefore, a special equivalence scale must 
be used. For this case, a qualitative scale that associates the DOP 
numerical values with a quality level of the system geometry (e.g., poor, 
medium, high) is commonly used. An example of such scale is shown in 
Table 3.1 for PDOP. However, the equivalences shown in this table are 
only indicative because it depends also on the scenario to be covered. 

Table 3.1 Qualitative scale for the PDOP. 

PDOP Quality
1 Ideal

1-2 High
2-5 Good
5-10 Moderate
10-20 Poor
>20 Very poor

 

(a) Line of Sight scenario. 

 

(b) No Line of Sight scenario. 

Fig. 3.1 Examples of LoS and NLOS scenarios. 
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It is worth to remember that this parameter only depends on the 
geometric distribution of the stations; it is, on the stations position relative 
to each point of the surveillance volume. Therefore, for a fixed amount of 
measurement errors, the theoretical system accuracy (or equivalently the 
lower bounds of the system accuracy) only depends on the DOP (PDOP, 
HDOP or VDOP). Although one can think that only the theoretical system 
accuracy analysis is enough for a design process, the DOP plays an 
important role in the sense that, commonly, the stations cannot be 
deployed in those sites that, theoretically, yield the best geometric 
configurations. 

The DOP must be jointly analyzed with the LoS because, for practical 
issues, it is better (and also more realistic) to calculate the DOP only at 
those points satisfying the LoS requirements. 

The DOP analysis is independent of the measurements or 
synchronization architecture. It depends, for a particular spatial point, on 
the number of stations having LoS to such point and the particular 
geometry formed by them. Based on it, the DOP can be analyzed or 
calculated by using all the stations having LoS to each point, or by 
combining all of these in arrays of ஺ܰ stations and obtaining one DOP 
value for each array. The first form is called full calculation and the 
second one calculation by arrays. The selected form to analyze the DOP 
depends on the design strategy and on the localization scheme used by the 
manufacturer. Furthermore, as the localization algorithms, for the DOP 
calculation at least three stations are required, in whose case it is only 
possible to obtain the HDOP; nor PDOP neither VDOP. To obtain these 
latter it is necessary the use of at least four stations. This is summarized in 
the Fig. 3.2. 

When the DOP analysis is performed by means of the full calculation, 
for every point only one DOP value is obtained, whilst for the calculation 

 
Fig. 3.2 Forms to analyze the DOP. 
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by arrays, as many DOP values as arrays are obtained for every point. The 
number of arrays, each of them composed by ஺ܰ stations, at any particular 
point (ݔ, ,ݕ ,ݔ)ܯ is denoted by ,(ݖ ,ݕ  and is given by the following (ݖ
expression: ݔ)ܯ, ,ݕ (ݖ ≡ ൬ ௖ܰ(ݔ, ,ݕ ஺ܰ(ݖ ൰ = ௖ܰ(ݔ, ,ݕ )!(ݖ ௖ܰ(ݔ, ,ݕ (ݖ − ஺ܰ)! ஺ܰ! (3.1) 

where ௖ܰ(ݔ, ,ݕ  is the number of stations having LoS to the analyzed (ݖ
point. 

As shown in Fig. 3.2, when the calculation by arrays is used, an array 
analysis must be performed in order to identify whether or not there exists 
a number of arrays proving a DOP value smaller than a predefined 
threshold. This number of arrays is also related with the redundancy 
parameter, which is described later. 

Finally, it is important to emphasize that although we have focused the 
descriptions above on the DOP, the same conclusions and definitions are 
completely valid for PDOP, HDOP and VDOP. The only difference lays in 
the mathematical formulation used to calculate each of these. However, 
these formulations commonly include the calculation of the three 
parameters at the same time. The election of the DOP component to be 
analyzed directly depends on the scenario to be designed. For example, if it 
is only airport surface, the most appropriate is to analyze only the HDOP, 
whereas for wide area scenarios (e.g., en-route phase) both HDOP and 
VDOP should be analyzed. Furthermore, it is also possible to directly 
analyze the PDOP, but for a clearer understanding is better to separately 
analyze it as the HDOP and VDOP. 

Measurement Error Balance 

In the design of a MLAT system is very important to perform a balance of 
the possible errors that can affect each station. This balance can be 
performed in several ways, each of these basically differing in the close they 
are to the real/operational case. The most basic way is to assume an 
equally and fixed amount of error for all the stations and for all the 
surveillance volume. This form is the most inaccurate way although it can 
be valid for some cases, like a small airport surface scenario. Another form, 
more accurate than the previous one, is by assuming the amount of error is 
different for each station and spatially variant. 

As we have commented in §2.1.2, the measurement errors in MLAT 
systems are assumed to be Gaussian distributed of zero mean and standard 
deviation greater than zero. Therefore, the measurements error balance 
consists in calculating the standard deviation of this distribution. This 
overall standard deviation can be obtained, for each station, as in (2.6). 
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It is evident that an important part of the design accuracy depends on 
this measurements error balance, particularly, on the accuracy of estimating 
the standard deviation of every error source. So, this part can make the 
difference between a system design which is useful in theory and also in the 
operational case or only in the theory. Some of these standard deviation 
values should be provided by the manufacturer and other ones should be 
estimated by means of some physical models. 

Theoretical System Accuracy 

The theoretical system accuracy is the parameter that shows the accuracy 
of calculating the target position, for a particular spatial point, within the 
surveillance volume. This parameter includes both the effects of the DOP 
and those of the measurement errors. This parameter is called theoretical 
because only reflects the best case (or lower bound) of the accuracy that 
can be obtained with a certain system geometry and an amount of 
measurements errors. For practical issues this is the parameter used to 
obtain the system design. 

Equivalently to the DOP, this parameter is also analyzed for 3D, 2D and 
vertical localization as it was already described in §2.1.2. 

The method used to calculate the theoretical system accuracy through 
this work has been developed with the active participation of the author of 
this thesis and is reported in [20]. This method is based on the Cramèr-Rao 
Lower Bounds (CRLB) analysis, which is a well-known technique in 
statistics, which sets a lower bound on the variance of an unbiased 
estimator. 

Redundancy 

The redundancy is one of the factors that determine the system availability 
and continuity in the presence of any failure of its parts. In this concept, 
the receiving station is treated as a unity. 

The redundancy in a MLAT system is expressed in terms of ௦ܰ − ௙ܰ, 
where ௦ܰ is the total number of stations composing the system and ௙ܰ is 
the maximum number of stations that can fail or being inactive without 
altering (reducing) the overall system performance. In other words, it 
means that even failing ௙ܰ stations, the system will continue providing the 
surveillance service within the required performance levels. Such a failure or 
inactivity can be due to either scheduled or spontaneous causes. The 
distributed network nature of the MLAT system allows it to efficiently 
provide good redundancy levels. However, this aspect must be considered in 
the design process. The way to take into account this aspect is something 
simple. The system design can be obtained such that, for each point within 
the surveillance volume, the system must operates with the same 
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performance levels for ௖ܰ − ௙ܰ stations than for ௖ܰ, where we remember 
that ௖ܰ refers to the number of stations that have LoS in a particular point. 

Total Coverage 

The total coverage is an auxiliary concept which merges the concepts of 
system accuracy (either operational or theoretical) and redundancy. It is a 
“yes or not” parameter (or numerically “1 or 0”) that computes the number 
of spatial points that are covered with LoS, for more than a predefined 
number of stations, and within a system accuracy better or equal than a 
predefined threshold. 

The usefulness of this concept appears when solving the MLAT system 
design as an optimization problem. Although it is not explicitly taken into 
account in the next subsection of this chapter, due to the fact that it is 
only a composed parameter, it must be defined because we will use it in a 
posterior chapter. 

3.1.3 Performance Parameters vs. Design Parameters 

As we have stated before, the system design must be performed by taking 
into account a set of design parameters that allow the optimization of the 
system functions, which accordingly allow the optimization of the system 
performance. A general scheme, which for the sake of clarity is focused only 
on the positioning function, is shown in Fig. 3.3. 

The system functions can be divided into a subset that is equipment 
dependent and other one that depends on the whole system. To design each 
of these functions a set of system design parameters is taken into account. 
Particularly, for the positioning function, those parameters are the LoS, the 
DOP, the measurement errors balance, the theoretical system accuracy and 
the redundancy. The right configuration of these parameters allows, in a 
theoretic sense, the system to provide a suitable positioning function and 

 
Fig. 3.3 Performance parameters vs. design parameters. 
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this one, at the same time, allows to improve an important number of 
performance parameters. Among the performance parameters described in 
§3.1.1, those strongly related with the positioning function are the SPoD, 
latency, operational system accuracy and availability. 

The SPoD strongly depends on the positioning function because if the 
target position is calculated with accuracy out of the operational levels, the 
system neglects the corresponding report and therefore this parameter is 
reduced. In this sense, it is clear to see that the theoretical system accuracy 
must be within the predefined levels under any eventuality. Furthermore, 
also the redundancy parameter plays an important role on the SPoD 
parameter, because if the appropriate redundancy level is not configured, 
then, the suitable number of stations needed to allow the positioning 
function of providing the required operational accuracy cannot be available. 

The latency dependency on the positioning function is more operative 
than theoretical. So, as it is shown in Chapter 7, the computational time 
directly depends on the way the position is calculated, it is, on the 
localization algorithm. In this sense, if the suitable localization algorithm or 
strategy is not used, this function will introduce a time delay that can 
exceed the maximum allowed latency. However, due to the computer 
processing advances, this dependency can be usually neglected. 
Furthermore, due to the fact that is more an operational relation, this 
aspect is not taken into account during the design process because, in a 
theoretical sense, no model can be applied to this dependency, even we now 
know that it exists. 

The operational system accuracy dependency on the positioning function 
is direct and the most obvious. This dependency can be easily understood 
by remembering that the higher the theoretical accuracy, which includes 
the effect of the DOP and measurement errors, the higher can be the 
operational one. 

The availability dependency on the positioning function is connected 
with the system geometry (i.e., on the number of stations and the 
corresponding spatial distribution), whose quality is reflected by the DOP 
parameter. So, the system geometry must allows the system providing the 
same accuracy levels, throughout time, even in the presence of any station 
failure or other situation that reduces their number. In this sense, the 
redundancy parameter must be set so that it allows preserving the DOP 
levels. 

Finally, there exists another dependency between the design parameters 
of the different functions. In the case of positioning function this 
dependency is in one direction as depicted in Fig. 3.3. For example, the 
measurements errors depends also on the way the measurements devices 
(either in the receiving station or in the CPS) are designed and 
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manufactured. Nevertheless, due to the nature of this dependency, 
henceforth we assume that this kind of dependency does not exist and we 
take it into account by introducing certain modelled uncertainty into the 
design process. 

3.1.4 Particularities for the MLAT Stations Deployment 

Deploying the stations in those theoretically ideal sites is not always 
possible, either due to site availability reasons, for restrictions or normative, 
for difficult access, for economical costs, because maybe this ideal site is in 
middle of a runway, etc. In this sense, the stations deployment is a specific 
process that depends on the scenario characteristics and on the particular 
system manufacturer. For example, for the same scenario, two different 
companies can provide different designs for the layout of the stations that, 
at least theoretically, meet all the requirements and restrictions imposed by 
the customer. Nevertheless, there are some general guidelines than can be 
taken into account when deploying the stations. These are commented 
below. 

First of all, the possible sites where a priori is easier to deploy the 
stations must be identified. For example, those sites where already there are 
communication or surveillance infrastructures, mobile communication, TV 
or radio towers or electric power supply. Also, those sites which can be 
rent-free, or another characteristic that implies some economical or effort 
saves, should be identified. All of these sites should have certain priority in 
the design process. 

For airport surface surveillance, special care must be taken for installing 
stations near to high density building areas because it can generate 
multipath problems. If the installation of a station in a site with these 
characteristics is required, some strategies should be contemplated, like to 
move the station within certain spatial range, for which the system 
performance parameters do not significantly change, or even to use sectorial 
antennas that limit the signal reception in some directions for which, 
obviously, the surveillance service is not necessary. 

When dedicated interrogating stations must be implemented, it should 
be taken into account that, in order to reduce its number, the 
corresponding site (or sites) should be that which provides the highest LoS 
percentage over the entire surveillance volume. 

Depending on the surveillance volume characteristics, it can be necessary 
the implementation of antennas with different radiation pattern, either 
horizontal or vertical. Because it affects the measurements accuracy, this 
radiation pattern should be also taken into account in the design process. 
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3.2 Solutions for MLAT Systems Design: State of the 
Art 

The main objective of MLAT systems is the hyperbolic localization of 
targets equipped with a transponder (or equivalently the non-transponder 
device for surface targets). Therefore, in general terms, the design of these 
systems is mainly focused on the optimization of that function, in such a 
way that a set of requirements and restrictions are satisfied as better as 
possible. More specifically, the design of a MLAT system consists in finding 
the best spatial distribution of the stations (i.e., the system geometry), 
which allows satisfying certain performance levels, which for this case are 
those described in §3.1.1 and §3.1.2. Likewise, this optimization is 
essentially supported on the basic theory about the accuracy of MLAT 
systems, particularly, on the knowledge about the system geometry 
influence on this accuracy. In this sense, the works which have been 
developed so far can be classified into three different groups. The first one 
comprises all the works describing the basic theory for analyzing the 
theoretical system accuracy. The second one comprises all the works that 
apply the basic theory (i.e., the works of the first group) in order to obtain 
some general guidelines for the station deployment; these works are 
commonly developed under some real/operational cases. The third group is 
composed of the works that provides some general frameworks which allows 
the “automatic” system design under some conditions. Furthermore, this 
last group normally makes also use of the first two groups (much more of 
the first one). In the following, the most relevant published works, within 
each of these groups, are briefly described in chronological order. 

Before proceeding with the description of the works within each of the 
groups commented above, it is worth saying that a significant number of 
them have been developed for non hyperbolic localization systems, i.e., for 
the so called distributed sensor networks. For this reason, it is important to 
firstly describe the difference between these and the MLAT systems. In this 
sense, it is right to say that not all the distributed sensor networks based 
systems are geometric localization systems (as the MLAT is); so, the 
MLAT systems can be seen as a particular case of the first ones. The 
distributed sensor networks also comprise some systems that are only 
intended to individually collect certain kind of data, but not for a joint 
localization process. Therefore, in these cases, the spatial distribution of the 
stations (or sensors) is guided solely by the condition of LoS coverage. 
Within these systems can be mentioned the high precision seismic networks 
[21], where each station individually collects the corresponding data; in this 
system the objective is to deploy the stations in such a way that they cover 
the widest possible portion of the terrain. Nevertheless, the basis of these 
systems can be seen, from a common point of view, as far as all of them 
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deploy a number of stations to meet some requirements and restrictions. In 
the remaining part of this section, unless it is clarified, we will refer always 
to target localization systems. 

Within the first group, one of the first works developed for the analysis 
of the accuracy of hyperbolic localization systems was published in 1975 in 
[22]. In that paper a method for calculating the accuracy of a particular 
location estimator was derived. This method basically links the error 
covariance matrix to the moments and products of inertia of a mass 
configuration that is easily determined from the system geometry. 
Furthermore, the same author, in the same year, published in [23] a method 
that derives the boundaries for the first method in [22]. Three years later, 
in [24] some formulas were derived for estimating the length and cosines 
directions of the semiaxes of the error ellipsoids in multilateration, in terms 
of the R.M.S errors and direction cosines of the distance measurements. 
Then, in [25] a method for estimating the lower bounds on 2D localization 
errors in acoustic passive arrays was presented. The systems studied were 
intended for tracking the 2D target positions and velocities, and the method 
used for estimating the lower bounds of that tracking process was the 
Cramèr-Rao inequality. Furthermore, this works assumed ideal signal 
propagation, thus taking into account only instrumental errors (zero mean 
Gaussian distributed independent of the signal and of the remaining 
receivers). Thereafter, in [26] two approximate formulas, which relate the 
accuracy of the TDOA and differential Doppler measurements to the “one-
sigma width” of the constant lines characterized by those measured 
quantities on the surface of the Earth, were provided. The usefulness of 
these formulas was the easy computation of an approximate level of the 
localization accuracy. Then, in [3] was provided perhaps the most complete 
performance analysis until that time (1984) for passive localization systems, 
including also the hyperbolic ones. In this work, the concentration ellipse, 
the circular error probability, and the PDOP were defined for those 
systems. Many years later, in [4] some useful approximations for calculating 
the PDOP in 2D scenarios were presented. The derivations in this work 
were developed in the same sense than in [3]. Finally, the most recent work 
(up the time of writing this thesis) for analyzing the MLAT systems 
accuracy was published in [20]. In this work, the CRLB is used to calculate 
the lower bounds of accuracy for both standard (i.e., only TOA/TDOA 
measurements) and enhanced (i.e., RTD, AOA, time integration and the 
combination of them along with the standard version measurements) 
MLAT systems. Moreover, in this work also the signal propagation is 
modelled and a complete measurement error balance is taken into account. 

Within the second group of works, in [27] a step by step manual process 
is presented for locating the sensors measuring the bearing of acoustic 
signals emitted from some targets. Such a process is based on the inspection 
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of the Fisher Information Matrix (FIM) and it is composed of three 
guidelines for emplacing the sensors. Then, in [28-29] the authors presented 
a theoretical analysis of the CRLB for source localization based only on 
TDOA measurements and they provided some ideal geometries, which are 
called platonic (e.g., the tetrahedron, octahedron, hexahedron or cube, 
dodecahedron, and the icosahedron) and that minimizes the variance 
bounds for localization, assuming the same measurement errors in all the 
stations. In a posterior work [30], similar conclusions than in [28-29] were 
provided by one the authors of these previous works, but in this case a 
numerical deterministic method called spherical codes was used. Then, in 
[31] a particular analysis for the MLAT system of Boryspil airport (Kiev, 
Ukraine) was performed. In this work, some guidelines are obtained about 
the best system geometry configuration for that airport. In the same year, 
in [32] an analysis for source localization systems with decoupled range and 
bearing estimation, for the case of localizing only one target, was presented. 
Such analysis was developed for the case of stations measuring TOA, 
TDOA or AOA and the tool used for the accuracy analysis was the CRLB. 
Nevertheless, this analysis was restricted only to the case of the stations 
confined on or inside a circular area. The main conclusion of this work was 
that the optimum configuration for the system geometry is with the 
stations equally spaced on a ring-shape figure with some stations in the 
centre of it. Then, in [33] it is also concluded that the best configuration of 
the stations, for TDOA localization, is obtained by emplacing all the 
stations equally spaced on a ring-shaped figure (or concentric rings). This 
conclusion is obtained by means of mathematical analysis of the FIM, 
particularly by finding the configuration that minimizes the determinant of 
it, and by several simulations. Thereafter, in [34] the optimization of the 
number of the stations and their positions, under the layout of Boryspil 
airport (Kiev, Ukraine), by means of genetic algorithms is presented. The 
quality criterion used in this work is only the minimization of the volume of 
the error ellipsoid. However, the process to “estimate” the minimum 
number of stations is manual, and it consists basically in adding a pair of 
stations until some condition of DOP is satisfied. Moreover, in this work 
only the results are shown and no formal procedure is described; for this 
reason this work is classified into this group. Finally, in [35] a practical 
validation of the DOP parameter (for 2D localization) properties is 
performed by means of real measurements in the MLAT system of the 
Adolph Würth Airport (Schwäbisch Hall, Germany). The main conclusions 
of this work did not go beyond the qualitative validation of the theory 
about DOP parameter in that particular scenario. Additionally, it is 
important to emphasize that the works [34-35] have been published after 
the first publication [36] of this thesis concerning the optimization of the 
MLAT systems layout. 
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From the description above of the second group works, it can be seen 
that all of them, under different conditions and methods, approximately 
arrive to the same conclusion, that is, the stations (or sensors) must be 
emplaced over a set of specific figures called platonic (the ring figure can be 
also considered as particular 2D case of a platonic). Nevertheless, it can be 
easily understood that for most of the real scenarios, e.g., an airport for the 
case of this thesis, it is strongly difficult to emplace the stations following 
those geometric figures because of the intrinsic limitations of them. 
Therefore, these works are only useful as a reference/ideal configurations 
that should be reached but not as a general procedure to design a real 
MLAT system. 

Within the third group of works, in [37] an optimization procedure to 
emplace the sensors in a distributed sensor networks, based on simulate 
annealing, is proposed. In this work the sensors can be deployed only over a 
regular grid and the only parameters taken into account are the LoS 
coverage and the cost of emplacing a sensor in each particular point of the 
grid. Then, in [38] the authors use a metaheuristic method called diversified 
local search for emplacing the sensors of an indoor local positioning system. 
In this work, only the parameters of DOP and LoS coverage are used to 
evaluate the quality of the design. Furthermore, the size of the scenarios is 
very small (e.g., meeting rooms of 6 m × 7 m) and no signal propagation 
effects are considered. In the same year, in [21] a simple heuristic procedure 
is proposed to solve the same problem as described in [37]. Then, in [39] a 
deterministic numerical method that seeks to minimize only the condition 
number of the geometric matrices of two different TDOA localization 
estimators is proposed. Although the results shown in this work are useful, 
the proposed method is highly restrictive as the number of required stations 
increases. Furthermore, with the condition number optimization this 
method only optimizes the upper bound for the estimator error variances 
(i.e., the maximum variance) and does not guarantee whether the minimum 
variances are reached, which is a more realistic case. Most recently, in [40] 
an optimization procedure, based on random search and generalized pattern 
search, is proposed for emplacing the station of an AOA localization 
system. The problem optimized in this work is 2D and the parameter used 
for evaluate the system design is the theoretical accuracy as provided by a 
CRLB analysis. Furthermore, no signal propagation effects are taken into 
account. Finally, in [41] a simple application of the genetic algorithms for 
emplacing four MLAT stations, which measures only the TOA, in a wide 
area (200 km × 200 km) is presented. In this work, the parameter to 
evaluate the system design quality is only the theoretical system accuracy 
at three different flight levels. Moreover, in this work no LoS coverage is 
taken into account and neither the signal propagation effects (assume 
stations equally affected by noise), thus leading to non-realistic designs. 
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Also, the configuration of the genetic algorithm seems to be not 
computationally efficient, as a high number of individuals are used. 
Additionally, this work has been published after the first publication [36] of 
this thesis concerning the optimization of the MLAT systems layout. 

From this last group description, several observations can be made. 
First, it can be observed that no many works have been developed for 
dealing with the problem of MLAT system design. Moreover, although 
some of the works cited above could be used for such a purpose, they do 
not contemplate several parameters that are highly important for MLAT 
systems, like the probability of detection, the signal propagation effects, a 
complete measurements error balance, real constraints due the scenario 
layout, and the possibility to also design the enhanced version of MLAT 
systems, whose implementation is in some sense growing. Furthermore, the 
works described above neither present any general framework for allowing 
the possible system expansions. All of these have motivated us to develop 
the part of the thesis concerning to the solution of these issues. 
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4 Optimization Theory: A Short Review 

As we have previously described in Chapter 3, one of the general objectives 
of this thesis is the development of general design strategies for the 
automatic design of MLAT systems. These general strategies are based on 
the metaheuristic optimization methods, particularly on the well known 
Genetic Algorithms (GA). Therefore, in this chapter we describe the basic 
concepts for this kind of optimization methods. To do this, we start with 
describing the concept of Combinatorial Optimization (CO) problems, 
which basically are the numerical mean to introduce a real world problem 
into a computer aided process. Then, we briefly describe the concept of 
metaheuristic optimization methods, making emphasis on the GA. For the 
latter, we make the description focused on the specific GA implemented in 
this thesis. The purpose of this chapter is to describe the entire 
optimization context, which supports the general design strategies proposed 
in Chapter 4. It is important to note that we have selected the GA, instead 
other kind of metaheuristic optimization method, because they are the most 
stablished methods in the literature and because the aim of this part is to 
develop the design strategies and not to develop a new optimization 
method. 

4.1 Combinatorial Optimization Problems 

In engineering, mathematics or computer sciences, many real-world 
problems (or theoretical ones) can be stated as optimization problems. In 
this kind of problems, the main objective is to find the “best” configuration 
of a set of variables which satisfy some goals. In a general sense, 
optimization problems can be grouped into two families: those where the 
solution can be represented as a set of real-valued variables and those where 
the solution can be represented as a set of discrete variables [42-43]. 
Particularly, among those whose solutions are represented by discrete 
variables there is a class called Combinatorial Optimization (CO) problems. 
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There exist in the literature many definitions for CO problems. 
According to [42], in a CO problem we are looking for an object from a 
finite, or possibly countable infinite, set. This object is typically an integer 
number, a subset, a permutation, or a graph structure. It should be pointed 
out that for optimization problems with real-valued solutions, which are 
commonly known as continuous optimization problems [42], we look for a 
set of real numbers or even for a function. More formal, the definition of a 
CO problem is given as follows [43]: 

A CO problem ܲ = (࣭, ݂) can be defined by a set of 
variables ܺ = ሼݔଵ, … , ,ଵܦ௡ሽ; variable domains ሼݔ … ,  ;௡ሽܦ
some constraints among variables (which can be or not 
the same for each of these), and an objective (also called 
fitness or cost function) function ݂ to be minimized, 
where ݂: ଵܦ × …× ௡ܦ → ℝା, and a set of feasible 
assignments ࣭ = ሼݏ = ሼ(ݔଵ, ,(ଵݒ … , ,௡ݔ) ௜ݒ|௡)ሽݒ ∈  .௜ሽܦ

In the definition above, ࣭ is commonly known as the search (or solution) 
space, as each element of this can be seen as a candidate solution. When 
solving a CO problem, the key idea is to find a solution ݏ∗ ∈ ࣭, whose 
values satisfy all the constraints, with minimum objective function value, 
that is, ݂(ݏ∗) ≤ ݏ∀(ݏ)݂ ∈ ࣭. In this case, ݏ∗ is called globally optimal 
solution of (࣭, ݂) and the corresponding set of these ࣭∗ ⊆ ࣭ is called the set 
of globally optimal solutions. 

When the variable domains, the constraints and objective function take 
some values and a particular form, this specific situation is known as the 
instance of an optimization problem and is commonly denoted as ܫ. 
Therefore, it is clear that we really solve an instance of an optimization 
problem rather than a problem itself. 

Finally, it is important to comment that three different versions of CO 
problems can be found, namely [42], [44]: optimization problems, evaluation 
problems and decision problems (or recognition problems). The first ones 
are defined as those problems which look for a feasible solution ݏ∗ that 
minimize (or maximize) the objective function ݂, the second ones are those 
problems which look for the minimum value ݂∗ of the objective function, 
while the latter are those problems which look to know whether or not 
there is a feasible solution ݏ ∈ ࣭ such that ݂(ݏ) ≤  a given threshold) ߴ
value). Further, based on the assumption that the objective function is 
easily computed (that is a reasonable assumption for a large number of 
applications), the optimization problems are considered as the hardest 
problems among the three ones previously described, while the decision 
ones are recognized as the “easiest” [42]. Under this definition, the problems 
dealt with in this work belong to the optimization problems group and 
unless otherwise stated we always refer to CO problem as an optimization 
problem. 
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4.1.1 Complexity of a CO Problem 

Another important point in the basic study of CO problems is the analysis 
of the corresponding problem complexity. This analysis allows us to 
categorize CO problems in different groups depending on their difficulty. 
Two important points to be analyzed in this aspect are: the relation 
between the objective function and constraints with the solution variables 
and, maybe more important, that one related with the required time to 
solve the particular problem. 

Regarding to the first point commented above, an optimization problem 
can be classified as a Linear Programming (LP) problem, Quadratic 
Programming (QP) problem or Nonlinear Programming (NP) problem. In 
LP problem both the objective function and the constraints are linear 
functions of the solution variables, in QP problems the objective function is 
quadratically related with the solution variables whilst for the constraints 
the relation is linear and, finally, in NP problems both the objective 
function and constraints can be nonlinear functions of the solution variables 
[45-46]. Solving NP problems is more difficult than solving LP or QP 
problems. The solution of a NP problem generally requires an iterative 
procedure to establish a direction of search for the major iterations. 

The second point is that related with the time to solve the optimization 
problem, specifically the characterization of this time. Because there is a 
high density of information and definitions, and because it is not the aim of 
this work to go in depth about this topic, nothing more than using it to 
define the order of problem complexity, we are going to provide only the 
elementary and more used definitions in the literature. Before providing 
these definitions, it is important to emphasize that when we refer the word 
time, it is related more to the number of steps (or operations) required to 
solve a specific problem than to the absolute processor time. 

A standard and basic working definition to the characterization of the 
required time is based on the term polynomial time. This term refers to the 
asymptotic time upper bound (the worst case) to solve a given problem 
with an input of size ݊. In this way, a polynomial time is that one which 
can be expressed as a polynomial function of the input size, i.e., the order of 
the upper bound is ࣩ൫݊௞൯ for some constant ݇, e.g., a polynomial of ࣩ(݊ଷ), ࣩ(݊ଶ), ࣩ(1), ࣩ(݊ log ݊). Likewise, a non-polynomial time (sometimes 
referred also as exponential time) is that one who cannot be expressed as a 
polynomial function of the input size, e.g., ࣩ(2௡), ࣩ(݊௡), ࣩ(݊!). Although 
the complexity theory, based on the time characterization, was originally 
designed for decision problems [42], [44], [47-48], it can be directly used for 
optimization problems with or without the same notation (see [49] and its 
references for other kind of notation). In this work, we use the same 
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notation than the decision problems because it is widely accepted for the 
classical works we have used to support this part of the thesis. 

Based on the definitions given above, optimization problems can be 
basically classified into two main complexity classes: class P or class NP 
problems, where the word P stands for deterministic Polynomial and the 
words NP stands for Nondeterministic Polynomial [42], [44], [47]. Standard 
definitions are [47-48]: the class P problems are those that have a 
polynomial-time deterministic algorithm, i.e., these kind of problems can be 
solved in a time of ࣩ൫݌(݊)൯, where ݌(݊) is a polynomial on ݊, and a correct 
solution is always obtained. The class NP problems are those that can be 
solved in a polynomial time but by a non-deterministic algorithm. 

Commonly, all problems that are in the class P also are in class NP, 
thus ܲ ⊆ ܰܲ. However, so far the question about whether class P is a 
proper subset of class NP (i.e., ܲ ⊂ ܰܲ) or whether class NP is equal to 
class P (i.e., ܲ = ܰܲ) has been not answered and, for now, the researchers 
assume ܲ ≠ ܰܲ and that there are some problems that are in class NP, but 
not in class P. These last problems are difficult as no polynomial-time 
algorithms exist for them. This asseveration leads to another useful class, 
which is strongly connected with some optimization problems: the class NP-
hard [43], [47]. Specifically, a problem is classified as class NP-hard if an 
algorithm for solving this problem is polynomial-time reducible to an 
algorithm that is able to solve any problem in class NP [42], [44], [47]. 
Therefore, class NP-hard problems are at least as hard as any other 
problem in class NP, although they might be harder [44]. Furthermore, 
class NP-hard problems are not necessarily in class NP. 

Another important concept in CO problems related with the complexity 
classes, which was introduced in [50], is the concept of class NP-complete 
problems as a subset of class NP. In this sense, a given problem is classified 
as class NP-complete if this is in class NP and is also in class NP-hard. In 
this sense, class NP-complete problems can be considered as the most 
difficult problems that are in class NP [44]. 

4.1.2 On the Solution of CO problems 

The solutions for CO problems can be obtained by different methods that 
are based on a wide range of mathematical principles. In a general sense, 
these algorithms solve problems instances by exploring the search space 
efficiently. Moreover, normally these algorithms are related with the class 
NP-hard problems. 

The algorithms for solving CO problems can be classified as complete or 
approximate algorithms [42-43], [51]. The complete algorithms ensure, for 
finite size instances of a CO problem, an optimal solution in bounded time. 
However, for CO problems that are class NP-hard no polynomial time 
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algorithm exists (assuming that ܲ ≠ ܰܲ) and, therefore, complete methods 
need exponential computation time in the worst-case [43], which often leads 
to computational times too high for practical applications. This fact 
generates the necessity of using approximate algorithms, where the 
warranty of finding an optimal solution is sacrificed in order to obtain a 
good (or acceptable) solution in a significantly reduced amount of time. 

Roughly speaking, among the approximate methods two kinds of these 
can be found: the constructive methods and the local search methods. 
Constructive algorithms start from “zero” and build solutions by cleverly 
adding components until a solution is complete, whilst local search 
algorithms start from an initial point (in some cases obtained by previous 
problem knowledge or by some kind of constructive algorithm) and 
iteratively try to replace the current solution for a better one by exploring 
only a reduced search space, which is normally user-defined. Constructive 
algorithms are faster and, in some sense, provide inferior quality solutions 
than the local search ones. However, this speed and quality of solutions 
should be measured by taking into account the amount of computational 
resources needed in respect of the particularities of the CO problem or 
desired solution. 

Among the constructive algorithms, in the last three decades, a new kind 
of approximate algorithms have been developed which basically tries to 
combine basic heuristic methods in higher and well-structured level 
frameworks. This kind of algorithms is usually known as metaheuristic 
optimization methods and the introduction of these is the objective of the 
next subsection. 

4.2 Introduction to Metaheuristic Optimization 
Methods 

The term metaheuristic was introduced in [52] and is a compound word of 
two Greek words. The first one is meta, that means “beyond, in an upper 
level” and the second one is heuristic, which is a term derived from the 
verb heuriskein that means “to find” [43]. As it is commented in [43], up to 
now there is no a universal definition for the term metaheuristic. In the 
following we will try to state one of those ones within the current literature 
and which fits better the application addressed in this thesis. 

According to [53], a metaheuristic can be defined as “an iterative 
generation process which guides a subordinate heuristic by combining 
intelligently different concepts derived from classical heuristics, artificial 
intelligence, biological evolution, natural and physical sciences, for exploring 
and exploiting the search space, using learning strategies that structure 
information in order to find efficiently near-optimal solutions”. Moreover, as 
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described in [43], [54], “the main goal of a metaheuristic is to avoid the 
disadvantages of iterative improvement and, in particular, multiple descent, 
by allowing the local search to escape from local optima” and “the main 
difference to pure random search is that in metaheuristic algorithms 
randomness is not used blindly but in an intelligent, biased form”. 

In a general sense, metaheuristic optimization algorithms include, but 
are not restricted to, Ant Colony Optimization (ACO), Evolutionary 
Computation (EC), including Genetic Algorithms (GA), Iterated Local 

 

(a) Trajectory-based methods. 

 

(b) Population-based methods. 

Fig. 4.1 Trajectory-based methods vs. Population-based methods: Illustration of the search 
space exploration. 
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Search (ILS), Simulated Annealing (SA), Particle Swarm Optimization 
(PSO), and Tabu Search (TS). However, a useful classification (one of those 
described in [43]) divides these methods into two groups, namely, 
population-based and trajectory-based (or single point search) algorithms. 
This classification is based on the number of solutions used by the method 
at any time. Trajectory-based methods work on single solutions at the same 
time and describe a trajectory in the search space during the search process. 
Among them are, for example, Iterated Local Search or Tabu search. On 
the other hand, regarding to population-based methods, they work with 
several solutions at the same time, i.e., they perform search processes which 
describe the evolution of a set of points in the search space. Examples of 
these are Genetic Algorithms or Ant Colony Optimization. Fig. 4.1 shows 
an illustration of this concept. 

Most metaheuristic optimization methods, belonging to the classification 
presented above, share several concepts and principles. However, 
particularly more for population-based algorithms, because they deal with 
population of solutions that consequently provides an intrinsic way for the 
exploration and exploitation of the search space, the final behaviour and 
performance, of each particular method, are strongly connected with the 
way the population is manipulated. Therefore, due to the fact that in this 
thesis only the particular population-based method of genetic algorithms is 
used, it is better to directly focus the attention only on the introduction of 
this method. The latter is the aim of the next subsection. 

4.3 Review on Genetic Algorithms 

The Genetic Algorithms (GA) are nature-inspired metaheuristic 
optimization methods, which belong to the broader family of Evolutionary 
Computation (EC), and that solve both constrained and unconstrained 
optimization problems based on the process that drives the biological 
evolution. Due to the fact that these algorithms belong to the broader 
family of EC, before go into insight of GA a brief introduction of EC is 
provided below. 

4.3.1 Evolutionary Computation 

The EC is a collective term for the set of all optimization methods that are 
inspired by the Darwinian evolution [55]. In this family of algorithms, a 
solution for a particular optimization problem is called individual and the 
corresponding set of solutions, at a specific time (or iteration), is called 
population. Each iteration of the algorithm corresponds to a generation, 
where a specific group of operators is applied to individuals of the current 
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population, in order to generate the individuals of the population for the 
next generation. This process, in a general sense, is described by the 
pseudo-code in Fig. 4.2. First, an initial population is generated (e.g., 
randomly) and then, while a particular condition is not satisfied, the 
algorithm apply the group of operators (denoted by the function Vary), 
evaluate the new population (function Evaluate) and select (function Select) 
a new population among the set individuals resulting from the union of the 
last population and the current one. 

In the current literature (see [55] for a complete survey) the EC is 
divided in three main groups: evolutionary programming [56], evolutionary 
strategies [57] and genetic algorithms [58]. Furthermore, as it is stated in 
[55], algorithms belonging to the evolutionary programming and 
evolutionary strategies are more applicable to continuous optimization 
problems, while GA are more specific for combinatorial optimization 
problems. This is one of the reasons to select GA among the different EC 
methods. 

4.3.2 Genetic Algorithms 

The basic principles of GA were introduced in [58] and a more extensive 
and complete description of these can be found in [59-62]. In this thesis, we 
follow the EC structure to describe the general GA highlighting only those 
particular aspects which are implemented in this work. The steps to explain 
the GA are as follows: fundamental theory, problem adaptation, and GA 
operators or functions. 

Fundamental Theory 

The GA are adaptive optimization algorithms based on the genetic 
processes of the living organisms postulated by Darwin [63], which basically 
state that throughout generations they evolve following the principles of 
natural selection and the survival of the fittest. These natural principles 
also stipulate that those organisms which are more able to survive and 
attract mates have high probability of generate offspring and vice versa. 
This means that the good characteristics, commonly called genes, of the 
fittest individuals are preserved for successive generations, and probably 

 
Fig. 4.2 General algorithm for EC. 
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increasing their presence in the population. Moreover, the combination of 
well-adapted individuals can generate other ones even with better genes 
than their predecessors. These basic principles help the organisms to evolve 
with their environmental changes and thus survive. 

Genetic algorithms are capable of creating solutions to real-world 
problems by imitation of the genetic processes described above. To do this, 
GA use, because they are a kind of EC algorithm, a population of 
individuals where each of these represents a feasible solution (normally 
numerical) to the problem. Every individual is scored with a value that 
provides information about the quality of the corresponding solution. The 
higher is this value, the better is the adaptation to the problem of this 
individual and, therefore, the higher is the probability of survive and 
reproduce itself by combining his genes with other individual similarly 
selected. In such a way, a new population (set of solutions), which replace 
the last one, is generated. Furthermore, it is expected that good features of 
the previous population are preserved and the poor ones are improved, thus 
producing a mean quality of this new population better than that of the 
previous one. If the GA is well designed and implemented, convergence to a 
near-optimal solution can be ensured. 

In order to computationally implement the ideas described above, a data 
structure and some procedures must be developed. The data structure refers 
to the adaptation of the problem, i.e., the numerical representation of the 
individuals, commonly called codification, and the real-valued space to 
score them, which is called fitness function. On the other hand, the 
procedures in GA are commonly known as operators and they are basically 
three: selection, crossover and mutation. Additionally, other specific 
functions can be implemented to improve the convergence of the algorithm. 

There has been a variety of data structures and procedures proposed 
over the years [64]. Each set of these characterizes a particular GA. In this 
thesis we use a kind of canonical GA [60], whose general pseudo-code is 
shown in Fig. 4.3. In general sense, for a canonical GA, first, a population 
of individuals is generated by some means (e.g., randomly); then, the 

 
Fig. 4.3 Canonical algorithm for GA. 
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quality of each individual is evaluated by means of a fitness function, which 
assigns a real value to the particular solution. These compose the 
initialization of the algorithm. After this initialization, the GA repeatedly 
modify the population of individuals until a stipulated condition is satisfied. 
At each step, the GA select the individuals, by means of a selection 
operator, among the current population to be parents and uses them to 
produce the individuals (called children) of the new population. For this, 
GA apply the operators of crossover and mutation. Once a new population 
is generated, the quality of each individual from it is evaluated. Finally, the 
next population is obtained by choosing a set of individuals among the 
union between the current population and the new one. In the GA 
terminology each of these iterations is called generation. 

Due to the wide options present in the current literature, in the 
following we only describe the specific ones implemented in this work. 

Problem adaptation 

The first point in the problem adaptation is the numerical representation of 
an individual. As stated before, for GA this concept is referred as 
codification. There are several ways to represent an individual in GA and 
it often strongly depends on the problem characteristics and the 
corresponding search space. The most usual codification of an individual is 
as a set of parameters, where each of these can be binary values (called 
codification with a binary alphabet ሼ1,0ሽ), or integer numbers (also called 
codification with a real-integer valued alphabet ሼℕାሽ). A general structure 
of an individual is shown in the following equation: ݕ = 	 ሾ݌ଵ ଶ݌ …  ூ௅ሿଵ×ூ௅ (4.1)݌

where each parameter ݌௜ can take a value either from the binary alphabet 
of from the real-integer valued alphabet. Commonly, for a given problem 
only one kind of structure and alphabet is used, i.e., all the individuals in 
the problem take the form of (4.1) and all their parameters take values 
from the same alphabet. In the GA terminology, each parameter ݌௜ is 
known as gene and the corresponding set of these (vector ݕ) as 
chromosome. Moreover, when a particular chromosome takes values for 
every gene, this is referred as a genotype and the particular solution this 
genotype encode (e.g., the numerical value) is called phenotype [60]. These 
two last concepts are useful to make emphasis in the difference between the 
presentation of a solution and the solution itself. 

The length ܮܫ of an individual can be set as fixed or variable, depending 
on the particular problem. For the application dealt with in this thesis, that 
length can be both, fixed, in which case it will be the same for all 
individuals, and variable, in which case it become as another parameter to 
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be optimized. Moreover, the values that an individual can take depend also 
on the problem constraints and parameter bounds, as naturally should be 
defined for any CO problem. To provide a more applied viewpoint, we refer 
the constraints as design requirements and restrictions, and the parameter 
bounds are simply the available points in the search space, which is a 
discrete set. 

Regarding to the second point in problem adaptation is the concept of 
fitness function. The fitness function is a numerical function which 
assigns to each individual a real value that scores his quality regarding to 
the desired solution, i.e., ݂: ݕ → ℝା. This function is commonly designed for 
every specific problem and its inputs are mainly the genotypes, problem 
constraints and parameter (genes) bounds. This function should be carefully 
designed in such a way that it proportionally represents the actual quality 
of all individuals. Otherwise, a wrong design of this function can quickly 
lead the algorithm to poor-quality areas of the search space. In other words, 
the fitness function is the function to be minimized by the optimization 
algorithm. 

GA Operators 

As shown in Fig. 4.3, the main operators for GA are selection, crossover 
and mutation. These operators use individuals to produce a new population 
at each generation. Basically, first, the selection operator selects some 
individuals to be the parents, then, the crossover operator combines pair of 
parents to produce children for the new population, after that, the mutation 
operator changes some genes of individual parents to create other children. 
Finally, a next generation is obtained by selecting a certain number of 
individuals among the union set between the current population and the 
new population (i.e., the children). This final selection of the next 
population depends on a particular strategy which can be composed by 
other additional process. Among these processes we particularly use the so-
called elitist strategy [60], [64], which is described later. 

The selection operator selects a group of individuals in the current 
population to be parents and who contribute their genes to the children of 
the new population. Usually, the individuals with high fitness function 
values have high probability to be chosen as parents. However, different 
selection operators can be implemented, among those are [60], [64] 
stochastic uniform, remainder, uniform, roulette, tournament or even a 
combination of these. For the application dealt with in this thesis we use 
the stochastic uniform selection operator [60], [64], which is described 
below. 

The stochastic uniform operator selects individuals proportionally to 
their fitness values but in a stochastic sense. To easily describe this 
operator, it is useful to make use of a circumference. Assume a 
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circumference is divided into as many portions as individuals compose the 
population, where each of these portions represent an individual and its size 
is proportional to the inverse (the inverse because we are dealing with 
minimization problems) of the fitness value of the individual it represents. 
This operator moves a marker along the circumference with steps of equal 
size and for each movement the operator selects, as parent, the individual 
corresponding to the portion of the circumference where the marker lies. 
This movement is performed once per parent. The first point where the 
marker starts is a number, less than the step size, coming from a uniform 
random distribution. The number of steps (i.e., the number of parents) 
depends on the predefined probability of crossover. An illustration of this 
operator for a population of four individuals and a number of four parents 
is shown in Fig. 4.4. In this figure can be observed that individuals ݕଵ 
(twice), ݕଶ and ݕସ are the ones selected as parents. 

The crossover operator combines pair of parents, previously selected, to 
create children for the new population. This operator basically combines the 
genes of the parents and the procedure for performing this defines the kind 
of crossover operator used. Additionally, this operator is not applied to all 
the selected parents but it depends on a certain predefined probability 
(probability of crossover). Among different crossover operators are [60], [64] 
scattered, single point, two points, intermediate, heuristic or arithmetic. 
For the application dealt with in this thesis we use the intermediate 
crossover operator [60], [64], which is described below. 

The intermediate crossover operator creates children from a weighted 
sum of the corresponding pair of parents. It can be expressed as follows: ܿℎ݈݅݀ = ଵݕ൫݀݊ݑ݋ݎ + ܽ × ݋݅ݐܽݎ × ଶݕ) −  ଵ)൯ (4.2)ݕ

where ܽ is a random number coming from a standard uniform distribution, ݋݅ݐܽݎ is a predefined control variable lying in the interval ሾ0,1ሿ, ݀݊ݑ݋ݎ is 

 
Fig. 4.4 Stochastic uniform selection operator. 
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the round operator (it approximates the value to the nearest integer value) 
and, ݕଵ and ݕଶ are the corresponding parents. 

The mutation operator changes some genes of some individual parents 
to create other children. This operator is not applied to all parents but it 
depends on a certain predefined probability. Among different mutation 
operators are [60], [64] Gaussian, uniform or adaptive feasible. The use of a 
mutation operator helps to avoid the problem of premature convergence, 
providing to all the points in the search space to be explored a probability 
higher than zero. For the application dealt with in this thesis we use the 
uniform mutation operator, which is described below. 

The uniform mutation operator is a two step operator. First, the 
operator selects probabilistically a fraction from the individual for 
mutation, where each of these has the same probability of being mutated 
and which is previously defined. Then, the fraction is changed by a random 
number uniformly selected from the corresponding range for individual 
parameters (i.e., the parameter bounds). 

For obtaining the next generation, a steady-state scheme is used [43], 
[64-65]. It transfers individuals of the current population to the next one. In 
this sense, the next population is formed by a certain number of individuals 
from the current population and the remaining ones from the children. 
From the current population are taken the ܧ௖ individuals with the best 
fitness values and the remaining ones are taken as the ܮܫ −  ௖ children withܧ
the best fitness values. The particular strategy of preserving the best ܧ௖ 
individuals from the current population is known as the elitist strategy. The 
particular values of these variables are described and discussed later. 

Finally, another important aspect when applying GA, or any 
metaheuristic optimization method, is the way to deal with infeasible 
solutions. This kind of solutions can appear due to the application of 
crossover or mutation operators and they can be, basically, of two forms. 
The first one is related to those solutions with components (parameters of 
individuals) lying out of the parameter bounds, whilst the second one 
appears when the solutions do not meet the constraints. The first kind of 
infeasible solution does not appear in this application because of the 
discrete-closed nature of the search space. However, it is possible to obtain 
infeasible solutions of the second kind. There are mainly three ways to deal 
with this kind of solutions [65]. The simplest action is to reject the 
infeasible solutions, but obtaining feasible solutions is difficult and it can 
lead the algorithm to very long-term convergence (i.e., divergence in 
practical terms). Another option is to penalize this solutions when 
computing the fitness function, which is a more appropriate option, even in 
some cases unavoidable [43]. The last option is try to repair the solution. 
However, this solution can be computationally expensive. In this thesis we 
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use the option of penalizing the solutions in the fitness function. The way 
to penalize these solutions is described later. 
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5 General Procedures for Optimizing the Multilateration Layout 

In this chapter we describe the proposed general procedures for designing 
MLAT systems. Herein, we merge the concepts described in Chapter 3 and 
Chapter 4 to set up the general procedures. We first convert and express 
the MLAT system design problem into a combinatorial problem, performing 
also the corresponding complexity analysis of solving this problem in a 
computer. In this part, we also demonstrate that there is no deterministic 
algorithm (or procedure) for solving the MLAT design problem in 
polynomial time and, hence, that the most near optimal solution is by 
implementing a metaheuristic optimization algorithm. Then, the proposed 
general design procedure is fully described in §5.3, whilst the corresponding 
proposed design strategies are in §5.4. Finally, each of the developed 
strategies is tested over the Barcelona – El Prat (Barcelona, Spain) airport 
layout. Three different simulations and their convergence analysis are also 
provided. The contributions described in this chapter have been published 
in [20], [36], [66-68]. 

5.1 The MLAT System Design as a Combinatorial 
Optimization Problem 

We have seen in a previous chapter what must be done and taken into 
account to perform the design of a MLAT system. Moreover, the different 
procedures or solutions which have been proposed in the literature, along 
with the models used to simulate the system performance, have been also 
briefly discussed. Within these chapters, we discussed the design of a 
MLAT system as guided by three main elements, namely, the system 
requirements, the restrictions and the resources. Likewise, the main goal of 
any design was stated as achieving the maximum compliance with the 
requirements, by using the fewest amount of resources, and satisfying all 
the restrictions as depicted in Fig. 5.1. 
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As we have also stated before, the requirements are mainly based on the 
system performance parameters (see §3.1.1), the restrictions can be those 
imposed by regulatory bodies, by the nature of the scenario, etc., whereas 
the resources, which can be economic, logistics or time, are all directly 
related with the number of the stations, i.e., the smaller the number of 
these the fewer the amount of resources that must be spent. Therefore, in 
this way, it is clear to understand that the part of the design goal related 
with the use of the possible fewest amount of resources is directly connected 
with the use of the minimum possible number of stations. Similarly, the 
requirements and restrictions compliance is directly related with the 
stations position, i.e., the system geometry (see §3.1.2 and §3.1.3). 
Nevertheless, in general, choosing the number of stations and their 
locations, to fully meet the design goal, is not an obvious task and the 
system designers have to make several attempts, by trial and error, before 
obtaining a satisfactory spatial distribution of the stations. As a matter of 
fact, we should remember that to perform this design, multiple factors (i.e., 
the design parameters) must be taken into account, and besides they are 
not one-to-one related with the requirements (i.e., the performance 
parameters) neither with the restrictions, but through several nonlinear 
mathematical models. 

With the optimization theory, provided in Chapter 4, in hands, it can be 
seen that the whole design process can be automatically and accurately 
performed if all the aspects listed above are comprised into an optimization 
problem, whose general objective is to find the minimum number of stations 

 
Fig. 5.1 System design elements. 
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and their locations, which satisfy all the requirements and restrictions. Such 
an optimization problem, as it is described in §4.1, can be of two forms, 
namely, a continuous optimization problem or a CO problem. The 
difference between these kinds of problems basically lies on the 
characteristics of the search space. In this work, we propose stating the 
MLAT system design as a CO problem. Moreover, once the MLAT system 
design is stated as a CO problem, it must be mapped to the context of 
some optimization algorithm in order to obtain a solution. In the next 
subsection, the full adaption of the MLAT design to a CO problem is 
described; essentially, each of the particularities of the MLAT design 
problem is fitted to the corresponding components of a CO problem. 

5.1.1 Mapping the MLAT System Design to a CO Problem 

As described in §4.1, a CO problem is composed of a set of variables, of 
variable domains, of constraints among variables, a goal function and a 
search space. Thus, the key idea when solving a CO problem consists in 
assigning to each problem variable a value, which lies within the 
corresponding variables domain and which satisfies the constraints among 
them, in such a way that the goal function, applied to the set of these 
assigned values (i.e., the problem solution), is minimized. 

It is important to remember that, as we discussed in §3.1, the 
requirements for the design of MLAT systems, which are basically the 
system performance parameters, must be entered into the design process by 
means of the design parameters, because the last can be theoretically 
modelled. Therefore, the design parameters are those taken into account for 
fitting the MLAT design into a CO problem. The relation among them has 
already been described in §3.1.3. 

In the following, the description of every CO problem component, 
focused on the MLAT system design, is provided. In other words, and more 
specific to the optimization context, the instance ܫ, as defined in §4.1, is set 
for the MLAT system design problems. 

Problem Variables 

The problem variables are defined, in a general sense, as the number of 
stations and their positions, and they can be represented by ܺ =൛ ௦ܰ, ,ଵݔ … ,  ௜ theݔ ேೞൟேೞାଵ, where ௦ܰ is the estimated number of stations andݔ
estimated position for the ith station. The particular structure that takes 
the stations position depends on the characteristics of the search space; this 
aspect is discussed later. 

This representation for the problem variables is the most general 
because, as it will be shown later, we propose several kinds of problem 
designs where the number of stations ௦ܰ can be a fixed input parameter or 
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being part of the set of variables ܺ. Moreover, it can be also seen that for 
the problems dealt with in this thesis, the size of set ܺ can be fixed or 
changeable. These particularities are analyzed later on. 

Search Space 

The search space is composed of all possible sites where a receiving station 
can be emplaced, i.e., the search space contains all the possible values that 
can be assigned to the problem variables. 

The definition of this space can be of two forms, continuous or discrete, 
and depending on this feature we deal with different optimization problems 
(see §4.1). For a given scenario, we can define the search space as the whole 
surveillance volume referenced in any geographical reference system. In this 
case, and assuming for clarity a Cartesian reference system, the values that 
can be assigned to the problem variables (regardless of the number of 
stations ௦ܰ) is any subset of coordinates (ݔ, ,ݕ  lying within the predefined (ݖ
volume. So, it is clear to see for this case that, every ݔ௜ is really a vector of 
three real-valued components and, therefore, the search space is defined in a 
continuous form. On the other hand, if we define the search space as a 
finite set of numbered sites, we are dealing with a discrete search space. 

Throughout the development of this thesis, we have proposed the 
definition of the search space with both forms, continuous and discrete. We 
have found better results (in terms of convergence and in terms of closeness 
to the real/operational case) by implementing a discrete search space. For 
this reason, this is the only one presented in this thesis. However, for the 
interested reader, the results for the continuous search space can be found 
in [36]. 

The discrete search space that we have defined is denoted by ࣭, whose 
size (i.e., the number of predefined sites) is ℓ࣭, where ℓ࣭ is such that ௦ܰ < ℓ࣭. In this search space every site is numbered, regardless of any 
priority, from 1 to ℓ࣭. Moreover, the use of this discrete search space allows 
us to implicitly take into account some practical limitations in the scenario 
as power supply or sites availability, and enabling also to obtain more 
realistic design as only the actually available sites are used. On the 
contrary, with the continuous search space some additional routines have to 
be implemented to avoid emplacing the stations in non-realistic sites. 

Finally, a second search space must be used in case of implementing the 
optimization of the number of stations. This search space is, by definition, 
discrete and is denoted as ℛ௦. It is composed by integer values, lying within 
certain range denoted by ℛ௦ = ൣ ௦ܰభ, ௦ܰమ൧, where ௦ܰమ > ௦ܰభ. The selection of 
both values is commonly intuitively guided by the experience of the 
designer, although the first value ௦ܰభ directly depends on the localization 
scheme and must be ௦ܰభ ≥ 3 (see §2.1.2). 
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Variable Domains 

The variable domains define the range of values that can be assigned to 
each of the problem variables in ܺ. In this work, all the values belonging to 
the search space can be assigned to every problem variable, so that the set 
of domains as defined in §4.1 is, for this case, only one and is denoted by ࣭ܦ. 

From the theoretical fundamentals of MLAT systems, it can be 
understood that a station should not be emplaced in the same site than 
another one. Therefore, it can be raise the question about why do not set 
different domains for the problem variables to avoid that situation. This is, 
of course, a correct solution but maybe not the most efficient as a manual 
pre-processing should be performed to define the individual domains, and 
precisely it is the kind of steps which we are trying to avoid in this thesis 
part. Nevertheless, we propose to control that situation, and other ones 
which will be commented later, by means of the constraints imposed to the 
problem variables. 

Variables Constraints 

The variable constraints introduce the design restrictions into the CO 
problem and thus take them into account during the optimized process 
design. Really, we refer as restrictions in a more practical context and as 
constraints in a more numerical/optimization context. There are mainly 
three kinds of constraints, namely, those due to the scenario layout, those 
that are conceptual, and those that are due to the regulatory bodies. 

Within the constraints due to the scenario layout we can find some 
forbidden areas where no stations can be emplaced, e.g., a runway or apron 
areas. Due to the nature of our proposed search space this kind of 
constraints are incorporated from the definition of it. 

The conceptual constraints come from the knowledge of the MLAT 
systems theory, particularly of the DOP and its influence on the theoretical 
system accuracy. Among these are: a minimum spatial separation between 
any pair of receiving stations, and that one due to the fact that no station 
can be emplaced in the same site than another one. Although the second 
constraint can be seen as a particular case of the first one, we treat them 
separately due to the different influence level they have on the DOP. These 
constraints are implemented on the fitness function, which is defined later. 

The last class of constraints are those imposed by the regulatory bodies, 
which particularly for the design and deployment of MLAT systems are 
described in [1-2]. Specifically, the most important restriction coming from 
these documents is the one related with the requirements of SPoD and 
availability, and the design parameter of redundancy, which is the 
minimum number of stations that must cover with LoS every point of the 
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surveillance volume (see §3.1.2 and §3.1.3). This constraint is defined as 
LoS redundancy. 

Fitness Function 

The fitness function assigns a numerical and suitable score to the system 
design, thus quantifying it in respect of the requirements, restrictions (or 
constraints) and the amount of used resources. In other words, the fitness 
function is the numerical way to introduce into the optimization problem 
the requirements (which in this step are the design parameters as stated 
before), the restrictions (which are the constraints), and the amount of 
resources used in the design (which, as we have stated, it corresponds to 
the number of stations). The definition of every component of the CO 
problem is crucial to obtain a suitable performance and to ensure 
convergence when implementing an optimization algorithm to solve it. 
Therefore, the definition of the fitness function is considered as the most 
critical point in this process, because it is the only problem component that 
inform to the optimization algorithm about the quality of the solutions that 
it is finding. So, it is clear that the score provided by this function must 
truly reflect the closeness of the solution to the compliance of the 
requirements and restrictions. 

The fitness function is specific to each kind of design but, in a general 
sense, the function that we propose in this work is a weighted sum that 
takes the following form: 

(ݏ)݂ = 1 − ෍ ௜ܿ௜௖௢௡ௗݓߜ
௜ୀଵ ; ߜ = ൜ 1, ܿ௜: ,1−ݐ݊݁݉݁ݎ݅ݑݍ݁ݎ ܿ௜: ݐ݊݅ܽݎݐݏ݊݋ܿ  (5.1) 

where ܿ݀݊݋ is the total number of requirements and constraint, ݏ =ሼ(ݔଵ, ,(ଵݒ … , ,௡ݔ) ௜ݒ|(௡ݒ ∈  ௜ሽ is the particular solution to the CO problem, ܿ௜ܦ
is the normalized cost of satisfying the ith requirement or constraint, and ݓ௜ is a normalized weight factor that controls the relevance of ܿ௜ on the 
design problem. The corresponding values of ݓ௜ and the functions to obtain 
the different ܿ௜, for each application considered in this thesis, are described 
later on. 

5.2 Complexity Analysis of the MLAT Design 
Problem 

Once mapped the MLAT system design into a CO problem and before 
providing the description of the general procedure for solving it, an 
important aspect that must be analyzed is the complexity of the underlying 
optimization problem. As we have described in §4.1.1, two important 
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aspects should be analyzed for understanding the complexity of the 
problem, namely: the relation between the fitness function and constraints 
(the latter being included in the first one) with the problem variables, and 
the aspect related with the required processing resources (i.e., the number 
of operations) for solving the problem. These two points are briefly 
analyzed in the following. 

The relation between the fitness function and the problem variables can 
be understood by analyzing the expression in (5.1) and each of its 
components. From (5.1) we can see that the fitness function is not directly 
related with the problem variables (i.e., the number of stations and their 
locations) but through the different cost functions ܿ௜ that are used. There 
are several cost functions (see §5.4) that are used in this thesis for solving 
the different system design strategies. However, to define this kind of 
complexity, it is enough to analyze those functions which have the highest 
order of relation with the problem variables. This cost functions are those 
related with the system accuracy and with the SPoD. For the system 
accuracy, we have seen in §2.1.2 that the relation between this and the 
stations position is highly non linear and also spatial-variant, whereas the 
SPoD is only related with the number of stations but also with a highly non 
linear relation (cf. (5.8) later on). In this sense, it is clear to conclude that 
the MLAT system design as a CO problem belongs to the nonlinear 
programming problems. 

Regarding the amount of processing resources that must be used for 
solving the MLAT design problem, it is advisable to previously analyze the 
essential of this as a CO problem. For the sake of simplicity, we first 
analyze the case of optimizing only the stations position. So, this problem 
consists of selecting a subset of ௦ܰ values (stations position) from a set of ℓ࣭, regardless of the order of this and without the possibility to have two or 
more identical values. In this sense, the total number of possibilities, which 
we have to form the subset of ௦ܰ values, is given by the following 
combinatorial expression: ܥଵ(ℓ࣭, ௦ܰ) ≡ ൬ℓ࣭ܰ௦൰ = ℓ࣭!(ℓ࣭ − ௦ܰ)! ௦ܰ! (5.2) 

where, from the definition of the factorial, it can be understood that ௦ܰ 
must be such that 0 ≤ ௦ܰ ≤ ℓ࣭. It is also in agreement with the real 
situation because it makes no sense to have more stations to emplace than 
available sites.  

In other words, (5.2) provides the number of possible combinations (i.e., 
the number of possible solutions) that can be formed from the discrete 
search space ࣭, given its size ℓ࣭ and the number of stations to be deployed ௦ܰ. 
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So far, no deterministic method, which finds the best solution, has been 
proposed for solving the MLAT design problem under all the requirements 
and restrictions. Then, in this case, such a deterministic algorithm capable 
of finding the best solution is the “brute-force” algorithm; i.e., by testing all 
the possibilities and saving the best one. Therefore, it means that a total of ܥଵ operations must be performed to obtain the best subset from ࣭, which 
satisfies all the requirements and restrictions. In this sense, it can be seen 
that the complexity of the problem, in terms of number of operations, 
depends on the behaviour of ܥଵ, which at the same time depends on two 
different inputs: ℓ࣭ and ௦ܰ. The latter is an important difference between 
this optimization problem and other ones well studied and presented in the 
literature, because these last commonly depend only on one input 
parameter. Thus, we have to analyze the behaviour of (5.2) in respect of 
each of these inputs, in order to characterize the problem complexity. 

A first idea about the behaviour of ܥଵ can be obtained by plotting it in 
respect of one of its parameters, setting the other one at a fixed value, and 
vice versa. This analysis is shown in Fig. 5.2 (the vertical axes are in 
logarithmic scale). In part (a) of this figure, ܥଵ is plotted as a function of ௦ܰ 
for several fixed values of ℓ࣭, whereas in part (b), ܥଵ is plotted as a 
function of ℓ࣭ for several fixed values of ௦ܰ. In part (a), it can be observed 
that, for every fixed value of ℓ࣭, ܥଵ is symmetric in respect of ௦ܰ, and it 
increases non-linearly in the left part, then it reaches a maximum value 
and, after that, it decreases also non-linearly. This analysis suggests that 
the problem complexity, in respect of ௦ܰ, increases for some values of ௦ܰ 
(i.e., for ௦ܰ < ℓ࣭ 2⁄ ) and, then, it decreases for the remaining values that 
this parameter can take (i.e., for ℓ࣭ 2⁄ < ௦ܰ < ℓ࣭). However, some remarks 
about this initial conclusion should be done before proceeding with this 
analysis. The first one is related with the fact that this graphical analysis 
only shows the dependency in respect of one input parameter and not in 
respect of both, which is most general. The second one is related with the 
real, operative situation and is that it is not common to have 
approximately the same values of ௦ܰ than ℓ࣭, therefore, it is more common 
working within the left side of each of the curves in part (a) of Fig. 5.2. On 
the other hand, in part (b) of Fig. 5.2, it can be observed that ܥଵ, as a 
function of ℓ࣭, increases non-linearly for the entire domain and for all 
values of ௦ܰ. Then, from this first analysis, we can conclude that the 
MLAT design as a CO problem require an amount of computational 
resources that vary non-linearly with the size of the input parameters, i.e., 
either ௦ܰ or ℓ࣭. 

The graphical analysis performed above is useful to obtain a first idea 
about the problem complexity and the number of fitness function 
evaluations that must be run in case of solving the problem by means of the 
“brute-force” algorithm. However, it is not enough to fully characterize the 
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problem complexity. Then, in the following, a more rigorous analysis of 
(5.2) is described. It consists in expressing ܥଵ as a function of only one 
parameter that comprises both ℓ௦ and ௦ܰ, and then obtain an expression 
that explicitly shows the relation between ܥଵ and the input variables size. 

Due to the fact that ௦ܰ < ℓ࣭, we can assume that both input 
parameters, for the most of real, operative situations are related by a 
proportional constant such that ℓ࣭ = ܽ ௦ܰ, where ܽ > 1, or equivalently 

 

(a) Number of solutions in respect of the number of required stations. 

 

(b) Number of solutions in respect of the search space size. 

Fig. 5.2 Number of possible solutions in respect of the search space size and of the number 
of required stations. The vertical scales are logarithmic. 
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௦ܰ = ܾℓ࣭, where ܾ = 1 ܽൗ  and it is 0 < ܾ < 1. In this sense, ܥଵ can be 
expressed as a function of only one input parameter as follows: ܥଵ(ℓ࣭) = ℓ࣭!(ℓ࣭ − ܾℓ࣭)! (ܾℓ࣭)! (5.3) 

or ܥଵ( ௦ܰ) = (ܽ ௦ܰ)!(ܽ ௦ܰ − ௦ܰ)! ௦ܰ! (5.4) 

To easily manipulate the equations above, it is more practical to express 
them by using the Stirling’s approximation [69] for factorials, which for 
convenience is written herein as: ݊! ≈ ݊ߨ2√ ቀ݊݁ቁ௡ 
where ݁ is the Euler number. 

Then, it can be demonstrated (see Annex A for the full demonstration) 
that, after few manipulations, (5.3) and (5.4) can be expressed, respectively, 
as follows: 

ଵ(ℓ࣭)ܥ ≈ ඨ 1)ߨ12 − ܾ)ܾℓ࣭ ൬ 11 − ܾ൰(ଵି௕)ℓ࣭ ൬1ܾ൰௕ℓ࣭ ; 0 < ܾ < 1 (5.5) 

and 

)ଵܥ ௦ܰ) ≈ ඨ ܽ)ߨ2ܽ − 1) ௦ܰ ൬ 1ܽ − 1൰(௔ିଵ)ேೞ (ܽ)௔ேೞ; ܽ > 1 (5.6) 

From these expressions, it is explicit that, for both cases (5.5) and (5.6), 
the amount of operations that must be performed, by the “brute-force” 
algorithm, exponentially grows with the size of the input parameters, either ℓ௦ or ௦ܰ. For a clearer interpretation, (5.5) is plotted in Fig. 5.3, for several 
values of the proportional constant ܾ. It can be observed that the problem 
complexity posses a symmetric behaviour with the constant ܾ, whose 
minimum values are obtained for ܾ=0.1 and ܾ=0.9, and the maximum is at ܾ=0.5. However, in any case, the required number of operations is 
significantly large, and much more if we consider that these operations are 
matrix multiplications and inversions for a number of points belonging to 
spatial grid. It is worth saying that (5.5) and (5.6) are equivalent because 
every input parameter comprises the other one by means of the relations 
described above. Therefore, the complexity analysis can be considered 
complete by inspecting only some of these two expressions. 
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In (5.5) and (5.6), it can be also seen that ܥଵ is damped by a variable of ࣩ ቀℓ࣭ିభమቁ and ࣩ ቀ ௦ܰିభమቁ, respectively. However, it can be proved that the 
effect of this damped variable is negligible in practical terms. For example, 
it can be easily demonstrated that it reaches its minimum value at ܾ=0.5, 
in which case (5.5) takes the following form: 

ଵ(ℓ࣭)ܥ = ඨ ℓ࣭ߨ2 2ℓ࣭ 
where the damped variable is clearly identified as the factor √2 ℓ࣭ൗߨ . For a 
quick and practical comparison, this particular case is also plotted in Fig. 
5.3 (black asterisks) with the damped factor suppressed. It is clear that, 
regardless of the absolute values, the damped version of ܥଵ(ℓ࣭) follows the 
same tendency of the undamped version. 

Finally, remembering the concepts set in §4.1.1, now we can easily 
conclude that the MLAT design CO problem belongs to the class NP 
problems. On the other hand, the classification of the problem within one of 
the classes derived from class NP requires a wider research that is out of 
the scope of this thesis, and it does not provide of significant improvement 
regarding the objectives of this thesis. 

Regarding to the MLAT design problem consisting in the optimization of 
both the number of stations and their locations, the total of possibilities we 
have to form the solution is given by the following expression: 

 
Fig. 5.3 Joint analysis of the problem complexity. 
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,ଶ(ℓ࣭ܥ ௦ܰ) = ෍ ℓ࣭!(ℓ࣭ − ݅)! ݅!ேೞమ
௜ୀேೞభ  (5.7) 

where ௦ܰభ and ௦ܰమ are the boundaries of the second search space ℛ௦, 
previously defined. 

It is easy to conclude, without any more analysis, that the problem ܥଶ is 
as least as hard as the first one ܥଵ. 
5.3 Description of the Overall Design Procedure 

The general design procedure we have developed in this thesis is aimed at 
the designing of standard MLAT systems (e.g., with only TOA/TDOA 
receiving stations) or of its improved version (e.g., with the combination of 
TDOA/RTD or TDOA/AOA receiving stations). In this sense, the system 
design is obtained by calculating the minimum number of stations and their 
locations (stations sites) that maximize the LoS coverage, the system 
redundancy and the theoretical system accuracy. As the system redundancy 
is directly related with the LoS coverage, henceforth, unless otherwise 
stated, we will merge these two concepts into the LoS coverage one. 

The calculations in this procedure are performed on the CO problem 
previously defined. Nevertheless, as we have commented before, the CO 
problem must be mapped into the context of some optimization algorithm, 
which for this case is the GA, in order to obtain the final solution. Through 
this section, we treat the optimization algorithm as a black box that receive 
some information and provide a modified version of it, then, in the next 
section, we fully describe every proposed design strategy along with the 
corresponding mapping to the GA context. 

5.3.1 General Framework 

The general idea used for this procedure is based on the integration, into an 
iterative routine, of different information and several numerical tools, in 
order to obtain a suitable MLAT system design (i.e., the number of stations 
and their locations), which efficiently satisfy the imposed requirements and 
restrictions. This general idea is illustrated in Fig. 5.4. In the following 
lines, this general idea is described. 

As we can observe from Fig. 5.4, the general framework proposed in this 
thesis is composed by a core (i.e., the optimization algorithm), some inputs 
of different kinds, some numerical tools required to perform additional and 
necessaries calculations, and some outputs. In this figure, there are some 
black and white boxes and other ones that are coloured. The coloured ones 
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are additional parts which are used to obtain possible systems validation or 
expansions. Firstly, we will explain the general framework based on the 
black and white boxes and then, the corresponding functionality that makes 
use of the coloured ones. 

Inputs 

The inputs are composed of the information about the scenario 
characteristics, specifically the airport layout, the design requirements and 
the design constraints. 

The airport layout is basically composed by any numerical data that 
describes the airport buildings, the runways, stand and apron areas, etc. In 
this thesis, we use a general Data Exchange Format (DXF) file from 
Autodesk©, which contains this information in form of polylines. Moreover, 
it is required information about the terrain model, i.e., basically the 
information about the terrain elevation or heights. For this thesis we use 
the standard Digital Terrain Model (DTM), which provides numerical 
information for the height of the terrain over a local reference frame, 
organized in matrix form, where each matrix position represents the height 
(commonly in meters) for a spatial grid with certain resolution. 

The requirements, as we have commented before, are introduced into the 
framework by translating them into the system design parameters. This 
information is provided numerically and has been fully described in Chapter 

 
Fig. 5.4 General framework for designing MLAT systems. 
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3. Within this information are the lower bound(s) for the theoretical system 
accuracy, the SPoD and redundancy, and the number of stations to be 
emplaced or the range of them, as defined in §5.1.1, depending on the 
particular design goal. 

The design constraints also have to be provided numerically, and as it 
was stated in §5.1.1, they are mainly the coordinates, over a local reference 
frame, of the forbidden areas, the minimum spatial separation among 
stations and the regulatory ones, as the redundancy for the LoS coverage 
(i.e., LoS redundancy). 

Numerical Tools 

Within the necessaries numerical tools are those for performing the 
calculations of the theoretical system accuracy, the error models or error 
balance, the system probability of detection and the LoS. 

The numerical tools for performing the theoretical system accuracy and 
error balance calculations is that described in [20]. The LoS calculations are 
performed by a proprietary routine made by the research group where this 
thesis is developed. Basically, this tool makes use of the DTM and performs 
a ray trace analysis to detect if between two given points there are or not 
LoS. Finally, the SPoD calculation is described later on (see §5.3.2). 

Outputs 

The outputs of this procedure are the assigned values to the CO problem 
variables, i.e., the number of required receiving stations and their locations. 
The format of each of these outputs is as described in §5.1.1. 

Framework Core 

As we have commented before, the core of this procedure is the 
optimization algorithm of GA. This algorithm takes all the inputs and 
iteratively seeks to minimize the number of stations, to maximize the LoS 
coverage and to maximize the theoretical system accuracy; the latter is 
equivalent to find the optimal spatial distribution of the stations. The 
particular GA used and its operators, adapted to this work, have been 
previously described in §4.3.2. 

Additional Functionality 

The design procedure proposed in this thesis is not only useful to obtain 
MLAT designs from zero, but also to analyze and validate if any previous 
design is the most suitable option to satisfy the set of requirements and 
restrictions, with a given amount of resources, whether it could be improved 
by some feasible, but not obvious, position changes of the stations or, even, 
to satisfy the requirements and restrictions with a smaller number of them. 
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Likewise, if the surveillance volume increases, this procedure is also useful 
to obtain the new system design based on the already deployed one. In both 
cases, this additional functionality requires an additional input that is 
basically the existing system design, which is denoted as MLAT system. 
On the other hand, the corresponding additional output to this additional 
functionality, which we denote as system expansion, can contain either 
the information about the validation of the system design, about the new 
system changes (e.g., the new positions of some stations), or even a 
complete new design that satisfies all the requirements and limitations more 
effectively than the one at the input. 

5.3.2 Iterative Numerical Procedure 

The iterative, numerical, procedure developed in this thesis to perform the 
optimization process of the MLAT systems design is shown in Fig. 5.5. This 
procedure consists of three steps, namely, Initialization (A), System Design 
Evaluation (B), and GA (C). In other words, this iterative procedure is the 
framework core described in the last subsection. In the following, these 
steps are fully described. 

 
Fig. 5.5 Flowchart for the iterative procedure (the framework core). 
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Initialization 

In this step, all the problem characteristics are defined. In the scenario 
definition, the search spaces (࣭ and ℛ௦) of possible sites to emplace the 
stations and the one for the possible number of them are selected, and some 
areas of interest (areas to calculate the system parameters -basically LoS 
and the theoretical system accuracy) are defined. Then, the initial station 
sites (commonly by a random selection) and all the variables are initialized. 
The variables can be classified either as requirements or as restrictions. The 
requirements mainly are the number of stations to emplace (or the 
corresponding range defined by ℛ௦), the required system accuracy and the 
SPoD. Of course, all these are input data to the problem. On the other 
hand, the restrictions mainly are the LoS redundancy, which is the 
minimum number of stations that must cover a point within the coverage 
area, in order to satisfy the requirements of SPoD, and the minimum 
spatial separation between the ith and jth station, which is denoted as Δ௜,௝. 

In this work, the restriction of LoS redundancy is calculated based on 
the manufacturer data about the probability of detection of each station. 
The SPoD, for a given point ݆, can be calculated as follows: 

ேೞೕܦ݋ܲܵ = ෍ ቆ ௦ܰ௝!൫ ௦ܰ௝ − ݇൯! ݇!ቇேೞೕିேೞ,೘೔೙
௞ୀ଴ ௦௧௔௧௜௢௡ேೞೕି௞ܦ݋ܲ (1 −  ௞ (5.8)(ܦ݋ܲ

where ܲܦ݋௦௧௔௧௜௢௡ is the probability of detection of a single station (that 
should be provided by the manufacturer), ௦ܰ௝ is the number of stations that 
cover the jth point, and ௦ܰ,௠௜௡ is the minimum number of stations needed 
to calculate the position, which is commonly assumed to be ௦ܰ,௠௜௡ = 4 and 
depends on the localization algorithm implemented in the system. In this 
sense, the minimum number of stations, that make the ܵܲܦ݋ேೞೕ equal or 
greater than the corresponding requirement for the SPoD, can be estimated 
by imposing this condition and solving (5.8) for ௦ܰ௝. This value is taken as 
the LoS redundancy restriction. Moreover, this value also depends on the 
performance of the localization algorithm used and in any case it can be 
modified (normally increased); in the remaining of this part, and unless 
otherwise stated, we assume that the LoS redundancy as calculated by 
solving (5.8) also satisfies the localization algorithm performance. Finally, it 
is worth saying that, due to the easy computation of (5.8), no explicit 
expression has to be found for ௦ܰ௝, but only by a simple evaluation of it, in 
a given domain, is enough to find the solution. 

System Design Evaluation 

In this step, the quality of the partial design is evaluated (i.e., the partial 
spatial distribution of the MLAT stations). For this, the LoS and the 
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theoretical system accuracy are calculated (only in the areas of interest 
previously defined) and these values are introduced into the fitness 
function, which follows a particular form of (5.1), to obtain the score that 
quantifies the quality of the system design, regarding the requirements and 
restrictions as defined in the first step. 

The LoS calculation is performed only at the points within the areas of 
interest and the theoretical system accuracy is obtained only at the points 
that satisfy the requirement of LoS redundancy. Moreover, this accuracy 
calculation is performed by using all the stations within the LoS for each 
point, i.e., according to Fig. 3.2 we use a full calculation scheme. We have 
also tested the design optimization by using a calculation by arrays but, 
better results (in terms of convergence and realistic final designs) have been 
found by using the full calculation form. However, the interested reader can 
also find the corresponding results, of using the calculation by arrays form, 
in [36]. 

Finally, in this step, a decision line is implemented to decide if the stop 
condition (basically the compliance with the requirements and restrictions, 
or a fixed number of iterations) is reached. If “yes”, the partial solution is 
taken as the final design, whereas in the case of “no” the procedure 
continues refining the partial solution, obviously until the stop condition is 
reached. 

Genetic Algorithm 

In this step, a GA is used to iterate and modify the partial solution that 
will be evaluated by the second step of this procedure. The GA repeatedly 
modifies a population of individual solutions. At each step, it randomly 
selects individuals among the current population to be parents and uses 
them to produce the children for the next generation. After successive 
generations, and if the algorithm is well calibrated, the population 
“evolves” toward an optimal solution [59-60], i.e., a system design that 
efficiently satisfies all the requirements and restrictions. The full description 
of the GA implemented in this thesis is provided in §4.3.2, therefore, only 
the specification about the parents structure and the adaptation of the 
MLAT design CO problem (i.e., of the problem variables) to that algorithm 
is described in this section. 

The adaption of the problem variables to the parent structure is referred 
as the codification of the algorithm and, as we described in §4.3.2, it can be 
a set of parameters (cf. (4.1)) that can take values from a binary or real-
valued alphabet. In this thesis we have used a real-valued alphabet due to 
the direct association that can be done between the problem variables and 
the individual built from this alphabet. In this sense, an individual as 
described by (4.1) takes the same form than the set ܺ of problem variables 
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described in this chapter. It is shown, for the most general case, in the 
following equation: ݕ = ܺ = ൣ ௦ܰ, ,ଵݔ … , ேೞ൧ேೞାଵ்ݔ

 (5.9) 

or equivalently, for the case of optimizing only the spatial distribution of 
the station and not the number of them, it takes the following form: ݕ = ܺ = ,ଵݔൣ … , ேೞ൧ேೞ்ݔ  (5.10) 

where we have to remember that for the case of (5.9), the length of the 
individual is changeable and depends on its first element, whereas for the 
case of (5.10) that length is fixed and user-defined. 

On the other hand, for the GA parameters choice, there is no any 
deterministic methodology for carrying out this process because it is 
strongly problem-dependent. Consequently, an accepted methodology to 
select these parameters is based on an empirical selection conducted 
through an exhaustive number of simulations. Thus, the latter is the 
methodology used in this thesis for performing the GA parameters choice. 
Then, after this selection process, the set of selected parameters, which has 
been found to be optimal in a wide sense, is described in Table 5.1. 

Table 5.1 Parameters for GA. 

Parameter Value/Option
Population size 10
Selection Stochastic uniform
Elite count 2
Crossover fraction 0.01
Type of crossover Intermediate
Probability of mutation 10%

Finally, it is worth saying that the GA has been chosen for this work 
because this is one of the most well-established and proved metaheuristic 
optimization methods, which can be found in the literature. Nevertheless, 
due to the modularity of the iterative procedure proposed herein, its 
extension to any other optimization method, such as Particle Swarm 
Optimization (PSO) [70] or Ant Colony Optimization (ACO) [71], is 
straightforward. 

5.4 Proposed Design Strategies 

In this thesis, we propose three different strategies to be used along with 
the procedure developed herein. These strategies, from our point of view, 
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cover almost all the possible system designs either with standard MLAT 
systems (only with TOA/TDOA receiving stations) or with its enhanced 
versions (i.e., with TOA/TDOA and AOA or RTD stations). All these 
share the same design objective, which essentially is to obtain the system 
design that satisfies all the requirements and restrictions with the fewer 
amount of resources. The difference among them lies in the variables to be 
optimized and in the kind of system to be implemented (i.e., standard or 
enhanced MLAT). In this sense, the first proposed strategy is basically 
intended to design a MLAT system with a fixed number of TDOA stations, 
the second one is intended to design a MLAT system with a variable 
number of stations, whilst the third one is intended to design a enhanced 
MLAT system, either with the combination of TDOA/AOA or 
TDOA/RTD stations. 

On the other hand, referring to an optimization context, the differences 
among these strategies, besides the conceptual one, basically lies in the 
definition of the GA individuals, in the fitness functions and in some 
configuration of the numerical tools used, particularly that one to obtain 
the theoretical system accuracy. In the following, each of these strategies is 
fully described, making emphasis in these aspects. 

5.4.1 Standard MLAT System with a Fixed Number of Stations 

This first strategy is the standard one proposed herein to be used along 
with the general procedure described in Fig. 5.5. It consists of the design of 
a standard MLAT system with a fixed and user-defined number of TDOA 
stations. 

For this strategy, an individual is an array in the form of (5.10) with ௦ܰ × 1 size, where the ith position represents the index (from the search 
space ࣭) of the possible position for the ith station. 

The fitness function, which takes a particular form of (5.1), is defined as 
follows: ݂(࢟௧) = 1 −	൫ݓଵ்݂ ஼(࢟௧) − ଶݓ ோ݂௢ௌ(࢟௧)൯ (5.11) 

where ்݂ ஼ is a function that quantifies the requirement of total coverage for 
a partial solution ݕ௧ at time ݐ, i.e., the percentage of points that are 
covered for more than LoS redundancy stations within a theoretical 
accuracy better than the corresponding value defined in the requirements 
and, ோ݂௢ௌ is a function that quantifies the restriction of minimum spatial 
separation between any pair of stations of a partial solution ݕ௧ at time ݐ. 
These two functions can be calculated as follows: 
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்݂ ஼(࢟௧) = ݏݐ݊݅݋ܲ ℎݐ݅ݓ ݈ܽݐ݋ݐ ݈ܽݐ݋ܶ݁݃ܽݎ݁ݒ݋ܿ ݏݐ݊݅݋݌ ݀݁ݐܽݑ݈ܽݒ݁  (5.12) 

and 

ோ݂௢ௌ(࢟௧) = ݈ܽݐ݋ܶ ݂݋ Δ௜,௝ ℎݐ݅ݓ Δ௜,௝ < Δ௠௜௡݈ܶܽݐ݋ ݂݋ Δ௜,௝  (5.13) 

The value of the weight factors depends on the importance given to each 
requirement or restriction on the design; they can be chosen by the 
designer, taking into account that the weight factor associated with the 
total coverage, e.g., ݓଵ for this case, must be much greater than the other 
ones; normally greater than 0.8. In this thesis, and based on our simulations 
(reported and non reported in this thesis), we propose the use of ݓଵ = 0.95 
and ݓଶ = 0.05, and in the remaining of this part the same reasoning is used 
to define the corresponding weight factors. The only condition that must be 
satisfied is that the sum of these must be equal to 1. 

The function in (5.13) penalizes those solutions with stations close to 
each other at a distance smaller than a predefined spatial threshold, which 
we denote as Δ௠௜௡. However, there exists the possibility, as we have 
commented before, of obtaining solutions with two (or more than two) 
stations in the same site. These particular situations are penalized directly 
in (5.11) instead than in (5.13). It is because the influence of having two 
stations in the same site, on the theoretical system accuracy, is negatively 
much stronger than having them close to each other a distance small than Δ௠௜௡ but greater than zero. Therefore, this particularity must be also 
stronger penalized. Then, the final expression for the fitness function takes 
the following form: ݂(࢞௧) = ቊ1 ,(௧࢞)ோభܨ	− ݂݅ ݈݈ܽ Δ௜,௝ > 01, ݂݅ ݐܽ ݐݏ݈ܽ݁ ݁݊݋ Δ௜,௝ = 0 (5.14) 

being ܨோభ(࢞௧) = ଵ்݂ݓ ஼(࢞௧) − ଶݓ ோ݂௢ௌ(࢞௧) 
Importantly, this procedure to penalize this kind of restriction is also 

used in the remaining strategies. 

Finally, the last element that must be defined is the kind of numerical 
tool to be used for calculating the theoretical system accuracy. For this 
strategy, it is only necessary to implement the calculation of the 
TOA/TDOA error balance and the lower bounds for the standard MLAT 
systems [20]. 
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5.4.2 Standard MLAT System with a Variable Number of Stations 

The second strategy proposed in this thesis consists of the design of a 
standard MLAT system with a variable number of stations. In this case, 
the objective is not only to define the stations sites but also to calculate a 
relative minimum number of stations that satisfies all the assumed 
requirements and restrictions. In other words, to estimate the minimum 
number of stations, and their locations, that provides the maximum 
coverage with the maximum accuracy levels. 

For this strategy, it is necessary not only to define the search space ࣭ as 
in the first one, but also that one to stipulate the range of the number of 
stations, i.e., the second search space ℛ௦. 

An individual for this case is an array of variable length in the form of 
(5.9), where the first position sets this variable length. In this individual the 
ith position represents the index (from the search space ࣭) of the possible 
position for the ith-1 station. 

The fitness function, which takes a particular form of (5.1), is defined as 
follows: ݂(࢟௧) = ቊ1 ,(௧࢟)ோమܨ	− ݂݅ ݈݈ܽ Δ௜,௝ > 01, ݂݅ ݐܽ ݐݏ݈ܽ݁ ݁݊݋ Δ௜,௝ = 0 (5.15) 

being ܨோమ(࢟௧) = ଵ்݂ݓ ஼(࢟௧) − ଶݓ ோ݂௢ௌ(࢟௧) − ଷݓ ோ݂௢ேௌ(࢟௧) 
and ோ݂௢ேௌ is a function that quantifies the cost of using the estimated 
number of stations, i.e., the greater this number is, the stronger the 
solution must be penalized as the objective is the use of the minimum 
number of stations. Thus, this function is expressed as follows: 

ோ݂௢ேௌ(࢟௧) = ௧(1)࢟ −min(ℛ௦)
max(ℛ௦) −min(ℛ௦) (5.16) 

The rest of functions used in (5.15) are the same as defined for the first 
strategy. 

The value of the weight factors are chosen in the same sense as the first 
strategy and are ݓଵ = ଶݓ ,0.85 = 0.05, and ݓଷ = 0.1. 

Finally, the numerical tool for calculating the theoretical system 
accuracy is exactly the same as in the first strategy. 



94 5 General Procedures for Optimizing the Multilateration Layout 

5.4.3 Enhanced MLAT System with a Fixed Number of Stations 

The third strategy proposed in this thesis consists of the design of an 
enhanced MLAT system with a fixed and user-defined number of stations, 
either TDOA/AOA or TDOA/RTD. 

For this strategy, an individual is an array in the form of (5.10) with ௦ܰ × 1 size, where the ith position represents the index (from the search 
space ࣭) of the possible position for the ith station. Moreover, the first ௦ܰ௘ 
array elements of this individual represent the position of the enhanced 
stations. Likewise, another difference of this in respect of the individual 
defined in the first strategy, for the standard version of MLAT systems, is 
that, for this case, the individual positions that represent the enhanced 
stations are used by an additional function that takes into account the 
accuracy improvement due to these additional measurements. It is shown in 
the description of the corresponding fitness function. 

The fitness function, which takes a particular form of (5.1), is defined as 
follows: ݂(࢟௧) = ቊ1 ,(௧࢟)ோయܨ	− ݂݅ ݈݈ܽ Δ௜,௝ > 01, ݂݅ ݐܽ ݐݏ݈ܽ݁ ݁݊݋ Δ௜,௝ = 0 (5.17) 

being ܨோయ(࢟௧) = ଵ்݂ݓ ஼(࢟௧) + ଶݓ ௅݂௢ௌ൫࢟௧(1: ୱܰୣ)൯ − ଷݓ ோ݂௢ௌ(࢟௧) 
where ݕ௧(1: ௦ܰ௘) refers to the first ௦ܰ௘ elements of the particular individual, 
and ௅݂௢ௌ is a function that quantifies the relative LoS coverage of the ௦ܰ௘ 
enhanced stations and can be calculated as follows: 

௅݂௢ௌ = ∑ ݎܾ݁݉ݑܰ ݂݋ ݏݐ݊݅݋݌ ݀݁ݎ݁ݒ݋ܿ ݕܾ ௧(݅)ேೞ೐௜ୀଵ࢟ ݈ܽݐ݋ܶ ݏݐ݊݅݋݌ ݀݁ݐܽݑ݈ܽݒ݁ × ௦ܰ௘  (5.18) 

The rest of functions used in (5.17) are the same as defined for the first 
strategy. 

The value of the weight factors are chosen in the same sense as the first 
strategy and are ݓଵ = ଶݓ ,0.9 = 0.05, and ݓଷ = 0.05. 

The usefulness of this strategy is justified because it is not enough to 
add the enhanced measurements only to those stations with the highest 
percentage of LoS coverage, which is equivalent of using the first strategy 
and simply assign the enhanced measurements to those particular stations. 
Moreover, it is also important to optimize the location of the enhanced 
stations because they significantly influence on the overall system accuracy, 
as it has been demonstrated for MLAT systems in [20].  

Finally, the numerical tool for calculating the theoretical system 
accuracy is different from those used for the first and the second strategies. 
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In this case, a different model must be used as the enhanced measurements 
must be introduced in this calculation. This particular form is called as 
CRLB for enhanced MLAT systems in [20]. 

5.5 Simulation and Results 

To validate the procedure and the design strategies proposed in this thesis, 
three different simulations (one for every proposed strategy) have been 
carried out over the layout of Barcelona – El Prat (Spain) airport. The 
common objective for all the simulations is to obtain an MLAT system that 
covers the three runways, the taxiways, and the apron centrelines, given a 
set of requirements and restrictions. The first simulation is based on the use 
of only a fixed set of TDOA stations, the second one is based on the use a 
variable set of TDOA stations, whereas the third on is based on the use of 
TDOA stations along with one TDOA/AOA. Fig. 5.6 shows the Barcelona 
– El Prat airport layout and all the possible sites where the stations can be 
emplaced, i.e., the search space ࣭. For these simulations, the size ℓ࣭ of the 
search space ࣭ is ℓ࣭ = 41. 

For all the simulations, the antenna station height (i.e., of the mast 
length) has been assumed to be equal to 2 m and the calculations for LoS 
and the theoretical system accuracy are performed for a spatial grid of 5 m × 5 m. This spatial grid is also in agreement with the DTM used to 
calculate the LoS. The GA parameters are those ones described in Table 
5.1. 

 
Fig. 5.6 Barcelona – El Prat airport layout with the possible sites to emplace the stations. 
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5.5.1 MLAT System with a Fixed Number of TDOA Stations 

This first simulation shows an application of the first strategy proposed in 
this thesis. The main objective is to design a MLAT system with a fixed 
number of TDOA stations, i.e., to find a spatial distribution of the stations 
which provides the better performance levels, fulfilling the given 
restrictions. Due to the fact that these simulations are performed over an 
airport surface scenario, the system requirements are those described in [1], 
which are basically: horizontal accuracy must be within 3.75 m (ߪ) and the 
SPoD must be better than 99.9%. The number of stations to use in this 
design is ௦ܰ = 12 and they measure only the TOA. The restriction of LoS 
redundancy, using a station probability of detection of PoDstation = 97%, 
provided by a quick evaluation of (5.8), is 7 and the minimum spatial 
separation is set to Δ௠௜௡ = 400 m. The results for this scenario are shown in 
Fig. 5.7 - Fig. 5.9. 

Fig. 5.7 shows the horizontal accuracy for this scenario and how the 
corresponding areas of interest are covered with the assumed accuracy 
requirements. From the theory [3-4], it is well known that a convenient 
system geometry, to obtain high-accuracy levels, is to set the stations in a 
polygon enclosing the area(s) of interest (see also Fig. 2.8). In Fig. 5.7, it 
can be observed that the proposed procedure provides a solution that agrees 
with this theoretical aspect. 

Another important aspect, when applying optimization methods, is the 
convergence rate, which is shown in Fig. 5.8. In this scenario, the number of 
possible combinations, as provided by (5.2), is 7.8987×109 and a relative 
good solution is obtained within 50 iterations, which means only 500 
problem evaluations. At this number of iterations, it can be considered that 
the procedure has converged. However, it is advisable to expend more 
iterations (up to 200) because the random component of the GA allows the 
procedure to explore new values in the search space. It is also important to 
emphasize that, sometimes, this random component can move the mean 
fitness value (line with circles in Fig. 5.8) to a worst value, but because this 
procedure always save the best solution (best fitness value), it does not 
represent a problem in the algorithm convergence. In any case, the total 
number of problem evaluations is significantly much smaller than that 
value provided by (5.2). The latter justifies the use of this procedure 
instead of the full evaluation of all possible combinations of the problem. 

Finally, Fig. 5.9 shows the SPoD for the whole airport and we can see 
that, for every point, this value is over the required one. 
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Fig. 5.7 Horizontal accuracy for the design with a fixed number of TDOA stations. 

 

 
Fig. 5.8 GA convergence for the design with a fixed number of TDOA stations. 
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5.5.2 MLAT System with a Variable Number of TDOA Stations 

This second simulation shows an application of the second strategy 
proposed in this thesis. The main objective in this scenario is to design a 
MLAT system with a variable number of TDOA stations, i.e., to find the 
minimum number of stations, and their locations (system geometry), which 
provides the better performance levels, fulfilling the given restrictions. All 
the requirements and restrictions for this problem are those described for 
the first problem in §5.5.1. Moreover, for this problem, it is necessary to 
stipulate a range for the number of stations, i.e., the additional search space ℛ௦. For this particular, we have set this search space as ℛ௦ = ሾ7,15ሿ. The 
results for this scenario are shown in Fig. 5.10 - Fig. 5.12. 

Fig. 5.10 shows the results for the horizontal accuracy. Also, in this 
scenario, all the areas of interest are covered satisfying all the requirements 
and restrictions. The important aspect in this scenario is that the minimum 
number of stations calculated is 11, it is one less station than in the first 
scenario, which shows that it is possible to reach all the requirements and 
restrictions by using a fewer amount of resources. This kind of simulation is 
useful to know an approximate minimum number of stations that meets the 
requirements and restrictions or to validate whether a given design is the 
most optimal or not. Nevertheless, due to the random component of the 
GA, it is advisable to run the procedure, for this kind of designs, once or 
twice more, just to validate the calculated minimum number of stations. 

 
Fig. 5.9 SPoD for the design with a fixed number of TDOA stations. 
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Regarding the procedure convergence, which is shown in Fig. 5.11, it can 
be observed that a good solution is found after 150 iterations. This greater 
number of iterations, in respect of that for the first scenario, can be 
understood because the complexity of this problem (number of possible 
combinations, cf. (5.7)) is much greater (1.2894×1011) than that of the first 
one. 

 
Fig. 5.10 Horizontal accuracy for the design with a variable number of TDOA stations. 

 

 
Fig. 5.11 GA convergence for the design with a variable number of TDOA stations. 
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Finally, Fig. 5.12 shows the SPoD for the whole airport and we can see 
that, for every point, this value is over the required one. 

5.5.3 MLAT System with a Fixed Number of TDOA/AOA Stations 

This last application shows the application of the third strategy proposed in 
this thesis. The main objective is to design an enhanced MLAT system with 
a fixed number of TDOA/AOA stations. In this problem, the TDOA/AOA 
station measures the elevation (vertical) AOA. Normally, this kind of 
measurement capability is added to improve the horizontal accuracy in 
surface movement applications [20]. Likewise, as demonstrated in [20], only 
by adding one AOA station is enough to obtain significant accuracy 
improvements, of course, assuming that this particular station covers with 
LoS all areas where the improvement is required. Therefore, for this 
simulation we use only one (i.e., ௦ܰ௘=1) TDOA/AOA station and it is 
designated to be the number one in the individual solutions of (5.10). All 
the requirements and restrictions for this problem are those described for 
the first problem in §5.5.1. Moreover, the additional AOA measurement 
error is assumed to be 10-3 rad [20]. The results for this scenario are shown 
in Fig. 5.13 - Fig. 5.15. 

Fig. 5.13 shows the horizontal accuracy for this scenario and how the 
corresponding areas of interest are covered with the assumed accuracy 
requirements. The complexity of this problem is basically of the same order 
than that of the first one but, here the theoretical system accuracy 
calculation has been carried out by taking into account the accuracy 

 
Fig. 5.12 SPoD for the design with a variable number of TDOA stations. 
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improvement provided by the TDOA/AOA station. The final site for this 
station is shown in Fig. 5.13 as a diamond. Also, for this kind of scenario, it 
is advisable to run the procedure once or twice more. 

Regarding to the procedure convergence, which is shown in Fig. 5.14, a 
good solution is found after 50 iterations and also at this number of 
iterations it can be considered that the procedure has converged. Moreover, 

 
Fig. 5.13 Horizontal accuracy for the design with a fixed number of TDOA/AOA stations. 

 

 
Fig. 5.14 GA convergence for the design with a fixed number of TDOA/AOA stations. 
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also for this case, due to the additional iterations, it can be observed that 
the mean fitness value (line with circles in Fig. 5.14) is moved to slightly 
higher values for iterations between 60 and 80, but, after that, it decreases 
and approximately maintains a constant value after 100 iterations. 

Finally, Fig. 5.15 shows the SPoD for the whole airport and we can also 
see that, for every point, this value is over the required one. 

 

 

 

 

 

 
Fig. 5.15 SPoD for the design with a fixed number of TDOA/AOA stations. 
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6 
Setting the Stage

6 Setting the Stage 

In this chapter, we set the stage for the third part of this thesis. We 
describe the basic foundations for understanding the MLAT localization 
problem as a numerical inverse one. First, the localization problem is fully 
described by means of the well known Time Difference of Arrival (TDOA) 
technique. The concept of hyperbolic system of equations as an inverse 
problem is also provided and placed into a general scheme, which divides 
the localization problem into two main components that can be individually 
analyzed: the data model and the numerical algorithm. Then, a short 
review for the mathematics of inverse problem is provided in §6.2, including 
the description of the ill-conditioned inverse problems. The concept of 
Singular Value Decomposition (SVD), as a tool for analyzing inverse 
problems, is introduced in §6.3 along with other useful numerical tools, 
which are based on that one. Finally, a short description of the classical 
numerical solution of inverse problems, in the sense of Least Squares (LS), 
and the well known pseudoinverse matrix is provided in §6.4. The purpose 
of this chapter is to provide the reader of the basic concepts for 
constructing, analyzing, and solving inverse localization problems in MLAT 
systems. It supports the developments of Chapter 7 and Chapter 8. 

6.1 Localization Problem in Mode S Multilateration 

In Mode S Multilateration systems, a number of ground stations (at least 
three for 2D localization or four for 3D localization) are placed in some 
strategic locations around the airport or the area to be covered. The system 
uses the Mode A/C and Mode S based transmissions; i.e., the spontaneous 
Mode S squitter, the asynchronous transponder replies as well as the 
responses to interrogations elicited by the system itself (see §2.1.3 for a 
detailed description of the signals). Then, the signal is sent to the Central 
Processing Subsystem (CPS) where the transponder position is calculated 
[1-2]. This calculation is based on the TDOA principle, where the 
intersections of multiple hyperbolas (or hyperboloids), which have been 
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created with the pertaining Time of Arrival (TOA) differences, are 
computed. A standard example of these systems is shown in Fig. 6.1. 

In the following subsection, the mathematical bases of this problem are 
described. The objective of this subsection is to set up a standard 
mathematical framework that describes the problem to be solved with the 
methods developed in this thesis. 

6.1.1 General Problem Description 

The standard localization problem for passive localization systems, like 
Mode S MLAT, is based on the configuration of a system of equations with 
the available information (e.g., system geometry and TOA/TDOA 
measurements) in order to calculate the unknown target (aircraft or 
vehicle) position in an assigned geographical reference system. There exists 
several methods to construct this system of equations and all of them are 
based on the same principle. The aim of this subsection is to describe such 
a principle. 

In Fig. 6.1, the variable ݎ௜ is the 3D distance between the target and ith 
station. This distance, for each station, can be expressed as a nonlinear 
function ௜݂(ݔ, ,ݕ ௜ݎ :of the target position, as follows (ݖ ≡ ௜݂(ݔ, ,ݕ (ݖ = ඥ(ݔ − ௜)ଶݔ + ݕ) − ௜)ଶݕ + ݖ) − ,௜)ଶݖ ݅ = 1,… , ௦ܰ (6.1) 

being ௦ܰ the number of MLAT ground (or receiving) stations, (ݔ௜, ,௜ݕ  ௜) areݖ
the known coordinates of the ith station and ܿ is the speed of light. This 
function can be expressed in terms of the parameter that each station 
measures, i.e., the TOA, as shown below: 

 
Fig. 6.1 Localization problem in Mode S Multilateration. 
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௜݂(ݔ, ,ݕ (ݖ = ௜ܣܱܶ)ܿ −  ௘) (6.2)ݐ

where ݐ௘ is the emission time of the signal (i.e., the time at which the signal 
is transmitted by the transponder), as depicted in Fig. 6.1. Importantly to 
emphasize that both ݐ௘ and ܱܶܣ௜ are clock times rather than absolute 
propagation times. Then, from (6.2) it is clear that: ܱܶܣ௜ = ௜݂(ݔ, ,ݕ ܿ(ݖ +  ௘ (6.3)ݐ

Now, because what we really know is a measured TOA quantity instead 
an exact value, it is more convenient expressing (6.3) as follows: ܱܶܣ෣௜ = ൬1ܿ ௜݂(ݔ, ,ݕ (ݖ + ௘൰ݐ + ݊௜, ݅ = 1,… , ௦ܰ (6.4) 

where the superscript “^” denotes a measured quantity and the term ݊௜ 
represents the measurement noise affecting the ith station. 

Finally, the TDOA between the ith station and the reference one 
(without loss of generally, the station number 1 can be assumed as the 
reference one) is: ܶܣܱܦ෣ ௜,ଵ = ቆ ௜݂(ݔ, ,ݕ ܿ(ݖ + ௘ቇݐ − ቆ ଵ݂(ݔ, ,ݕ ܿ(ݖ + ௘ቇݐ + ݊௜,ଵ,݅ = 2,3, … , ௦ܰ (6.5) 

where ݊௜,ଵ is the equivalent measurement noise for the TDOA quantity. 
Finally, the TDOA measurement can be expressed as follows: ܶܣܱܦ෣ ௜,ଵ = 1ܿඥ(ݔ − ௜)ଶݔ + ݕ) − ௜)ଶݕ + ݖ) − −௜)ଶݖ 1ܿඥ(ݔ − ଵ)ଶݔ + ݕ) − ଵ)ଶݕ + ݖ) − ଵ)ଶݖ + ݊௜,ଵ (6.6) 

Note from (6.6) that the term of the emission time ݐ௘ has disappeared 
because the subtraction of the two TOA quantities in (6.5). This fact is one 
of the advantages of the TDOA principle as ݐ௘ is an unknown quantity and 
thus the estimation of it is avoided. 

On the other hand, theoretically for ௦ܰ stations it is possible to obtain a 
total of ቀ ௦ܰ2 ቁ equations in the form of (6.6). Nevertheless, it can be 
demonstrated that all of these equations can be completely determined from 
a linear combination of only ௦ܰ − 1 equations in the noiseless case, e.g., ܶܣܱܦ෣ ௜,ଵ, ݅ = 2,… , ௦ܰ. Then, for simplicity and without loss of generality, 
from now on, we assume that with ௦ܰ stations only a system of ௦ܰ − 1 
hyperbolic equations in the form of (6.6) can be set. 
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The localization problem consists of finding or estimating the target 
position given the set of ௦ܰ − 1 hyperbolic equations. As we have stated in 
§2.1.2, this localization problem can be expressed as a mathematical 
operator ℳ (cf. (2.5)) which converts a set of measurements into a 
numerical target position by solving an inverse problem. Moreover, we also 
stated in §2.1.2 that the particular form this operator can take depends on 
the kind of measurements and on the procedure to deal and to solve the set 
of hyperbolic equations, which is known as localization algorithm. For the 
standard version of MLAT, the kind of measurements is the set of ௦ܰ − 1 
TDOAs, whilst for the localization algorithms there is an extensive 
literature describing a vast number of methods. However, as a common 
factor, all localization algorithms are basically composed of two elements: a 
data model that allows the construction of the inverse problem (commonly 
a linear one) and a numerical algorithm for solving it and obtain a 
numerical data for the target position as depicted in Fig. 6.2. 

To construct the inverse problem the algorithms can be summarized into 
two families: open form algorithms and closed form algorithms. Each of 
these kinds of algorithms has some advantages and disadvantages, 
depending on the application or the scenario to be used. In Chapter 7 we 
provide a short review of the most relevant localization algorithms for 
MLAT systems and perform a rigorous comparison among them. 

 
Fig. 6.2 General scheme of a localization problem in MLAT. 
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For the numerical algorithms, the most common one used in the 
literature is the Least-Squares (LS) method which leads to a minimum 2-
norm solution [72]. However, as it will be explained later on §6.2 and 
analyzed on §7.5, under some conditions this algorithm does not reach 
accurate results. On the other hand, there is a set of algorithms, called 
regularization algorithms, like the Tikhonov regularization [73-74], the 
Singular Value Decomposition (SVD) based regularization [75-76] and the 
Total Least Squares (TLS) [75], [77-78], which have been used for different 
scientific applications but not widely applied (even not used so far) for the 
MLAT localization problem. The complete description of these methods and 
the corresponding application to the MLAT localization problem is one of 
the main objectives of this thesis, and the remaining part of it is dedicated 
to this topic. 

The remaining subsections of this chapter are dedicated to the review of 
the mathematical bases of inverse problems, the SVD and other numerical 
tools. 

6.2 An Inverse Problem Description 

Inverse problems arise from the necessity of knowing the source (or sources) 
that generates some physical phenomena [72], [79-80]. Normally, in a 
classical direct problem we know some sources and a mathematical model 
that describes the behaviour of the physical phenomena in terms of the 
sources. In this way, at any time it is possible to obtain the answer of the 
physical phenomena (or system) for any specific source. On the other hand, 
when the source is unknown (e.g., the target position from which a signal is 
transmitted) but the answer is known (e.g., a TOA/TDOA corresponding 
to the signal emitted at the unknown target position), often by 
measurements of some natural variables, it is necessary to formulate a 
model that allows knowing the source of these answers. This model is called 
inverse problem and a classical mathematical representation for describing 
it can be as follows: න݁ܿݎݑ݋ݏ × ݉݁ݐݏݕݏ ݀Ωஐ =  (6.7) ݎ݁ݓݏ݊ܽ

where Ω is a domain, depending on the particular problem and × denotes 
the particular interaction. 

In the model of (6.7) the objective is to find the source (source), given a 
mathematical model describing the system (system) and a set of data 
(inevitably noisy) containing the answer (answer). For solving (6.7) by a 
numerical method, which is the most common practice, it is necessary to 
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convert the continuous model in (6.7) into a discrete one [79-80], resulting 
in the following: ࣂ࡭ = ෝ࢓  (6.8) 

where ࡭ is a matrix describing the behaviour of the system (or physical 
phenomena); it is often called coefficient matrix [79-80], ࣂ is a column 
vector representing the unknown source and ࢓ෝ  is a column vector 
containing the answer (e.g., measurements by means of some instrument). 

Achieving and solving a system of equations like (6.8) is the main 
objective of any localization algorithm in MLAT systems. The data model 
in Fig. 6.2 provides a procedure to manipulate the set of equations in the 
form of (6.6) in order to explicitly obtain a coefficient matrix ࡭ and a 
measurement vector ࢓ෝ , and the numerical algorithm solves that resulting 
system of equations. It is, the particular form each inverse localization 
problem can take depends on the pair composed of data model and 
numerical algorithm. 

6.2.1 Ill-Conditioned Problems 

There are two possible options when the inverse problem in (6.8) is solved, 
i.e., the problem can be well-conditioned or ill-conditioned. These concepts 
go back to Jacques Hadamard [8]. He postulated three conditions to define 
when an inverse problem is well-conditioned or ill-conditioned. These 
conditions are: 

1. The solution exists. 

2. The solution is unique. 

3. The solution continuously depends on the problem data. 

If the three above conditions are satisfied, the problem is defined as well-
conditioned but, if at least one of them is not satisfied, the problem is 
defined as ill-conditioned [73], [76], [79-80]. This ill-conditioning may occurs 
due to the use of an incorrect mathematical model, in which case it should 
be modified, or because this ill-conditioning is an intrinsic part of the 
formulation. In the MLAT localization problem the data model is basically 
subject to the kind of measurements and to the system geometry. As we 
will show through Chapter 7, the ill-conditioning in MLAT localization 
problem mainly appears when only TOA/TDOA measurements are used; in 
this case the ill-conditioning can be considered as an intrinsic part of the 
formulation and the target position must be calculated under these 
conditions. However, the TOA/TDOA data model can be modified and 
improved by combining them with other kind of measurements (e.g., RTD 
or AOA), and the resulting data model will posses better numerical 
characteristics [20]. Besides the strategy of combining different 
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measurements, there are other options to improve the TOA/TDOA data 
model. Nevertheless, all of these have some advantages and disadvantages 
and their use is not always possible. The particular aspects commented in 
this paragraph, along with the analysis of the ill-conditioned localization 
problem, are studied later in Chapter 7. 

Solving well-conditioned problems may be easy, but when solving the ill-
conditioned problem we can find several difficulties. This latter kind of 
problems are common in many applications in science and engineering, like 
acoustics [81], astrometry [82], computerized tomography [83], continuation 
problems [84], early vision [85], electromagnetic scattering [86], geophysics 
[87], inverse geo- and helioseismology [88], mathematical biology [89], image 
restoration [90], remote sensing [91], inverse scattering theory [92], signal 
processing [93] and statistics [94]. Moreover, as we have analyzed in this 
thesis, the ill-conditioned problems also appears in some typical scenarios in 
the localization process for MLAT systems (see §7.5 later). 

In ill-conditioned problems, it is normal to deal with a coefficient matrix ࡭ which is characterized by a very high condition number, i.e., by a large 
ratio between the largest and the smallest singular values of the coefficient 
matrix (see §6.3 for more details). It means that in the system of equations 
shown in (6.8) some (or all) of the equations are numerically linearly 
dependent. It is, the coefficient matrix is unstable [72], [76]. 

6.2.2 Solving Ill-Conditioned Problems 

When solving ill-conditioned problems it is necessary to apply strategies 
that satisfy the three Hadamard’s condition. It is, to convert an ill-
conditioned problem into a well-conditioned one. These strategies are 
commonly known as regularization methods. The regularization methods 
add additional information, about the desired solution, to the problem in 
order to achieve a stable coefficient matrix [80-79] ,[76] ,[74] ࡭, and thus 
obtain and stable and useful solution. The general idea of this aspect is 
shown in Fig. 6.3. 

Mathematically, the basic idea supporting the regularization methods 
consists of allowing certain residual [95] associated with the regularized 
solution, whose norm, which is called residual norm, can be defined as 

 
Fig. 6.3 Regularization strategy. 
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follows: (ࣂ)ߩ = ࣂ࡭‖  ෝ‖ଶ (6.9)࢓−

where ‖ ‖ଶ denotes the 2-norm operator [72], and then they can (in 
general terms) use one of the following schemes [76] to find a solution: 

1. Minimize (ࣂ)ߩ subject to the constraint that ࣂ belongs to a 
specified subset, i.e., ࣂ ∈  .ࣂܵ

2. Minimize (ࣂ)ߩ subject to the constraint that some measurement Ω(ࣂ) of the size of ࣂ is less than some specified upper bound ߜ, 
i.e., Ω(ࣂ) ≤  .ߜ

3. Minimize Ω(ࣂ) subject to the constraint (ࣂ)ߩ ≤  .ߙ

4. Minimize a linear combination of (ࣂ)ߩଶ and Ω(ࣂ)ଶ: minሼ(ࣂ)ߩଶ  .is a specified weighting factor ߣ ଶሽ, where(ࣂ)ଶΩߣ+

The main hypothesis in all the above schemes is that a regularized 
solution which have a permissible residual norm and which satisfies the 
additional constraint will be not too far from the exact, ideal solution. On 
the other hand, as it was described in [96], statistically the regularization 
process decreases the size of the covariance matrix at the expense of adding 
some amount of bias to the solution. The specific analysis of this situation 
for the localization process in MLAT system is discussed in §8.1.3 

Before solving an ill-conditioned problem it is important to check some 
important aspects about the problem. In [76] the author suggests some 
important points, which are summarized below: 

• What kind of ill-conditioning does the problem have? 

• Is it possible to regularize? 

• Which additional information is available? 

• Is this additional information suitable for stabilization purposes? 

• Which method is more adequate to efficiently and reliably solve 
the problem on a computer? 

• How much stabilization should be added? 

Now, before continue with the study and description of some 
regularization methods, it is important to give an overview of the most 
common tools to analyze ill-conditioned problems, which basically are the 
SVD, the condition number and the numerical rank. This is the purpose of 
the next sections. 
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6.3 Singular Value Decomposition (SVD) and Other 
Numerical Tools 

Before we go into insight of the regularization methods, it is convenient to 
understand the superior numerical “tool” [72], [76] to analyze the ill-
conditioned problems, i.e., the (ordinary) SVD. This tool is the basis of all 
methods and procedures discussed in this thesis, and it is also useful to 
classify the ill-conditioned problems into the two possible classes: ill-posed 
or rank-deficient. 

The source of the ill-conditioned problems is that in matrix ࡭ to be 
inverted, there are, at least, two or more equations which are linearly 
dependent [72], [76], [79]. The SVD can identify these linear dependencies. 

Also in this part, the concepts of condition number, rank and numerical 
rank of the matrix are reviewed. These parameters along with the SVD are 
very useful to identify the class of a given inverse problem and also to 
estimate the right parameters used by the regularization methods. 

6.3.1 The Ordinary SVD 

Let assume a rectangular or square matrix ࡭ ∈ ℝ௠×௡, where without loss of 
generality ݉ ≥ ݊. The SVD of ࡭ is defined as the decomposition of the 
matrix into three independent matrices [72], [76], [97] as follows: 

࡭ = ்ࢂ઱ࢁ =෍࢛௜ߪ௜࢜௜்௡
௜ୀଵ  (6.10) 

where ࢁ = ሾ࢛ଵ, … , ௡ሿ࢛ 	∈ 	ℝ௠×௡ and ࢂ = ሾ࢜ଵ, … , ௡ሿ࢜ 	∈ 	ℝ௡×௡ are matrices 
with orthonormal columns ࢛௜ and ࢜௜ respectively. Therefore, these two 
matrices satisfy the following identity: ࢁ்ࢁ = ࢂ்ࢂ =  ௡ (6.11)ࡵ

where ࡵ௡ is the ݊ × ݊ identity matrix. 

Matrix ઱ is ݊ × ݊ diagonal with nonnegative elements (ߪଵ, … ,  (௡ߪ
appearing in nonincreasing order such that ߪଵ ≥ ଶߪ ≥ ⋯ ≥ ௡ߪ ≥ 0. The 
elements of matrix ઱ are called singular values of ࡭ and the columns vector ࢛௜ and ࢜௜ are the left and right singular vectors of ࡭, respectively. The 
matrices ࢁ, ઱ and ࢂ can be obtained by using some numerical routines. 
However, it is not the goal of this thesis to describe such procedures. 

The SVD of ࡭ provides two sets of orthonormal basis vectors, i.e., the 
columns of matrix ࢁ and the columns of matrix ࢂ. Both sets allow to 
transform matrix ࡭ into a diagonal matrix by projecting it on these two 
bases, as follows: 
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ࢂ࡭்ࢁ = ઱ = ൦ߪଵ 0 ⋯ 00 ଶߪ ⋯ 0⋮ ⋮ ⋱ ⋮0 0 ⋯  ௡൪௡×௡ (6.12)ߪ

With matrix ઱ in hand, is easier to check some numerical properties of 
the matrix [76] ,[72] ࡭. For example, if the last singular value ߪ௡ is zero or 
very close to zero, it gives an indication that matrix ࡭ is ill-conditioned. 
Therefore, a small singular (or a group of these) value indicates some linear 
dependencies in the matrix ࡭. 

6.3.2 Null Space and Range of a Matrix 

Before continue with the description of the SVD based numerical tools, it is 
important to define the concepts of null space and range of a matrix. 

The null space [72] (also known as kernel) of a ݉ × ݊ matrix ࡭ is the set 
of all vectors ࣨࣂ satisfying that ࣨࣂ࡭ = ૙. Generally the null space is 
denoted by the operator घ(∙). The mathematical definition of null space is 
expressed as follows: घ(࡭) = ሼࣨࣂ ∈ :௡ܭ ࣨࣂ࡭ = ૙ሽ (6.13) 

where ܭ is a field, which in the context of this thesis is the field of real 
numbers, and ૙ is the zero vector with ݉ components. 

The range [72] (also known as the column space) of a ݉ × ݊ matrix ࡭ is 
the set of all possible linear combinations of its column vectors. 
Mathematically, it means that if matrix ࡭ has columns vectors denoted as ࢇ௜, where ݅ = 1,… , ݊, the range of ࡭ will be the set of vectors resulting from 
the following linear combination: 

෍ܿ௜ࢇ௜௡
௜ୀଵ  (6.14) 

where ܿ௜ is scalar. In other words, the range of a matrix can be also seen as 
the span of all of its columns ࢇ௜. In the context of the linear system of 
equations, the range of ࡭ is the set of vectors ࢓ෝ  for which the system ࣂ࡭ = ෝ࢓  has a solution. 

6.3.3 The Generalized SVD (GSVD) 

The Generalized SVD (GSVD) is calculated for a pair of matrices ࡭ and ࡸ. 
Assuming ࡭ ∈ ℝ௠×௡, ࡸ ∈ ℝ௣×௡ and that ݉ ≥ ݊ ≥  Also it is assumed that .݌
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decomposition of the matrix pair (࡭, ࡭ :in the following form [72], [76] (ࡸ = ൬઱ࢁ ૙૙ ࡸ ଵିࢄ൰࢖ି࢔ࡵ = ࡹ)ࢂ ૙)ିࢄଵ (6.15) 

where ࢁ ∈ ℝ௠×௡ and ࢂ ∈ ℝ௣×௣ are orthonormal, i.e., ࢁ்ࢁ = ࢂ்ࢂ ௡ andࡵ = ࢄ .௣ࡵ ∈ ℝ௡×௡ is a square matrix and it is non-singular with columns 
that are (࡭்࡭)-orthogonal, it is: ࢄ࡭்࡭்ࢄ = ൤઱ଶ ૙૙   ௡ି௣൨ࡵ

and the matrices ઱ and ࡹ are ݌ × ,ଵߪ) diagonal matrices with elements ݌ … , ,ଵߤ) ௣) andߪ … ,  ,௣), respectively. These elements are non-negativeߤ
they are ordered as: 0 ≤ ଵߪ ≤ ⋯ ≤ ௣ߪ ≤ 1 1 ≥ ଵߤ ≥ ⋯ ≥ ௣ߤ > 0 (6.16) 

and they are normalized such that: ߪ௜ଶ + ௜ଶߤ = 1, ݅ = 1,… ,  (6.17) ݌

Moreover, for the GSVD, the generalized singular values ߛ௜ of the pair (࡭, ௜ߛ :are also defined. Each of these takes the following form (ࡸ = ௜ߤ௜ߪ , ݅ = 1,… ,  (6.18) ݌

and they obviously appear in non-decreasing order. 

6.3.4 Classification of the Ill-Conditioned Problems 

Once defined the SVD of a given matrix, it is important to define the 
different classes of problems that can appear in many applications. In [76] 
two classes of ill-conditioned problems are suggested, namely, the rank-
deficient problems and the discrete ill-posed problems. 

In rank-deficient problems the matrix ࡭ has a cluster of small 
singular values and also there is a well-determined gap between the large 
and small singular values. This means that one or more rows and columns 
of ࡭ are linearly dependent. 

In discrete ill-posed problems there is no gap between the large and 
small singular values, instead, all of these gradually decay to zero. This fact 
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makes the notion of numerical rank to be not useful to analyze this class of 
ill-conditioned problems. 

6.3.5 Basic Parameters to Analyze Ill-Conditioned Problems 

There are some basic parameters which are useful to quickly check if a 
given matrix ࡭ is ill-conditioned or not. The use of them depends on the 
class of problem but, normally, the condition number and rank of a matrix 
give a quick idea about the “amount” of ill-conditioning of the matrix [72], 
[76]. On the other hand, there is another parameter that is only useful when 
the problem is identified as a rank-deficient problem, which is called the 
numerical rank of a matrix [72], [76]. In this subsection all of them are 
reviewed. 

The Condition Number 

The condition number of a given matrix ࡭ is defined as the relation 
between the maximum and minimum singular values of that matrix [72], 
[76]. In other words, the condition number is the relation between the first 
and the last singular values. It is numerically defined as follows: ܿ݀݊݋ =  ௡ (6.19)ߪଵߪ

A high condition number is found if the last singular value is close to 
zero. In this case the matrix ࡭ can be considered as an ill-conditioned 
matrix. 

The Rank of a Matrix 

The rank of a matrix ࡭ is defined as the number of linearly independent 
columns of [76] ,[72] ࡭. In terms of the SVD of matrix ࡭, the rank is equal 
to the number of strictly positive singular values contained in matrix ઱ (cf. 
(6.12)) [76]. When matrix ࡭ has some errors, like measurements errors, 
approximation and discretization errors, as well as rounding errors, this 
definition is not useful, because some columns that are found to be 
mathematically linearly independent under those noisy conditions, for a 
practical point of view should be considered as linearly dependent. Hence, 
in those cases is more useful to use the concept of numerical rank. This 
parameter is described below. 

Numerical Rank 

The numerical rank of a matrix ࡭ is the number of columns of this matrix 
that, in the presence of some error level ߳, are practically linearly 
independent [72], [76]. Formally, it is defined as the real and integer 
number ݎఢ that satisfies the following expression: 



6.4 Least Squares (LS) and the Pseudoinverse 117 ݎఢ = ,࡭)ఢݎ ߳) = min‖ࡱ‖మஸఢ rank(࡭ +  (6.20) (ࡱ

where matrix ࡱ is the equivalent perturbation matrix containing the errors 
of matrix ࡭. Note in (6.20) the important condition for the norm of the 
perturbation matrix ࡱ. 

The numerical rank takes sense only when the problem is defined as 
rank-deficient because in this case there is a well determined gap between 
some singular values and the rest of these, such that ݎఢ satisfies the 
following inequality: ߪ௥ച > ߳ ≥  ௥ചାଵ (6.21)ߪ

Furthermore, the numerical ߳-rank defined in (6.20) can be defined with 
respect to the Frobenius norm ‖∙‖ி and in this case the numerical rank is 
the smallest integer k for which [98]: ߪ௞ାଵଶ + ⋯+ ௡ଶߪ ≤ ߳ଶ (6.22) 

6.4 Least Squares (LS) and the Pseudoinverse 

The method of Least Squares (LS) [72] is a classical numerical tool for 
solving overdetermined system of equations (as the most common case in 
MLAT localization), i.e., the case of having more equations (or 
measurements) than unknown parameters. In these cases no exact solution 
can be achieved. Therefore, the LS method proposes that the best solution 
that can be found in these cases is the one which minimizes the sum of the 
squared differences between the measurements and the modelled ones. In 
other words, LS proposes to find a solution that minimizes the squared 2-
norm of a residual function as that described in (6.9). That is, for a given 
linear system of equations ࣂ࡭ = ෝ࢓ , where ࡭ is a ݉ × ݊ coefficient matrix 
being ݉ > ݊ is the ࣂ ,݊ × 1 unknown vector, and ࢓ෝ  is the ݉ × 1 known 
measurement vector, the LS looks for a solution ࣂ that produces de 
minimum value for the following function: ‖ࣂ࡭  ෝ‖ଶଶ (6.23)࢓−

that is the squared version of (6.9). 

Now, if matrix ࡭ has linearly independent columns (i.e., it is of full rank) 
and if the matrix ࡭்࡭ is invertible, then the LS leads to the following 
solution: ࣂ෡ = ෝ࢓்࡭ଵି(࡭்࡭)  (6.24) 
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where we have used the super script ෡  to denote an estimated (non exact) 
solution. 

However, if matrix ࡭ has some linearly dependent columns, the solution 
of (6.24) should be avoided and instead that the following option should be 
used: ࣂ෡ = ෝ࢓ற࡭  (6.25) 

where ࡭ற is defined as the pseudoinverse [72] matrix of ࡭. 

In terms of the SVD of ࡭, the pseudoinverse matrix ࡭ற can be obtained 
as: 

ற࡭ ≡ ෍ ௜ିߪ௜࢜ ଵ࢛௜்୰ୟ୬୩(࡭)
௜ୀଵ  (6.26) 

where ࢛௜ and ࢜௜ are the ith left and right singular vectors of ࡭, 
respectively, ߪ௜ is the ith singular value ࡭ as defined in §6.3.1, and the 
function rank( ) denotes the rank of a matrix. When the solution ࣂ෡ is 
obtained by using the pseudoinverse matrix it is defined as the minimum 2-
norm solution. 

In terms of the matrices ࢁ, ઱, and ࢂ (see §6.3.1), the pseudoinverse of ࡭ 
can be also defined as: ࡭ற =  ൯் (6.27)(࡭)௠×୰ୟ୬୩ࢁ൫(࡭)୰ୟ୬୩×(࡭)઱୰ୟ୬୩(࡭)௡×୰ୟ୬୩ࢂ

Note that if matrix ࡭ is of full rank, then rank(࡭) = ݊ and, hence, the 
matrix (࡭்࡭)ିଵ்࡭ is equal to the pseudoinverse matrix ࡭ற. Therefore, for 
simplicity it is common to use the following equivalence: ࡭ற =  (6.28) ்࡭ଵି(࡭்࡭)

Through this thesis we always make use of the equivalence (6.28) and 
indistinctly refer both as the pseudoinverse matrix, understanding that if ࡭ 
is not full rank, ࡭ற is obtained by (6.26) or (6.27). 
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7 Localization Algorithms for Mode S Multilateration 

In this chapter, we propose and develop a general frame for the analysis 
and comparison of localization algorithms. Generally, the localization 
algorithms are classified into two families: open form algorithms and closed 
form algorithms. In this chapter, we propose an additional and wider, but 
fully compatible, classification. This classification is based on a general 
framework that defines a localization algorithm as the pair composed by a 
data model and a numerical algorithm. This general frame and 
classification, as well as the relation with the classical one, are fully 
described in §7.1. Then, we briefly describe the most representative 
localization algorithms in the literature, and fix them into our proposed 
general frame in §7.2, §7.3, and §7.4. Once analyzed the localization 
algorithms, we describe a general procedure for analyzing the MLAT 
localization problem, specifically, for identifying the sources of the ill-
conditioning and to get a general idea about the amount of this ill-
conditioning. Finally, simulation and results for the comparison of the 
localization algorithms are presented in §7.6 for simulated scenarios, and in 
§7.7 for real data ones. General conclusions about the performance of all 
localization algorithms are provided. Besides the description of the novel 
general frame and the classification of localization algorithms, the purpose 
of this chapter is to demonstrate that there is no general algorithm that 
provides, under all conditions, the most statistically (low dispersion and 
unbiased) and numerically (stable and with robust convergence) efficient 
solutions for the target location. It also composes the main motivation for 
the proposed general localization strategy in Chapter 8. The contributions 
of this chapter have been published in [99-101]. 

7.1 A Prelude to Localization Algorithms 

As we have described in §6.1, the localization problem consists of estimating 
the target position under any geographical reference system, given a set of 
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physical measurements of signals emitted by aircrafts or vehicles. In general 
terms, the target position is that numeric parameter that satisfies a set of 
equations relating it with each measurement, e.g., the hyperbolic ones (6.6) 
for the case of standard MLAT systems. To set the latter in a 
computationally implementable context is the objective of the localization 
algorithms. To do this, they are composed of a data model and of a 
numerical algorithm. The data model explicitly relates the unknown target 
position with the set of known parameters (e.g., measurements and 
receiving stations position) by constructing a numerical inverse problem; 
the resulting inverse problem can be linear or non linear but, for practical 
issues, they are normally linear. The numerical algorithm solves the 
resulting inverse problem and allows the calculation of a numerical data for 
the target position under a specific geographical reference system (see Fig. 
6.2), e.g., the Cartesian coordinate system. In this section, we describe a 
general framework that organizes the whole structure of any localization 
algorithm. This general framework is useful for understanding any of the 
localization algorithms that are described in this thesis, to develop a general 
classification for them, to facilitate an equivalent comparative analysis 
between them, and to identify their advantages and disadvantages, as well 
as to better identify which novelties are provided by the localization 
strategies provided in Chapter 8. This general framework is the result of an 
exhaustive literature search and posterior processing of it for selecting the 
most relevant and representative localization algorithms. 

7.1.1 The Data Model 

Before describing the different kinds of data models, it is important to 
introduce the concept of characteristic equation, which is very useful to 
explain and understand that classification and the posterior description of 
the localization algorithms. Essentially, a characteristic equation is the 
mathematical scalar element that relates the unknowns with the 
measurements collected by a set of receiving stations and their positions. In 
this sense, when this scalar element is transformed into a vector-matrix 
form, for a set of ௦ܰ stations, it is called data model. In other words, the 
data model is the generalized version of a characteristic equation.  

The data models used by the different localization algorithms can be 
classified as statistical approach based models, numerical approach based 
models, and algebraic approach based models. In the following the main 
characteristics of each of these are described. 

The statistical approach based models assume certain statistical 
hypothesis about the measurements and the target position and set a 
probabilistic model that relates to each other. Most of these models are 
based on the Maximum Likelihood (ML) principle [102] due to the proven 
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asymptotic consistency and efficiency of the ML estimators (MLE). These 
models require additional information about the measurement error 
distributions; usually Gaussian distributions are assumed. Furthermore, the 
resulting models are highly nonlinear in the unknown target position. Then, 
to solve this kind of models, linear approximations and iterative numerical 
methods are required. Consequently, they also require a good previous 
estimation of the solution to avoid the local minima and the convergence is 
not always guaranteed; for this reason the algorithms based on them are 
commonly classified as open form algorithms. On the other hand, if the 
statistical hypotheses are satisfied by the measured data, these models 
provide the most optimum estimators, i.e., estimators that are in practice 
unbiased and with its covariance matrix very close to its CRLB. 

The numerical approach based models set a mathematical function 
that jointly relates the unknown target position, the measurements and a 
parameter derived from the target position (e.g., the target range) that 
naturally is also unknown. The resulting models are linear in one unknown 
given the other one. Then, they assume certain numerical approximations 
between the target position and its derived parameter in order to simplify 
the solution. The most common assumed approximation is that of mutual 
numerical independence between them. These numerical approximations are 
independent of the statistical distributions of the measurement errors. Most 
of them are based on the Least Squares (LS) principle, i.e., they set an 
error function whose squared norm is minimized. These models can be 
solved by direct optimization and do not require any previous estimation of 
the solution; for this reason the algorithm based on them are commonly 
classified as closed form algorithms. Furthermore, normally the 
computational cost required to solve this kind of models is lower than that 
required for the statistical approach based ones. On the other hand, all of 
algorithms based on these models introduce quadratic noise terms in the 
resulting inverse problem, and the solutions provided by them are biased 
and are not optimum in the statistical sense. 

The algebraic approach based models do not use any statistical 
assumptions nor numerical approximations. They algebraically manipulate 
the hyperbolic equations until directly set an inverse problem that linearly 
relates the unknown target position with the known parameters (i.e., the 
measurements and the station positions). These models are very simple as 
only geometric relations are used. On the contrary, they usually require 
more stations to form the characteristic equation and introduce quadratic 
and cubic noise terms in the inverse problem. As the numerical approach 
based models, these ones do not require any previous estimation of the 
solution and can be solved by direct optimization; hence, the algorithms 
that use these models are also classified as closed form algorithms. 
Moreover, the solutions provided by the algorithms based on these models 
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are also biased and are not optimum in the statistical sense. On the other 
hand, most of them require the lowest computational resources for solving 
the resulting inverse problem. 

7.1.2 The Numerical Algorithm 

The resulting linear inverse problem, obtained from any data model, must 
be numerically solved to obtain a numerical data for the target position. As 
we have also commented in §6.1.1, the most used numerical algorithm to 
solve the resulting linear inverse problem is the LS, i.e., by the 
pseudoinverse matrix (see §6.4). Moreover, for the statistical approach 
based models that require iterative procedures because the nonlinearity of 
the resulting model, the Gauss-Newton method [103] is the most commonly 
used. All the localization algorithms analyzed in this chapter are solved by 
these methods. On the other hand, there also exists the well known 
regularization methods but, due to the fact that the application of them is 
one of the contributions of this thesis, they are treated in more detail in 
Chapter 8. 

7.1.3 The General Framework for Localization Algorithms 

The formulation of any localization algorithm can be summarized as 
depicted in Fig. 7.1. A localization algorithm starts by establishing a 
characteristic equation that can relate the unknown target position ࣂ, the 
measurements ࢓ෝ , the position ࣖ௜ of a finite number of stations, and 
optionally a derived parameter of the target position ࣂ, which is denoted in 
Fig. 7.1 as ݃(ࣂ). Then, depending on the procedure used to develop the 
characteristic equation, it is expressed in the sense of its corresponding data 
model. Furthermore, in this point, the data model is processed, and the 
statistical assumptions or numerical approximations, if applicable, are 
introduced to set up an inverse problem. This inverse problem can be 
generally composed of a coefficient matrix ࡳ, an unknown vector ࣂ, and a 
known measurement vector ࢓ෝ . As we will describe in the following 
subsections, different pairs of coefficient matrix and measurement vector 
will result in different localization problems. In other words, it means that 
every localization algorithm is, in principle, characterized by its own 
coefficient matrix and measurement vector. Finally, the inverse problem can 
be solved by any of the available numerical algorithms, and thus the 
solution for the target position ࣂ෡ is obtained. 

It is clear to see that a complete localization strategy is composed of the 
triplet formed by a coefficient matrix, a measurement vector and a 
numerical algorithm that operates with them. In this sense, the best 
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localization algorithm, for a given scenario, is that whose triplet best fits to 
the particular conditions of such scenario. 

7.1.4 Setting a General Notation 

Because several localization algorithms, which have been developed in 
different works, will be described, analyzed and compared, it is advisable to 
set a general notation for the most used parameters and for those that are 
common to all algorithms analyzed herein. All the algorithms analyzed and 
developed in this thesis are referenced in a Cartesian coordinate system 
whose two dimensional case is always composed by the (ݔ,  coordinates (ݕ
and the three dimensional one for (ݔ, ,ݕ  .It is shown in Fig. 7.2 .(ݖ

Generally, unless otherwise indicated, the origin of the coordinate system 
is set in an arbitrary spatial point. The vector containing the full set of 
target Cartesian coordinates is denoted as: 

ࣂ = ቈݖݕݔ቉ଷ×ଵ (7.1) 

and the corresponding target range is denoted as ܴ௦ and is defined as: 

 
Fig. 7.1 General framework for localization algorithms. 
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ܴ௦ ≜ ଶ‖ࣂ‖ = ඥݔଶ + ଶݕ +  ଶ (7.2)ݖ

The ith station position is denoted as: 

ࣖ௜ = ൥ݔ௜ݕ௜ݖ௜൩ଷ×ଵ (7.3) 

where the corresponding distance to the origin of the coordinate system is 
defined as: ܴ௜ ≜ ‖ࣖ௜‖ଶ = ටݔ௜ଶ + ௜ଶݕ +  ௜ଶ (7.4)ݖ

The range from the target to the ith receiving station is denoted as: ݎ௜ ≜ ࣂ‖ − ࣖ௜‖ଶ = ඥ(ݔ − ௜)ଶݔ + ݕ) − ௜)ଶݕ + ݖ) −  ௜)ଶ (7.5)ݖ

Finally, we have defined the set of measured TDOA quantities in (6.6). 
However, it is more common, for simplicity, to use the set of range 
difference quantities, which simply can be obtained by multiplying the set 
of TDOA measurements by the speed of light as follows: ݉௜,ଵ ≜ ௜ݎ − ଵݎ = ,௜,ଵܣܱܦܶܿ ݅ = 2,… , ௦ܰ (7.6) 

and expressed in vector form they are: 

 
Fig. 7.2 General notation for localization algorithms. 
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࢓ = ൥݉ଶ,ଵ⋮݉ேೞ,ଵ൩(ேೞିଵ)×ଵ (7.7) 

where we have used the station 1 as the reference one. Moreover, in the 
case of noisy quantities, i.e., as obtained by measurements, they are 
denoted as ෝ݉ ௜,ଵ and ࢓ෝ , respectively. 

7.2 Open Form Algorithms 

The open form algorithms are based on the problem linearization, it is, this 
kind of algorithms linearizes (6.6) to obtain explicit linear relations between 
the range difference measurements ࢓ෝ  and the unknown target position ࣂ. 
Normally, these algorithms use an iterative procedure and need for a 
suitable starting point (i.e., a priori information about ࣂ). The most 
established open form algorithm, to solve the hyperbolic system of 
equations in Mode S Multilateration, is based on Taylor-series expansion 
[3], [103]. 

7.2.1 Taylor-Series Expansion Algorithm 

Initially, this method was presented in [103]. In this reference, the author 
used an algebraic procedure to describe the application of Taylor-series 
expansion to linearize (6.6) and obtain an explicit mathematical model to 
calculate the unknown position ࣂ. Later, in [3] it was presented the 
accuracy analysis for some passive localization systems. In this reference the 
author shows an equivalent formulation to that presented in [103] but using 
a statistical approach. The statistical procedure allows the reader to get 
more insight of the real problem. Therefore, in this work the Taylor-series 
expansion method is summarized following the procedure shown in [3]. 

For real standard Mode S Multilateration systems (i.e., using only range 
difference measurements), it is more general to write (6.6) as follows ෝ݉ ௜,ଵ ≡ ௜,ଵܣܱܦܶܿ = ൫ ௜݂(ݔ, ,ݕ (ݖ − ଵ݂(ݔ, ,ݕ ൯(ݖ + ݊௜,ଵ (7.8) 

where ݊௜,ଵ is the equivalent noise for the range difference measurement 
between the ith station and the reference one. This noise basically depends 
on the capacity of each station to receive, time tag and sends to the CPS 
the corresponding TOA measurement. However, in a general sense, the 
noise is assumed to be zero-mean and Gaussian distributed (see §2.1.2 for 
more details). 
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The ௦ܰ-1 range difference equations in the form of (7.8) can be expressed 
in vector notation as follows: ࢓ෝ = (ࣂ)࢓ +  (7.9) ࢔

where ࢓ෝ  is a ௦ܰ-1 column vector which contains all the range difference 
measurements, (ࣂ)࢓ is also a ௦ܰ-1 column vector that takes the following 
form: 

(ࣂ)࢓ = ቎ ௜݂(ݔ, ,ݕ (ݖ − ଵ݂(ݔ, ,ݕ ,ݔ)ே݂ೞ⋮(ݖ ,ݕ (ݖ − ଵ݂(ݔ, ,ݕ ቏(ேೞିଵ)×ଵ(ݖ , ݅ = 1, … , ௦ܰ (7.10) 

Finally, ࢔ is the equivalent range difference noise measurement vector of ௦ܰ-1 size and it is assumed to be a multivariate zero mean and Gaussian 
distributed with covariance matrix given by: ࡺ = ࢔)ሾܧ − ࢔)(ሿ࢔ሾܧ −  ሿ)்ሿ (7.11)࢔ሾܧ

where ܧሾ ሿ denotes the expectation operator. The form of this covariance 
matrix depends on the techniques to estimate the TOA/TDOA values.  

In this way, the likelihood function for the unknown target position is 
given by [3]: Λ(ࣂ) = ಿೞషభమ(ߨ2)1 ൯భమ(ࣂ)ࡺ൫ݐ݁݀ ݁ିଵଶቄ൫࢓ෝି(ࣂ)࢓൯೅(ࣂ)ࡺషభ൫࢓ෝି(ࣂ)࢓൯ ቅ (7.12) 

where ݀݁ݐ൫(ࣂ)ࡺ൯ denotes the determinant of the ( ௦ܰ − 1) × ( ௦ܰ − 1) 
measurement covariance matrix (ࣂ)ࡺ. In this sense, the target position, for 
a given system and a set of measurements, is that ࣂ which maximizes the 
likelihood function (7.12) and therefore minimizes the following function: ܳ(ࣂ) = ൫࢓ෝ ෝ࢓ଵ൫ି(ࣂ)ࡺ൯்(ࣂ)࢓−  ൯ (7.13)(ࣂ)࢓−

In order to find the ࣂ minimizing (7.13), the function (ࣂ)࢓ is linearized 
by a Taylor-series expansion centred in a suitable staring point ࣂ଴ =ሾݔ଴, ,଴ݕ  ଴ሿ் and it is only retained the terms of zero and first order, asݖ
follows: (ࣂ)࢓ = (଴ࣂ)࢓ + ࣂ)ࡳ −  ଴) (7.14)ࣂ

where ࡳ is the TDOA Jacobian matrix which takes the following form: 
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ࡳ = 1ܿ
ێێۏ
ۍێ ଴ݔ − ଶݎଶݔ − ଴ݔ − ଵݎଵݔ ଴ݕ − ଶݎଶݕ − ଴ݕ − ଵݎଵݕ ଴ݖ − ଶݎଶݖ − ଴ݖ − ⋮ଵݎଵݖ ⋮ ଴ݔ⋮ − ேೞݎேೞݔ − ଴ݔ − ଵݎଵݔ ଴ݕ − ேೞݎேೞݕ − ଴ݕ − ଵݎଵݕ ଴ݖ − ேೞݎேೞݖ − ଴ݖ − ଵݎଵݖ ۑۑے

ېۑ
ሾேೞିଵሿ×ଷ

 (7.15) 

Now, defining ࢓ෝ୼ = ෝ࢓ ࣂand Δ (଴ࣂ)࢓− = ࣂ −  ଴, then the function ܳ inࣂ
(7.13) can be rewritten as follows: ܳ(∆ࣂ) = ෝ௱࢓) − ෝ௱࢓)ଵି(ࣂ)ࡺ்(ࣂ∆ࡳ −  (7.16) (ࣂ∆ࡳ

Finally, the derivatives of (7.16) with respect to each component of Δࣂ 
must be calculated and then set them to zero to obtain a direct expression 
for Δࣂ. After several algebraic steps it can be demonstrated that: ࣂ෡ = ෝ௱࢓ଵି(ࣂ)ࡺ்ࡳଵି(ࡳଵି(ࣂ)ࡺ்ࡳ) +  ଴ (7.17)ࣂ

where the variable ࣂ has been changed for ࣂ෡ just to emphasize that this is 
the variable estimated by the Maximum Likelihood Estimator (MLE) 
(7.12). Usually, due to the fact that the covariance matrix (ࣂ)ࡺ depends on 
the true target position ࣂ (which obviously is unknown), it is removed from 
(7.17), assuming an identity matrix. This assumption is only a practical 
mathematical simplification, because this matrix generally is not equal to 
the identity one. Physically, this assumption means that all the stations are 
equally affected by the noise; a fact that is not entirely true but it is a valid 
assumption to solve the problem. Moreover, (7.17) should be refined by 
several iterations until the method reaches a good accuracy. This iterative 
procedure can be expressed as follows: ࣂ෡௞ = ൬ࡳ൫ࣂ෡௞ିଵ൯்ࡳ൫ࣂ෡௞ିଵ൯൰ିଵ ෡௞ିଵ൯ࣂෝ௱൫࢓෡௞ିଵ൯்ࣂ൫ࡳ + ݇,෡௞ିଵࣂ = 1,… ,  ܭ

(7.18) 

where ࣂ෡଴ = ෡௞ିଵ൯ࣂෝ௱൫࢓ ,଴ࣂ = ෝ࢓  is the maximum number ܭ ෡௞ିଵ൯ andࣂ൫࢓−
of refinement iterations. It is worth to say that ࣂ଴ is not necessary a 
previous estimation of the true target position ࣂ. As it will be shown later, 
for some applications the starting point can be assumed as a fixed value for 
all the coverage area. The value of the starting point ࣂ଴ normally has an 
important influence on the convergence of the method. This fact will be 
analyzed in later in this section. 

Finally, the iterative procedure in (7.18) needs a stopping criterion and 
which is usually provided by the Euclidean difference between the solution 
at the kth iteration and the kth-1. When the difference between these two 
solutions is smaller than a predefined spatial threshold, the algorithm stops 
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the iterative procedure, otherwise, it continues with the refinement process. 
This criterion can be expressed as follows: ฮࣂ෡௞ − ෡௞ିଵฮଶࣂ = ൜≤ Δ௦, <݌݋ݐݏ Δ௦,  (7.19) ݁ݑ݊݅ݐ݊݋ܿ

where Δୱ is the predefined spatial threshold. 

Equation (7.18) can be also seen as a Least Squares (LS) solution of the 
MLAT localization problem, which is the minimum 2-norm solution, it is, 
that solution which satisfy (cf. (6.24) and (6.25)): ࣂ෡ = argminሼ‖ࣂࡳ  ෝ‖ଶଶሽ (7.20)࢓−

The matrix (ࡳ்ࡳ)ିଵ்ࡳ in (7.28) is known in the literature [72] as the 
pseudoinverse matrix (see also §6.4) and it is denoted by ࡳற. Thus, the 
iterative estimator in (7.18) can be alternatively expressed as follows: ࣂ෡௞ = ෡௞ିଵ൯ࣂෝ௱൫࢓෡௞ିଵ൯ࣂற൫ࡳ + ,෡௞ିଵࣂ ݇ = 1,… ,  (7.21) ܭ

As we have previously analyzed in [20], this strategy does not always 
provide acceptable accuracies because, in many operational conditions, the 
matrix ࡳ has some linearly dependent equations and in these cases the 
solution provided by (7.18) or (7.21) presents big errors. Therefore, we can 
conclude that solving the localization problem in the sense of LS has some 
disadvantages. Numerically, the most important one is related with the 
Hadamard’s conditions [8] and is that the LS solution (i.e., that one 
provided by the pseudoinverse matrix) does not always satisfy the three 
Hadamard’s conditions and therefore, for several cases, the solution 
provided by (7.18) may diverge to solutions that are very far from the exact 
one; that is, the localization problem becomes ill-conditioned. However, on 
the other hand, this algorithm has the important advantage that it is the 
only one that is linearly related to the noise, whilst the closed form 
algorithms are quadratically noise-dependent. 

About the Starting Point 

As we stated before, when using Taylor-series expansion method it is 
necessary to provide a starting point or a previous estimation about the 
position. Depending on the application scenario, this starting point can be 
defined as a fixed point in the scenario or it can be estimated by a previous 
execution of a closed form algorithm. 

For airport surface surveillance, it has been found that defining the 
centre of the airport as the starting point, sometimes it is enough to obtain 
satisfactory results by using the LS solution. Nevertheless, it is worth to 
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remember that the use of the LS solution does not always guarantee the 
convergence of the method. 

For the surveillance out of the system perimeter (normally WAM) it is 
necessary to use a closed form algorithm to find the starting point. The 
application of a closed form algorithm to estimate the starting point is 
justified in the sense that, in many cases, this kind of algorithms are noise-
sensitive and the use of a Taylor-expansion method improves that previous 
solution. 

Another important aspect is that the most ill-conditioned position 
component usually is the vertical one (i.e., the aircraft height) and all the 
numerical methods are affected by this problem. In this way, one feasible 
and reliable option is to take as the vertical component of the starting point 
the barometric altitude, which is present in all the downlink messages 
(Downlink Format -DF- 4, 5, 17, 20 and 21). 

Although, as it will be shown in the results section, the most suitable 
source for the starting point depends on the system geometry, coverage 
range, number of available stations, etc., but, there is always a practical 
strategy to estimate it. 

7.3 Closed Form Algorithms 

On the other hand, as we have described in §7.1 the closed form algorithms 
can either define a quadratic relation between the range difference 
measurements ࢓ෝ  and the unknown target position ࣂ or directly define a 
linear inverse problem by algebraic manipulation of the hyperbolic 
equations. They can be one or two step algorithms, and they can provide 
one or two solutions of the target position. In the last case, it is necessary 
to choose one of the two possible solutions (i.e., in this cases they solve a 
quadratic unknown variable). Unlike the open form algorithms, the closed 
form ones do not need a suitable starting point but, as it will be shown 
later, the closed form algorithms introduce quadratic or cubic noise term in 
the corresponding mathematical model, that in some cases can lead to 
poorer accuracy levels. After our literature revision, we have found the most 
relevant and representative closed form algorithms, which can be used to 
solve the localization problem in Mode S MLAT, are those proposed by 
Schmidt [104], Smith and Abel [105-106], Friedlander [107], Schau and 
Robinson [108], Chan and Ho [109-110], the application of Bancroft 
algorithm [111] (initially developed for GPS), and an interesting algorithm 
reported in the open license website Wikipedia® [112]. 
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7.3.1 Schmidt Algorithm (Plane Intersection) 

This algorithm was proposed by Schmidt [104]. It is based on the plane 
intersection principle, which states that the range differences to three 
stations, of known positions, provide a straight line of position that 
geometrically represents the major axis of a general conic (e.g., ellipse, 
hyperbola, parabola), whose focus (in the absence of measurement noise) is 
the unknown target location. This algorithm is a one step algorithm that 
provides one solution for the target position. The characteristic equation of 
this algorithm is obtained by algebraic manipulation of the range difference 
equations (cf. (6.6)), i.e., by combining several equations in the form of 
(6.6) until obtaining a model whose only unknown variables are the set of 
target position coordinates. With this procedure, this algorithm directly 
leads to a linear inverse problem without any statistical or numerical 
assumption, i.e., this algorithm is composed of an algebraic approach based 
model. The formulation for this algorithm is summarized below. 

In general terms, the main objective of the plane intersection principle is 
to set the unknown target location coordinates and the known parameters 
(e.g., stations positions and measurements) in a linear equation as follows: ݔܣ + ݕܤ + ݖܥ =  (7.22) ܦ

This equation represents a straight line in the two dimensional (i.e., 
without the z component) case or a plane in the three dimensional one. 

Thus, after algebraic manipulation of the range difference equations 
(6.6), the characteristic equation of this algorithm is expressed as follows: ൣݔଵ ෝ݉௜,ଶ + ଶݔ ෝ݉ଵ,௜ + −ଷ൫ݔ ෝ݉௜,ଶ − ෝ݉ଵ,௜൯൧ݔ+ ଵݕൣ ෝ݉௜,ଶ + ଶݕ ෝ݉ଵ,௜ + −ଷ൫ݕ ෝ݉௜,ଶ − ෝ݉ଵ,௜൯൧ݕ+ ଵݖൣ ෝ݉௜,ଶ + ଶݖ ෝ݉ଵ,௜ + −ଷ൫ݖ ෝ݉௜,ଶ − ෝ݉ଵ,௜൯൧ݖ= 12 ൣ ෝ݉ଶ,ଵ ෝ݉௜,ଶ ෝ݉ଵ,௜ + ܴଵଶ ෝ݉௜,ଶ + ܴଶଶ ෝ݉ଵ,௜+ ܴ௜ଶ൫− ෝ݉௜,ଶ − ෝ݉ଵ,௜൯൧, ݅ = 3,… , ௦ܰ 

(7.23) 

where the origin of the coordinates system is arbitrary. Note that this 
equation is composed by measurements provided by three stations. As it 
was stated in §6.1.1, to preserve the independency among equations it is not 
advisable to use all the possible combinations. For this reason, it is assumed 
in (7.23) the index ݅ to be ݅ = 3,… , ௦ܰ. In other words, to describe it in the 
same sense than §6.1.1, this algorithm requires two reference stations to 
form one equation and, without loss of generality, we assume these two 
reference stations to be the stations 1 and 2. Therefore, for ௦ܰ available 
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stations, only a set of ௦ܰ − 2 equations can be set of the inverse localization 
problem. 

The coefficients of (7.22) can be easily identified from the characteristic 
equation (7.23) and they explicitly are: ܣ௜ = ଵݔ ෝ݉௜,ଶ + ଶݔ ෝ݉ଵ,௜ + −ଷ൫ݔ ෝ݉௜,ଶ − ෝ݉ଵ,௜൯ ܤ௜ = ଵݕ ෝ݉௜,ଶ + ଶݕ ෝ݉ଵ,௜ + −ଷ൫ݕ ෝ݉௜,ଶ − ෝ݉ଵ,௜൯ ܥ௜ = ଵݖ ෝ݉௜,ଶ + ଶݖ ෝ݉ଵ,௜ + −ଷ൫ݖ ෝ݉௜,ଶ − ෝ݉ଵ,௜൯ ܦ௜ = 12 ൣ ෝ݉ଶ,ଵ ෝ݉ ௜,ଶ ෝ݉ଵ,௜ + ܴଵଶ ෝ݉௜,ଶ + ܴଶଶ ෝ݉ଵ,௜ + ܴ௜ଶ൫− ෝ݉௜,ଶ − ෝ݉ଵ,௜൯൧ 

(7.24) 

Finally, the localization inverse problem can be comprised in vector-
matrix form as follows: ࡳௌ௖௛௠௜ௗ௧ࣂ෡ௌ௖௛௠௜ௗ௧ =  ෝௌ௖௛௠௜ௗ௧ (7.25)࢓

where 

ௌ௖௛௠௜ௗ௧ࡳ = ൥ ଷܣ ଷܤ ⋮ଷܥ ⋮ ேೞܣ⋮ ேೞܤ  ேೞ൩(ேೞିଶ)×ଷ (7.26)ܥ

and 

ෝௌ௖௛௠௜ௗ௧࢓ = ൥  ேೞ൩(ேೞିଶ)×ଵ (7.27)ܦ⋮ଷܦ

Several observations can be made to this algorithm. To form a 
characteristic equation a set of three stations are required. Then, to 
estimate a target location composed by a set of ݊ coordinates, it requires at 
least ݊ + 2 stations (i.e., four stations for 2D localization and 5 for 3D 
localization). From (7.24)-(7.27) it can be seen that this algorithm 
introduces a cubic noise term in the measurement vector, which is evident 
with the term ෝ݉ଶ,ଵ ෝ݉ ௜,ଶ ෝ݉ଵ,௜, and also introduces noise terms in the 
coefficient matrix, aspects that can degrade the algorithm performance in 
the case of highly noisy measurements. The data model is set without any 
restriction; hence, also the inverse problem is solved without any 
restriction. On the other hand, the computational cost of using this 
algorithm is very low. 
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7.3.2 Smith and Abel Algorithm (Spherical Interpolation) 

This algorithm was proposed by Smith and Abel [105-106]. It is based on 
the spherical interpolation principle, which states that the range difference 
between two stations (e.g., the ith station and the reference one), of known 
positions, geometrically represents (in the absence of noise) the distance 
from the ith station to a sphere centred at the target position and passing 
through the reference one. This algorithm is a one step algorithm that 
provides one solution for the target position. The characteristic equation is 
obtained by mathematically manipulating only one equation in the form of 
(6.6); hence, this equation contains two unknown and mutually dependent 
parameters: the target position and the range (or distance) from this to a 
reference point. Thus, this algorithm solves the problem by using two error 
functions in the sense of LS and it is therefore called spherical LS criteria. 
The first criterion is used to obtain an expression that explicitly relates the 
target position ࣂ and its distance ܴ௦ to a known reference point (henceforth 
called target range), then the second one is used to obtain a direct solution 
for ܴ௦ and finally, this latter solution is introduced into the first LS 
criterion to obtain the solution for the target position. In this algorithm 
both the target range and the target position are assumed to be numerically 
independent, i.e., this algorithm is composed of a numerical approach based 
model. This algorithm is summarized below. It is important to take into 
account that the formulation below is expressed by assuming the origin of 
the coordinate system to be at the position of the reference station (station 
1), i.e., ࣖ௜ = ࣖ௜ − ࣖଵ, ܴଵ = 0 and ܴ௦ =  .ଵݎ

The characteristic equation, which is formed by two stations (the ith 
station and the reference one) is expressed as follows: 2ࣖ௜் ࣂ = ܴ௜ଶ − ෝ݉௜,ଵଶ − 2ܴ௦ ෝ݉௜,ଵ, ݅ = 2,… , ௦ܰ (7.28) 

Due to the fact that the measurements are not precisely performed, this 
algorithm proposes that the above equation has to be really expressed in 
terms of an error equation as follows: ߳௜,ଵ = ܴ௜ଶ − ෝ݉௜,ଵଶ − 2ܴ௦ ෝ݉௜,ଵ − 2ࣖ௜் ,ࣂ ݅ = 2,… , ௦ܰ (7.29) 

which expressed in vector-matrix form leads to the following data model: ࣕ = ࢾ − 2ܴ௦࢓ෝ −  (7.30) ࣂࡿ2

where 

ࡿ = ൥ ଶݔ ଶݕ ⋮ଶݖ ⋮ ேೞݔ⋮ ேೞݕ  ேೞ൩(ேೞିଵ)×ଷ (7.31)ݖ
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ࢾ = ቎ ܴଶଶ − ෝ݉ଶ,ଵଶ⋮ܴேೞଶ − ෝ݉ேೞ,ଵଶ ቏(ேೞିଵ)×ଵ 
The data model in (7.30) is linear in the target position ࣂ given the 

target range ܴ௦ and it is linear in ܴ௦ given ࣂ. Then, when it happens (i.e., 
the error vector linear in the unknowns), a solution for the target position ࣂ 
given ܴ௦ can be found by the minimization of the 2-norm of (7.30), which is 
also known as the LS solution and it is as follows: ࣂ෡ = ࢾ)றࡿ12 − 2ܴ௦࢓ෝ ) (7.32) 

where ࡿற is the pseudoinverse matrix of ࡿ. Moreover, this solution can be 
seen as the solution of the following inverse problem:  ࣂࡿ෡ = 12 ࢾ) − 2ܴ௦࢓ෝ ) (7.33) 

Then, because ܴ௦ is still unknown and no solution can be found by using 
(7.32), the authors propose to use a second error function by substituting 
(7.32) into (7.30) and thus obtain an explicit solution for ܴ௦, as follows: ࣕᇱ = ࢾ − 2ܴ௦࢓ෝ − ࢾ)றࡿࡿ − 2ܴ௦࢓ෝ ) = ൫ࡵ − ࢾ)ற൯ࡿࡿ − 2ܴ௦࢓ෝ ) (7.34) 

or equivalently ࣕᇱ = ௦ୄࡼ ࢾ) − 2ܴ௦࢓ෝ ) (7.35) 

where ࡼ௦ୄ = ࡵ −  ற (7.36)ࡿࡿ

Now, it is clear that the new equation error is linear in the unique 
unknown ܴௌ. In this sense, it can be solved by minimizing also the 2-norm 
of ࣕᇱ in (7.35). This solution is expressed as follows: ෠ܴ௦ = ෝ࢓ ௦ୄࡼ் ௦ୄࡼ ෝ࢓2ࢾ ௦ୄࡼ் ௦ୄࡼ ෝ࢓  (7.37) 

Finally, a solution for the target position ࣂ can be obtained by 
substituting the value in (7.37) into (7.32), whose resulting expression is: ࣂ෡ௌ௠௜௧௛&஺௕௘࢒ = றࡿ12 ቆࡵ ෝ࢓ෝ࢓− ௦ୄࡼ் ෝ࢓௦ୄࡼ ௦ୄࡼ் ௦ୄࡼ ෝ࢓ ቇ(7.38) ࢾ 
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This final solution can be seen as the solution of the following inverse 
problem: ࡳௌ௠௜௧௛&஺௕௘௟ࣂ෡ௌ௠௜௧௛&஺௕௘࢒ =  ෝௌ௠௜௧௛&஺௕௘௟ (7.39)࢓

where ࡳௌ௠௜௧௛&஺௕௘௟ =  (7.40) ࡿ

and ࢓ෝௌ௠௜௧௛&஺௕௘௟ = 12ቆࡵ ෝ࢓ෝ࢓− ௦ୄࡼ் ෝ࢓௦ୄࡼ ௦ୄࡼ் ௦ୄࡼ ෝ࢓ ቇ(7.41) ࢾ 

To form a characteristic equation in this algorithm a set of two stations 
are required. Then, to estimate a target location composed by a set of ݊ 
coordinates, it requires at least ݊ + 1 stations (i.e., three for 2D localization 
and four for 3D localization). Statistically, the solution as provided by the 
estimator in (7.38) is biased and not optimal due to the mutual 
independence that is assumed between the target position and range, and 
because the inverse problem is solved without any restriction that 
compensates that assumption of independence. Moreover, for this method 
the coefficient matrix is constant for a given system as it only depends on 
the stations position. On the contrary, since the measurement vector (7.41) 
is a modified version of the pure range differences vector, it introduces 
quadratic noise terms and its existence directly depends on the stability of 
calculating the pseudoinverse of ࡿ (cf. (7.36)). On the other hand, the 
computational cost of using this algorithm is very low. 

7.3.3 Friedlander Algorithm (Spherical Interpolation) 

This algorithm was proposed by Friedlander [107]. It is also based on the 
spherical interpolation principle as Smith and Abel algorithm (see §7.3.2) 
and it was presented as an alternative solution to it. This algorithm is a one 
step algorithm that provides one solution for the target position. The 
characteristic equation is obtained equivalently to Smith and Abel and, 
hence, it also contains two unknown and mutually dependent parameters: 
the target position and the target range. The main difference between these 
two algorithms is that Friedlander solves the problem by eliminating one of 
the two unknown parameters in the data model; the target range to the 
reference station ݎଵ (also here the station 1 is assumed as the reference one). 
It is performed by premultiplying the corresponding data model by a 
matrix that contains the measurement vector in its null space. In this 
algorithm, due to the elimination of one of the two mutually dependent 
parameters, which is in some sense an strategy similar of assuming them to 
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be mutually independent, the solution is provided with any restriction (i.e., 
that relating the two parameters), hence, this algorithm is composed of a 
numerical approach based model. Although the author states in his original 
work [107] that this algorithm is mathematically equivalent to that of 
Smith and Abel [105], we have observed in the results that they present 
different performance. This algorithm is summarized below. It is important 
to take into account that the formulation below does not set the origin of 
the coordinate system at any receiving station position but at an arbitrary 
point. 

The characteristic equation, which is formed by two stations (the ith 
station and the reference one) is expressed as follows: 2(ࣖ௜ − ࣖଵ)்ࣂ = ൫ܴ௜ଶ − ܴଵଶ൯ − ෝ݉௜,ଵଶ − ଵݎ2 ෝ݉௜,ଵ (7.42) 

Note that this equation is equivalent to that of Smith and Abel in 
(7.28). The main difference is due to the fact that (7.28) is obtained by 
setting the origin of the coordinate system at the position of the reference 
station whilst in (7.42) this origin is set in an arbitrary point. Then, the 
data model expressed in vector-matrix form is as follows: ࡿி௥௜௘ௗࣂ = ࣆ − ෝ࢓ଵݎ  (7.43) 

where 

ி௥௜௘ௗࡿ = ൥ ଶݔ − ଵݔ ଶݕ − ଵݕ ଶݖ − ⋮ଵݖ ⋮ ேೞݔ⋮ − ଵݔ ேೞݕ − ଵݕ ேೞݖ − ࣆ ଵ൩(ேೞିଵ)×ଷݖ = 12 ቎ ܴଶଶ − ܴଵଶ − ෝ݉ଶ,ଵଶ⋮ܴேೞଶ − ܴଵଶ − ෝ݉ேೞ,ଵଶ ቏(ேೞିଵ)×ଵ 
(7.44) 

Equivalently to Smith and Abel, the data model in (7.43) is linear in ࣂ 
given ݎଵ and it is linear in ݎଵ given ࣂ. In this point, the author proposes to 
eliminate ݎଵ by premultiplying the data model in (7.43) by a matrix ࡹ 
containing the measurement vector ࢓ෝ  in its null space, such that ࢓ࡹෝ = ૙, 
as follows: ࡹ = ࡵ) −  (7.45) ࡰ(ࢆ

where ࡵ is a ( ௦ܰ − 1) × ( ௦ܰ − 1) identity matrix and 

ࡰ = ሾdiag(࢓ෝ )ሿିଵ = ቎ ෝ݉ଶ,ଵ ⋱ ෝ݉ேೞ,ଵ቏(ேೞିଵ)×(ேೞିଵ)
ିଵ

 (7.46) 
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ࢆ = ൦ 0 1 0⋱ ⋱0 ⋱ 11 0 ൪(ேೞିଵ)×(ேೞିଵ) 
Matrix ࢆ is really a circular shift matrix that can be obtained by 

circularly moving the columns of the identity matrix one step to the right. 

After premultiplying (7.43) the inverse problem takes the following form: ࡿࡹி௥௜௘ௗࣂ =  (7.47) ࣆࡹ

where the corresponding solution can be obtained as: ࣂ෡ி௥௜௘ௗ = ൫ࡿி௥௜௘ௗ் ி௥௜௘ௗ்ࡿி௥௜௘ௗ൯ିଵࡿࡹ்ࡹ  (7.48) ࣆࡹ்ࡹ

This final solution can be seen as the solution of the following inverse 
problem: ࡳி௥௜௘ௗࣂ෡ி௥௜௘ௗ = ෝ࢓ ி௥௜௘ௗ (7.49) 

where ࡳி௥௜௘ௗ = ி௥௜௘ௗ்ࡿࡹ  (7.50) 

and ࢓ෝ ி௥௜௘ௗ =  (7.51) ࣆࡹ

To form a characteristic equation in this algorithm a set of two stations 
are required. Then, to estimate a target location composed by a set of ݊ 
coordinates, it requires at least ݊ + 1 stations (i.e., three for 2D localization 
and four for 3D localization). However, it can be demonstrated that matrix ࡹ is always a singular matrix (see §6.3.5) with rank ௦ܰ − 2. For this reason 
the author propose to use at least ݊ + 2 equations instead ݊ + 1. Based on 
our simulations, we can say that the non-fulfilment of this condition is the 
main reason of the bad performance of the algorithm under some situations 
but, in practical terms, this asseveration is not always true and the 
algorithm provides similar overall performance levels than the Smith and 
Abel algorithm. Moreover, also as Smith and Abel algorithm, this one is 
biased and not optimal, and the coefficient matrix of the inverse problem is 
constant for a given system. On the contrary, this method also uses a 
modified version of the pure range difference vector and it introduces 
quadratic noise terms. On the other hand, the computational cost of using 
this algorithm is also very low. 
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7.3.4 Schau and Robinson Algorithm (Spherical Intersection) 

This algorithm was proposed by Schau and Robinson [108]. It is based on 
the spherical intersection principle, which states that the range distance 
from the target to any station, of known position, geometrically represents 
(in the absence of noise) the radius of a sphere whose center is at the target 
position. This algorithm is a two step algorithm that provides two possible 
solutions for the target position; hence, a procedure to select one of them 
must be implemented. The characteristic equation is obtained by 
mathematically manipulating pairs of equations in the form of (6.1) to 
derive an expression equal to that of Smith and Abel (cf. (7.28)); hence, 
this equation also contains two unknown and mutually dependent 
parameters: the target position and the target range from this to a reference 
point. The difference in the procedure for developing the characteristic 
equation of this algorithm is that the authors use the unknown target 
ranges as function of the range differences to pairs of stations (e.g., the ith 
station and the reference one), because the first ones are not measured in 
the standard version of MLAT systems. Furthermore, the proposed 
procedure for solving the problem is also different to those of Smith and 
Abel (see §7.3.2), and of Friedlander (see §7.3.3). In this algorithm, the 
main idea is to sequentially find the two unknown parameters by solving 
two separate problems. First, the target range to a reference point is 
obtained by solving a quadratic equation and then, an inverse problem is 
solved to find the target position. This inverse problem must to be solved 
twice; one for each solution of the quadratic equation for the target range. 
With this procedure, also the target position and range are assumed to be 
numerically independent; hence, this algorithm is composed of a numerical 
approach based model. This algorithm is summarized below. It is important 
to take into account that the formulation below is expressed by assuming 
the origin of the coordinate system to be at the position of the reference 
station (i.e., the station 1), i.e., ࣖ௜ = ࣖ௜ − ࣖଵ, ܴଵ = 0 and ܴ௦ =  .ଵݎ

The characteristic equation, which is formed by two stations (the ith 
station and the reference one), is expressed as follows: 2ࣖ௜் ࣂ = ܴ௜ଶ − ෝ݉௜,ଵଶ − 2ܴ௦ ෝ݉௜,ଵ, ݅ = 2,… , ௦ܰ (7.52) 

Note that the above equation is equal to that of Smith and Abel (cf. 
(7.28)). Then, the data model of this algorithm, expressed in vector-matrix 
form, is as follows: ধࣂ = 12 (ઢ − 2ܴ௦࢓ෝ ) (7.53) 

where 
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ধ = ൥ ଶݔ ଶݕ ⋮ଶݖ ⋮ ேೞݔ⋮ ேೞݕ ேೞ൩(ேೞିଵ)×ଷ ઢݖ = ቎ ܴଶଶ − ෝ݉ଶ,ଵଶ⋮ܴேೞଶ − ෝ݉ேೞ,ଵଶ ቏(ேೞିଵ)×ଵ 
(7.54) 

Note also that matrix ধ and vector ઢ are equal to matrix ࡿ and vector ࢾ of Smith and Abel algorithm (cf. (7.31)). We have decided to do not use 
the same notation just to preserve it as presented in the original 
publications. Equivalently to Smith and Abel, in this algorithm the authors 
suggest using a spherical LS criterion for solving the inverse problem in 
(7.53), which leads to the following solution: ࣂ෡ = 12ধற(ઢ − 2ܴ௦࢓ෝ ) (7.55) 

where ধற is the pseudoinverse matrix of ধ. As it was expected, this 
solution is also equivalent to that of Smith and Abel (cf. (7.32)). Indeed, at 
this point both algorithms are totally equivalent and their differences start 
with the way proposed for solving (7.55). When arriving to (7.31), Smith 
and Abel proposed to use a second spherical LS criterion, by substituting 
(7.31) into the first spherical LS criterion in (7.30), in order to explicitly 
obtain a unique solution for ܴ௦ and, with this value, solve the linear inverse 
problem in (7.31). Herein, Schau proposed not to use a second spherical LS 
criterion but instead to introduce the LS solution (7.55) into the quadratic 
equation ܴ௦ଶ =  and find its roots for ܴ௦. After the appropriate ࣂ்ࣂ
mathematical operations, the final quadratic equation in ܴ௦ is as follows: ܴ௦ଶ ቂ4 − ෝ࢓4 ்൫ধற൯்ধற࢓ෝ ቃ+ ܴ௦ ቂ2࢓ෝ ்൫ধற൯்ধறઢ + 2ઢ்൫ধற൯்ধற࢓ෝ ቃ− ቂઢ்൫ধற൯்ধறઢቃ = 0 (7.56) 

The first step of this algorithm consists of finding the roots of (7.56). 
Once they are found, the second step consists of introducing the two values 
into the inverse problem (7.55) to obtain the corresponding solutions for the 
target position as follows: ࣂ෡ௌ௖௛௔௨&ோ௢௕௜௡௦௢௡ଵ,ଶ = 12ধற൫ઢ − 2 ෠ܴ௦ଵ,ଶ࢓ෝ ൯ (7.57) 

For real applications the final solution must be chosen among the two 
provided by (7.57). For this, an intuitive and empirical procedure must be 
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implemented. Finally, the final solution in (7.57) can be seen as the solution 
of the following inverse problem: ࡳௌ௖௛௔௨&ோ௢௕௜௡௦௢௡ࣂ෡ௌ௖௛௔௨&ோ௢௕௜௡௦௢௡ଵ,ଶ = ෝௌ௖௛௔௨&ோ௢௡௕௜௡௦௢௡ଵ,ଶ࢓  (7.58) 

where ࡳௌ௖௛௔௨&ோ௢௕௜௡௦௢௡ = ধ (7.59) 

and ࢓ෝௌ௖௛௔௨&ோ௢௡௕௜௡௦௢௡ଵ,ଶ = 12 ൫ઢ − 2 ෠ܴ௦ଵ,ଶ࢓ෝ ൯ (7.60) 

To form a characteristic equation in this algorithm, a set of two stations 
are required. Then, to estimate a target location composed by a set of ݊ 
coordinates, it requires at least ݊ + 1 stations (i.e., three for 2D localization 
and four for 3D localization). Also, as the Smith and Abel algorithm, the 
solution (or solutions) provided by (7.57) is biased and not optimal due to 
the mutual independence that is assumed between the target position and 
range, and because the inverse problem is solved without any restriction 
that compensate that assumption of independence. Additionally, the quality 
of the solution is also subject to the quality of the procedure implemented 
to choose the final solution among the two possible. On the other hand, the 
coefficient matrix is constant for a given system as it only depends on the 
stations position. On the contrary, the measurement vector (7.60) is a 
modified version of the pure range difference vector, thus it also introduces 
quadratic noise terms and its existence directly depends on the quality of 
finding the roots of the quadratic equation (7.56), which could not exist. On 
the other hand, although the computational cost of using this algorithm is 
not as low as that of Smith and Abel or Friedlander algorithms, because the 
necessity of implementing the procedure for choosing the final solution, it 
can be considered still low. 

7.3.5 Chan and Ho Algorithm (Spherical Interpolation with 
Quadratic Correction) 

This algorithm was proposed by Chan and Ho [109-110]. It is also based on 
the spherical interpolation principle as Smith and Abel algorithm (§7.3.2) 
and it was presented as an improved, numerically corrected version of some 
closed form algorithms, specifically those of Smith and Abel, Friedlander 
(see §7.3.3) and Schau and Robinson (see §7.3.4), which are not optimal 
estimators in the statistical sense. This algorithm is a two step algorithm 
that provides two possible solutions for the target location; hence, a 
procedure to select one of them must be implemented. Nevertheless, the 
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two steps proposed by Chan and Ho are two inverse problems, not as in the 
algorithms cited above. The first step, which we call initial estimation, 
consists of calculating an initial solution for both the target position ࣂ and 
the target range ݎଵ to the reference station, whilst the second one, which we 
call quadratic correction, consists of imposing a known constraint between ࣂ and ݎଵ in order to improve the accuracy of ࣂ. The main objective of the 
second step is to compensate the mutual independence between target 
position and range that was assumed in the previous algorithms. The 
characteristic equation, which is only used for the first step, is obtained in a 
similar procedure as Smith and Abel and, hence, it also contains the two 
unknown and mutually dependent parameters of target position and range. 
The main difference with the previous algorithms is that they estimate the 
target range and then the target position (e.g., Smith and Abel or Schau 
and Robinson), or mathematically eliminate the target range from the data 
model (e.g., Friedlander), whilst the present one proposes to jointly 
estimate both parameters. However, this first step can be considered 
equivalent to the Smith and Abel algorithm as it also uses a spherical LS 
criterion and also assumes mutual independence between target position 
and range. For this reasons, Chan and Ho proposed the second step of 
quadratic correction that consists of obtaining a spatial increment that can 
be added to the initial estimation of the target position and thus force it to 
satisfy the constraint between it and the target range (cf. (6.1)). In other 
words, the second step is intended to make a better use of the information 
redundancy from the spherical interpolation based methods. The correction 
is performed on the squares of the target coordinates; from here the name of 
quadratic correction. On the other hand, due to the fact that the second 
step is just a correction inverse problem and not a localization one, we can 
classify the data model of this algorithm to the class of numerical approach 
based models. This algorithm is shown below. It is important to take into 
account that the formulation below does not set the origin of the coordinate 
system at any receiving station position but at an arbitrary point. 

The characteristic equation, which is formed by two stations (the ith 
station and the reference one) is expressed as follows: 2(ࣖ௜ − ࣖଵ)்ࣂ = ൫ܴ௜ଶ − ܴଵଶ൯ − ෝ݉௜,ଵଶ − ଵݎ2 ෝ݉௜,ଵ, ݅ = 2,… , ௦ܰ (7.61) 

Note that the above equation is equivalent to the ones of Smith and 
Abel (cf. (7.28)), Schau and Robinson (cf. (7.42)), and Friedlander (cf. 
(7.52)). Due to the fact that the measurements are not precisely performed, 
this algorithm, like Smith and Abel algorithm, also proposes to set the 
above equation in terms of an error equation as follows: ߳௜,ଵ = 12 ൫ ෝ݉௜,ଵଶ − ܴ௜ଶ + ܴଵଶ൯ + (ࣖ௜ − ࣖଵ)்ࣂ + ଵݎ ෝ݉௜,ଵ, ݅ = 2,… , ௦ܰ (7.62) 
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which expressed in vector-matrix form leads to the following data model: ࣕ = ෝ࢓)ࢎ ) − ௔ࡳ ൤ࣂ෡௔̂ݎଵ ൨ (7.63) 

where ࣂ෡௔ is the first estimation of ࣂ෡, ̂ݎଵ is the first estimation of the target 
range to the reference station, ࢓)ࢎෝ ) is expressed as a function of the range 
differences measurement vector to emphasize that it is a random vector 
instead a deterministic one, and 

௔ࡳ = −቎ ଶݔ − ଵݔ ଶݕ − ଵݕ ଶݖ − ଵݖ ෝ݉ଶ,ଵ⋮ ⋮ ⋮ ேೞݔ⋮ − ଵݔ ேೞݕ − ଵݕ ேೞݖ − ଵݖ ෝ݉ேೞ,ଵ቏(ேೞିଵ)×ସ ࢓)ࢎෝ ) = 12 ቎ ෝ݉ଶ,ଵଶ − (ܴଶଶ − ܴଵଶ)⋮ෝ݉ேೞ,ଵଶ − ൫ܴேೞଶ − ܴଵଶ൯቏(ேೞିଵ)×ଵ 
(7.64) 

The data model in (7.63) is linear in the target position and the target 
range (note the similarities with the previous algorithms). Then, in this 
case, assuming the target position and the target range mutually 
independent, a solution can be found as the minimization of the 2-norm of 
(7.63), which is also known as the LS solution and it is as follows: ൤ࣂ෡௔̂ݎଵ ൨ ≈ ෝ࢓)ࢎ௔்ࡳଵି(௔ࡳ௔்ࡳ) ) = ෝ࢓)ࢎ௔றࡳ ) (7.65) 

where ࡳ௔ற is the pseudoinverse matrix of ࡳ௔. 
This first step clearly shows the difference between this algorithm and 

the previous ones. As we commented in the introduction to this algorithm, 
Smith and Abel and Schau and Robinson arrive to the same data model (or 
equivalent) and then solve first for the target range and then for the target 
position, whilst Friedlander mathematically eliminates ݎଵ from the data 
model by premultiplying for a matrix that contains the measurement vector 
in its null space. On the contrary, this algorithm directly estimates both 
parameters in the same inverse problem. Moreover, the solution in (7.65) 
can be seen as the solution of the following inverse problem: ࡳ௔ ൤ࣂ෡௔̂ݎଵ ൨ = ෝ࢓)ࢎ ) (7.66) 

Then, the second step corrects the previous solutions ࣂ෡௔ and ̂ݎଵ by 
calculating a spatial increment that force satisfying the following equality 
constraint: 
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൫ࣂ෡௔,ଵ − ଵ൯ଶݔ + ൫ࣂ෡௔,ଶ − ଵ൯ଶݕ + ൫ࣂ෡௔,ଷ − ଵ൯ଶݖ =  ଵଶ (7.67)ݎ̂

Note that this equality constraint is imposed on the squares of the 
coordinates. Then, it is performed by solving a simple inverse problem given 
by: ࣂ෡௔ᇱ = ൫ࡳ௔ᇱ ௔ᇱࡳ் ൯ିଵࡳ௔ᇱ  ෡௔൯ (7.68)ࣂᇱ൫ࢎ்

where  

௔ᇱࡳ = ൦1 0 00 1 00 0 11 1 1൪ସ×ଷ 
෡௔൯ࣂᇱ൫ࢎ = ێێۏ

෡௔,ଵࣂ൫ۍێێ − ෡௔,ଶࣂଵ൯ଶ൫ݔ − ෡௔,ଷࣂଵ൯ଶ൫ݕ − ଵଶݎଵ൯ଶ̂ݖ ۑۑے
ېۑۑ
ସ×ଵ

 

(7.69) 

Finally, the two solutions provided by this algorithm are: 

෡஼௛௔௡&ு௢ଵ,ଶࣂ = ±ටࣂ෡௔ᇱ + ൥ݔଵݕଵݖଵ൩ (7.70) 

The first localization inverse problem (7.66) can be seen as the solution 
of the following general inverse problem: ࡳ஼௛௔௡&ு௢,ଵࣂ෡஼௛௔௡&ு௢,ଵ = ෝ࢓ ஼௛௔௡&ு௢,ଵ (7.71) 

where ࡳ஼௛௔௡&ு௢,ଵ = ෡஼௛௔௡&ு௢,ଵࣂ ௔ࡳ = ൤ࣂ෡௔̂ݎଵ ൨ ࢓ෝ ஼௛௔௡&ு௢,ଵ = ෝ࢓)ࢎ ) (7.72) 

whilst the second one in (7.68) can be seen as the solution of the following 
general inverse problem: ࡳ஼௛௔௡&ு௢ࣂ෡஼௛௔௡&ு௢ଵ,ଶ = ෝ࢓ ஼௛௔௡&ு௢ (7.73) 

where 
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To form a characteristic equation in this algorithm a set of two stations 
are required. However, as the first inverse problem estimates, in the most 
general case, a total of ݊ + 1 unknowns (݊ coordinates and ݎଵ), to estimate 
a target location composed by a set of ݊ coordinates, it requires at least ݊ + 2 stations (i.e., four for 2D localization and five for 3D localization). 
Furthermore, it is important to highlight that because the pseudoinverse 
matrix can also solve underdetermined inverse problems (i.e., in the case of 
having only ݊ + 1 stations for estimating ݊ coordinates), we have concluded 
from our simulations that the solutions provided for the target range ݎଵ are 
not useful (e.g., ̂ݎଵ < 0) and in these cases the second step significantly 
degrades the position accuracy provided by the first step. In the same sense, 
we have also proved that when only the solution for target position as 
provided by the first step (i.e., the parameter ࣂ෡௔) is taken, it presents the 
same performance as the one provided by Smith and Abel algorithm in 
(7.38). On the other hand, the authors of this algorithm indicated in [109-
110] that this algorithm yields and unbiased solution with small standard 
deviation close to its CRLB when the noise level is moderate. However, 
these unbiased and small standard deviation have been not found in our 
simulations for both simulated and real scenarios. Furthermore, the authors 
of the algorithms also suggest that the inverse problem in (7.66) can be 
more accurately solved if the covariance matrix of the measurement errors 
is used, i.e., by using the weighted LS. Nevertheless, we have to say that 
this asseveration is naturally true when that covariance matrix can be 
accurately estimated, which is not the case of MLAT systems where highly 
different conditions for the stations of the same system can be found. In 
these cases the use of the covariance matrix of measurement errors can lead 
to performance degradations. 

The most critical aspect for the performance of this method is the 
accuracy of the initial estimations ࣂ෡௔ and ̂ݎଵ, because the second step is a 
simple quadratic correction that directly depends on their quality. In that 
first step, the coefficient matrix (cf. (7.64) and (7.72)) is not constant and 
introduces noise terms because it contains the range difference 
measurements. Regarding to the measurement vector in (7.72), it is a 
modified version of the pure range difference measurements and it 
introduces quadratic noise terms as it contains the squares of the range 
difference measurements (cf. (7.64)). Although the authors of the algorithm 
state that it is optimal in the statistical sense and that it can be considered 
as an approximation of the MLE in the small error region, based on our set 
of simulations we have to say that, in practice, it is not true (at least for 
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MLAT system applications). Finally, the computational cost of using this 
algorithm is greater than the previously analyzed ones. 

7.3.6 Bancroft Algorithm 

The Bancroft algorithm was initially developed by Bancroft [113] for GPS 
applications and the corresponding application for MLAT systems was 
developed by Geyer and Daskalakis [111]. However, we prefer to call it 
Bancroft algorithm because the second work is a direct application of the 
Bancroft work. It makes use of the TOA measurements rather than the 
TDOA or range difference one. This algorithm is a one step algorithm that 
provides two possible solutions for the target position; hence, an intuitive 
procedure to select one of them must be implemented. The characteristic 
equation of this algorithm is obtained by algebraic manipulation of the 
TOA equations (cf. (6.3)), directly leading to a data model that is then 
simplified by making use of the Lorenz inner product for time-space vectors 
[113]. This algorithm does not make any statistical or numerical 
assumption; hence, it is composed of an algebraic approach based model. 
This algorithm is summarized below. It is important to take into account 
that the formulation below does not set the origin of the coordinate system 
at any receiving station position but at an arbitrary point. 

After algebraic manipulation of the TOA equation (6.3), the 
characteristic equation of this algorithm is expressed as follows: 2(ݔ௜ݔ + ݕ௜ݕ + ݖ௜ݖ − ܿଶ̂ݐ௜ݐ௘)= ଶݔ + ଶݕ + ଶݖ − ܿଶݐ௘ଶ + ௜ଶݔ + ௜ଶݕ + ௜ଶݖ − ܿଶ̂ݐ௜ଶ (7.75) 

where ̂ݐ௜ =  ௘ is the signalݐ ෣௜, i.e., the ith TOA measurement andܣܱܶ
emission time (see Fig. 6.1). Then, expressing (7.75) in the vector-matrix 
form leas to the following data model: 2࡭௟࢙௔ = Λ૚ +  (7.76) ࣏

where 

௟࡭ = ቎ ଵݔ ଵݕ ଵݖ ⋮ଵݐ̂ܿ− ⋮ ⋮ ேೞݔ⋮ ேೞݕ ேೞݖ ௔࢙ ேೞ቏ேೞ×ସݐ̂ܿ− = ൤ ௘൨ସ×ଵ Λݐࣂܿ = ,௔࢙〉 〈௔࢙ = ଶݔ + ଶݕ + ଶݖ − ܿଶݐ௘ଶ 
(7.77) 
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૚ = ൥1⋮1൩ேೞ×ଵ ࣏ = ቎ ,ଵ࢙〉 ,ேೞ࢙〉⋮〈ଵ࢙ ேೞ〉቏ேೞ×ଵ࢙ = ቎ ௜ଶݔ + ௜ଶݕ + ௜ଶݖ − ܿଶ̂ݐ௜ଶ⋮ݔேೞଶ + ேೞଶݕ + ேೞଶݖ − ܿଶ̂ݐேೞଶ ቏ேೞ×ଵ 
where the operator 〈 〉 denotes the Lorenz inner product of two vectors, 
and when these two vectors are the same one, the parameter Λ is known as 
the Lorenzian norm. Then, assuming matrix ࡭௟ to be non-singular, the 
explicit solution to the data model in (7.76) can be expressed as follows: ࢙௔ = 12Λ࡭௟ற૚ + ௔࢙ ࣏௟ற࡭12 = Λࢊ +  (7.78) ࢋ

where ࢊ = 12Λ࡭௟ற૚  

ࢋ =   ࣏௟ற࡭12

Then, as ࢊ and ࢋ are unknowns, this algorithm proposes to take the 
Lorenzian norm of both sides of (7.78), which results in the following 
quadratic equation: ߙΛଶ + Λߚ + ߛ = 0 (7.79) 

where ߙ = ,ࢊ〉 ߚ 〈ࢊ = ,ࢊ〉2 ߛ 〈ࢋ = ,ࢋ〉  (7.80) 〈ࢋ

and whose solution can be easily determined by: 

Λଵ,ଶ = ߚ− ± ඥߚଶ − ߙ2ߛߙ4  (7.81) 

Finally, the two possible solutions provided by this algorithm can be 
obtaining by replacing the values of Λ obtained with (7.81) in (7.78) as 
follows: ࢙ො௔ଵ,ଶ = Λଵ,ଶࢊ +  (7.82) ࢋ
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To form a characteristic equation in this algorithm only one station is 
required as it is a TOA based algorithm. On the contrary, it has to 
estimate an additional parameter: the signal emission time ݐ௘. Thus, to 
estimate a target location composed by a set of ݊ coordinates, it requires at 
least ݊ + 1 stations (i.e., three for 2D localization and four for 3D 
localization). For this method the matrix that must be inverted is not exact 
as it contains the TOA measurements (cf. (7.77)), which naturally 
introduce noise terms. In the same sense, the calculation of the inverse for 
matrix ࡭௟ could be not stable as the fourth column contains quantities that, 
normally, are several orders of magnitude greater than the remaining ones. 
Furthermore, this algorithm also introduces quadratic noise terms as the 
vector ࢜ contains the squares of the TOA measurements. Additionally, the 
roots provided by (7.81) sometimes can be complex numbers. In these cases, 
the real part of the complex number must be extracted. On the other hand, 
the computational cost of using this algorithm is very low. 

7.3.7 Wikipedia Algorithm (Plane Intersection) 

This algorithm is published in the open license website Wikipedia® [112]. 
This algorithm is totally based on the same algorithm of Schmidt (see 
§7.3.1), i.e., it is also based on the plane intersection principle. It is a one 
step algorithm that provides one solution for the target position and the 
characteristic equation is also obtained by algebraic manipulation of the 
range difference equations (cf. (6.6)), directly leading to a linear inverse 
problem without making any statistical or numerical assumptions, hence, 
the data model of this algorithm has the same form as that of Schmidt (i.e., 
it belongs to the class of algebraic approach based models). The difference 
between the algorithm of Schmidt and this one is that it uses a different 
algebraic procedure to obtain the coefficients of the characteristic equation. 
Therefore, it is expected, as we have proved through our simulations, that 
both algorithms present different performance. On the other hand, it is 
important to say that this algorithm is not published (at the time of this 
thesis is written) in any scientific journal nor conference proceedings; for 
this reason we have directly cited the open license website. This algorithm 
is summarized below. 

Equivalently to Schmidt algorithm, the present one also sets the 
unknown target location coordinates and the known parameters (e.g., the 
station positions and measurements) in a linear equation as follows: ݔܣ + ݕܤ + ݖܥ =  (7.83) ܦ

Thus, after the corresponding algebraic manipulation of the range 
difference equations (6.6), the characteristic equation of this algorithm is 
expressed as follows: 



7.3 Closed Form Algorithms 147 ൫ݔ௜ ෝ݉ଶ,ଵ − ଶݔ ෝ݉௜,ଵ൯ݔ + ൫ݕ௜ ෝ݉ଶ,ଵ − ଶݕ ෝ݉௜,ଵ൯ݕ + ൫ݖ௜ ෝ݉ଶ,ଵ − ଶݖ ෝ݉௜,ଵ൯ݖ= 12 ൣܴ௜ଶ ෝ݉ଶ,ଵ − ܴଶଶ ෝ݉௜,ଵ − ෝ݉௜,ଵ ෝ݉ଶ,ଵ൫ ෝ݉௜,ଵ − ෝ݉ଶ,ଵ൯൧,				݅= 3,… , ௦ܰ (7.84) 

Note that the coefficients are different from those of Schmidt (cf. (7.23)). 
Also for this algorithm it is assumed the index ݅ to be ݅ = 3,… , ௦ܰ, i.e., this 
algorithm also requires two reference stations to form an equation and they 
are assumed to be the stations 1 and 2. Moreover, for ௦ܰ available stations, 
only a set of ௦ܰ − 2 equations can be set for the inverse localization 
problem. Then, the coefficients ܥ ,ܤ ,ܣ, and ܦ of (7.83) can be easily 
identified from the characteristic equation (7.84) and they explicitly are: ܣ௜ = ௜ݔ ෝ݉ଶ,ଵ − ଶݔ ෝ݉௜,ଵ ܤ௜ = ௜ݕ ෝ݉ଶ,ଵ − ଶݕ ෝ݉௜,ଵ ܥ௜ = ௜ݖ ෝ݉ଶ,ଵ − ଶݖ ෝ݉௜,ଵ ܦ௜ = 12 ൣܴ௜ଶ ෝ݉ଶ,ଵ − ܴଶଶ ෝ݉௜,ଵ − ෝ݉௜,ଵ ෝ݉ଶ,ଵ൫ ෝ݉௜,ଵ − ෝ݉ଶ,ଵ൯൧ 

 

Finally, the localization inverse problem can be computed in vector-
matrix form as follows: ࡳ௪௜௞௜௣௘ௗ௜௔ࣂ෡ =  ෝ௪௜௞௜௣௘ௗ௜௔ (7.85)࢓

where 

ௐ௜௞௜௣௘ௗ௜௔ࡳ = ൥ ଷܣ ଷܤ ⋮ଷܥ ⋮ ேೞܣ⋮ ேೞܤ  ேೞ൩(ேೞିଶ)×ଷ (7.86)ܥ

and 

ෝௐ௜௞௜௣௘ௗ௜௔࢓ = ൥  ேೞ൩(ேೞିଶ)×ଵ (7.87)ܦ⋮ଷܦ

The same observations as discussed for Schmidt algorithm (see §7.3.1) 
also hold for this method. 

7.3.8 Summary of Localization Algorithms 

In the following table the most relevant characteristics of every of 
localization algorithm are summarized. 



148 7 Localization Algorithms for Mode S Multilateration 

Table 7.1 Summary of localization algorithms. A: Alegbraic, S: Statistical, N: Numerical. 

Algorithm 
Data 
Model 

Stations 
for one 

Eq. 

Min.
Num. of 
Stats.

Steps 
Type of 

Sols. 

Num. 
of 

Sol. 

Noise 
Terms 

Schmidt A 3 ݊ + 2 1 Direct 1 
Linear 
Cubic 

Taylor S 2 ݊ + 1 1 Iterative 1 Linear 

Smith and 
Abel 

N 2 ݊ + 1 1 Direct 1 Quadratic 

Friedlander N 2 ݊ + 1 1 Direct 1 Quadratic 

Schau and 
Robinson 

N 2 ݊ + 1 2 Direct 2 Quadratic 

Chan and 
Ho 

N 2 ݊ + 2 2 Direct 2 Quadratic 

Bancroft A 1 ݊ + 1 1 Direct 2 
Linear 

Quadratic 

Wikipedia A 3 ݊ + 2 1 Direct 1 
Linear 
Cubic 

It has to be remembered that ݊ is the number of target position 
coordinates to be estimated, i.e., ݊ = 2 for 2D localization and ݊ = 3 for 3D 
localization. 

7.4 Projected Algorithms 

Due to the fact that for LAM the target height is approximately of the 
same order of maginitude of that of the stations, the values of the third 
column of matrix ࡳ (cf. (7.15)) are close to zero and therefore, in many 
cases, the solution provided by (7.18) diverges with large errors. However, 
it is possible to make a practical approximation that avoids this problem. 
This approximation consists of solving (7.18) by using a sub matrix ࡳଶ஽ of 
the full matrix ࡳ in (7.15). The matrix ࡳଶ஽ takes the following form: 

ଶ஽ࡳ = 1ܿ
ێێۏ
ۍێ ଴ݔ − ௜ݎଶݔ − ଴ݔ − ଵݎଵݔ ଴ݕ − ௜ݎଶݕ − ଴ݕ − ⋮ଵݎଵݕ ଴ݔ⋮ − ேೞݎேೞݔ − ଴ݔ − ଵݎଵݔ ଴ݕ − ேೞݎேೞݕ − ଴ݕ − ଵݎଵݕ ۑۑے

ېۑ
(ேೞିଵ)×ଶ

 (7.88) 

This approximation has the problem that it introduces a spatial bias 
into the final solution. It is because the measurements vector ࢓ෝ௱ in (7.18) 
is directly related with the time of signal propagation in a three-
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dimensional space whilst the approximated matrix ࡳଶ஽ assumes only a two 
dimensional space. The geometrical interpretation of this problem is shown 
in Fig. 7.3. In other words, the matrix ࡳ models the real physical 
phenomena, that is, the propagation of a signal through a path in a three 
dimensional space (i.e., ݎଷ஽ in Fig. 7.3) and the measurements comprised in ࢓ෝ௱ are related with the time of propagation along this path. On the other 
hand, the matrix ࡳଶ஽ models the propagation of the signal along a path in 
a two dimensional projected space (i.e., ݎଶ஽ in Fig. 7.3). It is evident that ݎଷ஽ ≥ ଷ஽ݎ ଶ஽ (generally it isݎ >  ଶ஽) and for this reason, this approximationݎ
introduces the spatial bias. This bias depends on the target position and 
sometimes, the error due to this reason takes values that can be neglected 
for LAM applications (e.g., smaller than 2 or 3 m) but, sometimes it takes 
values that cannot be neglected. 

The spatial bias for each measurement can be estimated as follows: ܾ݅ܽݏ௠ෝ = ଷ஽(1ݎ −  (7.89) (ߚݏ݋ܿ

From (7.89) it can be seen more clearly that the measurement bias takes 
always a value greater than zero, with the exception of ߚ = 0. This bias is 
present at each station and the set of these generates the spatial bias in the 
final solution. 

On the other hand, this approximation is also valid for the closed form 
algorithms. The main idea of this approximation is to remove all the terms 
related to the vertical coordinate, i.e., all terms containing information of 
the ݖ coordinate. For example, for Schau and Robinson algorithm (see 
§7.3.4) it is necessary to delete the ݖ coordinate from (7.54) and for Chan 
and Ho (see §7.3.5), it is necessary to remove the ݖ coordinate from (7.64), 
(7.69), and (7.70). Furthermore, the spatial bias due to the 2D 
approximation also affects to these algorithms. 

 
Fig. 7.3 Geometrical interpretation of projected algorithms. 
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7.5 Analysis of Ill-Conditioned Problems in Mode S 
Multilateration 

There are several sources which generate the ill-conditioning of the inverse 
problem in Mode S MLAT. These sources can be classified into two groups; 
the first one is related to the system geometry and the second one is related 
to the measurement noise or the starting point for Taylor-series expansion 
method. 

The sources of the ill-conditioning and their severity on the localization 
problem can be studied and identified by using several numerical tools like 
the Cramér-Rao Lower Bound (CRLB) accuracy analysis [20], Monte-Carlo 
simulations of (7.18) and the singular value analysis of ࡳ (cf. (7.15)) by 
means of the SVD [72]. In this subsection we show the application of these 
numerical tools to analyze and characterize the ill-conditioning in the 
localization problem for MLAT systems. By means of the CRLB analysis 
and the Monte-Carlo simulation for the location estimator in (7.18), it is 
possible to identify the source of the ill-conditioning, and by means of the 
SVD analysis it is possible to get an idea about the “level” of the ill-
conditioning. 

The application of the CRLB analysis and the Monte-Carlo simulation 
(with 100 trials), to identify the source (or sources) of ill-conditioning in 
MLAT localization (3D), is shown in Fig. 7.4 for a particular scenario (see 
§C.1.2 for scenario details). In this figure, the vertical axis shows the 
theoretical accuracy (standard deviation) as provided by the CRLB analysis 
described in [20] and the Root Mean Square (R.M.S) position error 
obtained from the Monte-Carlo trials. As it is described in [20], the CRLB 
mainly depends on the system geometry (i.e., on the matrix ࡳ); in this case, 
we can identify that in those points where the CRLB analysis predicts poor 
accuracy values (e.g., R.M.S errors greater than 300 m) the ill-conditioned 
problem is mainly due to the system geometry (e.g., the peaks before 5km 
and around 18 km in Fig. 7.4). On the other hand, in those points where 
the CRLB analysis predicts good accuracy values (e.g., R.M.S errors 
smaller than 300 m) but the R.M.S error of the location estimator does not 
reach the lower bounds, the ill-conditioned problem is mainly due to the 
measurement noise or to the quality of the starting point used in Taylor 
linearization (e.g., those points within 5 – 10 km in Fig. 7.4). Finally, in 
those points where R.M.S error and CRLB analysis reach about the same 
values, the problem is well-conditioned (e.g., those points beyond 20 km in 
Fig. 7.4). 

The first step to understand if the localization problem in MLAT 
systems is rank-deficient or ill-posed, and to analyze the “level” of ill-
conditioning, is to inspect the singular values of the matrix ࡳ for some 
specific points. This analysis is performed by using the ordinary SVD [72] 
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which decomposes the matrix ࡳ into three independent matrices such that ࡳ =  are matrices with orthonormal ࢂ and ࢁ where ,(cf. (6.10)) ்ࢂ઱ࢁ
columns and ઱, which is called matrix of singular values, is a ݊ × ݊ diagonal 
matrix with nonnegative elements (the singular values) appearing in non-
increasing order (cf. (6.12)). In the general case for MLAT localization 
problem, the variable ݊, which represents the number of coordinates for 
locating a target, is equal to 3 (i.e., there are three spatial coordinates 
composing the unknown target position ࣂ). Furthermore, taking into 
account that the location estimator in (7.18) is iterative, the matrix of 
singular values for MLAT localization by means of that estimator is an 
hyper-matrix of the form: 

઱௞ = ቎ߪଵ௞ 0 00 ଶ௞ߪ 00 0 ଷ௞቏ଷ×ଷ×௄ߪ ; ݇ = 1, … ,  (7.90) ܭ

being ܭ the total number of Taylor iterations. 

The matrix of singular values contains the information about the 
severity of the ill-conditioned localization problem. The first aspect that can 
be analyzed is the condition number (see §6.3.5), defined for this case as ܿ݀݊݋௞ = ଵ௞ߪ ⁄ଷ௞ߪ  (cf. (6.19)), which provides a quick and preliminary 
information about the “level” of ill-conditioning of the MLAT localization 
problem. The other important parameter to analyze from this matrix is the 
decay rate between two consecutive singular values (i.e., ߪଶ௞ ⁄ଵ௞ߪ  and ߪଷ௞ ⁄ଶ௞ߪ ). However, because the Taylor based localization algorithm is 

 
Fig. 7.4 Ill-conditioned problem in MLAT systems: an example. 
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iterative, in this thesis we propose to analyze not only the decay rate 
between two consecutive values but also between the same singular values 
at two consecutive Taylor iterations. All of these results are shown below. 

The condition number for the first seven Taylor iterations, for a 
particular point (around 17 km) of the same scenario analyzed in Fig. 7.4, 
is shown in Fig. 7.5. The vertical axis represents the condition number and 
the horizontal axis the different Monte-Carlo trials for that point. This 
figure shows how the ill-conditioned problem is present in most of Taylor 
iterations. Although it is not a general rule, we have observed for long 
number of simulations that the “level” of ill-conditioning increases with the 
first Taylor iterations (݇ = 1 through ݇ = 4 in Fig. 7.4). 

The next figures show the three singular values, in the Taylor iterations, 
for three different points (for the same scenario than in Fig. 7.4) where the 
localization problem is ill-conditioned due to the reasons commented above 
and also where it is well-conditioned. In the classical localization problem, 

 
Fig. 7.5 Condition number for the first seven Taylor iterations. Vertical axis represents the 

condition number and horizontal axis the Monte-Carlo trials. 



7.5 Analysis of Ill-Conditioned Problems in Mode S Multilateration 153 

there are three unknown variables (i.e., the three Cartesian coordinates) 
and the coefficient matrix is of ( ௦ܰ − 1) × 3 size; therefore, this matrix has 
three singular values as we described before. 

Part (a) of Fig. 7.6 shows the three singular values, for the Taylor 
iterations, of an ill-conditioned solution (given by the Pseudoinverse) 
produced by the measurement noise (or starting point). The three singular 
values are in non-increasing order. From this figure, it can be observed that 
the first two singular values (ߪଵ and ߪଶ) are around 1 but they decrease 
with the Taylor iterations and the third one oscillates on values very close 
to zero. For the first Taylor iterations there is a well determined gap 
between the first two singular values and the third one but, after those 
iterations this gap is slightly reduced. 

Part (b) of Fig. 7.6 shows the corresponding singular values for a point 
where the ill-conditioned solution is produced by the system geometry. For 
this point, it is also observed that the third singular value is very close to 
zero (more than in the first situation), and that the two first ones start 
around 1 but they rapidly decrease with the Taylor iterations. Moreover, 
their decay rate is greater than that of the part (a) of Fig. 7.6, even the two 
first singular values are of the same order of the third one for the last 
Taylor iterations. The latter means the loss of a lot of information and 
therefore significant instabilities in the problem solution. Additionally, this 
observation also suggests that the ill-conditioning due to the system 
geometry could be stronger than that due to the measurement noise. 

From both part (a) and part (b) of Fig. 7.6 it can be observed that for 
the first Taylor iterations there is a well determined gap between the two 
first singular values and the third one. In those iterations the problem could 
be a rank-deficient problem and, for the last Taylor iterations, this gap is 
reduced and all the singular values seem, on average, to decay gradually to 
zero. The latter suggests that in those points the problem is an ill-posed 
problem. However, this classification is only theoretical and in Chapter 8 
the most relevant regularization methods are tested to solve this problem. 

For a well-conditioned problem, at least the first and the second singular 
values approximately remain around the same value (in this case they are 
around 1 or greater) from the first Taylor iteration to the last one or 
increase with respect to it (see part (c) of Fig. 7.6). We have observed that, 
while the first two singular values maintain the same behaviour as 
described before, the problem remains well-conditioned independently of the 
third singular value. 

Finally, it is important to emphasize that, besides the analysis shown in 
this section, all the information shown above is also useful to estimate some 
regularization parameters needed for the regularization methods applied in 
this thesis. This aspect will be shown in §8.1.4 and §8.2.2. 
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(a) Ill-conditioned due to the measurements noise. 

 

(b) Ill-conditioned due to the system geometry. 

 

(c) Well-conditioned. 

Fig. 7.6 Characterization of the singular value spectrum for the MLAT localization problem 
(vertical axes in log scale). 
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7.6 Simulation and Results: Comparison of 
Localization Algorithms 

In this part, the general performance of all the localization algorithms 
studied before is analyzed. To do this, we use three different scenarios of 
real MLAT systems. These systems are the WAM system of Innsbruck 
(Innsbruck, Austria) airport, the WAM system of Malpensa (Milan, Italy) 
airport, and the LAM system of Linate (Milan, Italy) airport. Each of these 
scenarios is fully described in Annex C. For these three scenarios we know 
the real system geometry (i.e., the stations position) and simulate the TOA 
measurements for a defined, realistic path. For this reason, in Annex C they 
are classified as “systems with real geometry and simulated measurements”. 
In §C.1 we explain how these measurements are simulated. In the next 
section, we perform the same analysis but with real data. 

To analyze the general performance of each localization algorithm, we 
estimate the Root Mean Square (R.M.S) error by performing a Monte-Carlo 
simulation with 100 trials. We separately analyze the horizontal (or 2D, -
x,y- components) and the vertical (when apply) components of the R.M.S 
error for every localization algorithm. Moreover, in order to validate also 
the efficiency (in a statistical sense) of each algorithm, we also analyze the 
horizontal and vertical (when apply) bias. The R.M.S error tell us about 
how accurate is every localization algorithm, and the bias how exact they 
are. The 2D and vertical R.M.S error, for the ith simulated point, are 
respectively calculated as follows: 

.ܯ.ܴ ܵଶ஽(݅) = ඩ∑ ൤ቀݔ௝ᇱ(݅) − ௘௫௔௖௧(݅)ቁଶݔ + ቀݕ௝ᇱ(݅) − ௘௫௔௖௧(݅)ቁଶ൨ଵ଴଴௝ୀଵݕ 100  
(7.91) 

 

.ܯ.ܴ ܵ௩௘௥௧௜௖௔௟(݅) = ඨ∑ ቀݖ௝ᇱ(݅) − ௘௫௔௖௧(݅)ቁଶଵ଴଴௝ୀଵݖ 100  
(7.92) 

where ቀݔ௝ᇱ(݅), ,(݅)௝ᇱݕ  ௝ᇱ(݅)ቁ represents the target position as estimated by aݖ
localization algorithm for the ith simulated point and the jth Monte-Carlo 
trial, and ൫ݔ௘௫௔௖௧(݅), ,(݅)௘௫௔௖௧ݕ  ௘௫௔௖௧(݅)൯ represents the ith exact targetݖ
position, which for these simulations is known. 

The 2D and vertical bias, for every algorithm, are respectively calculated 
for the ith simulated point as follows: 
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= ඩቌݔ௘௫௔௖௧(݅) − 1100෍ݔ௝ᇱ(݅)ଵ଴଴

௝ୀଵ ቍଶ + ቌݕ௘௫௔௖௧(݅) − 1100෍ݕ௝ᇱ(݅)ଵ଴଴
௝ୀଵ ቍଶ (7.93) 

 

(݅)௩௘௥௧௜௖௔௟ݏܾܽ݅ = ඩቌݖ௘௫௔௖௧(݅) − 1100෍ݖ௝ᇱ(݅)ଵ଴଴
௝ୀଵ ቍଶ (7.94) 

For the Taylor algorithm that needs for a starting point, we use the 
corresponding position as provided by the Schau and Robinson algorithm. 
Particularly, for the Linate (surface movement) scenario we change the 
vertical component for a fixed value of 10 m (see §8.6 for a detailed analysis 
of the starting point for Taylor based algorithms). For these cases, because 
Schau and Robinson algorithm provides two possible solutions and, hence, 
one of them must be chosen, we implement an intuitive validation 
procedure to select the final solution. The latter is used only when it 
provides the starting point for Taylor algorithm. Furthermore, in order to 
know the best possible performance of every algorithm, when calculating 
the target position with the closed form algorithms that provide two 
possible solutions (i.e., Schau and Robinson, Chan and Ho, and Bancroft 
algorithms), we choose, as final solution, the one that is closer to the exact 
one. It is possible in this kind of simulations because we know the exact 
position value. However, for §7.7, where we perform the experiment with 
real data and, therefore, the exact target position is not known, we 
implement the intuitive validation procedure for the three closed form 
algorithms that requires it. We have proved that this procedure is near to 
be fully optimal and, the most of time, it selects the best possible solution. 

Taking into account the above paragraph, particularly for Taylor 
algorithm, one of the criterion to know whether it provides good 
performance levels or not, is to validate the ability of it to improve the 
position accuracy (i.e., R.M.S and bias) as provided by the closed form 
algorithm, which in this case is Schau and Robinson algorithm. 

7.6.1 Innsbruck WAM System 

The Innsbruck WAM system is composed of eight receiving stations, which 
are deployed around the mountains surrounding de Inn Valley (Tirol state 
at Austria). This system is intended for the Terminal Manoeuvring Area 
(TMA) surveillance. Therefore, for this system we simulate a takeoff line of 
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approximately 80 km of length. The system layout and the takeoff line are 
depicted in Fig. C.1. The 2D and vertical R.M.S error for non-projected 
version of the localization algorithms are shown in Fig. 7.7 and Fig. 7.8, 
respectively, whilst the corresponding bias are shown in Fig. 7.9 and Fig. 
7.10. We refer to every non-projected localization algorithm as the 3D 
version, whilst to the projected one as the 2D version. The corresponding 
2D R.M.S error and bias for the projected version of the localization 
algorithms are respectively shown in Fig. 7.11 and Fig. 7.12. Note that for 
the projected version of localization algorithms the vertical component is 
not analyzed, as they do not calculate it. 

In Fig. 7.7, for the 2D R.M.S error of non-projected localization 
algorithms, we observe that all the localization algorithms approximately 
present the same values until 30 km and thereafter, they present different 
performance. From that distance, the geometry quality rapidly changes 
(decreases the quality) and, therefore, not all the algorithms are equally 
efficient in recovering the target position information. However, these 
differences are just numerical, as all the algorithms (except the Bancroft 
one) provide 2D R.M.S values that are within the requirements for WAM 
[2]. In this situation, the Smith and Abel, and Chan and Ho algorithms, 
provide the best 2D R.M.S values and present the same values. Really, for 
this particular scenario, the 2D R.M.S error provided by these two 
algorithms are exactly the same, with the particular exception that Chan 
and Ho algorithm presents a particular peak at X = 0 km that is not shown 
in Fig. 7.7. However, the effect of this particular peak can be shown in Fig. 
7.15 for the corresponding 2D bias analysis and in the first column of Table 
7.2, §7.6.4. We later analyze more this particular. After these two 
algorithms, the Taylor algorithm is the one that provide better performance 
levels, thus improving the position accuracy as provided by the starting 
point (Schau and Robinson). Then, all the remaining algorithms, in 
practical terms, provide the same performance. The Bancroft algorithm, 
after 35 km, is not capable to provide useful target position data, even 
when we are taking the best solution between the two ones provided by it. 

The vertical R.M.S error is an important parameter for WAM 
surveillance as it informs about the quality, of each localization algorithm, 
for recovering the vertical target position component. For the non-projected 
version of localization algorithms at this scenario, this parameter is shown 
in Fig. 7.8. Similarly to the 2D R.M.S error, all the algorithms provide the 
same performance levels until 35 km and thereafter, they change and the 
general ranking performance in respect of the horizontal case also changes. 
The Taylor algorithm is the one that provides the best vertical performance 
(and with much difference regarding to the remaining ones), significantly 
improving the accuracy provided by its starting point. Moreover, in this 
case, the improvement added by the quadratic correction of Chan and Ho 
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algorithm, in respect of Smith and Abel, can be clearly appreciated. 
However, we also observe the Schau and Robinson vertical performance is 
better than the one of Chan and Ho. The remaining algorithms 
approximately present the same performance levels, and again, the Bancroft 
one does not provide useful vertical position data. 

The bias analysis is important for the operational systems because this 
effect cannot be generally corrected. In the case of a high R.M.S error, due 
to a high standard deviation, the results can be improved by implementing 
a set of tracking algorithms [114], which are implemented in all the ATC 
infrastructures. However, they are not capable to improve the possible 
amount of bias that each algorithm can introduce; the tracking algorithms 
start from the hypothesis that the estimated position data is unbiased. For 

 
Fig. 7.7 2D R.M.S error for Innsbruck system: comparison of localization algorithms. 

 
Fig. 7.8 Vertical R.M.S error for Innsbruck system: comparison of localization algorithms. 
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this reason, we separately analyze the amount of bias (both 2D and 
vertical) that each algorithm introduces. The 2D and vertical bias are 
respectively shown in Fig. 7.9 and Fig. 7.10. Additionally, in the legend of 
these figures, the mean value, for each algorithm, over the entire simulated 
takeoff line is shown. For the 2D bias, all the analyzed algorithms present 
small values of bias. Particularly, although Chan and Ho, and Smith and 
Abel algorithms are graphically the same, they present different numerical 
values due the particular peak that Chan and Ho presents at X = 0. For 
the Bancroft algorithm, which introduces an average bias greater than 16 
m, it is due to its own characteristics. Finally, regarding to the vertical 
bias, the minimum biased solution is provided by the Taylor algorithm (an 
average value of 1.4 m), and the remaining ones provide approximately the 
same values (around 3 m). However, in practical terms, all of these 
algorithms present good general performance as 10 m of bias, at 60 – 70 km 
from the runway, is practically negligible due to the horizontal and vertical 
separations that are stipulated for the targets at these distances. 

The R.M.S and bias analysis for the projected version of localization 
algorithms is shown in Fig. 7.11 and Fig. 7.12, respectively. In general, we 
observe that all algorithms present large 2D R.M.S error and bias values, 
being the Schau and Robinson algorithm the one that presents the “best” 
general performance. In any case, for the most of parts of the takeoff line, 
the performance provided by all the algorithms is considered poor. If we 
compare the bias (Fig. 7.12) with the R.M.S error (Fig. 7.11), we can 
observe the corresponding plots of bias and R.M.S error, for every 
algorithm, are significantly similar. It means that the R.M.S error is 
dominated for the bias introduced for these algorithms; it is also clear by 
analyzing the first column of Table 7.4, §7.6.4, where we can see the 

 
Fig. 7.9 2D bias for Innsbruck system: comparison of localization algorithms. 



160 7 Localization Algorithms for Mode S Multilateration 

average bias values are approximately equal to the R.M.S error ones, for 
every algorithm. This large amount of bias appears because the errors due 
to the projection of this kind of algorithms (see §7.4), which for this case 
are significantly large, cannot be neglected. This additional bias does not 
allow the algorithm to provide suitable performance levels; all of these 
values are very far from those stipulated for WAM surveillance [2]. For this 
reason, the use of projected algorithms is not recommended for this kind of 
scenarios. 

Finally, the average 2D and vertical R.M.S errors, and 2D and vertical 
bias, are shown in Table 7.2 and Table 7.3, §7.6.4. Later in §7.6.4, based on 
these tables, we provide some general conclusion for the comparison of 

 
Fig. 7.10 Vertical bias for Innsbruck system: comparison of localization algorithms. 

 
Fig. 7.11 2D R.M.S error for Innsbruck system: comparison of projected localization 

algorithms. 
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localization algorithms. 

7.6.2 Malpensa System 

The Malpensa WAM system (Milano, Italy) analyzed in this thesis is a 
proposal solution for the approach surveillance (up to 20 – 25 km from the 
runway threshold) that was firstly published in [7]. This system is 
composed of four receiving station and it is a well case study to analyze the 
performance of the localization algorithms under unfavourable system 
geometries. For this case, we simulate a typical 3º ILS (Instrumental 
Landing System) takeoff line of 25 km of length. The system layout and the 
takeoff line are depicted in Fig. C.2. The 2D and vertical R.M.S error, for 
non-projected version of the localization algorithms are shown in Fig. 7.13 
and Fig. 7.14, respectively, whilst the corresponding bias are shown in Fig. 
7.15 and Fig. 7.16. The corresponding 2D R.M.S error and bias for the 
projected version of the localization algorithms are respectively shown in 
Fig. 7.17 and Fig. 7.18. Note that for the projected version of localization 
algorithms the vertical component is not analyzed, as they do not calculate 
it. 

In Fig. 7.13, for the 2D R.M.S error, we observe Taylor algorithm does 
not provide useful position data as it diverges due the ill-conditioning of the 
localization problem in this scenario. Moreover, also the Smith and Abel, 
and Chan and Ho algorithms do not provide useful position data. Regarding 
to the Chan and Ho algorithm, it is because it requires at least n+2 
stations to solve the 3D localization problem, as it has to find also a first 
estimation of the target range (cf. (7.65)). Under this situation of 
unfavourable geometry, basically this algorithm estimates a negative target 

 
Fig. 7.12 2D bias for Innsbruck system: comparison of projected localization algorithms. 
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range and then, when it applies the quadratic correction, the final solution 
diverges to inconsistence values. One option for this algorithm is to avoid 
this quadratic correction and take, as final solution, only the first solution 
for target position in (7.65). However, for this option, the target position is 
equivalent (or worse at it solves the problem with more unknowns) to that 
one of Smith and Abel algorithm, which also diverges in this scenario. The 
remaining algorithms approximately provide acceptable performance, 
presenting also the characteristic peaks around 4 km and 18 km, due the ill-
conditioning of this scenario. 

For the case of vertical R.M.S error (see Fig. 7.14), only Taylor and 
Schau and Robinson algorithms are capable of recovering some useful 
information, but only beyond 20 km from the runway threshold. Before this 
point, any algorithm provides any useful data for the vertical target 
position component. 

Regarding to the 2D bias analysis, with the exception of Taylor, Smith 
and Abel, and Chan and Ho, all the simulated algorithms introduce some 
amount of bias (in average smaller than 8 m), which can be neglected in 
practical terms. However, they also present some large peaks around 4 km 
and 18 km, as in the 2D R.M.S case. On the other hand, for the vertical 
bias analysis, all the algorithms introduces very large amount of biases and, 
hence, it shows that for this scenario, any algorithm is capable of recovering 
a useful vertical position component. It is because the system geometry is 
more unfavourable for this vertical component, i.e., the VDOP is very large. 

 
Fig. 7.13 2D R.M.S error for Malpensa system: comparison of localization algorithms. 
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Fig. 7.14 Vertical R.M.S for Malpensa system: comparison of localization algorithms. 

 
Fig. 7.15 2D bias for Malpensa system: comparison of localization algorithms. 

 
Fig. 7.16 Vertical bias for Malpensa system: comparison of localization algorithms. 
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The 2D R.M.S and bias analysis for the projected version of localization 
algorithms is shown in Fig. 7.17 and Fig. 7.18, respectively. For this case, 
all the algorithms, including Taylor, and Smith and Abel, but with the 
exception of Chan and Ho, are capable of providing good performance 
levels. The reason for the projected version of the Chan and Ho algorithm is 
exactly the same as in its non-projected version. For the case of Smith and 
Abel algorithm that now provides very good accuracy, it is because, in its 
projected version, it has to calculate one less unknown (only two, i.e., -x,y-) 
with the same number of stations, which is translated in a improvement of 
the problem geometry conditioning for this particular algorithm. Moreover, 
the Schmidt, Smith and Abel, Friedlander, and Wikipedia algorithms 
provide exactly the same 2D R.M.S and bias (see Fig. 7.18 and the second 
column of Table 7.4, §7.6.4) for the entire takeoff line. In this scenario, the 
bias due to the projection is negligible for this scenarios and this fact allows 
them to improve the accuracy regarding to their non-projected versions. 
The main reason is because, in this scenario, the target flies to small flight 
levels than in Innsbruck scenario (see Fig. C.1 and Fig. C.2). 

On the other hand, we can observe in Fig. 7.17 and Fig. 7.18 that 
Taylor, Schau and Robison, and Bancroft algorithms, although they 
provide good R.M.S and bias values for the most of takeoff line, they are 
stronger affected for the bias due to the projection. In this case, for these 
three algorithms, the bias and the R.M.S error are approximately the same 
for each of these (see the second column of Table 7.4, §7.6.4). It also means 
that the R.M.S is mainly dominated by the bias rather than by the 
standard deviation of every algorithm. Moreover, it also shows that the 
particular performance of every algorithm depends on the way to manage 
the hyperbolic equations and, therefore, not all the algorithms provide the 
same results under the same situations. 

Finally, the average 2D and vertical R.M.S errors, and 2D and vertical 
bias, are shown in Table 7.2 and Table 7.3, §7.6.4. Later in §7.6.4, based on 
these tables, we provide some general conclusion for the comparison of 
localization algorithms. 

7.6.3 Linate System (Surface Movement) 

The Linate LAM system is composed of eight receiving stations, which are 
deployed around the Linate airport (Milan, Italy). This system is intended 
for surface surveillance at Linate airport. Therefore, for this scenario we 
simulate a surface movement path that includes the runways, taxiways, and 
apron areas. The system layout and the surface movement path are 
depicted in Fig. C.3. For this scenario, only the 2D performance (i.e., the 
R.M.S and bias) for both non-projected and projected version of the 
localization algorithms is analyzed. The 2D R.M.S error and bias for the 



7.6 Simulation and Results: Comparison of Localization Algorithms 165 

non-projected localization algorithms are respectively shown in Fig. 7.19 
and Fig. 7.20, whilst the corresponding ones for the projected versions are 
respectively shown in Fig. 7.21 and Fig. 7.22. Moreover, for this scenario, 
the possible failure of the station number 1 is simulated. The corresponding 
results are shown in Fig. 7.23 - Fig. 7.26. 

For this scenario, all the non-projected localization algorithms (with the 
particular exception of Chan and Ho) provide a good average performance 
with the most of R.M.S errors being below 10 m and bias below 2.5 m. 
Then, more specific, we observe all the algorithms present some large peaks 
of R.M.S (see Fig. 7.19) and bias (see Fig. 7.20) between the point 30 – 60, 
around point 80, and around point 130, being the Schau and Robinson, 

 
Fig. 7.17 2D R.M.S error for Malpensa system: comparison of projected localization 

algorithms. 

 
Fig. 7.18 2D bias for Malpensa system: comparison of projected localization algorithms. 
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Bancroft, and Schmidt, the algorithms that present the largest values. It is 
more clearly shown in the third column of Table 7.2, §7.6.4. Regarding to 
the bias analysis, all the algorithms (except Chan and Ho) can be 
considered numerically unbiased as they introduce only an average amount 
of bias smaller than 0.5 m. Particularly, the Bancroft algorithm introduces 
an average bias of 2.5 m, but it still can be considered small. Moreover, 
numerically, the Taylor algorithm is, again, the one that provides the 
minimum amount of bias. 

 

 

 

 
Fig. 7.19 2D R.M.S error for Linate system: comparison of localization algorithms. 

 
Fig. 7.20 2D bias for Linate system: comparison of localization algorithms. 
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On the other hand, regarding to the projected version of the localization 
algorithms, all of these provide also good performance levels. For this case, 
the projected Chan and Ho algorithm also provides good values for R.M.S 
error and bias. In general terms, the performance of the projected version of 
the algorithms is very similar to that of the non-projected versions (Fig. 
7.21 and Fig. 7.22). More specific, the projected Schau and Robinson 
algorithm does not present the large peaks of R.M.S error and bias that 
appears in its non-projected form. In the same sense, the projected versions 
of Schmidt and Bancroft algorithms still keep some of the large peaks of 
R.M.S error. Also, for this case, the projected version Wikipedia and 
Friedlander algorithm present some large R.M.S error peaks around the 

 
Fig. 7.21 2D R.M.S error for Linate system: comparison of projected localization algorithms. 

 
Fig. 7.22 2D bias for Linate system: comparison of projected localization algorithms. 
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point 130 (see Fig. 7.21). Moreover, we observe that some of projected 
algorithms (the Schmidt, Taylor, Smith and Abel, Friedlander, and 
Wikipedia) increase the amount of introduced bias. It is because the system 
geometry particularly affects the projection of those algorithms. Likewise, in 
the case of Schau and Robinson, and Bancroft algorithms, they reduce the 
amount of introduced bias regarding to their non-projected versions. 
However, these increments or reductions, for the amount of bias, in 
practical terms can be neglected and, hence, the performance of the non-
projected and projected algorithms for Linate scenario can be considered 
the same. 

For the simulation of failure of one station (the station number 1 in Fig. 
C.3), the corresponding results are shown in Fig. 7.23 and Fig. 7.24 for the 
non-projected algorithms, whilst for the projected ones they are shown in 
Fig. 7.25 and Fig. 7.26. Under the failure of one station all the localization 
algorithms (non-projected and projected) degrades their overall 
performance. It is more clearly shown in Table 7.5, §7.6.4 for the numerical 
analysis of this situation. It is expected because, generally, the system 
geometry quality decreases with a smaller number of stations, i.e., the 
HDOP increases. In Fig. 7.23 and Fig. 7.25 for the 2D R.M.S errors, we can 
see that the non-projected and projected versions of Smith and Abel, 
Friedlander, and Wikipedia algorithms, and the projected ones of Schau 
and Robinson, and Bancroft algorithms provide some acceptable 
performance levels. However, all of them present several large peaks of 
errors that are not suitable for surface surveillance [1]. Nowadays, this large 
peaks of errors are something smoothed by implementing tracking 
algorithms. Nevertheless, the tracking algorithms performance directly 
depends on the localization algorithms performance. Therefore, it is always 
advisable to provide localization strategies as accurate as possible. 

Other important observation for the case of projected algorithms is that, 
for this case, the average amount of bias, of all them, is reduced regarding 
to the case of non station failure. It is because the new system geometry 
(i.e., without the station number 1) is not as negatively affected by the bias 
due to the projection as the first one. It is clearly understood by analyzing 
the system layout in Fig. C.3. In this system, the station number 1 is the 
highest station and it is very close to an area with a high density of points. 
Thus, the equivalent angle of projection (cf. (7.89)) is closer to 90º and, 
hence, the amount of bias introduced by this station is not negligible. In 
this sense, when this station is not used, the bias due to the projection is 
reduced over that area. By contrary, with one less station, the overall 
position accuracy for all the algorithms decreases, as the R.M.S increment 
is dominated by the data dispersion rather than bias. 
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Fig. 7.23 2D R.M.S error for Linate system in the presence of the failure of station 1: 

comparison of localization algorithms. 

 
Fig. 7.24 2D bias for Linate system in the presence of the failure of station 1: comparison of 

localization algorithms. 

 
Fig. 7.25 2D R.M.S error for Linate system in the presence of the failure of station 1: 

comparison of projected localization algorithms. 
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7.6.4 Numerical Comparison and General Conclusions for 
Simulated Scenarios 

In this section we provide some general conclusions about the comparison of 
localization algorithms. To do this, we support our analysis on the average 
values of R.M.S and bias, for every localization algorithms, and for the 
entire simulated paths. The values for the 2D R.M.S error and bias for the 
non-projected algorithms are shown in Table 7.2, while the corresponding 
for the vertical position component analysis are shown in Table 7.3. The 2D 
R.M.S error and bias for projected algorithms are shown in Table 7.4. 

For Innsbruck scenario, we have found the non-projected algorithms are 
practically unbiased through the entire takeoff line. It means that the 
R.M.S error is dominated by the standard deviation component, which is 
clear by comparing the amount of bias with the R.M.S error in the first 
column of Table 7.2. It also shows that the Innsbruck scenario presents a 
well-determined localization problem. Moreover, when it happens, the 
R.M.S error can be more reduced by implementing tracking algorithms, as 
it is due more to the standard deviation than for the bias. Exactly the same 
performance is appreciated for the vertical position component. In this 
sense, we conclude that all the analyzed non-projected localization 
algorithms are very statistically efficient, where the best performance is 
achieved by the Taylor algorithm, as it is capable of improving the 
accuracy of the starting point. Specially, this algorithm is highly efficient 
for recovering the vertical position component information, which is of vital 
importance for WAM surveillance applications. Thus, we recommend in 

 
Fig. 7.26 2D bias for Linate system in the presence of the failure of station 1: comparison of 

projected localization algorithms. 
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these cases the use of a combined strategy composed of a closed form 
algorithm and the Taylor one. All commented above in this paragraph also 
show the theory described before in this chapter; that is, under suitable 
system geometries, all the localization algorithms are highly efficient, whilst 
under unfavourable system geometries this efficiency is reduced and some 
performance analysis must be carried out, in order to select the best option. 
In the same sense, we have observed that in the way that the system 
geometry is unfavourable (i.e., for high HDOP or VDOP), the R.M.S 
increments are also due to a bias increment, which is translated in an 
algorithm efficiency loss. Then, the best algorithm (or strategy) is the one 
that better exploit the statistical efficiency with high values of the DOP 
(either HDOP or VDOP), i.e., under an unfavourable system geometry. 

Regarding to the projected localization algorithms in Innsbruck WAM 
system, all of these are significantly affected by the bias due to the 
projection. It is clear by analyzing the first column of Table 7.4, as the 
amount of bias, for every algorithm, is approximately equal to the R.M.S 
value. In this sense, we can conclude that the algorithms performance is 
mainly dominated by the bias due to the projection. Moreover, also the 
standard deviation of the algorithm, in these cases, is much smaller than 
the corresponding bias. Therefore, for this kind of scenario (WAM) is not 
advisable to use the projected version of the localization algorithms. In the 
same line, the opposite happens for the non-projected algorithms, that is: 
the R.M.S is mainly dominated by the standard deviation (the bias is 
smaller than that). It is because as the non-projected localization 
algorithms include the vertical position component, they are “worse” 
conditioned than the projected ones and, therefore, the data dispersion (i.e., 
the standard deviation) increases but, as they do not used projections, they 
are nearly unbiased. By contrary, when such a bias due to the projections 
can be neglected, the improvements in the R.M.S, due to the use of the 
projected algorithms, can be clearly appreciated. Likewise, when the 
problem is highly ill-conditioned, as in Malpensa case, the dispersion 
significantly increases and, neither the non-projected algorithms nor the 
projected ones can provide useful position data. 

For Malpensa scenario, the best performance of the non-projected 
algorithms are provided by Schau and Robinson, and Bancroft algorithms, 
although also Schmidt, Friedlander and Wikipedia ones, provide similar 
values. However, all of these algorithms are also affected by the ill-
conditioning and, hence, they present some large peaks of R.M.S errors. In 
turn, the Smith and Abel, and Chan and Ho algorithms do not provide any 
useful position data through the entire simulated takeoff line. The Taylor 
algorithm only provides useful position data in those points that are well-
conditioned. Nevertheless, in practical terms, this algorithm does not work 
for this scenario. On the other hand, regarding to estimation of the vertical 
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position component, any algorithm is capable to provide any useful data. It 
is also because this problem is more ill-conditioning in its vertical 
component; hence, any algorithm, no matter how robust it is, is capable of 
estimating an accurate vertical target position. 

Regarding to the projected algorithms, the Schmidt, Friedlander, and 
Wikipedia ones, practically provide the same performance than in their 
non-projected versions (compare the second columns of Table 7.2 and Table 
7.3). It means that, for this scenario, the projection does not significantly 
affect these algorithms. Likewise, the projected version of the Smith and 
Abel provides the same performance of these three algorithms (Schmidt, 
Friedlander, and Wikipedia). It is because now it is estimating one less 
unknown (i.e., the vertical one) with the same number of stations. It also 
shows one of the disadvantages of the non-projected version of this 
algorithm, that is, in the presence of small number of stations is not 
capable to provide accurate position data. Finally, for this scenario, the 
best performance is provided by the non-projected Schau and Robinson 
algorithm (see Table 7.2). Then, also the projected Schmidt, Wikipedia, 
and Friedlander algorithms provide good performance. 

As a general conclusion for WAM scenarios, we find that the algorithms 
using algebraic approach based models (i.e., the Schmidt and Wikipedia 
ones) provide good and stable performance for all the scenarios, and in both 
non-projected and projected versions. Moreover, when these algorithms are 
solved by the pseudoinverse matrix, the condition of n+2 minimum stations 
(see Table 7.1, §7.3.8) can be reduced to n+1, in which case the localization 
problem becomes underdetermined, and evidently sacrificing the estimation 
of the vertical component. This robust performance of these algorithms, 
under the situation of small number of stations, is because they are the only 
ones that do not make numerical assumption in their data model. It allows 
the pseudoinverse matrix to accurately solve the underdetermined problem. 

For Linate scenario, in general terms, with the exception of Chan and 
Ho algorithm, all the algorithms (non-projected and projected ones) provide 
good performance levels for surface surveillance (see the third column of 
Table 7.2 and Table 7.4). Likewise, under the failure of one station, the 
accuracy of all algorithms is reduced and, they provide different 
performance levels for different areas (see Table 7.5). Particularly, for this 
scenario we find the Smith and Abel, Friedlander, and Wikipedia 
algorithms approximately provide the best general performance. 

On the other hand, more specific, under standard conditions (i.e., 
without the failure of stations), the Taylor algorithm is the one that 
provides the minimum amount of bias. It is in agreement with the 
previously described theory in this chapter, as the Taylor is the most (at 
least theoretically) efficient algorithm (minimum bias and variance) as long 
as the convergence can be guaranteed. The problem of this algorithm is 
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that it does not always converge, as in the case of failure of one station. 
Regarding the projected Taylor algorithm, it keeps a smaller R.M.S error 
but the amount of introduced bias slightly increases. It is expected because 
it is something affected by the projection. 

 

Table 7.2 Mean 2D R.M.S error and 2D bias values for localization algorithms. Values given 
in meters. 

Algorithm Scenario 
Innsbruck Malpensa Linate 

R.M.S Bias R.M.S Bias R.M.S Bias 

Schmidt 33.38 2.92 24.05 7.74 4.70 0.41 

Taylor 27.88 2.51 NaN NaN 2.42 0.30 

Smith&Abel 27.46 2.12 8523 8522 3.76 0.34 

Friedlander 37.21 3.12 24.05 7.74 4.08 0.34 

Schau&Robinson 37.94 3.14 19.78 4.87 4.96 2.32 

Chan&Ho 43.57 12.86 NaN NaN 1175 1431 

Bancroft 180.60 16.77 18.50 4.80 5.91 2.50 

Wikipedia 34.98 2.89 24.11 7.62 3.96 0.33 

 

Table 7.3 Mean vertical R.M.S error and vertical bias values for localization algorithms. 
Values given in meters. 

Algorithm Scenario
Innsbruck Malpensa

R.M.S Bias R.M.S Bias 

Schmidt 36.74 3.02 654.8 654.7 

Taylor 16.13 1.42 NaN NaN 

Smith&Abel 36.3 3.06 1.315E+06 1.314E+06 

Friedlander 38.77 3.37 654.8 654.7 

Schau&Robinson 28.35 2.48 646.8 564.57 

Chan&Ho 33.67 4.04 NaN NaN 

Bancroft 65.91 5.07 854.2 566.9 

Wikipedia 38.88 3.3 617 616
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Table 7.4 Mean 2D R.M.S error and 2D bias values for projected localization algorithms. 
Values given in meters. 

Algorithm Scenario 
Innsbruck Malpensa Linate 

R.M.S Bias R.M.S Bias R.M.S Bias 

Schmidt 582 581 23.07 5.09 5.46 2.15 

Taylor 684 683 206.2 205.9 2.6 2.21 

Smith&Abel 695 694 23.07 5.09 2.87 0.89 

Friedlander 1054 1052 23.07 5.09 3.75 1.19 

Schau&Robinson 314 311 111.8 111.46 2.56 1.88 

Chan&Ho 77190 77186 28680 28677 37.29 36 

Bancroft 2072 2071 160 159 2.89 2.03 

Wikipedia 536.5 535 23.07 5.09 4.1 1.56 

 

Table 7.5 Mean 2D R.M.S error and 2D bias values for the localization algorithms, at 
Linate scenario, in the presence of a failure of station 1. Values given in meters. 

Algorithm Scenario 
Linate Linate (projected algorithms) 

R.M.S Bias R.M.S Bias 

Schmidt 9.84 0.82 11.07 1.19 

Taylor 6601 659 2.85 2.00 

Smith&Abel 3.97 0.31 3.88 0.29 

Friedlander 4.38 0.33 4.44 0.39 

Schau&Robinson 22.65 5.19 3.69 2.35 

Chan&Ho 1485 1331 602 600 

Bancroft 21.97 5.33 4.2 2.43 

Wikipedia 4.44 0.35 5.35 0.48 

As a general conclusion, the Schmidt, Wikipedia, Schau and Robinson, 
and Friedlander algorithms roughly provide the best performance levels. 
Likewise, when its convergence can be guaranteed, the Taylor algorithm 
always significantly improves the accuracy provided by the previous 
commented algorithm by using their position data as its starting point. It is 
observed in Innsbruck scenario for both horizontal and vertical 
performance, and for Linate. Moreover, also it holds for Malpensa for those 
points where the DOP allows its convergence. Then, there is no a 
“superior” algorithm that provides the best performance under any scenario 
or situation. For this reason, a previous analysis of the algorithms 
performance is always advisable. 

The above conclusion has motivated us to look for strategies that allow 
ensuring the Taylor algorithm convergence. Also, we consider important to 
emphasize that the computational cost of using a closed form algorithm, as 
the starting point of Taylor one, is very low due to the characteristics of 
them: they are not iterative and the formulation is very simple. 
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7.7 Experimental With Real Data 

To perform the experimental with real data, the company ERA A.S. has 
provided us of a record of TOA measurements of one of its operational 
system, the LAM system installed at Tallinn airport (Tallinn, Estonia). 
This system is intended for surface surveillance and is composed of fourteen 
receiving stations. The record of TOA measurements was taken through the 
entire airport surface following the requested procedures by the European 
regulatory bodies [1]. The record contains more than 4000 register (with an 
average period of 1 s), where each register contains set of TOA 
measurements. From the information provided by the company, we know 
that these measurements are perturbed by multipath noise in some areas. 
Moreover, also the company above mentioned has provided us of highly 
accurate position reference data, which was simultaneously recorded with a 
GPS receiver with differential correction capabilities (DGPS). This data is 
used to evaluate the solutions accuracy of the localization algorithms 
analyzed and proposed in this thesis. The corresponding evaluation 
procedure is explained below. The system layout and the reference position 
data are depicted in Fig. C.4. Additionally, Fig. C.5 shows the LoS profile 
for this system, that is, this profile shows for every register the number of 
stations that measure the TOA of the emitted Mode S signal. 

The procedure to evaluate the accuracy of the solutions, for this 
scenario, is something different that the one used for the simulated ones. In 
the previous scenarios (§7.6) we characterized every spatial point of the 
simulated path. It was possible as we performed Monte-Carlo simulations. 
In this case, the system accuracy is evaluated by calculating the errors (e.g., 
the Euclidean one) between the positions obtained by any localization 
algorithm and the corresponding ones provided by the DGPS. In other 
words, in this case the DGPS position data is assumed to be the exact one. 
Thus, an error distribution is obtained and its statistical characterization 
provides a reliable idea about the system accuracy. It is an established 
procedure that is requested by all the ANSP (Air Navigation Service 
Provider) in Europe and it is described by the EUROCAE MOPS 
(Minimum Operational Performance Specification) ED-117 [1]. The most 
used parameters to characterize the errors distribution, for any localization 
algorithm or strategy, are the standard deviation and the mean of that, and 
the Probability of Localization (PoL), also called probability of detection, 
under certain accuracy threshold ߜ. The latter basically provides the 
percentage of estimated points that has an error smaller than the 
predefined accuracy threshold ߜ. In this thesis, we use the Euclidean (or 
2D) error, which is defined as follows: 
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(ݐ)ଶ஽ݎ݋ݎݎ݁ = ට൫ݔො(ݐ) − ൯ଶ(ݐ)஽ீ௉ௌݔ + ൫ݕො(ݐ) −  ൯ଶ (7.95)(ݐ)஽ீ௉ௌݕ

where ൫ݔො(ݐ),  ൯ is the position calculated by a localization algorithm at a(ݐ)ොݕ
time ݐ, and ൫ݔ஽ீ௉ௌ(ݐ),  ൯ is the reference position provided by the(ݐ)஽ீ௉ௌݕ
DGPS receiver at the same time ݐ. The above 2D error can be also seen as: ݁ݎ݋ݎݎଶ஽(ݐ) = ට݁ݎ݋ݎݎ௫(ݐ)ଶ +  ଶ (7.96)(ݐ)௬ݎ݋ݎݎ݁

where ݁ݎ݋ݎݎ௫(ݐ) = (ݐ)ොݔ − (ݐ)௬ݎ݋ݎݎ݁ and (ݐ)஽ீ௉ௌݔ = (ݐ)ොݕ −  which ,(ݐ)஽ீ௉ௌݕ
compose the corresponding error distributions for the x and y coordinates, 
respectively. Now, the PoL is defined as the probability of calculate a target 
position with an error smaller than the predefined accuracy threshold ߜ and 
it can be expressed, for any localization method, as follows: 

ܮ݋ܲ = ቌ ଶ஽(݅)௅ೃݎ݋ݎݎோ෍݁ܮ1
௜ୀଵ ≤ ቍߜ × 100 (%) (7.97) 

where ܮோ is the total number of estimated positions, and the index ݅ 
represents the discrete number for every calculated error at every time ݐ. 

In this part, we show, for every localization algorithm, the plots for 
every estimated position coordinate (i.e., x and y) in respect of the time of 
registers, and along with the corresponding coordinate as provided by the 
DGPS receiver. The time of registers is a UNIX time, given in format of 
seconds. Moreover, for each plot, in its legend, we also show the standard 
deviation and mean for the corresponding error distribution. The x 
coordinate calculated for the non-projected algorithms are shown in Fig. 
7.27 and Fig. 7.28, whilst the y coordinate is shown in Fig. 7.29 and Fig. 
7.30. The same results for the projected algorithms are shown in Fig. 7.31 - 
Fig. 7.34. Finally, the standard deviation and mean values for the 2D errors 
distributions, and the PoL with ߜ = 7.5 m and ߜ = 15 m are shown in 
Table 7.6 for the non-projected algorithms, and in Table 7.7 for the 
projected ones. 

From Fig. 7.27 to Fig. 7.34, we can see all the localization algorithms 
(non-projected and projected) provides position data with certain 
dispersion; it is clear as every plot is deviated from the corresponding 
DGPS data. Some algorithms provide higher dispersion and bias than 
others. However, from this figures it is not clear the difference among all 
algorithms. For this reason, we summarize the most important statistics in 
Table 7.6 and Table 7.7, and base our analysis on the values contained in 
them. 
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Let us to firstly focus on the standard deviation and mean columns of 
Table 7.6, for the non-projected algorithms. These algorithms provide very 
large values of standard deviation and mean, significantly much greater 
than the requested one for surface surveillance [1]. In this sense, the 
Schmidt, Friedlander, and Wikipedia algorithms provide the smallest values 
(385 m and 37 m respectively). Then, the Smith and Abel, Schau and 
Robinson, Bancroft, algorithms provide greater values for standard 
deviation and mean. The Taylor algorithm is the one with the greatest 
values. The Chan and Ho algorithm deserves a special comment that is 
given later. The main reasons of these large values are mainly two: the first 
one is the conditioning of the localization problem for this scenario, which 
presents an equivalent characteristic to the one of Linate (see §7.6.3), and 
the second one, the most relevant in this case, is the multipath noise that is 
contained in the TOA measurements. These two aspects generate the most 
deviated positions. In Fig. 7.27 to Fig. 7.34, for all the localization 
algorithms, the most of estimated coordinates are very close to the DGPS 
ones, and only for some specific time windows, they are highly deviated. In 
these time windows, which are equivalent to some airport areas, the largest 
errors are obtained. In this point, the parameter of PoL takes significant 
importance, as it tells us the percentage of point that has an error below 
the accuracy threshold. The values of PoL are shown in the third column of 
Table 7.6 for the non-projected algorithms, and the corresponding analysis 
is provided below. 

For the case of PoL analysis in Table 7.6, the ranking of best algorithms 
something changes, and the Taylor algorithm is the one with the highest 
PoL for both accuracy thresholds (7.5 m and 15 m), i.e., Taylor algorithm 
is the one with the large amount of points with smaller errors. The reason 
of this contrast is quite simple, and is based on the fact that when Taylor 
does not converge, the results in those cases are very large but, when it 
converges, it is capable of providing the most smoothed and unbiased 
position data. By contrary, the closed form algorithms, although do not 
present those very large peak of errors, they are not statistically efficient. 
Regarding to the PoL of them, they provide similar values and much 
smaller than the ones of Taylor. Again, we conclude that the most efficient 
localization strategy is by combining a closed form algorithm and the 
Taylor one. 

The Chan and Ho algorithm only provides PoL values smaller than 
6.1%. It shows the main disadvantage of this algorithm that is the low 
capability of obtained the first solution (cf. (7.65)), particularly the target 
range. In this case, when this algorithm applies the quadratic correction, as 
the target range is highly inaccurate (in some cases negative), this 
correction also leads to a highly inaccurate positions. We have found that if 
only the first solution, for target position, of this algorithm is taken as the 
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final one, it presents an equivalent performance as Smith and Abel 
algorithm, as we have also described from the theoretical point of view. We 
do not show these additional results because the objective is to analyze the 
complete algorithm, and its main improvement that basically is the 
quadratic correction of the first target position estimation. 

On the other hand, we consider important to comment that, in the CPS 
of the MLAT system, there is always implemented a set of tracking 
algorithms, which significantly reduce the standard deviation, of any of the 
analyzed localization algorithms, to values that are within the required 
standards. However, there is no the objective of this thesis to carry out the 
performance analysis of those tracking algorithms. The objective of this 
thesis part is to analyze the performance of the localization algorithms, 
because the more accurate the data of these algorithms, the more accurate 
the results of the tracking algorithms. Therefore, this analysis is intended to 
identify which localization algorithms provide the best statistical 
characteristics. 

Regarding to the projected version of localization algorithms, we observe 
the same general tendency as in the case of non-projected algorithms. The 
most important difference is that, for the projected algorithms, the 
standard deviation and mean values of each of these are smaller than their 
corresponding values in the non-projected versions (compare Table 7.6 and 
Table 7.7). The reason of these smaller values is because the two 
dimensional projection does not significantly affect these algorithms in this 
scenario and, therefore, the possible introduced measurement bias is 
negligible regarding to the improvement in the standard deviation; 
improvement that is obtained for the better conditioned of the projected 
localization problem. 

With this experiment, we obtain the same general conclusions than in 
the previous analysis for the simulated scenarios in §7.6. Equally than for 
Innsbruck, Malpensa, and Linate scenarios, the Taylor algorithm presents 
the best statistical characteristics, but it is not always numerically stable as 
its convergence is not guaranteed. In the same sense, the Schmidt, 
Wikipedia, Schau and Robinson, and Friedlander algorithms also present 
good performance levels. Additionally, for this experiment, we have found 
that Smith and Abel algorithm presents good performance. It is because the 
Tallinn system is composed of a large number of stations (14, with 
minimum 5 stations having LoS to the most of airport areas) and, 
therefore, is geometrically well conditioned. However, due to the non 
general stable performance of this algorithm, we do not recommend it for 
using in a combined strategy with the Taylor one. 
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Fig. 7.27 X(t) for statistical and algebraic approach based models: comparison of localization 

algorithms. 

 
Fig. 7.28 X(t) for numerical approach based models: comparison of localization algorithms. 
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Fig. 7.29 Y(t) for statistical and algebraic approach based models: comparison of localization 

algorithms. 

 
Fig. 7.30 Y(t) for numerical approach based models: comparison of localization algorithms. 



7.7 Experimental With Real Data 181 

 
Fig. 7.31 X(t) for statistical and algebraic approach based models: comparison of projected 

localization algorithms. 

 
Fig. 7.32 X(t) for numerical approach based models: comparison of projected localization 

algorithms. 
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Fig. 7.33 Y(t) for statistical and algebraic approach based models: comparison of projected 

localization algorithms. 

 
Fig. 7.34 Y(t) for numerical approach based models: comparison of projected localization 

algorithms. 
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Table 7.6 Statistical parameters for the error distributions of localization algorithms. Values 
given in meters. 

Algorithm ࣌૛ࡰ (m) Mean2D (m)
PoL ࢾ(%) = ૠ. ૞࢓ PoL (%) ࢾ = ૚૞࢓ 

Schmidt 385.93 39.74 38.86 72.02 

Taylor 1.20E+18 4.82E+16 60.87 88.68 

Smith&Abel 614.66 67.16 43.90 79.95 

Friedlander 385.15 36.67 41.24 75.24 

Schau&Robinson 616.26 108.62 30.83 61.16 

Chan&Ho 737.49 876.57 2.93 6.1 

Bancroft 456.06 97.61 31.74 59.45 

Wikipedia 384.66 35.38 45.49 77.36 

 

Table 7.7 Statistical parameters for the error distributions of projected localization 
algorithms. Values given in meters. 

Algorithm ࣌૛ࡰ Mean2D 
PoL ࢾ(%) = ૠ. ૞࢓ PoL ࢾ (%) = ૚૞࢓ 

Schmidt 80.14 29.40 37.56 70.99 

Taylor 1.59E+18 5.81E+16 68.54 94.25 

Smith&Abel 141.70 31.92 46.47 79.50 

Friedlander 69.77 22.56 48.01 76.56 

Schau&Robinson 231.55 46.67 38.28 76.13 

Chan&Ho 1643.48 1339.15 8.79 19.46 

Bancroft 367.79 52.95 36.31 81.83 

Wikipedia 68.25 21.24 47.39 77.36 

 

 

 

 

 



 

 

 

 

 

 

 

 

 



 

8 
Multilateration Localization by Using 
Regularization Algorithms 

8 Multilateration Localization by Using Regularization Algorithms 

We have studied and analyzed in Chapter 7 the different options for 
construct and solving the localization problem in MLAT systems. We have 
observed that for some scenarios, due to the system geometry, to the 
measurements noise and to the starting point quality (in the case of open 
form algorithms), the corresponding inverse problem is ill-conditioned and 
therefore the solution of the target position may be not correct or it may 
diverge with very large errors, i.e., in the case of ill-conditioning of the 
localization problem the estimated target position is not reliable. 

Nowadays, the problem of ill-conditioning is solved by applying different 
hardware and software based solutions. Regarding to the hardware based 
solutions, one of these is by adding more stations, i.e., usually the problem 
of ill-conditioning is found for situations with a number of stations smaller 
than seven or eight [20]. Another one is by adding new measurement 
capabilities to the system, such as the AOA [20], [115] or RTD [20], [116], 
i.e., in a numerical sense, adding new measurements means to improve the 
corresponding data model and, therefore, to change the ill-conditioned 
coefficient matrix into a well-conditioned one. However, all these solutions, 
although are efficient options, require in many cases significant money 
investments. On the other hand, regarding the software based solutions, 
two possible options can be implemented. One is by using a horizontal (2D) 
projected version (see §7.4) of the localization algorithms and solving the 
resulting system of equations with the pseudoinverse matrix. This option, 
although the corresponding coefficient matrix is initially well-conditioned, 
has the disadvantage that it adds a spatial bias (cf. (7.89)) due to the 
projection from 3D to 2D in the coefficient matrix but of course not in the 
measurements. The second software based option is by implementing the 
family of closed form localization algorithms (see §7.3). These algorithms 
have the advantage of not needing a starting point (an ill-conditioning 
source) but on the contrary, as we have analyzed in §7.3, they introduce 
quadratic and cubic relations between the solution (target position) and the 
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measurement noise as well as the necessity, in some cases, to choose one of 
the two possible solutions. Horizontal projection for this kind of algorithms 
is also possible but the problem of spatial bias is equally present. 

Once described the bases about the inverse problems and the localization 
problem in MLAT systems as well as the different solutions for solving it, 
in this part, several regularization methods are studied and applied to solve 
the MLAT localization problem. The solutions presented in this chapter can 
be classified as a kind of software based strategy, but they are intended to 
overcome those disadvantages commented above for both software and 
hardware based solutions. The regularization methods can be classified into 
two families [76], [80] namely; direct regularization methods and iterative 
regularization methods. The direct regularization methods are based on 
some kind of “canonical decomposition”, such as, the QR factorization or 
the Singular Value Decomposition (SVD). For these methods, it is 
necessary to explicitly know the coefficient matrix of the system of 
equations and the solution is achieved by calculating the inverse of a 
modified version of that matrix. On the other hand, the iterative 
regularization methods avoid any decomposition and, instead, they are 
based on iterative schemes that access to the coefficient matrix via matrix-
vector products. This kind of methods does not need to explicitly know the 
coefficient matrix. 

Since the coefficient matrix is explicitly known for the Multilateration 
localization problem, this work is only focused on the study and application 
of direct regularization methods. The direct regularization methods studied 
here are: 

• Tikhonov regularization 

• Truncated Singular Value Decomposition (T-SVD) 

• T-SVD with sub-set selection (T-SVD SS) 

• Truncated Total Least Squares (T-TLS) 

In this thesis the regularization methods are only implemented along 
with the Taylor-series expansion method. As we have described in §7.5 the 
main problem for ensuring the convergence in the solution of the MLAT 
localization problem is the ill-conditioning of the corresponding coefficient 
matrix. Thus, with the setting and solution of the localization problem in 
the sense of regularization methods, we seek to turn the weaknesses of this 
localization algorithm (i.e., the necessity of a good starting point and the 
low or null convergence) into strengths while preserving its essential 
advantages (i.e., the statistical optimality). The contributions of this 
chapter have been published in [100-101], [117-118]. 
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8.1 Solving Localization Problem by Tikhonov 
Regularization 

The Tikhonov regularization was originally and independently derived by 
Tikhonov [74] and Phillips [73], and it has been used to solve the ill-
conditioned problems in an important number of applications to engineering 
and science. Most of them cite this method as Tikhonov regularization; 
from that is the reason to call it by Tikhonov in this thesis. The main idea 
of this method is to incorporate a priori information about the size and 
smoothness of the final solution. This a priori information is in the form of 
a semi-norm. Generally, Tikhonov regularization leads to minimize not only 
the residual 2-norm but a trade-off between this residual 2-norm and the 2-
norm of the final solution. This principle is expressed as the following 
function [74], [76], [80]: arg	minሼ‖ࣂࡳ ෝ‖ଶଶ࢓− +  ଶଶሽ (8.1)‖ࣂࡸ‖ଶߣ

where ߣ is the regularization parameter which controls the “importance” 
given to the minimization of the regularization term (‖ࣂࡸ‖ଶଶ). The term ‖ࣂࡸ‖ଶ is also known as discrete smoothing norm (see §6.2.2), and it can be 
also found as Ω(ࣂ). The matrix ࡸ ∈ ℝ௡×௡ (݊ = 3 for (ݔ, ,ݕ  localization) is (ݖ
called regularization matrix. In order to solve the Taylor-series expansion 
method in the sense of Tikhonov regularization, it is necessary to rewrite 
the likelihood function (7.12) taking into account of the minimization of 
(8.1). In this way the likelihood function for the Tikhonov method can be 
expressed as follows: Λ(ࣂ) = ಿೞషభమ(ߨ2)1 ൯భమ(ࣂ)ࡺ൫ݐ݁݀ ݁ିଵଶቄ൫࢓ෝି(ࣂ)࢓൯೅(ࣂ)ࡺషభ൫࢓ෝି(ࣂ)࢓൯ ା ఒమ(ࣂࡸ)೅(ࣂࡸ)ቅ (8.2) 

where ࣂ = ሾݔ, ,ݕ ෝ࢓ ሿ் is the target position andݖ  is the range difference 
measurements vector (cf. (7.9) and (7.10)). In this application, we have 
defined the Maximum Likelihood Estimator (MLE) as the regularized 
MLE and the solution of this is the value of ࣂ that maximizes (8.2). In this 
way, the regularized MLE minimizes the following function: ܳ(ࣂ) = ቄ൫࢓ෝ ෝ࢓ଵ൫ି(ࣂ)ࡺ൯்(ࣂ)࢓− ൯(ࣂ)࢓− +  ቅ (8.3)(ࣂࡸ)்(ࣂࡸ)ଶߣ

Like in the case of Taylor-series method solved in the LS sense, it is 
necessary to expand the non-linear function (ࣂ)࢓ by Taylor series centred 
also in a suitable starting point ࣂ଴ = ሾݔ଴, ,଴ݕ  ଴ሿ். This procedure leads toݖ
the following minimization function: ܳ(∆ࣂ) = ሼ(࢓ෝ௱ − ෝ௱࢓)ଵି(ࣂ)ࡺ்(ࣂ∆ࡳ − (ࣂ∆ࡳ +  ሽ (8.4)(ࣂ∆ࡸ)்(ࣂ∆ࡸ)ଶߣ
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To calculate the value of ∆ࣂ that minimizes the function ܳ(∆ࣂ), the 
derivative of (8.4), in respect of each component of ∆ࣂ, are calculated and 
then set to zero to obtain a direct expression for ∆ࣂ. This procedure is 
shown in the following lines ࣂ∆|(ࣂ∆)ܳࣂ∆ߘୀ∆ࣂ෡ = ෝ௱࢓ଵି(ࣂ)ࡺ்ࡳ− + ෡ࣂ∆ࡳଵି(ࣂ)ࡺ்ࡳ + ෡ࣂ∆ࡸ்ࡸଶߣ = 0 (8.5) 

where (8.5) has been evaluated at ∆ࣂ෡ = ෡ࣂ − ࡳଵି(ࣂ)ࡺ்ࡳ) ,଴. Thenࣂ + ෡ࣂ∆(ࡸ்ࡸଶߣ =  ෝ௱ (8.6)࢓ଵି(ࣂ)ࡺ்ࡳ

and the unknown variable ∆ࣂ෡ can be obtained by, ∆ࣂ෡ = ࡳଵି(ࣂ)ࡺ்ࡳ) +  ෝ௱ (8.7)࢓ଵି(ࣂ)ࡺ்ࡳଵି(ࡸ்ࡸଶߣ

Equation (8.7) is therefore the regularized MLE solution to the Taylor-
series expansion method. Also from (8.7) it can be identified the following 
expression: ࡭ఒି ଵ = ࡳଵି(ࣂ)ࡺ்ࡳ) +  ଵ (8.8)ି(ࣂ)ࡺ்ࡳଵି(ࡸ்ࡸଶߣ

where ࡭ఒି ଵ is known in the literature as the regularized inverse matrix of 
Tikhonov [74], [76]. Finally, the estimated target parameter is calculated 
by: ࣂ෡ఒ = ఒି࡭ ଵ࢓ෝ௱ +  ଴ (8.9)ࣂ

where ࣂ෡ has been written as ࣂ෡ఒ to emphasize that this is the Tikhonov 
solution. 

Due to the fact that the covariance matrix (ࣂ)ࡺ depends on the true 
target position ࣂ, also for this regularized estimator it is removed from (8.8) 
assuming an identity matrix as in §7.2.1. Furthermore, as (7.18), the 
regularized estimator in (8.9) should be refined by several iterations until 
the method reaches a good accuracy. The resulting regularized iterative 
procedure is expressed in this case as follows: ࣂ෡ఒ௞ = ఒି࡭ ଵ൫ࣂ෡ఒ௞ିଵ൯࢓ෝ௱൫ࣂ෡ఒ௞ିଵ൯ + ,෡ఒ௞ିଵࣂ ݇ = 1,… ,  (8.10) ܭ

where ࣂ෡ఒ଴ = ෡ఒ௞ିଵ൯ࣂෝ௱൫࢓ ,଴ࣂ = ෝ࢓  is the maximum number ܭ ෡ఒ௞ିଵ൯ andࣂ൫࢓−
of refinement iterations. It is worth to say that ࣂ଴ is not necessarily a 
previous estimation of the true target position ࣂ. As it will be shown later, 
for some applications the starting point can be assumed as a fixed value for 
all the coverage area. The value of the starting point ࣂ଴ normally has an 
important influence in the convergence of the method but, for this 
application has been found that the performance of this solution is not as 
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sensible as the LS solution. This fact will be analyzed in a posterior sub-
section. 

Now, in order to make a correct application of the regularized MLE, it is 
very important to use the correct regularization parameter ߣ and the 
correct regularization matrix ࡸ, in order to obtain a valid solution. 

The choice of regularization matrix ࡸ is directly connected with the 
statistics of the target position vector ࣂ, i.e., with the correlation of the 
target position coordinates (ݔ, ,ݕ  are assumed to ࣂ If the components of .(ݖ
be non-random and uncorrelated (which is a realistic assumption, see [3], 
[20] for details), a standard choice of the regularization matrix ࡸ is to 
assume it as the ݊ × ݊ identity matrix. Moreover, in [119] the author 
showed that the existence of a minimum of the expected value for the 
residual error in Tikhonov method can be only guaranteed when ࡸ is the 
identity matrix, otherwise the Tikhonov solution could not be close to the 
exact one. Therefore, in the remaining of this thesis, unless otherwise 
indicated, the regularization matrix is assumed to be ࡸ =  .ଷ×ଷࡵ

The choice of regularization parameter ߣ is not as straightforward as the 
choice of the regularization matrix. There exists in the literature a set of 
numerical methods and procedures to calculate/estimate an approximated 
regularization parameter value. A correct statement is that this choice is 
connected with the SVD spectrum of the matrix ࡳ. In this way, it is clear 
that in the solution of (8.10), the SVD spectrum should be inspected to 
calculate the regularization parameter. Therefore, the objective of the next 
subsection is to introduce the solution of (8.10) by means of an SVD 
routine instead of using a numerical one to obtain directly the inverse 
matrix (8.8), and also the description of a procedure to estimate a right 
regularization parameter ߣ. 
8.1.1 Solving Regularized MLE by SVD 

Equation (8.10) can be solved by a numerical routine to directly calculate 
the matrix ࡭ఒି ଵ. However, as it was commented above, it is necessary to 
inspect the SVD spectrum to estimate the regularization parameter and 
also because this spectrum provides an overall idea of how much ill-
conditioned is the problem. The expression to calculate the Tikhonov 
regularized MLE solution by means of the SVD is shown in the following 
[72], [76]: 

෡ఒ௞ࣂ = ൭෍ ௜݂௞ିଵ ൫࢛௜௞ିଵ൯்࢓ෝ௱൫ࣂ෡ఒ௞ିଵ൯ߪ௜௞ିଵ ௜௞ିଵ௡࢜
௜ୀଵ ൱ + ,෡ఒ௞ିଵࣂ ݇ = 1,… ,  (8.11) ܭ

where ࢛௜ and ࢜௜ are the left and right singular vectors of ࡳ respectively, 
while ߪ௜ is the ith singular value of ࡳ (see §6.3) and they are obtained by 
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an SVD routine. If ࡳ ∈ ℝ௠×௡ (for this application ݉=number of stations –
excluding the reference one- and ݊=3), then the SVD of ࡳ is a 
decomposition of the form [72], [76]: 

ࡳ = ்ࢂ઱ࢁ =෍࢛௜௡
௜ୀଵ ௜்࢜௜ߪ  (8.12) 

where ࢁ = …,ଵ࢛) , (௜࢛ ∈ ℝ(ேೞିଵ)×௡ and ࢂ = ,ଵ࢜) … , (௜࢜ ∈ ℝ௡×௡ are matrices 
with orthonormal columns, and ઱ is a diagonal matrix such that ઱ =diag(ߪଵ, … ,  ௜). Finally, ௜݂ are kwon as the Tikhonov filter factors [74], [76]ߪ
and for this application (ࡸ =  :௡) takes the following formࡵ

௜݂ = ௜ଶߪ௜ଶߪ +  ଶ (8.13)ߣ

8.1.2 Effect of Tikhonov Regularization on the Localization 
Problem 

To understand how the Tikhonov method works on the localization 
problem, we explicitly obtain the matrix ࡭ఒ. In the remaining descriptions 
of the regularized MLE we suppress the super-index ݇ for simplicity. The 
matrix ࡭ఒ can be expressed as follows: ࡭ఒ = ൫࡭ఒି ଵ൯ିଵ = ࡳଵି(ࣂ)ࡺ்ࡳ)) +  ଵ)ିଵ (8.14)ି(ࣂ)ࡺ்ࡳଵି(ࡸ்ࡸଶߣ

After a few operations (8.14) takes the following form: ࡭ఒ = ࡳ +  (8.15) ࡸ்ࡸଵି(ଵି(ࣂ)ࡺ்ࡳ)ଶߣ

Now, by expressing (8.15) in terms of the SVD of matrix ࡳ, i.e., ࡳ =  see) (ࣂ)ࡺ and neglecting the covariance matrix ,(see §6.3.1) ்ࢂ઱ࢁ
§6.3), matrix ࡭ఒ can be expressed as follows: ࡭ఒ = ்ࢂ઱ࢁ + ఒ࡭ ்ࢂ઱ିଵࢁଶߣ = ઱)ࢁ + ఒ࡭ ்ࢂ(ଶ઱ିଵߣ = ఒ࡭ ்ࢂ઱ડఒࢁ =  (8.16) ்ࢂ઱஛ࢁ

where ડఒ = diag ቀଵ௙భ , … , ଵ௙೙ቁ, ௝݂ is the jth Tikhonov filter factor (cf. (8.13)), 
and ઱ఒ = ઱ડఒ is the corresponding matrix of singular values of ࡭ఒ. In this 
sense, the final expression in (8.16) can be seen as the SVD of matrix ࡭ఒ, 
whose left and right singular vectors are equal to the ones of matrix ࡳ and 
its singular values are an amplified version of those of matrix ࡳ. Then, 
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geometrically speaking it is known that the matrices ࢁ and ࢂ provide two 
set of orthonormal basis vectors, i.e., the columns of each of these, and, 
under this assumption, the singular values can be seen as the spectrum 
components of a matrix, and they are the only distinguishing factor 
between two matrices that share the same orthonormal basis, as the case of ࡭ఒ and ࡳ. Therefore, if we remember that matrix ࡳ contains the 
information about the system geometry, then taking into account that the 
information in matrix ࡭ఒ (i.e., its singular value spectrum) is a modified 
version of that one of matrix ࡳ, we can say that ࡭ఒ represents a modified 
geometry of the system. In other words, the application of the regularized 
estimator can be seen as a system geometry correction, which converts the 
ill-conditioned scenario into an equivalent well-conditioned. 

On the other hand, due to the fact that the minimum residual norm 
solution can only be obtained by the pseudoinverse matrix and as the 
matrix ࡭ఒ is different from the matrix ࡳ, then the regularized MLE solution 
always has a bias regarding to the exact one [76], [119]. However and as it 
will be shown later, in many cases this bias can be neglected if the correct 
regularization matrix and the correct regularization parameter are used. 

8.1.3 Regularization Error of Tikhonov Regularization 

The application of any regularization method introduces some amount of 
error due to the approximations that are taken to allow solving the ill-
conditioned problem [76], [98]. 

Substituting (7.9), (7.14) and (8.8) into (8.9), and remembering that ࢓ෝ௱ = ෝ࢓ ෡ࣂ∆ and (଴ࣂ)࢓− = ෡ࣂ −  ෡ఒ can be rewrittenࣂ ଴, the expression forࣂ
as follows ࣂ෡ఒ = ࣂ + ࡳଵି(ࣂ)ࡺ்ࡳ) + (ࣂ)࢓ଵሼି(ࣂ)ࡺ்ࡳଵି(ࡸ்ࡸଶߣ −(଴ࣂ)࢓− ࣂ)ఒ࡭ − (଴ࣂ +  ሽ (8.17)࢔

which is an equivalent formulation to that shown in [3] for the accuracy 
analysis of some passive localization systems. Equation (8.17) shows that 
the estimated target position is affected by an error that depends on two 
components, one is the regularized linearization error and the other one is 
the error due to the measurements noise.  

For the Tikhonov method, the error can be expressed as follows [76]: ࣂ − ෡ఒࣂ = (ࣂ)௱࢓றࡳ − ఒି࡭ ଵ࢓ෝ௱ ࣂ − ෡ఒࣂ = ൫ࡳற − ఒି࡭ ଵ൯࢓௱(ࣂ) − ఒି࡭ ଵ࢔ 
(8.18) 

where ࡳற is the pseudoinverse matrix of ࢓ ,ࡳෝ௱ = (ࣂ)௱࢓ + (ࣂ)௱࢓ and ࢔ (ࣂ)࢓=  The first term in (8.18) is called regularization error and .(଴ࣂ)࢓−



192 8 Multilateration Localization by Using Regularization Algorithms 

the second one is the perturbation error. The first term gives information 
about the system geometry correction error and the second one gives 
information about the measurements noise (instrumental errors, 
propagation effects, etc.). When very little regularization is introduced 
(0 ≤ ߣ ≪ 1) most Tikhonov filter factors are close to 1, and the overall 
error is dominated by perturbation error ࡭ఒି ଵ࢔. This case is called 
undersmoothing and the result is that ࣂ෡ఒ tends to the classical non-
regularized solution (LS solution). On the other hand, when a large amount 
of regularization is introduced (ߣ ≫ 0) most filter factors are considerably 
small ( ௜݂ ≪ 1) and the overall error is dominated by the regularization 
error. This case is called oversmoothing and the result for the localization 
problem is that ࣂ෡ఒ tends to ࣂ଴. 

In terms of the SVD of matrix ࡳ, the overall error can be calculated as 
follows [76], [98]: 

ࣂ − ෡ఒࣂ =෍(1 − ௜݂) ௜்ݑ ௜ߪ(ࣂ)௱࢓ ௜௡ݒ
௜ୀଵ −෍ ௜݂ ௜்ݑ ௜ߪ࢔ ௜௡ݒ

௜ୀଵ  (8.19) 

Finally, it is evident by analyzing (8.18) (or (8.19)) that a correct 
implementation of the Tikhonov method is intended to balance the two 
error components (i.e., regularization and perturbation errors). 

8.1.4 Estimation of the Regularization Parameter for Tikhonov 

The selection/estimation of regularization parameter is one of the most 
critical aspects for the application of any regularization method. There exist 
many methods or procedures to calculate an approximated regularization 
parameter value. In [76] the author classifies these methods into two 
classes, based on the assumption about the measurement error 2-norm ‖࢔‖ଶ 
(cf. (7.9)). The first class comprises the methods that are based on some a 
priori knowledge, or a good estimation of ‖࢔‖ଶ, and the second class 
comprises those ones that do not require any a priori knowledge or 
estimation of ‖࢔‖ଶ but instead, they extract this information from the 
given measurement vector ࢓ෝ . 

Within the first class, it is worth mentioning the discrepancy principle 
[120] which takes into account the measurements error 2-norm or its 
generalized version [121] (generalized discrepancy principle) which also 
takes into account possible errors ࡱ in the coefficient matrix (differential 
Jacobian matrix for this application) ࡳ. The main idea of this methods is 
that, if ࣂࡳ =  holds (are the exacts quantities vectors ࢓ and ࣂ where) ࢓
exactly, then the correct regularization parameter is that ߣ for which the 
residual error ฮࣂࡳ෡ఒ ෝ࢓− ฮଶ is equal to a specific value provided by a relation 
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between the a priori upper bounds ߜ௘ and ߜா for ‖࢔‖ଶ and for ‖ࡱ‖ଶ 
respectively. It is, the ߣ that allows satisfying: ฮࣂࡳ෡ఒ ෝ࢓− ฮଶ =  ௘ (8.20)ߜ

where ‖࢔‖ଶ ≤   ௘ߜ

or in the generalized version case: ฮࣂࡳ෡ఒ ෝ࢓− ฮଶ = ଴௘௫௔௖௧ߜ + ௘ߜ +  ଶ (8.21)‖ࣂ‖ாߜ

where ߜ଴௘௫௔௖௧ is an incompatibility measure of the inverse problem. 

On the other hand, in the second class of methods, the goal is to 
minimize a function which approximates the total error (cf. (8.18)) and 
thus obtain a regularization parameter that provides an optimal point for 
the balance of the regularization and perturbation errors in ࣂ෡ఒ. Within 
these methods can be mentioned, the method described in [122-123] and the 
quasi-optimality criterion [124]. 

Additionally, there exist other methods that do not require information 
about ‖࢔‖ଶ. These are the Generalized Cross Validation (GCV) [76], [125] 
and the L-curve criterion [76], [98]. These methods are based on the 
hypothesis that a good approximation for the regularization parameter is 
that one which minimizes some specific functions. In the case of GCV 
method, it uses a function called GCV function [125-126] and in the case of 
L-curve criterion it uses a function called L-curve [98] which is a curve that 
shows the relation between the 2-norm of the regularized solution and the 
corresponding residual 2-norm. 

It is important to say that all methods mentioned above provide 
regularization parameters values which allow finding accurate numerical 
solutions for a variety of applications (e.g., image processing, remote 
sensing, electromagnetic scattering, etc.), which have as a common aspect 
that are executed in non-real time. Moreover, it can be observed that all of 
these methods introduce a significant computational load because they are 
based either on the solution of an optimization problem, i.e., to find a 
parameter that satisfy some equalities (first class of methods), or find a 
parameter that minimize some special functions (second class of methods, 
GCV method and L-curve criterion). Therefore, due to their nature, the 
computation time required for applying these methods might be not 
suitable for real-time localization in MLAT systems. 

In other words, and taking into account the main requirements for Air 
Traffic Control (ATC) operations, that are based on the data update time 
(time between one calculated position and the chronologically posterior [1-
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2]) and the system capacity (number of aircraft/vehicles that are in the 
coverage area in a time instant [1-2]), all methods commented above are 
not suitable for calculating the regularization parameter for the localization 
problem solution in MLAT systems. Therefore, in this thesis we propose 
two strategies to estimate this parameter. One of this is based on the 
evaluation of the problem for several regularization parameters values (no 
more than three) and the other one is based on the analysis of the singular 
values spectrum. 

Estimating by Residual Error Evaluation 

The first option for this application is to solve the problem for one, two or 
three regularization parameters and then choose that solution that 
corresponds with the minimum residual error. This option is valid for this 
application because the typical size of the coefficient matrices is normally 
smaller than 10×3. Obviously to implement this strategy a relative rigorous 
analysis of the problem scenario must be carried out. In general, the 
residual error for an inverse problem is given by: 

௝ݎ݋ݎݎ݁ = ቛࡳ ቀࣂ෡ఒೕቁ ෡ఒೕࣂ − ෝ࢓‖ෝቛଶ࢓ ‖ଶ , ݆ = 1, . . , ݈ܽݐ݋ݐ ݂݋ ݀݁ݐܽݑ݈ܽݒ݁  (8.22) ݏ݁ݑ݈ܽݒ

Remembering that for Taylor-series expansion method, the matrix ࡳ is 
an approximation of an exact coefficient matrix, then (8.22) could not be a 
correct value for the residual error with respect to the true target position. 
Therefore, in this thesis we propose to calculate the residual error by 
replacing the regularized solution ࣂ෡ఒೕ in the non-linear TDOA function 
(6.6), instead in the matrix ࡳ, as follows: 

௝ݎ݋ݎݎ݁ = ቛࢎఒೕ − ෝ࢓‖ෝቛଶ࢓ ‖ଶ , ݆ = 1, … (8.23) 

where the vector ࢎఒೕ is given by: 

ఒೕࢎ = ൦ ଶ,ଵܣܱܦܶ ቀࣂ෡ఒೕቁ⋮ܶܣܱܦேೞ,ଵ ቀࣂ෡ఒೕቁ൪(ேೞିଵ)×ଵ (8.24) 

In other words, in this strategy we evaluate the quality of the 
regularized solution by directly using the non-linear problem in (6.6) 
instead of using the classical expression of matrix-vector product. 
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Estimating by Singular Value Spectrum Inspection 

The second option is based on a real-time inspection of the singular values 
spectrum of the coefficient matrix ࡳ. Before describing the procedure 
proposed here, it is necessary to make use of the concepts of resolution 
matrix and averaging kernels. The resolution matrix, for any regularization 
method, is defined as follows [76]: બ ≡ ఒି࡭ ଵ(8.25) ࡳ 

The resolution matrix quantifies the amount of smoothing introduced by 
any particular regularization method. In this sense, the regularized solution ࣂ෡ఒ can be written as follows (cf. (8.9)), ࣂ෡ఒ = ఒି࡭ ଵ࢓ෝ௱ + ෡ఒࣂ ଴ࣂ = ఒି࡭ ଵ(࢓௱(ࣂ) + (࢔ + ෡ఒࣂ ଴ࣂ = બ∆ࣂ + ఒି࡭ ଵ࢔ +  ଴ (8.26)ࣂ

In the case of the LS solution, i.e., by using the pseudoinverse matrix 
(which is the minimum residual 2-norm solution), the resolution matrix is બ =  ଷ and, therefore, in the case of well-conditioned problem, the expectedࡵ
value of ࣂ෡௅ௌ is such that ࣂൣܧ෡௅ௌ൧ =  However, for any regularization .ࣂ
method, the resolution matrix is different from ࡵଷ and the regularized 
solution ࣂ෡ఒ is a smoothed version of ࣂ. Specifically, each component of the 
first term in (8.26) is a weighted average version of all elements in ࣂ. The 
second term of (8.26) is the measurements noise contribution and the third 
one is the starting point for Taylor-series expansion method. 

For Tikhonov regularization, the amount of smoothing is directly related 
to the regularization parameter ߣ and satisfies that, if ߣ = 0 → બ = ߣ ଷ and ifࡵ = ∞ → બ = ૙ଷ. It is evident that, in the first situation, the regularized 
solution ࣂ෡ఒ tends to ࣂ෡௅ௌ (undersmoothing case) and, in the second 
situation, ࣂ෡ఒ tends to ࣂ଴ (oversmoothing case). Consequently, it can be 
understood that the resolution matrix allows knowing how precise the 
regularized solution can reach the exact one. 

On the other hand, to numerically analyze how much is smoothed each 
component of the regularized solution, it is necessary to inspect every row 
of the resolution matrix બ. The ith smoothed component can be written as 
follows [76]: (બࣂ)௜ = ௜்ࣈ ,ࣂ ݅ = 1, . . ,3 (8.27) 

The set of rows ࣈ௜்  are known in the literature as averaging kernels [76], 
[88] of the problem. Particularly, for (ݔ, ,ݕ  localization problems, it can be (ݖ
demonstrated that (see Annex B for the full demonstration): 
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where ௝݂ is the jth Tikhonov filter factor, ࢜௝ is the jth right singular vector 
of matrix ࡳ and ࢜௝௜ is the ith component of the jth right singular vector. It 
can be observed from (8.28) that if the filter factors decrease (i.e., ߣ 
increases), then, the averaging kernels also decrease and, therefore, the 
amount of smoothing introduced increases. 

When the ill-conditioned appears, it is necessary to introduce some 
amount of smoothing. Now, the critical point is to know how much amount 
of smoothing is needed to avoid the ill-conditioned problem but also to 
reach an accurate solution. 

Although it is not a fully general statement, it is appropriate to 
comment that there is a direct relation between the ith averaging kernel ࣈ௜்  
and the ith Tikhonov filter factor ௜݂, such that, if ௜݂ decreases also the 
components amplitudes of ࣈ௜்  decreases and, therefore, the amount of 
smoothing for the ith component of the regularized solution, ࣂ෡ఒ, increases. 
Also, if ௜݂ increases the components amplitudes of ࣈ௜்  increases and, 
therefore, the amount of smoothing for the ith component of the regularized 
solution, ࣂ෡ఒ, decreases. 

Finally, and based on the hypothesis that for Mode S Multilateration 
systems, the more ill-conditioned space coordinate is the vertical 
component, ݖ, of the target position, it is proposed a formulation that seeks 
for introduce more amount of smoothing only for that vertical component. 
This formulation takes the following form: ߣ௞ = ଷ௞ߪ + ଶ௞ߪ൫ݓ −  ଷ௞൯ (8.29)ߪ

where ߣ௞, ߪଶ௞, ߪଷ௞ are the regularization parameter value and the second and 
third singular value of ࡳ, respectively, for the kth refinement iteration of 
Taylor-series expansion method. The factor ݓ is a factor that controls the 
weight of the term ൫ߪଶ௞ −  ଷ௞൯. It has been observed that the value of thisߪ
weight factor depends on the number of stations and the operational 
scenario, i.e., LAM or WAM. 

On the other hand, there exists several works where a considerable 
number of analysis and simulations have been done in order to fully 
describe and understand the accuracy performance of LAM and WAM 
systems [3-4], [20]. One important conclusion extracted from these works is 
that, for a coverage area inside the system perimeter (the LAM), the 2D 
problem is better conditioned than the vertical one and, for coverage areas 
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outside the system perimeter (far from that), the 2D and the vertical 
problem are conditioned in a similar way. 

Additionally to (8.29) a strategy to update the weight factor ݓ for LAM 
localization problems is proposed. In this strategy it is proposed to update 
the value of ݓ with the refinement iterations, based on the hypothesis that, 
if for LAM the 2D problem is better conditioned, then the 2D convergence 
is more stable and with the refinement iterations the amount of ill-
conditioned is reduced and, therefore, also the value of ݓ should be reduced 
(the less ill-conditioned, the lower the ߣ should be). In this way, for LAM 
applications (8.29) takes the following form: ߣ௞ = ଷ௞ߪ + ଶ௞ߪ௞൫ݓ −  ଷ௞൯ (8.30)ߪ

where ݓ௞ = ൜0.8ݓ௞ିଵ, ଶ௞ߪ ≥ ,௞ିଵݓଶ௞ିଵߪ ݁ݏ݅ݓݎℎ݁ݐ݋ ; ݇ = 3,… ,  (8.31) ܭ

where ܭ is the total number of Taylor iterations and ݓଵ = ଶݓ = 0.3 for 
LAM applications. 

On other hand, for WAM applications for near targets with small 
number of stations (normally smaller than five) it is used only (8.29) with 0.3=ݓ and for WAM but, for far targets and a number of stations greater 
than five, it is used 0.03=ݓ. The particularities of this aspect are clearly 
shown in the results section. 

8.2 Solution by SVD Based Methods 

The classical solution by SVD is in connection with the Least Squares (LS) 
problem. The classical SVD says that, if ࡳ is invertible, then its inverse is 
given by [72], [76]: 

ଵିࡳ =෍࢜௜࢛௜்ߪ௜௡
௜ୀଵ  (8.32) 

and then the solution ࣂ෡ is given by: 

෡ࣂ = ൭෍൫࢛௜் ௜௡ߪ௜࢜ෝ௱൯࢓
௜ୀଵ ൱ +  ଴ (8.33)ࣂ

On the other hand, based on the SVD it is defined the pseudoinverse 
matrix [72] ࡳற of ࡳ as: 
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றࡳ ≡ ෍ (ࡳ)௜rankߪ௜்࢛௜࢜
௜ୀଵ  (8.34) 

and the LS solution to the problem ‖ࣂࡳ  :ෝ‖ଶ is given by࢓−

෡௅ௌࣂ = ෝ࢓றࡳ = ቌ ෍ ௜்࢛ ௜ߪෝ௱࢓ (ࡳ)௜rank࢜
௜ୀଵ ቍ +  ଴ (8.35)ࣂ

The solution obtained by the pseudoinverse ensures the first two 
Hadamard’s conditions but not the third one. It will be shown in the results 
section that when the problem is very ill-conditioned the solution in (8.35) 
does not provide accurate results. 

A common case, solving localization problems in Mode S Multilateration 
is that there are more measurements, coming from the stations, than those 
necessaries to solve de system of equations. In this case, the system of 
hyperbolic equations is called over-determined system and the explicit 
solution can be expressed as follows: ࣂ෡௅ௌ௢௩௘௥ = ෝ௱࢓்ࡳଵି(ࡳ்ࡳ) + ଴ࣂ = ෝ௱࢓றࡳ +  ଴ (8.36)ࣂ

where ࡳற =  .(see §6.4) ்ࡳଵି(ࡳ்ࡳ)
As it can be seen, the solution in (8.36) is totally equivalent than that in 

(7.17). The only difference is that, here the LS solution has been expressed 
in the SVD domain. Finally, also the solution provided by (8.36) must be 
iterated like in (7.18). 

8.2.1 Solution by Truncated SVD (T-SVD) 

When the matrix ࡳ is not exactly rank deficient, but instead numerically 
rank deficient in the presence of an error ߳, the solution by classical SVD 
should be avoided. In this case, it is better to take the rank-݇ఢ matrix ࡳ௞ച 
which is defined by [72], [76]: 

௞ചࡳ ≡෍࢛௜ߪ௜࢜௜்௞ച
௜ୀଵ  (8.37) 

where ݇ఢ is a discrete value normally known as discrete regularization 
parameter (or truncation parameter) for T-SVD and the most common 
practice is to take ݇ఢ =  in the ࡳ i.e., the numerical rank of matrix ,∋ݎ
presence of a level error ߳. 
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In other words, the main idea of this method consists of taking the first ݇ఢ components of the matrix of singular values of ࡳ (cf. (6.12) or (8.12)) to 
construct the new coefficient matrix ࡳ௞ച, which initially has better 
numerical characteristics than ࡳ. In this sense, this method is intended to 
neglect those singular values that are close to zero. Then, by using the same 
notation as in (7.18), the iterative location estimator in the sense of T-SVD 
can be expressed as follows: ࣂ෡௞ച௞ = ൬ࡳ௞ച൫ࣂ෡௞ച௞ିଵ൯்ࡳ௞ച൫ࣂ෡௞ച௞ିଵ൯൰ିଵ ෡௞ച௞ିଵ൯ࣂෝ௱൫࢓෡௞ച௞ିଵ൯்ࣂ௞ച൫ࡳ + ,෡௞ച௞ିଵࣂ 			݇= 1,… ,  ܭ

(8.38) 

being ࣂ෡௞ച௞  the solution provided by the T-SVD and ࣂ෡௞ച଴  the starting point as 
required for Taylor based methods. Note here that we have directly 
assumed the covariance matrix of the measurement errors (cf. (7.18)) to be 
the identity one as in §8.1, and the difference between ݇, which is the index 
for the iterations, and ݇ఢ that is the notation for the regularization 
parameter for T-SVD. 

The numerical solution of (8.38) can be also expressed in terms of the 
SVD of matrix ࡳ by using (8.37) as follows [76], [127]: ࣂ෡௞ച௞ = ௞ചறࡳ ൫ࣂ෡௞ച௞ିଵ൯࢓ෝ௱൫ࣂ෡௞ച௞ିଵ൯ + =෡௞ച௞ିଵࣂ ቌ෍൫࢛௜௞ିଵ൯்࢓ෝ௱൫ࣂ෡௞ച௞ିଵ൯ߪ௜௞ିଵ ௜௞ିଵ௞ച࢜

௜ୀଵ ቍ +  ෡௞ച௞ିଵ (8.39)ࣂ

where the above expression should be evaluated for ݇ = 1,… ,  .ܭ

For this regularization method also those stop criteria described in (7.19) 
can be used. Generally, the pertaining scenarios for the application of these 
criteria along with the T-SVD are the same than those ones for Tikhonov 
regularization. 

The solution provided by (8.39) is a unique solution with minimum 2-
norm and stable. In this way, this solution guarantees the three 
Hadamard’s conditions. On the other hand, one of the most important 
aspects when using (8.39) is to know how to choose the correct level error ߳ 
or the direct choice of the regularization parameter ݇ఢ. The level error ߳ 
comes from the hypothesis that the matrix ࡳ is really in the form ࡳ ௘௫௔௖௧ࡳ= +  is some ࡱ ௘௫௔௖௧ is exactly rank deficient andࡳ where the ,ࡱ
perturbation of ࡳ௘௫௔௖௧. As it was commented in §6.3.5 the perturbation can 
be due to different sources. The author in [76] suggests that the level error ߳ has to satisfy ‖ࡱ‖ଶ ≤ ߳. However, the perturbation matrix and its 2-norm 
are not known and the strategy commented before, to estimate the matrix 
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rank, is not so useful in this case. The estimation of this parameter is the 
aim of the following subsection. 

8.2.2 Estimation of the Regularization Parameter for T-SVD 

The selection/estimation of the regularization parameter is also a critical 
aspect for the application of the T-SVD regularization. Unlike the Tikhonov 
regularization which has a continuous regularization parameter, the T-SVD 
regularization has a discrete one and the estimation or selection of it has 
some specific differences. From (8.37) it can be concluded that the discrete 
regularization parameter can take values from zero to ݊, which is the 
number of target position coordinates to be estimated, which for the general 
case of MLAT localization is equal to 3. However, if the regularization 
parameter is ݇ఢ = 3, then no regularization is applied and therefore we 
obtain the LS solution in (7.18). Moreover, if the regularization parameter 
is ݇ఢ = 0, all the singular values of the Jacobian differential matrix ࡳ are 
neglected and (8.39) does not lead to any valid solution. In this sense, it 
seems that the regularization parameter ݇ఢ can take only two values (i.e., 1 
or 2) in the particular case of requiring regularization for the localization 
problem in MLAT systems, and when no regularization is required this 
parameter takes only one value (i.e., 3). 

On the other hand, basically, several methods to estimate the 
regularization parameter, from those described in §8.1.4, can be also used to 
estimate the pertaining regularization parameter for T-SVD. However, the 
same disadvantages as commented in §8.1.4 also hold for this method. 

In this way, we have concluded that a feasible strategy to choose the 
regularization parameter is to solve the problem in (8.39) for ݇ఢ=2 and ݇ఢ=3. The option of ݇ఢ=1 has been widely tested and no useful solution is 
obtained because the loose of much information. Therefore, this option is 
not further considered. The same procedure as proposed for Tikhonov 
regularization in (8.23) - (8.24) is used for T-SVD. 

Furthermore, an equivalent strategy to that described by (8.31), to 
improve the performance for LAM applications, can be also used for the T-
SVD regularization. It is described as follows, ݇ఢ௞ = ൜3, ଶ௞ߪ ≥ ,ଶ௞ିଵ2ߪ ݁ݏ݅ݓݎℎ݁ݐ݋ ; ݇ = 3,… ,  (8.40) ܭ

where ܭ is the total number of Taylor iterations and ݇ఢଵ=݇ఢଶ=2 for LAM 
applications. 
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8.2.3 Solution by T-SVD with a Sub-Set Selection (T-SVD SS) 

This method is similar to the T-SVD but here the ݇ఢ most linearly 
independent columns from ࡳ are extracted instead the first ݇ఢ columns. 
Therefore, it is needed the permutation matrix મ that minimizes the 
condition number of the new sub-matrix ࡳ෡௞ച. This new matrix consists of 
the first ݇ఢ columns of the matrix ࡳમ. The T-SVD solution with subset 
selection is given by [72], [76]: 

෡௞ച௕௔௦௜௖ࣂ = મቆࡳ෡௞ചற ෝ௱૙࢓ ቇ + ൬ࣂ଴૙ ൰ (8.41) 

where ࣂ෡௞௕௔௦௜௖ has zeros in those positions that corresponds to the neglected 
columns of ࡳ. The matrix મ can be obtained by any routine for calculating 
the QR factorization. It is not the aim of this thesis to describe such a 
routine and we refer the interest reader to check the algorithms in [72] and 
the references therein. 

By contrary to the T-SVD where we can force a truncation parameter ݇ఢ 
and thus some amount of regularization is added, for the subset selection 
approach the equivalent regularization parameters depends on the 
estimation of an error level ߳ in the QR factorization. Due to the difficulties 
in estimation that error level, the QR factorization in this application 
always provides a matrix ࡳ෡௞ച equal to the matrix ࡳ and, therefore, no 
regularization is added. For this reason we do not analyze more this method 
and no results are presented for it. 

8.3 Solution by Total Least Squares (TLS) Based 
Methods 

All methods we have described so far only take into account the possible 
errors in the measurement vector ࢓ෝ , i.e., they assume the errors sources 
when solving the general inverse problem ࣂࡳ = ෝ࢓  are only contained in the 
measurement vector ࢓ෝ . However, it is also common to find cases when the 
matrix ࡳ is not precisely known or it has some errors as it can be obtained 
by measurements or by approximation of the exact operator. Furthermore, 
also linearization or discretization errors can appear. For these cases, the 
Total Least Squares (TLS) method [77], [128] was developed for solving the 
inverse problem by taking into account both the possible errors in the 
coefficient matrix ࡳ and their size in respect to those in the measurement 
vector ࢓ෝ . 

The main idea of TLS method is to allow a residual vector (see §6.4) and 
a residual matrix. In this sense, the solution of the inverse problem consists 
in finding a vector ࣂ that satisfies the following minimization problem: 
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where ࡳ෩ is the perturbed coefficient matrix, ࢓ෝ ᇱ is the equivalent perturbed 
version of the measurement vector, and ‖ ‖ி denotes de Frobenius norm, 
which for a general ݉ × ݊ matrix ࡭ is defined as [72]: 

ி‖࡭‖ = ඩ ෍ ௜ଶ୫୧୬ሼ௠,௡ሽߪ
௜ୀଵ  (8.43) 

being ߪ௜ the ith singular value of matrix ࡭. 

Thus, the solution for the localization problem by using (8.42) can be 
written in terms of the SVD of the overall matrix ሾ࢓,ࡳෝ௱ሿ as follows: ሾ࢓,ࡳෝ௱ሿ =  ഥ் (8.44)ࢂഥ઱ഥࢁ

being ઱ഥ the matrix of singular values of ሾ࢓,ࡳෝ௱ሿ and it takes the following 
form: ઱ഥ = diag(ߪതଵ, … ,   (ത௡ାଵߪ

where the operator diag denotes a diagonal matrix with its arguments in 
the main diagonal. Finally, the iterative location estimator can be obtained 
in the sense of TLS by: ࣂ෡்௅ௌ௞ = ഥଵ:௡,௡ାଵ௞ିଵ࢜− ௡ାଵ,௡ାଵ௞ିଵݒ1̅ + ,଴௞ିଵࣂ ݇ = 1,… ,  (8.45) ܭ

where ࢜ഥଵ:௡,௡ାଵ௞ିଵ  is the (n+1)th right singular vector of (8.44), of size ݊ × 1, 
for the (k-1)th Taylor iteration, i.e., (8.44) is calculated for ൣࡳ൫ࣂ෡்௅ௌ௞ିଵ൯,࢓ෝ௱൫ࣂ෡்௅ௌ௞ିଵ൯൧. 

When the problem is ill-conditioned, particularly with a rank deficient 
coefficient matrix, the solution (8.45) by TLS should be avoided and, 
equivalent to the case of the T-SVD, the use of the truncated version of the 
TLS is more advisable. This truncated version is described below. 

8.3.1 Solution by Truncated TLS (T-TLS) 

Similarly to the SVD and T-SVD solutions, when the matrix ࡳ is rank 
deficient or numerically rank deficient, it is common to neglect all zeros or 
small but non zero singular values of the overall matrix ሾ࢓,ࡳෝ ሿ and solve the 
problem with the new truncated matrix. This solution is called Truncated 
TLS (T-TLS) [76-77]. This method modifies the initial ill-conditioned 
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problem to a nearby one but, unlike to the T-SVD method, the 
modification depends on both ࡳ and ࢓ෝ . 

If we define ்݇ି்௅ௌ as the T-TLS truncation parameter, i.e., the number 
of retained singular values of ൣࡳ൫ࣂ෡்௅ௌ௞ିଵ൯,࢓ෝ௱൫ࣂ෡்௅ௌ௞ିଵ൯൧, and the matrix ࢂഥ is 
partitioned into a (݊ + 1) × (݊ + 1) matrix such that: ࢂഥ = ൬ࢂഥଵଵ ഥଶଵࢂഥଵଶࢂ  ഥଶଶ൰ (8.46)ࢂ

where ࢂഥଵଵ ∈ ℝ௡×௞೅ష೅ಽೄ, then, the iterative localization estimator in the 
sense of T-TLS can be obtained as follows: ࣂ෡௞೅ష೅ಽೄ௞ = ഥଶଶறࢂഥଵଶ௞ିଵ൫ࢂ− ൯௞ିଵ + =෡௞೅ష೅ಽೄ௞ିଵࣂ ഥଶଶ்ࢂ)ഥଵଶࢂ− )௞ିଵฮࢂഥଶଶ௞ିଵฮଶଶ + ෡௞೅ష೅ಽೄ௞ିଵࣂ  

(8.47) 

subject to the necessary condition that ࢂഥଶଶ ≠ 0. 
Note that if ்݇ି்௅ௌ = ݊, then ࣂ෡௞೅ష೅ಽೄ =  ෡்௅ௌ. Finally, also the mostࣂ

important aspect for the correct implementation of this method is to choose 
the correct truncation parameter ்݇ି்௅ௌ. To do this, the same principle as 
proposed for T-SVD (see §8.2.2) is used with the difference that for T-TLS 
based estimator the values ்݇ି்௅ௌ = 1 and ்݇ି்௅ௌ = 2 should be used. 
However, due to the size of the coefficient matrix, this kind of methods do 
not allow many possibilities for this truncation parameter and a general, 
roughly correct selection for ill-conditioned situations is ்݇ି்௅ௌ = 2. 
Moreover, a difference between this truncation parameter and the one of 
the T-SVD must be taken into account. We have seen for the T-SVD 
algorithm that, the greater the regularization parameter, the less is the 
introduced amount of regularization. For the case of T-TLS is different: the 
greater the regularization parameter, the greater is the introduced amount 
of regularization. 

In the theoretical sense, the main difference between the T-SVD solution 
and the T-TLS lies in the fact that, in the first one, the modification 
depends only on the coefficient matrix ࡳ, while for T-TLS it depends on 
both the coefficient matrix and the measurement vector. 

8.4 General Localization Strategy and Additional 
Improvements 

Through the theoretical analysis and simulations we have performed for 
this thesis, we have identified several points that must compose a general 
localization strategy for MLAT systems. The main idea is based on the fact 
that there is no a unique superior algorithm that computes the target 
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position with the best performance levels under any situation or scenario. 
Therefore, we propose the combined use of a closed form algorithm and an 
open form algorithm in order to obtain a statistically optimal (or near to 
optimal) localization strategy. Moreover, another simple but efficient 
strategies that allow improving the localization performance are proposed. 
The basic, canonical procedure for localization in MLAT system is shown in 
Fig. 8.1 and subsequently described. Then, the additional improvements are 
also described. 

The basic scheme for the general localization strategy is composed of two 
main steps: area detection and localization process. The first one, area 
detection, is intended to estimate the possible geographical area where the 
aircraft/vehicle can be. The objective of this step is to inform to the second 
step the set of localization algorithms to be used for calculating the target 
position. We propose two kind of areas, namely, surface movement (i.e., the 
target is basically on the airport surface) or on flight (i.e., the target is 
taking off, landing or flying). To estimate the target location area it is used 
(simultaneously when it is possible) two ways, the first one is by reading 
the squitter/reply messages which normally contain some navigation data 
like the barometric altitude, ADS-B position, etc., and the other one is by 
calculating a first and quick position by means of a specific closed form 
algorithm. This step has to be used only in the track initiation process, 
which is a confidential time interval to initialize, reliably, the corresponding 
target track [1-2]. 

The second step in Fig. 8.1 is the localization process. This process is 
used once the area detection step has finalized and it is executed with a 
certain update rate that depends on the scenario characteristics (i.e., LAM 
or WAM), the users, agreements, etc. [1-2]. This process is based on the 
combined use of a closed form algorithm (a 3D version or a projected one, 
depending on the detected area) and the Taylor based algorithm along with 
some of the analyzed and proposed regularized estimators. For this aspect, 
we propose the use of Tikhonov based regularization or T-SVD one. A 
previous analysis of the particular scenario is always advisable in order to 
choose the estimator that better satisfies the conditions. With the 
information given by the first step, the procedure decides, to calculate the 
starting point, the use of the projected version (for surface movements) of 
the closed form algorithm or of the 3D, non-projected one (for on flight 
targets). Then, it is used the selected regularized location estimator to 
refine the starting point and thus obtain a more accurate position data. For 
the vertical component of the starting point, we propose to use a fixed 
value (e.g., 10 m) for LAM applications (i.e., surface movements) as all the 
targets heights (i.e., the transponder height) are in a closed range of meters, 
while for WAM applications we propose the use of barometric altitude 
when it is present or the one as provided by the 3D closed form algorithm. 



8.4 General Localization Strategy and Additional Improvements 205 

In order to introduce a general notation, we call the strategy of solving 
the Taylor localization algorithm in the sense of any regularization method 
as the Regularized Location Estimator (RLE), and when we refer it, we are 
really referring to the regularized estimators proposed in this thesis. In the 
following subsection, some additional proposed improvements to the RLE 
are described. 

 
Fig. 8.1 Basic scheme for the general localization strategy. 
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8.4.1 Additional Improvements 

We propose two additional improvements for the general localization 
strategy described in Fig. 8.1. The first one is based on the previous 
selection of some measurements, i.e., in some scenarios, some measurements 
are highly perturbed for non random noises and, in these cases, any 
localization algorithm can obtain useful solutions, hence, it is advisable to 
remove these measurements from the localization inverse problem. The 
second one is based on the exploration of the set of ܭ partial solutions (see 
§8.1) provided by the iterative localization estimator, for each particular 
point. We have observed that, under some situations, the solution provided 
by this iterative procedure (i.e., the last partial one) is not always the 
closest one to exact target position. In this sense, we have seen that by an 
adequate exploration of the ܭ partial solutions, the accuracy of the iterative 
estimator can be improved. These additional improvements are described 
below. Then, a general flowchart, including them, is described. 

Measurements Selection (SM) 

There are situations for which some measurements are highly (or extremely 
highly) perturbed for non random noises, e.g., the ones due to non line of 
sight propagation (multipath). In such cases, it is advisable to remove these 
measurements from the localization inverse problem as no algorithm can 
reach a useful or reliable solution. To overcome this problem, we propose a 
simple strategy for selecting some measurements and to remove those 
possible highly perturbed ones. The main idea consists of sorting the TOA 
measurements from the smallest to the greatest, then the first four ones are 
retained, and finally the inverse problem is solved only with those four 
measurements. 

The hypotheses for this is based on the fact that if the 1090 MHz signal 
is not propagated through a straight line, to a receiving station, probably 
the TOA measured for such a station will be greater than those measured 
at the rest of the stations. Thereby, the reason to choose only four stations 
and no more, in the case of they are available, is to try to set a system of 
equations with unique solution as only three equations can be set with four 
stations. Moreover, as it is shown in the results section, the regularized 
location estimators allow ensuring the solution convergence even in the case 
of the minimum number of stations. 

Although this strategy can, in some cases, make no use of the additional 
good measurements, we have found that when using any of our RLEs, the 
possible accuracy degradation is negligible, whilst the improvement on 
those cases of non random noises is much relevant. The advantages of this 
strategy are clearly shown when analyzing the real system data in the 
results part. 
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Solution Selection (SS) 

Due to the fact that the RLE is an iterative estimator (cf. (8.10)), which 
produces several partial solutions (i.e., one solution is produced for every 
iteration), we have observed that not always the last one (i.e., the final 
solution) is the best solution in respect of the exact target position. It is 
because the Taylor iterations, either for the non-regularized or for the 
regularized version, are intended for minimizing the 2-norm of a residual 
error function (see §6.4 and §8.1) but not in respect to the exact target 
position. In other words, the iterative localization algorithm estimates a 
target position ࣂ that better matches the measurement vector ࢓ෝ  in the 
system of equations ࣂ࡭ = ෝ࢓ . Additionally, the regularized version also 
satisfies the minimization of the smoothed norm. However, any of these 
algorithms looks for a solution ࣂ that minimizes the distance to the exact 
target position. It is because it is not the aim of any localization algorithm 
and, the second one, because the exact target position is not known. To 
perform that minimization, we propose a criterion called “solution 
selection by nearest estimated neighbour”. This criterion consists in 
choosing as final target position that partial solution with minimum 
distance to an estimated target position provided by a tracking algorithm. 
It is, the final solution for a time ݐ is taken as a value that satisfies the 
following expression: ࣂ෡(ݐ) = argmin ቄฮࣂ෡௞(ݐ) −  ฮଶቅ (8.48)(ݐ)෡்௥௔௖௞ࣂ

where ࣂ෡்௥௔௖௞(ݐ) is the position data provided by the tracking algorithm for 
time ݐ and ࣂ෡௞(ݐ) is the kth partial solution, provided by the RLE, for time ݐ. This criterion is illustrated in Fig. 8.2. 

In Fig. 8.2 the yellow star represent the starting point for the regularized 
estimator, the red circle is the final solution as provided by the regularized 
estimator, and the green squares are the partial solutions. The dash-dot line 
is the approximated trajectory that provides a tracking algorithm after 
processing the position data. In the illustration of Fig. 8.2, the red circle for 

 
Fig. 8.2 Solution selection by nearest estimated neighbour. 
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the iteration ݇ = 4 is the value that better matches the system of equation ࣂ࡭ = ෝ࢓ , but the iteration for ݇ = 3 is the value that better satisfies the 
minimization problem in (8.48). Thus, the final solution, for the target 
position, as obtained by the solution selection by nearest estimated 
neighbour criterion is that of ݇ = 3. Moreover, in the cases of small 
measurement noises, generally the solution obtained by this criterion 
coincides with the last iteration of the regularized estimator. The reason to 
use the smoothed target position provided by a tracking algorithm is briefly 
described below. 

It is known that the position data provided by implementing a tracking 
algorithm, under certain assumptions about the observation and process 
models used, is an estimation that minimizes the following mean-squared 
error [114]: 

(ݐ)ܧ = න ቀ(ݐ)ࣂ − ቁ்ஶ(ݐ)෡்௥௔௖௞ࣂ
ିஶ ቀ(ݐ)ࣂ − ቁ(ݐ)෡்௥௔௖௞ࣂ  (8.49) ࣂd(௧ࢆ|(ݐ)ࣂ)ܲ

where ܲ(ࢆ|(ݐ)ࣂ௧) is the condition probability function of the target position 
and ࢆ௧ represents the set of previous position data. Thus, if the tracking 
algorithm converges, in statistical sense the smoothed vector ࣂ෡்௥௔௖௞ is the 
most nearest solution to the exact target position. Importantly to comment 
that the tracking algorithms are implemented in all the ATC 
infrastructures. 

The improvement added by the two above strategies is significant when 
multipath problem appears, as it is the case of the real system evaluated in 
this thesis. This general localization strategy is analyzed in §8.7. 

Flowchart for the General Localization Strategy 

A general flowchart for implementing the general localization strategy and 
the additional improvements, proposed in this thesis, is shown in Fig. 8.3. 

In the following, each step of the flowchart above is described. 

1. In this point the TOA/TDOA measurements are processed to 
put them into a common clock frame. Moreover, some additional 
delays can be added. It depends on the particular architecture 
used to measure the TOAs or TDOAs. This processing is out of 
the scope of this thesis and, hence, we assume the TOA/TDOA 
quantities are suited to be used for the localization algorithms. 

2. In the case that the received set of measurements are the first 
ones (understanding for first, the first one after area detection in 
Fig. 8.1) for a particular target (i.e., ݐ = 1), the starting position ൫ݔ௦௣,  .௦௣൯ is calculated by means of a closed form algorithmݕ
Then, this starting point is sent to the step number 5 to obtain 
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an improved position with the Regularized Location Estimator 
(RLE). 

3. In this point the selection of measurements is performed. This 
step is composed of two sub-steps as follows: 

a. Sort TOAs: In this sub-step the TOA measurements are 
sorted from the smallest to the greatest. 

 
Fig. 8.3 Flowchart for the general strategy with the additional improvements. 
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b. Take the first 4 TOAs: In this sub-step the first four 
TOA measurements, from the previous sub-step, are 
taken as described before. 

4. In this point, a predicted position (ݔ௘௦௧,  ௘௦௧) is estimated by aݕ
simple linear interpolation from the time of the last position to 
the current time. It is calculated by using the last valid track as 
provided by a tracking algorithm (e.g., a Kalman Filter –KF- 
[114]) in the step number 6. This predicted position is not used 
as a starting point for the RLE, it is used for an additional 
function within the RLE as described below. 

5. In this point, the target position is calculated by means of the 
RLE. It is composed of two sub-steps. 

a. In the first sub-step, the target position is calculated by 
means of some regularized localization algorithms 
described in this thesis. The starting point ൫ݔ௦௣, ݐ ௦௣൯ forݕ = 1 is the one as provided by the closed form algorithm, 
whilst hereafter it is the last track as provided by the 
tracking algorithm. 

b. The second sub-step is really the second additional 
improvement we propose in this thesis: “the solution 
selection by the nearest estimated neighbour”. It 
has been described before. 

6. In this step a tracking algorithm is used to smooth the solutions 
provided by the regularized location estimators.  

8.5 Simulation and Results: Analysis for Regularized 
Location Estimators 

In this part, we analyze the overall accuracy performance for the different 
Regularized Location Estimators (RLE) proposed in this thesis: the 
Tikhonov, the T-SVD and the T-TLS based RLEs. To do this we have used 
the scenarios of Innsbruck, Malpensa and Linate that are described in §C.1. 
For each scenario, we obtain the 2D and vertical (when apply) R.M.S errors 
and the spatial biases. 

For these simulations, we only use the basic regularized estimators of 
Tikhonov (8.10), T-SVD (8.38), and T-TLS (8.47), i.e., without using the 
general localization strategy described in Fig. 8.3, because the main 
objective of this part is to validate the overall performance of the three 
RLE proposed in this thesis for both LAM and WAM operations. 
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8.5.1 Accuracy Analysis for Innsbruck WAM System 

For this scenario (see §C.1.1 for a complete description), the full starting 
point, i.e., (ݔ, ,ݕ  is obtained by the closed form algorithm described in ,(ݖ
§7.3.4 (Schau & Robinson algorithm). Moreover, the regularization 
parameter for Tikhonov method is estimated by (8.29) with 0.03=ݓ; it is a 
WAM system with more than five stations. For the discrete regularization 
parameters for T-SVD and T-TLS based RLEs, we have used the 
procedures described in §8.2.2 and §8.3.1 respectively. 

The Innsbruck system is a full operating system for the Terminal 
Manoeuvring Area (TMA) at Innsbruck airport. This system is fully 
operational and therefore it provides a well-defined accuracy. The 
horizontal accuracy for this system is shown in Fig. 8.4. This figure shows 
the 2D R.M.S error for the starting point (Starting point), for the classical 
version of Taylor (Taylor3D + Pseudoinverse), for the three RLEs proposed 
in this thesis, and the predicted performance as obtained by the CRLB 
analysis [20]. Firstly, it can be observed that the CRLB predicts a 
smoothed behaviour for the horizontal accuracy, which means that this 
system does not present ill-conditioning due to the system geometry. The 
starting point as provided by the closed form algorithm provides an 
acceptable accuracy and it is improved by the classical version of Taylor 
based algorithm. Moreover, the corresponding solutions for the Tikhonov 
and T-SVD RLEs also present a smoothed behaviour, which is equal to 
that of the classical version of Taylor. It is because the number of stations 
and their horizontal, and vertical separations, avoid the ill-conditioning of 
the problem. This fact also avoids the ill-conditioning due to the 
measurements noise. Regarding to the T-TLS based RLE, it also presents a 
smoothed behaviour for the 2D R.M.S error but it is slightly greater than 
those of Tikhonov and T-SVD. 

The vertical accuracy is shown in Fig. 8.5 and it presents an equivalent 
behaviour, than that presented by the horizontal accuracy, for classical 
Taylor, Tikhonov and T-SVD. Again, the T-TLS presents a similar 
performance but with some particular degradations at the end of the take 
of line (beyond 60 km in Fig. 8.5). 

Another important aspect, complementary to the accuracy analysis, 
when using regularization methods, is the possible amount of spatial bias 
that can be introduced by these in the solution. The horizontal and vertical 
biases, for the algorithms evaluated in this scenario, are shown in Fig. 8.6 
and Fig. 8.7 respectively. In these figures can be observed that the 
Tikhonov and T-SVD RLEs reach the same amount of bias than the 
classical Taylor solution, which is always the minimum biased estimator. 
The T-TLS based RLE presents an average spatial bias performance similar 
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to that of the classical Taylor solution, but with some degradation at the 
end of the takeoff line. 

The bias analysis takes importance when tracking algorithms are used 
(as in all the ATC systems), because these algorithms improve the 
component of the R.M.S error, provided by the localization algorithm, that 
depends on the standard deviation but not on the bias. In this way, if the 
localization algorithm introduces a large amount of bias, also the smoothed 
solution after the tracking process will be far from the real one. 

The objective of this simulation is to show that the application of the 
RLEs (more the Tikhonov and T-SVD versions), in the case of well-
conditioned problem, provides the same results than the Pseudoinverse 

 
Fig. 8.4 2D R.M.S error for Innsbruck system. 

 
Fig. 8.5 Vertical R.M.S error for Innsbruck system. 
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solution (which is the minimum 2-norm solution) and therefore, it does not 
negatively affect the overall system accuracy. 

8.5.2 Accuracy Analysis for Malpensa WAM System 

For this scenario (see §C.1.2 for a complete description), the full starting 
point, i.e., (ݔ, ,ݕ  is obtained by the closed form algorithm described in ,(ݖ
§7.3.4 (Schau & Robinson algorithm). Moreover, the regularization 
parameter for Tikhonov method is estimated by (8.29) with 0.3=ݓ; it is a 
WAM system but with a number of stations smaller than five. For the 
discrete regularization parameters for T-SVD and T-TLS based RLEs, we 
have used the procedures described in §8.2.2 and §8.3.1 respectively. 

 
Fig. 8.6 2D bias for Innsbruck system. 

 
Fig. 8.7 Vertical bias for Innsbruck system. 
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Fig. 8.8 2D R.M.S error for Malpensa system. 

 
Fig. 8.9 Vertical R.M.S error for Malpensa system. 

 
Fig. 8.10 2D bias for Malpensa system. 
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The Malpensa system is a WAM system composed by four stations. In 
this scenario a typical 3º ILS (Instrumental Landing System) takeoff line is 
simulated. As it is shown in [7], the location problem for this system is an 
ill-conditioned problem. Furthermore, the example shown in §7.5, Fig. 7.4, 
corresponds to this system. This ill-conditioning is due to the small number 
of stations and because they have relatively small vertical separations. The 
horizontal and vertical R.M.S errors for this scenario are shown in Fig. 8.8 
and Fig. 8.9, respectively. 

For the horizontal accuracy, it can be seen how the CRLB analysis 
predicts the ill-conditioning due to the system geometry and, therefore, it 
can be expected a bad accuracy for those points where the CRLB presents 
some peaks (within 0-5 km and 17-20 km). The horizontal accuracy 
provided by the closed form algorithm approximately reaches the CRLB 
and it also presents bad accuracy levels for the same points than the 
CRLB. Then, the accuracy provided by the classical version Taylor method 
(i.e., Taylor3D + Pseudoinverse) does not converge for the most of points. 
Specifically, it only converges for those points beyond 20 km. In this way, it 
can be observed that this scenario presents an ill-conditioned problem due 
to both system geometry and measurements noise. Finally, it can be 
observed how the application of Tikhonov or T-SVD based RLEs 
significantly mitigates the ill-conditioning of the problem over the entire 
takeoff line. The T-TLS also presents the same behaviour but with a 
particular degradation near to 16 km. 

Regarding the vertical accuracy (see Fig. 8.9), the accuracy predicted by 
the CRLB analysis presents a greater amount of ill-conditioned than that 
for the horizontal case (the reason of this is the small vertical separation of 
the stations). In this case, the closed form algorithm provides a poor 
accuracy for the most of points, reaching acceptable values only beyond 20 
km. Furthermore, the classical version of Taylor method diverges for all the 
points before 20 km and it also reaches the CRLB beyond 20 km. For this 
scenario, the application of all the RLEs does not improve the vertical 
accuracy and its vertical component tends to that of the starting point. The 
latter is a limitation of the application of regularization methods and it is 
because these methods filter out some components of the singular values 
spectrum, which leads to a loss of information and, therefore, they avoid 
the full and accurate recovery of all the position components. 

On the other hand, the spatial horizontal bias for this scenario is shown 
in Fig. 8.10. For this analysis it is clear how the classical solution of Taylor 
algorithm presents an infinity average amount of bias (represented by the 
term NaN -Not a Number- in Fig. 8.10). By contrary, Tikhonov and T-SVD 
based RLEs present an acceptable average amount of bias (approximately 
of only 3 m). For this case, also T-TLS based algorithm presents the same 
performance for the spatial bias but with a particular peak near to 16 km. 
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This is the reason for which the average bias of this estimator is very large 
(860 m). 

In real applications, there exist other sources providing the vertical 
information, e.g., the barometer on board the aircraft which provides the 
barometric altitude. In standard conditions, this altitude information is 
reliable and accurate, and can be used by any localization system to 
improve the overall position accuracy. Based on this fact, if the vertical 
component, provided by the closed form algorithm, is modified by the 
barometric altitude contained in the reply/squitter messages (this data is 
present in the most of Downlink Formats -DF-, e.g., DF 4, 5, 17, 20 and 
21), then it is possible to improve the overall accuracy provided by the 
RLEs. The results for this strategy, assuming the barometric altitude as the 

 
Fig. 8.11 2D R.M.S error for Malpensa system by using barometric altitude. 

 
Fig. 8.12 Vertical R.M.S error for Malpensa system by using barometric altitude. 
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exact one plus a bias of 40 m, are shown in Fig. 8.11 and Fig. 8.12 for the 
horizontal and vertical accuracies, respectively. Likewise, the corresponding 
horizontal and vertical biases are shown in Fig. 8.13 and Fig. 8.14, 
respectively. 

For the horizontal accuracy, Fig. 8.11 shows how the addition of the 
barometric altitude information helps to improve the accuracy provided by 
the Taylor method solved by the Pseudoinverse matrix. However, this 
improvement is only for a small number of points. On the other hand, the 
use of this information along with the Tikhonov and T-SVD based RLEs 
improves significantly the horizontal accuracy over the entire takeoff line, 
providing accuracy levels below 25 m at 25 km from the runway, only with 
four stations (the EUROCAE requirements [1] ask for accuracy levels below 
40 m at this distance). For this simulation it has been found the solution 
obtained by the application of Tikhonov regularization presents a slightly 

 
Fig. 8.13 2D bias for Malpensa system by using barometric altitude. 

 
Fig. 8.14 Vertical bias for Malpensa system by using barometric altitude. 
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better accuracy for points beyond 22 km. However, in practical terms this 
amount of improvement can be neglected. The horizontal accuracy of the 
T-TLS based algorithm is also improved but not as much as Tikhonov and 
T-SVD. Moreover, the accuracy of the closed form algorithm does not 
depend on this information and therefore it is the same with or without it. 

Finally, for the vertical accuracy (see Fig. 8.12), the Taylor method 
solution obtained by the Pseudoinverse matrix does not converge for the 
most of points. In the case of the solution obtained by Tikhonov and T-
SVD based RLEs, they tend, in average, to the altitude provided by the 
barometer when the problem is strongly ill-conditioned, and tend to a 
better accuracy when the problem is well-conditioned (points beyond 20 
km). With some exceptions the same holds for the T-TLS based RLE. 
However, there are a set of points where the RLEs solutions improve the 
vertical accuracy provided by the barometer. These points are within 20 – 
22 km in Fig. 8.12. However, it is only a numerical result, because it is not 
a significant improvement, and the important aspect from this strategy is 
that the solutions obtained by the RLEs in any case avoid the divergence 
presented by the Pseudoinverse solution. In other words, the RLEs use the 
additional information when it is not capable to improve the accuracy; 
otherwise they improve it as shown in Fig. 8.12. 

Regarding to the horizontal bias analysis, Fig. 8.13 shows the spatial 
bias for the starting point, for the Taylor method solved by the 
Pseudoinverse and by three RLEs. First, the classical version of Taylor 
method presents the minimum bias when it converges (e.g., some points 
within 10 and 15 km). It is in concordance with the theory because, as it 
was commented in §6.4, it (LS solution) is the minimum 2-norm solution. 
However, in the rest of points the bias of this solution is infinitive (NaN). 
On the other hand, the solution provided by the application of Tikhonov 
based RLE introduces a bias but, as it is shown in Fig. 8.13, it is below 5 m 
for the most of points, and it is also smaller than that introduces by the 
starting point provided by the closed form algorithm. Only for a small 
number of points the bias introduced by Tikhonov regularization is greater 
than 5 m and below 10 m (around 20 km). However, in average this bias is 
approximately 2.4 m, which is a value that can be easily accepted for real 
applications. Moreover, the amount of bias introduced by the T-SVD based 
RLE is the same of that introduced by Tikhonov for points behind 20 km 
but, after that, the amount of bias introduced by T-SVD significantly 
increases up to the double of that introduced by Tikhonov based RLE. 
Finally, the T-TLS based RLE introduces greater amount of bias than T-
SVD based RLE for points around 16 km, but smaller than that for points 
beyond 20 km. Thus, in average the bias introduced by the T-TLS based 
algorithm is slightly smaller than that of the T-SVD based RLE but greater 
than the one of Tikhonov based RLE. The latter suggests that for this 
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scenario the best overall accuracy performance is achieved by the 
application of Tikhonov regularization. 

On the other hand, for the vertical bias analysis (see Fig. 8.14), all RLEs 
are biased to the vertical component as provided by the barometer, when 
the problem is strongly ill-conditioned (as the case previously shown in Fig. 
8.12), and improve it when the problem is better conditioned. In this case, 
the T-TLS based RLE presents smaller vertical bias than Tikhonov and T-
SVD based one for some points around 4 km and beyond 20 km. However, 
for other points it introduces greater bias than that of the barometric 
altitude. In the cases of Tikhonov and T-SVD, they reach the barometric 
altitude in the worst case. This result clearly shows one of the advantages 
of using the RLE proposed in this thesis (more the Tikhonov and T-SVD 
versions), that is, they improve when possible and, when not, they tend to 
the previous information. 

8.5.3 Accuracy Analysis for Linate (Surface) LAM System 

For this scenario (see §C.1.3 for a complete description), two kinds of 
simulations have been carried out. For the first kind, the starting point is 
set as the centre of the system perimeter as shown in Fig. C.3. The height 
of it is assumed to be 7 m. For the second kind, the starting point is 
obtained by the closed form algorithm described in §7.3.4 (Schau & 
Robinson algorithm) using also the corresponding approximation for LAM 
described in §7.4 (i.e., the projected version of Schau & Robinson 
algorithm). For this point the height of the starting point is also set to 7 m, 
like in the first kind of simulations. Additionally, also the system 
performance in the presence of a possible failure of one station is analyzed. 
Because this system is only intended for surface surveillance, only the 
horizontal R.M.S error and bias are analyzed. 

The regularization parameter for Tikhonov based RLE is estimated by 
(8.30), it is with the improvement for LAM systems. For T-SVD based 
RLE, the discrete regularization parameter is estimated for the procedure in 
§8.2.2 with the corresponding LAM improvement described for (8.40). For 
T-TLS based RLE we have found that ்݇ି்௅ௌ = 2 is the only option that 
provides acceptable results for LAM. 

For the simulations of this scenario, we have used both version of the 
classical Taylor algorithm (the non-projected and projected versions), and 
the three proposed RLEs. 

Due the number of stations composing this system (eight), it is initially 
geometrically well conditioned. However, due to the small vertical 
separation between them and the aircrafts/vehicles, it is expected some 
amount of ill-conditioning in this problem. 
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Accuracy Analysis by Using a Fixed Starting Point 

The horizontal R.M.S error and bias for this simulation are shown in Fig. 
8.15 and Fig. 8.16, respectively. For this scenario, the CRLB predicts good 
horizontal accuracy levels over the entire simulated path, presenting only 
some peaks with no more than 14 m of R.M.S error (see Fig. 8.15). In this 
way, as we have previously commented, this problem is basically 
geometrically well-conditioned. 

The non-projected version of Taylor algorithm, solved by the 
Pseudoinverse, practically does not converge for the entire path. This 
means that the problem solved by this method is ill-conditioned due to the 
measurements noise and also due the quality of the starting point. By 
contrary, the projected version of Taylor algorithm (Taylor2D + 
Pseudoinverse) converges for the entire path but, as we have previously 
analyzed in §7.6.3, it introduces certain amount of bias. On the other hand, 
it is evident the significant accuracy improvement added by the application 
of Tikhonov and T-SVD based RLEs. In this problem, these RLEs 
significantly mitigate the ill-conditioning due to the measurements and to 
the quality of the starting point. Moreover, due to the fact that for this 
scenario a fixed starting point is used, the application of these 
regularization methods allows the utilization of Taylor based algorithm 
with the advantages of the open form algorithms (linearly related with the 
noise and the optimality in the statistical sense) and of the closed form 
algorithms (the non necessity of estimate a starting point). Furthermore, 
although Tikhonov and T-SVD based RLEs present similar 2D R.M.S 
errors, for some points within the 120 – 140 the accuracy provided by the 
T-SVD based RLE significantly degrades in respect of that provided by 
Tikhonov. In this simulation, the T-TLS based RLE provides acceptable 
accuracy but not as stable as that of Tikhonov and T-SVD. Practically, we 
can consider for this case that T-TLS based RLE does not converge. 

Regarding to the bias analysis (see Fig. 8.16), the same general 
behaviour than that for the 2D R.M.S error is observed. That is, the non-
projected version of the classical Taylor algorithm does not converge and 
the average amount of bias is infinity (NaN), adn the projected version of 
Taylor algorithm, although it converges, introduces certain amount of bias. 
Likewise, the amount of bias introduced by both Tikhonov and T-SVD 
based RLEs can be neglected in practical terms (0.89 m for Tikhonov and 
1.51 m for T-SVD) but, for those points within 120 – 140 the bias 
introduced by the T-SVD significantly increases regarding to that of the 
Tikhonov regularization. In any case, in average both estimators improve 
the overall performance of the classical solution provided by the projected 
version of Taylor solved by the Pseudoinverse. 
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Accuracy Analysis by Using the Starting Point Provided by 
Schau & Robinson Algorithm 

In this simulation we analyze the horizontal accuracy and bias of the 
estimators when the starting point is provided by the projected version of 
the Schau & Robinson algorithm (see §7.3.4 and §7.4). These results are 
shown in Fig. 8.17 and Fig. 8.18, respectively. 

First, it should be noted that the quality (horizontal accuracy) of the 
starting point for this simulation (R.M.S error between 1 m and 12 m) is 
significantly much better than that of the fixed point (R.M.S error between 
260 m and 2650 m, see Fig. 8.16). For this reason, the classical version of 
Taylor algorithm (Taylor3D + Pseudoinverse) converges with stable 

 
Fig. 8.15 2D R.M.S error for Linate system with a fixed starting point. 

 
Fig. 8.16 2D bias for Linate system with a fixed starting point. 



222 8 Multilateration Localization by Using Regularization Algorithms 

performance and reaches the CRLB. On the other hand, the horizontal 
accuracy provided by both Tikhonov and T-SVD based RLEs is below 5 m 
and for the most of points they improve the accuracy provided by the 
closed form algorithm, and by both version of Taylor (non-projected and 
projected). Additionally, for this simulation it is observed that the accuracy 
provided by T-SVD is better than that provided by the Tikhonov 
regularization, but not much. For the case of T-TLS based RLE, it 
converges and presents good accuracy levels, but not as well as Tikhonov 
and T-SVD. Furthermore, it also presents some peaks of R.M.S error that 
are greater than the corresponding values of the closed form algorithm and 
of the both version of Taylor. The same behaviour is observed for the 
horizontal bias analysis, and, in practical terms, the overall performance 
provided by both Tikhonov and T-SVD based RLEs can be considered the 
same (0.22 m of bias for Tikhonov and 0.12 m for the T-SVD). In this case, 
also the T-TLS based RLE presents a small average amount of bias. 
However, it is greater than that of the non-projected Taylor algorithm and, 
therefore, its implementation is not justified. 

The results shown in Fig. 8.15 - Fig. 8.18 suggest that Tikhonov and T-
SVD based RLEs are useful to solve the ill-conditioning of the location 
problem for LAM. In this sense, these results also suggest that Tikhonov 
regularization allows a more robust and reliable location strategy, as it is 
capable of reaching good accuracy values even in the presence of poor-
accurate starting points. 

 

 
Fig. 8.17 2D R.M.S error for Linate system with starting point from projected version of 

Schau&Robinson algorithm. 
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Accuracy Analysis in the Presence of a Possible Failure of One 
Station (Fixed Starting Point) 

Another important aspect to be studied in the accuracy analysis is the 
behaviour of the overall system accuracy when one station fails. In this 
part, the possible failure of the station number 1 is simulated (see Fig. C.3), 
and the starting point is set to the centre of the system perimeter (see Fig. 
C.3). The failure is simulated simply by not using this station in the 
position estimation process. The 2D R.M.S error and bias analysis are 
shown in Fig. 8.19 and Fig. 8.20, respectively. 

Under this situation, it is observed from Fig. 8.19 that with the failure of 
the station number 1, the accuracy provided by each algorithm decreases. 
Particularly, the non-projected version of Taylor does not converge for the 
most of points. The projected version of Taylor converges for the most of 
points but, it does not in those points within 117 - 140. It is because these 
points are in an area where the station number 1 significantly improves the 
HDOP of the system. In this sense, the localization problem for this 
scenario is ill-conditioned due to the starting point and geometry under the 
failure of that station. Moreover, also the T-SVD and T-TLS based RLEs 
does not converges for these points. Tikhonov based RLE is the only one 
that provides good accuracy values (below 6 m for the entire path) for the 
entire path under this situation. The same behaviour is present for the bias 
analysis, where Tikhonov provides an average amount of bias of only 2 m. 
In other words, Tikhonov is the only method that allows obtaining the 
minimum bias under this situation: failure of one station and poor-accurate 
starting point. 

 
Fig. 8.18 2D bias for Linate system with starting point from projected version of 

Schau&Robinson algorithm. 
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Accuracy Analysis in the Presence of a Possible Failure of One 
Station (Starting Point provided by Schau & Robinson 
Algorithm) 

In this part, we also perform the accuracy analysis under the failure of 
station number 1 but, in this case, the starting point is obtained by the 
projected version of Schau & Robinson algorithm. The corresponding 
results for the 2D R.M.S error and bias are shown in Fig. 8.21 and Fig. 
8.22, respectively. 

For this simulation, it is observed that although the classical non-
projected version of Taylor converges for an important number of points, it 
still does not provide accurate position data for other ones. In this case, the 
projected version of Taylor provides accurate results but, they are not as 

 
Fig. 8.19 2D R.M.S error for Linate system with a fixed starting point: failure of station 1. 

 
Fig. 8.20 2D bias for Linate system with a fixed starting point: failure of station 1 
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well as those provided by Tikhonov and T-SVD based RLEs. Thus, it is 
also observed that Tikhonov and T-SVD based RLEs provide 
approximately the same overall accuracy performance. For the horizontal 
accuracy both algorithms improve, in the most of the simulated path, the 
accuracy provided by the starting point (i.e., the one of Schau & Robinson 
algorithm). Moreover, regarding to the bias of the estimator, Tikhonov 
provides an average amount of bias of 0.41 m and T-SVD of 0.27 m, which 
in practical terms are the same. Finally, the T-TLS based RLE provides 
accurate results for the most of points, and provides an average amount of 
bias of 1.6 m. However, it also presents some peaks that make its 
implementation not viable in the situations of the failure of stations. 

 
Fig. 8.21 2D R.M.S error for Linate system with starting point from projected version of 

Schau&Robinson algorithm: failure of station 1. 

 
Fig. 8.22 2D bias for Linate system with starting point from projected version of 

Schau&Robinson algorithm: failure of station 1. 
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From these results, we indentify some important conclusions for the 
application of RLEs for LAM operations. For those situations where a 
suitable number of stations are operational, both Tikhonov and T-SVD 
based RLEs provide good accuracy values and in all the cases improve the 
accuracy of the starting point. In this sense, when the quality of the 
starting point is relatively good (e.g., coming from the projected version of 
a closed form algorithm), the T-SVD provides (in a numerical sense) the 
best accuracy values (results in Fig. 8.17, Fig. 8.18, Fig. 8.21, and Fig. 8.22) 
but, if the quality of the starting point decreases, the best accuracy is 
achieved by the Tikhonov regularization (results in Fig. 8.15, Fig. 8.16, Fig. 
8.19, and Fig. 8.20). 

On the other hand, if some station (or stations) is not operational, 
Tikhonov regularization presents a more robust performance for the case of 
the fixed starting point (results in Fig. 8.19 and Fig. 8.20) and, for the case 
of the starting point coming from the projected version of a closed form 
algorithm, Tikhonov and T-SVD based RLEs provide the same 
performance. In the same sense, we conclude that the T-TLS based RLE, 
although it provides some good results, does not present significant 
improvements regarding to those of Tikhonov and T-SVD. Therefore, we do 
not include more this estimator in the remaining part of this thesis. 

From the comments above, we also conclude that the application of both 
Tikhonov and T-SVD based RLEs provide significant accuracy 
improvements and that the Tikhonov regularization presents a more robust 
performance. 

8.6 Simulation and Results: Analysis of the Starting 
Point Quality 

In this part, the influence of the starting point quality, on the accuracy and 
convergence of the Taylor based algorithms (i.e., the non-projected version 
of Taylor solved by the Pseudoinverse matrix -classical solution-, the 
projected one, and the Tikhonov and T-SVD based RLEs) is studied. Also 
here, we only use the basic regularized estimators of Tikhonov (8.10) and 
T-SVD (8.38), i.e., without using the general localization strategy described 
in Fig. 8.3. As we have analyzed in §8.5, normally the Taylor based 
algorithms improve the accuracy of the starting point. Therefore, one of the 
objectives of this subsection is to know how robust is every regularized 
estimator proposed in this thesis, regarding to the quality (or accuracy) of 
the starting point. Likewise, the other objective of this analysis is to select 
the possible best option to provide a starting point for using along with our 
proposed general localization strategy in Fig. 8.3. Thus, first we shortly 
comment all the possible options to calculate/estimate a starting point and 
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then, the most of them are tested for Linate (see §C.1.3) and Malpensa (see 
§C.1.2) scenarios. 

The possible sources to calculate or estimate the starting point are 
summarized in Table 8.1. 

Table 8.1 Possible sources for the starting point. 

Source Notation 

Closed form algorithm (xclosed,yclosed,zclosed) 
Closed form + barometric altitude (xclosed,yclosed,zb) 
Closed form + fixed altitude (xclosed,yclosed,zf) 
Fixed point (xf,yf,zf) 
Projected Closed form + barometric altitude (xclosed2D,yclosed2D,zb) 
Projected Closed form + fixed altitude (xclosed2D,yclosed2D,zf) 
Position data in DF 4, 5, 17, 20, 21 (xDF,yDF,zDF) 
Position after a tracking algorithm (xTrack,yTrack,zTrack) 

The use of the different sources commented in Table 8.1 depends on the 
application, i.e., LAM or WAM. For example, the fixed starting point is 
more useful for LAM applications, whilst the option of closed form 
algorithm + barometric altitude is more advisable for WAM applications or 
for an approach line (this part can be also considered as LAM). In this 
part, the two last options in Table 8.1 are not simulated. The option of the 
position data contained in the DF because we do not have any of this data, 
and the option corresponding to the tracking filter is tested with the real 
data experimentation in §8.7. 

Another important aspect to use the sources for a starting point depends 
on the version of Taylor method used, i.e., the non-projected version or the 
projected one. For the projected version of Taylor it is necessary to set a 
starting point only with the horizontal coordinates, i.e., (ݔ,  .(ݕ
8.6.1 Feasible Options for LAM Operations 

The feasible options for LAM applications are shown in Fig. 8.23 and Fig. 
8.24 for the non-projected version of Taylor method and for the projected 
one respectively. 

The regularization methods have been not implemented for the projected 
version of Taylor because this problem is generally well-conditioned. 
Another reason to avoid the use of the regularization methods along with 
the Taylor2D algorithm is the amount of bias introduced by this particular 
strategy can be large, i.e., the bias due to the projected plus the bias due 
the regularization method. 
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8.6.2 Feasible Options for WAM Operations 

The feasible options to estimate the starting point for WAM operations are 
shown in Fig. 8.25. The use of the projected version of Taylor method is 
normally not advisable to be used for WAM, due to the amount of bias 
that it introduces. However, we also validate this option for providing the 
starting point. 

 
Fig. 8.23 Feasible options for the starting point in LAM operations for the non-projected 

version of Taylor based algorithms. 

 
Fig. 8.24 Feasible options for the starting point in LAM operations for the projected version 

of Taylor based algorithms. 

 
Fig. 8.25 Feasible options for the starting point in WAM operations for the non-projected 

version of Taylor based algorithms. 
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8.6.3 Accuracy Analysis for LAM Operations 

For the analysis of the LAM accuracy -surface movements- regarding to the 
starting point it has been simulated all the possible combinations shown in 
Fig. 8.23 and Fig. 8.24 for the Linate scenario. For the options including a 
closed form algorithm we use the Schau & Robinson (see §7.3.4) in the non-
projected and projected versions. 

The regularization parameters used in these simulations are the same of 
the previous section for both Tikhonov and T-SVD based RLEs. 

Starting Point Provided by the Schau3D Algorihm 

The results for this simulation are shown in Fig. 8.26 and Fig. 8.27 for the 
2D R.M.S error and 2D bias respectively. Then, Fig. 8.28 and Fig. 8.29 
show the same parameters but for a simulation of the possible failure of the 
station number 1. 

For the first simulation (Fig. 8.26 and Fig. 8.27) we can observe that the 
starting point has a good accuracy and, in this way, it allows to the 
classical solution (Taylor3D + Pseudoinverse) reaches also good accuracy 
values. The Taylor2D + Pseudoinverse solution also converges over the 
entire simulated path but, it adds an amount of bias that is of 
approximately 2 m. Regarding to the RLEs solutions, Taylor3D + Tikhonov 
and Taylor3D + T-SVD provides good accuracy values. The Tikhonov 
solution reaches the same accuracy than the classical solution (i.e., the 
solution with minimum 2-norm or the minimum biased solution) and the T-
SVD solution introduces a bigger bias that is approximately of 2 m. 

On the other hand, for the simulation of a failure of station 1 (results in 
Fig. 8.28 and Fig. 8.29), the starting point has good accuracy values but 
the classical solution diverges with big errors in some parts of the simulated 
path. The Taylor2D + Pseudoinverse solution provides good accuracy values 
and improves the accuracy of the starting point. Finally, the Tikhonov 
based RLE solution provides the best performance in this case with an 
average bias of 1.8 m, and the T-SVD based one also provides good 
accuracy values but it does not improve the starting point accuracy, 
instead, this solution introduces bigger errors than that of the starting 
point. 
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Fig. 8.26 2D R.M.S error with starting point provided by Schau3D. 

 
Fig. 8.27 2D bias with starting point provided by Schau3D. 

 
Fig. 8.28 2D R.M.S error with starting point provided by Schau3D: failure of station 1. 
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Starting Point Provided by Schau3D Algorithm and a Fixed 
Altitude 

The results for this simulation are shown in Fig. 8.30 and Fig. 8.31 for the 
2D R.M.S error and 2D bias respectively. Then, Fig. 8.32 and Fig. 8.33 
show the same parameters but for a simulation of the possible failure of the 
station number 1. Furthermore, the fixed altitude is assumed equal to 7 m. 

For the first simulation (Fig. 8.30 and Fig. 8.31) we observe that the 
starting point has a good accuracy and it is improved by all the algorithms. 
The best performance in this case is achieved by the T-SVD based RLE 
solution but the classical and Tikhonov based one reach, in practical terms, 
the same performance. The solution provided by Taylor2D + Pseudoinverse 
introduces an amount of bias of approximately 2 m. For this algorithm, the 
performance is the same as it does not use the height information. However, 
in the presence of a failure of station 1 (Fig. 8.32 and Fig. 8.33), the 
classical and T-SVD based solutions diverge with big errors. The Taylor2D 
+ Pseudoinverse also improves the accuracy of the starting point but the 
best performance is achieved by the Tikhonov based solution, which only 
introduces an amount of bias smaller than 1 m (0.6 m). The latter again 
suggests that Tikhonov based RLE is a more fault-tolerant estimator than 
the remaining ones. 

 
Fig. 8.29 2D bias with starting point provided by Schau3D: failure of station 1. 
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Fig. 8.30 2D R.M.S error with starting point provided by Schau3D + fixed altitude. 

 
Fig. 8.31 2D bias with starting point provided by Schau3D + fixed altitude. 

 
Fig. 8.32 2D R.M.S error with starting point provided by Schau3D + fixed altitude: failure 

of station 1. 
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Starting Point Provided by a Fixed Point 

The results for this simulation are shown in Fig. 8.34 and Fig. 8.35 for the 
2D R.M.S error and 2D bias respectively. Then, Fig. 8.36 and Fig. 8.37 
show the same parameters but for a simulation of the possible failure of the 
station number 1. Furthermore, the fixed point is that shown in Fig. C.3. 

For the first simulation (Fig. 8.34 and Fig. 8.35) we observe that the 
starting point has, in average, a poor accuracy (an average bias of 972 m). 
Firstly, for this simulation, the classical Taylor (non-projected) solution 
diverges with big errors for the most of simulated path. The Taylor2D + 
Pseudoinverse solution provides good accuracy values and it introduces an 
amount of bias of approximately 2 m. The Tikhonov based RLE solution 
provides the best performance (an average bias smaller than 0.5 m) and the 
T-SVD based RLE one also provides good accuracy values but, for some 
parts of the simulated path, it introduces an amount of bias larger than 6 
m. Finally, in the presence of a possible failure of station 1 (Fig. 8.36 and 
Fig. 8.37), all the methods diverge to a large errors with the exception of 
the Tikhonov based RLE solution, which provides an average bias smaller 
than 1 m (see Fig. 8.37). 

 
Fig. 8.33 2D bias with starting point provided by Schau3D + fixed altitude: failure of station 

1. 
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Fig. 8.34 2D R.M.S error with starting point set to a fixed coordinate. 

 
Fig. 8.35 2D bias with starting point set to a fixed coordinate. 

 
Fig. 8.36 2D R.M.S error with starting point set to a fixed coordinate: failure of station 1. 
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Starting Point Provided by Schau2D Algorithm and a Fixed 
Altitude 

The results for this simulation are shown in Fig. 8.38 and Fig. 8.39 for the 
2D R.M.S error and 2D bias respectively. Then, Fig. 8.40 and Fig. 8.41 
show the same parameters but for a simulation of the possible failure of the 
station number 1. Furthermore, the fixed altitude is assumed equal to 7 m. 

For the first simulation (Fig. 8.38 and Fig. 8.39) we observe that the 
starting point has a good accuracy and it is improved by all the algorithms. 
The best performance in this case is achieved by the T-SVD based RLE 
solution but, the classical Taylor and Tikhonov based one solutions reach, 
in practical terms, the same performance. The solution provided by 
Taylor2D + Pseudoinverse introduces an amount of bias of approximately 2 
m. However, in the presence of a failure of station 1 (Fig. 8.40 and Fig. 
8.41), the classical solution diverges with errors bigger than 100 m. The 
Taylor2D + Pseudoinverse also improves the accuracy of the starting point 
under this situation but, the best performance is achieved by the Tikhonov 
and T-SVD based RLEs solutions, which only introduce an amount of bias 
smaller than 1 m. 

 
Fig. 8.37 2D bias with starting point set to a fixed coordinate: failure of station 1. 
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Fig. 8.38 2D R.M.S error with starting point provided by Schau2D + fixed altitude. 

 
Fig. 8.39 2D bias with starting point provided by Schau2D + fixed altitude. 

 
Fig. 8.40 2D R.M.S error with starting point provided by Schau2D + fixed altitude: failure 

of station 1. 



8.6 Simulation and Results: Analysis of the Starting Point Quality 237 

Numerical Analysis 

In the following tables, we show the mean of the 2D bias and 2D R.M.S 
error for every algorithm and every starting point source, for the entire 
simulated path. Table 8.2 and Table 8.3 show the mean values for the 
simulations with all the stations operative and, Table 8.4 and Table 8.5 
show the mean values for the simulations with the failure of station 1. 
From these numerical results, we observe that the use of Taylor3D along 
with the Tikhonov regularization (i.e., the Tikhonov based RLE) provides 
good accuracy values for all the possibilities. 

 

Table 8.2 Mean of the 2D bias over the simulated path of Linate system. Values given in 
meters. 

Algorithm 
Starting 
Source 

(xsch,ysch,zsch) (xsch,ysch,zf) (xf,yf,zf) (xsch2D,ysch2D,zf) 

Starting point 2.26 2.26 972.44 1.41 

Taylor3D + 
Pseudoinverse 

0.61 0.30 NaN 0.30 

Taylor2D + 
Pseudoinverse 

2.21 2.21 2.21 2.21 

Talor3D + Tikhonov 0.68 0.29 0.46 0.33 

Taylor3D + T-SVD 2.49 0.12 1.51 0.11 

 
Fig. 8.41 2D bias with starting point provided by Schau2D + fixed altitude: failure of station 

1. 
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Table 8.3 Mean of the 2D R.M.S error over the simulated path of Linate system. Values 
given in meters. 

Algorithm 
Starting 
Source 

(xsch,ysch,zsch) (xsch,ysch,zf) (xf,yf,zf) (xsch2D,ysch2D,zf) 

Starting point 6.54 6.54 972.4 2.21 

Taylor3D + 
Pseudoinverse 

2.25 2.42 NaN 2.42 

Taylor2D + 
Pseudoinverse 

2.60 2.60 2.60 2.60 

Talor3D + Tikhonov 2.03 1.65 1.72 1.60 

Taylor3D + T-SVD 5.32 1.25 2.61 1.14 

Table 8.4 Mean of the 2D bias over the simulated path of Linate system: failure of station 1. 
Values given in meters. 

Algorithm 
Starting 
Source 

(xsch,ysch,zsch) (xsch,ysch,zf) (xf,yf,zf) (xsch2D,ysch2D,zf) 

Starting point 4.34 4.34 972.44 1.10 

Taylor3D + 
Pseudoinverse 

NaN NaN NaN 153.51 

Taylor2D + 
Pseudoinverse 

2.49 2.49 NaN 2.00 

Talor3D + Tikhonov 1.87 0.63 0.82 0.66 

Taylor3D + T-SVD 7.47 935.46 54900.75 0.17 

Table 8.5 Mean of the 2D R.M.S error over the simulated path of Linate system: failure of 
station 1. Values given in meters. 

Algorithm 
Starting 
Source 

(xsch,ysch,zsch) (xsch,ysch,zf) (xf,yf,zf) (xsch2D,ysch2D,zf) 

Starting point 23.22 23.22 972.4 2.47 

Taylor3D + 
Pseudoinverse 

NaN NaN NaN 1537 

Taylor2D + 
Pseudoinverse 

6.50 6.50 NaN 2.87 

Talor3D + Tikhonov 3.75 2.47 2.59 2.40 

Taylor3D + T-SVD 15.83 11780 54910 1.98 

8.6.4 Accuracy Analysis for WAM Operations 

For the analysis of the WAM accuracy, regarding to the starting point, we 
simulate all the possible combinations shown in Fig. 8.25 over a takeoff line 
for the Malpensa scenario (see Fig. C.2). Furthermore, the regularization 
parameters used in these simulations are the same of §8.5.2 for both 



8.6 Simulation and Results: Analysis of the Starting Point Quality 239 

Tikhonov and T-SVD based RLEs. Because the reduced number of stations 
(only four) for this scenario, we do not simulate the possible failure of one 
of them. 

Starting Point Provided by Schau3D Algorithm 

The results for this simulation are shown in Fig. 8.42, Fig. 8.43, and Fig. 
8.44 for the 2D and vertical R.M.S errors, and for the 2D bias, respectively. 
As we have previously analyzed in §8.5.2 this problem is ill-conditioned. For 
the horizontal accuracy, the starting point provided by the full version of 
Schau algorithm provides poor accuracy values for those points within 2-5 
km and 17-20 km; in the remaining points it provides good accuracy values 
(with R.M.S errors below 30 m). In this scenario, the Taylor3D + 
Pseudoinverse solution does not converge for those points before 20 km, as 
it is clearly shown in Fig. 8.42. The Taylor2D + Pseudoinverse solution 
provides good accuracy values until a distance of 20 km from the runway; 
after that, the amount of bias due to the horizontal projection significantly 
affects the overall performance of this algorithm (see Fig. 8.44). Finally, 
Tikhonov and T-SVD based RLEs solutions improve, over the entire takeoff 
line, the accuracy of the starting point. In this case, both methods present 
the same performance. 

On the other hand, no improvement is found for the vertical accuracy. It 
is because the pertaining accuracy of the starting point is significantly poor 
regarding to the small number of available stations. In this case, all the 
Taylor3D based RLE reach exactly the vertical component of the starting 
point. 

 

 
Fig. 8.42 2D R.M.S error with starting point provided by Schau3D. 
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Starting Point Provided by Schau3D Algorithm and a Fixed 
Altitude 

The results for this simulation are shown in Fig. 8.45 and Fig. 8.46 for the 
2D R.M.S error and 2D bias respectively. Because no improvement is 
achieved for the vertical position component, we do not show the 
corresponding R.M.S error for it. Furthermore, the fixed altitude is assumed 
equal to 25 m. 

In this case, we observe that the classical solution only converges for 
those points within 6-17 km. The Taylor2D + Pseudoinverse solution 
converges for all the points but it is affected by the large amount of bias for 

 
Fig. 8.43 Vertical R.M.S error with starting point provided by Schau3D. 

 
Fig. 8.44 2D bias with starting point provided by Schau3D. 
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points beyond 20 km. The T-SVD based RLE solution provides the same 
performance than this. Finally, the Tikhonov based RLE solution provides 
better performance than the latter. However, after 20 km does not improve 
the accuracy of the starting point. 

The results found in this simulation can be expected because also the 
regularization methods have a limit of improvement. In this way, the poor 
accuracy of the vertical component of the starting point and the small 
number of stations avoid a satisfactory convergence for those points beyond 
20 km, still using the regularization methods. 

 
Fig. 8.45 2D R.M.S error with starting point provided by Schau3D + fixed altitude. 

 
Fig. 8.46 2D bias with starting point provided by Schau3D + fixed altitude. 
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Starting Point Provided by a Fixed Point 

The results for this simulation are shown in Fig. 8.47 and Fig. 8.48 for the 
2D R.M.S error and 2D bias respectively. Because no improvement is 
achieved for the vertical position component, we do not show the 
corresponding R.M.S error for it. Furthermore, the fixed altitude is assumed 
equal to 100 m. 

In this case the Taylor3D + Pseudoinverse solution does not converge for 
any point on the takeoff line. The remaining results and observations are 
significantly similar to those of the Fig. 8.45. For this reason, no more 
comments are provided for these results. 

 
Fig. 8.47 2D R.M.S error with starting point set to a fixed coordinate. 

 
Fig. 8.48 2D bias with starting point set to a fixed coordinate. 
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Starting Point Provided by Shcau2D Algorithm and a Fixed 
Altitude 

The results for this simulation are shown in Fig. 8.49 and Fig. 8.50 for the 
2D R.M.S error and 2D bias respectively. Because no improvement is 
achieved for the vertical position component, we do not show the 
corresponding R.M.S error for it. Furthermore, the fixed altitude is assumed 
equal to 25 m. 

The results for this part are significantly similar to those in Fig. 8.45 
and Fig. 8.47; for this reason no additional comments are done in this part. 
However, it is clear that under a geometrically ill-conditioned problem, the 
quality of the vertical component of the starting point plays an important 

 
Fig. 8.49 2D R.M.S error with starting point provided by Schau2D + fixed altitude. 

 
Fig. 8.50 2D bias with starting point provided by Schau2D + fixed altitude. 
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role in the estimation of the corresponding horizontal ones. It is analyzed in 
the next simulation, where we use the barometer information. 

Starting Point Provided by Schau3D Algorithm and the 
Barometric Altitude 

The results for this simulation are shown in Fig. 8.51, Fig. 8.52, and Fig. 
8.53 for the 2D and vertical R.M.S errors, and the 2D bias, respectively. 
Furthermore, the barometric altitude is simulated as ݖ௕ = ௧௥௨௘ݖ +ࣨ(20݉, 5݉)., where in this case ࣨ(20݉, 5݉) stands for a Gaussian 
distribution of 20 m of mean and standard deviation of 5 m. 

For this part, the altitude of the starting point is provided by the 

 
Fig. 8.51 2D R.M.S error with starting point provided by Schau3D + barometric altitude. 

 
Fig. 8.52 Vertical R.M.S error with starting point provided by Schau3D + barometric 

altitude. 
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barometric altitude. This fact allows the method to reach better accuracy 
values. In this case, the classical solution only converges for those points 
within 9 - 16 km and beyond 20 km; in the remaining points it diverges to 
infinity errors due the geometrically ill-conditioning problem. The Taylor2D 
+ Pseudoinverse solution converges over the entire takeoff line but the 
amount of bias, due to the horizontal projection, is significantly large and 
avoid to this method improving the accuracy of the starting point, more for 
those points beyond 10 km. Finally, the Tikhonov and T-SVD based RLEs 
solutions significantly improve the accuracy of the starting point over the 
entire takeoff line. In terms of the R.M.S error the Tikhonov and T-SVD 
based RLEs solutions present the same performance but, in the terms of the 
bias, the smallest one is obtained by the Tikhonov based solution (see Fig. 
8.53). 

Finally, regarding to the vertical accuracy, the classical solution provides 
good accuracy values only for those points beyond 20 km (where the 
problem is well-conditioned). The regularized solutions reach the same 
vertical component of the starting point until a distance of 20 km and, after 
that, they improve the accuracy of this component; i.e., the application of 
the regularization methods does not negatively affect the problem when it is 
well-conditioned. 

Numerical Analysis 

In the following tables, we show the mean of the 2D bias and 2D R.M.S 
error for every method and every source for the starting point, for the 
entire simulated path. Table 8.6 and Table 8.7 show the mean values for 
the simulations with all the stations operative. From these numerical 
results, we observe that the use of Tikhonov and T-SVD based RLEs allow 

 
Fig. 8.53 2D bias with starting point provided by Schau3D + barometric altitude. 
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providing good accuracy values for all the possibilities. Moreover, as we 
have previously analyzed, the Tikhonov based estimator is more fault-
tolerant and robust in the presence of starting point degradations. 

From these results also we can conclude that the best option for 
providing a starting point for LAM operations is by using the (ݔ,  (ݕ
components from a projected closed form algorithm along with a fixed 
height. We have particularly used the projected version of Schau & 
Robinson algorithm, and useful results have been obtained. However, any of 
the remaining closed form algorithms, described and analyzed in §7.3 and 
§7.6 respectively, could be used. On the other hand, for WAM operations, 
the best option for providing a starting point is by using the (ݔ,  (ݕ
components from a non-projected closed form algorithm along with the 
information of altitude coming from the barometer. The use of barometric 
altitude is a realistic assumption as it is periodically sent by aircrafts in all 
the air spaces around the world [15]. Moreover, this altitude information is 
currently used for several ATC systems, like primary radars, secondary 
radars, and even MLAT systems, for directly inform to the air traffic 
controllers about the target height. 

 

Table 8.6 Mean of the 2D bias over the entire takeoff line of Malpensa system. Values given 
in meters. 

Algorithm 
Starting 
Source 

(xsch,ysch,zsch)(xsch,ysch,zf) (xf,yf,zf) (xsch2D,ysch2D,zf)(xsch,ysch,zb) 

Starting point 4.64 4.64 7096.78 250.89 4.87 

Taylor3D + 
Pseudoinverse 

NaN NaN NaN NaN NaN 

Taylor2D + 
Pseudoinverse 

205.80 205.80 206.19 206.01 205.99 

Talor3D + 
Tikhonov

3.36 39.39 78.22 70.76 1.03 

Taylor3D + 
T-SVD 

3.36 207.74 206.00 205.98 2.08 
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Table 8.7 Mean of the 2D R.M.S error over the entire takeoff line of Malpensa system. 
Values given in meters. 

Algorithm 
Starting 
Source 

(xsch,ysch,zsch)(xsch,ysch,zf)(xf,yf,zf)(xsch2D,ysch2D,zf)(xsch,ysch,zb) 

Starting point 18.49 18.49 7097 2512 19.78 

Taylor3D + 
Pseudoinverse 

NaN NaN NaN NaN NaN 

Taylor2D + 
Pseudoinverse 

206.10 206.10 206.4 206.3 206.2 

Talor3D + 
Tikhonov

14.18 40.68 78.52 71.09 4.83 

Taylor3D +  
T-SVD 

14.18 208 206.3 206.2 4.51 

8.7 Experimental With Real Data: General 
Localization Strategy 

To perform the experimental with real data, the company ERA A.S. has 
provided us of a record of TOA measurements of one of its operational 
system, the LAM system installed at Tallinn airport (Tallinn, Estonia). 
This system is intended for surface surveillance and is composed of fourteen 
receiving stations. The record of TOA measurements was taken through the 
entire airport surface following the requested procedures by the European 
regulatory bodies [1]. The record contains more than 4000 register (with an 
average period of 1 s), where each register contains set of TOA 
measurements. From the information provided by the company, we know 
that these measurements are perturbed by multipath noise in some areas. 
Moreover, also the company above mentioned has provided us of highly 
accurate position reference data, which was simultaneously recorded with a 
GPS receiver with differential correction capabilities (DGPS). This data is 
used to evaluate the solutions accuracy of the RLEs and the general 
localization strategy proposed in this thesis. The system layout and the 
reference position data are depicted in Fig. C.4. Additionally, Fig. C.5 
shows the LoS profile for this system, which shows for every register the 
number of stations that measure the TOA of the emitted Mode S signal. 

The procedure to evaluate the accuracy of the solutions is exactly the 
same described in §7.7. In this part we analyze the performance of the basic 
RLEs (i.e., the Tikhonov based estimator in (8.11) and the T-SVD based 
estimator in (8.39)) and the general localization strategy described in Fig. 
8.3. Moreover, we also separately analyze the performance of the additional 
improvements proposed in §8.4.1, which allow us to clearly shown the 
significant accuracy increment that is obtained, also in the case of 
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multipath noise. Regarding to the regularization parameters, we use the 
same as used for Linate scenario in §8.5.3, as Tallinn system is obviously 
also a LAM system. The results for Tikhonov based RLE are shown in Fig. 
8.54 and Fig. 8.55, for x and y coordinates, respectively, whilst for T-SVD 
based RLE are shown in Fig. 8.56 and Fig. 8.57. Each of these figures is 
equally divided in four subplots, which are organized in the same way from 
top to bottom: the first subplot shows the coordinate (either x or y) as 
estimated only by the basic RLE (either Tikhonov in (8.11) or T-SVD in 
(8.39)), i.e., without the additional improvements proposed in §8.4.1. The 
second subplot shows the estimated coordinate by using the RLE only with 
the additional improvement of measurement selection (SM). The third one 
is the estimated coordinate by using the RLE only with the additional 
improvement of solution selection (SS), and the last one shows the 
estimated coordinate by using the general localization strategy described in 
Fig. 8.3, i.e., by using the RLE along with the additional improvements of 
SM and SS. Also this last subplot shows the results of using a tracking 
algorithm (the basic Kalman Filter [114]) as described in the last step of 
Fig. 8.3. Finally, for all of these subplots the corresponding coordinate 
provided by the DGPS receiver is shown. The latter allow us to clearly 
observe the data dispersion. The numerical analysis is shown in Table 8.8 
for the Tikhonov based RLE, and in Table 8.9 for the T-SVD one. 

By looking the first subplot of each figure, we appreciate how the 
application of the basic RLE significantly improves the position data as 
provided by the classical solution of Taylor either in its non-projected 
version or in its projected one (compare with Fig. 7.27, Fig. 7.29, Fig. 7.31, 
and Fig. 7.33). Likewise, the successive subplots clearly show the accuracy 
improvement that is obtained in each of the general localization strategy 
steps, i.e., the accuracy improvement due to the SM, SS, and the combined 
use of both. In the last subplots, it is clear how the position data provided 
by the general localization strategy is very close to the reference position 
data (i.e., of the DGPS). The latter holds for both Tikhonov based strategy 
and T-SVD based one. Moreover, the small error peaks are corrected by the 
application of a simple tracking algorithm, as shown also in those last 
subplots. 

Importantly to comment the significant improvement to the error peaks 
due to multipath that is obtained by the implementation of the SM and SS 
strategies. These improvements are evident by comparing the second and 
third subplots with the first one for each coordinate, and each RLE. 

On the other hand, Table 8.8 and Table 8.9 show clearer the significant 
improvements provided by the RLEs proposed in this thesis, as the 
corresponding standard deviations and means are much smaller than those 
obtained by the classical localization algorithms in Table 7.6 and Table 7.7. 
Furthermore, the same holds for the PoL, as the values provided by the 
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RLEs are greater than those ones for the classical localization algorithms. 
In this sense, we conclude the RLEs and the general localization strategy 
proposed in this thesis provide much better performance than the most 
established localization algorithms in the literature. Also, we consider 
important to comment that all the general conclusions obtained with the 
experimental with real data are fully in agreement with those ones obtained 
with the simulated scenarios in §8.5 and §8.6. 

We have found through this experiment that the proposed general 
localization strategy, in practical terms, equivalently works with the 
Tikhonov based RLE or T-SVD based one. However, by comparing the 
fourth row of Table 8.8 for Tikhonov based RLE and the same one in Table 
8.9, for T-SVD based one, we observe that Tikhonov provides performance 
parameters that are something better than the ones of T-SVD. Moreover, 
as we concluded in §8.6, Tikhonov based RLE is more robust under possible 
starting point accuracy degradations and possible failure of stations (the 
equivalent degradation of the quality of system geometry). Therefore, we 
recommend the preferable use of the general localization strategy with the 
Tikhonov based RLE rather than T-SVD based one, although obviously a 
previous analysis is always advisable. 

The computational cost of implementing Tikhonov and T-SVD based 
RLE is exactly the same, as in both cases the SVD of the coefficient matrix 
must be calculated. As an example, the simulations presented in this thesis 
have been carried out in a personal computer of 1.3 GHz of processor and 4 
GB of RAM, and the average time of calculating one position with the 
general localization strategy of Fig. 8.3 was 8 ms (including the tracking 
algorithm), which is a time much smaller than the maximum delay of 250 
ms, which is stipulated in EUROCAE MOPS ED-117 [1] for Mode S MLAT 
surface surveillance operations. 
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Fig. 8.54 X(t) for Tikhonov based RLE. 
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Fig. 8.55 Y(t) for Tikhonov based RLE. 
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Fig. 8.56 X(t) for T-SVD based RLE. 
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Fig. 8.57 Y(t) for T-SVD based RLE. 
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Table 8.8 Statistical parameters for the error distributions of the Tikhonov based RLE. 
Values given in meters. 

Algorithm ࣌૛ࡰ (m) Mean2D (m)
PoL ࢾ(%) = ૠ. ૞࢓ PoL (%) ࢾ = ૚૞࢓ 

Taylor3D + Tikhonov 
(RLE) 

60.32 13.08 67.96 89.73 

Taylor3D + Tikhonov 
(RLE+SM) 

59.15 10.15 71.73 93.41 

Taylor3D + Tikhonov 
(RLE+SS) 

27.20 10.30 68.78 90.45 

Taylor3D + Tikhonov 
(RLE+SM+SS) 

13.14 6.30 74.02 95.14 

Tracking 6.07 5.68 76.55 95.40 

 

Table 8.9 Statistical parameters for the error distributions of the T-SVD based RLE. Values 
given in meters. 

Algorithm ࣌૛ࡰ (m) Mean2D (m)
PoL ࢾ(%) = ૠ. ૞࢓ PoL (%) ࢾ = ૚૞࢓ 

Taylor3D + T-SVD 
(RLE) 

53.09 11.41 68.44 90.29 

Taylor3D + T-SVD 
(RLE+SM) 

35.23 7.82 72.69 94.25 

Taylor3D + T-SVD 
(RLE+SS) 

27.76 10.15 68.32 90.26 

Taylor3D + T-SVD 
(RLE+SM+SS) 

15.45 6.65 73.05 94.73 

Tracking 6.67 5.84 76.60 95.04 
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9 Conclusions and Perspectives 

In this thesis we have proposed and developed a set of new strategies to 
improve the MLAT systems performance in the ATC operations. Such 
strategies are focused on the automatic, and optimized design of MLAT 
systems, and on the performance improvement of the localization function, 
which is basically the core function of these systems. This thesis has been 
divided into three parts. The first one, horizontal to the remaining two, 
provides all the theoretical foundations for MLAT systems and describes 
how they are framed into the general ATC infrastructure. We consider this 
part a small contribution to the knowledge as far as no public documents, 
describing these topics, were found before this thesis. In the following, the 
main conclusions and specific contributions to the knowledge of the second 
and third parts of this thesis are provided. Thereafter, we describe some 
open research lines from this work, and finalize by providing the merits of 
the author of this thesis. 

9.1 Conclusions for Design Strategies 

In this thesis part, we have developed the design strategies for the 
automatic, and optimized design of MLAT systems in both standard (i.e., 
by only using TOA/TDOA measurements) and enhanced (i.e., by the 
combining use of RTD/TDOA and AOA/TDOA) forms. 

First, we have developed a framework for the general problem of MLAT 
system designs. This general framework describes the system performance 
parameters, which are usually set as the requirements for a system design, 
and the system design parameters, which are the ones that allow the 
computer modelling and optimization of the system functions. Moreover, 
this framework also describes how the system performance and design 
parameters are related. This framework composes the core of the general 
design strategy proposed in this thesis. 
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We have performed an exhaustive state of the art review of the currently 
proposed solutions for MLAT systems design, and we have found that all of 
them can be classified into three groups. The first group comprises the 
works describing the basic theory for analyzing the theoretical accuracy of 
MLAT systems. The second one comprises all the works that apply the 
basic theory (i.e., the first group works) to obtain some general guidelines 
for the station deployment (i.e., the system geometry), and the third one 
comprises the works that provide some general frameworks, which allows 
the “automatic” system design under some conditions. We have also found 
that the majority of works in the literature belong to the first two groups, 
and no many works have been developed for dealing with the problem of 
automatic MLAT system design. Moreover, we have also found that all the 
revised works do not contemplate some parameters, which are very 
important for MLAT systems, like the probability of detection, the signal 
propagation effects, the measurement error balance, the real constraints due 
to the scenario layout, and the possibility to also design the enhanced 
version of MLAT systems, whose implementation is growing nowadays. 

We have developed the mathematical adaptation of the MLAT system 
design problem into a combinatorial optimization one. In this adaptation 
adaption, we have mapped every part of the MLAT design problem into 
every part of a general combinatorial optimization problem (i.e., the 
problem variables, search space, variable domains, variable constraints, and 
fitness function). It allowed us to implement the particular metaheuristic 
optimization technique of genetic algorithms, which is the numerical mean 
that finds the best system design parameters that optimize the system 
performance ones. 

We have rigorously analyzed and demonstrated the computer complexity 
of the MLAT system design as combinatorial optimization problem. We 
have demonstrated the MLAT system design problem belongs to the class 
of NP problems and, hence, that there is no a deterministic algorithm that 
could find an optimal solution in polynomial time. 

Finally, in this thesis part, we have developed an efficient procedure to 
define the layout of standard and enhanced MLAT systems. This procedure 
is based on the use of genetic algorithms along with the integration of 
different information and several numerical tools such as the general CRLB 
analysis. Moreover, practical and useful strategies to apply the procedure 
have been also proposed and fully described. They are useful not only to 
design new standard and enhanced MLAT systems but also to validate 
whether a previous system design could be the optimum solution with 
regard to a set of available resources and to analyze possible system 
expansions. The procedure and strategies developed in this thesis are very 
useful because they avoid the full evaluation of all the possibilities. Instead 
of this, we have found that only the evaluation of the 6×10-6 % of all the 
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possible options is enough to obtain satisfactory results, i.e., a system 
design that satisfies all the requirements and restrictions. 

Three kinds of designs have been presented and evaluated. The first one 
is able to design new MLAT systems with a fixed number of TDOA 
stations but also to validate whether a final design (clearly before the 
implementation) can be improved by feasible, but not obvious, sites 
changes. The second one provides a strategy to obtain a minimum number 
of stations that satisfies all the stipulated requirements and restrictions. 
The third one is proposed to design enhanced MLAT systems, i.e., by using 
other type of measurements such as AOA or RTD. For the third design, an 
example with a MLAT system using TDOA/AOA stations has been 
presented, but the use with other measurements combinations is 
straightforward. Finally, it is worth to say that also these design strategies 
can be used together in order to obtain more reliable results, e.g., firstly the 
second design can be used to obtain a possible minimum number of stations 
that meets all the requirements and restrictions and then, by means of the 
first design (or the third one in the case of enhanced MLAT systems), 
obtain the optimum sites or just to validate the set obtained with the 
second one. Due to the modularity of our proposed design strategy, the use 
of new requirements or restrictions is also possible only by simply modifying 
the corresponding cost function and their weight factors. 

9.2 Conclusions for Localization Strategies 

In this thesis part, we have developed the strategies for localization in Mode 
S MLAT systems. These strategies have been only proposed for the 
standard version of MLAT systems (i.e., for only TOA/TDOA 
measurements). 

First, we have described all the theoretical foundations of the 
localization in MLAT systems and its numerical solution. Particularly, we 
have described the general MLAT localization as an inverse problem, the 
current algorithms to solve it (i.e., the LS and pseudoinverse concepts), and 
its numerical characteristics, emphasizing on the ill-conditioning of it under 
some situations. It has allowed us to identify the techniques used in other 
scientific fields to solve the equivalent ill-conditioned inverse problems. 
Moreover, we have described the canonical tool for analyzing ill-conditioned 
problems (i.e., the SVD) and the basic parameters to analyze the ill-
conditioned inverse problems (i.e., condition number, rank, numerical rank, 
and SVD spectrum). In this part, we have provided all the concepts which 
support all our developments. 

 We have performed an exhaustive revision of the state of the art for the 
localization algorithms, which can be used in MLAT systems. Based on this 
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state of the art review, we have proposed a general, novel framework to 
understand, and compare the localization algorithms. In this framework, a 
localization algorithm is characterized by the pair formed by a data model 
and a numerical algorithm. For the data models, we propose three different 
approaches that encompass the most of the localization algorithms found in 
literature. We have also demonstrated that this classification is fully 
compatible with the current one, which only classifies the algorithms as 
open or closed form algorithms. The proposed data models are the 
statistical approach based models, which construct the localization problem 
by making some statistical assumptions, the numerical approach based 
ones, which make some numerical assumption among the unknown 
variables, and the algebraic approach based ones, which do not make any 
statistical or numerical assumption. On the other hand, for the numerical 
algorithms, we have found the most of them are based in the LS sense. 
Likewise, we have described all the localization algorithms that, from our 
point of view, represent the majority of them in the literature. 

We have tested all the described localization algorithms for both 
simulated scenarios and scenarios with real data. For all the cases the 
general conclusions we have found are the same. We have found the most 
statistically optimal solutions are provided by the algorithms using a 
statistical approach based model, as long as the statistical hypotheses are 
met and the algorithm convergence is reached. For MLAT systems, we have 
also shown that the statistical hypotheses are always satisfied in real data 
scenarios but, the convergence of these algorithms when solved in the sense 
of LS is unstable and, hence, not always guaranteed. The algorithms that 
use a numerical approach based model are by definition no statistically 
optimal, but they provide better convergence characteristics and the 
computational cost of implementing them is low. However, they sometimes 
needs for suitable geometry conditions to obtain satisfactory results. 
Regarding the algorithms that use an algebraic approach based model, they 
also are not statistically optimal by definition as they set the localization 
problem without taking into account of any statistical characteristic of the 
measurements. However, this kind of algorithms, due to their nature, 
provides a stable performance, even in the case of small number of stations. 
By contrary, besides they are not statistically optimal, they also need one 
more stations than the remaining ones. 

We have concluded that, in order to obtain the most efficient 
(statistically and numerically speaking) localization strategy, it is always 
advisable to use the combination of a statistical approach based model 
algorithm (that is an open form algorithm) along with either a numerical or 
an algebraic approach based model algorithm (that are closed form 
algorithms). 



9.2 Conclusions for Localization Strategies 259 

We have fully analyzed the numerical characteristics of the localization 
problem for MLAT systems, when it is solved in the sense of Taylor series 
expansion algorithm. This analysis has been presented in the sense of the 
SVD spectrum of the coefficient matrix. In this way, we have found that 
the SVD spectrum of the coefficient matrix changes with the Taylor 
refinement iteration and, therefore, it can be classified as a rank-deficient or 
discrete ill-posed problem. Furthermore, we have identified three possible 
sources for the ill-conditioning of the localization problem, i.e., the system 
geometry, the measurements noise, and the quality starting point for Taylor 
method. When the ill-conditioning is due to the system geometry it was 
observed that the problem tends to be more rank-deficient and when it is 
due to the measurements noise, or to the starting point, it was observed 
that the problem tends to be more discrete ill-posed. 

We have studied several regularization methods, in order to propose new 
localization algorithms for Mode S MLAT, and a new general localization 
strategy for all the scenarios, but particularly for those cases that present 
some amount of ill-conditioning. Several regularization methods have been 
studied and tested, namely, Tikhonov regularization, Truncated SVD (T-
SVD), T-SVD with sub-set selection (T-SVD SS), and Truncated Total 
Least Squares (T-TLS). Within these methods, it has been found that the 
best performances are obtained by the application of Tikhonov and T-SVD 
methods along with the Taylor series expansion algorithm. Thus, with these 
two methods we have proposed two Regularized Location Estimators 
(RLE). 

For every RLE we have developed a novel and efficient strategy to 
estimate the corresponding regularization parameters. Moreover, a 
particular procedure to refine the estimation of the regularization 
parameter, in the case of LAM surveillance, has also been developed. 
Particularly, for Tikhonov based RLE, due to its continuous nature, we 
have also analyzed its influence on the localization problem, specifically, it 
has been described the geometrical correction and the effects of the 
regularization and perturbation errors. 

We have found that the correct implementation of Tikhonov and T-SVD 
regularization methods always significantly mitigates the ill-conditioning of 
the localization problem. The application of any regularization method 
always introduces certain amount of bias on the results. However, in this 
thesis, we have demonstrated, by means of simulations of both simulated 
and real data scenarios, that with the use of the correct regularization 
parameter this amount of bias can be neglected in practical terms. 

We have analyzed, by means of simulations, the different and possible 
sources to calculate the starting point for Taylor based algorithms (for the 
classical solution in the sense of LS and the RLEs proposed herein). 
Furthermore, it has also been analyzed the accuracy performance in the 
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presence of a possible failure of one station. Regarding the results for 
Tikhonov and T-SVD based RLEs, we have found that, although both 
methods provide good accuracy performances, Tikhonov is more stable and 
reliable in the presence of possible degradations of the starting point and of 
the failure of some stations. For example, particularly for LAM (but also 
for WAM), when using the Tikhonov based RLE, it is enough to use only 
the centre of the airport as the starting point (a fixed value) without the 
need of a closed form algorithm. 

We have developed a general regularized localization strategy along with 
a set of additional improvements. It is based on the combined use of a 
closed form algorithm and the RLE developed herein (either the Tikhonov 
or T-SVD based RLE). The general strategy is composed of two steps, the 
first step is called area detection and it is intended to detect the situation 
of the aircraft/vehicle (i.e., if the target is on the surface or on flight). The 
first step must be only carried out in the first time at the Mode S 
squitter/replies from an aircraft or vehicles are detected by the system. 
Then, the second step, called localization process, is a recursive process 
which is intended to calculate the position of the aircrafts/vehicles. 
Moreover, the additional improvements are the measurements selection and 
solution selections.  

We have tested the proposed general localization strategy in both 
simulated and real data scenarios. The simulated scenarios are composed by 
real geometries and simulated measurements, whilst the real data scenario 
is composed by both real geometries and real measurements. We have 
found, for all the cases, significant improvements when using the proposed 
general localization strategy with regard to all the localization algorithms 
presented in the literature and also analyzed in this thesis. Moreover, we 
have also found the proposed additional improvements help to significantly 
improve the system performance in the case of highly noisy measurements, 
even for the real data scenario we have found these strategies allows to 
mitigate the errors due to multipath problem. 

Finally, we consider important to emphasize that when the localization 
problem is well-conditioned (e.g., Innsbruck WAM system) the classical 
solution without the use of any of the proposed RLE (i.e., by the 
pseudoinverse matrix) provides good accuracy performance. However, the 
use of the proposed RLEs has the same accuracy performances. For these 
reason, we propose the general use of the proposed RLEs to solve the 
localization problem. 
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9.3 Future Work 

Once finalized this thesis, some research lines remain open and should be 
further investigated. These open lines are listed below: 

• The design strategies proposed in this thesis take into account an 
important number of performance parameters, which are introduced 
into the resulting combinatorial optimization problem by means of 
the system design parameters. However, effects like those due to 
multipath propagation from buildings have been not introduced. 
Therefore, it should be interesting to introduce these effects for all 
the kind of measurements, i.e., TOA/TDOA, RTD and AOA, in 
order to obtain more realistic system designs. 

• Although the metaheuristic of GA used in this thesis provides 
suitable convergence rates, it should be interested to validate novel 
techniques, like Ant Colony Optimization (ACO) or Particle Swarm 
Optimization (PSO), which have presented better performances in 
other scientific fields. 

• For the regularized location estimators we have described some 
analytical expressions that show the existence of regularization and 
perturbation errors, which are affected by the amount of 
regularization that is introduced. Thus, it is interesting to obtain 
some analytical procedures that allow the previous analysis of the 
accuracy for the regularized location estimators. 

• We have proposed some additional improvements that allow the 
mitigation of the errors due to the multipath effect. However, 
although they are efficient for the scenarios tested in this thesis, they 
should be further investigated to increase their robustness. 

• We have proposed a general localization strategy for using with the 
standard MLAT systems, i.e., by only using TOA/TDOA 
measurements. Moreover, we have also shown that these regularized 
estimators improve the position accuracy also in the case of well-
conditioned problems. Therefore, it should be advisable to investigate 
the usefulness of these algorithms for the enhanced version of these 
systems, i.e., by also using RTD or AOA measurements, which in 
principle are also well-conditioned problems. 

• We consider that the validation of the general localization strategy 
proposed in this thesis is enough to demonstrate the real usefulness 
of it. However, it would be advisable to validate it with more real 
data, coming from other operational systems. 
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A Development of Combinatorial by Means of Stirling’s Approximation 

The full description of the development of combinatorial formula in (5.3) 
and (5.4) is provided in this annex. For convenience, the combinatorial 
formulas in (5.3) and (5.4) and the Stirling’s approximation [69] are 
rewritten, respectively, in the following: ܥଵ(ℓ࣭) = ℓ࣭!(ℓ࣭ − ܾℓ࣭)! (ܾℓ࣭)!  

)ଵܥ ௦ܰ) = (ܽ ௦ܰ)!(ܽ ௦ܰ − ௦ܰ)! ௦ܰ!  

݊! ≈ ݊ߨ2√ ቀ݊݁ቁ௡  

Now, the Stirling’s approximation is replaced in ܥଵ(ℓ࣭) as follows 

ଵ(ℓ࣭)ܥ = ඥ2ߨℓ࣭ ቀℓ࣭݁ቁℓ࣭ඥ21)ߨ − ܾ)ℓ࣭ ൬(1 − ܾ)ℓ࣭݁ ൰(ଵି௕)ℓ࣭ ඥ2ܾߨℓ࣭ ቀܾℓ࣭݁ ቁ௕ℓ࣭  

then, rearranging the common terms, 

ଵ(ℓ࣭)ܥ = ඨ 1)ߨℓ࣭2ߨ2 − ܾ)ℓ࣭2ܾߨℓ࣭ ൬ℓ࣭݁൰ℓ࣭ ቆ(1 − ܾ)ℓ࣭݁ ቇ(௕ିଵ)ℓ࣭ ൬ܾℓ࣭݁ ൰ି௕ℓ࣭  

ଵ(ℓ࣭)ܥ = ඨ 1)ߨ12 − ܾ)ܾℓ࣭ ൬ℓ࣭݁൰ℓ࣭ା௕ℓ࣭ିℓ࣭ି௕ℓ࣭ (1 − ܾ)(௕ିଵ)ℓ࣭(ܾ)ି௕ℓ࣭  
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ଵ(ℓ࣭)ܥ = ඨ 1)ߨ12 − ܾ)ܾℓ࣭ ൬ 11 − ܾ൰(ଵି௕)ℓ࣭ ൬1ܾ൰௕ℓ࣭ ; 0 < ܾ < 1  

Finally, the explicit expression for ܥଵ( ௦ܰ) is straightforward by replacing 
the relation ℓ࣭ = ܽ ௦ܰ into ܥଵ(ℓ࣭). 

 

 

 

 

 

 

 

 

 

 



 

B 
Development of Averaging Kernels for 
Tikhonov Regularization 

B Development of Averaging Kernels for Tikhonov Regularization 

The full description of the formulas for the averaging kernels in (8.28) is 
provided in this annex. For convenience, let rewriting (8.26) only in terms 
on the smoothed version of the exact target position, i.e., by omitting the 
noise and starting point terms, as follows: ࣂ෡ఒ = બࣂ  

Then, the definition of the resolution matrix is expressed as (8.25): બ = ఒି࡭ ଵࡳ  

and the inverse matrix of Tikhonov can be expressed in terms of the SVD 
of matrix ࡳ as follows: ࡭ఒି ଵ = ଵି(்ࢂ઱ડఒࢁ) =   ்ࢁఒ઱ିଵࡲࢂ

where matrix ડఒ has been defined in (8.16) as a diagonal matrix containing 
the inverse of the Tikhonov filter factors. Thus, matrix ࡲఒ is a diagonal 
matrix containing the filter factors as follows: 

ఒࡲ = ડఒି ૚ = ቎ ଵ݂ ⋱ ௡݂቏௡×௡  

being ௝݂ the jth Tikhonov filter factor. Then, the resolution matrix can be 
also expressed in terms of the SVD of matrix ࡳ as follows: બ = (்ࢂ઱ࢁ)(்ࢁ઱ିଵࡲࢂ) =   ்ࢂࡲࢂ

The above resolution matrix can be expressed in terms of the right 
singular vectors as: 
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બ = ்ࢂࡲࢂ =෍ ௝݂࢜௝࢜௝்௡
௝ୀଵ   

where ࢜௝ is the jth right singular vector of matrix ࢂ. Now, if we define the 
resolution matrix as: 

બ = ቎ߦଵଵ ଵଶߦ ଶଵߦଵଷߦ ଶଶߦ ଷଵߦଶଷߦ ଷଶߦ   ଷଷ቏௡×௡ߦ

It is straightforward that every averaging kernel can be obtained as: 

௜ࣈ = ቎ߦ௜ଵߦ௜ଶߦ௜ଷ቏௡×ଵ =෍ ௝݂࢜௝௜௡
௝ୀଵ   ௝࢜

where ࢜௝௜ is the ith component of the jth right singular vector. Finally, 
developing the above expression for the ith averaging kernel it is obtained 
the expression in (8.28) as: ࣈ௜் = ଵ݂࢜ଵ௜ ଵ்࢜ + ଶ݂࢜ଶ௜ ଶ்࢜ + ଷ݂࢜ଷ௜   ଷ்࢜
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C Simulated Scenarios 

In this thesis we validate the proposed localization estimators and strategies 
by using two kinds of scenarios. The first ones are MLAT systems with real 
geometries and simulated TOA measurements. Within this kind of 
scenarios, we simulate three different systems: the WAM system of 
Innsbruck (Austria) Airport, the WAM system of Malpensa (Milan, Italy) 
airport (it was a particular proposal for that airport), and the LAM system 
of Linate (Milan, Italy) airport. The latter has been provided by Thales 
Italia S.p.A. On the other hand, the second kind of scenario is a MLAT 
system with real geometry and real measurement data. It is the LAM 
system of Tallinn (Tallinn, Estonia) airport, whose real data have been 
kindly provided by the company ERA A.S. (www.erabeyondradar.com). In 
the following we describe the system geometries and paths of each of system 
mentioned before. 

C.1 Scenarios with Real Geometry and Simulated 
Measurements 

In this kind of scenarios we use the real system geometry, a real flight or 
surface movement path, and the simulated TOA measurements. These 
simulated TOAs are generated by adding, to the exact values, a random 
error that follows a Gaussian distribution of zero mean and standard 
deviation ்ߪை஺. Moreover, for setting this standard deviation we have used 
the general simulation model as proposed in [20]. Basically this model takes 
into account of the errors due to propagation loss, to the quantisation 
effects of the receivers, to the stations synchronization, etc. (see also Table 
2.1 and (2.6)). 
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C.1.1 Innsbruck System 

The Innsbruck airport (IATA code: INN) WAM system is composed of nine 
stations (three receiver/transmitter –R.T.-, five receivers only –R.O.-, and 
one reference transponder), and a redundant processing subsystem. The 
coordinates of the nine stations are shown in Table C.1 and the layout of 
the system and the flight path are shown in Fig. C.1. 

In this scenario we assume all the stations have line of sight to all the 
simulated points. 

Table C.1 Stations coordinates for the Innsbruck WAM system. 

Num. Type Lat. Lon. Alt9. (m) 

1 Ref. Trans. 47º12’13.4’’ 11º27’36.7’’ 2245 

2 R.T./Ref. Trans. 47º15’28.2’’ 11º21’9.8’’ 616 

3 R.O. 47º18’46.4’’ 11º23’10.3’’ 2336 

4 R.T. 47º14’37.4’’ 11º10’51.9’’ 1910 

5 R.O. 47º15’11.6’’ 11º33’20.9’’ 1360 

6 R.T. 47º19’15.7’’ 11º44’30.8’’ 1895 

7 R.O. 47º24’34.6’’ 11º47’15.1’’ 1006 

8 R.O. 47º18’11.9’’ 11º04’23.11’’ 605 

9 R.O. 47º18’49.3’’ 11º10’39.5’’ 1459 

                                         
9 A.M.S.L.: Above Mean Sea Level. 

 
Fig. C.1 Innsbruck system layout (top: vertical profile, bottom: horizontal profile). 
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The level (A.M.S.L) of the runway is approximately 577 m, the takeoff 
line is in north-east direction, and the coordinates (Lat., Lon.) of the initial 
point are (47º15’41.42’’, 11º21’21.63’’). 

C.1.2 Malpensa System 

The Malpensa airport (IATA code: MXP) WAM system is composed of 
four receiving stations. It was a proposal for solving the approach 
surveillance at Malpensa airport and was firstly described and analyzed in 
[7]. This scenario is a good case study for understanding the essentials of 
the ill-conditioning problems, and to clearly showing the improvements 
reached by using regularization strategies. For this particular system we 
simulate a takeoff line. The coordinates of the four stations are shown in 
Table C.2 and the layout with the takeoff line path is shown in Fig. C.2. 

In this scenario we assume all the stations have line of sight to all the 
simulated points. 

Table C.2 Stations coordinates for the Malpensa WAM system. 

Num. X (m) Y (m) Alt. (m)

1 -1800 -800 40

2 -1100 7200 50

3 8600 -7000 45

4 22000 300 47

 

 
Fig. C.2 Malpensa system layout for the first takeoff line: Malpensa 1 (top: horizontal 

profile, bottom: vertical profile). 
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C.1.3 Linate System 

The Linate airport (IATA code: LIN) LAM system is composed of eight 
receiving stations and it is intended only for surface movement surveillance. 
The coordinates of the stations have been kindly supplied by Thales Italia 
S.p.A. (Dr. Ing. R. Scaroni) and are shown in Table C.3. For this system 
we simulate a surface movement path that is shown in Fig. C.3. In this 
figure the coordinate system is centred to the station emplaced in the 
control tower (the station number 2 depicted as the diamond in Fig. C.3). 

In this scenario we assume all the stations have line of sight to all the 
simulated points. 

Table C.3 Stations coordinates for the Linate LAM system. 

Num. Lat. Lon. Alt10. (m)

1 45º27’32.2798’’ 9º16’53.4155’’ 168.199

2 45º27’6.8428’’ 9º16’54.9524’’ 150.936

3 45º26’36.6958 9º16’51.4025’’ 152.445

4 45º25’59.038 9º16’55.4563’’ 151.821

5 45º25’53.8948’’ 9º16’40.1378’’ 143.813

6 45º26’13.2991’’ 9º16’34.9441’’ 145.4

7 45º27’19.1738’’ 9º15º39.9965’’ 151.63

8 45º27’40.3024’’ 9º15º57.9054’’ 150.34

                                         
10 A.M.S.L.: Above Mean Sea Level. 

 
Fig. C.3 Linate system layout and the simulated surface movement. 
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The level (A.M.S.L) of the runway is approximately 105 m. Moreover, 
the six-peaks star in Fig. C.3 represents a fixed starting point (for Taylor 
based algorithms) for using in some simulations. 

C.2 Scenario with Real Data 

C.2.1 Tallinn LAM System (ERA A.S.) 

The Tallinn airport (IATA code: TLL) LAM system is composed of 
fourteen receiving stations and it is intended only for surface movement 
surveillance. The information about this system has been provided by the 
company ERA A.S. (www.erabeyondradar.com). Due to a confidentiality 
agreement we cannot provide in this thesis of the numerical values for the 
station coordinates, therefore, only the system layout is shown in Fig. C.4. 
Moreover, to evaluate the algorithms accuracy, the company has provided 
us of reference position data as obtained with a DGPS receiver. The 
corresponding reference path is also shown in Fig. C.4. 

On the other hand, Fig. C.5 shows the line of sight profile for the 
recorded TOA measurements in Tallinn airport, i.e., the number of stations 
that measure the TOAs for every position register. The total number of 
registers is 4230. 

 

 
Fig. C.4 Tallinn system layout. 
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Fig. C.5 Line of sight profile for Tallinn system. 
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